
NEAR EAST UNIVERSITY

FACULTY OF.ENGINEERING

PiBARTMENT OF COMPUTER
'ENGINEERING. ::

TABLE OF CONTENTS

1. INTRODUCTION

2. TECHNOLOGY OF CASE TOOLS

3. KNOWLEDGE-BASE CASE TOOL

4. AREAS FOR IMPROVEMENT

5. INTEGRATION CASE ENVIRONMENT

6. CONCLUSION

7. REFERENCES

8. APPENDIX

INTRODUCTION

Over the past few years, much attention has centred on the need for
manufacturing companies within the UK to regain their competitive edge.
The international marketplace is changing rapidly, with customers
becoming much more demanding with respect to quality and service.
British manufacturers have to evolve into more robust and responsive
organisations. The CBI National Manufacturing Could determined that
UK manufacturing industry has to improve performance by between 20%
and 40% in order to achieve internationally competitive standards [1, 2].

Computer-based technology for planning and control has been
recognised as a key to competitive manufacturing, providing the right
information to the right people at the right time. Information is now
recognised as a vital corporate resource, and software is required to
support the integration and dissemination of information across the whole
manufacturing organisation; information Systems are strategically
important within manufacturing. Indeed, IBM has coined the phrase
'information driven manufacturing'. Computer-integrated manufacturing
(CIM) has emerged over the past few years in an attempt to define the
effective utilisation of manufacturing information across a factory, but
today this integration is sill inter-prettied In many ways.

There is a growing need for appropriate computer solutions that
can support the business strategy of a manufacturing organisation and
enable integration, in an inexpensive yet effective manner A large
number of soft-ware vendors are offering disparate packaged systems in
support of manufacturing. However, it is often difficult to justify the
implementation of manufacturing information technology, particularly
within the throes of economic recession. The associated costs are easy to
measure on a financial basis, but the benefits are hard to quantify and are
often intangible. In order to influence senior management, information
technology has to be seen to address specific Identified strategic needs.

A recent survey by Benchmark Research [3] reveals that
investment in manufacturing information technology will rise for the first
time since 1989, by 2.4% or £33m over the next year within the UK,
representing an annual expenditure of £1450 million. The report identifies
a low level of satisfaction with information Systems that have been
implemented in support of manufacturing planning and control. This is
due to the unsuitability of the systems and to the failure to deliver the
promised benefits. In response to this report, Puttick [4] stated

There seems to be a great gulf between IT suppliers and
manufacturers, Manufacturers are so caught up in the chaotic world of
the factory floor that they are unable to define their problems adequately,
let alone explain them to others. IT suppliers, on the other hand, do not
fully understand manufacturing, and are so sales-oriented that they don't
focus on the real problem. '

With the expected rise in investment and the proliferation of
packaged systems, it becomes increasingly important that manufacturing
systems engineers develop a detailed understanding of their organisation's
requirements and the problem areas to be addressed. This provides the
manufacturing organisation 'with the knowledge necessary to
communicate effectively with software vendors and to select the
appropriate solutions. Typically, such solutions will be achieved by the
selection and tailoring of a range of packages, rather than by the design of
bespoke software.

The Advanced Manufacturing Systems Research Group at the
University of Liverpool has been researching the specification and design
of integrated information systems to support advanced manufacture for a
number of years, supported by three major contracts from the ACME
(Application of Computers to Manufacturing Engineering) Directorate of
the SERC. At an early stage in the Group's work, the importance of a
clearly understood and unambiguous requirements specification
document was appreciated. Such a document should form the basis of any
contract between the manufacturing organisation and a software vendor.
To produce such a specification for the complex systems necessary to
support an advanced factory is a daunting task

Traditionally, requirements specification documents for
manufacturing information systems have been written in natural language
and often portray a 'wish-list' predominantly based on the features of
commercially available packaged solutions, rather than the strategic
needs of the business.

The complexity of the manufacturing environment dictates the
need for a systematic or structured approach to enable manufacturing
Systems engineers to analyse and define their information requirements.
However, very little advice been forthcoming regarding this procedure
within manufacturing industry. Many authors have identified the need for
structured approaches and effective systems modelling techniques, but
the few methods developed to satisfy this need have failed to find
'widespread use.

Within the comparatively youthful computer industry, the
discipline of software engineering and computer-aided software
engineering (CASE) tools have been proven to facilitate the production of
reliable, 'well documented information systems that help meet the
requirements of the intended users. That is due to the considerable
emphasis on the tasks of requirements specification. However, almost ah
of this work has taken place outside the manufacturing environment.

If as research at the University of Liverpool suggests,
manufacturing Systems engineers are required to analyse their
information difficulties and define the associated requirements, it would
seem appropriate to utilise established approaches from other application
domains, such as the software industry. Although this route is logical and
feasible, the methods and tools available for use by the non-specialist (in
software engineering terms) manufacturing systems engineer need much
development.

This paper presents the research 'work undertaken to Investigate
the relevance of software engineering and CASE in manufacturing
systems engineering. An in-depth examination of this relevance had not
previously been undertaken, and the indications from the manufacturing
industry are that CASE has had little real penetration. The research
objectives were

• to establish the need for structured methods and tools in
support of the production of robust requirements specifications for
manufacturing information systems.

• to examine commercially available CASE methods and tools
for their suitability to provide support to the manufacturing systems
engineer in developing a specification of requirements for manufacturing
information systems.

• to identify the main developments needed in CASE methods
and tools to ensure their widespread adoption within manufacturing
industry; this formed the basis of the contribution to new knowledge.

An extensive review of literature was conducted into manu­
facturing information Systems development and the history and current
capabilities of CASE methods and tools. In addition, this review
examined the tentative use of CASE methods and tools within the
manufacturing industry. A survey was undertaken of commercially

available CASE products aimed at supporting the specification of require­
ments to increase familiarisation 'with the CASE marketplace and product
capabilities. Three typical CASE products, Identified as suitable, were
applied on-site to manufacturing information systems projects, This
tested the appropriateness of the methods and tools employed within the
manufacturing environment.

In addition, experts within manufacturing information Systems
development (from both academia and industry) were questioned to gain
an external perspective of the needs of manufacturing systems
engineering and the relevance of CASE methods and tools. The Initial
research hypotheses were examined in the light of the research work
undertaken, and conclusions and recommendations were produced for the
requirements of CASE for more widespread application within
manufacturing industry. It is important to note that this research project
was viewed as an introductory study into this area, raising many ques­
tions to be tackled in a subsequent project outlined.

We believe that, in order to facilitate a competent definition of a
manufacturing organisation's requirements for computer-based
technology in support of its strategic objectives, it is necessary for
manufacturing systems engineers to adopt structured approaches and
tools. As Puttick [5] states.

'This mismatch between the Systems manufacturing has installed and
what It really needs IS due to an Inability of manufacturing to articulate
its needs and a Lack of understanding by the IT vendors... The lack of
analysis toots and techniques to translate business and manufacturing
needs into if requirements has held industry back. '

The complexity of information Systems necessitates the need for a
methodical approach to their development Over the years, this need has
resulted in a wide range of methodologies being developed to support
differing development approaches. Despite the availability of such
methodical approaches, the design of information systems remains
largely a knowledge-Intensive activity, beginning with an informal set of
frequently vague requirements and ending up with a systematically
defined formal object [1]. Systems design has been described as being a
labour intensive process, much prone to error, with the end result of the
design process being devoid of the design know-ledge that led to its
construction [1]. Although contemporary computer-aided software
engineering (CASE) tools provide assistance In carrying out many design
tasks with improved efficiency, they are largely the results of the

automation of established design techniques. Often, existing CASE tools
are little more than graphical front-ends to data dictionaries [2]. In
general, the fundamental characteristic of design Is not addressed by
existing CASE technology.

INTRODUCTION

The complexity of information Systems necessitates the need for a methodical
approach to their development Over the years, this need has resulted in a wide
range of methodologies being developed to support differing development
approaches. Despite the availability of such methodical approaches, the design of
information systems remains largely a knowledge-Intensive activity, beginning
with an informal set of frequently vague requirements and ending up with a
systematically defmed formal object [1]. Systems design has been described as
being a labour intensive process, much prone to error, with the end result of the
design process being devoid of the design know-ledge that led to its construction
[1]. Although contemporary computer-aided software engineering (CASE) tools
provide assistance In carrying out many design tasks with improved efficiency,
they are largely the results of the automation of established design techniques.
Often, existing CASE tools are little more than graphical front-ends to data
dictionaries [2]. In general, the fundamental characteristic of design Is not
addressed by existing CASE technology.

Knowledge-based CASE tools

Artificial intelligence (AI) technology can be used to develop so called
knowledge-based CASE tools (KB-CASE).

Although a small number of existing CASE tools have limited knowledge-
ased capabilities. In terms of checking graphical correctness of analysis and
design models or applying the rules or a particular methodology to the models
created by the designer, the real promise of such tools lies elsewhere [3]. Rather
than simply commenting on and or validating a model that a human has
onstructed, KB-CASE tools (sometimes referred to as design, agents) are able to
play an active part during the design process. They are capable of providing
Intelligent assistance when required In the form of advice, suggesting alternative
solutions, helping to investigate the consequences of design decisions, and
maintaining the availability of the design knowledge by providing information
should a design decision be questioned or require explanation in retrospect. They
are an attempt to maintain the availability of the knowledge used during the
esign after the initial design process has been completed [4]. Such tools have an
derstanding of both the structure and the semantics of the design [1].

Several researchers have previously applied AI technology to develop KB­
ASE tools Such tools have been developed to ~ssist at all stages of the design
ocess, and are generally classed as those supporting specification acquisition
including conceptual, logical and physical design) and those supporting program

1

synthesis for tools for specification acquisition are concerned with the generation
f complete, consistent and correct design specifications, and/or their validation
and evaluation. Such specifications generally describe the user's requirements
from the system, the structure of the system (in terms of software modules and
flow of control) and the structure of the data to be used.

According to Gero and Maher [6], Innovative (or novel) design occurs
'hen designs. In the search space, which have not been produced previously, are

generated or found. Creative design occurs when designs are discovered that did
not exist conceptually before the system (i.e. the extension of the boundaries of
the search space). Given these definitions, KB-CASE tools supporting
specification acquisition can generally be thought of as performing innovative
rather than creative design. Tools for program synthesis support the
transformation of designs into executable code by attempting to synthesise
efficient programs from initial program specifications. This is generally achieved
,y the gradual refining of a high-level specification until a program satisfying the
original specification is obtained. This work concentrates on tools supporting
specification acquisition.

Given that artificial intelligence and conceptual modelling have developed
similar knowledge representation formalism's [7], it is not surprising that a
umber of researchers have previously applied Al to develop KB-CASE tools.
What is surprising is the relative lack of activity in an area of such potential.
Examples of interest illustrating previous works on tools supporting specification
acquisition Include The Programmer's Apprentice [8], SECSI [9], VCS [10], and
Modeller [11]. The Programmer's Apprentice is designed to provide support at
.arious stages of the development process. In this sense, its aims are similar to
those of Modeller, an integral part of a family of intelligent products being
developed by COGNOS Inc., to assist In the process of systems design. The
ode specification module of both these projects can be classed as performing
program synthesis. SECS provides intelligent support for logical database design
and is widely seen as the seminal work in the area of intelligent database design
ools, having Influenced a number of successors (including VCS) and made a
ommercial break-through in being marketed by infosys.

Areas for Improvement

A framework for the evaluation of KB-CASE tools supporting
specification acquisition derived from an Investigation into the state of
evelopment of such tools is described elsewhere [12]. A brief description of the

2

criteria within this framework follows. Table I provides an overview of the
results of this review with regard to these criteria.

• Stage or design covered: which stage(s) of the chosen design paradigm it
attempts to support.

criterta dsscrtptlon

sll!ge o! oe,ign covered thti maJorily of tools exarnlnec attempted to provide support tor a
sir>gle stage 01 the chosen ctr,sign paradigm (sueh as logical
design); very few attempted to provide support for more than one
stage of the deveteprnent pr ocass

user interface emp,oyeo tools generally provided a menu-based Interface, some lorm
of natural language inter1ace (NL.I). or a combineuon of both
minority provided grnphlcal capablltties In addition to soma torrn
ol rnei.11/Nl.l comoinaucn

method "'"ti to dri•e process toots genmally lell into one of two i:,aleg<)(lell; those re{lulrin,i
continuous Input from .an tntMdi!'d user of the 11pp1Jcnti0n sy~tem
11>ase:d on lhe assumpuon that tt,e bel<\1 wvrGe of lr•hmnatlon
relating lo a taroet system will In tact be a user of that syslem). a11d
Ihose relying on systems development staff to analyse the target
domain, and to present the lt'tlormallon in an appropriate lorm lo
the tool

ooma1n,spec111c knowled•Je !hi$ criteria was the 1e;ist wott suppo1·teci of all, despite the
potential of irwre@sipg tho appearance or lnteJligence of CASE:
tools. 1hls criteria was almost compf.otely ignored

design lectinim,e vseo !lw vast majority ot toots provided aectlve support tor well
eslabli:;iher.t oe~1gn techniq1J1>s; few developers Slrayed from trill
path of supportlng techniques that were already generally accepted

undo lact!ities !his was obviously ~een M .£1 fondamental requirement by most
devulopers as the majority ol tools provided some tacllily fur
1mdolng de6ign decisions

1e11rn•ng ai,,1,ty aHhou9!1 a numb,,, 01 tools coulct 'team about tne appllcallo11
domain (luting the course or a design sesslcn, few loots could pui
this evolving kPOwledge to use

ease of use the major i\y of tools examined appeareo to tie reasonably
sltaight!orward la use by the inttmded operator: some otfer,w
particularly friendly interfaces combining graphical and netural
language features a minority. however. Imposed prerequtsites that
would be {iittlcuH I() me11t for ,nany \'!veryday users, such as
knowle(,!ge Df ~pacific techniques and/or sp.eeiflcation language~.
or u,e 1wail,rbility of specialist staff

Table 2. Summary of evaluation of intelligent design tools.

• User interface employed: the method by which a system receives
Information from the user.

• Method used to drive design process: the method used to provide initial
input to the system Is examined i.e. how initial information relating to the
application domain is gathered; supplied directly by the user or provided by
some other means. The driving mechanism Is also examined in terms of
whether continuous user input is required throughout the design process, or
whether the process is largely automatic once initial information has been
gathered.

3

Areas for further Investigation include the transfer of knowledge gained In
e design session through to other sessions, i.e. the reuse of knowledge
eviously gained should it be applicable (currently, such knowledge is generally
stricted to within a single design session). Perhaps the area with the greatest
tential is also the most neglected; that of domain-specific knowledge. Domain-

specific (or 'real world) knowledge and the ability to reason with this knowledge
ould be of obvious advantage to an intelligent design tool. Successful advances
this area would also appear to have potential in the area of improving
ceptability, as tools that appear more Intelligent and efficient would
esumably be more acceptable to users.

In the remainder of this paper, we illustrate how domain-specific
owledge may be exploited In order to Improve the performance of KB-CASE

ools supporting specification acquisition.

Current generation CASE tools for analysis and design were conceived in
e late I 970s and 1980s, largely as vehicles for the automation of structured
echniques such as data flow diagrams and entity-relationship modelling [1].
These paper-based techniques incurred heavy administrative overheads in
maintaining records, consistency checking, and producing analysis and design
eliverables. CASE was hailed as a solution to the problems of managing and
manipulating diagrams and the large data dictionaries, or repositories, needed to
record information about diagram objects. The advantages of CASE included the
ability to print and reprint diagrams and to perform automatic consistency
becking. CASE tools were able to automate the production of analysis and
design deliverable' s and, more recently, they have offered some ability to
produce working software Systems with only limited intervention by
programmers. The growing number of IS methodologies made use of the same
diagrammatic techniques; CASE was seen as a way of enforcing the use of these
echniques, which were generally perceived as 'better' than past practices.

Anyone familiar with contemporary management research, or involved in
the IT industry, will have heard about business process re-engineering (BPR). In
BPR, the concept of IT as a way of simply automating existing business activities
is discarded in favour of a far more Interventionist style. it is well known that
many new computer-based Information systems fail to produce hoped-for
Improvements In productivity, levels of service, and so on. This failure is often
blamed on the fad that these new Systems attempt to automate existing 'bad'
practices. BPR aims to attain true improvement through first examining current
ways of working, and then improving those practices by redesigning work flow,
restructuring departments, tuning procedures etc. The application of IT often
goes hand-in-hand with this process redesign; indeed, the new ways of working 5

~ well be Impossible without ft. Hammer and Champy [2] point out the special
rtance of IT as a disruptive technology, with 'its ability to break the rules

1t limit how we conduct our work' The current focus on IT as a means of
Jltaioing competitive advantage hinges on the same kind of ideas as are

bodied in the BPR approach [3].

tems analysis and design: a case for BPR?

The discipline of systems analysis has evolved through several stages.
/hen first conceived, several decades ago, systems analysis was primarily a
eral problem-solving approach; with the Introduction of computers, It came to
linked more closely to the design of computer-based information Systems. The
of analytical tools has always been emphasised, but the level of formality has
ged; highly 'structured' specification techniques, such as object-oriented
ysis, are often now used where, in the past, prose specifications were

nsidered adequate [4].

Before the advent of 'structured' methods, a common approach by systems
ysts to the design of new computer-based information systems would be to

nstruct a 'user requirements statement', a document in which prose descriptions
if requirements for the new computer system would be interspersed 'with hand­
wn report and screen layouts. Flow charts could be used to represent the
ocessing to be performed by the new system. File layouts might be included to
ow the data items to be stored. One of the major problems of documents of this

_.-pe 'was Inaccessibility; the sheer size and complexity was Intimidating. Such
statements of requirements "were (and, in fact, still are) often used as the basis
or contractual arrangements. The use of 'natural' language meant that anyone
ould read the documents. However, it was difficult to tell if they were coned or
internally consistent, and few formal means of checking were available.

What we have seen since then is an explosion in the number of structured
echniques for representing requirements. enough prose Is still used, especially at
the earliest stages of requirements analysis, the focus is on semi-formal, and often
diagrammatic, representations. Techniques such as entity-relationship modelling,
state-transition diagrams, data flow diagrams, function hierarchy charts, and
matrices of all descriptions are used to codify and formulate requirements.
Contemporary information systems methodologies, such as SSADM, place great
weight on the correct application of these techniques, and their use is considered
to be 'good' In comparison with less structured approaches. Fig. XXX is an
example of a diagram used In one type of 'structured' analysis technique, object-
oriented analysis [5].

6

Following the dictates of the market-place, most CASE tools for analysis
design support the creation and maintenance of entity-relationship diagrams,
flow diagrams etc. Unfortunately, in doing so, they may have made the same
:ake that many early Systems developers made when designing new business
lication systems; the automation of existing practices, with insufficient
ught given to process redesign. The result now is that many CASE tools can
ture the diagrams and supporting data produced by common Systems analysis
:hniques. However, they do not support the way in which those techniques are
iplied. Below, we explore this issue in greater depth.

- -- .
Figure 38. Object-oriented analysis diagram.

COMPUTER-AIDED SOFTWARE ENGINNERING
(CASE)

Everyone has heard the saying about the shoemaker's children: The
shoemaker is a so busy making shoe for others that his children don't have shoes
of their own. Over the pest 20 years, many software engineers have been the
"shoemaker's children." Although these technical professionals have built
complex systems that automate the work of others, they have used very little
automation themselves. In fact, until recently software engineering was
fundamentally a manual activity in which tools were used only at the latter stages
of the process. 7

	Page 1
	Images
	Image 1

	Page 2
	Page 3
	Titles
	INTRODUCTION

	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Titles
	3

	Page 11
	Page 12
	Images
	Image 1
	Image 2
	Image 3

