
BY

"CI

PROGRAMMING LANGUAGE

FERAY ASAL

A PROJECT SUBMITTED TO THE POLYTECHNICAL SCHOOL COUNCIL

FOR

DIPLOMA IN COMPUTER PROGRAMMING

EASTERN MEDITERRANEAN UNIVERSITY

AND

DEPARTMENT OF COMPUTER PROGRAMMING

INFORMATION TECHNOLOGY
)

JANUARY 1992

i,C

TO MY DEAREST MUM & DAD

-

ACKNOWLEDGEMENT

I would like to thank to Mr. A. GUMUS for his kind help

during the study of my graduation project.

I would like also to thank the following persons for their

help in finishing my graduation project: ARMEN

(SARICA,Mr.ORHAN ERTUGRUL.

My special acknowlagment to Mr\ N. ICIL for assigning me

to do the proper assignment to be my graduation project.

ABSTRACT

The programming languag~ C is one of the most popular

language in active use today. C is a pratical languge that

offers the classical programming language contepts in new,

simple and easy-to-use from.

This popularity has recently increased due to the

~oliferation of personal computers and the availability of

powerfull compiler and programming environments on them.

TABLE OF CONTENTS

PAGE

Abstratct i

Table of Contents ii

INTRODUCTION
~

..................................... 1

CHAPTER 1. INTRODUCING C . . 2

1.1 What is C 2

1.2 Uses of C 4

1.3 Ca structured language 5

CHAPTER 2. GENERAL OVERIEW OF C 7

2.1 Function in C 7

2.2 The general form of C functions 8

2. 3 The main() function 9

2.4 Function arguments 9

2.5 The printf() function 10

5

CHAPTER 3. C KEYWORDS . 12

3. 1 C keywords list .•...... ·-. 12

CHAPTER 4. VARIABLES,CONSTANTS,OPERATORS,

AND EXPRESSION • • • . . • . . 13

4. 1 Variables • • • • . • • 13

4. 2 Data -types . 13

4.3 Declaration of variables•................. 14

4. 4 Local variables . 15

4. 5 Formal Parameters . 15

4.6 Global Variables and extern 16

4.7 The static variable 17

4.8 The register variables 18

CHAPTER 5 • ARRAY . 19

5. 1 Arrays in c . 19

CHAPTER 6. ASSIGMENT STATEMENT 20

6.1 Assignment statement in C 20

CHAPTER 7. CONSTANTS . .

7.1 Constant inc
7.2 Backslash character constants

CHAPTER 8. OPERATORS

8.1 Operators in C
8.2 Arithmetic Operators
8.3 Relational and logical operators

8.4 Bitwise operators

..................
.................................

8 . 5 The ? opeziat.or s • . • 2 5

8.6 The & and pointer operators

CHAPTER 9. EXPRESSIONS

9.1 Expression inc

9.2 Casts

...................................
...

CHAPTER PROGRAM CONTROL STATEMENT . . 10.

10.1 The if statement
10.2 The if-else-if ladder

10.3 The switch statement

............................
.............................

22

22

22

23

23

23

24

24

26

27

27

27

28

28

29

30

CHAPTER 11. LOOP 32

11.3 The while loop

11.4 The do-while loop

................................

32

32

32

33

11.1 Loop in C

11.2 The for loops

....................................

....................................

................................

CHAPTER 12. EXITING LOOPS USING BREAK

AND EXIT 34

12.1 Introduction 34

34

35

35

12.2 The break statement

12.3 The exit() function

12.4 The continue statement

CHAPTER 13. THE C CODE

NOUGHTS

FOR A SIMPLE

& cRoss'Es

PROGRAM OF

36

13.1 Coding in C

Conclussion

Recomendation

References

36

36

37

41

42

43

13.2 The headerfile "N" and "c.h"

13.3 The example program of c

INTRODUCTION

The purpose of this project is to give an introduction to

C programming language.

This project assumes that you have some knowledge of

programming. You should understand the general concepts of

variables assignment statements, and loops.

1

CHAPTER 1

INTRODUCING C

WHAT IS C?

c is often called middle-level computer language because it

combines elements of a high-level language with the

functionalism of assembler. Table 1-1 shows the levels of

various computer languages including C.

A middle-level language gives programmers a minimal set of

control and data manipulation statements that they can use to

defihe high-level constructs. In contrast a high-level

language is designed to try to give programmers everything

they could possibly want already built into the language.

A low-level language forces programmers to define all

programe functions directly because nothing is built-in.

Middle-level languages are sometimes thought of as building­

block languages because the programmer first creates the

2

TABLE 1-1 Levels of computer Languages

HIGH
LEVEL

MIDDLE
LEVEL

LOW
LEVEL.

Ada
BASIC
COBOL
FORTRAN
Pascal

C
FORTH

Assembler

routines to perform all the programs necessary functions and

then puts them together.

Callows the programmer to define routines to perform high-

level commands. These routines are called functions.

As a middle-level language C manipulates the bits-bytes .and

addresses the computer functions with unlike a high-level

language that can operate directly on strings of characters

to perform a multitude of string functions.C can operate

directly on characters.For example in BASIC,there are built-

in statements to read and write disk files.In C,these

procedures are performed by functions that are not part of

the C language proper,but are provided in the C standard

3

library. These functions are special routines written in C

that perform these operations.

C does have its benefits.It has very few statements to

remember-only 28 keywords. This means that C compilers can be

written reasonably easily since C operates on the same data

types as the computer,the code output from a C compiler is

efficient and fast.C can be used in place of assembler for

most tasks.

C code is very portable. Portability means softwear written

for one type of computer can be adapted to another type.

USES OF C

C was first used for system programming. System programming

refers to a class of programs that either are part of or work

closely with the operating system of the computer. System

programs make the computer capable of performing useful work.

These are example of system programs that are often writen in

C:

-Operating system

-Assemblers

-Print spoolers

-Language compiler

-Text editors

- Network drivers

4

-Modem programs -Data bases

-Language interpreters -Utilities

System programs often must run very quickly. Programs

compilers can run almost as fast as those writen in

assembler. Since c code can be written more quickly than

assembly code using C readuces costs tremendously.

Another reason that C is frequently used for system

programming is that it is a programmer's language.

Professional programmers seem to be attracted to C because it

lacks restrictions and easily manipulates bits, bytes, and

addresses. The system programer needs C's direct control of

the I/0 and memory management functions.

C

A STRUCTURED

LANGUAGE

C is a structured language. The most distinguishing feature

of a structured language is that it uses blocks. A block is a

set of statements that, if successful will execute five

discrete statements. If these statements can be grouped

together and referenced easily, they form a block.

A structured language gives you a variety of programming

possibilities. It supports the concept of subroutines with

5

local variables. A local variable is simply a variable that

is known only to the subroutine in which it is defined. A

structured language also supports several loop constructs,

such as the while,do-while and for constructs. A structured

language allows seperately compiled subroutines to be used

without being in the program proper. Structured languages

tend to be more modern while the nonstructured are older. As

you learn C programming languages, the difference between a

structured and nonstructured language will become quite

clear.

6

2

GENERAL OVERVIEW OF

C

i,mction in _g_:

The c language is based on the concept of building blocks.

The building blocks are called functions. AC program is a

collection of one or more functions. To write a program, you

first create functions and then put them together.

TABLE 2-1 c version and BASIC version of program that prints
HELLO

main ()
{

printf("HELLO\n")
10 PRINT "HELLO"
20 END

}

A function is a subroutine that conteins one or more C

statements and performs one or more tasks. In well-writen C

code each function performs only one task. Each function has

7

a name and a list of arguments that the function will

receive. In general, you can give a function whatever name

you please with the exeption of main which is reserved for

the function that begins program executions.

In the HELLO program of figure 2-1 both main() and printf

() are functions.

The General Form Of c Functions:

The HELLO program introduces the general form of a C

function. The program starts with main (). Than an opening

brace signifies the begining of the function followed by any

statements that make up the function. In this program, do

only statement is printf (). The closing brace signals the

end of a function. Here it also marks the end of the program.

The general form of a function is

function-name (argument list)
argument-list declaration

{ opening brace begins the body of the
function

body of the function

} closing brace ends the function

As you can see, the first thing a function needs is the

name. Inside the parentheses following the function name is

the list of arguments. Immediately following on the next line

is the argument list declaration, which tells the compiler

8

what type of varable to expect. Next braces surround the body

of the function. The body of the function is composed of the

C statements that define what the function does.

The main .11 function:

The main() function is special because it is the first

function called when your program executes a C program begins

with a called to the main() function. The main() function

can be anywhere in your program, although it is generally

the firs function for the sake of clarity. There can only be

one main() in a program.

Function Arguments:

An argument is a value that is passed into a function. When

a function is defined variables that will receive argument

values must also be declead. These are called the formal

parameters of the function. The return statement transmits

the product back to the calling routine.

mul (x,y)
int x,y;

/*mul function*/
/*here x and y are declared to

be integer variables*/
{

return (x*y): /*gives the product of the two
arguments*/

Each time mul() is called it will multiply the values of x

and y Table 1-3 presents a short program that uses the mul()

9

function. This program will print two numbers on the screen:

2 and 2340 The variables x,y,j-and k are not modified by the

call to the mul () function. In fact,x and yin main () have

o reationship to x and yin mul().

In C functions, arguments are always sepereted by commas.

able 1-3 A PROGRAM USING THE MUL() FUNCTION

main
{
int x,y,j,k;
x=l;
y=2;
p=mul (x, y) ;
printf ("% d",p); /*printf pin decimal*/
j=234;
k=lO;
p=mul (k, j)
pr intf (" % d" , p) ;

}
mul (x,y)
int x,y;

/*mul function*/
/*here x and y are declared
integer variables*/ { return
(x*y) ;/*gives the product arguments*/

arguments*/

to be

lof the two

}

_he printf() function:

The general form of printf() is

printf("control string" argument list)

In the printf() function, the control string contains format

10

~ands that tell printf(O how to dispilay the remaining

ents there are, remember that each argument in the

2"Pff1..-.ent list is seperated by a comma. The printf() allows a

iety of format command as shown in table 1-4.

TABLE 1-4 A program using the mul() function

printf ()
code
%c
%d
%e
%f
%g
%0
%s
%u
%x

format
single character
decimal
scientific notation
decimal floating point
uses %e or %f, whichever is shortes
octal
string of character
unsigned decimal
hexadecimal

11

C KEYWORDS

CHAPTER 3

C KEYWORDS LIST

Chas 28 keywords that may not be used as variable or

function names. These words, when combined with the formal C

syntax form the C programming language. The keywords are

isted in Table 1-5 C requires that all keywords:

TABLE 1-5 Keyword list

auto double if statis
break else int struct
case entry long switch
char extern register typedef
continue float return union
default for sizeof unsigned
do goto short while

ercase. For example, Return will not be recognized as the

.eyword return.

12

PTER 4

VARIABLES, CONSTANTS, OPERATORS,

AND EXPRESSIONS

yariables:

'ariable name in C can vary from one to several characters,

·~h the first character being a leeter and subsequent

aracters being either letters, numbers,or the underscore

acter. A variable may not be the same as a C keyword, and

should not have the same name as a function that you wrote

that is aready in the C library.

~ Types:

ere are seven built-in types of variables. The size and

ge of these data types vary with processor type with the

plementation of the c compiler. The size and range

ormation in table 1-6 will be correct.

13

TABLE 1-6 variable Size and Range For Microcomputers

TYPE BIT WIDTH RANGE

double 64

o to 255
-32768 to 32767
-128 to 127
Oto 65535
-4294967296 to 4294967295
approximately 6 digits of
precision
approximately 12 digits
of precision

char
int
short int
unsigned int
long int
float

8
16
8

16
32
32

Declaration of Variables:

All C variables must be declared before type are used. The

syntax for declaring each type of variable is shown in the

following examples:

inti;
short int si;
unsigned int ui;
long int li;
float f;
doubled;

There are three basic places in a C program where variables

will be declared: inside functions, in definition of function

parameters, or outside of all functions. These variables are

called local variables, formal parameters, and global

variables.

14

Local variables:

Local variables are declared inside a function. they may be

referenced only by the statements that are inside the

function in which the variables aredeclared. Local variables

are not known to other functions outside their own; for

example:

f unc 1 (()
{

int Xi
x=lO;

}
func2 ()
{

int x;
x=-199;

}

Formal Parameters:

If a function has arguments must be declared. These are

called the formal parametes of the function. The declaration

occurs after the function name and before the opening brace;

for example:

funcl (first,last,ch)
int first,last;
char ch;
{

int count;
count= first*last;

ch= 'a' ;

}

15

this example funcl() has three arguments called first­

st, and ch. You must tell C what type of variables these

e by declaring them as shown in this fragment the formal

rameters you declare are the same type as the mismatch,

expected results can occur.

lobal variables Exern:

nlike local variables, global variables hold their value

oughout the entire time your program is running. Global

ariables are created by declaring them outside of any

nction. They may be accessed by any exression is in.

ecause Callows seperately compiled modules of a large

rogram to be linked together in order to speed up

compilation, you must make sure that both files can reference

the global variables. You can declare a global variable

nly once.

he extern modifier tells the compiler that the variables

ypes and names that follow have already been declared

elswhere. In other words extern lets the compiler know what

e types and names are for these global variables without

actually creating them again. When the linker links the to

ules together, all reference to the external variables are

resolved.

16

When you use a global variable inside a function tht is in

the same file as the declaration for the global variable, you

may select to use extern, although you don't have to. For

example, this is the way to use this option:

int first, last; /* global definition of first and
last*/

main()
{

extern int first;/* optional use of
the extern declaration*/

}

The static variables:

The static variables are permanent variables within either

their-own function or file. They differ from global variables

because, while they are not known outside their function or

file, they maintain their values between calles. This feature

can make them very useful when you write generalized function

and function libraries that are used by other programmers.

A good example of a function that might require such a

variables is a number-series generator that produces a new

number based on the last one.

series()
{

static int series-num;
series-num=series-num+23;
return(series-num);

} '

17

In this example, the variables series-num steys in existence
between function calls instead of coming and going the way a

normal local variable would. This means that each call to

series() can produce a new member of the series based on the

last number without declaring that variable globally.

The Register variables:

c has last variable/declaration modifier that applies only

to type int and char in most cases. The register modifire

forces the C compiler to keep tbe value of variables declared

with this modifier in the register of the CPU rather than in

memory, where normal variables are stored. This means that

operations on register variables can occur much faster than

those on variables stored in memory because the value of

register variables are held in the CPU and do not require a

memory access. this makes register variables ideal for loop

control. The register modifier can apply only to local

variables and to the formal parameters in a function

definition. Here is an example of how to declared register

variables of int and char:

funcl(s,u)
register int s;
register char
{

u;

float temp;

register int counter;

}

18

CHAPTER 5

ARRAY

Array in .Q.:

Arrays can be of any variable type. The general form of the

array declaration is

type variable_name(number of elements];

For example, to make an array called q with ten integer

elements, you would write

int q[lO];

Arrays elements are referenced by specifiying the element

number in brackets after name. To reference the first three

elements of array q, you would write

q[O]
q[l]
q[2]

Unlike some BASICs, all arrays in C start with elements

zero. This means that the ten elements of array q indexed

from zero to nine.

19

CHAPTER 6

ASSIGNMENT STATEMENTS

Assignment statement in g:

Up to this point, the examples have been assigning variables

values without discussion. The general form of the assignment

statement statement is as follow:

variable_name=expression;

where an expression may be as simple as a constant or as

complex as an expression.

Type conversion in Assignments:

Type conversion refers to the situation in which

variables of one type are mixed with variables of another

type. When this occurs in an assignment statement, the type

conversion rule is very easy: the valu of the right side of

the assignment is coverted to the type of the side, the

target variable. For example:

20

int x;
char ch;
float f;
f unc ()
{

ch=x:
x=f:
f=ch:
f=x:

}

TABLE 1-7 Assignment Type Conversion Rules

TARGET TYPE EXPRESSION TYPE POSSIBLE INFORMATION
LOSS

float double

sign
high-order 8 bits
high-order 24 bits
high-order 8 bits
high-order 24 bits
high-order 16 bits
posssibly more
precision; result
rounded

char
char
char
short int
short int
int

short int
int
long int
int
long int
long int

21

CHAPTER 7

CONSTANTS

Constant in g:

Constants in C refer to fixed values that may not be altered

by a program. They can be of any type, as shown in table 1-8

TABLE 1-8 Example of Constants

DATA TYPE
char
int
long int
short int
unsigned int
float
double

CONSTANT EXAMPLES
'a, , \n' , 9,
1 123 21000-234
35000-34
10-12 90
10000 987
123.23 4.34e-3
123.23 12312333-0.9876324

BACKSLASH CHARACTER CONSTANTS:

Enclosing all characterconstants in single quotes works for

most printing characters, but a few such as the carriage

return are impossible to enter from the keyboard. For this

reason, Chas created the special backslash character

constants.

22

CHAPTER 8

OPERATORS

Operators in~=

C is very rich in built_in operators. An operator is symbol

that tells the compiler to perform specific mathematical or

logical manipulations. Chas three classes of operators:

arithmetic, relational and logical,and bitwise. In addition,

Chas some special operators.

Arithmetic Operators:

Table 1-9 lists the arithmetic operators allowed in C. The

operators +,-,*,and/all work the same way in C as they do in

BASIC or any other computer language.

TABLE 1-9 Arithmetic Operators.

OPERATOR

I
~ 0

MEANING
backspace
form feed
multiplication
division
modulo division
decrement
increment

+
*

++

23

Relational and Logical Operators:

In the terms relational operator and logical operator,

relational refers to the relationship that values have with

one another, and logical refers to the ways these

relationship can be connected together. Table 1-10 shows the

relational and logical operators.

TABLE 1-10 Relational and Logical Operators

RELATIONAL OPERATOR ACTION

,_ .-

greater than
greater than or equal
less than
less than or equal
equal
not equal

>
>=
<
<=

LOGICAL OPERATOR ACTION

&&
I~
!

AND
OR
NOT

Bitwise Operators:

Unlike many other languages, c support a complete set of

bitwise operators. Since c is designed to take the place of

assembly language for most programming tasks, C must support

24

all operations that can be done in assembler. Bitwise

operations refers to the testing, setting, or shiffing of the

actual bits in an integer or character variable. These

operations may not be used on type float or double.Table 1-11

lists these operators.

TABLE 1-11 The Bitwise Operators

OPERATOR ACTION
& AND
I OR

exclusive OR
one's complement

>> shift right
<< shift left

The 1 Operator:

Callows a very powerful and convenient operator that can be

used to replace statements of the if-then-else form. The

ternaty operator pair?: takes the general form:

Expl? Exp2 : Exp3

where Expl,Exp2, and Exp3 are expresions

The? operator works like this: Expl is valuated. If it is

true, Exp2 is evaluated and becomes the value of the

expression. If Expl is false, Exp3 is evaluated and its value

25

becomes the valu of the expresion. For example, consider

x=lO
y= x>9? 100 : 200

The~ and Pointer Operators:

In C, a pointer is the memory address of a variable.

Pointers have two main function in C: first, they can provide

a very fast means of referencing array elements and, second,

they allow C functions to modify their calling parameters.

The first operator is&. It is a unary operator that returns

the memory address of its operand.

m = &count;

The second operator is*· It is unary operator that returns

the valu of the variable located at the address that follows.

For example, if m contains the memory address of variable

count, then

g = * m;

will place the value of count into q.

26

CHAPTER 9

EXPRESSIONS

Expression in g:

Operators constants and variables are the constituents of

expressions. An expression in C is valid combination of those

pieces.

casts:

It is possible to force an expresion to be of a specific

type by using a construct called a cast. The general form of

cast is as follow

(type) expression

where type is one of the standard C data types. For example,

if you whished to make sur the expression X/2 was evaluated

to type float, you could write it as follows:

(float) x/2

Casts are often considered operators. As an operator, a cast

is unary and has the same precedence as any other unary

operator.

27

CHAPTER 10

PROGRAM CONTROL STATEMENT

The IF statement:

The general form of the IF statement is as follow

if(test condition)
else statement2

where the objects of if and else are single statements. The

else statement is optional. The objects of both if end else

can be blocks of statements. The general form of the if with

block of statements as objects is

if(test condition)
{

statements/*blockl*/
}
else
{

statements/*block2*/
}

If the condition is true (that is,anything other than

O} ,statementl or blockl will be executed;otherwise,if either

exists, statement2 or block2 will be executed. Remember only

one statement or block will be executed, not both.

For example, shows the C and BASIC versions of a program

that prints the message **Right** when you guess the magic

number. This program will be referred to as the "Magic Number

Program" in later discussions.

28

This program uses the relotional operator==to determine

wheter the guess enterd matmatches the magic number. If it

does,the message is printed on the screen.

main() /* magic number program*/
{

int magic= 123; /* magic number*/
int guess;
guess= getnum(); /* read an integer from the

keyboard*/
if (guess==magic) printf("**Right**");

}
10 M=123
20 INPUT G
30 IF M=G THEN PRINT "**Right**"
40 END

The if-else-if Ladder:

A common programming construct is the if-else-if ladder.It

looks like this:

if (condition)
statement;

else if (condition)
statement;

else
statement;

The conditions are evaluated from the top downward. As soon

as a true condition is found, the statement assaciated with

29

it is executed, and the rest of the ladder is bypassed. If

none of the conditions are true, the final else will be

·executed. The final else often acts as a default condition;

that is, if allother condition tests fail, the last else

statement is performed. If the final else is not present, no

action'will take place if all other conditions are false.

The switch statement:

Although the IF-ELSE-IF ladder can perform a sequence of

tests,it is hardly elegant. The code can be hard to follow

and can confuse even the programmer at a later date. For

reasons,C has a built-in multiple-branch decision statement

called switch. The switch statement acts somewhat like the

ON_GOTO and ON_GOSUB in BASIC,testing a variable successively

against a list of integer or character constants. When a

match is found, a statement or block ofstatements is executed.

The general from of the switch statement is as follow

switch(variable){
case constantl:

statement;
case constant2:

statement;
case constant3:

statement;

default:
statement;

}

where default is performed if no matches are found. The

default is optional, and if not present,no action takes place

if all matches fail.

30

The switch differs from the if because switch can only test

for equality,whereas the if can evaluated a relational or

logical expression.

The switch statement is often used to process keyboard

commands like the menu selection As shown here with its

BASIC equivalatent, the function menu() will display a menu.

31

CHAPTER 11

LOOP

In C and all other modern programming languages, loops

allow a set of instructions to be performed until a certain

condition is reached. This condition may be predefined, as in

the for loop, or open-ended, as in the while and do-while

loops.

The for Loops:

The for loop is used when you want to execute statements

more than once.

ma in ()
{

int x;
for(x=l;x<=lOO;++*)

printf ("HELLO %d",x);
}

The while Loop:

Another from of a built-in loop is while. The general form

of the statement is as follow:

32

while(condition)statement;

where statement may be a single statements or a block of

statements that is to be repated. The condition may be any

expresion,with true being any non-zero value. The statement

is performed while the condition is true. When the condition

becomes false program control passes to the line after the

loop code.

wait-for-char()
{

char
ch=O
while

ch;
/* initialize ch
(ch!='A') ch=get

*I
char();

}

The do-while Loop:

Unlike the for and while loops that test the loop condition

at the top of the loop, the do-while loop checks its

condition at the bottom of the loop. The general form of the

do-while loop is as follow:

do{
statements;

} while (condition);

Although the braces are not necessary when only one

statement is present, they are usually used to improve

readability of do-while construct.

do {
num=getnum ()

} while (num>lOO);

33

CHAPTER 12

EXITING LOOPS USING BREAK
AND EXIT()

Introduction:

The statement break and the library function exit() allow

you to force an exit from inside a loop, bypassing the normal

loop condition.

The break statement:

When the break statement is encountered inside a loop, the

loop is immediately terminated and program control resumes at

the following loop. the next statement

main()

{
int t;
for(t=o;t++o {

printf
if{t==lO)

("%d",t);
break;

}

}

34

The exit() Function:

A second way to terminate a loop from inside is by using the

exit() function, which is found in the standard library.

Because the exit() function will cause immediate termination

of your program and return to the operating system,its use is

somewhat limited. The exit() function is traditionally called

with an argument of Oto indicate that termination is normal.

Other arguments are used to indicate some sort of

error.However, many micro-computer-based C compilers do not

use the argument to exit() in any way,so often you will see

exir() called with as an argument under all circumstances.

main()
{

exit(l) if(!color-card())

}

The continue statement:

The continue statement works in almost the opposite way of

the break statement: it forces the next iteration of the loop

to take place, skipping any code in between.

do {
x=getnum();
if(x,O) continue;
pr intf (11 %d 11

} while(x!=lOO};
X) i

35

CHAPTER 13

THE C CODE FOR A SIMPLE

PROGRAM OF

NOUGHTS & CROSSES

Coding in Q:

The code comes in 2 parts, a header file and a (definition

file; N and C.h and N C.c respectively.

Note that the (library function clrscr() is provided by.

turbo C, but is not a standart ANSI C facilliting.

The headerfile "N" and "C.h":

#include< stdio.h .>

typedef enum {O,x,-} location type;

location type boardlocations [2] [2];

/* The header file inclues the standard input output

function from the c libraries, defines an enumerated
type, and constructs a 2d array variable of that

type.*/

36

include <nandc.h> /* Include the headerfile */
* This function displays game instructions*/
oid display Instructions()

clrscr();
printf("A
printf("
printf("\n");
printf("The game will allow two players to play noughts \n");
printf("& crosses and will inform the winning player of his victory \n");
printf("The board is displayed initially as a group of null spaces \n");
printf ("i.e. ' ' the list of possible positions is also given. \n");
printf("to make a move you simple enter a position \n");
printf(" Happy Playing!! \n);

/* This is not standard ANSI C *I
simple nought & crosses game \n");

by FERAY ASAL \n");

/* end of function display instructions*/

id displayboard() /* This function displays*/
/* The state of the board*/

inti= o;
Lnt, j = 0;
printf("The possible board locations are: \n\n");
printf("l 2 3 \n 4 5 6 \n 7 8 9 \n");
printf("\n The state of the board is : \n\n");
for (i=O;i<3;i++)
{

for (j=O;j<3;j++)
{

if (boardlocation [j] [i] = X)
printf ("X");

else if (boardlocation [j] [i] = 0)
printf (11011) ;

else printf("_");

if (j==2}
printf ("\n") ;

} ;
} ;

/* end of function displayboard */

his function checks to see if someone has won*/

CheckForVictory (int player)

·nt i,j;
·nt null-result= o;
ocationType playermark =

f (player==l}
playermark=X;

f (player==2}
n1 :\1.TO,...W\:\,...lr=f'"\ •

for (i=O;i<3;i++)
{

j=O;
if ((boardlocation [iJ [jJ = playermark)

&& (boardlocation [iJ [j+lJ = playermark)
&& (boardlocation [iJ [j+2J = playermark))

return player;
}

for (j=O;j<3;j++)
{

i=O;
if ((boardlocation [iJ [jJ = playermark)

&& (boardlocation [i+lJ [jJ = playermark)
&& (boardlocation [i+2J [jJ = playermark))

return player;
}

if (((boardlocation [lJ [lJ = playermark)
&& (boardlocation [2J [2J = playermark)
&& (boardlocation [OJ [OJ = playermark))
I I ((boardlocation [lJ [lJ = playermark)
&& (boardlocation [OJ [2J = playermark)
&& (boardlocation [2J [OJ= playermark)))
return player;

else return null_result;
/* end of function check for victory*/
/* This functions sets up the board and places the players*/
/* nough or cross on it. */

id setboard (int position, int player)

int x = o;
int error condition= o;
int halt= o;
int y = o;
int l,m;
for(l=O;l<3;1++)
{

for (m=O;m<3;m++)
{

boardlocation [lJ [mJ = -;J
} ;

} ;

while (!=halt}
{

x=position;
error condition=O;
if (position <4)

((y=O} && (x--));
else if ((position >3) && (position< 7))

((y=l} && (x=x-4)) ;
else if ((position> 7) && (position< 10))

((y=2} && (x=x-7));
else
{

error condition= 1;
nnc:::. it- i nn=t=>rrnr rn11t- i ni::> f i:>rrnr rnnr'I it-inn\ •

} ;

if (boardlocations [x] [Y] == -)
switch(player)
{

case 1:
boardlocations [x] [Y] = x;
break;

case 2:
boardlocations [x] [Y] = o;
break;

default:
break;

} ;
else
{

errorcondition = 2;
position= errorroutine (errorcondition);

} ;

if (errorcondition == O)
halt= 1;

} ;

1t errorroutine (int errorcondition)

int position=O;

if (errorcondition=l)
{

printf("\n\n Incorrect position. Give an other position. \n");
scanf("%d",&position);

}
else
{

printf("\n\n That position is already taken. \n");
printf("Choose another \n");
scanf("%d",&position);

} ;
return position;

id control()

int winner=O;
int player=O;
int halt=O;
int position=O;
display Instructions();
display Board();
While (!halt)
{
nrintf ("Enter move nlaver 1\n11\:

scanf ("%d," & position);
player=l;
Set-Board (position,player);
display Board
winner=Check For Victory(player);
if (winner==l)

- {
halt=l;
printf ("player 1 wins!\n");
continue;

} ;
printf ("Enter move player2\n);
scanf ("%d",& position);
player=2;
Set-Board(position,player);
display Board();
winner=Check For Victory(player);
if (winner==2)

} ;
} ;

} ;
nain()
(

control ();

CONCLUSSION

Chas advantages over other languages.

Because C is a compact, efficient, flexible and expressive

language. It has few keywords, but right control structures,

powerful operators and easily-combined data types. This means

that is easy to learn the language, easy to erite a C

compiler, and programs written in this language are short,

but also sometimes difficult to follow. Chas suplemented the

use of assembly language programming on many systems.

Chas disadvantages too.

Programs written in C may become somewhat encryptive,because

of its rich operator set which reduces the program

readability. C is not very strongly program errors, such as

trying to index an array out of its bounds; in some cases the

compiler can reorder evaluation of sub-expressions in

expressionsor or expressions in argument lists,which may

result in unexpected side effects; multiple uses of some

sy~bols can lead to some programming mistakes, such as mixing

up the equality and the assignment operators.

RECOMMENDATION

C is so usefull and good language for system programming.

If you want to learn C language we need enough time to

learn C language exactly. I hope in futher this language

will be taught to the student with the updating language.

'
I

I

REFERENCES

1 "The C Programming Languages" by

D. M. Ritchil.

2 "Standart C",by

P. J. Plauger, Jim Brodie.

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Images
	Image 1

	Page 2
	Page 3
	Images
	Image 1

	Page 4
	Titles

	ii
	i

	. .

	Images
	Image 1

	Page 5
	Titles
	5. 1 Arrays in c . 19

	Images
	Image 1

	Page 6
	Titles
	. .

	...

	. .

	Images
	Image 1

	Page 7
	Titles

	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 20
	Titles
	yariables:

	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Titles
	u;

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	+
	I

	Images
	Image 1

	Page 31
	Titles
	,_
	.-
	I~

	Images
	Image 1

	Page 1
	Images
	Image 1

	Tables
	Table 1

	Page 2
	Titles
	g = * m;

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Titles
	I

	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

