
NEAR EAST UNIVERSITY

FACULTY OF.ENGINEERING

PiBARTMENT OF COMPUTER
'ENGINEERING. ::

TABLE OF CONTENTS

1. INTRODUCTION

2. TECHNOLOGY OF CASE TOOLS

3. KNOWLEDGE-BASE CASE TOOL

4. AREAS FOR IMPROVEMENT

5. INTEGRATION CASE ENVIRONMENT

6. CONCLUSION

7. REFERENCES

8. APPENDIX

INTRODUCTION

Over the past few years, much attention has centred on the need for
manufacturing companies within the UK to regain their competitive edge.
The international marketplace is changing rapidly, with customers
becoming much more demanding with respect to quality and service.
British manufacturers have to evolve into more robust and responsive
organisations. The CBI National Manufacturing Could determined that
UK manufacturing industry has to improve performance by between 20%
and 40% in order to achieve internationally competitive standards [1, 2].

Computer-based technology for planning and control has been
recognised as a key to competitive manufacturing, providing the right
information to the right people at the right time. Information is now
recognised as a vital corporate resource, and software is required to
support the integration and dissemination of information across the whole
manufacturing organisation; information Systems are strategically
important within manufacturing. Indeed, IBM has coined the phrase
'information driven manufacturing'. Computer-integrated manufacturing
(CIM) has emerged over the past few years in an attempt to define the
effective utilisation of manufacturing information across a factory, but
today this integration is sill inter-prettied In many ways.

There is a growing need for appropriate computer solutions that
can support the business strategy of a manufacturing organisation and
enable integration, in an inexpensive yet effective manner A large
number of soft-ware vendors are offering disparate packaged systems in
support of manufacturing. However, it is often difficult to justify the
implementation of manufacturing information technology, particularly
within the throes of economic recession. The associated costs are easy to
measure on a financial basis, but the benefits are hard to quantify and are
often intangible. In order to influence senior management, information
technology has to be seen to address specific Identified strategic needs.

A recent survey by Benchmark Research [3] reveals that
investment in manufacturing information technology will rise for the first
time since 1989, by 2.4% or £33m over the next year within the UK,
representing an annual expenditure of £1450 million. The report identifies
a low level of satisfaction with information Systems that have been
implemented in support of manufacturing planning and control. This is
due to the unsuitability of the systems and to the failure to deliver the
promised benefits. In response to this report, Puttick [4] stated

There seems to be a great gulf between IT suppliers and
manufacturers, Manufacturers are so caught up in the chaotic world of
the factory floor that they are unable to define their problems adequately,
let alone explain them to others. IT suppliers, on the other hand, do not
fully understand manufacturing, and are so sales-oriented that they don't
focus on the real problem. '

With the expected rise in investment and the proliferation of
packaged systems, it becomes increasingly important that manufacturing
systems engineers develop a detailed understanding of their organisation's
requirements and the problem areas to be addressed. This provides the
manufacturing organisation 'with the knowledge necessary to
communicate effectively with software vendors and to select the
appropriate solutions. Typically, such solutions will be achieved by the
selection and tailoring of a range of packages, rather than by the design of
bespoke software.

The Advanced Manufacturing Systems Research Group at the
University of Liverpool has been researching the specification and design
of integrated information systems to support advanced manufacture for a
number of years, supported by three major contracts from the ACME
(Application of Computers to Manufacturing Engineering) Directorate of
the SERC. At an early stage in the Group's work, the importance of a
clearly understood and unambiguous requirements specification
document was appreciated. Such a document should form the basis of any
contract between the manufacturing organisation and a software vendor.
To produce such a specification for the complex systems necessary to
support an advanced factory is a daunting task

Traditionally, requirements specification documents for
manufacturing information systems have been written in natural language
and often portray a 'wish-list' predominantly based on the features of
commercially available packaged solutions, rather than the strategic
needs of the business.

The complexity of the manufacturing environment dictates the
need for a systematic or structured approach to enable manufacturing
Systems engineers to analyse and define their information requirements.
However, very little advice been forthcoming regarding this procedure
within manufacturing industry. Many authors have identified the need for
structured approaches and effective systems modelling techniques, but
the few methods developed to satisfy this need have failed to find
'widespread use.

Within the comparatively youthful computer industry, the
discipline of software engineering and computer-aided software
engineering (CASE) tools have been proven to facilitate the production of
reliable, 'well documented information systems that help meet the
requirements of the intended users. That is due to the considerable
emphasis on the tasks of requirements specification. However, almost ah
of this work has taken place outside the manufacturing environment.

If as research at the University of Liverpool suggests,
manufacturing Systems engineers are required to analyse their
information difficulties and define the associated requirements, it would
seem appropriate to utilise established approaches from other application
domains, such as the software industry. Although this route is logical and
feasible, the methods and tools available for use by the non-specialist (in
software engineering terms) manufacturing systems engineer need much
development.

This paper presents the research 'work undertaken to Investigate
the relevance of software engineering and CASE in manufacturing
systems engineering. An in-depth examination of this relevance had not
previously been undertaken, and the indications from the manufacturing
industry are that CASE has had little real penetration. The research
objectives were

• to establish the need for structured methods and tools in
support of the production of robust requirements specifications for
manufacturing information systems.

• to examine commercially available CASE methods and tools
for their suitability to provide support to the manufacturing systems
engineer in developing a specification of requirements for manufacturing
information systems.

• to identify the main developments needed in CASE methods
and tools to ensure their widespread adoption within manufacturing
industry; this formed the basis of the contribution to new knowledge.

An extensive review of literature was conducted into manu
facturing information Systems development and the history and current
capabilities of CASE methods and tools. In addition, this review
examined the tentative use of CASE methods and tools within the
manufacturing industry. A survey was undertaken of commercially

available CASE products aimed at supporting the specification of require
ments to increase familiarisation 'with the CASE marketplace and product
capabilities. Three typical CASE products, Identified as suitable, were
applied on-site to manufacturing information systems projects, This
tested the appropriateness of the methods and tools employed within the
manufacturing environment.

In addition, experts within manufacturing information Systems
development (from both academia and industry) were questioned to gain
an external perspective of the needs of manufacturing systems
engineering and the relevance of CASE methods and tools. The Initial
research hypotheses were examined in the light of the research work
undertaken, and conclusions and recommendations were produced for the
requirements of CASE for more widespread application within
manufacturing industry. It is important to note that this research project
was viewed as an introductory study into this area, raising many ques
tions to be tackled in a subsequent project outlined.

We believe that, in order to facilitate a competent definition of a
manufacturing organisation's requirements for computer-based
technology in support of its strategic objectives, it is necessary for
manufacturing systems engineers to adopt structured approaches and
tools. As Puttick [5] states.

'This mismatch between the Systems manufacturing has installed and
what It really needs IS due to an Inability of manufacturing to articulate
its needs and a Lack of understanding by the IT vendors... The lack of
analysis toots and techniques to translate business and manufacturing
needs into if requirements has held industry back. '

The complexity of information Systems necessitates the need for a
methodical approach to their development Over the years, this need has
resulted in a wide range of methodologies being developed to support
differing development approaches. Despite the availability of such
methodical approaches, the design of information systems remains
largely a knowledge-Intensive activity, beginning with an informal set of
frequently vague requirements and ending up with a systematically
defined formal object [1]. Systems design has been described as being a
labour intensive process, much prone to error, with the end result of the
design process being devoid of the design know-ledge that led to its
construction [1]. Although contemporary computer-aided software
engineering (CASE) tools provide assistance In carrying out many design
tasks with improved efficiency, they are largely the results of the

automation of established design techniques. Often, existing CASE tools
are little more than graphical front-ends to data dictionaries [2]. In
general, the fundamental characteristic of design Is not addressed by
existing CASE technology.

INTRODUCTION

The complexity of information Systems necessitates the need for a methodical
approach to their development Over the years, this need has resulted in a wide
range of methodologies being developed to support differing development
approaches. Despite the availability of such methodical approaches, the design of
information systems remains largely a knowledge-Intensive activity, beginning
with an informal set of frequently vague requirements and ending up with a
systematically defmed formal object [1]. Systems design has been described as
being a labour intensive process, much prone to error, with the end result of the
design process being devoid of the design know-ledge that led to its construction
[1]. Although contemporary computer-aided software engineering (CASE) tools
provide assistance In carrying out many design tasks with improved efficiency,
they are largely the results of the automation of established design techniques.
Often, existing CASE tools are little more than graphical front-ends to data
dictionaries [2]. In general, the fundamental characteristic of design Is not
addressed by existing CASE technology.

Knowledge-based CASE tools

Artificial intelligence (AI) technology can be used to develop so called
knowledge-based CASE tools (KB-CASE).

Although a small number of existing CASE tools have limited knowledge-
ased capabilities. In terms of checking graphical correctness of analysis and
design models or applying the rules or a particular methodology to the models
created by the designer, the real promise of such tools lies elsewhere [3]. Rather
than simply commenting on and or validating a model that a human has
onstructed, KB-CASE tools (sometimes referred to as design, agents) are able to
play an active part during the design process. They are capable of providing
Intelligent assistance when required In the form of advice, suggesting alternative
solutions, helping to investigate the consequences of design decisions, and
maintaining the availability of the design knowledge by providing information
should a design decision be questioned or require explanation in retrospect. They
are an attempt to maintain the availability of the knowledge used during the
esign after the initial design process has been completed [4]. Such tools have an
derstanding of both the structure and the semantics of the design [1].

Several researchers have previously applied AI technology to develop KB
ASE tools Such tools have been developed to ~ssist at all stages of the design
ocess, and are generally classed as those supporting specification acquisition
including conceptual, logical and physical design) and those supporting program

1

synthesis for tools for specification acquisition are concerned with the generation
f complete, consistent and correct design specifications, and/or their validation
and evaluation. Such specifications generally describe the user's requirements
from the system, the structure of the system (in terms of software modules and
flow of control) and the structure of the data to be used.

According to Gero and Maher [6], Innovative (or novel) design occurs
'hen designs. In the search space, which have not been produced previously, are

generated or found. Creative design occurs when designs are discovered that did
not exist conceptually before the system (i.e. the extension of the boundaries of
the search space). Given these definitions, KB-CASE tools supporting
specification acquisition can generally be thought of as performing innovative
rather than creative design. Tools for program synthesis support the
transformation of designs into executable code by attempting to synthesise
efficient programs from initial program specifications. This is generally achieved
,y the gradual refining of a high-level specification until a program satisfying the
original specification is obtained. This work concentrates on tools supporting
specification acquisition.

Given that artificial intelligence and conceptual modelling have developed
similar knowledge representation formalism's [7], it is not surprising that a
umber of researchers have previously applied Al to develop KB-CASE tools.
What is surprising is the relative lack of activity in an area of such potential.
Examples of interest illustrating previous works on tools supporting specification
acquisition Include The Programmer's Apprentice [8], SECSI [9], VCS [10], and
Modeller [11]. The Programmer's Apprentice is designed to provide support at
.arious stages of the development process. In this sense, its aims are similar to
those of Modeller, an integral part of a family of intelligent products being
developed by COGNOS Inc., to assist In the process of systems design. The
ode specification module of both these projects can be classed as performing
program synthesis. SECS provides intelligent support for logical database design
and is widely seen as the seminal work in the area of intelligent database design
ools, having Influenced a number of successors (including VCS) and made a
ommercial break-through in being marketed by infosys.

Areas for Improvement

A framework for the evaluation of KB-CASE tools supporting
specification acquisition derived from an Investigation into the state of
evelopment of such tools is described elsewhere [12]. A brief description of the

2

criteria within this framework follows. Table I provides an overview of the
results of this review with regard to these criteria.

• Stage or design covered: which stage(s) of the chosen design paradigm it
attempts to support.

criterta dsscrtptlon

sll!ge o! oe,ign covered thti maJorily of tools exarnlnec attempted to provide support tor a
sir>gle stage 01 the chosen ctr,sign paradigm (sueh as logical
design); very few attempted to provide support for more than one
stage of the deveteprnent pr ocass

user interface emp,oyeo tools generally provided a menu-based Interface, some lorm
of natural language inter1ace (NL.I). or a combineuon of both
minority provided grnphlcal capablltties In addition to soma torrn
ol rnei.11/Nl.l comoinaucn

method "'"ti to dri•e process toots genmally lell into one of two i:,aleg<)(lell; those re{lulrin,i
continuous Input from .an tntMdi!'d user of the 11pp1Jcnti0n sy~tem
11>ase:d on lhe assumpuon that tt,e bel<\1 wvrGe of lr•hmnatlon
relating lo a taroet system will In tact be a user of that syslem). a11d
Ihose relying on systems development staff to analyse the target
domain, and to present the lt'tlormallon in an appropriate lorm lo
the tool

ooma1n,spec111c knowled•Je !hi$ criteria was the 1e;ist wott suppo1·teci of all, despite the
potential of irwre@sipg tho appearance or lnteJligence of CASE:
tools. 1hls criteria was almost compf.otely ignored

design lectinim,e vseo !lw vast majority ot toots provided aectlve support tor well
eslabli:;iher.t oe~1gn techniq1J1>s; few developers Slrayed from trill
path of supportlng techniques that were already generally accepted

undo lact!ities !his was obviously ~een M .£1 fondamental requirement by most
devulopers as the majority ol tools provided some tacllily fur
1mdolng de6ign decisions

1e11rn•ng ai,,1,ty aHhou9!1 a numb,,, 01 tools coulct 'team about tne appllcallo11
domain (luting the course or a design sesslcn, few loots could pui
this evolving kPOwledge to use

ease of use the major i\y of tools examined appeareo to tie reasonably
sltaight!orward la use by the inttmded operator: some otfer,w
particularly friendly interfaces combining graphical and netural
language features a minority. however. Imposed prerequtsites that
would be {iittlcuH I() me11t for ,nany \'!veryday users, such as
knowle(,!ge Df ~pacific techniques and/or sp.eeiflcation language~.
or u,e 1wail,rbility of specialist staff

Table 2. Summary of evaluation of intelligent design tools.

• User interface employed: the method by which a system receives
Information from the user.

• Method used to drive design process: the method used to provide initial
input to the system Is examined i.e. how initial information relating to the
application domain is gathered; supplied directly by the user or provided by
some other means. The driving mechanism Is also examined in terms of
whether continuous user input is required throughout the design process, or
whether the process is largely automatic once initial information has been
gathered.

3

Areas for further Investigation include the transfer of knowledge gained In
e design session through to other sessions, i.e. the reuse of knowledge
eviously gained should it be applicable (currently, such knowledge is generally
stricted to within a single design session). Perhaps the area with the greatest
tential is also the most neglected; that of domain-specific knowledge. Domain-

specific (or 'real world) knowledge and the ability to reason with this knowledge
ould be of obvious advantage to an intelligent design tool. Successful advances
this area would also appear to have potential in the area of improving
ceptability, as tools that appear more Intelligent and efficient would
esumably be more acceptable to users.

In the remainder of this paper, we illustrate how domain-specific
owledge may be exploited In order to Improve the performance of KB-CASE

ools supporting specification acquisition.

Current generation CASE tools for analysis and design were conceived in
e late I 970s and 1980s, largely as vehicles for the automation of structured
echniques such as data flow diagrams and entity-relationship modelling [1].
These paper-based techniques incurred heavy administrative overheads in
maintaining records, consistency checking, and producing analysis and design
eliverables. CASE was hailed as a solution to the problems of managing and
manipulating diagrams and the large data dictionaries, or repositories, needed to
record information about diagram objects. The advantages of CASE included the
ability to print and reprint diagrams and to perform automatic consistency
becking. CASE tools were able to automate the production of analysis and
design deliverable' s and, more recently, they have offered some ability to
produce working software Systems with only limited intervention by
programmers. The growing number of IS methodologies made use of the same
diagrammatic techniques; CASE was seen as a way of enforcing the use of these
echniques, which were generally perceived as 'better' than past practices.

Anyone familiar with contemporary management research, or involved in
the IT industry, will have heard about business process re-engineering (BPR). In
BPR, the concept of IT as a way of simply automating existing business activities
is discarded in favour of a far more Interventionist style. it is well known that
many new computer-based Information systems fail to produce hoped-for
Improvements In productivity, levels of service, and so on. This failure is often
blamed on the fad that these new Systems attempt to automate existing 'bad'
practices. BPR aims to attain true improvement through first examining current
ways of working, and then improving those practices by redesigning work flow,
restructuring departments, tuning procedures etc. The application of IT often
goes hand-in-hand with this process redesign; indeed, the new ways of working 5

~ well be Impossible without ft. Hammer and Champy [2] point out the special
rtance of IT as a disruptive technology, with 'its ability to break the rules

1t limit how we conduct our work' The current focus on IT as a means of
Jltaioing competitive advantage hinges on the same kind of ideas as are

bodied in the BPR approach [3].

tems analysis and design: a case for BPR?

The discipline of systems analysis has evolved through several stages.
/hen first conceived, several decades ago, systems analysis was primarily a
eral problem-solving approach; with the Introduction of computers, It came to
linked more closely to the design of computer-based information Systems. The
of analytical tools has always been emphasised, but the level of formality has
ged; highly 'structured' specification techniques, such as object-oriented
ysis, are often now used where, in the past, prose specifications were

nsidered adequate [4].

Before the advent of 'structured' methods, a common approach by systems
ysts to the design of new computer-based information systems would be to

nstruct a 'user requirements statement', a document in which prose descriptions
if requirements for the new computer system would be interspersed 'with hand
wn report and screen layouts. Flow charts could be used to represent the
ocessing to be performed by the new system. File layouts might be included to
ow the data items to be stored. One of the major problems of documents of this

_.-pe 'was Inaccessibility; the sheer size and complexity was Intimidating. Such
statements of requirements "were (and, in fact, still are) often used as the basis
or contractual arrangements. The use of 'natural' language meant that anyone
ould read the documents. However, it was difficult to tell if they were coned or
internally consistent, and few formal means of checking were available.

What we have seen since then is an explosion in the number of structured
echniques for representing requirements. enough prose Is still used, especially at
the earliest stages of requirements analysis, the focus is on semi-formal, and often
diagrammatic, representations. Techniques such as entity-relationship modelling,
state-transition diagrams, data flow diagrams, function hierarchy charts, and
matrices of all descriptions are used to codify and formulate requirements.
Contemporary information systems methodologies, such as SSADM, place great
weight on the correct application of these techniques, and their use is considered
to be 'good' In comparison with less structured approaches. Fig. XXX is an
example of a diagram used In one type of 'structured' analysis technique, object-
oriented analysis [5].

6

Following the dictates of the market-place, most CASE tools for analysis
design support the creation and maintenance of entity-relationship diagrams,
flow diagrams etc. Unfortunately, in doing so, they may have made the same
:ake that many early Systems developers made when designing new business
lication systems; the automation of existing practices, with insufficient
ught given to process redesign. The result now is that many CASE tools can
ture the diagrams and supporting data produced by common Systems analysis
:hniques. However, they do not support the way in which those techniques are
iplied. Below, we explore this issue in greater depth.

- -- .
Figure 38. Object-oriented analysis diagram.

COMPUTER-AIDED SOFTWARE ENGINNERING
(CASE)

Everyone has heard the saying about the shoemaker's children: The
shoemaker is a so busy making shoe for others that his children don't have shoes
of their own. Over the pest 20 years, many software engineers have been the
"shoemaker's children." Although these technical professionals have built
complex systems that automate the work of others, they have used very little
automation themselves. In fact, until recently software engineering was
fundamentally a manual activity in which tools were used only at the latter stages
of the process. 7

Today, software engineers have finally been given their first new pair of
es-computer-aided software engineering (CASE). The shoes don't come in as
y varieties as we would like, are often a bit stiff and sometimes
omfortable, don't provide enough sophistication for those who are stylish and
't always match other garments that software developers use. But they
vide an absolutely essential piece of apparel for the software developer's

rardrobe, and will; over time, become more comfortable, more useable, and
ire adaptable to the needs of individual practitioners.

In this chapter, the technical aspects of computer-aided software engi
ring are discussed. CASE technologies span a wide range of topics that
mpass software engineering methods and project management procedures. In

lier chapters of this book we have attempted to provide a reasonable
derstanding of the underpinning of the technologies. In this chapter and the

, the focus shifts to the tools and environments that will help to automate
ftware engineering technologies.

rllAT IS CASE?

In the movie Back to the Future, the hero, Marty McFly, travels back to
55 in a souped-up DeLorean time machine. Marty's purpose was in change his

e. Ours will be more mundane: to understand how engineering automation
evolved over the past 40 years.

In 1955, mechanical and electrical engineers worked with rudimentary
d tools books and tables that contained the formulae and algorithms that they
ded for analysis of an engineering problem: slide rules and calculators
hanical, not electronic!) for doing the computation necessary to ensure that
product would work; pens and pencils, drafting boards, rules, and other
aphemalia that enabled the engineer to create models of the product that was
be built. Good work was done, but it was done by hand.

A decade passed and the same engineering group begun experimenting
nth computer-based engineering. Many staff members resisted the use of

puters. "I just don't trust the results," was a common complaint But many
ers jumped in with both feet. The engineering process was changing "

We jump to 197 5. The formulae and algorithms that the engineers needed
rere embedded in a large suite of computer programs that were used to analyse a
ride array of engineering problems. People trusted the results of these programs.
fact, much of their work could not be accomplished without them. Computer

8

hies workstations, tied to large mainframes , were in use in a few commands
had replaced the drafting board and related tool for the creation of

gineering models. A bridge between engineering and manufacturing work was
er construction creating the first link between computer-aided design (CAD)
computer-aided manufacturing (CAM).

Good work continued to be done, but it was now dependent on software.
mputing and engineering had been joined inextricably.

Arriving back at the present, we see computer-aided engineering (CAE)
puter-aided design, and computer-integrated manufacturing (CIM the
essor to CAM) as commonplace activities in most companies. Engineering

omation has not only arrived, it is an integral part of the process.

Unlike Marty McFly, mechanical and electrical engineers can't go back
change the future. But, in a way, software engineers can. They have the
rtunity to mold the future of CASE by learning lessons from the evolution of
, CAD, and CIM.

Software Engineering Workshop

The best workshops have three primary characteristics: (1) a collection of
ful tools that will help in every step of building a product; (2) an organised

yout that enable the tools to be found quickly and used efficiently; (3) a skilled
s person who understands how to use the tools in an effective manner.

ftware engineers now recognise that they need more and varied tools (hand
ls alone just won't meet the demand, of modem computer based systems).
y also need an organised and efficient workshop in which to place the tools.

The workshop for software engineering is called an integrated project
ort environment and the tool sell that fills the workshop is CASE.

Analogy

It is fair to state that computer-aided software engineering has the potential
become the most implant technological advance in the history of software
elopment. The key word in the preceding sentence is "potential".

Today, CASE tools add to the software engineers tool box. CASE
vides the engineer with the ability to automate manual activities and to
rove engineering insight. Yet to become "the most important technological

9

ranee" CASE must do much more. It must from the building block of a
-A.)hop for software development.

Today, CASE is where CAD/CAE/CIM were in 1975 individual tools are
g used by some companies, usage across the industry is speeding rapidly.
serious effort is under-way to integrate the individuals tools to form a
istent environment.

There is little doubt that CASE will impact software engineering in
tially the same way that CAE/CAD/CIM has impacted other engineering

iplines. However there are some important differences. During its early years
evolution CAD/CAE/CIM implemented engineering practices that had been
and proven over the past 100 years. CASE, on the other hand, provides a

of semi-automated and automated tools that are implementing an engineering
-1tt1re that is new to many companies. The difference in impact and in

:eptance is profound.

CAD/CAE focuses almost exclusively on problem solving and design, It
tinues to struggle with a bridge to manufacturing through CIM. The primary
of CASE (over the long haul) is to move toward the automation.

:ILDING BLOCKS FOR CASE

Computer-aided software engineering can be as simple as a single tool that
ports a specific software engineering activity or as complex as a complete
vironment" that encompasses tools, a database, people, hardware, network,
ating systems, standard, and myriad other component. In this section, an

erview of the building blocks that create a CASE environment is presented.
se building blocks are discussed in the context of CASE environments.

The building blocks for CASE are illustrated in Figure 1. Each building
k forms a foundation for the next, with tools sitting at the top of the heap. It

interesting to note that the foundation for effective CASE environments has
latively little to do with software engineering tools themselves. Rather,
.ccessful environments for software engineering are built on an environment
chitecture that encompasses appropriate hardware and systems software. In
dition, the environment architecture must consider the human work patterns
tare applied during the software engineering process.

During the 1960s, 1980s software development was a mainframe activity.
erminals ware linked to a central computer and each software developer shared
e resource of that computer. Software tools that were available (and there were

10

....-ively few) were designed to operate in a terminal-based time-sharing

Today the trend in software development is away from the mainframe
1111DDuter and toward the workstation as a software engineering platform.

l-rRer;ra;k)n framew.o.rx

r~-..,=~i.7,,;~; ~~~"·~·" ~~~1
("'•J,,.~~:.,,.,...;. ••..•....... ~~
! :;:;_'-:';-..'..,i;:;;(~- s·r~:(A~, f

Figure 1 . CASE building block.

Individual workstations are networked so that software engineers can com
· cate effectively. The project database is available through a network file
·er that is accessible from all workstations. An operating system that supports
hardware, the network, and the tools ties the environment.

The environment architecture, composed of the hardware platform and
ting system support (including networking and database management
are), lays the groundwork for CASE. But the CASE environment itself

-..11auds other building blocks. A set of portability services provides a bridge
een CASE tools and their integration framework and the environment

:hitecture. The integration framework is a collection of specialised programs
enables individual CASE tools to communicate with one another to create a

~ect database, and to exhibit the same look and feel to that end user (the
ftware engineer. Portability services allow CASE toots and their integration
ework to migrate across different hardware platforms and operating systems
out significant adaptive maintenance.

The building blocks depicted in Figure 1 represent a comprehensive use
y have not been constructed using all of a budding blocks above. In fact, the

gority of CASE tools are "point solutions." That is a tool is used to assist in a
icular software engineering activity (e,g., analysis modeling), but does not

·ectly communicate with other tools is not tied into a project database and is
part of an integrated CASE (I-CASE) environment. Although this situation is
ideal a CASE tool can be used quite effectively, even if is a point solution.

11

The relative levels of CASE integration are shown in figure 2. At the low
of the integration spectrum is the individual (point solution) tool. when

· idual tools provide facilities for data exchange (most do), the integration
1 is improved slightly. Such tools produce output in a standard format that
d be compatible with other tools that can read the format. In some cases, the

ders of complementary CASE tools work together form a bridge between the
(e.g., analysis and design tool that is coupled with a code generator). Using
approach, the synergy between the tools can produce end products that
d be difficult to create using either tool separately. Single-source integration
s when a single CASE tools vendor integrates a number of different tools
sells them as a package. Although this approach is quite effective the closed
itecture of most single-source environments precludes easy addition of tools
other vendors.

At the high end of the integration spectrum is the integrated project support
· onment (IPSE). Standards for each of the building blocks described above
created. CASE tools vendors use these IPSE standard .

c, v
!r,~;ici;,;;i 1',DI

·. !pcltlt ~.)iil~(;l'lj

. --- \ ... /·-\=:-=
Tc,;,;1 ...=1'1C::f$'!~ t;r;..:.

p!HihSt&hlZ:t:t f
C)

Figure 2. Integration options.

ONOMY OF CASE TOOLS

A number of risks are inherent whenever we attempt to categorise CASE
. There is a subtle implication that to create an effective CASE environment
must implement all categories of tools-but this is simply not true. Confusion
antagonism) can be created by placing a specific tool within one category
others might believe it belongs in another category. Some readers may feel

an entire category has been omitted- thereby eliminating an entire set of tools
inclusion in the overall CASE environment. In addition simple categorisation

12

to be flat- that is we do not show the hierarchical interaction of tools or
· onships among them. But even with these risks it is necessary to create a

onomy of CASE tools- to better understand the breadth of CASE and to better
reciate where such tools can be applied in the software engineering process.

CASE tools can be classified by function, by their role as instruments for
agers or technical people, by their use in the various steps of the software
· eering process, by the environment architecture (hardware and software)
supports them, or even by their origin or cost (QED89). The taxonomy
.ted in this book (Figure 3) uses function as a primary criteria.

~SINESS SYSTEMS PLANNING TOOLS

By modeling the strategic information requirements of an organisation.
iness systems planning tools provide a "meta-model" from which specific
ormation systems are derived. Rather than focusing on the requirements of a
ific application, business information is modelled as it moves between

· ous organisational entities within a company [MAR89]. The primary
iective for tools in this category is to help improve the understanding of
:ormation moves between the various organisational units.

It is important to every organisation. They require a major commitment in
urces and a major philosophical commitment by management to produce a
plete model and then act upon the information derived from it. However such
ls to provide substantial insight when information system strategies are to be
tructed systems and methods do not meet the needs of an organisation.

gure 3. ACA

13

JECT MANAGEMENT TOOLS

Many software project managers continue to estimate, control, and track
are projects in much the same way that these activities were performed

· g the 1950s. Ironically, there is a broad array of CASE project management
that could have a profound impact on the quality of project management for
are development efforts both large and small.

Today, most CASE project management tools focus on one specific
nt of project management, rather than providing all-encompassing sup port

the management activity. By using a selected set of CASE tools, the"' project
t sager can generate useful estimates of effort, cost, and duration of a software

· t, define a work breakdown structure (WBS) and plan a workable project
ule, and track projects on a continuing basis. In addition the manager can

tools to collect metrics that will ultimately provide an indication of software
lopment productivity and product quality. For those managers who have the
nsibility for contract software development, CASE tools are available ta
requirements from the original customer request proposal (RFP) to the
are development work that implements these requirements in a deliverable

Tools in this category focus on two primary areas software project effort
cost estimation and project scheduling. Cost estimation tools enable the

~ect manager to estimate e.g .. problem complexity, estimated effort, project.
mmended number of people using one or more of the techniques intra. Many
in this category allows some form of game playing. For example, the project
ger can permute the project deadline and examine its impact on overall cost.

Project scheduling tools enable the manager to define all project tasks (the
breakdown structure), create a task network (usual using graphical input),

esent task interdependencies. and model the amount of parallelism possible
the project. Most tools use the critical-path scheduling method to determine
impact of slippage on delivery date.

equirements Tracing Tools

When large systems are developed, things "fall into the cracks." This
se refers to a critical problem in the development of computer-based system
s the delivered system does not fully meet customer-specified requirements

14

from technical difficulties. But in other situation the requirements are
they simply were not addressed.

The objective of requirements tracing tools (Figure 4) is to provide a
,..,,atic approach to the isolation of requirements, beginning with the customer

or specification. The typical requirements tracing tool combines human
· ve test evaluation, with a database management system that is "parsed"

the original RFP or specification categorises each requirement that from the
""'9'1CJ" or specification. The parsing of requirements can be as simple as finding

occurrence of the verb "shall" (indicative of a requirement) and the
ighting the statement, in which "shall" appears. The analyst then categorises

· ement implied by the sentence and enters it into a database. Subsequent
pment work can be cross-referenced to the database so that conformance

tmruirements is more likely.

ics and Management Tools

Software metrics improve a manager's ability to control and coordinate the
rare engineering process and a practitioners ability to improve the quality of
ftware that is produced. Today's metrics or measurement tools focus on
s and product characteristics. Management-oriented tools capture project

..-.ific metrics (e.g., LOG person-month, defect per function point) that provide
overall indication of productivity or quality . Technically oriented tools

atumine technical metrics (e.g., cyclomatic complexity) that provide greater
t into the quality of designer or code. Many of the more advanced metric
maintain a database of industry average measures. Based on project and
ct characteristic provided by the user, such tools, rate local numbers against

improvement.

Management tools (exclusive of project estimation and scheduling tools)
information systems managers in prioritizing the many projects that

mmoete for limited development resources. Using customer requirements and
ities constrains placed on the development organisation, and technical and

· ess risks, such tools use an expert system approach to suggest the order in
ich a project should be undertaken.

15

t"V\'"'"'Wt~\!:\? ·
r•rr:.HJ~t~rt:(;·,"1l$

frJt'~\
~J~--

e 4. Treatments tracing tools.

PORT TOOLS

The support tools category encompasses systems and application tools that
lement the software engineering process. Tools in this broad category.
mpass the umbrella activities that are applicable across the entire software

· eering process. They include documentation tools, system software and
orking tools, quality assurance tools, and software configuration
gement and database management tools (also members of framework tools

egory).

umentation Tools

Document production and desk top publishing tools support nearly every
ct of software engineering and represent a substantial leverage opportunity
all software developers. Most software development organisations. spend a
stantial amount of time developing documents, and in many cases the
umentation process itself is quite inefficient. It. is not unusual for a software
gineering, organisation to spend as much as 20 or 30 percent of all its software
velopment effort on documentation. For this reason documentation tools
ovide an important opportunity to improve productivity.

Documentation tools are often linked to other CASE tools using a data
· dge implemented by the vendor of the technical tool. For example, a number of

analysis and design tools have links to one or more desktop publishing systems,
so that models and text created during analysis and design can be transmitted to a
documentation tool and embedded in the specification created using the
documentation tool.

16

CASE is a workstation technology. Therefore, the CASE environment
, accommodate high-quality network system software, electronic mail,

tin boards and other communication capabilities. Although the operating
em of reference for most engineering workstations (and an increasing number
high-end PCs) in UNIX, the portability services provided by an IPSE may
le CASE tools to migrate to other operating systems without great

lity Assurance Tools

The majority of CASE tools that on quality assurance are actually metrics
,ls that audit source code to determine compliance with language standards.
er tools extract technical metric (see Section 22.5.3) in an effort to project the
ity of the software that is being built.

tabase and SCM Tools

Database management software serves as a foundation for the establish
t of a CASE database (repository) that we have called the project database.

iven the emphasis on configuration objects, database management tools for
'ASE may evolve from relational database management systems (RDMS) to
~ect-oriented database management systems (OODMS).

Proponents claim that an OODMS (GUP91) will make configuration
agement easier is accomplish and argue that the object-oriented structure is a

.tural organisation for software configuration items that combine many different
es of information. Proponents for RDMS claim better performance and

ignificantly more industry experience than OODMS and argue that the relational
model easy accomplish most, if not all, of the capability that can be achieved
ing the object-oriented model. Only time will tell which approach predominates

or CASE databases.

CASE tools can assist in all five major SCM tasks-identification, version
ontrol, change control, auditing, and status accounting. The CASE database
provides a mechanism for identifying each configuration item and relating it to
other items; the control process discussed. Can be implemented with the aid of
specialised tools easy access to individual configuration item facilitate the
auditing process and CASE communication tools can greatly improve status
accounting (reporting information about changes to all who need to know).

17

·e configuration management lies at the kernel of every CASE
.-,nment. By controlling changes to the software configuration, SCM tools

human cognisance of each change, thereby reducing misunderstanding
roving system quality.

The use of the database, configuration management tools. and specialised
sing" tools provides a first step toward the creation of a library for
e that will encourage the reuse of software components. Although
ely little reuse has been accomplished to date, CASE offers the first real

· e for achieving broader reuse of computer software components.

Analysis and design tools enable a software engineer to create a model of
system to be built. The model contains a representation of data and control
data content (through a definition of a requirements dictionary), process
sentation control specification and a variety of other modelling
sentations. Analysis and design tools assist in the creation of the model and
in an evaluation of the models quality. By performing consistency and
ity checking on the model, analysis and design tools provide a software

· eer with some degree of insight into the analysis representation and help to
.-ninate errors before they propagate into the design, or worse, into

lementation itself.

Most analysis and design tools implement the structured analysis and
ctured design (SA/SD) method discussed. SA/SD is a modelling technique.

enables a software engineer to create progressively more complex models at a
stem, beginning at the requirements level and finishing with an architectural
sign. SA/SD combines a specific notation; analysis and design heuristic, and an
ysis-to-design transformation process (a mapping) to produce workable
resentations of software.

PRO/SIM Tools

Phototyping and simulation (PRO/SIM) tools [NIC90] provide the
software engineer with the ability to predict the behaviour of a real-time system
prior to the time that it is built. In addition, it enables the software engineer to
develop mock-ups of the real-time system that allow the customer to gain insight
into the function, operation, and response prior to actual implementation there is

18

t that such capability provides distinct benefits in an area where
has been unpredictable and software development itself is something of a

provide the software engineer with a mean for
functional and behavioural models of a system. Tool in this category
a mean for specifying projected performance characteristics of each
element (e.g., execution speed of a hardware or software function)
the input and output data characteristics (e.g., input data arrivals rates or
characteristics), and modelling the interface I interconnectivity among

elements.

y PRO/SIM tools provide a code generation capability for Ada and
programming languages that will likely become considerable more
icated as new generations of these tools evolve. In addition, all tools in
egory make use of an underlying formal or quasi-formal specification
e opening the door to more comprehensive code generation formal

If ation of the system specification.

ce Design and Development Tools

Even with the evolution of user interface standards, the design and
pment of human-computer interfaces remain a challenge for software
rs, Industry studies have found that between 50 to 80 percent of all code
ed for interactive application is generated to manage and implement the
-computer interface [LEE90].

Interface design and development tools are actually a tool kit of program
nents such as menus, buttons, window structures, icons, scrolling

wmanisms, device drivers, and so forth. However, these tool kits are being
miaced by interface phototyping tools that enable the rapid on screen replaced

interface creation of sophisticated user interfaces that conform to the
cing standard (e.g. X-Windows, Motif) that has been adopted for the
are.
User interface development systems (UIDS) combine individual CASE
for human computer interaction with a program components library that
Ies a developer to build a human-computer interface quickly [MYE89]. A
S provides program components that manager input devices, validate user

,..,...~, handle error condition process and "undos," provide visual feedback.
pts, and help, update the display manage application data, handle scrolling
editing, insulate application from screen management functions, and support
omization features for the end user. 19

is and Design Engines

A new generation of analysis and design tools, called analysis and design
s, uses a rule-based architecture that enables the tool to be customised for

analysis and design method. Using these advanced CASE tools an analysis
design method such as the SADT can be supported by building the
riate graphical notation entering the rules that supports analysis and design
the method/ in essence analysis and design engines enable a software

-.ieer to customise the tool to meet the need of specific (and possible obscure)
all the tools in this category support SA/SD\ but they can also support

DSSD, SADT, HOOD, and a variety of other methodologies.

The programming tools category encompasses compilers, editors, and
gers that are available to support moat conventional programming lan
s. In addition, object-oriented (0-0) programming environment fourth
.tion languages, application generators, and database query languages also
within this category.

entional Coding Tools

There was a time when the only tools available to a software engineer
conventional coding tools-compilers, editors and debuggers. Pressman and
on [PRE91] discuss this when they state:

There's an old saying: When the only tool that you have is a hammer, every
lem looks like a n. "think about it. You can use a hammer to pound nails, but
the only tool that you have, you can also use it to pound screws (sloppy, but
able), bend metal (noisy, but workable, punch a hole in wood or concrete
sloppy but possible) ... We do the best we can by adapting the tools that we
on hand.
For almost 30 years, the only tools available to programmers were

ventional coding tools and, therefore, every software engineering problem
ed liken coding problem. Today, conventional tools continue to exist at the
1t lines of software development, but they are supported by all the other
E tools discussed in this chapter.

20

eneration Coding Tools

The thrust toward the representation of software applications at a higher
of abstraction has caused many developers to move headlong toward:
generation coding tools. Database query systems, code generator and
generation languages have changed the way in which systems are
ed. There is little doubt that the end goal of CASE is automatic code
· on that is, the representation of systems at a higher level of abstraction
:onventional programming languages. Ideally such code generation tools
t only translate a system description into an operational program but also
to help verify the correctness of the system specification so that the

· g output will conform to a user requirement.

Fourth-generation languages are already used widely in information
,_;ui.:, applications. It is not unusual to read claims such as: "Rank Xerox in the

... created an application with 350.000 lines of COBOL code ... yet it was
ed with three full-time people and one part-time person in ten weeks"
89]. Although such accomplishment are possible in very limited domains of

· cability they represent a harbinger of things to come in broads application
. We are already beginning to see the first code generation tools appear in

engineered products and systems market (most focus on Ada). As the 1990s
ess, it is likely that less and less source code will be "written" manually.

Although fourth-generation languages. code generators, and application
rators (e.g., database query systems) all enable a software engineer to
ify a system at a high level of abstraction, each of these tools differ m
rtant ways [FOR87]. Referring to Figure 5, a fourth-generation language is
directly to a 4GL interpreter. The interpreter translates the 4GL into

:ecutable code. The input to a code generator is a procedures specifications
guage (PSL) (a metalanguage). The procedural specification language is then
essed by one or a number of code generation modules that translates the PSL

o the appropriate programming language. An application generator uses a
tral database or data dictionary interactive menu-driven features, and
plication-specific rules to create software that addresses a narrow application

21

; ~---t_~:=:::~·:.~,~·---~~ .. ' .: ... ~-~-·~
~~- _ ••... ,...,,,'. ·t; ~::.::.:. ,' . :;~,~~~'-'' ·--}-G~-====--'i_ ~
L-G~~:,,_J·-- :~'.:~·---c.,;

Rep.m
' '. pajnt,if

Menu
ds4~}0fi

5. Fourth generation tools.

-Oriented Programming Tools

Object-Oriented programming is one of the "hottest" technologies in
rare engineering. For this reason, CASE vendors are rushing new tools for
oriented software development to the market.

Object-oriented programming environments are tied to a specific
mmmuning language (e.g. C++, Eiffel, Objective-C, or Smalltalk). A typical 0-

. onment incorporates third-generation interface features (mouse, windows,
own menus, context-sensitive operations, multitasking) with specialised

· ons such as the "browser" - a function that enables the software engineer to
IIP3fDioe all objects contained in an objects contained in an object library to
'..& • , , , tine whether any can be reused in the current application.

ITEGRATION AND TESTING TOOLS

In its directory of software testing tools. Software Quality Engineering
E90] defines the following testing tools categories:

• Data acquisition-tools that acquire data to be used during testing

• Static measurement-tools that analyse source code without executing
test cases. 22

• Dynamic measurement-tools that analyse source code during execution

• Simulation-tools that simulate the function of hardware or other
externals.

• Test management-tools that assist in the planning, development, and
control of testing.

• Cross-functional tools-tools that cross the bounds of the above
categories.

In the sections that follow, the three most widely used testing tools
ries are discussed. It should be noted that many testing tools have features

span two or more of the above categories.

· Analysis Tools

Static testing tools assist the software engineer in deriving test cases.
different types of static testing tools are used in the industry: code-based

· g tools, specialised testing languages, and requirements-based testing tools.

Code-based testing tools accept source code (or PDL) as input and
orm a number of analyses that result in the generation of test cases. Using a
iption of the program input and procedural design as a guide, static testing
derive test cases using path coverage, condition testing, and data flow

Specialised testing languages (e.g. ATLAS) enable a software engineer to
· e detailed test specifications that describe each test case and the logistics for
execution. However, such tools do not assist the tester in designing the test

Requirements-based testing tools isolate specific user requirements and
est test cases (or classes of tests) that will exercise the requirements. To

irk properly, tools in this subcategory must have access to a formal
ification for the software.

In most cases, static testing tools will document and catalogue tests (e.g.
s to exercise a particular type of input). They will conduct comparisons of test
ut to note differences between expected and actual results.

23

mic Analysis Tools

Dynamic testing tools interact with an executing program, checking path
ge, testing usurious about the value of specific variables, and other wise
enting the execution flow of the program. Dynamic tools can be either

ive or nonintrusive . an intrusive tool changes the software to be tested by
· g probes (extra instructions) that perform the activities mentioned above.

· trusive testing toots use a separate hardware processor that runs in parallel
the processor containing the program that is being tested.

Most tools in the dynamic analysis category produce reports that indicate
number of times blocks of statements have been executed (path coverage
sis) and the average execution time for blocks of statements (performance
sis).

Another type of dynamic testing tool is sometimes called a
e/playback tool [POS89]. In capture mode, a capture/playback tool records

information flow at a particular point in a program's execution cycle. Often,
point of capture occurs immediately after interactive input is provided, i.e.,
capture point "sits right behind the screen." Later, when the tool is placed in
ack mode, the program can 6e restarted at the point of capture and will
ute as if the original data were input to the program. Capture/playback tools
quite useful for creating regression test suites for highly interactive programs.

A dynamic testing tool can be used in conjunction with a static testing tool.
static tester is used to derive the test cases that are then monitored by the

!~!:lmlc tool.

t Management Tools

Test management tools. are used to coat control-coordinate software
· g for each of the major testing steps. Tools in this category manage and
rdinate regression testing, perform camparisons that ascertain differences
een actual and expected output, and conduct batch testing of programs with

eractive human-computer interfaces.

In addition to the functions noted above. many test many test management
ls also serve as generic test drivers. A test driver reads one or more test cases
a testing file, formats the test data to conform to the needs of the software

er test, and then invokes the software to be tested. Testing tools in this
ategory are customised by the tester to meet specialised testing needs.

24

Finally, test managers sometimes work in conjunction with requirements
g tools (Section 5 .2) to provide requirements coverage analysis for testing.

meaoing each teat case in sequence, the requirements coverage analyser attempts
determine (based on information that describe the purpose of the test case)
ich software requirements are addressed the test. A cross-reference matrix is
used to indicate which tests address what requirements.

OTOTYPING TOOLS

Prototyping is a widely used software engineering paradigm, and as such,
_ tool that supports it can legitimately be called a prototyping tools. For this
on many of the CASE tools discussed in this chapter can also be included in
category. 1

f.'.lli)!:" pr;,1,1y;,;,

C.~SE ~~vto~.1~,i",f,i ;;.::~:A

;;)tgt~£: W w!,:¢f: 1?...f,;!~;·, ,:.;ppH.~-,J~l~_,,::
:q t{Chtil.ti/' in1p!vrr;.t:H';t4<i :C·,.,.fitit:; ~v~~}t)tC;iri;}

All prototyping tools reside somewhere on the implementation spectrum
trated in Figure 6. At the low end of the spectrum, tools exist for the creation
a "paper prototype". A PC or workstation-based drawing tool can create

· stic screen images that can be used to illustrate system function and
haviour to the customer. These images can not be executed. Screen painters
ble a software engineer to define screen layout rapidly for interactive
plications. In some cases a screen painter will also generate the source code to
ate the screen. More sophisticated CASE prototyping tools enable the creation
data design couple with both screen and report layout. Many analysis and
sign tools have extensions that provide a prototyping option. PRO/SIM tools
ve prototyping features.

As prototyping tools evolve, it is likely that some will become domain
cific. That is, the tool will be designed to address a relatively narrow
plication area. Prototyping tools for telecommunications, aerospace
plications, factory automation, and many other areas may become common- 25

by the mid-1990s. such tools will use a knowledge base that "understands"
application domain, facilitating the creation of prototype systems.

TENANCE TOOLS

CASE tools for software maintenance address an activity that currently
rbs approximately 70 percent of all software related effort. The maintenance
category can be subdivided into the following functions:

• Reverse engineering to specification tools-take source code as input and
generate graphical structured analysis and design models, where-used
lists, and other design information.

• Code restructuring and analysis tools-analyse program syntax, generate
a control flow graph, and automatically generate a structured program.

• On-line system re-engineering tools-used to modify on-line database
systems (e.g., convert IDMS or DB2 files into entity-relationship
format)

The above tools are limited to specific programming languages (although
st major languages are addressed) and require some degree of interaction with
software engineer.

Next generation reverse engineering and re-engineering tools will make
uch stronger use of artificial intelligence techniques, applying a knowledge base
t is application domain-specific (i.e., a set of decomposition rules that will
ply to all program in a particular application area such as manufacturing
ntrol or aircraft avionics). The AI component will assist in system
composition and reconstruction, but will still require interaction with s
ftware engineer throughout the re-engineering cycle.

everse Engineering Tools

Reverse engineering tools perform a post-development analysis on an
existing program. Like testing tools, reverse engineering tools can be categorised
as static or dynamic.

A static reverse engineering tool (by far, the most common) usages
program source code as input and analyses and extracts program slicing. The

26

e engineer specifies the type of program structure (data declaration, loops,
logic) that are of interest and the reverse engineering tool removes

.-eous code, enabling only code of interest to be represented. Dependency
· tools perform most of the functions already discussed, but it addition,
in this subcategory build graphical dependency maps that show the link

data structures, program components, and other user-specifies program
eristics. Static reverse engineering tools have been called "code

.-isation" tools [OMA90]. In fact. by enabling the software engineer to
_.11...,·se" the program, such tools greatly improve the quality of changes that are

and the productivity of the people making them.

Dynamic reverse engineering tools monitor the software execute and uses
• mation obtained during monitoring to build a behavioural mode of the
-=aCllll. Although such tools are relatively rare the provide important
__ mation for software engineers who must maintain real-time software or

ded system.

Although re-engineering tools offer significant promise, relatively few
icl wstry quality tools are in use today. Existing re-engineering tools can be

ed into two subcategories--code restructuring tools and data re-engineering
. Code restructuring tools accept unstructured source code as input, perform
reverse engineering analysis described in Section 22.11.1, and then
cture the code to conform to modem structured programming concepts .

.-uvugh such tools can be useful, they focus solely on the procedural design of a

Data re-engineering tools work at the other end of the design spectrum.
:h tools assess data definitions or a database described in a programming

--.gwtge (usually COBOL) or database description language. They then translate
data description into graphical notation that can be analysed by a software
· eer. Working intellectively with the re-engineering tool, the software
· eer can modify the logical structure of the database, normalise the resultant
, and then automatically regenerate a new database physical design. The
ls may use an expert system and knowledge base to optimise the re
gineered software for improved performance.

27

The industry trend toward I-CASE environments will continue to gain
during the 1990s. framework-tools software tools that provide

management, configuration management and CASE tools integration
· · es-are the first thrust in the IPSE direction.

Tools in this category exhibit functional components that support data
and tools interaction. Most implement an object-oriented database with

iilll:mal tool set for establishing smooth interface with tools from other CASE
Most framework tools provide some configuration management

-.iities, enabling the user of the tool to control changes to all the
a z111ation items created by all the CASE tools that are integrated with the

ork tool. The key components of framework tools will be discussed later.

A few CASE tools have limited expert system capabilities, but the vast
of existing CASE tools make little use of artificial intelligence

..-mques. Most toots that do make limited use of AI employ the technology to
the graphical correctness of analysis and design models applying design
inherent to a particular analysis and design method to the models that have
created by the software engineer. However, the real promise of CASE-AI
where.

Researchers are evaluating programming environments that make use of
lllllllysis design agents intelligent tools that aid in the analysis, design, and testing

mputer-based systems. Rather than simply evaluating the model that a
7 aao has created. an agent will assist the software engineer in his or her

Iem solving activities. Such agents must be domain-specific, accessing a
--.wledge base about the characteristics of a limited class of applications and
--.0 capable of using this knowledge base to guide the software engineer in

ysis, design, or testing. The problem, of course, is in the definition of a
~ledge base for software engineering. Although we are still a number of

away from such "agents," the future for CASE-AI is promising.

28

.. CLUSION

Computer-aided software engineering tools span every step in the software
· eering process and those umbrella activities that are applied throughout the
ss. CASE comprises a set of building blocks that begin at the hardware and
ting system software level and end with individual tools.

In this chapter we have considered a taxonomy of CASE tools. Categories
mpass both management and technical activities and span most software
ication areas. Each category of tool has been considered as a point solution.
e next chapter, we consider ways in which individual tools are integrated to
an environment.

As the years pass, CASE will became part of the fabric of software
· eering. Just as mechanical and electrical engineers rely on CAD/CAE/CIM
the analysis and design of high-technology products, software engineers will
on CASE for the analysis, design and testing of computer-based systems for
twenty-first century.

INTEGRATED CASE ENVIRONMENTS

Computer-aided software engineering (CASE) is changing the industries
oach to software development. Although benefits can be derived from

· · dual tools that address separate software engineering activities, the real
er of CASE can only be achieved through integration. Gene Forte [FOR89a]
es this point clear when he states:

Tool integration is among the most often discussed and debated topics in
are engineering. Justly so, since no other technical or strategic issue is

ely to have as much impact on the evolution of [software] technology and the
E industry ...

While individual CASE tools each contribute ... , the promise of CASE
y lies in the potential to integrate many tools into an integrated environment.

The benefits of integrated CASE (I-CASE) include (1) the smooth transfer
information (models, programs, documents, data) from one tool to another and
software engineering step to the next; (2) a reduction in the effort required to
orm umbrella activities such as software configuration management, quality
ance, and document production; (3) an increase in project control that is

29

• Allow direct, non-sequential access to any tool contained in the
environment.

• Establish automated support for a procedural context for software engi
neering work that integrated the tools and data into a standard work
breakdown structure.

• Enable the users of each tool to experience a consistent look and feel at
the human-computer interface.

• Support communication among software engineers.

• Collect both management and technical metrics that can be used to
improve the process and the product.

To achieve these requirements, each, of the building blocks of a CASE
itecture must fit together in a seamless fashion. Referring to Figure 7, the
dation building blocks-environment architecture, hardware platform, and
ting system "must be joined" through a set of portability service to an

gration framework that achieves the requirement notes above. For the
w:mainder of this chapter. We examine the integration framework in greater

iTEGRATION OPTIONS

CASE tools can be integrated in many different ways. At one end of an
egration spectrum, a CASE tool is used in complete isolation. A limited
her of software configuration items (documents, program, or data) are
ted and manipulated by a single tool and output is in the form of hardcopy
and/or graphical documentation. In a sense, linkage, to the rest of the

ftware development environment is by paper via the developer.
31

In reality, few CASE tools are used in total isolation. The following
tion options (Figure 8) are available:

Exchange Most tools have at least the ability to export information they
and create in the form of an instructed file with a published format: This

es a point-to-point data exchange (Figure 8) between one CASE tool and
other tool, usually with a transmitting "filter" interposed. This preserves the

~lllation contained in the tool, eliminating the need to re-enter existing
ts of the specification of design and preventing typographic errors from
introduced unnecessarily.

Many translators have been developed through the manual cooperation of
1 vendors involved end are available directly from them. In addition, many

' - '" ,

e 8. Levels of CASE integration.

lators have been developed by consultants and users and are available for
chase or through "shareware" exchanges.

32

point-to-point data exchange is that usual only
of the data exported can be used by the receiving tools since designed to
compatible. In addition, as the software evolves, it can become time
g to transfer files each time a small exchange is made. Versions can
"out of sync."

When many tools are used on a project, the number of point-to-point
can become unacceptable large. Finally, the transfer is normally in one

in only. There is no potential for reflection changes in to directions, and it
ult to make cross-document checks and maintain integrity (configuration
) of the configuration across the various tools that are used.

on Tool Access The next level of integration ie common tool access
8), which allows the user to invoke a number of different tools in a
manner, for example form a pull-down menu in the operating system

1w manager. In a multitasking environment such as UNIX or OS/2. this
a user can open several tools simultaneously, manually coordinating input
and comparing design representations as they evolve. For example, the

might display a data flow diagram, a structure chart, a data dictionary and a
code segment maintained bf different tools. In this environment, the tool-

1} data exchange might also be simplified by invoking the translation
lure with a simple menu or macro selection.

on Data Management Data from a variety of tools can be maintained in a
logic database (Figure 8), which phsycally may be either centralised or

ibuted. This simplifies the exchange of information and improves the
ity of the shared data, since each tool always has immediate access to the
software engineering information. Access rights in a team environment can
be controlled and version management facilities may also be available,
ugh these will be activated manually via a check-in, check-out procedure.
ically, there is a data merge function to enable developers working on
ent parts of an application to combine they work. If the tool set hes cross

iect checking capability, it can detect inconsistencies among the different
loped contributions.

Although the data from multiple tools are managed together at the common
management level, the tools have no explicit understanding of each other's

m1Prnal data structures and design representation semantics. Consequently a
ete translation step (usually invoke manually) is steel required to enable one

,I to use the output from another tool.
33

Sharing Tools at the data sharing level have compatible data structures and
tics and can directly use each other's data without translation. Each tool is

· ed to be compatible with all other tools in the data sharing environment.
this reason most data sharing occurs tool among from a single vendor or
e strategic relationships between vendors have been formed to produce an
ated tool at set, sometimes at the request of large customers. Unfortunately,
are few official standards in p 1 ace to provide the common ground for
try-wide data sharing among CASE tools. However, de facto standards,
ested by large CASE vendors (e.g. DEC, Hewlett-Packard, IBM, or Sun),

.. provide the industry with some degree of coordination for data sharing.

rpretability Tools that combine the characteristics of common access and
sharing are interpretable. This represents the highest level of integration
ng individual tools. However there are other properties of the overall CASE
· onment that can be added to improve the effectiveness of the software

Integration To achieve complete integration (Figure 8) of the CASE
· onment, two additional facilities are needed: meta-data management and a
trol facility. Metadata is information about software engineering data
uced by the individual CASE tools. Metadata includes.

• Object definition (types, attributes, representations, and valid
relationships)

• Relationship and dependence among of arbitrarygranularity (i.e., a
process on a DFD diagram, a single entity, or a subroutine code
fragment)

• Software design rules (e.g .. the correct ways to draw and balance a data
flow diagram)

• Work flow (process) procedures (standard phases, milestone
deliverables, etc.) and events (reviews, completions, problem reports,
change requests, etc.)

Often the rules and procedures portion of the metadata is defined in the
of a rule base to facilitate its modification as the software development

ocess evolves. For example, a new design method might alter design rules for
resentation and change work flow process standards.

34

The control facility enables the individual tools in notify the rest of the,
,= •... rent (other tools, the metadata manager, the data manager, etc.) of

ant events and to send requests for action to other tools and services via a
. For example a design tool might notify configuration management tool
new version of a design document has been created and cause the

i-iEU1 ation management tool to do a cross-document consistency check. The
l facility helps to maintain the integrity of the environment and also
s a means to autromate standard process and procedures

The trigger facility might be embedded within a closed repository environ
or it might be visible to individual tools through a programmatic interface

message-passing mechanism.

INTEGRATION ARCHITECTURE

Using CASE tools, corresponding methods, and a procedural framework
~ by the software engineering paradigm that has been selected a pool of

are engineering information is crested. The integration framework
(lalitates transfer of information into and out of the pool. To accomplish this, the

wing architectural components must exist: A database must be created (to
the information): an object management system must be built (to manage
ges to the information); a tools control mechanism must be constructed (to
dinate the use of CASE tools); a user interface must he available to provide a

--=>istent pathway between actions made by the user and the tools contained in
environment. Most models (e.g., [WAS89], {FOR90] of the integration
ework represent these components as layers. A simple model of the
ework, depicting only the components noted above, is shown in Figure 9.

The user interface layer (Figure 9) incorporates a standardised interface
,l kit with a common presentation protocol. The interface tool kit contains
are for human-computer interface management and a library of display

iect, Both provide consistent mechanism for communication between the
:erface and individual CASE tools. The most commonly used tool kit for CASE
the X-Window System [MIK.90]. The representation protocol is the set of
idelines that gives all CASE tools the same look and feel. Screen layout
ventions, menu names and organisation, icons, object names, the user of the
board and mouse, and the mechanism for the tools access are all defined as
of the representation protocol.

35

e 9. Architectural model for the integration framework.

e 10. The layers that achived data integration.

The tools layer incorporates a set of tools management services with the
E tools themselves. Tools management services (TMS) control the
viour of tools within the environment. If multitasking is used during the

.ecution of one or more tools, TMS perform multitask synchronisation and
eommunication co-ordinates the follow of information from the repository and
~ect management system into the tools, accomplishes security and auditing
ctions, and collects metrics on tool usage.

The object management layer (OML) performs the configuration
agement functions described before. In essence, the software in this layer of

e framework architecture provides the mechanism for the tools integration.
very CASE tools is "plugged into" the object management layer. Working in

36

tion with the CASE repository the OML provides integration services a
standard modules that couple tools with the repository. In addition, the
provides configuration management services by enabling the identification
configuration objects, performing version control, and providing support for
control, audits, and status accounting.

The shared repository layer is the CASE database and the access control
· ins that enable to object management layer to interact with the database.
integration is achieved by the object management and shared repository
(Figure 10) and is discussed in greater detail later in this chapter.

1LS INTEGRATION

when an integrated CASE environment is considered the mechanism for
integration of CASE tools will be implemented differently depending on the
· ecture, the platform, and the philosophy of the designer of the environment.
'ever, all CASE environment implement execution. mechanisms and
unication mechanisms. To illustrate the characteristics of these

llllri'anisms, the Portable Common Tools Environment (PCT) model-one of a
mmber of standards for integrated CASE environments will be used.

Within PCTE, execution and communication mechanisms are referred to as
·c mechanisms-functions that are defined to manipulate "entity" that exist in
software development context. Entities include both objects (e.g., data,
ce code, documents, devices) and the tools that operate on the objects.

Most I-CASE environments am designed to accommodate a multitasking
i~ting system in which s number of different tools can be executing at the

e time. For example, a compilation of one module can be invoked at the same
that modifications are being made to the design of another module. In

ition, the completion of a task performed by one tool might lead automatically
the execution of another tool, if appropriate process activation mechanisms
· ggers) are present.

Execution mechanism provide "a uniform way ta start a process from its
ic context regardless of whether it is an executable or interpretable program"
089]. In addition, these mechanisms provide features for suspending,

RSUming, and terminating a process. In this context a "process" can be viewed as
CASE tool.

37

Communication mechanisms manage interprocess communication by
ishing message queues that enable different tools the communicate with one

. For example the completion of a task performs by CASE tool A may
in an "event" that leads to the initiation of CASE tool B. to invoke B, an
ion mechanism must be used, but to pass information from tool A to tool B
a communication mechanism.

It should be noted that basic mechanisms use sophisticated communication
rdination capabilities that are often associated with operating system

· ins. The challenge for I-CASE environment developers is to implement
mechanisms in a way that decouples the environment from a specific
· g system or, as a minimum provides a layer between the environment
and operating system internal.

Because the environment architecture for CASE is a distributed network,
hanism described in this section must be capable of being implemented in
orked environment. A distribution mechanism enables the basic

...etanism to be distributed across a network and also provides the following
ilities (TH089]: (1) network administration and supervisor off all

lllkstations connected to the network; (2) management of each network node
each workstation can be represented as an object in the repository and has
ibute the workstation directory; (3) "transparent distribution" of execution

communication functions .

.TA-TOOL AND DATA-DATA INTEGRATION

Data integration can be examined from two different points of view: (1)
-tool integration considers the level of integration between CASE tools and
data that are producted by the tools (and people) throughout the software
· eering process; (2) data-data integration examines the level of integration
ng the information items themselves.

In order to achieve the types of integration described above, it is necessary
define an abstraction that enables us to connect information entities

-.uuuguration objects) and provide some mechanism for establishing the
ionships between these entities. This lead to an "object-oriented view" of the
E database. Elements of the software configuration (e.g., programs,
urnents. and data) are treated an objects to be manipulated as part of the
are engmeenng process.

38

Once an object-oriented abstraction is established, the tool-data integration
defines agents (e.g., users or tools) that operate on objects. (programs,
ents, data). It is important to note that the operation: implied by this
sion span a broad range of functionality. Operations can be as simple as s
editing process or as complex as a sophisticated software engineering

. For example, by combining the appropriate design information, it is
· ely easy to create an object that we might characterised, as a design

ent. The software engineer (e.g., the user of the CASE systems) can
.e on design document in a number of different ways. For instance, the
are engineer can review design document in a purely manual fashion. Yet
importance of the review operation can not be over-emphasised. The
are engineer can also edit design document analyse the certain aspects of

· · ectural and/ or procedural design, refine or elaborate some aspects of the
, and transmit the design to another CASE tool that might generate code or

ide traceability back to requirements. Each of the italicised terms in the
ding discussion represents an operation that can be applied to an object.
-tool integration is accomplished as each of these operations is implemented
e a CASE environment. It is fear to say that not all operations will be
emented as to functions. In fact some of the most important operations may

manual but steel apply to the overall concept of integration.

Architecturally, data-tool integration was discussed in Section 23.2 and
es from simple tool-to-tool data exchange to a complete I-CASE environ
lt. As data-tool integration becomes more sophisticated, the complexity of the
ed repository and the number of layers in the environment model must both

Data-data integration can be modelled using entity-relationship techniques.
configuration object (entity) is always related to one or more other
guration objects. For example, source code is related to the design
itectural model and to one or more user requirement. The source code is also
red to one or more test cases. The relationships described above as well as a
others, can be depicted as an E-R model shown in Figure 11 referring to the
e, the relationships show in the diamonds are implemented using one or
e against (CASE tools, people) and their corresponding operations.

The relationships depicted in the E-R diagram can also be used to
esent different software versions. Recalling discussion of version control in
vious, the relationships defined to achieved data-data integration propagate
oss the evolution graph for the software. Each version maintain the some
eric relationships among configuration objects.

39

........ ,, •.•............ •·.-···

12. The 5-5-5 rule.
CASE REPOSITORY

Webster's dictionary [WEB74] defines the word repository as "any thing
n though of as a center of accumulation or storage." During the early

r of software development, the repository was indeed a person-the
h ammer who had to remember the location of all the information to a
~e project; who had to recall information that was never written down and
~ct information that had been lost.. Sadly using person as "the center for

ulation and storage" (also it confirmation Webster's definition) does not
very well. Today the repository is a "thing"-a database that acts as the
for both accumulation and storage of software engineering information.

role of the person (the software engineer) is to interact with the repository
CASE tools that are integrated with it.

In this project, a number of different terms are used to refer to the storage
for software engineering information: CASE database project database,
ted project support environment (IPSE) database, and prository. Although
are subtle differences between some of these terms, all refer to the thing

is through of as the center for accumulation and storage.

Role of the Repository in 1-CASE

The repository for an I-CASE environment is the set of mechanisms and
structure that achieve data-tool and data-data integration. It provides the

40

functions of a database management systems, but in addition, the
performs or precipitates the following functions [FOR89b].

Data Integrity. Includes a function to validate entries to the repository
ensures consistency among related objects, and automatically performs
'cascading" modifications when a change to one object demands
changes to objects that are related to it.

Information Sharing. Provides a mechanism for sharing information
among multiple developers and between multiple tools, manages and
control multi-user access to data, and locks/unlock objects so that
changes are not inadvertently overlaid on one another.

Data-Tool Integration. Establishing a data model that can be accessed
by all tools in the I-CASE environment, controls access to the data, and
performs appropriate configuration management functions.

Methodology Enforcement. Defines a specific paradigm for software
engineering that is implied by the E-R model of data stored in the
repository; as a minimum, the relationships and the objects define set of
steps that must be conducted to build the content of the repository.

Document Standardisation. Leads directly to a standard approach for
the creation of software engineering documents by creating definitions
for obiects in the database.

To achieve these functions, the repository is defined in terms of a meta
. The meta-model determines how information is stored in the repository,
data can be accessed by tools and viewed by software engineers how well
security and integrity can he maintained; and how easily the existing model
extended to accommodate new needs [WEL89].

The meta-model is the template into which software engineering
• oaation is placed. Earlier in this chapter we discussed the entity-relationship -
ai,ute meta-model, but other more sophisticated models are also under

eration. A detailed discussion of these models is beyond the scope of this
. For further information, the interested reader should see Welke

89].

41

d Content

features and content of the CASE repository are best understood by
the repository from two Perspectives: what is to be stored in it and
ific services it provides. In general, the types of things to be stored in
ory include the following:

The problem to be solve

Information about the problem domain

The system solution as it emerges

Rules and instructions pertaining to the software process (methodology)
being followed

The project plan, resources, and history

Information about the organisational context

detailed list of types of representations documents, and deliverable' s
stored in the CASE repository is included in Table 1.

robust CASE repository provides two different classes of services: (1)
e types of services that might be expected from any sophisticated

1111 se management system, and (2) services that are specific to the CASE

Many repository requirements are the same as those of typical applications
a commercial database management system. In fact most of today's

repositories employ a DBMS (usually relational or object-oriented) as the
data management technology. The standard DBMS feature of CASE

· ory supporting the management of the software development information

-.redundant Data Storage. The CASE repository provides a single place
for the storage of al I information pertinent to the development of software

prn11~, eliminating wasteful and potentially error-prone duplication

42

Access. The repository provides a common data access mechanism
•• mooung facilities do not have to be duplicated in each CASE tool.

ependence. CASE tools and the target applications are isolated from
orage so they are not affected when the configuration is changed.

lldion Control. The repository manages multipart interaction manner that
the integrity of the data when there are concurrent. users and in the
system failure. This usually implies record locking, two-stage commits,

.-aiu logging, and recover procedures.

i ~~;' .'> '~ .'. •. , . ·::.·; V··•

~. ' . r•v:;./··;..:..0-~ qi, .. 1.ib'~; :S"..::,,:::_-,_,--~·.•;

Ne;ro:in:g ~10.hclCfdS
Ref~r~:nHoJ integrity rul.qs E.stirno.trtt

!>t:hedvfe~

.. :--·~ ~

lllll"dY. The repository provides mechanisms to control who can view and
· the information contained within it. At a minimum the repository should
multilevel passwords and permission level assigned by individual users.
sitory should also provide assistance for automatic backup and restore, 43

g of selected group of information, for example, by project or

Data Queries And Reports. The repository allows direct access to in
through a convenient user interface such as SQL or a form oriented
enabling user-defined analysis beyond the standard reports provided

CASE tool set.

Repositories usually provide a simple import/export mechanism to
loading or transfer. The interfaces are usually ASCII file transfer or a

QL interface. Some repositories have high-level interfaces that reflect
._.,,"'es of the meta-models.

·r Support. A robust repository must permit multiple developed to work
lication at the same time. It must manage concurred access to the
by multiple tools and users with access arbitrary and locking at the file
level. For environments based networking, multiuser support also

that the repository can interface with common networking protocols and

The CASE environment also makes special demand on the repository that
d what is directly available in a commercial DBMS. The special features
repositories include:

Of Sophisticated Data Structures. The repository must access modate
data types such as diagrams, documents and files well as simple data

llllllls. A repository also includes an meta-model describing the structure
.,- +.ships the data stored in it. The metamodel must be extensible that new

tations and unique organisational the repository not only stores models
Nr:scription the systems under development but also associated metadata (i.e.,
flional information describing the software engineering data types then a
• adar component was created, what other components it depends upon).

Enforcement. The repository information model also contained
ll&ai>ing valid business, rules and other requirements on information being

into the repository (directly a CASE tool). A trigger may be employed to
e the rules associated with an object whenever it is modified, making it
e to check the validity of design models in real time.

tic-Rieb Tool Interface. The repository information model (model)
• s ;us semantics that enable a variety of tools ta interpret that meaning of the

ored in the repository. For example, a data diagram created by a CASE
44

stored into the repository in a form used on the information model and
ent of any internal representations used the tool itself Another CASE
then interpret the contents of the repository.

The following repository to leave the normal development environment.
ent and can also be by electrons are Problem reports, maintenance tasks,
authorisation, and repair status can be coordinated and monitored via

.~ssing the repository .

•• - ring As a project processes, many versions of individual work products
created. The repository must be able to save all of these versions to
the effective management of product releases and to permit developers to
to previous versions during testing and debugging. Versioning is done
pression algorithm to minimise storage allocation, and permits the

tion of any previous version with some processing overhead.

The CASE repository must be able to control a wide variety of object
including text, graphics, bit maps, complex documents and unique objects
·een and report definition, object files and test data and results. A mature
ry tracks versions of object with arbitrary levels of granularity; for
e, a single data definition or a cluster of modules can each be tracked.

Io support parallel development, the version control mechanism should
multiple derivatives (variants) from a single predecessor. Thus a developer
be working on two possible solution to a design problem at the same time,

_ b-~erated from the same staring point.

ency Tracking and Change Management. The repository man These
relationships between enterprise entities and processes, among the parts

lication design between design components and the. enterprise information
~ture. between design elements and deliverable's, and so on. Some of

relationships are merely associations, and some are dependencies
ory relationships. Maintaining these relationships among development
is called link management.

Link management helps the repository mechanism ensure that design
, motion is correct by keeping the various portions of a design synchronised.

example, if a data flow diagram is modified, the repository can detect
~ relates data dictionaries, screen definitions, and code modules also

modification and can bring affected components to the developer's

45

While CASE environments initially implemented link management at the
1, the trend is toward management at the object level where an object can
level of aggregation from a single data element to an application

· · g many files. Such a robust implementation requires a generalised
management facility independent of the underlying file

• ments Tracing A special function depending on link management is
ents Tracing. This is the ability to track all the design components and
le's that result from a specific requirement specification (forward

:), as well as the ability to identify which requirement generated any
liverable (backward tracking).

ration Management Another function depending on link management is
~ution management. A configuration management facility works closely

link management and versioning facilities to keep track of a series of
.,_~tions representing specific project milestones or production releases.

management provides the needed versions, and link management keeps
of interdependencies. For example, configuration management often

a build facility to automate the process of transforming design
ents into executable deliverable's. Active link management associated
ASE design tools through the repository can ensure that all items affected
ged design representations will be properly regenerated as needed
explicit instructions from the developer. For example, a change to an E-R
may affect a screen definition and a database schema. Both might be

--taiu.tically updated or called to the developer's attention. The configuration
l gement facility might then initiate regeneration of the change and re-links
llchanged modules. While configuration target code to reflect the automate and

the changed modules.

Trails Related to change managements the need for an audit trail that
J F.Jishes additional information about when, why, and by whom changes are

. Actually this is not a difficult requirement for a repository that has a robust
liDJ)ation model. Information about the source of changes can be entered as

es of specific object in.

itory Standards

ber of different standards efforts are underway for I-CASE environments
the CASE repository. In some cases, a proposed standard goes beyond the

lllnition of a repository to consider many different aspects of an integrated
nment. In the United States, a number of proposed standards are competing

46

IB')ioance. In Europe, a single standard has been adopted. Similarly Japan
far-east countries have a adopted a single (but different) standard for I

Each of the standards efforts is described briefly here so that the reader
a basic understanding of work that is underway.

tion Resource Dictionary Standard (IRDS), ANSI (X3.13 1988). The
ally approved ANSI standard presented in the section, IRDS was

y developed as a standard definition for requirements dictionaries (this
can also be used for repositories). It focuses on the management of

e information resources and is characterised using a multilevel meta
This standard help in the creation of "bridges" between complementary
h analysis/design tools and code generators and in CASE tool portability

different platforms.

,n/DEC Tool Integration Standard (A TIS). Originally developed by
Technology (a developer of framework tools) and Digit Equipment

.-arion, ATIS has been adopted by the CASE Integration Standards
ee of the Software Productivity Consortium ATIS focuses on the

· n of a repository architecture and address SCM, tool integration, data
and portability across platforms.

on Ada Interface Standard (CAIS). Focusing primarily on tools Ada
e development, the CAIS standard defines interface twenty tools that will

.-ise the Ada development environment.

,le Common Tools Environment (PCTE). PCTE was developed use by
opean software development community (the ESPR project) and has been
by the European Computer Manufactures Association (ECMA). PCTE is

~face standard and architecture model for CASE. It address probability,
IJUCDCY control, network distribution, data architecture, and the user interface

context of the CASE environment [TH089].

e Industrialised Generator and Maintenance Aids (SIGMA).
is similar to PCTE in intent and scope and has been adopted Japan and

far-East countries.

nic Design Interchange Format (EDIF). This standard focuses data
for information exchange between CASE tools (and other programs that

to exchange data). A CASE tool that product output information in this
can easily transmit the information other tools that accommodate input in
format.

47

In addition to the standards introduced above, every major computer
has proposed "solutions" for I-CASE. A list of some of the common
orks follows:

• DSEE-Apollo (Hewlett-Packard)

• Cohesion-Digital Equipment Corporation

• HP-Softbench-Hewlett-Packard

• AD/Cycle-IBM

• NSE-Sun Microsystems

One or more of these integration architectures may evolve the become a
o standard if widespread industry adoption occurs.

During the software engineering process, sets of sequential tasks are
led by a continuing flow of information. In addition, a set of "umbrella"
ities occurs concurrently as one sequential task leads to the next. Each task
most activities can be assisted with the use of CASE tools. But the real
fit of the tools can not be realised until the tools are integrated - until other
can easily use information produced with one tool.

The I-CASE environment combines integration mechanisms for data, tools,
human-computer interaction. Data integration can be achieved through the
t exchange of information, trough common file structures, by data sharing by
operability, or through the use of a full I-CASE repository. Tools integration
be custom design by vendors who work together or can be achieved through
gement software provided as part of the repository. Human-computer

gration is achieved through interface standards that are becoming increasingly
-.ntnon throughout the industry.

48

In the previous chapters that have preceded this one, we have explored a
for software engineering. We have presented both management
es and technical methods, basic principles and specialised techniques,

-oriented activities and task that are amenable to automation paper and
notation, and CASE tools. We have argued that measurement, discipline,

an overriding focus on quality will result in software that meets the
ers needs, software that is reliable, software that is maintainable, software

· better. Yet, we have never promised that software engineering is a

As we move toward the dawn of a new century, software and system
logies remain a challenge for every software professional and every
y that builds computer based systems. Max Hopper [HOP90] suggests
ent state of affairs when he states:

Because changes in information technology are becoming so rapid and
unforgiving, and the consequences of failing behind are so irreversible,
companies will either master the technology or die. . . Think of it as a
technology treadmill. Companies will have to run harder and harder just to
stay in place.

Changes in software engineering technology are indeed "rapid and
iving," but at the same time process is often quite slow. By the time a

ion is made to adopt a new method (or a new tool), conduct the training
to understand its application, the introduce the technology into the

e development culture, something new (and even better) has some along
the process beings a new.

IMPORTANCE OF SOFTWARE-REVISITED

The importance of computer software can be stated in many ways. The
ion delivered by software differentiates products, systems, and services and
"des competitive advantage in the marketplace. But software is more than a
ntiator. The programs, documents and data that are software help to
te the most important commodity that any individual, business, or

~~uuent can acquire-information, business and [PRE91] describe software in
Following way:

49

Computer. software is one of only a few key technologies that will have
~t impact on nearly every aspect of modem society during the 1990s. It

hanism for automating business, industry, end government, a medium for
~ng new technology, a method of capturing valuable expertise for use by

.. a means for differentiating one company's products.

Change in the technologies that have an impact on computing seems to
a progression that can be called the 5-5-5 rile. A fundamental new

it seems. to move from initiate idea to mass market products in about 15
During the first 5 years a new idea is formulated an evolve into a prototype
used to demonstrate basic concepts. The experimental prototype is refined

· tis ts and engineers over the next 5 years and the first products (reflecting
idea) are introduced during this time. The final 5 years are spent

cing the product (and its descendants) to the marketplace. By the end of
(5-5-5), a new idea with technological or merit can grow to encompass a

.-,illion dollar market (Figure 12). Although the 5-5-5 rule is only an
IIIJXllllation, the 15-year time span from initial idea to major market seems to
reasonable scale with which we can measure the evolutionary change in the
er business.

The changes in computing over the past four decades have been driven by
llloeed in the "hard sciences"-physics, chemistry materials science"
g· eeering, The 5-5-5 rule seems to work reasonably well when new techno

are derived from a basis in the hard sciences. However, during the new
ades, revolutionary advances in computing may well be driven by "soft

*8Ces"-human psychology, neurophysiology, sociology, philosophy, and
. The gestation period for technologies derived from these disciplines is
difficult to predict.

For example, the study of human intelligence has been conducted for
· es and has resulted in only .a fragmentary understanding of the psychology
ught and the neurophysiology of the brain. However, significant process
n made over the past 30 years. Information derived from the soft sciences

· g used to create a new approach to software-artificial neural networks
89]-that may lead to machine learning and the solution of "fuzzy"
ems that have heretofore been impossible to solve using conventional

-.,u1-er-based systems.

50

13. Influences on software engineers and their work.

The influence of the soft sciences may help mold the direction of
ing research in the hard sciences. For example, the design of "future
ters" may be guided more by an understanding of brain physiology than an

ding of conventional microelectronics.

The changes that will affect software engineering over the next decade will
uenced from four simultaneous directions: (1) the people who do the work,

the process that they apply, (3) the nature of information and (4) the
lying computing technology. In the sections that follow, each of these
nents-people, the process, information, and the technology are examined in
detail.

,PLE AND THE WAY THEY BUILD SYSTEMS

A dilemma faces every company that must build computer-based systems
1990's. the software required for high-technology systems becomes more

more complex and the size of resultant programs increases proportionally.
e was a time when a program that required 100,000 lines of code was
idered to be a large application. Today, the average program for a personal
uter application (e.g., word process, spreadsheets, graphic programs) is
two to three times that size. Programs build for use in industrial control,
uter-aided design, information systems, electronic instrumentations, factory
mation and nearly every other industry-capable application often exceed

. 000 lines of code.

The rapid growth in the size of the "average" program would present us
few problems if it weren't for one simple fact As program size increases. __
number of people who must work on the program must also increas1~~:;~~

~ 51 ":,
I(. .
-.\ .If", -
(0 \,,,
a:· . ··,
(-:'· ";,
. '\ /

'/

ce indicates that as the number of people on a software project team
s, the overall productivity of the group may suffer. One way around this
is create a number of software engineering teams, thereby
entalising people into individual working groups. However, as the
of software engineering teams grows, communication between them
s as difficult and time-consuming as communication between individuals.
communications (between individuals or teams) tends to be inefficient
too much times is spent transferring too little information content and, all
en, important information "fall into the crack."

If the software engineering community is to deal effectively with the
~cation dilemma, the road ahead for software engineers must include

changes in the way individuals and teams communicate with one another.
y companies, electronic mail and bulletin boards have become

.-mplace as mechanisms for connecting a large number of people to an
amation network. The importance of these tools in the context of software
liileering work cannot be overemphasised. With the help of electronic mail or

board system, the problem encountered by a software engineer in New
City may be solved with the help of a colleague in Tokyo. In a very real
bulletin boards become knowledge repositories that allow the collective
of a large group of technologists to be brought to bear on a technical

111:c or management issue.

As hardware and software technologies advance, the very natural of the
lace will change. The following scenario, adapted from Pressman and
[PRE91], provides one vision of a software engineer's work environment
the first decade of the twenty-first century.

The environment implied by the above "conversation" will change the
patterns of a software engineer. Instead of using a workstation as a tool,

lllllware and software becomes an assistant, performing menial tasks,
•dinating human-to-human communication, and in some cases, applying

· -specific knowledge to enhance the engineer's ability.

If past history is any indication, it is fair to say that people themselves will
ge. However, the ways in which they communicate, the environment in

they work, the methods that they use, the discipline that they apply, and,
:ore, the overall culture for software development will change in significant
'en profound ways. Recalling our earlier discussion of the 5-5-5 rule, some
changes that will affect the people who do software engineering work and
current position on the 5-5-5 timeline are noted in figure 13.

52

\-.~: ~,t,

13. An "information" spectrum.

NEW" SOFTWARE ENGINEERING PROCESS

It is reasonable the characterise the first two of software engineering
as the era of "linear thinking". Fostered by the classic life-cycle model
e engineering was approached as a linear activity in which a series of
ial steps could be applied in .an effort to solve complex problems.
the sequential paradigm for software engineering work can be effective,

without the problems discussed in the previous chapters.

The use of the sequential software engineering, paradigm will not
IIIDoears. A sequential approach will remain effective for those problems in

requirements are well defined, complexity is relatively low, and overall
and technical risks are reasonable well understood. But what about

.-;Ill:) that don't fit into this category?

It is likely that a large segment of the software engineering community will
toward an evolutionary model for software development.

The evolutionary model divides the software engineering space into four
ts? Management planning, formal risk analysis, engineering, and
er assessment. Recalling the discussion of the spiral model, each loop
the quadrants moves the developer closer to a completed system.

With in the engineering quadrant of the evolutionary (spiral) approach, it is
_ that the road ahead will have an object-oriented orientation. The object-

53

ed paradigm for software development offers promise for a number of

• The derivation of reusable program components (classes) is a natural
consequence of the object-oriented paradigm.

• Reuse provides immediate and compelling benefits in product quality
and process productivity.

• An object-oriented viewpoint is actually a more natural way to examine
complex problems.

OLOGY AS A DRIVER

The people who build and use software, the software engineering that is
· d. and the information that is produced are all affected by advances in
are and software technology. Historically, hardware has served as the
logy drive in computing. A new hardware technology provides potential.
are builders then react to customer demands in an attempt to tap the
rial. Figure 14 applies the 5-5-5 rule in an attempt to place various
are technologies in the overall evolutionary cycle. Placing a particular
logy on the 5-5-5 curve can be difficult. For example, RISC technology

currently evolved to the product stage, but it is not yet a mature market.
, it has been placed in the "prototype" stage of technology maturity.

The road ahead for hardware technology is likely to progress alone two
el paths. Along one path, mature hardware technologies (CISC and RISC
sors memory storage, and communications) will continue to evolve at a
pace. With greater capacity provided by traditional hardware technologies,

demands on software engineers will continue to grow.

But the real changes in hardware technology may occur along another
The development of nontraditional hardware architectures (e.g., massively
el machines, optical processors, neural network machine .

.
We have already noted that software technology tends to react to changes
dware technology. Applying the 5-5-5 rule to software technology (figure
the software products of today will be joined and possibly displaced by
are technologies in the first and second stages of maturity. There is little
it that the technologies shown in the prototype stage of Figure 15 will

lmcome extremely important as the 1990s progress. In fact, object-oriented
ologies may form a bridge between artificial intelligence approaches 54

tly object-oriented), conventional software applications, and database
logy. In so doing, they may represent an important step toward knowledge
ing as discussed in the preceding section.

~;~;;~~~.):;:,~:.·c,:r_,,H'. f'.
:.,,,

.f
'~ t4£!:..i!Et ne-!w1xk
.£
;,

-:.:.:tr; .• i\'i.<,~
'./~:/~: ,',;;:,:-~'}.[•;

~ti:;.Ji·-Gefd•:'ly < ,....1:'>f':!"lt:rt:, •• ~t•"':.':">:'}!;,

fi~ti~der';;)\iy
c.,cUt.,f!\ m:1rn9t~

15. Changes in hardware technology.

The road ahead for software engineering will be driven by software
logies. As software moves more forcefully into the realm of fuzzy

lllems (AI, artificial neural networks, expert systems), it is likely that an
· onary approach to software development will dominate all other
igms, As object-oriented approaches become more prevalent, evolutionary
igms for software engineering will be modified to accommodate program
nent reuse. "Foundries" that build "software IC's" may become a major

software business. In fact, as the new century dawns, the today. There may
dors that build discrete devices" (reusable software components), other

-..Ors that build system components (e.g., a set of tools for human-computer
~on), and system integrators than provide solutions for the end user.

software engineering will change-of that a-e can be certain. But regardless
radical the changes are, we can be assured that quality wil never lose its

111mnrtance and that effective analysis and design and competent testing will
have a place in the development of computer-based systems.

CASE 2000: THE FUTURE OF THE CASE
TECHNOLOGY

uter Aided Software Engineering (CASA) technology has been available to
ofessional software engineer for more than a decade. Tools to support all
of the software development lifecycle are commonplace, and most large

organisations have some form of CASE tool support, whether it be
55

designer workbenches, programming support environments, configuration
µ 2 ••.•••• ent support or testing tools.

15. Changes in software technology.

After an early proliferation of tools, a degree of maturity has been reached
E technology through the emergence of product leaders, standardisation
improved technology such as integrated CASE (I-CASE) and component.
(C-CASE), and an awareness that CASE is part of a wider solution

· g people, organisational structures and-process.

Several useful references exist, providing a historical context to the
ment of CASE technology [l], as well as practical insights into CASE

llllcts, their use and effectiveness [2-4].

Therefore, as CASE technology stabilises and consolidates, it is an
· ate point to look forward to the emerging themes and trends, and attempt
tify the state of CASE at the end of the decade. To this end, the British
uter Society CASE Group recently organised a research seminar in which
ipants were invited to present their vision of CASE technology in the year
based on their current research and development. A variety of experts
led from industry and academia, and during the workshop three areas of
sion emerged.

The first theme concerned who should use CASE tools; IT professionals or
users. This was based on the perceived culture gap between the two groups.

It was proposed that it is dangerous to polarise tool users and that there is
trum of users ranging from those with very little IT expedience to meta-tool

56

rs. Each group is likely to need different tool support; ranging from tools
nal information processing to fully featured CASE tools For large scale

. However, the nature of the software development process is such that
need to be more involved in the development process. Future CASE
to address this issue by providing a range of facilities, empowering the
to develop sophisticated specifications, and supporting the IT

ional as an objective facilitator of user involvement who can integrate user
systems into the corporate information system infrastructure.

technologies to support this view included intelligent knowledge-based
data repositories and advanced human-computer interaction

The second theme looked at the need for organisational maturity before the
tion of CASE technology, and the extent to which such technology could
the entire software development and volution process. Discussion turned

problem of translation between the informal descriptions, more appropriate
users, and the IT-oriented models used by system developers. This

· on or leap was recognised as involving considerable creativity and would
cult to reproduce through CASE technology alone. Thus, the idea of
ic translation (i.e. automation of the development process) was rejected ...vw of CASE assisting the human developer.

In looking at the wider issues of introducing CASE, the need for extensive
ion and training before using CASE technology was recognised as a
factor in the successful and continued use of the tools.

technology

On this final theme, concern was expressed at the inability of current tools
rtlb.lise the latest developments in hardware to provide radically different
illlt.nn<:Jl1ty to the user. Developments in multimedia, animation and knowledge

systems needed to be harnessed to improve useability and enumerate user
-.-nent in software development.

However, the point was made that industry understanding of the software
ment process is still generally poor, and therefore tool development is
by our current knowledge. Tool integration and object reuse were seen as
le but not easy to obtain. Integration may lead to "fossilisation" if tool

57

lopment fails to keep pace with evolving user requirements. Similarly, object
is hindered by the difficulty of identifying and classifying objects.

iew of the papers

In this Special issue on future CASE, we have selected six papers which
a broad range of topics within the three themes described above. They
from how the CASE process affects users, through proposed extensions to

E, to the possibility of re-engineering the software design process to suit
E.

The papers by Gavin and Little and by Smith review the current use of
E. Both papers highlight what is considered best practice and propose ways
future wide use of CASE. Gavin and Little investigate the need for CASE
· manufacturing information Systems. So often CASE is cited as not
· g its promise and as a disappointment to purchasers. This is said to be so
e of the gulf or culture gap between IT suppliers and manufacturers. Gavin

Little describe three detailed case studies, collaboratively undertaken by
~ and the Department of Industrial Studies at the University of Liverpool.
illPnng CASE products were used In each study, typifying the products on the

et. Gavin and Little conclude that there is a need for a manufacturing CASE
ct that can be adapted from existing tools and methodologies.

Smith concentrates on the use of CASE in the software development
ss. He describes the development, within AT&T IS TEL of a flexible CASE
ct that can meet the developing needs of different classes of clients, both

..-llCU and external. The paper concentrates on how client-centric CASE has
developed and used within AT&T ISTEL to aid their business and software
ss re-engineering; clients have Included developers of CASE and other
are products.

Both Griffiths and Llcyd-Wililams propose the incorporation of knowledge
CASE. Griffiths proposes advancing the concept of analysis workbench to
he calls the third generation. The proposed architecture will capture
ledge of the software process into the workbench. Such an approach, it is

· ed, will facilitate the re-engineering of the business process.

Lloyd-Willlams suggests that the Incorporation of domain-specific
ledge into a CASE tool will facilitate the software design process.

wledge-based CASE enables the tool to play an active part in the design
ss, offering the user alternative solutions to problems and ensuring integrity.

the same time, design know-ledge can be retained for retrospective use. 58

ell and Phillips propose linking an executable stage to CASE
ions. The Executable Graphical Specification tool developed at Hull
is described. The excitability Is provided via code in the functional

ooiog language Gofer. The use of a functional language means that rapid
· g can be achieved. However, there is more work needed to achieve a
ementation. Gaskell and Phillips conclude that excitability needs to be
d throughout the lifecycle for most development. upgrades and

cGinnes takes perhaps the most radical view. He argues that CASE tools
eloped to support methods that existed long before CASE. There is a

develop techniques for design and analysis that are well suited to CASE
· ess Process Re-engineering, the idea or using IT to automate existing

IIIISeS has been abandoned in favour of an interventionist approach. The same
:o be done for Software Engineering; CASE should not just be providing
ic tools for per-forming manually based tasks. New processes should be

illified that are possible in a computerised environment. For example, visual
· g can be undertaken, allowing an iterative approach to software

l*Jpment, while hiding technical details. Such an approach would have been
ible in a manually based method.

Unfortunately, we have been unable to select all the papers we would have
for this Special issue. We can therefore only present a snapshot of a very

part of the wide range of research and development being under-taken In
and its associated technology. Issues such as requirements engineering,
. For soft systems modelling, repository technologies and cooperative
have not been explicitly addressed.

However, we believe that the papers presented in this Special issue can act
contribution to the wider debate on CASE for the year 2000 and look
d to the emergence of even better CASE products.

Finally, the guest editors would like to thank all those who have
ibuted either to the research workshop or who have submitted papers for
pecial Issue. Particular thanks also go to the IEE Publishing Department for

lllleving publication in such a short period between the original workshop and
publication of this issue.

59

costs are easy to measure on a financial basis, but the benefits are
quantify and are often intangible. In order to influence senior manage
ormation technology has to be seen to address specific Identified
needs.

recent survey by Benchmark Research [3] reveals that investment in
-uring information technology will rise for the first time since 1989, by

£33m over the next year within the UK, representing an annual expen
£1450 million. The report identifies a low level of satisfaction with

ion Systems that have been implemented in support of manufacturing
and control. This is due to the unsuitability of the systems and to the
deliver the promised benefits. In response to this report, Puttick [4]

There seems to be a great gulf between IT suppliers and
urers, Manufacturers are so caught up in the chaotic world of the

floor that they are unable to define their problems adequately, let alone
them to others. IT suppliers, on the other hand, do not fully understand

and are so sales-oriented that they don't focus on the real

ith the expected rise in investment and the proliferation of packaged
it becomes increasingly important that manufacturing systems engineers
a detailed understanding of their organisation's requirements and the
areas to be addressed. This provides the manufacturing organisation
knowledge necessary to communicate effectively with software vendors

select the appropriate solutions. Typically, such solutions will be achieved
selection and tailoring of a range of packages, rather than by the design of
e software.

The Advanced Manufacturing Systems Research Group at the University
ool has been researching the specification and design of integrated

illlnation systems to support advanced manufacture for a number of years,
....-t~d by three major contracts from the ACME (Application of Computers

ufacturing Engineering) Directorate of the SERC. At an early stage in the
's work, the importance of a clearly understood and unambiguous

rements specification document was appreciated. Such a document should
the basis of any contract between the manufacturing organisation and a

~e vendor. To produce such a specification for the complex systems
to support an advanced factory is a daunting task

61

raditionally, requirements specification documents for manufacturing
ion systems have been written in natural language and often portray a
' predominantly based on the features of commercially available
solutions, rather than the strategic needs of the business.

e complexity of the manufacturing environment dictates the need for a
·c or structured approach to enable manufacturing Systems engineers to
and define their information requirements. However, very little advice
coming regarding this procedure within manufacturing industry. Many

have identified the need for structured approaches and effective systems
· g techniques, but the few methods developed to satisfy this need have
find 'widespread use.

ithin the comparatively youthful computer industry, the discipline of
engineering and computer-aided software· engineering (CASE) tools
n proven to facilitate the production of reliable, 'well documented infor

systems that help meet the requirements of the intended users. That is due
considerable emphasis on the tasks of requirements specification.
, almost ah of this work has taken place outside the manufacturing

If as research at the University of Liverpool suggests, manufacturing
engineers are required to analyse their information difficulties and define
ciated requirements, it would seem appropriate to utilise established
hes from other application domains, such as the software industry .

..,..5,, this route is logical and feasible, the methods and tools available for
the non-specialist (in software engineering terms) manufacturing systems
need much development.

This paper presents the research 'work undertaken to Investigate the
ce of software engineering and CASE in manufacturing systems
ring. An in-depth examination of this relevance had not previously been
en, and the indications from the manufacturing industry are that CASE
little real penetration. The research objectives were

to establish the need for structured methods and tools in support of
production of robust requirements specifications for manufacturing

-··mtion systems.

• to examine commercially available CASE methods and tools for
suitability to provide support to the manufacturing systems engineer in

62

a specification of requirements for manufacturing information

to identify the main developments needed in CASE methods and
ensure their widespread adoption within manufacturing industry; this

the basis of the contribution to new knowledge.

extensive review of literature was conducted into manufacturing
ion Systems development and the history and current capabilities of

methods and tools. In addition, this review examined the tentative use of
methods and tools within the manufacturing industry. A survey was
en of commercially available CASE products aimed at supporting the

ilication of requirements to increase familiarisation 'with the CASE market
and product capabilities. Three typical CASE products, Identified as

were applied on-site to manufacturing information systems projects,
ed the appropriateness of the methods and tools employed within the

g environment.

addition, experts within manufacturing information Systems
IIDpment (from both academia and industry) were questioned .to gain an

perspective of the needs of manufacturing systems engineering and the
of CASE methods and tools. The Initial research hypotheses were

~ in the light of the research work undertaken, and conclusions and
endations were produced for the requirements of CASE for more
ead application within manufacturing industry. It is important to note that
arch project was viewed as an introductory study into this area, raising

questions to be tackled in a subsequent project outlined.

We believe that, in order to facilitate a competent definition of a
cturing organisation's requirements for computer-based technology in
of its strategic objectives, it is necessary for manufacturing systems engi-

o adopt structured approaches and tools. As Puttick [5] states.

mismatch between the Systems manufacturing has installed and what It
needs JS due to an Inability of manufacturing to articulate its needs and a
of understanding by the IT vendors... The lack of analysis toots and
· ·ues to translate business and manufacturing needs into if requirements
Id industry back. '

63

llilk3tion of manufacturing information systems

Manufacturing information systems have significantly progressed from the
accounting and stock control models to the complex integrated systems,

· g materials planning and shopfloor control, found within many factories
Underlying this evolution has been the realisation of the critical value of
and accurate Information in support of the manufacturing processes. Due
the computer systems supporting manufacturing grew in complexity This
ity was directly related to the volume of information to be processed, as
Berry and Whybark [6] identified:

problems in manufacturing planning and control are not analytically
; instead their complexity derives fmm the enormity of the underlying
e required to properly support routine decision-making systems. '

The analysis and design of manufacturing information systems has been no
t to that of information systems operating in other, more traditional,
ion areas, with similar problems encountered. These problems not only

to the cost effective production of reliable and maintainable software, but
to the Identification of actual user requirements (which can be particularly
ex for manufacturing systems). Both of these problems could be Improved
use of CASE methods and tools.

rtance of integrated information

In recent years, the importance of the role of information within
cturing systems has been stressed by many authors [7-11]. The consensus
literature is that information processing and control is a key area to be con
in developing manufacturing systems. Harrington [10] strongly asserts

information provides the basis for all aspects of manufacturing;
..._.fucturing is, in fact, an information transformation process. The large

es of information for manufacturing planning and control, and the need to
t, analyse and report on such, create a considerable problem of

The critical need is to view' manufacturing in terms of information. Indeed,
ay in which to make manufacturing more efficient is to improve on the use

this information and attempt to solve the problems identified also.
acturing Information must be appropriate, consistent, timely and accurate.

facilitate this, two elements need to be addressed. First the components,
ionships and provision of information 'within manufacturing activities have to
dearly understood by manufacturing systems engineers. Secondly, the 64

ce of this Information has to be positively appreciated; it is a vital
.e resource. The predominant defect in existing manufacturing systems is
ility to transfer and share Information. Both essential to the support of
ion, Halevi [9] argues for an all-embracing' approach to Systems
ion, recognising that manufacturing processes are linked and utilising the

information.

The potential of software to support the integration of information across
cturing systems is now well accepted, and computer-integrated
cturing (CIM) has become popular in defining the ideal of such an inte
environment [12, 131. The PA Consulting report for the Department of
and Industry [14J identifies that the move towards Integrated information
Is one of the key responses to be made by companies aware of the

•nnnities and threats facing manufacturing organisations today. The report
tes that few companies make full use of available technology, and fewer
coherent attempts to Integrate their information Systems. Indeed, there is
idence of a consistent application of appropriate methods and tools within

importance of the link between integrated information and
cturing strategy has been observed. The objective may not be to automate
ole of a manufacturing business, but to support those elements of integra
l support the defined strategic objectives. This is put succinctly by Evans

Lane (15):

rmation is a powerful weapon in the struggle to achieve the frill potential
ufacturing systems. Integration is essential for frilly effective use of the
ation that exist in different sections of manufacturing companies.
·ve use of information impacts upon what can be achieved as well as the

of achieving It.,

The effective use of information could yield a competitive advantage no
possible simply by the efficient use of advanced production technology.
ation could help management address the conflicting pressures of cost,
er service, manufacturing flexibility and time to market However,

· gum [11] presented the following caveat:

'Manufacturing industry's track record in information management is not
and as the opportunity and competitive pressures to move towards
ter integrated manufacturing mount, we must think strategically about
we want information for and how we will use it to manage our business.

65

el of investment predicted in factory information indicates that the costs
re are going to be high. '

for a structured approach

We have observed that the effective processing and integration of
tion is key to an organisation achieving competitive manufacturing, and
ftware is essential In supporting this. However, the trend towards more
ex information systems handling increasingly dynamic information
ces the problems outlined above. This situation has prescribed the need for
ematic or structured approach to be applied in designing and implementing
cturing information Systems. This need was confirmed by Cassidy et al.

as part of the IEEE task force on research needs in manufacturing systems.
saw that no Systematic method for design and implementation was
tly available, and that more research and development "were needed on

lriding effective approaches and modelling techniques for manufacturing
~engmeers.

We have [1 7] found that, although there was general agreement on the
for a structured approach, there was very little advice forthcoming. Few

llll)allies employed such approaches, and frequently the integration of the
cturing information system under development 'within the existing factory

••• d •• ., was not considered at all or left until too late:

The system software will be largely developed and systems designers are
ly to be willing to make the major amendments at a later date. Another
d of automation" has been created.

· [7] has defined manufacturing Systems engineering as the use of a
atic approach within the manufacturing environment Wu [18] was

icularly surprised that although there was a great deal of literature on the
cal aspects of advanced manufacture, there was very' little regarding
ed approaches to design and implementation.

Two modelling techniques, GRAI (Graphe a' Resultats et Activides
lies) and IDEF (ICAM Definition), featured highly within the reviewed

-..cuuie. Both were developed specifically for the manufacturing environment.

The GRAI approach was developed by the GRAI Laboratories of the
· ersity of Bordeaux for analysing and designing manufacturing planning and
ol systems [19-21]. Two graphical modelling techniques are used, the

66

· d and GRAinet, for depicting decision making and functions supporting
ins respectively. Fig. 16 shows these techniques.

The IDEF set of graphical techniques were developed by the US Air Force
llaborative organisations as part of the CAM (integrated Computer
Manufacturing) Programmer. Three techniques are utilised and are
ed in fig. XXX. IDEF provides a functional model and is a subset of

. IDEF provides information modelling and is similar to data model
· es used in software engineering. The third technique IDEF2 provides

~ruing of the dynamic aspects of a system based on simulation technique.

Although many differing approaches have been developed for the
cturing environment; including GRAI and IDEF, they are still not In
read use. Whatever the reason for this, the problems associated with
· g and implementing manufacturing information Systems remain. As
and Votz [24] state.

ly, software is the integrated manufacturing problem. The machines,
, material transports, and so forth exist, but the software needed to tie
together into orchestrated flexible robust systems does not.

within manufacturing industry

Whereas manufacturing industry has assessed the importance of
tion and of the need for structured approaches and modelling techniques
tifying manufacturing system requirements, the software industry has

· hed the discipline of software engineering, with automated support, to
in satisfying these needs for its own systems. Such approaches provide an
· e approach to developing information systems. Therefore, it is evidently
rising that the approaches derived for this discipline are slowly finding

lication within the manufacturing environment.

One of the aims of the Alvey Programme's GEC 'Design to Product'
nstrator was the promotion of software engineering within manufacturing
Data flow diagrams were utilised within the CAM-I Factory Management
[20], initiated to demonstrate the concepts required for advanced factory

ement They' have also been pro-meted within development workbooks as
-level approach to mapping the information flow 'within a manufacturing

67

Other authors [18, 26-28] have asserted that the discipline of software
eering is a key technology' for implementing computer-integrated

ufacturing and have promoted the use of data flow diagrams, in addition to
EF, as fundamental development techniques.

GRA!nel
planning

[------- ·- ,' -- _·. ----} Pli.s<iHi<<i,d
dernand -

···------,•... -.--~-·· . ~
.... (·;('.) f<:>!eC<ilS;)

"'.;,.,.. • .,.w ,...,_,~ . ..<·'·

(--··,,
•..•....•.....•.•....

68

Figure 16. GRAI modelling technique.

shlppi119
instructions

IDEF,

~.--.,---......
(AGV 2~.)
--~--.·~·-,,,..."'"

IDEJ", I - ~
r~*~-1 1--·--·--!
L______ j

any requesl?

no
resource free?

gure 17. IDEF modelling techniques [22,23].

It is our opinion that the use of software engineering is a necessary
ice in developing the advanced manufacturing Systems of the future.

e have actively promoted the use of software engineering methodologies
the associated techniques. These approaches have been used to 69

provide the basis for effective implementation of plant management
Systems 'within collaborating manufacturing organisations. Despite not
being specifically developed for manufacturing information systems, the
use of CASE offered considerable potential. It was felt that the need for
integrated manufacturing Information systems with their inherent
complexity dictates the use of software engineering methods and CASE
tools.

manvlaclunng
,n(lusiry

r---······---··1
j ,mportance l
j o.f mlormatiot, J
L----·.,-,. J

l
1
I

I. ~ .•......• --------.~ ,--. ·-· L ···! !DEF "' l neea '-,._,/
! tor graphieal I

__--..", mod.elltog ;
G~·-y-·--·-·' -. I
r _ _L -i

need
'[. lo, structuraa ,

approaches I ----- .•)

Figure 18. Relevance of software engineering and CASE to
manufacturing industry.

The dominance of the GRAI and IDIEF techniques within
manufacturing industry is derived from the assumption that, as they were
developed within the manufacturing environment, they are possibly more
appropriate than software engineering approaches; that there is
apprehension in applying techniques from a different application area.
However, software engineering provides comparable techniques to GRAI
and IDEF 'within a more rigorous framework and with the additional
benefit of commercial automated support.

The foundation for the research work undertaken here is that such
ftware engineering approaches and CASE tools are relevant to

manufacturing Systems engineering, and they offer considerable potential
70

in the development of manufacturing information Systems, Fig. XXX
attempts to represent this relevance. If more effective Information systems
development strategies within manufacturing systems engineering are to
emerge, analysis is required of the approaches offered by software
engineering and the utilisation of current software development
technology; 'with the consideration given to the requirements for meth
odologies and tools more appropriate for manufacturing. The research
presented in this paper represents a first step towards this goal.

Application of CASE within manufacturing industry

A survey of front-end integrated CASE tools that support the
specification of requirements was regarded as an important element of the
research; the aim being to identify readily available products and the main
facilities offered by such. In total, 63 products were surveyed: 48 front-end
CASE, 11 integrated CASE and 4 meta-CASE products. Full details of this
survey are beyond the scope of this paper. One of the functions of the
survey was to identify several leading products that typified the range of
tools on offer. The examination of the suitability bf CASE within the
manufacturing Industry was then extended by the detailed study of the
application of three representative tools In current industrial projects.

The objective of the use of case studies was to increase familiarity
ith the facilities offered by three of the main CASE products available to

software engineers and, by actual use in developing requirements
specifications for manufacturing information systems within collaborating
companies, evaluate their potential impact The case studies were
situational, determining a problem within a soft context and utilising
CASE in an attempt to solve it; collaborative, working 'with project
engineers 'within the manufacturing organisations; and participatory, as
e were involved in the application of CASE.

The projects were defined by the companies involved, on the basis
,f real and pressing needs at that point in time. Senior management within

manufacturing organisations participated in the projects, affecting and
trolling the developed solution.

Two front-end CASE products and one integrated CASE product
e selected for the case studies. They were matched 'with an appropriate
~ect by the relative size and capabilities of the tools The front-end
E tools, AUTOMATE PLUS and Execrator, were methodology-

*'>endent and generic, respecify, and represented typical tools for analysis 11

and design. The integrated CASE product, FOUNDATION, provided the
greatest range of functions of the tools surveyed. As 'with most Integrated
CASE tools, FOUNDATION is methodology-dependent

Case study one

The first case study Involved the application of LBMS AUTO
MATE PLUS Front End CASE tool in support of the SSADM
methodology, In a review of computer Systems at a medium-sired plastics
injection and moulding company. The maintenance of reliable deliveries to
customers is critical to the success of the business To this end, the
company utilises advanced technology processes and equipment to place
Itself among the top five UK producers In a market of over 2000
competing organisations. There has been extensive Investment in computer
control and monitoring of the manufacturing processes, Including
computer-controlled presses with robotic arms for transferring mouldings
from the presses to packing stations.

Senior management were aware that the market-place offered
considerable opportunities for expansion and diversification However, a
number of problems hindered the company. In moving towards this intent
the case study project, as requested by senior management was a review of
existing systems for manufacturing planning and control, leading to the soft
caftan of requirements for improved systems. In particular, the
manufacturing control package in use had met the needs of the company,

lacked the depth of facilities required for capacity management and
g-term production planning. Many of the adopted procedures and
nveniences reflected inadequacies within the control system and the
pany's means of overcoming them.

The SSADM documentation was used in the phased advancement of
company as an Information technology-based manufacturing
isation requiring centralised database systems. A Systems manager
appointed to oversee this development New hardware was Installed
could easily accommodate any likely growth over the next five years.

· g the case study, the user awareness fostered by the utilised approach
prominent and noticeable. Senior management were particularly
essed with the overview provided.

72

Case study two

The second case study Involved the application of INTERSOL V's
Execrator Font End CASE tool. The study concerned the development or a
requirements specification for a cutting tool management information
system within a flexible manufacturing system (FYLS) of a high
technology manufacturing organisation, a privately owned manufacturer of
drive lines, axles and transmissions for the special-I st agriculture and
construction vehicle market. The company is renowned for its image of
utilising advanced manufacturing technology, particularly in flexible
manufacturing and materials handling systems. Considerable investment
has been made In computer support for production. This includes
automatic guided vehicles CAGVs), automatic warehousing systems,
dedicated machining cells and a flexible manufacturing system.

The rapid development of the factory has placed considerable strain on
the information systems planning and controlling manufacture. Senior
management had identified that tool management 'was an area of factory
control key to the improvement of production performance, particularly
within the flexible manufacturing System. Tool management is concerned
with the adequate supply of cutting tools to the machining centres, thereby
maintaining the production schedules. Put simply, the right tool has to be at
the right place at the right time and with adequate unexpired cutting life.
Tooling requirements are dependent on the product design and materials,
and therefore will vary from simple to complex depending on the actual
parts to be machined.

In this organisation, tool management issues had been ignored for
the most part, and this had created a number of Systems operation
problems. Most manufacturing work was planned with the assumption that
tooling will be avail-able when requested; this is not always the case,
resulting in excessive cutting tool inventory.

Tool management is traditionally a manual activity, but automation
of the supply of tooling is seen as mandatory within a CIM environment in
order to contend with the requirements quickly and effectively. My tool
management system characteristically consists of a set of tool stores and
ool magazines on the machining centres, a tool handling system and
ancillary activities such as tool presetting and tool inspection. This can be
upgraded to include automatic tool transfer from stores to machine, and
vice versa. It was recognised by senior management that the manual tool
management system was far from adequate in planning and controlling the 73

tooling requirements for the FMS. The company needed an effective
information System.

By applying CASE, the project objective of generating a
requirements specification for a computer-based tool management system
was addressed effectively. The development of this, specification enabled
the manufacturing Systems engineers to gain a lull understanding of the
tooling activities involved. A full review of all commercially available tool
management information systems was conducted, with each package
evaluated against the criteria of the specification document

The tangible benefits from the Installation of the chosen System
have been a saving of 5o/o in tool expenditure per year, a reduction of 10%
on machine down-time caused by tooling-related problems, and a
reduction in scrap of 10%. Due to these savings, the cost of the system
was recovered in less than six months.

Case study three

The third case study involves the application of Andersen
Consultant's Integrated CASE toolset FOUNDATION and the
corresponding METHOD/1 methodology. This study concerned the
selection of a packaged system to plan and control cellular manufacturing
at an electrical equipment manufacturing organisation. At the time, the
company concerned was considering the reorganisation of Its fabrication
shop in line with the implementation of a flexible sheet metal cell, and
agreed to allow the methodology' and tool to be used to identify the
requirements for manufacturing organisation and control systems.

Over the past few years, the company has made considerable
Investment in new manufacturing technologies such as CAD and CNC. In
addition, great effort has been applied to implementing corporate business
systems, such as MRPII, In order to plan manufacturing more effectively.
However, it became apparent to senior management that the existing shop
floor control and reporting mechanisms were far from adequate, suffering
from fragmented responsibilities, Inadequate communication and
inaccurate manufacturing information.

The critical requirement was the introduction of a new
manufacturing philosophy advocating a manageable and flexible factory
organisation, but employing strict control over the manufacturing

74

operations. There was also a need for management to be able to see the
current status of orders and machine use on the shop-floor.

The case study was initiated with the objective of defining a control
system for the fabrication shop. In order to schedule and control the
available resources to meet the required production output. During the
early stages of the project, it was decided that this. System of control
should be based on the philosophy of cellular manufacturing. The intention
underlying the project was that the fabrication shop would become an
autonomous mini-factory, per-forming its own related manufacturing
functions and comprising work centres grouped Into cells, with each cell
producing parts with similar attributes.

The shopfloor management require accurate information not only to
run the distinct areas as businesses, but also to provide corporate
management with an under-standing of the true state of the factory; hence
the need for distributed computer power in the form of supporting control
systems. The typical hierarchy of control is one based on area and cell
control systems. All related manufacturing operations within the factory
are grouped into areas. The factory-wide system, using MRPII, Is
responsible for establishing a basic production schedule for all areas of the
factory. The area control system allocates its avail-able resources on this
basis to areas with a planning horizon of weeks, and reports back to the
corporate level on such maulers as completed work orders, stock changes
and production performance. The actual manufacturing processes are then
carried out at cell level within a planning horizon of hours to days. The cell
control system sequences the jobs through the operations, scheduling and
ntrolling the resources of that cell, monitoring and reporting on the
ogress and work completion. Hence, each area becomes an autonomous

mini-business, planning and controlling the specific manufacturing
ctions to be executed at cell level. Fig, 18 presents the typical hierarchy
area and cell control within cellular manufacture.

By applying METHOD/1 supported by FOUNDATION, the project
~ective of selecting a control system for the select metal fabrication shop

attained in a highly competent and planned manner. The project was
ed by senior management as a considerable success in developing an

roach to manufacturing organisation. The Finance Director referred to
project in an internal newsletter as generating a CIM (Computer

egrated Manufacturing) strategy' to take us to the end of the century.

75

On the basis of the project results 1 a manufacturing system
engineering department was formed to implement the defined strategy
using the chosen software. The first cell, comprising CNC turning centres,
has recently been completed, and the fabrication shop Is currently under
development The company now boasts, in an international advertising
brochure, of the introduction of cellular manufacture 'allowing greater
flexibility, a cut in manufacturing lead times and more simple control of
quality'.

CONCLUSION

The application of three typical CASE products to the analysis and
specification of requirements for· manufacturing Information systems
provided tangible 'hands on' familiarisation with CASE, and tested the
appropriateness of the methods and tools employed.

All of the case studies attained the objectives set by senior
management in an effectiv€ and structured manner. Indeed, the studies
ere considered as particularly successful by the organisations involved,

and the impact of the methods arrd tools is most notable within the
FOUNDATION case study, providing the basis and justification for
revolution using the manufacturing organisation and control approaches.

We believe that the case studies demonstrate the relevance and
nsiderable impact of software engineering methodologies and CASE
ls on the specification of requirements for manufacturing Information
stems. We consider Execrator to be the superior product of the CASE
ls applied, and if coupled with methodology management and project

planning and control facilities similar to those of FOUNDATION, it would
ovide a sufficient cornerstone for a Manufacturing CASE product

estioning of manufacturing experts

In addition to the work outlined above, It was deemed important to gain
external perspective on the suitability of CASE within manufacturing by

aamining the views held by selected experts within academia and
try. To achieve this, a modest survey of notable authorities involved

· · manufacturing Systems development was designed implemented and
aised. Although the sample was, of necessity, small, the opinions and

· ghts cliched helped to focus and strengthen the conclusions of the
arch topic The information sought from manufacturing professionals

76

substantiated many of the Issues emphasised earlier and brought a broad
perspective to the research work

The coarsenesses view of the survey participants is that CASE
methods and tools are appropriate· in supporting the specification of
manufacturing information system requirements, but that the techniques
and tools should be orientated towards manufacturing, simple and easy to
use. Considerable planning is needed for the introduction of CASE, with
proper estimation of the effort required, the selection of appropriate tools
and a supporting organisational environment The important consideration.
Is that manufacturing personnel should undertake the s-tl-cation tasks,
utilising their valuable knowledge of the operating environment. Any
structured approach should empower the end-users in the analysis and
design of information systems.

e 19. Hierarchy of area and cell control.

There is evidence that the manufacturing industry is starting to adopt
are engineering methods and CASE tools. However, a thorough

.-n;~tigation required to determine the needs of manufacturing. System
· eers and correlate them with the capabilities of CASE approaches. In

77

addition, the capabilities and benefits of adopting CASE methods and tools
have to be brought to the attention of manufacturing systems engineers,
with documented examples of the Improvements made.

Conclusions

The aim of the research presented here was to investigate the need
for structured approaches and tools within manufacturing information
Systems development, and the relevance of established software
engineering methodologies and supporting CASE tools in meeting this
need. The research topic has focused on what is widely seen as the most
critical task within information systems development, the specification of
requirements.

The first objective, the need for structured methods and tools in
.pport of manufacturing information systems requirements specification,

has been clearly established. An extensive review or the literature and a
survey of manufacturing experts substantiated this need and the require
ment for graphical modelling techniques. The success of the case studies
ithin the collaborating manufacturing organisations in comparison with
ir traditional ad hoc approaches also confirmed that a disciplined
proach with automated support was of benefit.

Commercially available software engineering methodologies and
ASE products were examined for their suit-ability in providing support to
ufacturing systems engineers In the task of requirements specification.

· was the second objective of the research. To gain familiarity with
:ASE technology, the history and capabilities of both software

mgineering and CASE were established from the reviewed literature. A
prehensive survey of CASE products, commercially available within
UK, that support specification tasks strengthened this examination.
·ee leading products were selected from this survey and applied on-site
manufacturing information systems projects, to gain a working

timiliarisation with CASE In a real and immediate situation to validate
suitability for the manufacturing systems engineer working within

muu:stry.

To address the final objective, the main developments required for
CASE methods and tools and the sup-porting manufacturing Systems

CIIJtineering organisation have been identified to facilitate the widespread
ication of CASE within this area. This has been undertaken on the

78

basis of the literature review, use of existing CASE methods and tools, and
views elicited from manufacturing experts and personal experience.

Here we present the conclusions drawn from the work undertaken
and the main developments required if CASE is to find widespread
adoption within the manufacturing industry. Substantial further research is
outlined that will build on the results of this work

Discussion

The first hypothesis underfring this research work is that structured
methods and tools are needed in manufac turing information Systems
development particularly in the definltion of user requirements. This
premise has been firmly demonstrated by this work Computers supporting
manufacturing planning and control are now viewed as a necessity, rather
than a luxury. Manufacturing information is complex and typicailly large in
volume. Software is needed to process this information, and it has to be
robust and effective. The developed Systems have to promote Systems
integration, which is accepted by many writers as an aim In itself, and
meet the strategic requirements of the manufacturing organisation. This is a
pressing Issue for the late I 990s.

To meet these characteristics of computer-based applications,
manufacturing Systems engineers have to understand the role of
information and the supporting software not only to realise the potential of
the manufacturing pro cesses, but also to communicate 'with Systems

dors and select appropriate information Systems. The high level of
· vestment implies that casual and unsystematic approaches are not
.equate to competently design and fully justify such systems. The large
ts involved means that them can be no allowance for errors.

The use of graphical modelling as a basis for a disciplined approach
been asserted. The analysis of complex manufacturing Systems needs
amming to reduce the associated complexity and to improve commu
· on of the requirements. To facilitate this in a productive and
istent manner requires the use of automated support Manufacturing
ms engineers require a structured and professional approach to
stigate their Own problems, and to simplify and accelerate the
elopment of manufacturing information Systems.

The second hypothesis was that the basis for structured methods and
:omated support for manufacturing Systems engineers currently exists In 79

the form of software engineering methodologies and CASE tools. The
subsequent assumption is that as the discipline of software engineering has
arisen from a different applications area, considerable enhancement is
necessary to accommodate the systems development requirements of the
manufacturing environment

At a high level, the relevance of software engineering and CASE to
computer-based manufacturing planning and control seem obvious;
manufacturing Information Systems are after all information Systems.
Techniques and approaches developed to design and implement Informa
tion systems would appear to be applicable. However, the manufacturing
environment requires software to coordinate, control and integrate
machines, material, labour and Information, in real-time. The Information
Systems required of manufacturing systems differ from the more traditional
batch-orientated data processing Systems that CASE was developed to
address. In traditional applications, Information is the only consideration.
In manufacturing applications, the role of information has to be considered
alongside more physical issues.

Manufacturing systems engineers require methods for defining
· formation System requirements preferably based on graphical modelling.
ftware engineering approaches meet this need, with structured
hniques that are predominantly graphical. Software engineering and
ASE have been proven to facilitate the production of reliable, well
umented and quality software, with improvements in development
uctivity and maintain-ability. The main weakness of CASE relates to
lack of product integration and the limited functionality on offer,
icularly the poor diagramming facilities. In addition, a long learning
e and 'user-unfriendliness' detract from the benefits. To be successful,
implementation of software engineering and CASE has to be carefully
ed and supported.

The application of CASE products in the manufacturing industry
,~nted in this paper has validated the relevance of CASE to
~cturing information systems development The case studies were

effective and successful. The employed methodologies introduced
.-cmatic approaches to the organisations to deal with problem analysis

information Systems justification. The use of graphical techniques had
minent and noticeable effect on the understanding of the personnel
ed. The developed knowledge improved negotiations with the
are vendors.

80

The CASE products used in the case studies competency supposed
the techniques dictated by the methods. However, the difficulty in use was
aggravating, and the diagramming facilities were limited and irksome. The
reports generated by the tools were more appropriate to the analyst and not
suitable to include -within management reports. It was also felt that the
support of a specific methodology by a CASE product restricted the
customisation of the method by an organisation.

The relevance of CASE was supported by the views of
manufacturing experts, but concern was expressed regarding the level of
suitability to manufacturing systems and the ease of use. To a few
participants, the implementation of CASE was an intimidating prospect. A
detailed investigation was requested to examine the appropriateness of
CASE in full, defining the specific needs of manufacturing systems
engineers and correlating with the facilities of software engineering and
CASE.

Computer scientists have imitated manufacturing industry by
adopting engineering principles to software development and mimicked the
role of computer-aided design technology to develop CASE. Due to the
increasing importance of computers within manufacturing, manufacturing
stems engineers must now adopt these software engineering principles
d CASE technology to realise ambitious and competitive production:

The assumption that the development of CASE is needed to align
the requirements of manufacturing systems engineers has been

essed. The necessary developments required of software engineering
odologies and CASE products are outlined below. These are to be
essed. In detail by a research project outlined. It is interesting to note
the necessary improvements to CASE are not as great as was

isaged at the beginning of this research. The emphasis is on the
ods and the organisation required to support the implementation of
E in manufacturing information systems projects. We suggest that it is
the fundamental nature of the CASE approach that will need
iderable advancement but the expertise and background of the

~utial CASE user within manufacturing industry, the manufacturing
ems engineer. Nevertheless, Improvements to the methods and tools
help to bridge the cultural gap.

81

Requirements of CASE in manufacturing

An important point that we did not fully appreciate at the outset of
the research, and that has been firmly emphasised by the work undertaken,
is that in the application of CASE, the software engineering methodology
is the foremost concern. The method dictates what should be
accomplished, what structured techniques are required etc. The role of the
CASE tool is to assist the software engineer in the implementation of the
methodology; CASE is computer-aided software engineering. If software
engineering methods and CASE tools are to be adapted to match the
requirements of manufacturing systems engineers, the methodology would
be the focus of attention. The basic functionality of the supporting CASE
product would not differ in any .great respect, with the exception of the
structured techniques and documentation to be sup ported, and issues
influencing the ease of use.

The determination from the research undertaken and the views of
manufacturing experts is that, to be of suit-ability to manufacturing
information Systems development, software engineering methods should
be oriented towards the manufacturing environment. The approaches
should dispense with computer science jargon and use language that
manufacturing Systems, engineers can understand. The methodology should
deal with manufacturing-related information issues, which appear to be
more complex than typical software engineering applications, and
distinctly deal with physical considerations. In addition, manufacturing
ystems engineers should be educated to produce hybrid manufacturing

and information systems engineers. This would initially appear to be
inadequate in time and cost, and possibly detract from the main concern of
manufacturing Systems engineers, that of producing manufacturing
Systems to facilitate effect production; but this Is a vital issue to be
considered in the education of the manufacturing engineers of the future.

A manufacturing-oriented information systems methodology should
be rich In organisational context, providing a tangible business foundation
for the application of the more abstract graphical modelling techniques.
tandards for documentation, particularly the important specification of
requirements, should be defined and examples provided. The method
should discuss systems development in the real terms of the business, the
manufacturing users and the packaged systems market-place.

The implementation of an information Systems development method
a large task in itself and project planning and management Is needed, It sz

is preferable that such project control tasks are integrated Into the method
to ensure that the manufacturing systems engineer addresses these tasks
and the appropriate reviews, quality assurance and signoffs are performed.

The amount of documentation required by a methodology should not
be excessive. For small to medium-sized development projects, the method
could be directed at the production of one document, the requirements
specification, with each step aimed at generating sections of this
document. The larger methodologies such as METHOD/I are essentially
performing this; at each step, a number of documents are created to be
consolidated into significant documents at the end of major development
stages.

However, it is often difficult to grasp the overall view in the midst of
such a lengthy development process.

It is also important to consider how the methodology to specify the
manufacturing information system would integrate with the specification of
the other issues to be considered when developing a manufacturing
System. An overall manufacturing Systems engineering methodology
ould address the information Systems concerns and the physical issues

such as the means of control, the manufacturing processes to be
implemented and the organisational layout of the system. Evidently, these
· sues influence each other in the specification and design of a
manufacturing system. fig. XXX attempts to highlight the issues involved
in such specification. A manufacturing Systems engineering method that
addresses manufacturing strategy In line with corporate objectives and

ilitates the redesign of the manufacturing organisation would merit
ftnther research.

We envisage that a CASE product conceived for manufacturing
ormation Systems development would not be too different from existing
ls with respect to the basic functionality the provision of diagramming,
design database, model checking and reporting facilities. A definition
the detailed requirements of the manufacturing systems engineer would
ermine what structured techniques and documentation are appropriate
should be automated within 'manufacturing CASE' products.

The main requirements of CASE emerging from this research relate
the ease of use, particularly the user interface. To be of benefit to
ufacturing Systems engineers, CASE products need to be simple to use
easy to learn. The tools have to be obvious and intuitive, and the 83

functions provided by the tool should be self-explanatory to the user. It is
important that both the notion of CASE and the tool itself are not
intimidating to the manufacturing Systems engineer. The tool should be
Fig- 20 Requirements of software engineering and CASE based on a few
simple concepts that are easily understood. The functionality should be
partitioned and presented In a helpful way, yet be flexible enough to cater
lor both new and experienced users.

e 20. Specification of manufacturing system.

84

Figure 21. Requirements of software engineering and CASE.

Fig. 21 presents an overview of these requirements of CASE in
manufacturing, based on the work undertaken here. It would seem
indisputable that software engineers utilising CASE in more traditional
application areas would also desire changes to the tools concerning ease of
use. The development of an 'ideal' software specification and development
environment would be of benefit to both the manufacturing and software
industries.

The development of CASE oriented towards the manufacturing
environment is a significant process in Imparting manufacturing systems
engineers with the knowledge and mechanisms to effectively analyse their
problems and specify the required software. An important supporting
element is the promotion of the use of CASE within manufacturing
industry. Ostensive education and training of manufacturing systems
engineers are required to encourage an awareness of the capabilities and
benefits of using structured methods and tools such as software engineer
ing and CASE, -with examples of the improvements that can be made.

uirements for CASE implementation in manufacturing

The software industry has placed considerable emphasis on the
planned implementation of CASE, particularly following considerable

licity regarding failures. Manufacturing systems engineers must take
te in order to utilise CASE successfully in the specification of
ufacturing information systems. To facilitate the implementation of

ASE, the manufacturing industry must exhibit the same characteristics as
essful software development organisations. Attention must be paid to
organisational environment supporting the use of CASE, and an
lementation strategy should be employed.

The organisational support for the introduction of CASE is an
rtant consideration. To utilise software engineering and CASE

~~elves, manufacturing systems engineers will need ownership of the
ods and tools. For small organisations 'without a centralised infor
ion services department, this may present no problem; the
ufacturing engineers will initiate CASE implementation and be fully,
nsible for this.

85

However, in larger manufacturing organisations with centralised
information services or the more traditional ownership of information
technology by the financial functions, the organisational structure has to be
an important factor in the CASE implementation strategy. It would not be
possible for manufacturing Systems engineers to utilise CASE methods
and tools without regard for the corporate IT strategy. An alliance must be
formed between the manufacturing and information services, and an
appropriate organisational scheme adopted.

For the effective Implementation of CASIE, manufacturing systems
engineers must have a strong commitment to the use of structured
approaches and tools, supported by encouragement from the manufacturing
management. Considerable training is required to foster this commitment,
and the effort required for implementation should not be underestimated. A
CASE champion is required to provide the inspiration and enthusiasm for
the application of the methods and tools.

Strategies for the successful Implementation of CASE have been
·esented within the software engineering literature [29-31]. It is important
note that these strategies do not consider the organisational support for

CASE, presumably because software development for more traditional
lications is isolated within the information services department. In
ition, such strategies define the implementation of a · software

cmgineering methodology and supporting CASE tool within one pass,
· mg both within a pilot project. However, for a manufacturing organ
ion, we believe that a two pass implementation strategy is required as
o important and transforming approaches are introduced. The first pass
an implementation plan must consider the introduction, utilisation and
uation of the software engineering methodology, and the second pass
.ertakes the same considerations -with respect to the supporting front
CASE tool.

A number of possible future research programmes became apparent
g the execution of the research, The most prominent research need is

broaden the investigation of software engineering methods and CASE
1ls -within the manufacturing industry, to include the entire software
elopment life-cycle and the widest definition or CASE. This may not be
elementary topic. Although methods and tools for requirements specifi
. n have matured and become established, support for the other stages

86

of the development life-cycle is still in a state of significant fluctuation and
evolution.

Two research topics have been outlined above. The first entails the
definition of the context of information systems development -within an
overall manufacturing systems engineering approach. A resulting
methodology that addresses both information systems and physical-related
issues would be of considerable benefit in providing manufacturing
systems engineers with a disciplined and professional approach.

A second research topic concerns the implementation of software
engineering and CASE within a manufacturing organisation. A defined
plan for introducing both methods and tools, and facilitating the transfer of
knowledge and guidance to manufacturing systems engineers, would help
the successful application of CASE to manufacturing information Systems.

The main research proposal that builds on the results of this research
opic is aimed at the identification of current practice for the specification
of manufacturing information Systems within the UK manufacturing
industry, the approaches used and the requirements of the manufacturing
ystems engineer. From this, the main problems facing manufacturing
information systems development can be identified. This will lead to the
development of detailed requirements for the improved application of
software engineering methods and CASE tools. A prototype CASE tool
signed for specifying the requirements of manufacturing information
stems will be developed. based on Execrator and with support from the

vendor, INTERSOL V. The aim is to identify what is required by the
manufacturing Systems engineer and the supporting CASE tools, by the
· ientification of current practice for the specification of information
ystems within UK manufacturing organisations. This will lead to the
velopment of detailed requirements for the effective use of software
gineering methodologies and front-end CASE tools in supporting the
ical manufacturing systems engineer. A prototype CASE product will
constructed to fulfil these requirements and Is seen as the basis for
iderable commercial exploration.

87

CONCLUSION

This paper presents the research undertaken in two traditionally
separate areas, manufacturing systems engineering and information
systems development The research has reinforced the need for structured
approaches and tools in enabling manufacturing Systems engineers to
analyse and specify information systems in support of manufacturing.

The relevance of software engineering methodologies and
supporting CASE tools has been established in a more detailed manner
than has previously been under-taken. The main developments identified in
this work relating to the effective adoption of CASE within the
manufacturing industry have been presented. These developments relate to
the orientation of the methods towards manufacturing systems engineers,
the ease of use of the supporting CASE tools, and the planned introduction
of the methods and tools. Substantial further research has been presented,
which Is aimed at extending the research work by defining the detailed
requirements of manufacturing Systems engineers and appropriate CASE
methods and tools In specifying manufacturing information Systems.

ck.nowledgments

The research work was undertaken with the support of the ACME
Directorate of the SERC under the CASE award scheme.

The authors would like to thank the collaborating organisations, and
e experts from academia and industry who found time to contribute to
· work

CLIENT-CENTRIC CASE

Since the early 1980s, AT&T ISTEL has been operating a business
d software process re-engineering programme. The paper presents the

iostnnnental role of the AT&T ISTEL in-house corporate CASE in
viding holistic system generation and class leading productivity levels.
e paper focuses on how the evolving needs of different classes of client
both internal and external - have been met. The architecture, operation

achievements of both the production and development CASE toolsets
summarised. A brief assessment of the AT&T ISTEL current CASE
ition is also given, followed - an extrapolation to the position in the
2000.

88

Introduction

For nearly a decade, AT&T ISTEL (ATTI) has been pursuing a
process improvement programme involving CASE. As this programme
is business critical and its goals timeless, a critical success factor for the
CASE tool involved has been its ability to continuously improve as the
business processes it supports need to improve.

Ultimately, these business processes serve external clients by
providing operational software of value to their businesses. These
businesses are in a variety of vertical marketsa but are all characterised by
Increasing corn-petition and rate of change. These characteristics are
reflected across the supply boundary, placing inexorable pressure on
delivery processes to deliver and evolve. In tum, they place pressure on
any CASE-based support processes to deliver and evolve. Genuinely
client-centric CASE is thus a critical business requirement for AT&T
ISTEL.

To this end, we have internally developed and deployed a
production CASE tool which itself has been engineered using an internal
development CASE tool. In this paper, we demonstrate in both qualitative
and quantitative terms the pivotal role of this CASE engineered CASE in
optimising key software processes within our organisation. Although the
locus of the paper is on CASE, and consequentially its tone is
echnological, the overall point being made is a strong com mercurial one;
in order to provide clients with consistent quality products, you need
consistent business processes; to provide such products competitively, you
need to enable and then control process change, and if CASE has a pivotal
role in that process evolution, it itself must be capable of controlled
optimisation.

A measure of the success of the approach presented in this paper is
that the core ATTI business process of product development is now five to

times more productive than a year ago, and with increased quality. This
the conclusion of an Internal client' developing a multi-million pound

commercial product.

Throughout this paper, three classes of client are encountered;
ients external to ATTI who procure our software; clients internal to
ITI who utilise the production CASE toolset to develop the software;

the developers of both CASE toolsets who, as they use both to
elop operational systems, are their own clients. The title of this paper 89

reflects the need to reconcile and satisfy the needs of all three in order to
compete and prosper.

Background

In 1985, a small development team was set up to improve ISTEL's
core system development processes. The central vision of the team was to
eliminate manual programming by establishing rigorous, logical definitions
of business solutions which could be. automatically translated into an
executable form. Evaluation of tools and methods at that time had led to
the adoption of Jackson Systems Development (JSD) [I] and Jackson
Structured Programming (JSD) [2], together with proprietary tools.

In 1987, the IS TEL quality programme adopted Crosby's quality
philosophy and embodied it in company standards and working practices.
Over the next few, years, dynamic changes to the software development
process took place as manual practices were replaced by progressive code
eneration. However, by the time the company became part of AT&T in
1989, this process re-engineering initiative was becoming Increasingly
constrained by the Inability of third-party tools to evolve alongside the
use generators. This led to a revaluation of the tool and method support
ocesses and the consequent founding of the ISTEL Applications
chitecture (IAA) programme.

The IAA stated goal is 'to produce and deliver quality, high
ification, portable software (V ADS, product, bespoke) using less

•uroan resource and in a shorter timeframe than our competitors'. This goal
effectively a mission statement for the IM programme. The context

· · · which the original goal was framed meant that the software referred
in the statement was end-user, i.e. for use by external clients. However,

the years, the IAA team has interpreted it in a wider sense
mpassing software delivered to internal clients and software devel
for IAA use only. Until recently, however, the scope of the IAA
cle has been constant, with requirements capture and validation

ide the IAA CASE boundary.

In the following, we aim to show how and why an in-house CASE
motSet has been developed by the IAA team and to do so within the
.._, ent business process context. We also present the findings of its
!ill ease use by an internal client, the lessons learnt and speculate briefly on
~ •• mP. prospects.

90

IAA processes and toolset

Fig. 25 presents an overview of the business processes with which
IAA Is directly Involved. They are a set of dependent processes whose
external interface is with the client; taking their needs as input and
providing business solutions as output. The scope of these business
solutions covers the AT&T ISTEL major applications domains; value
added and data services (ADS) and commercial software products into
focused vertical markets (e.g. manufacturing). The goal of IAA was
therefore Initially focused on solving problems in these domains, although
the approach taken has created the potential for much wider applicability.

e 22. IAA processes and production/development CASE toolset.

The core business process shown in fig. 22, Systems development,
driven by the first Part of the RA goal to produce competitive
erable's. The quality requirement is met by the continued adherence
Crosby's Principles of Quality Management and the choice of

91

development methodology (an IM variant of JSD), where conformance to
specification can be guaranteed via automate transformations. The high
specification requirement is also met by JSD, which Is a rich language
covering the three dimensions of systems development (data. function and
time) In a concise and rigorous manner. It also facilitates client discussion
of the business model by capturing the business entities and their
behaviour in a statically reviewable form.

The portability requirement is met by preserving the separation of
logical and physical concerns provided by JSD when implementing
solutions within the ISTEL. Software Architecture (ISA). Basically, ISA
provides a reliable execution environment where the look-and-feel of the
business application is cleanly separated from Its business logic, and that
In turn from the business data. The architecture and operation of this
"three-box-trick" is described below.

92

e 23. IAA production CASE toolset; architecture and operation.

The core meta-process shown in Fig. 23, optnrnse Systems
elopment, is driven by the second part of the IM goal to produce

liverable' s commonly. This RA process Is a mete-process, In that its 93

function is to change the core business process of stems development. To
enable it to do this, the IAA programme has provided a core support
process (that of CASE development), which has developed in-house a
production CASE toolset for use by both front-line system developers and
the RA team. The architecture and operation of this toolset are described
below.

The key strategic process in Fig. 23 is the meta-support process,
optimise CASE development, without which the RA programme would
have floundered by now. The process provides a development CASE
toolset for exclusive use by the production CASE developers, i.e. IAA the
development CASE toolset is used to engineer the production toolset
without this process and its attendant toolset, the ISTEL process
improvement programme would be constrained by its internal CASE
products in the same way as it became constrained by external products.

The production CASE toolset Is presented below, followed by a
summary of the way ft itself was CASE engineered using the development
oolset. The toolsets share many key features and design principles.

Production CASE toolset

The production CASE toolset is presented in fig. 24, which provides
an overview of its components and their inter-operation. The toolset
consists of

• the multi-user analyst workbench (MA WR), which works In tandem
with the SOF.

• the system generation facility (SGF) to wholly generate applications
for execution as part of the ISA

• the ISTEL Software Architecture (ISA), a reliable, client- server run
time environment.

The Systems development life-cycle under RA is thus an iterative life
de of

o specify logically what operational system is required in the MA WB.
94

o verify and generate it using the SGF to provide the target platform
source, e.g. C and ESQL

o build that source into executable's using third-party compilers, pre
processors etc.

o execute the generated system within a controlled ISA
environment

In operational terms, the system specifier sees a windows and
objects-based workbench from which emerges either a complete running
application ready for batch or Interactive testing, or a just of errors whose
correction Is a prerequisite for generation. The theme is a variation on
WISIWYG (what you specify (correctly) is what you get). In the
following, we present the life-cycle in detail.

Logical specification

Specifications are captured in the MA WB (Fig. XXX) Using a
commercially enhanced version of JSD; JSD modelling captures the

iness model, and then the networking phase builds business
functionality around that model in an incremental fashion. The user
interface (UI) for the system Is designed using the UI Design Tool (UIDT)
embedded in the MA WR; the UIDT allows presentation, navigation and

r access to be separately specified. Testing of the business logic is
ported at the specification stage by the provision of a structured test
ipt editor. Test scripts containing input data and expected output data
be constructed by linking directly to the relevant data definitions for
specification under test. Analyst-specified subsets of specifications are
mitted by the build management to the SGF for generation.

erification and generation

The SGF processes specifications exported from the MA WES (fig.
), checks them thoroughly for consistency, completeness and
onableness, and, if clean, proceeds to transform the logical
ification into three main classes of output; HCI definitions and logic to
te the user interface; procedural code to define the business logic,' and

1ML and DDL to describe the database access and structure. The SGP
processes exports of test scripts, and generates test harnesses capable

95

ercising the business logic and automatically comparing expected
11111Jts with actual outputs.

Currently, the 'back-end' of the SGF produces the three classes of
for an open systems environment:

are SQL (ANSI conformant).

in a third-party GUE builder's format; the logic is
~ by a layer of the GUI builder's 4GL

~~ _~~~~~ .. ~~ ~~~~~~ ~~ ~\..~~~~i~~ ~_ ~~ \.~ _~~ ~
ecmmg app\ication. lt is 1mportant to empnasise fu.at tbe 1.M team
insiders the execution environment to be within its CASE toolset

boundary. The specification and generation stages are predicated on that
environment having certain properties, some of which are provided by
generated) once-per-environment components.

Build and execution

Following generation, third-party software Is then employed to
build (i.e. compile and link) the generated output Into a configuration fit
or execution (Fig. 25). This configuration Is basically a client-server
configuration, with generated HCI or batches clients having their requests
elusively brokenness by IAA Connectively, a distribution management
stem.

The clients, servers and connective itself run as distinct operating
stem processes and can be located anywhere on the network of available
ocessors. The client processes bind In components generated for the
d-user application with ISA library components to form a unit capable of
mmunicating with the connectivity processes. HCI clients also bind in

ibraries from the third-party GUI builder, which then Interface at run-time
ith the GUI builder's service presentation layer to give the windowed
I. Batch clients interface with users via the operating system command

Connectivity Is Itself an IAA specified and generated program with
own business logic and database; the presentation in fig. 24 Is relatively

96

simple at this point Connectivity then communicates through a server ISA
library component to the business logic for the application concerned. To
function completely and correctly, the business logic server process also
includes the database access code and the IAA engine.

The IAA engine (fig. 25) is basically a method-smart transaction monitor,
which mediates between the NC!, the business logic and business data. It guarantees
transaction integrity and improves the portability' of generated output by insulating it
from the target platform; the IAA JSD variant has transaction extensions to
allow analysts to specify transactions (committable units of work) unam
biguously and reliably.

The IAA engine provides dynamic verification of the executing
application to complement the static verification provided by the checker
component of the SOF (Fig. 26). Basically, the checker knows about 'JSD
at rest'; the engine knows about it 'in motion' Both work in specification
terms, not that of the target platform (e.g. C)- For example, when the
engine provides a trace of a successful transaction, or a dump of an
aborted transaction, ft does so in terms of JSD. Thus, specifiers can work
in specification terms throughout the entire life-cycle.

Furthermore, as for IAA connectivity, the engine is itself an IAA
generated system. The SOP is capable of generating it either as a
'bottomed-out' component (i.e. it can run without a need for another
'engine' below it) or as if it were an end-user application. The latter is done
in order to automatically batch regression test it by running it on top of a
bottomed-out version of itself.

Let us return briefly to client needs; a key lesson that the IAA team
has learnt here, 'which we believe is portable, is that CASE tools used for
developing high-Integrity systems must have both static and dynamic
verification capabilities, as exemplified 'within IAA by the checker and
engine described above.

Engineering the production CASE toolset

Fig. 26 shows the production toolset being 'engineered' using the
:velopment CASE toolset. Fig. 27 expands on this process.

97

Figure 24. CASE engineering the production CASE toolset.

In the case of the MA WB, it is engineered using an abstract data
type (ADT) building tool, where the MA WR structure and operation is

ically an instantiation of a complex ADT (>800 sul>ADTs). Users' data
are then instances of those ADTs. Each ADT has a set of associated views
d operations, which can be used to design the manner in which users'
ifications are viewed and manipulated.

d1Jration • assionment
head coum scope ,n FPs

i i-1 \!9 t 1000 rl 1
i I 1 413 I I

$5 to 7'.l I l j I I l / n ll I j1 ' l l . I .i I ' I i ' l I I l I f
! I ' I I I I l ' ' ' ·1 ! L--1 I l I i I I

I ; i j ' l I l i l i l f ' .
J i .'. ' . ' I I . i I I !N j

l l I 1~ I(> I ! I l i
1 1 I ,s i I , 1 69 1
J I l rl l ' I I to I I I ! I I I I 1 19 l 50 L l, __ lJJ_.L 1,,J.o .. L.FL1 __
[] 20k FP !41 [J iOk FP [4j

FP$ per month
..
l

72

D lf;kFPIAA product

·e 25. Function point evaluation of the production CASE toolset.

In the case of the production SOF (P'SGF,, this Is engineered by
-.nnng the P-SGF in JSQ and then using a manually built development

98

SGF (ID-SOF) to check and generate it This is preferable to manually
writing the 2 million + lines of C which compose the P-SGF business
logic. The same process was used to build the production RA engine and
RA connectivity (described above).

Both these engineering processes are fundamentally 'closed', in the
MA WB, the root ADT is defined in terms of itself; P-SGF, once
bootstrapped, is capable of checking and generating itself. This solves the
fundamental problem of where to stop in the chain of CASE supporting
CASE.

Present status

The production toolset has been in constant use with an internal
client since late 1992 and has evolved via a process of evolutionary
delivery as advocated by Cub [3]. The internal client has been developing
a multi-million pound commercial product for their clients In a key vertical
market.

Throughout 1993, hundreds of internal client change requests were
raised and embodied in internal releases of the toolset (over 20). Each
major release has represented a significant increase in both functionality
and performance, e.g. P-SGF generation time shrinks by a factor of seven,

MA WR data repository is halved in size etc. This evolutionary delivery
ocess has been made possible by having what Gub refers to as an open
hitecture; we use the term flexible architecture. Both functionality and

performance (non-functional attributes In Glib's terms) can be refined in
MAWS, SOF and ISA areas In a controlled yet responsive manner
ause of their flexible architectures.

In quantitative terms, the IAA team has delivered results. Recently,
internal evaluation of the IAA performance was commissioned at

ecutive level with regard to its productivity as a CASE tool. To facilitate
ential comparison with other tools in use elsewhere in AT&T, Jones' [4]
ction point analysis was applied.

In brief, the size of product developed by the IAA Internal client
s it between the 1 Ok and 20k function point thresholds table [4]. This

Ie shows function paint scaled metrics for software projects In Jones'
ase and gives typical US industry figures; four metrics were of
est the Internal evaluation, project duration, staffing level, assignment

sooe and production rate. Fig. 25 presents these for the 1 Ok and 20k 99

thresholds and compares them with those achieved by the use of IAA on a
multi-million pound commercial product.

Obviously, there are assumptions In mapping the IAA
specifications to function points. The figures given for IAA fail in the
middle of a range of figures obtained by varying some of the key
assumptions. Jones' figures have been Informally but independently
validated by comparison with metrics for equivalent products being
developed by our competitors using traditional techniques; their per-
formance is in the range of Jones! figures, not the IAA figures (e.g. project
duration of many years, not months, hundreds of development staff, not
dozens, etc).

In addition to this internal productivity study, IAA has also been the
subject of a recent evaluation of CASE and methodologies in general,
which reconsidered the company's original aims concerning the efficiency
and effectiveness of its Systems development processes. Although Internal,
it was an independent and thorough study, and it set IAA in a fresh
perspective by evaluating it alongside the current offerings in the CASE
and method arena.

The scope of the evaluation was application product development
from specification through to delivery, and the primary requirements were
responsiveness, flexibility, portability and Inter-operability. Of about 30
initial contenders, four were short-listed for detailed evaluation; IAA was
one, there were two CASE/40L combinations based on conventional
structured methods, and an object-oriented CASE/4GL combination.

The key observation arising from the evaluation was that the current
eakness of the IAA (highly interactive prototyping and to a lesser extent
rtability and inter-operability) was the CASE/4GL candidates' strength.

However, for the evaluation of time4omarket and quality-with
ductivity, the situation was reversed. Overall, IAA was assessed as

.ving the most attractive Investment benefit/risk profile, and it became
recommended approach for company product development

uture issues

Looking to the year 2000, the IAA strategic view of CASE
tinues to be one of ensuring that it is a client 'slave', and not a

100

technologically mesmerising 'master'. The IAA toolset has an architecture
capable of extension in many client serving directions.

Our current intention is to extend the IAA CASE bound. any to
encompass more of the early lifecycle, provide richer execution at the end
of the lifecycle, and augment the development support in between.

In order to encompass more of the early lifecycle, we are currently
assessing methods for requirements capture and validation to dovetail with
the middle-out modelling nature of JSD. To provide a richer execution, we
have recently been generating Systems to work with multi-media HCI' s,
and assessing the methodological and technical Issues arising from richer
presentation options. To augment the development support, we are
tackling criticisms about prototyping capability by investigating the merits
of interpretive specification animation; this would provide an informal but
indicative preview of the specification, prior to rigorous verification and
subsequent generation of the final System.

All of these initiatives share one fundamental criterion; how will a
particular modification to the toolset ultimately add value to a client's
business? Successful evolution of the IAA CASE toolset will depend on
dear and consistent application of this client-centric criterion.

cknowledgments

The author would like to thank John Alexander, Dave Bin keman,
en Hicks, John Hardy-, Martin Kendall, Paul King, Mark and Mike
ewman, James Petry, Rob Silk Jon Twigge for their work on IAA; and
ATTI directors for their perennial support.

CASE IN THE THIRD GENERATION

The paper outlines and analyses the development of CASE and
poses a direction for research and development. The focus is on analyst

orkbenches, rather than other types of CASE tool, but the proposals and
clusions are general applicable to tools supporting other phases of the
elopment life-cycle. The current generation of CASE tools has no
wledge of the software process. An architecture that combines a
gement control superstructure with the normal development tools Is

11mOOsed for CASE in the next generation. The design of a superstructure,
d on an existing CASE tool, is discussed.

101

Introduction

In the mid- I 970s, structured methods of Systems analysis and
design were proposed (1, 2]. These were based on accessible graphical
notations, principally the data flow diagram (DFD), and gave rise to
computer-aided software engineering (CASF) tools. Rock-Evans (3]
defined CASE tools as 'software packages which automate or support one
or more of the activities of the systems life cycle'.

Although this is a good definition, it should also be said that in the
early days of CASE, the term was synonymous 'with support tools for
Systems analysis and design. Later, the terms 'upper' and 'lower' CASE
were used to denote tools at the start and end of the systems life-cycle [41.
Others categorised tools as either upper, middle or lower CASE (5]. In
order to avoid confusion, the term analyst workbench -WB) is used in this
paper to denote CASE tools . that support systems analysis and design.
Rock-Evans [3] defined an AWB as 'an Interactive software product
which aids or automates some or all of the tasks of business requirements
analysis'

Norman and Chen [6] consider two generations of CASE tools (AWBs).
The first generation appeared at the time of the advent of structured
methods. This was an anempt to automate structured methods using the
available technology, i.e. the tools were text-based and ran on a mainframe
computer. An example of this type of CASE tool Is PSL/PSA [7] when
microcomputers and work-stations 'with graphical user interfaces (Gills)
were introduced in the 1 980s, the second generation of A WESs appeared.
These supported the graphical notations of structured methods. There are
many of these tools on the market, e.g. Excelerator, IEW, Teamwork,
Systems Archited and IEF. Although these tools have been improved and
enhanced considerably since they were first intr- duced, there has been no
further stepchange in the provision. Progress towards a third-generation
WS is the subject of this paper.

Over the last ten years, others have been working on a much grander vision of
ftware support for the systems lifecycle; the Integrated Project Support Environment
SE). An IPSE was defined by Alvey [8] as

'a compatible set of specification, design, programming, building
d testing tools supporting a development methodology which covers the
tire life cycle, together with management control tools and procedures,
'l wing a coordinating and consistent project database. '

102

For reasons that are well documented [9, 10], IPSE's never
progressed beyond the research laboratories. Indeed, as much of the
research was intended to be precompetitive this might have been expected.
In addition, many of the European and American projects are still ongoing,
e.g. ALF [11], ESF [12], STARS and Arcadia [13].

However, the last five years have seen some of the more important
research ideas from the IPSE projects filtering across to commercial CASE
tools. In fact, in retrospect, one view would be that the IPSE projects acted
as the pure research stream that generated ideas to be applied to CASE
tools.

Some of the IPSE projects had a generic tool that allowed the
development of point tools, e.g. IS TAR [14] and ECLIPSE [15]. This gave
rise to a class of tools known as meta-CASE or configurable CASE, and
several appeared on the market, e.g. "'SF, Tool Builders Kit These tools
are as yet at a very early stage. One stud"" has found that configurable
CASE tools are difficult to configure and limited In what can be produced
without resorting to coding in a third generation programming language
(16]. It should also be noted that once a CASE tool Is configured via a
meta-CASE tool, ft operates exactly like any other second generation
CASE tool, i.e. configurable CASE tools represent only a potential short
cut in the delivery. The tool itself represents no advance over others that
ere delivered via a different route.

Another important idea in IPSE research was that of integration.
Given that most IPSEs wanted to use 'foreign' tools (i.e. tools -that had not

n developed specially for the IPSE), there needed to be some way of
egrating them; they needed to communicate and share data. This
arch gave rise to several CASE tools that might be described as

egration frameworks. In tact, they are similar to IPSEs. Examples of
e are HP Soft bench, DEC Cohesion and Atherton Software Back
e. These tools became known as Component CASE (or C-CASE)
ls, presumably because components (i.e. tools) could be plugged in to
framework.

The use of C-CASE is also at a very early stage. A recent study [17]
d that there are few examples of operational CASE tools being built

· g C-CASE (even though there is some interest in 'playing' with them).
·ently, one of the main uses of such tools is to Integrate A WBs with

911',.w.uentation tools. Even this fairly unambitious integration involves a
wpificant delivery time. This leads to the conclusion that unless 103

integration mechanisms improve dramatically, there Is no future for this
technology. The view of Brown and Mcbermid [18] is that

' ... the way to get integrated toolsets is to design and develop integrated
toolsets, not to provide generic mechanisms and to hope that integration
will arise as if by magic'.

Process modelling

On the subject of integration, Brown and McDermid [18] have
defined a hierarchy of Integration between tools from method level down
to carder level. The most desirable level of integration is method level
integration, where tools are used, and interact, only 'within the context of
the software development process.' This could be realised by having a
process model that coordinated the use of the tools in the toolset This
introduces the other important idea in IPSE research; process modelling.
This is concerned with modelling the software development process. In
simple terms, a process model consists of a network of project activities
and the deliverable' s or design artifacts that flow between them.

Process modelling is of interest to a number of different groups
within computing. Much process modelling research has been under the
auspices of or linked to IPSE research. Owing to this there has been a
concentration on 'what has become known as process programming [19];
where the process model is actually encoded as a program and runs 'within
the IPSE to control and guide the use of the tools in the environment Some
would argue that there has been an over-concentration on process
programming in process modelling research, at the expense of human
considerations [20, 21]. However, apart from a few notable exceptions, it
is fair to say that most researchers are enthusiastic about process
programming. This is the application of process modelling that is pursued
in this paper.

Most process modelling systems are embedded within IPSES in
research projects. However, a number of tools have recently come on to
the market as stand-alone process modellers [22]. The reason for this
heightened interest in process modelling tools in the market-place is the
current zeal for business process re-engineering (BPR) [23]. This concerns
the re-engineering of organisational structures around business processes,
rather than along traditional departmental lines. These tools might be used
to model software processes, but they do not address process

104

programming; they are not intended to be used in conjunction 'with the
tools in a CASE environment

Process modelling is also of Interest to the Quality community. An
important concept for this group is the capability maturity model [24],
which identifies five levels of process maturity. Here the focus is on
modelling software processes in order to assess their maturity and improve
them. Most industrial software processes are currently at the lower levels
of maturity. There Is some debate as to whether a software process should
be at a particular level before it is worth using CASE, or whether the use
of CASE causes a process to be assessed and formalised, thus improving
maturity.

The benefits of process modelling are well documented [25, 26].
The best chance that we have to make improvements in software
productivity and quality lies with making improvements to the software
process. This is not possible without software processes that are rigorously
modelled and enacted to provide feedback for process improvement

Towards a third generation for CASE

The vision of the next generation of A WBs is one where the user
does not have to know the software development process and invoke tools
based on that knowledge. Rather, the primary Interaction 'with the A WI3
is with a process model that could guide the user in the steps of the
process and control the use of the tools in the workbench. The second
generation of A WEs is characterised by the support of the graphical
notations of structured methods. The interaction here is directly with a tool
in the work-bench via a GUI. The third generation should be characterised
by the support of a process model integrated with the other tools in the
workbench. The primary interaction here is not directly with any of the
point tools, but with the process model.

If the way in which all of the techniques of a method fit together and
relate to each other is considered, then a superstructure for an A WS might
be defined. This would be concerned with process modelling to coordinate
the lower level technique support facilities; A WBs could progress from

ing an uncoordinated collection of tools towards an environment that
o defined how the tools should be used within the framework provided
a method. The use of tools at inappropriate points in the method could
be prohibited, and assistance could be offered to the user In the form

guidance from one stage of the method to the next. 105

This is not a new concept in general terms, In 1981 Wassennan [27]

concluded that

'tools must therefore provide not only technical support for a specific
phase of the life cycle, but should also provide management assistance
and should facilitate the transition from one phase of the life cycle to
another (both forward and backward)'.

Alvey, in the definition of an IPSIE, also saw the need for
management control tools' as well as 'tools supporting a development
methodology'.

However, this has patently not happened, particularly in the CASE
arena. As Kaiser et at. observed about CASE tools [28], 'Most software
tools are moronic assistants that know what to do but do not understand ...
how their tasks fit into the development process'. This is still true today,
and the integration of CASE and process modelling has yet to be properly
investigated.

The tight Integration of process modelling with development tools
could lead to real method level integration. Rader et al. [17] found that
there is a strong industrial awareness of the need to integrate process and
tools. They concluded that the first step up the integration ladder from
isolated CASE tools is to integrate clusters of tools, i.e. collections of tools
supporting one part of the process. For this reason, It was decided to apply
these ideas initially to an A WS.

CASE has long aspired to process modelling, even if it did not know
its name. For example, the SSADM Conformance Appraisal Scheme [29]
devised a system for star-rating AWBs supporting SSADM. The highest
rating was to be given to a tool that 'directs SSADM stages and steps'.
McClure [30] also argued that software productivity would only be
improved by CASE took if they acted as methodology companions.
Vessey [31] define methodology companions as a tool that 'facilitates
'ollowing me steps and rules of a structured method'. This is analogous to
process modelling. This view was also supported by Hatley [32].

It is apparent that the superstructure of a third-generation A WB
3GA WB) might encompass not only process modelling, but also other
management control activities. For example, in the Aspect Project 1331,
the process model is called the 'project plan'. In the PMMS Project [34], 106

the process model was seen as an automated quality plan. This indicated
that process modelling was intertwined with project and quality
management, and that all three needed to be considered together in order
to arrive at any sensible conclusions, The view' that these three activities
need to be considered alongside technical development In any support
software Is endorsed by many researchers [35, 36].

JGA WB architecture

The first step towards realising the vision of a 3GA WB was to
define a general architecture. The initial architecture defined is shown in
Fig. 26.

management
conirol Q~AUTY MA_N.AGEMEN. T_:__· .-. ~-=--. ·· · _::_~_::j)

PROJECT MANAGEMENT - - ·· - - · - - ~-:J)
PAocess-m~~-. 1)

process

devetopmant
too is ·rn-TTI-· -r- ; T T T T T I o o o o o

o .. 1· o lo . o o o I o.
L L L!LLL _:__L:.
DATABASE · - · ·· - - ·· - · · - - ·· - -- · - - ·• product

(Hie-cycle -

Figure 26. Initial 3GA WB architecture.

At the centre of the model there are a number of development or
point tools. In a Y ourdon A WB, for example, these would be a DFID
editor, an Entity Relationship Diagram editor, a data dictionary a Structure
Charter etc. It is useful to consider these as having application at particular
points in the lifecycle. Thus, the tools towards the left of fig.26 would be
the early life-cycle tools. Obviously, no set or tools for a method would
follow such a simplistic pattern; they might be used in parallel or
repeatedly throughout the life-cycle (this is pursued later). The tools would
store data and communicate through an underlying database. This is the
current state of commercial CASE tools or 2GA WBs.

In addition to a substructure concerned with the products of systems
development there is also a superstructure concerned 'with the process of
stems development The three strands of the superstructure could be

based around a process model, a project plan and a quality plan,
107

respectively. All three parts of this superstructure apply throughout the
life-cycle, rather than at a particular point.

Similar diagrams to this have also been used by Steinbauer [37] and
Bjomer and Prehn [38]. They seem to be the embodiment of the Alvey
IPSE vision. This identifies three types of tools; 'tools supporting a
development methodology', 'management control tools' and a 'project
database'. These are evident as the centre, superstructure and substructure
of these diagrams, respectively.

There is some direct support for the components of the
superstructure of the 3GA WB architecture proposed above. For example,
Fernstrom and Ohisson [36] discuss process enacted environments and
show the coincidence of process modelling, project management and
quality management. In work on the ATMOSPHERE Systems Engineering
Environment, Obbink [39] describes tools to support the management
process, the life-cycle process and the quality process. This maps on to
project management, process modelling and quality management,
respectively.

Chroust [35] defines three 'paths' called the development path, the
quality control path and the project planning and control path. These
correspond to process modelling, quality management and project
management The distinction that Chroust makes between quality man
agement and quality control is important, however. Quality management
comprises quality assurance and quality control [40]. It is clear that many
quality assurance activities could not be automated within an AWES. For
example, reviewing the quality management system itself, or checking that
the common functions of an organisation, such as purchasing, are operating
efficiently are necessarily human tasks. Quality control, on the other hand,
operates at project level to define methods, standards and checks for the
project There is obviously' some scope here for automation within an
.WS. Therefore, the name of the quality management strand of the super

structure Is changed to 'quality control'.

Another point of discussion concerning the quality strand relates to
nfiguration management (which is part of quality management). Several

researchers have drawn this out as a separate entity. Dowson [41] argues
the software manufacturing process should address

108

'technical development, project management, data and configuration
management, and quality assurance and control throughout the software
lifecycle'.

Go finer [4 2] says that one requirement for an IPSE Is support for
development, project management, quality assurance, configuration
management and the life-cycle.

In order that the 3GA WB architecture is as precise as possible,
configuration management is extracted from the quality strand and shown
explicitly. This also makes sense If the process and product are to be
abstracted. Configuration management clearly concerns the product
Therefore, it should be removed from the quality strand of the super
structure and added to the sub-structure.

This gives rise to a revised model of the architecture of a 3GA WB,
as shown in Fig. 29. This could be viewed as a generic model of a
3GA WB architecture because it is not particular to any one method. It
could be instantiated for a specific method, however. The change to the
model could be to name specific development tools and put them in the
appropriate places in the life-cycle. For example, an instantiated 3GA WB
architecture for the Yourdon method could be drawn as in Fig. 27.

manage men!
con tr QI

development
tools

CONFIGURATION MANAGEMENT- - •

storage DAT ABASE • - • ,. - - ... - - - . - - - - - - - - J • ,

(!!fe-cye!e . - . - • - - - - . - .J

product

Figure 27. Generic 3GA WB architecture.

Notice how the sequence and parallelism of tool use throughout the
life-cycle may be shown for a specific method. Notice also the inclusion or
a word processor as one of the development tools. At first sight, this seems
odd. When thinking of development tools, examples like DFD editors and

109

ERD editors come readily to mind. It is obvious that 'word processors are
used for preparing reports at certain points In a method. However, in most
methods, word processors could also be used for some of the 'technical'
tasks. For example, in Yourdon, they could be used for things like drawing
up event lists and process specifications. Thereforej the provision of or
easy access to a word processor is an important general requirement for
the development tools of an A WB.

management I QUALITY CONT.RO!., - ,. -· .. - • - - -- - ,
control · ---·---- . .. -·----

PROJECT MANAGEMENi~ ·· ·· • - • · ·---------------~~- .. -----~,
PROCESS MODEUJNG ... - - . - - -, • -·. ·· •.•

development
tools

Ute-cycle -- -

[pFOEDITOR] p;octure l
I EAOEOITORJ §eo,r?A I I j

,TA OlCTIONAIW] ~ I
~------- PROCESSOR] j

~:;:~:;:'O" MA~AGEMENT ••.•••.••• J '"""" storage

Figure 28. Yourdon 3GA WB architecture.

Design of a superstructure

ASCENT is the product of a long-running research and development
project at the University of Teesside [43]. It is an AWB that supports a
variety of methods. Support for the Y ourdon method is the most mature,
but there is also support for SSADM, Object Oriented Analysis (OOA)
and Mascot Project management diagrams may also be drawn. Referring
to Fig. 29. ASCENT (in common with other 2GAWBs) provides
development tools and database storage.

In order to bring ASCENT Into the third generation, a management
control superstructure must be developed. The requirements of a
superstructure involving process modelling, project management and
quality control have now been defined. The design of the superstructure
has been started, and the processing behind the process modelling strand
has been specified. Some of the process modelling screens have also been
designed. 110

1 survey

··-...~,~sers
.. "-..,.

2'
f;;f\iiiyf,l/5

Figure 29. Example DFD from the Y ourdon process model.

The process modelling strand of the superstructure will provide the
primary interface for both developers and managers. When a developer
logs on to a project a process list is presented that shows the atomic
processes assigned to the developer in the project This will also show their
states and whether they are runnable. Runnable processes may be selected,
and a list of tools for the process appears. Selection of one of these will
transfer control to the tool. This requires the development tools in the
vironment (e.g. DFD and ERD editor) to be logically separate. Only

indicated by the process model as being pertinent to the process (i.e.
inputs) may be accessed by the tool, sometimes in read only mode .

. en a process is completed, or iteration Is identified, states and runnable
will normally change, thus updating the 'live' processes.

For managers, the process modelling strand will provide facilities to
e process models. These could be developed afresh or customised
a library of process models. It is important that actual process models
available, as well as mechanisms to define them. Facilities are also
vided to instantiated generic process models for particular projects.

111

Both developers and managers will be alerted to project events and
be able to Inspect the current status of the process model while it is being
enacted. Project events, such as processes completing or becoming
runnable, will be transmitted in a similar fashion to electronic mail. The
current status of the process model will be communicated by allowing read
access to the actual process model itself This 'will show the state of each
process graphically'.

The process modelling notation within the process modelling strand
is based on data flow diagrams. The reason for this is a view of the
confident with that of ince [44]; 'the notations used for software process
modelling will be no more sophisticated than the simpler CASE nota dons,
like data flow diagrams'. There is a good deal of support for the use of
DFDs for process modelling [45-47]- However, there has been little actual
use of DFDs for process modelling and less still for process programming.

Before undertaking the design work, an experiment was conducted
with the construction of a process model for the Y ourdon method using
DFDs. Although It is beyond the scope of this paper to consider this In
detail, the following gives some examples and outlines the main conclu-

sions.

An early conclusion was that the basic structures thought to be
necessary for process modelling (sequence, selection, iteration and
refinement) could be supported. External entities and data stores were
unnecessary because the Important part of the network was the processes
and the way that data flowed between them to define precedence.

Concerning data flows, It was concluded that some of the more
abstract flows sometimes shown on a standard DFD were superfluous. All
that should be shown were design artifacts that passed between processes.
An example from the DFD set for the Y ourdon process model is presented
in Fig. XXX. Notice the extension to the normal DFD notation to cope
with iteration. Potential iteration from process 1. 7 is shown via dashed
arrows going back in the network or via connectors.

It was also concluded that the AND/OR ambiguity inherent in DFDs
must be eradicated if the model was to be executable. This was done by
importing the semantics often found in other graphical notations such as
project management diagrams or Petri nets; everything is joined by an
AND. The evolving Y ourdon process model showed that this was the right

112

logical operator to assume in the vast majority of cases. In fact, an OR was
only needed when part of the network was optional.

There were other reasons why it would be useful to identify
optionality (i.e. instantiation), and it was concluded that the DFD notation
should be extended to identity optional flows and processes. These were
shown as dashed objects to intuitively convey their optional existence.
Connection rules were also established such that optional processes could
only receive or generate optional flows. Fig. 30 shows an optional process
(2.1) which generates an optional flow.

There was some Information that needed to be recorded that was
difficult to capture graphically, e.g. states, tools and personnel for
processes. These were dealt with in a similar way to a standard data
dictionary. Given these enhancements, structured analysis techniques were
found to be eminently suitable for process modelling.

The automation of project management is mature, and it was quite
straightforward to design the way that this would operate within the
project management strand. The role of the process modelling strand was
pivotal here, and the design of the project management strand was
Incremental. This might have been expected because close similarities
between the activities and supporting notations have been noted previously
(48-50]. In fact, the conclusions here are that process modelling and
project management should be provided via the same user interface, based
on the same task model.

The provision of two separate user interfaces and two separate
strands might be more attractive it they were sup-porting two recognised
roles in a development team. Only one or these roles is currently
recognised; that of the project manager. However, the benefits of process
modelling could be delivered as an extension and automation or the project
management role. An examination of the task models of process modelling
d project management show that there are some differences, but many

similarities. Further the extra process modelling information would be
ropriate and useful to the project manager.

As project management is sited in an integrated 3GA WB, together
development and process modelling tools, the activity may be further

_ •• ianced, Integration with the development tools allows support for task
tification and estimation. Assistance with task identification would not
automatic, but the design models produced by the development tools do 113

provide information about processes to be carried out later in the life
cycle. Assistance with estimation would not be at the level of individual
processes, but design metrics could be produced to check on overall
system size. Integration with the process modelling tools provides an
enriched project plan that supports levelling and identifies iteration and
optionality. It also provides an automated facility to control and guide the
actual process of development, and receive Information about progress and
pertinent project events.

,.•. -• ,
/ ' / \

11
?,: 1· \

J p19(1i.'ri) I
1, 1mphm1ent~Iio11 }
\ tl)t)dijl I

'•,. _,,,,"

proJ(i'(.t Cl}t'Jr1m

].'
dlJ!Hgn

Figure 30. Example DFD showing optionality.

This general conclusion also followed from the design work on the
quality control strand. There has been little automation of quality control to
date, except the word processing of the quality plan. Indeed, there is little
opportunity for this as a stand-alone activity. However, there are
automation opportunities for quality control as part of an environment that
also includes the automation of development, process modelling and
project management In fact, several of the requirements of quality control
are met because process modelling and project management are assured.

The main additional functionality required for quality control relates
to the keeping of quality records resulting from the design process. These
could relate to anything of interest to quality control, e.g. reviews and

114

inspections, process and product measurements. Much of the supporting
information and processes for these occurs naturally, but there Is some
extra effort involved in producing the actual quality records. A general
feature of quality records is their interest in the history of activities or
measurements. All quality records should be held in the process model,
open to inspection. These could be available as part of the dictionary.

Like project management, there is no physically separate strand of
the A WS superstructure envisaged here, rather an augmentation of the
existing functionality for quality control activities. Quality control is the
responsibility of the project manager, and so the functionality for both
activities should be available together.

Future work

The next step is the completion of the design of the superstructure
and its implementation based on ASCENT. This will provide the crucial
test of the feasibility of this approach. Once a prototype exists, it is
important that it is used by developers and managers to provide feedback
This should be sought at two levels. At a high level, it is important to
determine if the approach is useful. At a lower level, it is important to
obtain detailed feedback that would allow changes to be made to the
workbench.

If the approach is valid, investigation might be carded out into the
separation of the superstructure from ASCENT; it might be possible to
implement the super-structure as a stand-alone management control tool
that communicated with an A WBs via a generic integration mechanism.
Although this is quite attractive, particularly commercially, it is doubtful
that current Integration mechanisms could support this effectively.

A more viable proposition might be to look at applying these ideas
to tools supporting other phases of the development life-cycle. It is clear
that these ideas might be applied to other clusters of tools. For example, it
seems highly likely that a similar management control superstructure could
be imposed on a programmers workbench in a similar fashion. This phase
lacks the strong process model provided by structured methods at the
analysis phase, but the management control requirements are unchanged.

The logical progression is to integrate these clusters of tools into a
· gle environment under a single management control superstructure.
ocesses on design models early in the life-cycle might usefully feed- 11s

forward to become items of work later in the life-cycle. This might even
provide the framework into which all CASE tools could be integrated,

Conclusions

CASE tools should be enhanced so that full life-cycle activities are
integrated with development activities. This points the way towards an
architecture for CASE in the third generation.

In this paper, an architecture has been proposed for a 3GA WB
where development tools are augmented by a super structure of
management control tools. Development tools should include editors for
the techniques of structured methods and a word processor.

The main distinguishing characteristic of A WBs in the third
generation is the primary interaction of users with the process model,
rather than the development tools. The process model is used to guide
developers in the steps of the method and control the use of the
development tools in the environment. Process modelling should be based
on accessible graphical techniques, and an enhanced data flow
diagram/data dictionary notation is eminently suitable.

Another important characteristic of third generation tools is that they
will be used not only by developers, but also by managers. Support should
be provided for process modelling, project management and quality
control. When these activities are supported In one environment, together
with developmental activities, there is a cross-fertilisation of information
that offers wider opportunities for automation. Although there are three
distinct activities in the super-structure, or three logical strands, they
should be implemented as a single physical strand (with a single user
interface). Much of the functionality of this strand would be based on a
single, unified task model. The user of this strand would be the project
manager. This role is already responsible for project management and
quality control, and would also carry out process modelling.

Early research results suggest that Implementation of the proposed
architecture is achievable. It is particularly important that the
superstructure could be added incremental to a second-generation CASE
tool. This allows existing tools to migrate from the second to the third
generation.

116

In the future, these ideas could be applied to other clusters of CASE
tools relating to other phases of the development lifecycle. This could
progress towards the integration of all types of CASE tools within a
framework provided by a consistent and coherent management control
superstructure, This vision of the future offers the best practical
opportunity for realising the dream of an integrated project support
environment.

Currently, tools in a CASE environment are invoked by developers
based on process models that are in their heads, or at best in methodology
or standards manuals. Within a third generation CASE environment the
inter-action is directly with an explicit process model that provides
guidance and control, in addition, the integrated automation of
management control activities is provided. This is imperative for coherent
management of software projects. Such a CASE environment will be
instrumental in the push for process improvement and improvements in
software productivity and quality, towards the year 2000.

KNOWLEDGE-BASED CASE TOOLS:
IMPROVING PERFORMANCE USING
DOMAIN-SPECIFIC KNOWLEDGE

Knowledge-based CASE tools are able to play an active part in the
design of computer-based systems. Providing such tools with in-built
domain-specific (or 'real world') knowledge can enhance both the
performance and the appearance of Intelligence. However, little work has
so far been carried out as to how this might be achieved. The paper
Illustrates how such knowledge may be provided In the form of generic
models based on a thesaurus approach, and applies the technique to a
knowledge-based CASE tool designed to support object-oriented design.

Using domain-specific knowledge

The use of predefined domain-specific knowledge within a KB
CASE tool, and the ability to reason with and make use of this knowledge
during a design session, can enhance the appearance of intelligence and
increase the efficiency of a tool. The concept of providing domain-specific
know-ledge for use by KBCASE tools exploits the fad that a high
proportion of application systems are similar in nature (i.e are variations on
recurring themes). For example, many systems designed in commercial
environments support broadly similar functions across organisations, such
as stock control, sales-order processing etc. Given this situation 1 the
incorporation of domain-specific knowledge representing genetic models 111

of these common systems within a design tool, and the ability to reason
with this knowledge, would be of obvious advantage. Such an approach
can remove the need to ask trivial questions of the designer (thus
enhancing the appearance of the intelligence of the tool) and may save time
by removing the requirement to submit large amounts of initial domain
knowledge.

Generic models may be used to exploit the similarity of such
Systems by providing templates on which new systems may be based.
Numerous possibilities exist for the exploitation of this approach. For
example, the tool, having recognised an application domain, could present
the generic model as an initial design attempt and customise it to the
designer's requirements during the design session. Some work has been
carried out in this area [15, 16]. However, the tools developed, although
possessing domain knowledge in the form of internal dictionaries, could
not present an initial design suggestion for the designer to consider. In
general, very little 'work has taken place in this area to date [12, 17],
despite the fact that the use of domain-specific knowledge can potentially
yield numerous benefits. For example, domain-specific know-ledge can
improve the overall performance of a KB-CASE tool in terms of the
following:

o Increased appearance of intelligence: the tool appears to have
previous knowledge of the application area. This apparent familiarity
with the user's domain may in turn lead to greater acceptability.

o Increased efficiency: The user Is presented with fewer questions
during a design session. Questions that previously may have been put to
the user to confirm the system's understanding of a particular aspect of
the domain may now be satisfied by referring to the appropriate generic
model.

o Improved quality of resulting designs: a varying proportion of each
design is heavily influenced by the appropriate generic model (according
to how much of the users domain description can be related to the
model). The quality and semantic accuracy of the generic models, and
the mechanisms by which the tool interprets the know-ledge represented
by these models, are also factors influencing design quality.

118

Practical demonstration
- In this Section, we present a practical demonstration of the use of

domain-specific knowledge within a KB-CASE tool. The tool in question,
the Object Design Assistant (ODA) [17], provides intelligent support
during the design of object-oriented databases. It is not the purpose of this
paper to discuss either object-oriented databases or the object Design
Assistant in depth. However a brief outline of the method of operation of
the tool is required in order to illustrate how the domain-specific
knowledge may be represented and used during processing, and the associ-
ated benefits.

ODA overview and method of processing

The purpose of ODA is to provide support in the design of object
oriented databases. It is intended to be used by a Systems analyst/designer,
and assumes some familiarity with Systems modelling concepts and the
application domain In question No knowledge of object-oriented data
bases, object-oriented analysis or design is assumed. The main
requirement on the part of a user Is to provide a description of the
application domain in the form of a series of declarative statements, and to
subsequently provide Information relating to the domain as prompted by
the system. The general procedure followed by the major-fly of KB-CASE
tools supporting specification acquisition is as follows [1,18]:

• formulate an initial representation of the problem domain.

• use this Initial model in order to generate a conceptual model.

• transform the conceptual model into a design model.

During a design session, ODA follows this three-step procedure. The
step involves the acceptance of a series of declarative statements
ribing the problem domain, in order to create an initial representation

this domain (the problem domain model). This model then forms the
is of all further processing. The problem domain model is subsequently

momitted to a series of refinement algorithms in order to clarify points in
tion and eliminate inconsistencies.

Once refined, the problem domain model is used to progressively
ild the object-oriented analysis model. The analysis model represents the

119

problem domain from a real world perspective in terms of object classes
and associated properties. During this step, information is obtained by
asking questions of the user and receiving responses. These questions are
system generated, based on the system's existing knowledge of the
application domain. The responses are used to confirm (or otherwise) the
system's understanding of the domain and to further augment the
knowledge held.

Once complete, the analysts model is used as a basis for the
generation of a suggested design model. The objective of the object
modelling step is to take the real world perspective of the analysis model
and to transform it into a design which is more relevant to the computer
based perspective. This is a largely automated task, although some
interaction with the user of the type previously described may be required.

Representing domain -specific knowledge

To date, there has been very little work carried out in the area of
providing KB-CASE tools with real world knowledge and the capability to
reason with this knowledge.

Much of the existing work has taken place at the research prototype
level and has yet to progress to the point of making an impact on the
commercial front.

A comparable work to ODA is the Intelligent Interview System
(I2S) [15], 1st in that it supports database design (relational) and attempts
to make some use of domain-specific knowledge. The 12S approach makes
use of dictionaries relating to specific application domains (for example,
hbrary and manufacturing). Prior to a design session starting, the user is
required to select an appropriate domain dictionary from those available.
Each dictionary contains details or verbs commonly found within the
application area to which it relates. During a design session, the dictionary

used to construct intelligent responses to user statements and queries.
S makes use of its domain-specific knowledge to increase Its appear
ce of Intelligence and to produce designs of a consistent standard.

However, as the dictionaries are used to respond directly to user input the
efficiency (in terms of reduced user questioning) is not increased.

Generic models can be used to provide domain-specific knowledge
individual application areas; each model may be thought of as forming

corporate view of a particular application domain. Using this technique, 120

the user is again required to select an appropriate model prior to
commencing a design session. The tool then uses that model as a source of
knowledge during the subsequent design process (fig. 31). The use of
generic models covering multiple application areas would remove the
requirement for the domain selection process. However, this is a highly
ambitious proposal and not thought to be a realistic option at this point in
time.

In this paper, we advocate the use of a thesaurus-type structure to
represent the generic models. Within each generic model, concepts
commonly associated with an application are linked together via a series of
abstraction mechanisms. This form of representation differs from the 12S
approach, In that the expected concepts within a domain are explicated
named (for example customer, order) and the explicit verbs of the I2S
dictionaries are replaced by abstraction mechanisms. The thesaurus
approach allows for each concept to be referred to by any number of
associated synonyms where appropriate. For example, a customer may be
referred to as a customer, client purchaser, patron etc. The structure used
in conjunction with ODA is illustrated by fig. 32. The abstraction
mechanisms used to connect the concepts within a domain are those
recognised by ODA during processing. i.e. aggregation (A has B),
association (A verb-construct B) and generalisation (A is-a B). In addition
to these constructs, property attachment statements (i.e. A has property B)
are also recognised by ODA. However, properties associated with
concepts are not currently represented within the generic models.

KB,CASE
!Ool

response
to

queriee C initial
domain + subsequent
selection queries

Figure 31. Tool interaction with domain-specific knowledge.

121

---, ~~
~(c°nrril, ~~ '."r~-"soci••o--~~
aggregahon generalisation] \ J \ E~~ I L--, B ~-

0once~ (:oncer:) B

Figure 32. General structure of generic models.

Using the domain specific knowledge

The following series of assertions provide a simple example of the
declarative statements expected by ODA The example relates to a banking
environment and is restricted In that only sufficient detail required to
illustrate the use of the domain-specific knowledge is provided.
Information relating to properties etc. has been intentionally omitted for the
purposes of clarity (although during an actual design session, ODA would
flag this omission and request the missing information).

BRANCH HOLDS ACCOUNT
BRANCH HAS ADDRESS
SAVINGS-ACCOUNT IS A-KIND OF ACCOUNT
CURRIENT .ACCOUNT IS A KIND OF ACCOUNT
CUSTOMER MANAGES ACCOUNT
TAANSACTION UPDATES ACOUNT
DEBIT ISA KIND OF TRANSACTION
CREDIT IS A KIND OF TRANSACTION

Figure 33. simple generic model for the bank example. 122

resolved using dcmam-specillc knowledge not ,esolved using dornain-specltle knowledge - .. ---·-------~ .•.•.. ...,,.,• ~-··~---·"-.. - . ----'-""'·-~--
c<.in!irrnation of semanttcs of relationships

between concepts
concepts and/or relationships between concepts

not included in the generic model

multiplicity of relationst,lps linking concepts,
membership requirements lor tr,ese
relatlonstilp$ (mandatory, opnonalj

oarticipants in generalisation structures unknown lo
the generiG model

categorisation of aggregation structures (fi.,a(J, use ot terms not p,asent in the thesaurus to
variabte. recam;ive) describe concepts within tne generic model ----~--·------ .. ·--•••--•.,,,•-•.•_,, ,"""''~-------·----M••,,________ -------

Table 3. Uses of domain-specific knowledge.

Prior to commencing the design session using the bank example, the
generic model appropriate to the domain is selected. A simple generic
model presenting the banking domain is illustrated by Fig. 32.

As previously described, the first stage of a design session involves
the processing of the declarative satinest in order to create an initial
representation of the domain. During this stage, statements are analysed to
ensure that they are syntactically connect, but the semantic aspects of the
statements are not questioned. The purpose of this stage is to capture the
information and to build an Initial representation of the domain as seen by
the user (a problem domain mode!). Inconsistencies and potential errors
within the problem domain model are then revealed by the refinement
algorithms and the user is questioned in order that they may be resolved.

During the second stage of processing, the problem domain model is
used as a basis for the construction of the analysis model. Without the use
of domain-specific knowledge, this stage of processing is the most time
consuming, as the user is presented with a series of questions based on the
problem domain model in order to further augment and to confirm the
system's understanding of the semantic aspects of this model. The
following dialogue is typical of that taking place as ODA attempts to
confirm its understanding of the application without the benefit of domain-
specific knowledge.

ODA> Does the Statement current-account Is a kind of account indicate
that current-account is a specialised kind of account?
Please Enter Var N (or H = help, E = explanation):

User> Y

123

ODA> Does the statement savings-account is a kind of account indicate
that savings-account is a specialised kind of account?
Please Enter Var N (or H = help, if explanation):

User> it

A similar vein of questioning would be pursued with the user
regarding the transaction concept and its specialised forms, debit and
credit. The use of the generic model enables such questions to be resolved
without involving the user The thesaurus approach and use of abstraction
mechanisms as a means of linking concepts within the generic model
allows the system to exhibit flexibility. For example, the following
statements would all be recognised by ODA as being semantically
equivalent concerning a single associative relationship between two
concepts:

CUSTOMER MANAGES ACCOUNT
CUENTMANAGESACCOUNT
CUSTOMER IS RESPONSIBLE FOR LEDGER
FINANCE IS MANAGED BY CUENT

Information regarding the multiplicity of relationships linking
concepts, the membership requirements for these relationships, and the
categorisation of aggregation structures (fixed, variable, recursive) may all
be resolved by referring to the generic model. It is recognised that certain
questions generated by the system still require user input For example,
whether any- other specific types of account exist apart from current and
deposit. However, It can be seen that even in the simple banking example,
the use of domains-acknowledge results in a reduction in questioning. In
larger more realistic situations, a significant reduction in questioning and a
resulting saving in time may be achieved.

The use of domain-specific knowledge is not claimed to be a
panacea. Indeed, It is recognised that there are certain aspects of the
design that are best resolved by user Interaction. Table 2 summarises the
areas where the domain-specific knowledge Is of benefit during a design
session.

In the case of ODA, the use of domain-specific knowledge during
processing achieves two of the associated benefits; the enhancement of the
appearance of intelligence, and the improvement in performance. The
system appears to 'know' about certain aspects of the application, and the 124

However, it is recognised that consideration must be given to a
number of practical issues. The effectiveness of the approach depends
greatly on the accuracy and completeness of the generic models used, and
the extent to which idiosyncrasies within a particular domain may be
accommodated when compared to the appropriate generic model.

Future required work includes additional testing to obtain statistical
feedback on the extent to which performance Is improved during the
design of Systems of varying complexity. The extension of the use of
domain-specific knowledge throughout the design process is also
desirable, in order to influence positively on design quality and the
consistency with which such quality designs are produced.

Acknowledgments

The author would like to thank Paul Beynon-Davies, Chris Jones,
Mike Lynch and the referees for their helpful comments during the
preparation of this work.

EXECUTABLE SPECIFICATION AND CASE

The idea of executing graphical system models Is not new. Several accounts of
research in this area are well documented. Despite this, such research is still In Its
infancy, particularly, in relation to CASE environments and the practical
application of ideas. The paper considers executability within CASE, with
a focus on executable specifications. The importance of executability is
highlighted, and some of the work in the field is noted. An experimental
executable specification tool is presented. The final conclusions drawn
take a look into the envisaged future of executability in CASE.

Importance of executability

Harel [1] recognises the importance of executability. He has the
futuristic belief that system development tools, which lack powerful
execution and code generation capabilities, will all but disappear. He
highlights executable specifications as one of the most interesting notions
to come out of recent work in systems engineering.

Fuchs expresses views in favour of executable formal specifications
[2]. Many of his arguments apply equally to executable graphical 126

specifications. Tate observes [3]. Practical executable specification of
everyday systems poses the problem of somehow combining the kind of
informality and flexibility that is natural to most users with the formality of
executable Systems.' There is thus a dilemma between the formal
specification languages, 'which are not widely applied 1 and the more
popular, but less formal, graphical specification techniques. Work is being
carried out to bridge the gap between them [4]. An alternative is to use
graphical formalisms which enable executable models to be produced. It is
in this interesting area that our work lies.

Several ideas have been investigated for executing graphical models
as part of the software process. However, many are not yet integrated into
a CASE environment, and so there potential impact on industry has not
been fully explored. A goal of CASE technology is to support all aspects
of system development Integrated CASE support for the whole life-cycle
seems to be on many developers' wish lists [5]. This support should
include model executability.

The · execution of a graphical specification allows requirements
validation to be performed. This finds errors and misunderstandings in the
specification, before progressing further into development. Fewer costs are
incurred if specification errors are detected early.

Not all specifications are of new Systems yet to be built in fact, such
specification tasks are very rare. Usually, some kind of system, possibly
computerised, is already in existence. often, one of the initial tasks is to
model the existing system in order to propose improvements. Execution of
this model, or indeed a component of it, will allow the user to ascertain
whether the existing system has been modelled correctly. The executable
specification can then be refined to meet the new requirements. The
functionality of the system can be observed, through execution, during the
refinement stage.

Executable specifications provide a rapid way in which to prototype
the functional behaviour of a proposed system [6, 7]. By allowing the
external interfaces of the system to be simulated and attached to the
executable specification [81, they can exhibit the look and feel of the
proposed system.

There is question about whether executable specifications of this
kind are truly prototypes, Tate makes some interesting comments on this

127

[3]. He notes that requirements validation is one of the main purposes of
prototyping, and that executable specifications have clear potential in this
area. His counter argument is that even If specifications can be executed,
they are still fundamentally specifications, With an additional component
which aids their understandability. Executable specifications should he
viewed as a replacement for their non-executable counter-parts in the
software development lifecycle. Prototying [9] involves the development
of a program for user experiments. Executable specifications are much
more direct than this, as development of a prototype program requires its
own design, programming, testing and implementation stages.

In addition to allowing the functional aspects of a system to be
validated, execution can also provide a platform on which to study various
non-functional aspects of a system. Executable models can be used to
analyse timing and performance issues, and for the comparison of the
behavioural aspects of separate models [1]. Executability can assist when
considering Implementation issues. A system model can be augmented
with real world constraints such as a limited number of processors, process
priorities and finite execution times. This would enable investigation into
the feasibility of implementing the pro posed system, within a given set of
constraints.

An executable model of a specification can be incrementally
converted through design into a lull implementation by gradually replacing
parts of the model with final code. If some of the system under
specification already has hardware and software components that are fully
implemented, the executable specification system may utilise this code to
drive part of the execution. In this way, the model would evolve from a
mixture of specification code and implementation code, Into a lull
implementation.

This goes a step beyond executable specification and implies that
there is an executable model of the system at all stages in its development.

Work in the field

Work has been done on integrating different modelling formalisms.
Ward and Meilor [10] and Hatley and Pirbia [l] developed extensions to
the data flow diagram (DFD) to allow real-time systems to be specified.
Ward also pro-posed a set of rules for executing models created using his
formalism [12]. Pulli et al. followed up this work by implementing Ward's
proposed execution algorithm using Smalltalk inscribed Petri nets [1 3-15]. 12&

Reilly and Brackett [16] present a useful account of the
requirements of an idea tool to support the execution of structured analysis
models. They also built on Ward's ideas and investigated a method of
specification execution, involving the translation of a structured analysis
model directly into an OPS5 program. The OPS5 program is executed in an
interpretive manner, and the executions are examined using the trace
facilities provided by the OPS5 run-time support system.

Lea and Chung [6] have done work on rapid prototyping, taking an
executable specification approach. They consider each DFD to be a set of
regions of bubbles and data flows, which correspond to system service
functioning. Their technique, in contrast to ours, does not involve the
coding of primitive process functions in traditional pro gramming
languages.

Harel's STATEMATE system [17] is a set of tools which support
the analysis, design and documentation of complex reactive systems. The
temporal reactive behaviour of the modelled system Is depicted using the
graph!-cal language Statecharts [18]. STATEMATE allows specifications
to be executed in a step-by-step interactive manner, or in a non-interactive
manner, 'via programmed executions. The executions allow reachability,
non-determinism, deadlock and transition usage tests to be performed.

At Hull University, 'we have implemented a demonstrator system
that allows data-driven functional models to he executed and animated. A
particularly novel aspect of this work is the provision of execution by
adding functional language code to the graphical specification model.
Experience gained from this system has led us to develop a new visual
formalism, with real-time extensions, for use in the next version of the
system. An algorithm has been developed for executing specifications
which use the new formalism.

The possibility of extracting an object-oriented model from a data
flow- specification has been shown previously [19]. Ward also shows the
relationship between object orientation and traditional structured analysis
and design [20]. Our experience with modelling systems has shown that
when modelling requirements in the traditional way' using DFD's, the
partitioning of functionality is often object-based. Current research at Hull
University is investigating the possibility of maintaining a consistent object
model across the whole system development lifec-de. The ability to
execute such a model would fadlitate the use of incre mental substitution
and testing of each new or modified object, as the system evolves. 129

EGS project

Project background

The aim of the Executable Graphical Specifications (EGS) Project
was to develop an executable graphical specification system which could
he used as a vehicle for experimentation Into the provision of executability
within CASE tools. The underlying modelling formalisms and their links to
the method of model execution were an area of Interest An additional aim
was to investigate the different way's of providing model execution and to
consider the use of excutable models throughout the lifecycle.

A tool was required to enable experimentation with the various
aspects of executable specification systems. A brief study of meta-CASE
technology was undertaken, and specifically the IPSYS [21] meta-CASE
system was investigated, as a possible aid to building the tool. However,
current meta-CASE technology did not appear able to provide, in a
convenient way, the flexibility required by our tool, and so we decided to
build It more or less from the beginning.

The task of building such a tool was quite complex and involved the
combination of various technologies. A two tier approach was taken to the
development The plan was to build an initial system, with a simple in-built
formalism and execution scheme, In order to test our general ideas. Case
studies performed on this system and experience gained from its
development would then be used to build a second, more substantial tool.

Building the initial system also identified the desirable generic
aspects of building CASE tools of this nature. Such issues as notation
independent editors, methods of providing execution, and keeping the
execution language separate from the execution method emerged as Impor
tant considerations. Clearly, these form the basis for a meta-CASE tool to
aid the production of tools that support diagram execution.

In this paper, we describe the initial executable graphical
specification tool which was developed and implemented. As this system
represents phase I of the Executable Graphical Specifications Project, we
refer to it as EGS 1 -Work on this initial phase of the Project is now
complete. Efforts have since moved to an upgraded version of the tool.

130

EGS 1 tool

EGS 1 allows functional models to be built using an inter-active
editor. The graphical formalism supported by the system resembles the
DeMarco DFD notation [22]. The models built consist of a hierarchical set
of data flow diagrams. These contain processes and data stores with data
flow- interconnections. The highest level diagram in the hierarchy (the
context diagram) also contains external entities. Processes are either
primitive or non-primitive. The non-primitive processes expand out Into
lower level DFD's.

The DeMarco [22] notation is well understood and has been
accepted by many software engineers. It forms the foundation from which
several extended notations were developed, and it fits into a simple
execution model. It Is for these reasons that the notation was chosen for
EGS 1.

The user augments the models with code specification dements. This
enables the models to be executed in an Interpretive manner, thus allowing
the functionality of the specification to he observed.

Fig. 33 shows the context diagram of the specification of a video
cassette recorder (VCR) control system. The role of the VCR control
system is to accept user commands and generate various signals to control
the head mechanism, display and motors of the VCR. The main
components of the system are a tuner manager, function control manager
and timer manager. The tutor manager enables the channel to be set during
normal operation and recording. The function control manager determines
the required motor and head position settings for a given operation. The
timer manager facilitates the preset (programmed) recording operations.
The VCR was one of several small case studies used to evaluate EGIS 1.
Aspects of this study are used here for illustration.

Model executability is provided by the Gofer functional language,
which is a subset of Haskell [23]. Gofer code is used to specily the
behaviour of primitive processes, and the type of data associated with each
flow and store. Functional languages are particularly appropriate for the
specification of primitive processes [24]. The EGS 1 formalism views
primitive processes as strictly functional: thus there k no requirement for
them to have state. Any stored state information must be abstracted out
and expflctly rep resented by data stores. Functional languages provide a
high level of expression, thus redudng the verbosity of pmcess 131

specifications. The declarative style of functional languages ts also
appropriate for expressing the relation-ship between inputs and outputs.
Consider the level O DFD of the VCR specification shown in Fig. 34.
Some processes. In this diagram are non-primitive and expand out into
lover level DFDs. GET STATUS, however, performs a simple operation
and thus is primitive.

The GET STATUS process is triggered by the receipt of a data packet along
the switchPos flows. We can see from Fig. I that this packet has been generated by the
STATUS SWITCH external. The switchPos flow- has VcrStatusType in its underlying
textual definition VcrStatusType is not a standard Gofer type. It is a user-defined type
'with the following definition:

data VerStatusType =

STANDBY I ON TIMEHIDLE TIM ERACTIVE

VerStatusType has been declared in this way because it is used by
other elements of the specification model. EGS 1 allows global types and
functions to be declared for use by other functions and types. Such global
elements are stored in a general global declarations area.

The data store V crStatus also has VerStatusType in its underlying
textual definition, Indicating that the value it stores is of the same type as
the data packet carried by the switchPos flow. The update flow leading
from GET STATUS has mt in its textual definition, 'which is a standard
Gofer type.

132

r----1
1 j

I STATUS i
, SWITCH ! I f_
i..-~------··--·--··'

r--·----i

I !NIT I
I i
L... I/

I
1ml

' 1
! I ' CASSETTE l HARDWARE. I CONTROL I

/1 j'
.,...,,-,,..,,.. ----

,, _,,,.

,./·

<leckComro!
fl Mc
lNPliT

PlAY
CONTROLS

r---- .. ·-1
I' 11MH1 i

t,;QNTROlS I"
; I
I ' ' I 1-- J
r-··---·-···i./

I
TuNER ,

CONTROL$ I
L_ ... J

\
\

1 ·\ .. L ...

Ii CASScTTF.
l.OADER

Figure 34. VCR context diagram.

The task of GET STATUS, when triggered by a change in status
switch (an incoming packet on switchPos), is to update the current VCR
status and indicate to the TUNER MANAGER when the device has been
switched on. The underlying textual definition of GET STATUS is

= < verStatus = switchPos, update = value>

where {
value switchPoa = = ON = 1
I otherwise = 0

}

133

?--------
5Wil(;hf"'::05

,,
GET

STATUS :unerCmd

'•,/ upcJu11: , r' 1UNEA
, ,.fl ·- 11P{1aie --·- ·· rj MAN,\GER

c .. P .. d9CK6~Hmgs
·--~"ii ... _, __ ""-

' 1

"t') ., .-t. ·····<,. . .. J•c>.(;,;mJ<ul

I fUl·JC Ti ON l
(CC)NfAO~ , --- ,p,tl•~•
\., _ .. { , ..• , •.... ::

l!MEA
MANA(l&A

CH~CI\
TAPE

!'AF SENT

Figure 35. VCR level O DFD.

Note that this code is not written as a pure Gofer function. No
parameter list is present Such information is of no concern to the user, and
so is hidden. The textual definition simply specifies the value of each
output in terms of the input values. Here the update flow and the VcrStatus
store are defined in terms of the switchPos input flow.

Each output of this particular process is dependent on the input
value. This does not have to be the case for all processes. Outputs from a
process could be simply assigned constant values. Processes whose sole
task is to initialise data stores often fall into this category. The process
specification shown here is also quite simple.

However, complex expressions, which possibly call globally defined
Gofer functions, may be used to calculate the output values.

From the formalism point of view, each primitive process is
regarded as a pure function, i.e. a mapping of input data flows to output
data flows. Model execution is based on converting each primitive process
specification into a self-contained Gofer function, which can be executed 134

to simulate the processes' behaviour. One of the tasks of the model
compiler subsystem of EGS 1 is to derive a Gofer function from each
primitive process.

The following example is a slightly more elaborate pnrmtrve
process specification. It is the text contained in the FUNCTION
CONTROL process shown In Fig. 36.

- <deekControl = deckVal deckSettings = deckval, spitTape =
spitVal, tapeStatus = tape>

where
spitVal ((vcrStatus ==ON) && (tapeStatus
-TAPEPRESENT) && (basicCmd ==EJECT)) 1 otherwise= O;

tape ((vcrStatus ==ON) && (tapeStatus
- = T APEPRESENT) && (basicCmd
- = EJECT)) = EMPTY
otherwise = tapcStatus;
fn x y- head ((b,c,d,e)j(a,b,c,d,e) <-yj a
deckVal ((verStatus ==ON)

&&((basicCmd = = PLAY) II (basicCmd
= = STOP) II (basicCmd = = REC) I (basicCmd = = REW) p

(basicCmd
==FF))

&&(tapeStatus = = TAPEPRESENT))
= fn basicCmd deckTable

((verStatus = = TIMERACTIVE)
&&(basicCmd = = TREC)

&&(tapeStatus = = TAPEPRESENT)) = fn basicCind deckTable

((verStattis = = TIMERACTIVE)&&(basicCmd = = TSTOP)
&&(tapeStatus ==TA YEPRESENT))

= fn basicCmd deckTable

otherwise -
FORWARD,TUNERTOSCREEN)

(ZERO,RETRACTED,

135

All flows are discrete in the formalism. Therefore, the view of
execution is that of discrete packets of Information flowing down data
flows. Primitive processes can execute when at least one packet is present
on each of its input data flows, and all stores used as input to the process
have defined values. An uninitialised data store stops a process from being
considered for execution.

The execution of a pnrmtive process causes one packet to be
consumed from each of its input data flows. The values stored In its Input
data stores are used for execution, but are not consumed or updated. The
execution of a process may produce zero or one packet on each of its
output data flows, and may also update the value of any data store which is
connected to it via an output flow.

Packets wait on data flows until they are consumed by an executing
process. There is no limit to the number of packets 'which can watt on a
data flow at any given time. Packets can thus queue along data flows in the
order in 'which they arrived. 'When a process with a queue of packets on
one of its input flows executes, it consumes only the first packet in the
queue. The rest remain on the queue and are consumed by future
executions.

A process may become executable either by receiving a packet from
an external entity or by receiving a packet produced by the execution of
another process. It should be apparent that the injection of packets from
the external environment can set off a chain of subsequent process
executions.

Execution of EGS 1 models is thus driven by data and occurs in a
stepping manner. The execution of each primitive process is assumed to be
a single step. No sophisticated scheduling algorithm is employed. If
several processes are eligible for execution simultaneously, the one to be
executed next is chosen at random.

Once a specification model has been compiled, it can be executed
and animated by switching to run mode. In run mode, steps are executed in
response to user requests. In addition to single steps, the user can instruct
the system to execute for a given number of steps or execute until no more
processes are runnable. Break points can be set on processes, so that when
they are scheduled to execute, the system halts. This provides a convenient
mechanism which enables the user to cause the system to rapidly reach a
state of interest before looking at the model execution in finer detail. 136

The user provides input packets from the external environment by
inter-actively adding packets to the external input flows of the model. The
mouse is used to select the external input flow onto which a packet is to be
added. On selecting a flow, the user is prompted to type in the value of the
new packet. This can be done at any time during model execution.

Packets intended to be output by the executing system, to the
external environment queue along the external output flows.

The model is animated to show the flow of data through the system
and the primitive process executions which relate to this data flow. The
user can navigate between diagrams in order to observe the desired
components of the executing model fig. 35 shows the level O DFD of the
VCR case study in run mode.

Note the difference in appearance or the diagram to that shown in
Fig. 36. In run mode, primitive processes that are not currently executable
have slightly thicker borders than non-primitive processes, which are not
executable elements in their own right FUNCTION CONTROL and
CHECK TAPE PRESENT are two primitive processes that fall into this
category. GET STATUS Is also a primitive process, but it has an even
thicker border to signify that it is currently executable.

A similar convention is used to represent flows. In run mode, the
name of each flow has a number appended to it which represents the
number of packets currently queueing on the flow. In Fig. 37, this number
is O for all flows apart from switchPos. Any flow with one or more packets
queued on it is represented with a thicker line than flows with no queued
packets.

It should be noted that the animation described here was designed
for monochrome displays. If a specification Is executed on a colour
display, different colours are used for animation instead of varying line
thicknesses.

137

,..._ swi1r.r1P1>s (1 \
'·,,.

hir'lerC:rnd {O)

li, .. _ ·-·--..;,

·r--···---~--

~

/;,;~;·\
TAPE

• fU:;$1:,Nl)···

-----~/

Figure 36. VCR level O DFD in run mode.

The role of animation is to visualise execution of the specification
model. It aims to make available to the user the execution Information of
Interest. The animation provided can be considered in three separate
categories. The terms 'Static visualisation', 'Dynamic visualisation' and
'Historical Interrogation' are used to refer to these categories.

'Static Visualisation' refers to the state information which can be
obtained when the system is in a static state. It includes such aspects as the
current state of a process (whether it is executable or waiting for input) and
the state of a data flow (whether it currently has packets queued on it, and
if so, the number of packets queued). Such information Is displayed
visually on the diagrams. The user can also interrogate any data store in
the executing model, in order to observe its current contents.

'Dynamic visualisation' refers to the dynamic behaviour of the
specification model as it executes. It refers to the flow of data packets
around the system and the various transitions which occur in the process
execution states. This is a combined picture of the various static visual
isations, within the context of a dynamic execution. It cannot be illustrated 138

in this paper, as it is in essence a series of frames which form a 'movie' of
the executing model.

'Historical Interrogation' refers to the 'previous values' information
which can be obtained from the executing model, Such information
includes the last set of input values, the last set of output values and the
last execution time of a primitive process. The value of the last data packet
which passed down a particular data flow can also be obtained.

Conclusions from EGS 1 and further work

The relatively straightforward formalism and associated execution
scheme adopted by EGS] allows quite complicated models of data-driven
systems to be built and animated. We have built executable models for a
package routing system, a telephone exchange and a VCR Clearly, EGS 1
is limited, but it has highlighted many of the problems and questions to be
asked about executable specification systems. It has allowed us to look at
the development of such tools from an experienced practical viewpoint.

Data store initialisation was highlighted as an important issue.
Sometimes data stores need to be initialised with values before the rest of
the specification can commence execution. Although omitted from the
diagrams seen so far, EGS 1 adopted an explicit approach to data store ini
tialisation. EGS 1 specifications often include processes dedicated to the
initialisation of data stores. Fig. 39 shows the level O DFD 'with data store
initialisation processes included.

It could be argued that the initialisation of data stores should be
done explicitly in this way, as stores are internal to the specification and
their initialisation needs to be considered. indeed, the developer of a
specification should be able to feature store initialisation explicitly if
desired. However, such initialisation often clutters the model and detracts
from the rest of the specification. It is for this reason that an alternative
provision is required for the initialisation of data Mores. Initialisation code
could be associated with each store, within a component of its textual
tlCililition, just as the type of data contained in a store is currently
!DCCified. In this way, the initialisation of stores is not ignored, but it does

~ \\a"ve 'al\ C)"ve1:-em1)ho.'i:)\'i:)e\\ "v\'i:)-ua\ \1l\1)'a'.c\ C)l\ \\\e 'i:)1)eC\\\ca\\C)l\.

EGS 1 only caters for the data flow components of system
modelling. The examples illustrated show the DeMarco [22] type
formalism which is currently supported. However, as the notational aspects 139

are rule-based, EGS 1 is independent of the actual visual formalisms used.
The system could be tailored to support a different notation, as long as it
fits the general data flow paradigm.

GE.'1
S"f/i,llJS lonurC.n1ct

!Nll1

l(tll!

I
'·

: ••...

(M.1~17..~H .•...
t
i
j
/

!fHi2

/
,,,___ u1peStatus.

. CH!:(,K \
l, TAPE: }

,;,., PRESENT ,

SPIil
JN1

1HiM .•..•. -------·- ' J

Figure 37. VCR level O DFD with explicit store initialisation.

One of our goals is to provide a more general execution tool which
allows specifications with real-time aspects to be modelled and executed,
A tool of this nature requires a more elaborate formalism, suitable for
specification of real-time systems. Such a formalism has been developed in
close relationship with a more elaborate execution scheme. This Work is
documented elsewhere [25]. Time Is a key aspect of real-time systems
modelling. By considering time in the execution scheme, issues of process
scheduling and the temporal relationships between execution steps become
important. These Issues are accounted for in the new execution scheme.

The EGS 1 editor allows diagrams to be entered and stored in the
repository (static model) component of the system. The model compiler
generates the executable version of the model from the static model data. it
is thus clear that if the data captured by an existing CASE tool could be

140

translated into the EGSI static model format, other CASE tools could be
used to capture EGSI models. This would be an additional useful feature
and has been noted for future consideration.

The us~r interface aspects of specification execution emerged as
important for consideration. The methods used to illustrate the changing
state of the executing system, and the provision for user interaction, both
In terms of directing the execution and simulating the external environment
of the system under specification, are key issues. Simulation of data
transfer across the boundary between the specification and the external
environment also needs to be considered.

The case studies performed on EGS 1 were not substantial enough
to Investigate hilly the use of an EGS-type execution system on real world
projects. More substantial case studies must be undertaken to examine the
impact this kind of system would have in the commercial environment
Although some companies currently employ execution tools such as
STATEMATE [17], it would be of benefit to study the application of
EGS-type systems to Industrial-based projects.

Our current work builds on EGS 1. In addition to the development
of a new visual formalism and related execution scheme, the generic
aspects of the tool and the use of functional languages within this context
have been further researched. These recent developments are Incorporated
into EGS2, which is an upgraded executable specification tool, soon to be
released. Planned future work includes several extensive case studies
which employ EGS2 in realistic software engineering situations. Such
studies will investigate the practical use of the system and highlight further
scope for improvement.

The Dynamic Modelling of Embedded Systems Project, undertaken
in collaboration with UMIST and Staffordshire Universities and sponsored
by SERC, is expected to provide an industry-based test bed for our work
The project is concerned with looking at a range of methods for modelling
dynamic systems. The modelling methods to be investigated include EGS2
[25], STATEMATE [17] and the Co-Design method from UMIST, The
Project will be looking at several large industrial case studies extracted
from GEC, ICL and BAs.

141

Future of executability In CASE

CASE tool support is required for the execution of the various
models, produced in the software development lif6 cycle. The execution
must be frilly integrated into all levels of the life-cycle. Further research is
required Into methods of adding execution to graphical models. This
should be considered in conjunction with investigation into the integration
of the differing modelling formalisms.

Current CASE generally provides good support for the diagram
creation and information storage aspects of system modelling, with the use
of diagram editors and repositories. Similar support is required to facilitate
model execution. CASE tools which provide support for model execution
place heavier demands on the repository servers. This is particularly
relevant to the compilation and animation of models. As with standard
program compilers and run-time support Systems, time is of the essence;
thus, we must stative for more responsive repositories.

The large amount of effort required to provide executability in
CASE tools is hindering the research process. Facilities should be
provided which allow diagrams consisting of various different notations
and pieces of text to be easily integrated and executed. CASE tools
supporting such model execution must be as general as possible. The
underlying tool should be independent of the graphical for malisms
employed. The user should not be limited to any particular language for
providing the execution. The compilation process involves the use of
several different compilers, if models incorporate different languages. The
model compilation and execution process should be independent of the
languages chosen to facilitate the execution.

If truly generic execution Systems were available, their scope for
use would be vast it is expected that issues raised by research into meta
CASE technology may con-tribute to the development of the generic
aspects of such systems. Diagram compiler generators, which are capable
of generating diagram compilers from rules which relate to particular
graphical formalisms, are expected to feature in the future of executable
specification technology.

Various levels of animation will be required. The end users view of
the executing model must be considered as well as animation of the
behaviour of low-level model components. If executable models consisted

142

of specification, prototype and final implementation components, the
Issues to be considered In animation 'would be extended yet further.

If the final system is delivered as a package of analysis models,
design models and implementation software, set in an executable CASE
environment, the customer would have a seamless, executable model of all
stages of a system's development. This would have obvious advantages if
the requirements of the system were to change at a later stage.

So far, research Into model execution has been focused on
dynamic/reactive systems. We feel a more general approach must be taken
that allows the execution of various different kinds of model, possibly
uslng a combination of different visual formalisms. Equal consideration
could then be given to highly data- or functional-oriented systems. To
facilitate this the tool must be adaptable to different formalisms.

Executabilily will form a predominant role in the future of CASE.
Executable graphical specifications are an important concept, but form
only a fraction of the potential for execution within CASE environments. if
CASE tools are to provide support for maintaining an executable model all
the way from the initial requirements stage through to implementation, it is
unlikely that the division between the various stages of the traditional
lifecycle [9] will be maintained. Further research into alternative life
cycles, which include model execution is thus required.

CASE SUPPORT FOR COLLABORATIVE
MODELLING : RE-ENGINEERING CONCEPTUAL
MODELLING TECHNIQUES TO EXPLOIT THE

POTENTIAL OF CASE TOOLS

To date, CASE tools have generally been built around pre-CASE
analysis and design techniques. The paper argues that more benefit would
he obtained If analysis and design techniques were 're-engineered' so as to
make the best use of the capabilities offered CASE tools. Techniques such
as entity-relationship modelling and data flow diagrams have successfully
been transferred to the CASE environment, with significant administrative
and clerical benefits. However, these techniques were not necessarily
designed with automation In mind, and their CASE Implementations have
failed to adequately address important aspects of the modelling process,
such as commumcation, collaboration, and the application of past
experience. Ways In which these aspects can be supported pro-actively by
CASE tools are given, using examples from a prototype CASE tool.

143

How could CASE tools support the analysis process?

For the purposes of this discussion, the process of Systems analysis
Is considered from several perspective's:

• as a process or communication, capturing relevant information
about requirements.

• as a process of collaboration or negotiation in which requirements
are jointly 'developed'

• as the application of past experience in creating, reformulating and
emulating models.

In each case, existmg or potential support from CASE tools is
discussed. No one perspective offers a complete picture of the role of
Systems analysis, but each has some thing to offer in helping to put the use
of CASE Into its proper perspective.

Analysis as communication

Traditionally, the earliest stages of information Systems analysis
have been referred to as 'requirements capture'; the idea being that
requirements for Information Systems exist Irrespective of what is possible
or feasible 161. The analysis process consists of documenting
requirements and then investigating feasibility or looking at costs to
determine what will be implemented.

The process of documenting requirements is seen as relatively
straightforward, because the requirements are either known or implied by
an existing System. Consequently, top-down methods are often used, as
they also imply a relatively straightforward documentation of requirements,
by decomposition of high-level requirements into lower-level ones. CASE
tools readily support this approach; indeed, many enforce it For example,
one currently popular CASE tool [7], widely used for SSADM projects,
has only recently added limited support for the relocation of processes
from one level of a DFD to another. This type of change is almost
inevitably necessary unless requirements are fully understood before the
diagrams are constructed. In other words, it has implicitly been assumed
that the analyst gets each diagram right first time, and that there is little
need for 'rehashing' a diagram once it has been built. Constraints of this

144

sort mean that many CASE tools offer poor support for an iterative way of
working.

Owing to the overheads associated with amending models, CASE
tools have tended to take on a narrow role; the documentation of models
that have already been developed on paper. The difficulty of modifying
models held in many CASE repositories means that the tools will not be
used to capture models as they are being developed. how could CASE
address this problem? One solution is to provide quick and easy ways of
changing models. In the CASE tool mentioned above [7], to move a
process between levels is (arguably) almost as hard as deleting the process
and adding it elsewhere; data flows etc. must be individually reinstated.
Moving a process between levels is, however, conceptually a very simple
operation; employing simple user interface design principles, the CASE
tool could offer a correspondingly simple 'drag-and-drop' style of
manipulation, allowing the process to be moved with the minimum of
effort [8].

Mother way in which CASE tools can support an iterative approach
is by minimising the level of formality required in a model. The assumption
of top-down decomposition fails to take Into account the fact that only
fragmentary information may be known at the early stages of analysis. If
the CASE tool protests because certain data flows go nowhere] or certain
data attributes are not assigned to any data entity, or a process is
unattached to any other objects, then It is making unrealistic demands of
the analyst. Once again, it is forcing the analyst to use the tool to document
models, rather than to develop them.

Analysts as collaboration

A more up-to-date view of today's systems development is as a
process in which developers and users work together to explore
possibilities and to find out what is mutually acceptable. The concept of
partidpative design epftomises this view. The IT professional's role has
therefore moved in some 'ways towards that of a 'facilitator'. It is still
important to gather information, but this view of systems development
emphasises the need for bidirectional communication between analyst and
user. Being able to support thls collaborative activity is not necessarily
easy.

145

First, the analyst and user are likely to have very different skills. IT
oriented tools can easily confuse and disorientate a non-technical user.
What is needed are tools that manage to bridge the gap by hiding
'technical' concerns, while allowing full expressivity to capture and
represent important information. Secondly, collaboration is an inherently
unpredictable activity. Ideas emerge and are bounced around; they are
combined, changed, recombined or discarded. Finding ways of providing
support for an undefined task is tricly. Nevertheless, it is important that we
do offer support for the collaborative process. In the following, we look at
some ways In which appropriate support might be provided, with examples
from a prototype CASE tool, currently under development, called visual
Modeller.

Hiding The 'technical' aspects of modelling:

Many CASE tools present a rather formidable 'technical' face to
their users. For example, the representation of common diagrammatic
modelling techniques is extremely logical, to the mathematically minded IT
person, but could hardly be described as appealing, evocative or Inspiring
to non-IT users. Fig. 35 gives one example, an object diagram, constructed
using boxes, connecting lines, arrows and text Entity-relationship diagrams
use boxes, lines and text; data flow diagrams use circles, arrows and text
These techniques were created so as to be easy to draw using pen and
paper. Yet today's computer hardware can display graphics with ease.
Perhaps models could be created from truly graphical primitives; ones that
resemble the things they represent.

The visual Modeller prototype addresses this issue In three main
ways.

o Use of icons for ease of recognition: icons, and not just text, are used
to represent model components, facilitating an approximate but
immediate visual interpretation. In entity-relationship modelling, entities
as different as customers, orders, departments, and documents are rem
resented using the same symbol. In visual Modeller, customers are
represented using quite distinct icons from documents, for example. Fig.
34 illustrates a model being constructed In Visual Modeller. The choice
of Icon is important, and therefore Visual Modeller allows appropriate
Icons to be selected from a library.

146

lnuuroncc rr
t •

O·IV.d: ~.~t}' L~~·1 .:li
1f'~1&inl

Figure 39. Simple model.

o Specifying relationships through direct manipulation: in entity
relationship modelling, and many object-oriented analysis techniques,
aggregation relationships are shown as explicitly drawn connections
between objects, with associated labels, cardinalities etc. If the
relationships need to be amended, connections must be deleted and
others added. The multitude of relationships on a typical entity
relationship diagram can make interpretation a real challenge. In Visual
Modeller, manipulating a model and Its components is almost as simple
and intuitive as manipulating windows and icons; aggregation
relationships are created simply by placing icons within windows.

o Implied relationships: In entity-relationship modelling, most
relationships are drawn explicitly. In Visual Modeller, however,
relationships are not shown; instead they are implied. Subtype/supertype
(or inheritance) relation-ships are Implied by the physical appearance of
icons; for example, two model components that both have 'person Icons
both represent people or specific types of people (such as employees).
other associations are Implied by the naming of components.

147

,,....--------...
/ n .-, f '·,,,

ea,!y i -""-)y\ .- .. ,
e<r;erienc~ ----·-()., J..)

\ rnanapt!m~nt /
!'.JiOUp

/i -- - --·t~
(.<'. /)

r,~~;;jj l r:::~',:~=n:
! il' l 111
t. _j;l L i\:

\;-·wghl

Figure 40. SSM rich picture [10].

It should be stressed that the idea of using richer, conic
representations for models is not new. For example, the rich pictures used
In the soft systems methodology (SSM) and its derivatives [9, 10] are a
well established way of rept It is intended to create a suitable unisex
version of the 'person kon when time allows resenting a business situation
in a graphical form intended to be especially accessible to non-technical
people. For comparison, a rich picture is reproduced in fig. 40. Work is
under-way on providing CASE support for the creation and manipulation
of rich pictures. In tact' many CASE tools already offer limited 'system
diagram' features, in which simple icons, usually of people, documents,
equipment etc., can be put together. The reason often given for mailing this
sort of facility available is that diagrams with pictures are more easily
understood. We wonder why. if this is the case, the idea has not been
applied to the 'serious' modelling techniques.

Providing true modelling flexiday: despite its inherent unpredictability,
the one certain thing about modelling is that models change. Often, they
need to change quickly as ideas develop. If the CASE tool cannot 'keep up
with the pace of model development, then it must be relegated to a passive
documentation role. The 'brainstorming' style of modelling is fully

148

supported in joint applications design (JAD) [11], where flipcharts and
white boards are the preferred tools, chosen for their speed and flexibility.
Although JAD and JAD style modelling sessions are common, the Idea of
using CASE directly during modelling sessions has been slow to catch on:
"we argue this is because of the inherent inflexibility of most CASE tools.
Flexible CASE tools truly suited to the way models are constructed in
reality would allow' models and model components to be quickly and
easily built, revised, combined, split, enlarged, reduced, recombined etc.

In the visual Modeller prototype, the inherently unpredictable nature
of collaborative modelling activity is catered for in several ways.

• Reduced construct set. first, the set of constructs used to build models
is very simple; there is no clear-cut distinction between a 'model' and a
model component Models contain components, but each component is
effectively a model in its own right and may contain other components.
Components may also be connected to other components; but this
connection is implied, by position, appearance or name, and so there are
no messy connections between components to worry about when com
ponents are reused, moved, deleted or added.

• Simple model manipulation: to enable model-building from
components, a form of object-oriented model has been employed in
which aggregation is used to build components from other components,
much as a class in an object-oriented system can be constructed as an
aggregation of other classes. Fig. 39 illustrates a simple model
component containing several other components. Components are added
or moved simply by dragging and dropping, as In a classic GUI
interface; the sub components of a component are then automatically
added or moved.

• Support for 'unstructured' analysis: the early stages of modelling
often yield confused, fragmented and contradictory Ideas. It is useful to
capture these ideas and to follow them through; this is the essence of
'brainstorming'. A tool that forces consistency and logicality onto what is
essentially an unstructured process is therefore unsuitable; yet few
CASE tools permit the capture of models In their early, unstructured
form. Many of the ideas developed at early stages, through refinement,
form the basis of later model versions. It is wasteful to discard the
results of earlier stages simply because they are not rigorous enough.

149

Visual Modeller caters for this by allowing the analyst considerable
latitude, within the framework of windows and Icons, to construct arbitrary
models. The models need not mean' anything in particular; preliminary
models often contain objects purely as placeholders or reminders of issues
to be resolved. The important process of model refinement, which
proceeds as the analyst begins to fully understand the business area, is
therefore supported. As changing models is simple, there is no penalty
attached to starting with a 'wrong' model and then making it 'right'. Fig. 37
illustrates a model at an early stage of this restructuring process.

Analysis as the application of past experience

In this third and final perspective, the idea of gathering or
negotiating requirements is seen as less important than the need to
understand a business area before any computer-based information system
can be contemplated. Gaining such understanding is a necessary precursor
to any discussion of requirements, and the creation of models is a
formalised way of understanding a situation and of demonstrating
understanding. A model can be checked to ensure that it truly represents
the area of concern; it can be used as the focus of debate, and its structure
can be used to guide the information gathering process.

'-·---~,._-M,_ t 111
lflt111ed V'eh1cle

~ tit
Incident Ot.hei Ji1$t.ttert

• Location 01
ITTcidan!

t
1 hi,d pa,iy

-· .• -
Figure 41. Restructuring a model.

How can CASE tools assist In the process of under-standing? To
help in answering this question, we must decide what we mean by
'understanding'; a simple model of human cognition helps us to understand
this process (Fig. 42). Insights from the construction of artificial neural
networks that mimic the operation of certain parts of the brain appear to
supine this model, According to the model, new experiences are
interpreted in the light of past experience; relevant memories are conjured
up, by association, in the process known as 'cued recall', When a new

150

piece of knowledge is committed to long-tend memory, ft is always in a
particular context; memory Is essentially associative, Facts are not learned
individually and in isolation; they form a complex web of Inter
relationships and connections. Thus, the process of understanding a situ
ation involves the interpretation of the situation In the light of what has
gone before.

What are the implications of this simple model for the designers of
CASE tools? First, we see Immediately that CASE can provide useful
support for human memory, as a CASE tool can manage enormous
amounts of information; the repository can be seen as a powerful 'memory
for storing and associating facts, provided that they are first placed into a
sufficiently structured form. This Is indeed the approach taken in most
CASE tools, where the role of the tool is primarily to ad as a database for
meta-data. However, if we look again at our model of 'understanding', we
also see that learning and understanding new ideas are intimately linked to
the retrieval of arising knowledge. Generally, we can correctly interpret a
new situation provided that we can recall relevant past experience about
related or even similar situations. Making a creative leap without
experience to draw on (in other words, lateral thinking) is a rare skill.

In the context of modelling a business situation, it can be argued that
the use of CASE has the potential to interfere drastically with the
'understanding' process. As the use of CASE is often deferred until after
the model has been created (mentally, if not on paper), the powerful
'memory is not used in the most useful way; to assist in the construction of
models. Only if CASE can be brought to the point of model formulation
(or 'requirements capture'), can the potential power of this memory as an
associative and even inspirational tool for the modeller be unleashed.
CASE tools that do not permit easy change and reformulation of models
therefore force the analyst to rely on their own Intuition and past
experience; effectively, the analyst must keep the contents of the CASE
repository in their own mind while modelling. otherwise, we are faced with
the onerous task of modelling every situation afresh and then trying to
integrate a possibly incompatible model back Into the repository.

151

r---------....,
l 1011g trtm• l l.mlinoled -r;,ap{'.\cit~·. connecnen-ncn. pet$iSter,! i memory
I I
i I l.-.. ··•--r,-•

V5.S.OCittt.ive
,~anw1.9

;\ n
l r , j IJ); cWO <e~•

-~o,1~t:1D-~iS
:mlr.(1

,--~
j

' "I
I Hm1lt:1d cam.K1ly :,ir·nphi• \•t?ltWle

ShVfl · Lt,!1 tn
r,\RmP:ty

- J

Figure 42. Simple model of human cognition.

Thus, we conclude that allowing easy change and reformulation is
not enough. To be truly useful In the process of creating models, a CASE
,~~\ Th.~~, ~\\.~""" ~~~~'N~ ~"-~~~~~ ~~~ ~~\~·., ~~ 'N~ 'o..~~ ~~t t~ \\\mlel atre~\l
every time, then it is useful to be reminded of what exists already. For
example, when creating entities in an entity-relationship diagram, the
CASE tool could offer a list of similar entities or entities playing similar
roles, from which to choose. By building diagrams in this way, from
existing components, perhaps modified using subtyping, inheritance or
other constructs, we go a long way towards avoiding the problems of
1ntegrating new models with the existing repository. Here we touch on the
general problem of reuse [12]. The concept of reuse is often associated
with software, but it can also apply to models. For example, work on reuse
by analogy has shown that it may also be possible to reuse patterns or
common structures that occur in different situations.

The Visual Modeller prototype deals with this issue by providing
the concept of a 'role'; whenever a component appears In a model, it does
so In a particular role. For example, when a component of type 'person' is
used in a model about car insurance, it could appear in the role of
'insurance claim assessor', 'customer', third party claimant' etc. Two levels
of reuse are then enabled. first, the general requirements area (e.g.
insurance' in the example given above' defines a set of components that can
be reused in new models in the same or different requirements area.

152

Secondly, the type of each component (person' in the example above)
provides access to the set of roles that the component might take.
Obviously, if a given mole (or even type) has never appeared before in any
model, then it has to be constructed afresh, but it can be based on an
existing component or components.

Discussion

Hammer and Champy [2] show how business processes often
continue with outmoded rules and assumptions from earlier times. The
rules may well have been useful at one stage, but in changed
circumstances, they become a threat to the effective functioning or the
business. The purpose of business process re-engineering (BPR) is to
identity these faulty ways of working and to change them. The redesign
process inevitably involves significant change to the way people work; the
process Is also often IT-led [13].

The usual reasons for carrying out BPR are cost reduction, time
reduction, improvement in output quality and improvement in the quality of
work life 113). why is BPR relevant to CASE tools and the systems
analysis requirements gathering process? hammer and Champy Identify
several conditions that am indicative of 'broken' those in need of redesign.
Two of the symptoms they Identify are

o extension information exchange, data redundancy (and re keying,
when the process is computer-based): on the face of it, the use of
CASE tools should not necessitate data redundancy. However, consider
the earlier argument about the timing of CASE tool use. If the tool is
used to document models that have already been formulated on paper,
then there is indeed a problem of data redundancy. If most of the
thinking' work Is done away from the tool, then the tool is not providing
proper support.

o high ratio of checking arid control to value-adding: does CASE
involve an inordinate amount of checking and control? Superficially, we
might observe that CASE eases the checking task because it automates
ft However, a deeper analysis would point out that, using the sort of
techniques implemented in CASE tools, the need for checking is
multiplied. As the techniques are separate and unintegrated, a checking
problem is created in ensuring that parallel models are in step. For
example, the single business fact that a customer has purchased a pair of
shoes could well be represented in a CASE tool as one or more entities 153

in a data model, some processes on a data flow diagram (as well as data
stores, data flows and their contents), and several states on an entity-life
history diagram. All of these distinct representations of the same
underlying 'fact' need to be reconciled with one another.

This brief analysis of Systems analysis and CASE in the light or
ideas from BPR is not intended to be either conclusive or complete. It is
intended to show that there is a prima fade case for rethinking the CASE
based systems analysis process, taking some first principles Into account
Criticising the 'structured' methods Is not new, and the broad range of IS
methodologies illustrates the divergence of opinion on what is necessary to
ensure success in IS development [14]. There have been many
comparisons of IS methodologies, often carried out in the hope of finding
out what combination or features would make a wholly successfully
development process [15]. Associated with this has been the development
of 'portmanteau' methodologies, in which techniques, or indeed whole
methodologies, are combined so as to obtain the benefits of many different
approaches [16]. Although not decrying the potential of these ideas,
perhaps more benefit would be obtained by simplifying and rationalising
the development process, rather than Increasing its complexity still further.

This paper has presented some initial thoughts on ways in which
redesign of the analysis process and its CASE support might happen. In
summary 1 these are

• by supporting an iterative approach to modelling, in which changing a
model is as simple as visualising the change.

• by supporting less formal modes of modelling, if only at earlier stages
of analysis, and allowing the refinement of less formal models into more
formal ones.

• by providing a less IT-oriented user interface, hiding 'technical' details
and procedures and carrying out house keeping activities without
needing to be asked.

• by offering active support for a 'brainstorming'-style collaborative
approach to modelling (in other words, being useable as the focus for
group activity).

154

• by allowing an 'associative' approach to modelling, augmenting the
experience of the analyst to permit the construction of models from
existing components.

At this stage, these ideas are untested, and so evaluation of the
prototype tool and technique by its target user population is an essential
next step. Relatively controlled experiments should provide more Insight
Into which features provide the most benefit, and why. It should be pos
sible to find out if adjustment to the analysis process can lead to better
understood requirements, better designs and, ultimately, products that meet
user needs.

155

CONCLUSION
. '

Computer-aided software engineering tools span every step in the
software engineering process and those umbrella activities that are
applied throughout the process. CASE comprises a set of building blocks
that begin at the hardware and operating system software level and end
with individual tools.

In this chapter we have considered a taxonomy of CASE tools.
Categories encompass both management and technical activities and span
most software application areas. Each category of tool has been
considered as a point solution. In the next chapter, we consider ways in
which individual tools are integrated to form an environment.

As the years pass, CASE will became part of the fabric of software
engineering. Just as mechanical and electrical engineers rely on
CAD/CAE/CIM for the analysis and design of high-technology products,
software engineers will rely on cAsE for the analysis, design and testing
of computer-based systems for the twenty-first century.

During the software engineering process, sets of sequential tasks
are coupled by a continuing flow of information. In addition, a set of
"umbrella" activities occurs concurrently as one sequential task leads to
the next. Each task and most activities can be assisted with the use of
CASE tools. But the real benefit of the tools can not be realised until the
tools are integrated - until other tools can easily use information
produced with one tool.

The I-CASE environment combines integration mechanisms for
data, tools, and human-computer interaction. Data integration can be
achieved through the direct exchange of information, trough common file
structures, by data sharing by interoperability, or through the use of a full
I-CASE repository. Tools integration can be custom design by vendors
who work together or can be achieved through management software
provided as part of the repository. Human-computer integration is
achieved through interface standards that are becoming increasingly
common throughout the industry.

The application of three typical CASE products to the analysis and
specification of requirements for manufacturing Information systems
provided tangible 'hands on' familiarisation with CASE, and tested the
appropriateness of the methods and tools employed.

All of the case studies attained the objectives set by senior
management in an effective and structured manner. Indeed, the studies
'were considered as· particularly successful by the organisations involved,
and the impact of the methods and tools is most notable within the
FOUNDATION case study, providing the basis and justification for
revolution using the manufacturing organisation and control approaches.

We believe that the case studies demonstrate the relevance and
considerable impact of software engineering methodologies and CASE
tools on the specification of requirements for manufacturing Information
systems. We consider Execrator to be the superior product of the CASE
tools applied, and if coupled with methodology management and project
planning and control facilities similar to those of FOUNDATION, it
would provide a sufficient cornerstone for a Manufacturing CASE
product.

The aim of the research presented here was to investigate the need
for structured approaches and tools within manufacturing information
Systems development, and the. relevance of established software
engineering methodologies and supporting CASE tools in meeting this
need. The research topic has focused on what is widely seen as the most
critical task within information systems development, the specification of
requirements.

The first objective, the need for structured methods and tools in
support of manufacturing information systems requirements specification,
has been clearly established. An extensive review or the literature and a
survey of manufacturing experts substantiated this need and the require
ment for graphical modelling techniques. The success of the case studies
within the collaborating manufacturing organisations in comparison with
their traditional ad hoc approaches also confirmed that a disciplined
approach with automated support was of benefit.

Commercially available software engineering methodologies and
CASE products were examined for their suit-ability in providing support
to manufacturing systems engineers In the task of requirements
specification. This was the second objective of the research. To gain
familiarity with CASE technology, the history and capabilities of both
software engineering and CASE were established from the reviewed
literature. A comprehensive survey of CASE products, commercially
available within the UK, that support specification tasks strengthened this
examination. Three leading products were selected from this survey and
applied on-site to manufacturing information systems projects, to gain a

working· familiarisation with CASE In a real and immediate situation to
validate their suitability for the manufacturing systems engineer working
within Industry. · ,

To address the final objective, the main developments required for
both CASE methods and tools and the sup-porting manufacturing
Systems engineering organisation have been identified to facilitate the
widespread application of CASE within this area. This has been
undertaken on the basis of the literature review, use of existing CASE
methods and tools, and views elicited from manufacturing experts and
personal experience.

Here we present the conclusions drawn from the work undertaken
and the main developments required if CASE is to find widespread
adoption within the manufacturing industry. Substantial further research
is outlined that will build on the results of this work

This paper presents the research undertaken in two traditionally
separate areas, manufacturing systems engineering and information
systems development The research has reinforced the need for structured
approaches and tools in enabling manufacturing Systems engineers to
analyse and specify information systems in support of manufacturing.

The relevance of software engineering methodologies and
supporting CASE tools has been established in a more detailed manner
than has previously been under-taken. The main developments identified
in this work relating to the effective adoption of CASE within the
manufacturing industry have been presented. These developments relate
to the orientation of the methods towards manufacturing systems
engineers, the ease of use of the supporting CASE tools, and the planned
introduction of the methods and tools. Substantial further research has
been presented, which Is aimed at extending the research work by
defining the detailed requirements of manufacturing Systems engineers
and appropriate CASE methods and tools In specifying manufacturing
information Systems.

CASE tools should be enhanced so that full life-cycle activities are
integrated with development activities. This points the way towards an
architecture for CASE in the third generation.

In this paper, an architecture has been proposed for a 3GA WB
where development tools are augmented by a super structure of

management control tools. Development tools should include editors for
the techniques of structured methods and a word processor.

The main distinguishing characteristic of A WBs in the third
generation is the primary interaction of users with the process model,
rather than the development tools. The process model is used to guide
developers in the steps of the method and control the use of the
development tools in the environment. Process modelling should be based
on accessible graphical techniques, and an enhanced data flow
diagram/data dictionary notation is eminently suitable.

Another important characteristic of third generation tools is that
they will be used not only by developers, but also by managers. Support
should be provided for process modelling, project management and
quality control. When these activities are supported In one environment,
together with developmental activities, there is a cross-fertilisation of
information that offers wider opportunities for automation. Although
there are three distinct activities -in the super-structure, or three logical
strands, they should be implemented as a single physical strand (with a
single user interface). Much of the functionality of this strand would be
based on a single, unified task model. The user of this strand would be the
project manager. This role is already responsible for project management
and quality control, and would also carry out process modelling.

Early research results suggest that Implementation of the proposed
architecture is achievable. It is particularly important that the
superstructure could be added incremental to a second-generation CASE
tool. This allows existing tools to migrate from the second to the third
generation.

In the future, these ideas could be applied to other clusters of
CASE tools relating to other phases of the development lifecycle. This
could progress towards the integration of all types of CASE tools within a
framework provided by a consistent and coherent management control
superstructure, This vision of the future offers the best practical
opportunity for realising the dream of an integrated project support
environment.

Currently, tools in a CASE environment are invoked by developers
based on process models that are in their heads, or at best in methodology
or standards manuals. Within a third generation CASE environment the
inter-action is directly with an explicit process model that provides
guidance and control, in addition, the integrated automation of

management control activities is provided. This is imperative for coherent
management of software projects. Such a CASE environment will be
instrumental in the push for process improvement and improvements in
software productivity and quality, towards the year 2000.

:

APPENDIX

Over the past 20 years, many SE have been many developing

software for others. They have built complex systems that automate

the work of others. They have used very little automation themselves

Infact until recently software engineering was fundamentally a

manual activity in which tools were used only at the later stages of

the process.

Today, software engineers have finally been given computer

aided software engineering tools (CASE), but they are not in as

varieties as we would Iik.

don't always match with

they will became more

individual practitions.

don't provide enough sophistication

t software developer use. But over · ·

d more adaptable to the needs

In this report, the tecloiCal aspect of computer-aided software

engineering are discussed- T ttlmologies as software enginee ·

method and project mam~mtt1.t tools are explained. Tools

environments that will heln to awtomate software technologies is

discussed.

PREFERENCES

1. JACKSON, M.A: System development (Prentice Hall international Inc.
1983)

2. JACKSON, M.A: Principles of program design (Academic press Inc.
1975)

3. GILB, T.: Principles of software engineering management, 1988

4. JONES, C.: applied software measurement: assuming productivity and
quality, 1991

5. LOWRY, M. and DURAN, R.: Knowledge-based engineering, 1989

6. ROBINSON, K.: Putting the SE into CASE, 1992
'

;

7. PRESSMAN, R.S.: Software engineering: a practitioner's approach, 1992

8. LLOYD-WILLIAMS, M.: Intelligent assistance in the information systems
design I?rocess, 1993

9. OXMAN, R. and GERO, J.S.: Using an expert system for design diagnosis
and synthesis, 1987

10. GERO, J.S. and MAHER M.L.: A future role of knowledge-based
systems in the design process 1987

11. HULL, R. and KING, R.: Semantic database modelling: survey
applications and research issues, 1987

12. HAREL, D.: biting the silver bulet, 1992

13. FUCHS, N.: Specifications are executable, 1992

14. TATE, G.: Prototyping: helping to build the right software, 1990

15. CIBORRA, C. and JELASSI, T.: Strategic information systems, 1994

REFERENCES

16. GUPT~ R. and E. HOROWITZ: Object oriented database with

applications, 1991

17. HOPPER, M.D.: New way to compete on information, 1990

18. HORNER, M.: Future directions in CASE, 1990

19. PRESSMAN, RS. and S.R HERRON: Software shock, 1991

20. WASSERMAN. P .D.: Neural computing: theory and practice, 1989

21. FORTE, G.: In search of the integrated environment, 1989

22. FORTE, G.: Rally round the repository, 1989
l

23. MIKES, S.: X windows system technical reference, 1990

24. WELKE. R.J.: ~!eta systems on meta models, 1989

25. PCTE Functional specifications, 1988

26. WASSERMA-~. L.\..: The architecture of the CASE environments, 1989

27. CASTh1EWS: Vol3. ~o 4, April 1989

28. LEE. E.: user-interface development tools,-1990.

	Page 1
	Images
	Image 1

	Page 2
	Page 3
	Titles
	INTRODUCTION

	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Titles
	3

	Page 11
	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	COMPUTER-AIDED SOFTWARE ENGINNERING

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Images
	Image 1

	Page 17
	Titles
	r~-..,=~i.7,,;~; ~~~"·~·" ~~~1

	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	C)
	\ ... /·-\=:-=
	c,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Titles
	frJt'~\

	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Titles
	~---t_~:=:::~·:.~,~·---~~ .. ' .: ... ~-~-·~
	:;~,~~~'-'' ·--}-G~-====--'i_ ~
	L-G~~:,,_J·-- :~'.:~·---c.,;

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Titles
	INTEGRATED CASE ENVIRONMENTS

	Images
	Image 1

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Images
	Image 1
	Image 2
	Image 3

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1

	Page 45
	Images
	Image 1
	Image 2

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Images
	Image 1

	Page 56
	Titles
	I(. .

	Images
	Image 1
	Image 2
	Image 3

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 59
	Titles
	.

	Images
	Image 1

	Page 60
	Titles
	CASE 2000: THE FUTURE OF THE CASE
	~;~;;~~~.):;:,~:.·c,:r_,,H'. f'.

	Images
	Image 1
	Image 2

	Page 61
	Images
	Image 1
	Image 2

	Page 62
	Images
	Image 1

	Page 63
	Images
	Image 1

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1

	Page 67
	Images
	Image 1

	Page 68
	Images
	Image 1

	Page 69
	Images
	Image 1

	Page 70
	Images
	Image 1

	Page 71
	Images
	Image 1

	Page 72
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 73
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 74
	Titles
	-. I
	r _ _L -i

	Images
	Image 1
	Image 2
	Image 3

	Page 75
	Images
	Image 1

	Page 76
	Images
	Image 1

	Page 77
	Images
	Image 1

	Page 78
	Images
	Image 1

	Page 79
	Images
	Image 1

	Page 80
	Images
	Image 1

	Page 81
	Images
	Image 1
	Image 2

	Page 82
	Images
	Image 1

	Page 83
	Images
	Image 1

	Page 84
	Images
	Image 1

	Page 85
	Images
	Image 1

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1
	Image 2
	Image 3

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1

	Page 92
	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1

	Page 95
	Images
	Image 1

	Page 96
	Images
	Image 1

	Page 97
	Images
	Image 1

	Page 98
	Images
	Image 1

	Page 99
	Images
	Image 1

	Page 100
	Titles
	Currently, the 'back-end' of the SGF produces the three classes of

	Images
	Image 1
	Image 2

	Page 101
	Images
	Image 1

	Page 102
	Titles
	..
	l
	' l l . I .i I ' I
	! I ' I I I I
	i I I !N j
	L l, __ lJJ_.L 1,,J.o .. L.FL1 __

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 103
	Images
	Image 1

	Page 104
	Images
	Image 1

	Page 105
	Titles
	CASE IN THE THIRD GENERATION

	Images
	Image 1

	Page 106
	Images
	Image 1

	Page 107
	Images
	Image 1

	Page 108
	Images
	Image 1

	Page 109
	Images
	Image 1
	Image 2

	Page 110
	Images
	Image 1

	Page 111
	Titles
	·rn-TTI-· -r-

	Images
	Image 1
	Image 2
	Image 3

	Page 112
	Images
	Image 1

	Page 113
	Images
	Image 1

	Page 114
	Titles
	·---------------~~- .. -----~,

	Images
	Image 1
	Image 2

	Page 115
	Images
	Image 1
	Image 2

	Page 116
	Images
	Image 1

	Page 117
	Images
	Image 1

	Page 118
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 119
	Images
	Image 1

	Page 120
	Images
	Image 1

	Page 121
	Titles
	KNOWLEDGE-BASED CASE TOOLS:
	IMPROVING PERFORMANCE USING

	Images
	Image 1

	Page 122
	Images
	Image 1

	Page 123
	Titles
	ODA overview and method of processing

	Images
	Image 1

	Page 124
	Images
	Image 1

	Page 125
	Titles
	C

	Images
	Image 1
	Image 2

	Page 126
	Titles
	---, ~~
	'."r~-"soci��o--~~
] \ J \
	E~~ I L--, B ~-
	Using the domain specific knowledge

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 127
	Images
	Image 1

	Page 128
	Images
	Image 1

	Page 129
	Titles
	EXECUTABLE SPECIFICATION AND CASE

	Images
	Image 1

	Page 130
	Images
	Image 1

	Page 131
	Images
	Image 1

	Page 132
	Images
	Image 1

	Page 133
	Titles
	Project background

	Images
	Image 1

	Page 134
	Images
	Image 1

	Page 135
	Images
	Image 1

	Page 136
	Titles
	I
	r---- .. ·-1
	r----1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 137
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 138
	Images
	Image 1

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1

	Page 141
	Titles
	~/;,;~;·\
	l

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 142
	Titles
	Conclusions from EGS 1 and further work

	Images
	Image 1

	Page 143
	Titles
	/
	t
	(M.1~17..~H
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 144
	Images
	Image 1

	Page 145
	Images
	Image 1

	Page 146
	Images
	Image 1

	Page 147
	Images
	Image 1

	Page 148
	Titles
	Analysts as collaboration

	Images
	Image 1

	Page 149
	Titles
	Hiding The 'technical' aspects of modelling:

	Images
	Image 1

	Page 150
	Titles
	t �

	Images
	Image 1
	Image 2
	Image 3

	Page 151
	Titles
	/ n .-, f '·,,,
	/i -- - --·t~
	r,~~;;jj l r:::~',:~=n:
	! il' l 111

	Images
	Image 1
	Image 2

	Page 152
	Images
	Image 1

	Page 153
	Titles
	Analysis as the application of past experience
	~ tit
	t
	�
	t 111
	-· .� -

	Images
	Image 1
	Image 2

	Page 154
	Images
	Image 1

	Page 155
	Titles
	;\ n
	l r , j
	IJ); cWO <e~�
	"I
	- J

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 156
	Images
	Image 1

	Page 157
	Images
	Image 1

	Page 158
	Images
	Image 1

	Page 159
	Images
	Image 1

	Page 160
	Images
	Image 1

	Page 161
	Images
	Image 1
	Image 2

	Page 162
	Images
	Image 1
	Image 2

	Page 163
	Images
	Image 1

	Page 164
	Images
	Image 1
	Image 2
	Image 3

	Page 165
	Page 166
	Images
	Image 1

