
BY

"CI

PROGRAMMING LANGUAGE

FERAY ASAL

A PROJECT SUBMITTED TO THE POLYTECHNICAL SCHOOL COUNCIL

FOR

DIPLOMA IN COMPUTER PROGRAMMING

EASTERN MEDITERRANEAN UNIVERSITY

AND

DEPARTMENT OF COMPUTER PROGRAMMING

INFORMATION TECHNOLOGY
)

JANUARY 1992

i,C

TO MY DEAREST MUM & DAD

-

ACKNOWLEDGEMENT

I would like to thank to Mr. A. GUMUS for his kind help

during the study of my graduation project.

I would like also to thank the following persons for their

help in finishing my graduation project: ARMEN

(SARICA,Mr.ORHAN ERTUGRUL.

My special acknowlagment to Mr\ N. ICIL for assigning me

to do the proper assignment to be my graduation project.

ABSTRACT

The programming languag~ C is one of the most popular

language in active use today. C is a pratical languge that

offers the classical programming language contepts in new,

simple and easy-to-use from.

This popularity has recently increased due to the

~oliferation of personal computers and the availability of

powerfull compiler and programming environments on them.

TABLE OF CONTENTS

PAGE

Abstratct i

Table of Contents ii

INTRODUCTION
~

..................................... 1

CHAPTER 1. INTRODUCING C . . 2

1.1 What is C 2

1.2 Uses of C 4

1.3 Ca structured language 5

CHAPTER 2. GENERAL OVERIEW OF C 7

2.1 Function in C 7

2.2 The general form of C functions 8

2. 3 The main() function 9

2.4 Function arguments 9

2.5 The printf() function 10

5

CHAPTER 3. C KEYWORDS . 12

3. 1 C keywords list .•...... ·-. 12

CHAPTER 4. VARIABLES,CONSTANTS,OPERATORS,

AND EXPRESSION • • • . . • . . 13

4. 1 Variables • • • • . • • 13

4. 2 Data -types . 13

4.3 Declaration of variables•................. 14

4. 4 Local variables . 15

4. 5 Formal Parameters . 15

4.6 Global Variables and extern 16

4.7 The static variable 17

4.8 The register variables 18

CHAPTER 5 • ARRAY . 19

5. 1 Arrays in c . 19

CHAPTER 6. ASSIGMENT STATEMENT 20

6.1 Assignment statement in C 20

CHAPTER 7. CONSTANTS . .

7.1 Constant inc
7.2 Backslash character constants

CHAPTER 8. OPERATORS

8.1 Operators in C
8.2 Arithmetic Operators
8.3 Relational and logical operators

8.4 Bitwise operators

..................
.................................

8 . 5 The ? opeziat.or s • . • 2 5

8.6 The & and pointer operators

CHAPTER 9. EXPRESSIONS

9.1 Expression inc

9.2 Casts

...................................
...

CHAPTER PROGRAM CONTROL STATEMENT . . 10.

10.1 The if statement
10.2 The if-else-if ladder

10.3 The switch statement

............................
.............................

22

22

22

23

23

23

24

24

26

27

27

27

28

28

29

30

CHAPTER 11. LOOP 32

11.3 The while loop

11.4 The do-while loop

................................

32

32

32

33

11.1 Loop in C

11.2 The for loops

....................................

....................................

................................

CHAPTER 12. EXITING LOOPS USING BREAK

AND EXIT 34

12.1 Introduction 34

34

35

35

12.2 The break statement

12.3 The exit() function

12.4 The continue statement

CHAPTER 13. THE C CODE

NOUGHTS

FOR A SIMPLE

& cRoss'Es

PROGRAM OF

36

13.1 Coding in C

Conclussion

Recomendation

References

36

36

37

41

42

43

13.2 The headerfile "N" and "c.h"

13.3 The example program of c

INTRODUCTION

The purpose of this project is to give an introduction to

C programming language.

This project assumes that you have some knowledge of

programming. You should understand the general concepts of

variables assignment statements, and loops.

1

CHAPTER 1

INTRODUCING C

WHAT IS C?

c is often called middle-level computer language because it

combines elements of a high-level language with the

functionalism of assembler. Table 1-1 shows the levels of

various computer languages including C.

A middle-level language gives programmers a minimal set of

control and data manipulation statements that they can use to

defihe high-level constructs. In contrast a high-level

language is designed to try to give programmers everything

they could possibly want already built into the language.

A low-level language forces programmers to define all

programe functions directly because nothing is built-in.

Middle-level languages are sometimes thought of as building

block languages because the programmer first creates the

2

TABLE 1-1 Levels of computer Languages

HIGH
LEVEL

MIDDLE
LEVEL

LOW
LEVEL.

Ada
BASIC
COBOL
FORTRAN
Pascal

C
FORTH

Assembler

routines to perform all the programs necessary functions and

then puts them together.

Callows the programmer to define routines to perform high-

level commands. These routines are called functions.

As a middle-level language C manipulates the bits-bytes .and

addresses the computer functions with unlike a high-level

language that can operate directly on strings of characters

to perform a multitude of string functions.C can operate

directly on characters.For example in BASIC,there are built-

in statements to read and write disk files.In C,these

procedures are performed by functions that are not part of

the C language proper,but are provided in the C standard

3

library. These functions are special routines written in C

that perform these operations.

C does have its benefits.It has very few statements to

remember-only 28 keywords. This means that C compilers can be

written reasonably easily since C operates on the same data

types as the computer,the code output from a C compiler is

efficient and fast.C can be used in place of assembler for

most tasks.

C code is very portable. Portability means softwear written

for one type of computer can be adapted to another type.

USES OF C

C was first used for system programming. System programming

refers to a class of programs that either are part of or work

closely with the operating system of the computer. System

programs make the computer capable of performing useful work.

These are example of system programs that are often writen in

C:

-Operating system

-Assemblers

-Print spoolers

-Language compiler

-Text editors

- Network drivers

4

-Modem programs -Data bases

-Language interpreters -Utilities

System programs often must run very quickly. Programs

compilers can run almost as fast as those writen in

assembler. Since c code can be written more quickly than

assembly code using C readuces costs tremendously.

Another reason that C is frequently used for system

programming is that it is a programmer's language.

Professional programmers seem to be attracted to C because it

lacks restrictions and easily manipulates bits, bytes, and

addresses. The system programer needs C's direct control of

the I/0 and memory management functions.

C

A STRUCTURED

LANGUAGE

C is a structured language. The most distinguishing feature

of a structured language is that it uses blocks. A block is a

set of statements that, if successful will execute five

discrete statements. If these statements can be grouped

together and referenced easily, they form a block.

A structured language gives you a variety of programming

possibilities. It supports the concept of subroutines with

5

local variables. A local variable is simply a variable that

is known only to the subroutine in which it is defined. A

structured language also supports several loop constructs,

such as the while,do-while and for constructs. A structured

language allows seperately compiled subroutines to be used

without being in the program proper. Structured languages

tend to be more modern while the nonstructured are older. As

you learn C programming languages, the difference between a

structured and nonstructured language will become quite

clear.

6

2

GENERAL OVERVIEW OF

C

i,mction in _g_:

The c language is based on the concept of building blocks.

The building blocks are called functions. AC program is a

collection of one or more functions. To write a program, you

first create functions and then put them together.

TABLE 2-1 c version and BASIC version of program that prints
HELLO

main ()
{

printf("HELLO\n")
10 PRINT "HELLO"
20 END

}

A function is a subroutine that conteins one or more C

statements and performs one or more tasks. In well-writen C

code each function performs only one task. Each function has

7

a name and a list of arguments that the function will

receive. In general, you can give a function whatever name

you please with the exeption of main which is reserved for

the function that begins program executions.

In the HELLO program of figure 2-1 both main() and printf

() are functions.

The General Form Of c Functions:

The HELLO program introduces the general form of a C

function. The program starts with main (). Than an opening

brace signifies the begining of the function followed by any

statements that make up the function. In this program, do

only statement is printf (). The closing brace signals the

end of a function. Here it also marks the end of the program.

The general form of a function is

function-name (argument list)
argument-list declaration

{ opening brace begins the body of the
function

body of the function

} closing brace ends the function

As you can see, the first thing a function needs is the

name. Inside the parentheses following the function name is

the list of arguments. Immediately following on the next line

is the argument list declaration, which tells the compiler

8

what type of varable to expect. Next braces surround the body

of the function. The body of the function is composed of the

C statements that define what the function does.

The main .11 function:

The main() function is special because it is the first

function called when your program executes a C program begins

with a called to the main() function. The main() function

can be anywhere in your program, although it is generally

the firs function for the sake of clarity. There can only be

one main() in a program.

Function Arguments:

An argument is a value that is passed into a function. When

a function is defined variables that will receive argument

values must also be declead. These are called the formal

parameters of the function. The return statement transmits

the product back to the calling routine.

mul (x,y)
int x,y;

/*mul function*/
/*here x and y are declared to

be integer variables*/
{

return (x*y): /*gives the product of the two
arguments*/

Each time mul() is called it will multiply the values of x

and y Table 1-3 presents a short program that uses the mul()

9

function. This program will print two numbers on the screen:

2 and 2340 The variables x,y,j-and k are not modified by the

call to the mul () function. In fact,x and yin main () have

o reationship to x and yin mul().

In C functions, arguments are always sepereted by commas.

able 1-3 A PROGRAM USING THE MUL() FUNCTION

main
{
int x,y,j,k;
x=l;
y=2;
p=mul (x, y) ;
printf ("% d",p); /*printf pin decimal*/
j=234;
k=lO;
p=mul (k, j)
pr intf (" % d" , p) ;

}
mul (x,y)
int x,y;

/*mul function*/
/*here x and y are declared
integer variables*/ { return
(x*y) ;/*gives the product arguments*/

arguments*/

to be

lof the two

}

_he printf() function:

The general form of printf() is

printf("control string" argument list)

In the printf() function, the control string contains format

10

~ands that tell printf(O how to dispilay the remaining

ents there are, remember that each argument in the

2"Pff1..-.ent list is seperated by a comma. The printf() allows a

iety of format command as shown in table 1-4.

TABLE 1-4 A program using the mul() function

printf ()
code
%c
%d
%e
%f
%g
%0
%s
%u
%x

format
single character
decimal
scientific notation
decimal floating point
uses %e or %f, whichever is shortes
octal
string of character
unsigned decimal
hexadecimal

11

C KEYWORDS

CHAPTER 3

C KEYWORDS LIST

Chas 28 keywords that may not be used as variable or

function names. These words, when combined with the formal C

syntax form the C programming language. The keywords are

isted in Table 1-5 C requires that all keywords:

TABLE 1-5 Keyword list

auto double if statis
break else int struct
case entry long switch
char extern register typedef
continue float return union
default for sizeof unsigned
do goto short while

ercase. For example, Return will not be recognized as the

.eyword return.

12

PTER 4

VARIABLES, CONSTANTS, OPERATORS,

AND EXPRESSIONS

yariables:

'ariable name in C can vary from one to several characters,

·~h the first character being a leeter and subsequent

aracters being either letters, numbers,or the underscore

acter. A variable may not be the same as a C keyword, and

should not have the same name as a function that you wrote

that is aready in the C library.

~ Types:

ere are seven built-in types of variables. The size and

ge of these data types vary with processor type with the

plementation of the c compiler. The size and range

ormation in table 1-6 will be correct.

13

TABLE 1-6 variable Size and Range For Microcomputers

TYPE BIT WIDTH RANGE

double 64

o to 255
-32768 to 32767
-128 to 127
Oto 65535
-4294967296 to 4294967295
approximately 6 digits of
precision
approximately 12 digits
of precision

char
int
short int
unsigned int
long int
float

8
16
8

16
32
32

Declaration of Variables:

All C variables must be declared before type are used. The

syntax for declaring each type of variable is shown in the

following examples:

inti;
short int si;
unsigned int ui;
long int li;
float f;
doubled;

There are three basic places in a C program where variables

will be declared: inside functions, in definition of function

parameters, or outside of all functions. These variables are

called local variables, formal parameters, and global

variables.

14

Local variables:

Local variables are declared inside a function. they may be

referenced only by the statements that are inside the

function in which the variables aredeclared. Local variables

are not known to other functions outside their own; for

example:

f unc 1 (()
{

int Xi
x=lO;

}
func2 ()
{

int x;
x=-199;

}

Formal Parameters:

If a function has arguments must be declared. These are

called the formal parametes of the function. The declaration

occurs after the function name and before the opening brace;

for example:

funcl (first,last,ch)
int first,last;
char ch;
{

int count;
count= first*last;

ch= 'a' ;

}

15

this example funcl() has three arguments called first

st, and ch. You must tell C what type of variables these

e by declaring them as shown in this fragment the formal

rameters you declare are the same type as the mismatch,

expected results can occur.

lobal variables Exern:

nlike local variables, global variables hold their value

oughout the entire time your program is running. Global

ariables are created by declaring them outside of any

nction. They may be accessed by any exression is in.

ecause Callows seperately compiled modules of a large

rogram to be linked together in order to speed up

compilation, you must make sure that both files can reference

the global variables. You can declare a global variable

nly once.

he extern modifier tells the compiler that the variables

ypes and names that follow have already been declared

elswhere. In other words extern lets the compiler know what

e types and names are for these global variables without

actually creating them again. When the linker links the to

ules together, all reference to the external variables are

resolved.

16

