
.2.'l ,,,

NEAR EAST UNIVERSITY

Faculty of Engineering

Department Of Computer Engineering

MANAGING SNMP AGENTS WITH SNMP
SIMPLE NETWORK MANAGEMENT PROTOCOL)

Graduation Project
COM-400

Khalid Khurshid

pervisor: Asst. Prof. Dr Rahib Abiyev

Nicosia - 2002

ACKNOWLEDGEMENTS

All glory to Almighty ALLAH, the Lord ofuniverse, who is the entire source of c\11

knowledge and wisdom endowed to mankind. All thanks are due to ALLAH who enabled

me to complete this project.

I want to express my gratitude and indebtedness to my project supervisor Dr Rahib Abiyev

for his deep interest, continuous guidance, assistance and cooperation at every stage of the

project.

Then I want to say thanks to my family for their encouragement and support.

Finally I would like to thank all of my friends for their help.

ABSTRACT
Two types of network management issues exist.: software related, such- as data

security and access permissions; .and hardware related such as workstations; . servers,

network cards, routers, bridges and hubs. For hardware related network management, ISO

offers a framework for network management that divides the functions of network

management into five Specific Management Functional Areas.

Network management is divided into- four categories: Managed Nodes, Agents,

Network Management Station and Network Management Protocol. SNMP is a family of

protocol suits and specifications that provides a means for collecting network management

information· from devices on the-network. It includes Management InformationBase (MIB)

that is a database for keeping information .in the managing and managed devices, Structure

of Management Information (SMI) and Simple Network Management Protocol (SNMP)

that provides a way for the devices to report problems and errors to the network

managementstation.

There are several vendors. that support SNMI?~based network management

including Asante Technologies' IntraSpection, Cabletron Systems' SPECTRUM, Hewlett

Packard OpenView, Novell's ManageWise, Sun Microsystems' Solstice Domain Manager

and Tivoli Systems' TME l'ONetview.

11

_•_-

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

I

..
il

...
Ill

1

CHAPTER ONE NETWORK MANAGEMENT

ARCHITECTURES 3

3

5

5

6

8

1. 1 Three Decades of Network Evolution

1 .2 The Challenge of Distributed Network Management

l.3-The System Being Managed

1 .4 Elements ofa Network Management Architecture

1.5 The OSI Network Management Architecture

1.5.1 The OSI Management Model

1.5.2 OSI Specific Management Functional Areas (SMFAs)

1:6 'fhe IEEE Network .Management Architecture

1.7 The Internet NetworkManagement Framework

1.7.1 SNMP, the Simple Network Management Protocol

1.7.2 CMIP over TCP/IP (CMOT)

l.8 Supporting SNMP: Agents-

9

11

11

13

"1.9 Desktop Management Task Force

1.1 O Web ..based Network Management

1. 1 O. 1 Weh-based Enterprise Management

1. 10.2 Java Management API

1. 11 Supporting SNMP: Managers.

1.11.1 Asante Technologies' IntraSpection

1.11.2 Cabletron Systems' SPECTRUM

1.11.3 Hewlett-Packard OpenView

13

15

15

16

17

19

21

23

23

24

25

ııı

1.11.4 Novell's ManageWise

1.11. 5 Sun Microsystems' Solstice Domain Manager

1.11.6 Tivoli Systems' TME 10 Net View

1.12 Fitting SNMP into the Role of Network.Management

CHAPTER TWO THE STRUCTURE OF MANAGEMENT

INFORMATION

2.1 Managing .Management Information

2 .2 Presenting Management Information

2.3 ASN.1 Elements

2.3.1 Types and Values

2.3.2 Macros

2.3.3 Modules

2.4-Details of ASN. I-Objects and Types

2.4.1 Defining Objects in the MIBs

2.4.2 Primitive (Simple) Types

2.4.3 Constructor (Structured) Types

2. 5 Encoding Rules

2.5.1 Encoding Management Information

2. 5. 2 Type-Length- Value Encoding

2.6 ObjectNames

2. 7 The Concise SMI Definition

MANAGEMENT INFORMATION

BASES

3.1 Mllss.within the Internet Object Identifier Subtree

CHAPTER THREE

3.2. MIB Development

3.2.1 MIB-1-RFC 1156

3.2.2 Concise MIB Definitions-RFC 1212

ıv

25

27

28

29

30

30

30

31

31

32

33

34

34

34

36

38
38

39

39

45

50

50

50

51

51

3.2.3 Elements of the OBJECT-TYPE macro

3.2.4 Defining Table Structures in MIBs

3-.3 MIB I and MIB II Groups

3 .3 .1 The System Group

3.3.2 The Interfaces Group

3.3. 3 The Address Translation Group

3.3.4 The IP Group

3.3.5 The ICMP Group

3.3.6 The TCP Group

3.3.7 The UDP Group

3.3.8 The EGP Group

3.3.9 The CMOT (OIM) Group

3.3.10 The Transmission Group

3.3.11 The SNMP Group

3 .4 The Ethernet RMON MIB

3 .5 The Token Ring RMON MIB

3.6RMON2

3.7 Private MIBs

3.8 Accessing a MlB

52

52

55

55

56

56

56

56

57

57

57

57

58

58

58

60

61

64

64

CHAPTER FOUR THE SIMPLE NETWORK

MA~AGEMENT PROTOCOL

4.1 SNMP Objectives and Architecture

4.2 SNMP Operation

4.2.1 Network Management Relationships

4.2.2 Identifying and Communicating Object Instances

4;3- SNMP Protocol Data Units (PDUs)

4.3.1 Get, Set, and Response PDU Formats

4.3.2 Using the GetRequest PDU

68

68

71

71

73

76

78

81

V

4.3.3 Using the GetNextRequest PDU 82

4.3.4 Using the SetRequest PDU 82

4.3.5 The Trap PDU Format 82

4.3.6 Using the Trap PDU 83

4.3.7 SNMP PDUEncoding 83

4;4 Application Examples. 84

4.4.1 SNMP GetRequest Example 85

4.4.2 SNMP SetRequest Example 87

4.4.3 SNMP Trap Example 93

4.5 The ASN.l SNMP Definition 95

CHAPTER FIVE SNMP VERSION 2

5. I The S-NMPv2 Structure of Management Information

5 .1.1 SNMPv2 SMI Module Definitions

5. 1.2 SNMPv2 Object Definitions

5.1.3 SNMPv2 SMI Notification Definitions

5 .2 SNMPv2 Conformance Statements

5.3- S-NMPv2Protocol Operations

5.3.1 SNMPv2 PDUs

5.3.2 SNMPv2 PDU syntax

5 .4- SNMPv2 Transport Mappings

5.4.1 SNMPv2 over UD.P

5.4.2 SNMPv2 over OSI

5.4.3 SNMPv2 over AppleTalk DDP

5.4.4. SNMPv2 over Novell IPX

5 .5 The SNMPv2 MIB

5.6 Coexistence of SNMPvl and SNMPv2

5.7- S-NMPv2 Security

99

99

100

100

102

102

102

103

106

107

107

108

109

111

112

113

114

VI

CHAPTER SIX LOWER LAYER SUPPORT FOR SNMP 116

6-. 1 User Datagram Protocol (UDP} 116

6.2 Internet Protocol (IP) 117

6-. 3 Internet Addressing 1 1 7

6-.4Intenıet Control-MessageProtocol (ICMP} 119

6.5 Network Interface Protocols 120
6.5.1Ethernet 120

6.5.2 IEEE802.3 122

6.5.3 IEEE 802.5 122

6.5.4FDDI 124

6.6 Address Translation 124
6.6.1AddressResolutionProtocol(ARP) 125

6.6.2ReverseAddressResolutionProtocol(RARP) 125

6.7 Using S.NMPwith UDP and IP 126

CONCLUSION 131

REFERENCES 132

vıı

INTRODUCTION

Since it was developed in 1988, the Simple Network Management Protocol (SNryiP)

has become the de facto standard for internetwork management. SNMP has a number of

advantages that contribute to its popularity. Because it is a simple solution, requ~ring

relatively little code to implement, vendors can" easily build SNMP agents into their

products. SNMP is extensible, allowing vendors to easily add network managerpent

functions. And SNMP separates the management architecture from the architecture of the

hardware devices, which broadens the base of multivendor support. Perhaps most

importantly, unlike other so-called standards, SNMP is not a mere paper specification, but

is an implementation that is widely available today.

In order to fully understand the depth of network management, let's discuss these

concepts one chapter at a time. Chapter 1 provides an overview of the concepts of network

management. Individual sections discuss the OSI, IEEE, and Internet network management

standards. Other sections consider architectures from key ve_ndors that support these

standards: Asante Technologies, Cabletron Systems, Hewlett-Packard, Novell, Sun

Microsystems, and Tivoli Systems. SNMP is only part of what is known as the Internet

Network Management Framework. Chapters 2, 3, and 4 discuss individual sections of that

framework. In order, these topics are the structure of management information (SMI),
I

management information bases (Mills), and SNMP itself.

The SMI provides a mechanism for describing and naming the objects hying

managed. This structure allows the values of these objects to be retrieved and manipulated,

that is, managed. It accomplishes this by using a message description language, defined by

ISO 8824, known as the Abstract Syntax Notation One (ASN.1). ASN.1 is used to define
l'I

the syntax, or form, of a management message. Once this syntax has been specified with

ASN.1, the Basic Encoding Rules (BER)-from ISO 8825-encqde that message into a

format that can be transmitted on a LAN or WAN. The Mills more precisely delineate the

managed objects and organize these objects for ease of use. Different types of Mills are

available, including the Internet-standard MIB, defined in Request for Comments (RFC)
I

documents 1212 and 1213; the remote monitoring Mills, defined in RFCs 1513, 1757, and

2021; and numerous private enterprise Mills that vendors define specifically for their

products.
1

SNMP completes the story by providing a mechanism for the manager to

communicate with the agents. This communication involves reading the values of the

objects within a MIB and altering the values as appropriate-in other words, managing the

objects. Enhancements, known as SNMP version 2 (SNMPv2), extend the capabilities of

this popular protocol. Chapter 5 provides an overview of the management and security

improvements found in SNMPv2. Since SNMP is an Application Layer protocol, it must

rely on other protocols at the lower OSI layers for other communication functions. Chapter

6 studies these protocols. For example, the User Datagram Protocol (UDP) transports the

SNMP message through the internetwork. The Internet Protocol (IP) provides Network

Layer functions, such as addressing, for the datagram. A third protocol, such as Ethernet or

token ring, then delivers the information to the local network.

2

CHAPTER-ONE

NETWORK-MANAGEMENT-ARCHITECTURES

This chapter gives an overview of the currently- available network management

technologies and explains how the Simple Network Management Protocol (SNMP), fits·

into the big picture.

1.1 Three Decades of Network Evolution

The 1970s was the decade of the centralized network. In a decade·dominated by

mainframe processing, data communication allowed terminals to talk to the mainframe

(Figure 1.1). Low speed, asynchronous transmission was the norm. Mainframe providers

such as IBM and communication circuit providers such as AT&T or the local telephone

company managed the network for those systems.

• 1$4$ ~il@,
m

t•yortd ,~

• r.carrierıt;ef''f
•ISDN
• P'titffllt ~
•S~
•,UM•. ;

•A~tMff~üt.
•20():.

WAN

Figure 1.1 Evolution in networking complexity and speed (Courtesy.Wandel &

Goltermann)

The 1980s saw three significant changes in data communications. Microprocessors came

onto the scene, offering significant price and performance advantages over mainframes.

3

The number of microcomputer-based LANs increased. And high-speed wide area

transmission facilities, such as T-carrier circuits, emerged to connect microcomputer-based

LANs. The proliferation of LANs gave rise to distributed processing and moved

applications off the mainframe and onto the desktop. And as data communication shifted to

distributed networks, network management became distributed as well (Figure 1.2). Further

shifts are coming from the use of World Wide Web-based technologies, which utilize

widely available Web browsers to access network management information.

Centmllzed
Management

Netvıork
Manaoer

01.strlbuted
Management

Web-based
Management

WebSeıver

Figure 1.2 Evolution in distributed systems

Today, LANs and distributed computing have matured. Wide area network (WAN)

technologies such as Asynchronous Transfer Mode (ATM), Switched Multimegabit Data

Service (SMDS), and Frame Relay are meeting the needs of high-speed applications.

Network management capabilities have matured as well.

4

1.2 The Challenge of Distributed Network Management

Network management has two parts: the network and the management. To manage

a network properly, all of the people involved must agree on the meaning of network

management and on its objectives.

Network management can mean different things to the different individuals in an

organization, such as the chief executive officer (CEO), the chief information officer (CIO),

and the end users. The CEO tends to view the network (and its manager) as a line item on

the expense budget. CEOs consider computing and data communications as a way to

manage orders, inventory, accounting information, and so on. As long as overall corporate

revenues hit their target, these budget items are likely to remain intact. Therefore, the CEO

would define network management as the financial management of the corporate

communications network.

The CIO must look at network management from the theoretical perspective of the

CEO and the corporate budget as well as from the practical perspective of the end users.

The goal is to keep the corporate network running 99.99 percent of the time and to schedule
'

periods of downtime on weekends and holidays when few are around to notice. The CIO

would, therefore, define network management as the ability to balance increasing end-user

requirements with decreasing resources-that is, the ability to provide more service with

less money.
End users spend their days in the network trenches, designing airplanes, writing

dissertations, and attending boring meetings. Their jobs depend on the network remaining

operational. Thus, end users would define network management as something that keeps

the data communication infrastructure on which they depend working at all times. A

network failure could threaten their livelihood.

1.3 The System Being Managed

Now, let's shift to a systems-engineering perspective on network management.

Figure 1.3 shows the big picture. On the left side of the diagram are centralized applications

such as an inventory control system or the corporate financial database. The right side

illustrates distributed applications, such as those that run on client-server LANs. In the

middle is the glue that connects the different types of systems-the wide area transport.

5

This transport may consist of public and private networks and software defined networks

(SDN).

O•rııfilflmdi
Procen'in9

LcealTtafflptn'l andi
0.CAU'iinı:l!Ddi Prcc&#$İlt9

O.ri!nıl
l>ıod$,
p~

ıınfa,r.r •••s

Figure 1.3 The scope of network management systems (Courtesy EDS)

1 .4 Elements of a Network Management Architecture

The network management system, called the manager/agent model, consists of a

manager, a managed system, a database of management information, and the network

protocol (Figure 1.4).

The manager provides the interface between the human network manager and the
~

devices being managed. It also provides the network management process. The

management process performs tasks such as measuring traffic on a remote LAN segment or

recording the transmission speed and physical address of a router's LAN interface.

As Figure 1.4 shows, the managed system consists of the agent process and the

managed objects. The agent process performs network management operations such as

setting configuration parameters and current operational statistics for a router on a given

segment. The managed objects include workstations, servers, wiring hubs, communication

6

circuits, and so on. Associated with the managed objects are attributes, which may be

statically defined (such as the speed of the interface), dynamic (such as entries in a routing

table), or require ongoing measurement {such as the number of packets transmitted without

errors in a given time period).

Management
Syateın

Jlt4ıi\
PtCC8U

Figure 1.4 Network manager/agent relationships

A database of network management information, called the management

information base (MIB), is associated with both the manager and the managed system. Just

as a numerical database has a structure for storing and retrieving data, a MIB has a defined

organization. This·logical organization is cal-led- the- structure of management information

(SMI)-. The SMI is organized.ina tree structure, beginning at the root, with branches that

organize the managed objects by logical categ_ories.The MIB .represents the managed

objects as 1eaves on the branches.

The network management protocol provides a-way-for-the man~ger, the-managed.
objects, and their agents to communicate.To structure- the.communication process, the

protocol defines specific messages, referred to as commands, responses, and notifications.

The manager uses these messages to request specific management information, and the

agent uses them to 'respond. The building blocks ofthemessages are cal-ledptotocof data

units(PDUs). For example, a manager sends a GetRequestPDU to retrieve injormatien..

and the agent responds with a GetResponse PDU.

7

1 .5 The OSlNetwork-Management Architecture

TheJSO/OSI model has been a benchmark for computer networking since it was

first published in 1978. Figure 1.5 shows the familiar seven-layer structure. Following is a

summary of the-seven layers:

OSI
Layer

Network
Marıaga~nt - - - .·
Application - ,....., ·-... '\

I I
l J

I I
I f

- I I
I f

I Ir ı
,ı,. /

mtemetworl< · ı
Marıagerrıent ı

I
I
I
l-;,.Looaf

Network
Management

Logicaf
Corıntmtivity [.· Session

Transport
Internetwork
Conntmtivity

Data Link
Local!
Network
Conntmtfvity Physicali

Figure 1.5 Network management within the OSI framework
l>.

Layer Description

Data Link

Provides the physical transmission medium for carrying the raw data, such

as electrical or optical impulses, from one network node to the next.

Provides reliable communications on the link; that is, it creates the channel

between adjacent nodes on a LAN, MAN, or WAN. Functions include

addressing, framing, and error control on the link.

Physical

8

Network Provides communications functions for an internetwork. These include tasks

such as the global addressing, routing, and switching that take data from its

source to its destination via an internetwork of LANs, MANs, and WANs.

Assures the reliable end-to-end delivery of data. Its functions include error

control and sequence control.

Establishes the logical connection between end-user applications. These

functions include mechanisms that synchronize the data transfer once a

connection is established.

Presentation Represents the application data so that it can be properly interpreted at the

Transport

Session

distant location. Examples of these functions include data

compression/decompression, encryption, or ASCII to EBCDIC code

conversion.

Application Includes the functions responsible for end-user applications, such as file

transfer, electronic mail, or remote terminal access. SNMP is an Application

layer protocol.

OSI standards include a model of network management and a network management

protocol.

1.5.1 The OSI Management Model

The manager/agent model includes a number of interactive components. The OSI

network management framework defines the roles of those components. The organizational
"

model uses a management domain. The domain may contain one or more management

systems, managed systems, and subdomains. The managed system may, in turn, contain

one or more managed objects. Each object is a network resource that one of the

management systems may monitor and/or control.

An information model associated with the organizational model defines the

structure of the management information and the management information base (MIB). It is

a tree structure that groups objects sharing similar characteristics into classes. These objects

are represented as an entry in the management information tree; each entry has defined

attributes and values. The functional model defines five areas of network management used

9

for specific purposes. Figure 1.6 demonstrates how the various elements work together.

This model relates the system management application process (SMAP) to the management

information base (MIB) and the seven layers of the network management system. It defines

interfaces for system management (the system management interface, or SMI) and layer

management (the layer management interface, or LMI). The layer management functions

are specific to a particular OSI layer entity. The model also specifies a protocol for

manager/agent communication, known as the Common Management Information Protocol,

or CMIP.

I
I• I

I
I
I
I-----f--+
I
I....---f-- ..•.
I
I

I

I
iystem M~ I lntemme{iMr)

I-------t------~
t

MarlagMl'kfflt

lrıfornıatkın

(MlB} LME

LME

4---r---.
" I....---ı----..

I
I..---t---...
I

LME

LME

Uı1E
-,

Uııkla,yer

LME

I
Layer ıtamıgemtmt
ln~(LMI)

Figure 1.6 Architectural model of OSI management (©1988, IEEE)

10

l..5.2 OSI Specific ManagementFunctioaal Areas (SMF As)

The OSI management environment includes five areas of network management,

which are called the OSI specific management functional areas (SMFAs)-(Figure 1. 7).

These are fault management, accounting management, configuration management,

performance management, and security management.

Configuration
-Management .

.ı

,-~ Network.·
Manager

Figure 1. 7 OSI network management functional areas

-1.6 The IEEE Network Management Architecture

The Institute of Electrical and Electronics Engineers.(IEEE) İS. perhaps-best known

.fordeveloping the 802 series.öfLAN standards. -The.IEEE Project 802-addr~ the

Physical and Data Link layers and extends into the higher layers of the architecture where

appropriate. The IEEE.LAN/MAN management.standard uses ISO' s:CMIE,.. which was

discussed in Section 1. 5, to extend into the higher layer. This architecture includes-three

elements (Figure 1.8): the LAN/MAN Management Service-(LMMS); the LAN/MAN

Management Protocol Entity-(LMMPE), and.the Convergence Protocol.Entiıy Ç-CPE). The

LMMS defines-the management service available to the LAN/MAN Management User

-{LMMU).. The·LMMPE communicates:.management_information via.protocol exchanges.

LMMS-and LMMPE use the ISClCMIS and CMIP standards and

11

enable two LMMUsto exchange management information. The CPE allows LAN/MAN

environments to provide LMMS,, The CPE adds functions of reliable and- sequential data

delivery on top of the unacknowledged connectionless service provided by the IEEE 802.2

Logical Link Control (LLC) layer. The unacknowledged connectionless service is known as

LLC Type 1.

LMMUı
LMMU

LAN/MAM Management
Service- ı

L.MMPE
LAWMAN

Management LMMPE

Protocol

Convergence
Service

CPE Convergence CPE

Protocot

LLCType1
Servfoe

~

~I.
(;;;') · ı··... lLCType 1 •••

...__ ----~-- . Pro.toool

Figure 1.8 LAN/MAN management communication architecture (©1992, IEEE)

Figure 1.9 compares the IEEE architecture with. the OSI model. -The complexity of

the two protocol stacks varies significantly. While CMIP uses all seven layers of the ISO

model, the IEEE model runs CMlP and the CPE directly over the LLC layer-hence the

acronym CMOL, which stands for CMlP over bLC. Because LLC provides connectionless

service to the management application, some of the Association Control Service Element .

(ACSE) functions in the full CMIP stack are unnecessary. The CPE fills in and performs

some, but not all, of the Network through Presentation layer functions. The benefit of the

reduced CMOL stack is that itminimizes the memory requirements for agents. The

12

disadvantage is that you cannot route CMOL across internetworks because it lacks Network

layer functionality. This-is not surprising, since CM Ol..was. designed from-aLAN and not

an internetwork perspective.

CMP
$yştQ:mşMtlrt(lgwrıwt.tProt<>WI

7 · CMJSEtROSE
a:ndACSE

CMJSEIROSE
(=LMMP!)

ı-··------

5
f

/
/

,!

OonvMgenCEi
Protoool

Entity {OPE)
4 Tıansport

I
I

ı------------,----------'1------------,
1._ .., -· - - - ·- - - - - - •... _

Figure 1.9 Comparing.CMIP and LMMP protocol stacks (©1992, IEEE)

1.7 The Internet Network Management Framework

The Internet Activities Board (IAB) decided to take a two-step approach to Internet

management. Enhancements to the SGMP, which became known as the Simple Network

Management Protocol (SNMP),'-'would provide a short-term solution. The long-term

solution would be based on the CMIS/CMIP architecture, and was called CMOT (CMIP

over TCP/IP).

1.7.1 SNMP, the Simple Network Management Protocol

SNMP is based on the manager/agent model. SNMP is referred to as "simple"

because the agent requires minimal software. Most of the processing power and data

storage resides on the management system, while a complementary subset of those

functions resides on the managed system. To achieve its goal of being simple, SNMP

includes a limited set of management commands and responses (Figure 1.1 O). The

13

management system issues Get, GetNext, and Set messages to retrieve single or multiple

object variables or to establish the value of a single variable. The managed system sends a

Response message to complete the Get, GetNext, or Set. The managed system sends an

event notification, called a trap, to the management system to identify the occurrence of

conditions such as a threshold that exceeds a predetermined value.

SNMP assumes that the communication path is a connectionless communication

subnetwork. In other words, no prearranged communication path is established prior to the

transmission of data. As a result, SNMP makes no guarantees about the reliable delivery of

the data; however, in practice most messages get through, and those that don't can be

retransmitted. Reviewing Figure 1.1 O, the primary protocols that SNMP implements are the

User Datagram Protocol (UDP) and the Internet Protocol (IP). SNMP also requires Data

Link layer protocols, such as Ethernet or token ring, to implement the communication

channel from the management to the managed system.

SNMP
Management Sy~tem

SNMP
Mamtg•dSy~

'" ı ifil.MP-MN:st~t
SNMPAgent

UOP
IP IP

Unk

Figure 1.10 SNMP architecture (©1990, IEEE)

14

SNMP's simplicity and connectionless communication also produce a degree of

robustness. Neither the manager nor the agent relies on the other for its operation. Thus, a

manager may continue to function even if a remote agent fails. When the agent resumes

functioning, it can send a trap to the manager, notifying it of its change in operational

status.

1.7.2 CMIP over TCP/IP (CMOT)

Architecturally, CMOT fits the manager/agent paradigm (Figure 1.11). Unlike

SNMP, which provides connectionless service using UDP/IP, however, CMOT uses an

association-oriented communication mechanism and the TCP/IP protocol to assure reliable

transport of data. To guarantee reliable transport, CMOT systems establish Application

layer connections prior to transmitting management information. CMOT's Application

layer services are built on three OSI services: the Common Management Information

Service Element (CMISE), the Remote Operation Service Element (ROSE), and the

Association Control Service Element (ACSE). A Lightweight Presentation Protocol (LPP)

provides Presentation layer services.

1 .8 Supporting SNMP: Agents

The use of SNMP agents within internetworking devices has increased dramatically

in the last few years. There are five general categories of devices in which you'll find

agents: wiring hubs; network servers and their associated operating systems; network

interface cards and the associated hosts; internetworking devices, such as bridges and

routers; and test equipment, such as network monitors and analyzers. Other devices, such as

uninterruptible power supplies, have also become ~NMP compatible. ,

Each of these categories makes a significant contribution to the overall network

management scheme. Thus, network administrators who practice proactive network

management should seriously consider using network devices that have these imbedded

agents. In conclusion, we can find SNMP agents in almost every intemetworking device.

15

CMOT
Manage:rm:ıntSyetem.

CMOT
Muagtd Syet•m

MMtıg:Mitnt
~-ftın

CMIS
CMIP

Figure 1.11 CMOT architecture (©1990, IEEE)

Some vendor implementations are better than others. As a result not all of these

agents are interoperable.

1.9 Desktop Management Task Force

The Desktop Management Interface (DMI) technology is the management

architecture developed by the DMTF (Figure 1.12). The focus of the DMI is on desktop and
'

LAN management, independent of the system, operating system, or network operating

system. DMI is designed to be integrated with all network management protocols and

consoles, such as SNMP or CMIP. The DMI architecture is divided into three layers: the

Management Applications Layer, which interfaces with various agents; the Service Layer,

which includes the Management Information File (MIF) database; and the

Hardware/Software Components Layer, which interfaces with the actual components being

managed.

16

SNMP
Agent

CMIP
Agent

Remote
Agmıt

M!F
l)atabaH

Figure 1.12 Desktop Management Interface (DMI)

1.10 Web-based Network Management

One of the most common interfaces that has evolved in recent years is the World

Wide Web, or simply the Web. Web-based systems consist of a server that stores "pages"

of information that are typically formatted using the Hypertext Markup Language, or

HTML. The client accesses the information using software called a Web browser, which

may have integrated capabilities for printing, file retrieval and storage, email, and so on.

The communication protocol between the server and client is the Hypertext Transfer

Protocol, or HTTP, which is a transaction-oriented protocol that makes use of the

Transmission Control Protocol (TCP). One of the advantages of this architecture is its

platform independence, as Web browsers from a number of client platforms, including

Macintosh, Windows, UNIX, and other workstations, can access the Web server in a

17

similar manner. Web-based traffic now consumes a large portion of the traffic on the

Internet.
The popularity of these Web-based systems has created another application for this

technology-storing network management information on a Web server so that it can be

accessed and disseminated to distributed users in a platform-independent fashion. Web

based network management can take on one of several forms (Figure 1.13):

• Web-enabled agents that can be managed through a browser using the HyperText

Transfer Protocol (HTTP) for communication.

• Web-enabled managers, which may include a Web server front end to an existing

platform, or a stand-alone manager running on a Web server, either of which may

use HTTP for communication.

w•.
B'romtr

HTIPA~s
to Agent

Web<enabltd
SNMP
~.nt

Net,mrk
Martafertıerıt

S~st~m

ı..qaoy
SNMP
Agent

Figure 1.13 Web-based management architecture

In addition, there are two standardization efforts underway in this area:

18

-·----- -·--·-·--------

• The Web-based Enterprise Management (WBEM) proposal, from a consortium of

vendors which include Microsoft, Compaq Computer, Cisco Systems, and many

others.
• The Java Management Application Programming Interface (JMAPI) proposal from

SunSoft.
In any event, however, SNMP still enters into the equation, either from the perspective of

communication with existing (legacy) SNMP agents and/or managers, or the need to

provide technical functionality that other solutions do not adequately cover.

l. l O. l Web-based Enterprise Management

The Web-Based Enterprise Management (WBEM) initiative was launched by

vendors BMC Software, Cisco Systems, Compaq Computer, Intel, and Microsoft to address

the challenge of distributed networks using emerging Web-based technologies. Other goals

included the integration of network, systems, and application management; platform and

management environment independence; scalability to grow as networks expand; plus

leveraging the low cost of Web-enabled clients.

The WBEM proposal consists of several elements (Figure 1.14):

• Hypermedia Management Schema (HMMS), an extensible data model which can be

used to describe the managed objects. The DMTF was chartered with further

defining of the HMMS.
• HyperMedia Management Protocol (HMMP), which is a communication protocol

that embodies HMMS and runs over the HyperText Transport Protocol (HTTP), -

with interfaces to SNMP and DMI in the future. The HMMP allows the aggregated.
data to be queried across the network and shared among top-level applications. The

IETF was chartered with further refinement of the HMMP.

• HyperMedia Managed Object (HMMO) is a managed entity, containing at least one

URL, that contains data that can be managed by a client browser, either directly or

through some type of management schema.

• HyperMedia Object Manager (HMOM) is a generic definition for management

applications that combines information from multiple sources and uses a

19

communication protocol to present that information to the client (browser) using the

HyperText Markup Language (HTML). It is anticipated that the HMOM could be

implemented using a number of development platforms, such as Java, Active X,

Common Gateway Interface (CGI), the Common Object Request Broker

Architecture (CORBA), and others.

Applet

I Platforms and
Appbtions

Directory Services
e.g.LOAP

HTTP

Mana9ement
&mooes.(HMOM)

Unifying
Sohema
(HMM$)

Other HTTP• baudAooas
(ioowding HMMP)

Oeıkes:or
Apı,Ucattons

0eVi<:e$W
Applieations

0eVie$-$\ Of
Applications

.oevıoes or
Applica.tk.ıns

Notes:
HMOM HyperMedbı Obj~ Mana~r •
HMMS: Hyp&rMedla Marıagt1rrıent Söhema
HTTP: HyperTextTlltnşfer Protcool
LOAP: U;htwetght Directory Acce$s Prot~J
OOBO: Open Database Cormeotivlty

Figure 1.14 WBEM architecture

20

I. I 0.2 Java Management API

SunSoft's Java is a simple yet robust object-oriented programming language that

has been implemented across a wide variety of platforms and operating systems. The Java

Management API (JMAPI) is a set of objects and development tools for creating network

management solutions that can be utilized by a wide variety of heterogeneous networks.

Thus, the JMAPI leverages the platform-independence of the Java computing environment,

extending Java's "write once, run everywhere" capabilities to the traditionally proprietary

architectures of network management systems and consoles. In addition, the JMAPI allows

for the integration of SNMP agent information into the Java environment, thus leveraging

classic network management solutions with the emerging technology of Web-based

network management. The JMAPI consists of three functional components: a Browser User

Interface, an Admin Runtime Module, and Appliances (Figure 1.15).

The Browser User Interface (BUI) is the means by which the network administrator

issues the management queries and commands. The BUI requires a Java-enabled Web

browser that has the capabilities to run Java applets. Applets are Java programs that can be

included in a Hyper'Text Markup Language (HTML) page, in much the same way that

graphics, such as .GIF files, may be included in a page. When a Java-compatible browser

views a page containing an applet, the applet code is transferred to, and executed on, the

browser. The BUI uses the HyperText Transfer Protocol (HTTP) for communication with

an HTTP server within the Admin Runtime Module, which loads the initial Java applet and

JMAPI objects. Other communication across machine boundaries uses the Remote Method

Invocation (RMI). The JMAPI applet consists of the Administrative View Module (AVM),

which provides a set of building blocks for user interface and application-level

functionality. The Managed Object Interfaces perform remote management functions.

The Admin Runtime Module (ARM) is the focus of the administration efforts; it consists of

several elements. The HTTP Server provides bootstrap services for the Java elements. After

the Java applets take control, the Managed Objects Interfaces in the BUI provide the

communication link to the ARM. The Managed Object Factory implements the

management operations and interacts with the Agent Object Interfaces and the Managed

Data Interfaces. The Managed Data Interfaces access a relational database through the Java

21

Database Connectivity (JDBC) Interface, which provides the repository of management

information.

Figure 1.15 Java Management API architecture components (Copyright 1996, Sun

Microsystems, Inc.)

The Appliances are the devices being managed by the Admin Runtime Module. An

Appliance contains an Agent Object Factory which creates and maintains instances of agent

objects. When the objects are invoked, they may download Java code to implement the

22

management operations. Integration with SNMP agents, which implements the protocol and

handles traps, has also been designed into the system.

Thus, the Java Management API provides the tools for developing network and

service management systems that can operate across a diversity of systems and platforms.

1. 11 Supporting SNMP: Managers

We can describe management architectures from prominent vendors that support

SNMP-based network management. This section discusses, in alphabetical order, offerings

from Asante Technologies, Inc., Hewlett-Packard Company, Novell, SunSoft, Inc., and

Tivoli Systems.

1. 11. 1 Asante Technologies' IntraSpection

Asante Technologies Inc.'s IntraSpection is the first SNMP management product

based entirely on Intranet technology, a technology that is being widely and rapidly

adopted. IntraSpection is an open, standards-based SNMP management platform that runs

on a Windows NT Web server and delivers standard SNMP data graphically to any Java

enabled Web browser. Thus, lntraSpection provides network management capabilities for

your entire network anytime, anywhere you have access to the World Wide Web (Figure

1. 16). IntraSpection is compliant with the following SNMP-based management standards:

• MIB II

• Standard Repeater MIB

• Ethernet-Like MIB

• Standard Bridge MIB

lntraSpection is comprised of five software modules. The Map Manager builds a topology

diagram of the network. The Device Manager graphically represents each network element.

The Trap Manager gathers device statistics and stores that information on a third-party

database that is running on the same server. A HyperText Transfer Protocol (HTTP)

module can be used to turn the lntraSpection server into a Web server. Finally, the

Common Gateway Interface (CGI) module translates the HyperText Markup Language

(HTML) to/from SNMP commands/responses.

23

$NMPSenrlc:n Etı9ine>
Auto l:)fştlQ.Yery
Map Manager
Tra.·. p...Ma..·· .. ·na. · ge.r . . · ... ~ j ,.. SNMP DevicesO•vice Marıa;enwnt ~
HTMLOowmentııı

-··- a
Figure 1.16 Asante Technologies' IntraSpection architecture (Courtesy of Asante

Technologies, Inc.)

1.11.2 Cabletron Systems' SPECTRUM

Cabletron Systems' SPECTRUM Enterprise Manager is designed as an open system

to be implemented in multivendor environments. The architecture is based on a
lo

client/server paradigm, with various interfaces to other systems. SPECTRUM consists of

two principal elements. A graphical user interface (GUI), called SpectroGRAPH, provides
-,

a Motif-based interface for the end user. The management server, called SpectroSERVER,

consists of two sections. The Virtual Network Machine (VNM) creates models of the

various network entities, such as cables or network devices. The Device Communication

Manager (DCM) is a multiprotocol communications engine with protocol support for

SNMP, IEEE 802.1, and ICMP/PING commands, and with future support planned for

CMIP as well as extensions (via a tool kit) for any proprietary protocol (Figure 1.17).

24

GUl

CJjfflf ~-~-. ı sH~L--··-----~.··~--··,-·7-···---··-···-
·vırtuat
tetwott<
Mach~

Figure 1.17 Cabletron Systems' SPECTRUM architecture (Cabletron Systems)

1.11.3 Hewlett-Packard OpenView

The Hewlett-Packard OpenView family provides an integrated network and systems

management solution for.end-to-end service management of the complete information

technology environment. Solutions consist of a broad portfolio of management products

from HP and OpenView Solutions Partners, and a complete set of services that help

customers improve service and reduce operations cost (Figure 1. 18).

1.11.4 Novell's Manage Wise

Novell's Manage Wise is a comprehensive, integrated management solution that lets

you successfully manage and optimize a heterogeneous network. It reduces the cost of

owning and managing a network and enhances business operations by increasing network

reliability and user productivity (Figure 1.19).

25

Mııuı•sement .Appllcafl()'tt$
R~yAoicın
R~MtSyet«n

Q.,.
~¢ruiot't$

Common Mıın«pwuınt S•t'Yl<>«t& (Pt.ffi>rm) and
Networi<Manasemet Sclutfon (Network Ncde·Managel'),

Figure 1.18 Hewlett-Packard Open View solution framework (Hewlett-Packard)

Maruıg.Wn
ConflOf•

N:T
Agent

Figure 1.19 Novell's Manage Wise solution framework (Courtesy of Novell, Inc.)

26

Manage Wise lets you proactively manage an entire network through NetWare and

Windows NT server management, desktop management, network traffic analysis,

automated network inventory, remote control, virus protection, and software management.

In addition, Manage Wise continuously works in the background to monitor network

activity and trend performance. As a result, we can easily plan for future network changes

and growth, predict future bottlenecks, and plan for resegmentation of the network before

problems occur:

1.11.5 Sun Microsystems' Solstice Domain Manager

Sun Microsystems' network management product family includes Solstice Site

Manager (SM), Solstice Domain Manager (DM), and Solstice Enterprise Manager (EM)

(Figure 1.20).
~

Üt:ıtil'I-

~~ıltıfltıttı¥~t

~~~·~
,~~

tınd~Vffl'\1$
tıtl'! Foıwardoo'

t•Wll~tf(mnı

·.~
Si1tlt1a.r~

~.
Sito P,liıtli*ger

·So~
Skıı tlııMgut

Soısıa
Otımaft\ ll.wl4'}at

Figure 1.20 Sun Microsystems' Solstice Enterprise management architecture (Courtesy of

Sun Microsystems, Inc.)

27



Solstice Domain Manager is designed to meet the requirements of-larger or multi site

environments. Key features of the Domain Manager.Include: event management, including

event-based actions, scheduled requests, and alarm reports; and user tools, including the

console, topological map, link management, as well as discover, layout, browser, and

grapher tools. Domain Managers includes a number of integrated SNMP features,

including: the Proxy Agent, Trap Daemon to translate and forward traps, the mibzschema

utility for MIB translation, and support for the protocol operations enhancements for

SNMPv2.

1.11.6 Tivoli Systems' TME 1 O Net View

TME 1 O Net View breaks down the traditional barriers between network

management and systems management by providing tight integration with Tivoli's

complimentary TME 1 O management applications.

Aoowrnnd·
Bridge;Mmın:ger •

~WttY&C'.~$ Ud'f

HubManager•
NWa.y1- Oml:lpı.r$. I..J\fıl

AMON~
IWaysO.puş
Remote tııkııltor

Rıılır..~~
Mmu.ı.g..-nenı,- OatıHüb

Sofh't«f~
Ot~

Figure 1.21 Tivoli and IBM application integration (Courtesy of Tivoli Systems)

28



Combined with its ability to easily effect changes on many devices, a global support

infrastructure, and the backing of hundreds of third-party vendors, Tivoli's TME I O

NetView is a widely implemented management platform (Figure 1.21 ). Further, TME 1 O

Net View not only enables you to manage your network, it also positions you for planned

and future growth with a complete systems management solution.

1.12 Fitting SNMP into the Role of Network Management

SNMP is a protocol that communicates network management information.

Therefore, SNMP fits into the Application layer of the OSI model. But if we only look at

SNMP in this context, we are ignoring the structure that supports it-and that fills out the

remaining layers of the OSI model. In order to study SNMP in detail, you need to

thoroughly understand the supporting structures.

29



---~--·--·- ...;...::,:_-__ - ------

CHAPTER TWO 

THE STRUCTURE OF MANAGEMENT INFORMATION 
In this chapter, we will learn about the structure ofmanagement information (SMI), which

defines the rules for identifying managed objects.

2. 1 Managing Management Information

In the manager/agent paradigm for network management, managed network objects

must be physically and logically accessible. The termphysically accessible means that

some entity must physically check the address, count the packets, or otherwise quantify the

network management information. Logical accessibility means that management

information must be stored somewhere and, therefore, that the information must be

retrievable and modifiable. (SNMP actually performs the retrieval and modification.) The

structure of management information (SMI) organizes, names, and describes information so

that logical access can occur.

The SMI states that each managed object must have a name, a syntax, and an

encoding. The name, an object identifier (OID), uniquely identifies the object. The syntax

defines the data type, such as an integer or a string of octets. The encoding describes how

the information associated with the managed objects is serialized for transmission between

machines.

2 .2 Presenting Management Information

In terms of the ISO/OSI model, the ASN.1 syntax is a Presentation-layer (layer 6)

function. The Presentation layer defines the format of the data stored within a host

computer system. In order for managers and agents to exchange data, both must understand

it, regardless of the way either machine represents data internally. For this to occur, two

items must be standardized: the abstract syntax and the transfer syntax. The abstract syntax

defines specifications for data notation. The transfer syntax defines (transmittable)

encodings for the elements in the abstract syntax.

The Internet SMI specifies that ASN.1 (Abstract Syntax Notation One) define the

abstract syntax for messages; that is, ASN.1 defines the basic language elements and

30



provides rules for combining elements into messages. The Basic Encoding Rules (BER)

provide the transfer syntax. The BER are associated with the abstract syntax and provide

bit-level communication between machines. Thus the SMI and SNMP use the ASN.1

formalizations to define various aspects of the Internet network management framework.

2.3 ASN.1 Elements

Abstract SyntaxNotation One (ASN.1) is designed to define structured information

(messages) in a machine-independent (or host-independent) fashion. To do this, ASN.1

defines basic data types, such as integers and strings, and new data types that are based on

combinations of the basic ones. The BER then define the way the data is serialized for

transmission. ASN.1 defines data as a pattern ofbits in computer memory, just as any high

level computer programming language defines data that the language manipulates as

variables. The BER define a standard way to convert ASN.1 definitions into bit patterns for

transmission, and then they actually transfer the data between computers. The BER are

necessary because the ASN.1 description is "human-readable" and must be translated

differently for each type of computer. The BER representation, however, is always the

same for any ASN.1 description, regardless of the computers that send or receive that

information. This assures communication between machines, regardless of their internal

architecture. ASN.1 uses some unique terms to define its procedures, including type

definitions, value assignments, macro definitions and evocations, and module definitions

2.3.1 Types and Values

A type is a class of data. It defines the data structure that the machine needs in order~
to understand and process information. The SMI defines three types: Primitive,

Constructor, and Defined. ASN.1 defines several Primitive types (also known as Simple

types), including INTEGER, OCTET STRING, OBJECT IDENTIFIER, and NULL. By

convention, types begin with an uppercase letter. (ASN. l also defines the four types listed

here as reserved character sequences, and therefore represents them entirely in uppercase.)

Constructor types (also known as Aggregate types) generate lists and tables. Defined types

are alternate names for either simple or complex ASN.1 types and are usually more

descriptive. Examples of SNMP-defined types include IpAddress, which represents a 32-bit

31



Internet address, and TimeTicks, which is a time-stamp.

The value quantifies the type. In other words, once we know the type, such as

INTEGER or OCTET STRING, the value provides a specific instance for that type. For

example, a value could be an entry in a routing table. By convention, values begin with

lowercase letters.
Some applications allow only a subset of the possible type values. A subtype

specification indicates such a constraint. The subtype specification appears after the type

and shows the permissible value or values, called the subtype values, in parentheses. For

example, if an application uses an INTEGER type and the permissible values must fit

within an 8-bit field, the possible range of values must be between O and 255. We would

express this as:
INTEGER (0.. 255)

The two periods( .. ) are the range separator and indicate the validity of any integer value

between O and 255.

2.3.2 Macros

A macro notation allows us to extend the ASN.1 language. By convention, a macro

reference (or macro name) appears entirely in uppercase letters. For example, MIB

definitions make extensive use of the ASN.1 macro, OBJECT-TYPE. The first object in

MIB-11is a system description (sysDescr). RFC 1213uses the OBJECT-TYPE macro to

define sysDescr, as follows:

sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0.. 255))

ACCESS read-only

STATUS mandatory

DESCRIPTION

"A textual description of the entity. This value should

include the full name and version identification of the

system's hardware type, software operating-system, and

networking software. This must contain only printable ASCII

characters."

32



::= { system 1 }

Thus, one concise package defines the object sysDescr.

2.3.3 Modules

ASN.1 also collects descriptions into convenient groups, called modules. For

example, the remote monitoring (RMON) MIB is a discrete unit that is also part ofMIB-11.

The module starts with a module name, such as RMON-MIB. Module names must begin

with an uppercase letter. The BEGIN and END statements enclose the body of the module.

The body may contain IMPORTS, which are the names of types, values, and macros, and

the modules in which they are declared. In the following example, the first line after

IMPORTS specifies that the Counter type, which will be used in this MIB module, is from

another MIB module, RFCl 155-SMI.

Following is the header section of the RMON MIB (from RFC 1757), which

represents a MIB module. Comment lines within ASN.1 syntax begin with a double hyphen

(--):

RMON-MIB DEFINITIONS : := BEGIN

IMPORTS

Counter FROM RFCl 155-SMI

DisplayString FROM RFCl 158-MIB

mib-2 FROM RFC1213-Mı8

OBJECT-TYPE FROMRFC-1212

TRAP-TYPE FROM RFC-1215;
I'

-- Remote Network Monitoring MIB

rmon OBJECT IDENTIFIER::= { mib-2 16}

-- textual conventions

END

33



In the preceding example, we can see the OBJECT IDENTIFIER value notation for

RMON. Note that the value ofRMON is the sixteenth defined object under the mib-2

object tree. The curly brackets ({}) indicate the beginning and end of a list-in this case a

list of the OBJECT IDENTIFIER values defining RMON.

2.4 Details of ASN.1-0bjects and Types

This section focuses on the ASN.1 objects and data types used within the Internet

Network Management framework.

2.4.1 Defining Objects in the MIBs

A MIB contains the objects to be managed. The OBJECT-TYPE macro defines

these objects in a standard format that is consistent across various public and private MIBs.

The MIB-11 ASN.1 definitions (RFC 1213) appear as follows:

tcpinSegs OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

::= { tep 10}

This ASN.1 definition means: This defines an object named tcpinSegs that contains

Counter information. The Counter type is a nonnegative number that increases

monotonically. This object is read-only and is mandatory for all managed devices that

support its parent, mib-2.tcp. When a management protocol accesses this object, it uses the

name { tep 10 }, which identifies the tenth defined object within the tep group.

2.4.2 Primitive (Simple) Types

To maintain SNMP's simplicity, the Internet SMI uses a subset of the ASN.1 data

types. These are divided into two categories, the Primitive types and Constructor types.

Primitive data types (also called Simple types) include INTEGER, OCTET STRING,

OBJECT IDENTIFIER, and NULL. The following examples come from MIB-11 (RFC

1213).

INTEGER is a Primitive type with distinguished (or unique) values that are positive

34



and negative whole numbers, including zero. The INTEGER type has two special cases.

The first is the enumerated integer type, in which the objects have a specific, nonzero

number such as 1, 2, or 3. The second, the integer-bitstring type, is used for short bit strings

such as (0 .. 127) and displays the value in hexidecimal. An example of INTEGER would be:

ipDefaultTTL OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

"The default value inserted into the

Time-To-Live field of the IP header of

datagrams originating at this entity, whenever

a TTL value is not supplied by the transport

layer protocol."

::= { ip 2}
The OCTET STRING is a Primitive type whose distinguished values are an ordered

sequence of zero, one, or more octets. SNMP uses three special cases of the OCTET

STRING type: the DisplayString, the octetBitstring, and the PhysAddress. In the

DisplayString, all of the octets are printable ASCII characters. The octetBitstring is used for

bit strings that exceed 32 bits in length. (TCP/IP frequently includes 32-bit fields. This

quantity is a typical value for the internal word width of various processors-hosts and

routers-within the Internet.) MIB-II defines the PhysAddress and uses it to represent

media (or Physical layer) addresses.~
An example of the use of a DisplayString would be:

sysContact OBJECT-TYPE

SYNTAX DisplayString (SIZE (0.. 255))

ACCESS read-write

STATUS mandatory

DESCRIPTION

"The textual identification of the contact

person for this manage node, and information on

35



how to contact this person."

::= { system 4}
Note that the subtype indicates that the permissible size of the DisplayString is between O

and 255 octets.
The OBJECT IDENTIFIER is a type whose distinguishing values are the set of all

object identifiers allocated according to the rules ofISO 8824-1. The ObjectName type, a

special case that SNMP uses, is restricted to the object identifiers of the objects and

subtrees within the MIB, as for example:

ipRoutelnfo OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

ACCESS read-only

STATUS mandatory

DESCRIPTION

"A reference to MIB definitions specific

to the particular routing protocol responsible

for this route, as determined by the value

specified in the route's ipRouteProto

value. If this information is not present, its

value should be set to the OBJECT IDENTIFIER

{ O O } , which is a syntactically

valid object identifier, and any conforming

implementation of ASN. 1 and BER must be able to

generate and recognize this value."
I'-

::= { ipRouteEntry 13 }
NULL is a type with a single value, also called null. The null serves as a placeholder, but is

not currently used for SNMP objects. NULL is used as a placeholder in the variable

bindings field of the SNMP GetRequest POU. The NULL is assigned to be the value of the

unknown variable, that is, the value the GetRequest POU seeks.

2.4.3 Constructor (Structured) Types

The Constructor types, SEQUENCE and SEQUENCE OF, define tables and rows

36



(entries) within those tables. By convention, names for table objects end with the suffix

Table, and names for rows end with the suffixEntry. The following discussion defines the

Constructor types. The example comes from MIB-II.

SEQUENCE is a Constructor type defined by referencing a fixed, ordered, list of

types. Some of the types may be optional, and all may be different ASN.1 types. Each value

of the new type consists of an ordered list of values, one from each component type. The

SEQUENCE as a whole defines a row within a table. Each entry in the SEQUENCE

specifies a column within the row.

SEQUENCE OF is a Constructor type that is defined by referencing a single

existing type; each value in the new type is an ordered list of zero, one, or more values of

that existing type. Like SEQUENCE, SEQUENCE OF defines the rows in a table; unlike

SEQUENCE, SEQUENCE OF only uses elements of the same ASN.1 type.

The TCP connection table that follows illustrates both the SEQUENCE and SEQUENCE

OF:

tcpConnTable OBJECT-TYPE

SYNTAX SEQUENCE OF TcpConnEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"A table containing TCP connection-specific

information."

::= { tep 13 }

tcpConnEntry OBJECT-TYPE
lll

SYNTAX TcpConnEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"Information about a particular current TCP

connection. An object of this type is transient;

it ceases to exist when (or soon after) the

connection makes the transition to the CLOSED

37



state."

INDEX { tcpConnLocalAddress,

tcpConnLocalPort,

tcpConnRemAddress,

tcpConnRemPort }

: := { tcpConnTable I }

TcpConnEntry ::=

SEQUENCE {

tcpConnState

INTEGER,

tcpConnLocalAddress

IpAddress,

tcpConnLocalPort

INTEGER (0 .. 65535),

tcpConnRemAddress

IpAddress,

tcpConnRemPort

INTEGER (0 .. 65535)

}

The sequence name, TcpConnEntry, is the same as the row name, except that it begins with

an uppercase letter. The INDEX clause defines the construction and order of the columns

that make up the rows.

2.5 Encoding Rules

This section discusses the encoding rules t~at allow that information to be

transmitted on a network. The Basic Encoding Rules (BER) define this transfer syntax, and

ISO 8825-1 specifies it.

2.5. I Encoding Management Information

Each machine in the management system can have its own internal representation of

the management information. The ASN. I syntax describes that information in a standard

38



form. The transfer syntax performs the bit-level communication (the external

representation) between machines. For example, assume that the host needs: management

information from another device. The management application would generate an SNMP

request, which the BER would encode and transmit on the network media. The destination

machine would receive the information from the network, decode it using the BER rules,

and interpret it as an SNMP command. The SNMP response would return in a similar, but

reverse, manner. The encoding structure used for the external representation is called Type

Length-Value encoding (Figure 2.1).

IBM:
Cl

anagement El\µplication a n ı--= IBM
(Internal Host

,resentati on)

External R.epresentation

~ I Length I
;

Type Value I

Em ,-ı DEC
DEG

~.

Management
Host D Application

- (Internal
Representation

M

Re

ı)

Figure 2.1 Internal and external data representations

2.5.2 Type-Length-Value Encoding

To define the external data representation,the BER first specify the position of each

bit within the octets being transmitted. Each octet transmits the most significant bit (MSB)

first and defines it as bit 8 on the left-hand side of the octet. The octet defines the least

significant bit (LSB) as bit 1 on the right-hand side (Figure 2.2).

39



Octet

8 7 6 5 4 3 2 1

: : : : : : : I

t r
Most Least

Significant
Bit

Significant
Bit

Figure 2.2 BER bit ordering, as defined in ISO 8825-1

The data encoding structure itself has three components: the Type, Length, and

Value (TLV). Note that in the literature you will run across other names for Type-Length

Value, including Tag-Length-Value and Identifier-Length-Contents. The structure of a

TLV encoding used with SNMP is shown in Figure 2.3.

Type field Length field Value field

!il

Figure 2.3 Type-Length-Value (TLV) encoding

By defining the order and structure of the bits, the BER guarantee that both ends of the

communication channel interpret the bit stream consistently.

2.6 Object Names

Each object, whether it's a device or a characteristic of a device, must have a name

by which it can be uniquely identified. That name is the object identifier. It is written as a

40



sequence of integers separated by periods. For example, the sequence { 1:3.6.1.2.1.1.1.0}

specifies the system description, within the system group, of the rngmt subtree.

GetRequest POU

a,tas,a..ı:t

!ı'.o'.t'.o·'.o>:Os'.o!
Coııt~iı: \L Tag O

Clam \
(H)J Cı:ııırihıded

(1)

ı 1 6 5 4 ~ 2 t

GetNextRequest POU j < ö, > : O :C< O :O, : • I
L..-...J \L

Gort.e'Jd-Spac~iı:: \
Clase ·

(10,) Comıtrudl.ed
(1)

Tag 1

T)']Jafi.eh:I= A2H

I 7 6 5 & 3- ~ I

GetResponse POU 11: O :1 :o:o :D: i:aı

SetRequest P DU

Trap PDU

Lergth fek:l V.ııluefield · 1

Length field r. ValU9field

Length field ValU9 field

Lengthfek:l Value fekl

Lengthfield Valwfield

Figure 2.4 Encoding for the context-specific types used with SNMP

41



Annexes B, C, D and E of ISO 8,824-1 define the numerical sequences; they

resemble a tree with a root and several directly attached branches, referred to as children

(Figure 2.5). These branches connect to other branches. We can use the structure of root,

branches, subbranches, and leaves to diagram all of the objects. within a particular :MIB and

their relationships.

Figure 2.5 The root node and ITU-T-assigned OBJECT IDENTIFIER component values

itu-t (O) ıso(1) Joınt-iso-itust (2)

/
standard (O) member - body (.2) identified - organi~tioı:ı (.S)

/\
dod (6)

Note: internet (1}

Arc 1 (regislra.tion-authority}
is no longer used, per ISOIIEC 8824-1:1995

Figure 2.6 The root node and ISO assigned OBJECT IDENTIFIER component values

42



The root does not need a designation, but a specific numeric value designates the

three connected arcs, or branches. The ISO branch (Figure 2.6) has three children: standard

(O) designates international standards; member-body (2) is a three-digit numeric country

code that ISO 3166 assigns. to each member oflSO/IEC~ and identified-organizations (3)

have values of an international code designator (ICD), defined in ISO 6523. (Branch (1)

was previously assigned to registration -authority (1), but it is no longer in use, per ISO

8834-1.) The U.S. Department of Defense. is assigned to one of the children under 1.3, and

is designated as 6. On this tree, the Internet community has designation 1 .

To identify a particular position on the tree, we list the numeric values in a string,

s.eparated:by periods. For example, to identify the position of the Internet subtree, we start

at the root and move down until you reach position { l . 3. 6. 1 } .

ıso(1)

'~
identified• organization(3}

~
dod: {6}

internet (1)

directory(1) mgmt(2) experimental(3) private {4) security{5} snmpV2(6) mail(7}

ml.b-2 {1} anterprls.e.s( 1 )

Figure 2.7 Internet assigned OBJECT IDENTIFIER component values

43



At the Internet level (Figure 2. 7), we begin to see details germane to network management

and SNMP. The Internet subtree has seven branches:

• The directory ( 1) subtree, { internet 1 } or { 1. 3. 6.1.1 } , is reserved for future use by

the OSI directory within the Internet.

• The mgmt (2) subtree, {internet 2} or { 1.3.6.1.2}, is managed by the Internet

Assigned Numbers Authority, and includes the standard MIBs.

• The experimental (3) subtree, {internet 3} or {1.3.6.1.3}, is used for Internet

experiments.

• The private (4) subtree, { internet 4} or { 1. 3. 6. 1. 4}, allows vendors to register

objects.

• The security (5) subtree, {internet 5} or {1.3.6.1.5} for security-related objects.

• The snmpV2 (6) subtree, { internet 6} or { 1. 3. 6. 1. 6}, for SNMP version 2 objects.

• The mail (7) subtree, {internet 7} or { 1.3.6.1.7}, for mail objects.

The Internet Assigned Numbers Authority (JANA) administers these subtrees and publishes

them in the current Assigned Numbers document (currently RFC 1700).

Let's now return to the example given at the beginning of this section. Now that we know

the identities of the individual tree structures, we can construct the following sequence:

internet OBJECT IDENTIFIER::= {iso org(3) dod(6) 1 }

mgmt OBJECT IDENTIFIER::= { internet 2}

mib OBJECT IDENTIFIER : := { mgmt 1 }

system OBJECT IDENTIFIER : := { mib-2 1 }~
sysDescr OBJECT IDENTIFIER::= { system 1 }

When these tree structures are combined, the result becomes:

sysDescr OBJECT IDENTIFIER::= { 1.3.6.1.2.1.1.1 }

To the OID we need to add one last element-a suffix that identifies whether a particular

variable occurs just once (a scalar) or whether the variable occurs multiple times (as in

columnar entries).

Since sysDescr is a scalar, not columnar, object, there is only one instance of it. (In

other words, we can have only one description of the system being managed.) Therefore, a

44



.O is added to the end of the OID:

{ 1.3.6.1.2.1.1.1.0.}

If the object was a columnar entry, which could have multiple instances, an index plus a

nonzero suffix (.1, .2, an IP address, and so on) would identify the object within the table.

Experimental codes, with prefix { 1.3.6.1.3}, have been assigned for many LAN and WAN

objects and MIBs, such as ISO CLNS (Connectionless Network Service), the Synchronous

Optical Network (SONET) objects, and Asynchronous Transfer Mode (ATM) objects,

while the technologies and their MIBs were in the testing phase of development.

2.7 The Concise SMI Definition

The best way to summarize this chapter is to include a module entitled RFCl 155-

SMI from RFC 1155. This module defines all of the constructs discussed in this chapter. In

the interest of timeliness, the SMI definition includes the new OBJECT-TYPE macro.

Comment lines enclosed within angle brackets(< ... >) indicate the beginning and end of the

revised section from RFC 1212.

Definition 2-1. Concise SMI Definition

RFCl 155-SMI DEFINITIONS::= BEGIN

EXPORTS-EVERYTHING

internet, directory, mgmt,

experimental, private, enterprises,

OBJECT-TYPE, ObjectName, ObjectSyntax,SimpleSyntax,

ApplicationSyntax, NetworkAddress, IpAddress,

Counter, Gauge, Time'I'içks, Opaque;

- the path to the root (from RFC 1155)

internet OBJECT IDENTIFIER::= { iso org(3) dod(6) 1 }

directory OBJECT IDENTIFIER : := { internet 1 }

mgmt OBJECT IDENTIFIER : := { internet 2 }

experimental OBJECT IDENTIFIER : := { internet 3 }

private OBJECT IDENTIFIER::= { internet 4}

enterprises OBJECT IDENTIFIER : := { private 1 }

45



< definition of object types (taken from RFC 1212) >

OBJECT-TYPE MACRO : :=

BEGIN

TYPE NOTATION::=

- must conform to

-RFCl 155's ObjectSyntax

"SYNTAX" type(ObjectSyntax)

"ACCESS" Access

"STATUS" Status

DescrPart

ReferPart

IndexPart

DefValPart

VALUE NOTATION::= value (VALUE ObjectName)

Access : := "read-only"

I "read-write"

I "write-only"

I "not-accessible"

Status : := "mandatory"

I "optional"

I "obsolete"

I "deprecated"

DescrPart : := ••
"DESCRIPTION" value (description DisplayString)

I empty

ReferPart : :=

"REFERENCE" value (reference DisplayString)

I empty

IndexPart : :=

"INDEX""{" IndexTypes "}"

I empty

46



IndexTypes : :=

IndexType I IndexTypes ","

IndexType : :=

-ifindexobject, use the SYNTAX

Index Type

- value of the correspondent

- OBJECT-TYPE invocation

value (indexobject ObjectName)

- otherwise use named SMI type

- must conform to IndexSyntax below

I type (indextype)

DeNalPart ::=

"DEFVAL" "{" value (defvalue ObjectSyntax) "}"

I empty

END

IndexSyntax ::=

CHOICE {

number

INTEGER (O ..MAX),

string

OCTET STRING,

object

OBJECT IDENTIFIER,

address

Networkaddress,

ipAddress

IpAddress

}

< names of objects in the MIB (taken from RFC 1155) >
ObjectName : := OBJECT IDENTIFIER

- syntax of objects in the MIB

ObjectSyntax : :=

47



CHOICE {

simple

Simple Syntax,

- note that simple SEQUENCEs are not directly

- mentioned here to keep things simple (i.e.,

- prevent mis-use). However, application-wide

- types which are IMPLICITiy encoded simple

- SEQUENCEs may appear in the following CHOICE

application-wide

ApplicationS yntax

}

SimpleSyntax ::=

CHOICE {

number

INTEGER,

string

OCTET STRING,

object

OBJECT IDENTIFIER,

empty

NULL

}

ApplicationSyntax : :=

CHOICE {

address

NetworkAddress,

counter

Counter,

gauge

Gauge,

ticks

48



Time Ticks,

arbitrary

Opaque

- other application-wide types, as they are

- defined, will be added here

}

- application-wide types

NetworkAddress : :=

CHOICE{

internet

IpAddress

}

IpAddress ::=

[APPLICATION O] -in network-byte order

IMPLICIT OCTET STRING (SIZE (4))

Counter::=

[APPLICATION 1]

IMPLICIT INTEGER (0.. 4294967295)

Gauge::=

[APPLICATION 2J
IMPLICIT INTEGER (O. .4294967295)

TimeTicks : :=

[APPLICATION 3]

IMPLICIT INTEGER (O . .4294967295)

Opaque::=

[APPLICATION 4] - arbitrary ASN.1 value,

IMPLICIT OCTET STRING - "double-wrapped"

END

This concludes the discussion of the SMI for SNMP version 1.

49



CHAPTER THREE 

MANAGEMENT INFORMATION BASES 

This chapter extends naming mechanisms to include management information bases

(MIBs), which store management information. We can think of a MIB as a virtual

information warehouse. Like a physical warehouse with specific floors, aisles, and bins, the

MIB must implement an inventory control scheme. SMI defines the scheme for the MJBs.

Just as a large company can have several warehouses, there are several different types of

MIBs. Some, such as Internet standards, are for public use; specific organizations have

developed others for private use for their products.

3 .1 MIBs within the Internet Object Identifier Subtree

A tree represents the management structure, with branches and leaves representing

the managed objects (Figure 3 .1 ). In the figure, we can see seven subtrees under Internet:

directory (1), mgmt (2), experimental (3), private (4), security (5), snmpV2 (6), and mail

(7). The directory (1) subtree is reserved for future use of the OSI directory within the

Internet. The mgmt (2) subtree handles Internet-approved documents, such as the Internet

standard MIBs, which are MID-I (RFC 1156)--andMIB-11 (RFC 1213). An object identifier

(OID) with a prefix of { 1.3 .6.1.2.1} denotes managed objects within MIB-I and MIB-11.

Internet experiments use the experimental subtree (3).

The private subtree (4) allows vendors to register a MIB for their equipment. The

enterprise subtree, whose branches are private organizations, falls under the private subtree.

The IANA assigns "enterprise codes" to branches representing private organizations and

publishes them in the current'assigned numbers RFC. Enterprise OIDs begin with the prefix

{l.3.6.1.4.1}.

3 .2. MIB Develop-ment

MIBs address the need for a standard network management platform by the Internet

as a whole and by private enterprises. These MIBs require a consistent objective and format

to realize this objective.

50



ttıı-:t (O} ıso(1) Jo!nt-isoooitu.f (2}

org{3)

~d~

Internet (1}

direalory (1) mgmt (2) experimental{3} private (4) security (5) snrrpV2 (6) rrail {7}·

~. I
~ enterprises (1)

mlb-2(1}

:ı;vstııım
(1),

$!'Imp•
{11}

ad.dress:
hansla'llon••

(3} Ip
(4),

transmission•
(10)·

dmio:•~ 
(9}

Figure 3.1 The Internet OID tree

J.2. 1 MIB-1-RFC 1156

The first MIB, :Mm-I{RFC 1156)~ was published in May 1990. MIB-I divided

managed objects into eight groups in order to simplify OID assignment and implementation

(that is, the SMI "structure"). Those groups were System, Interfaces, Address Translation,

lP, ICMP, TCP~ UDP, andEGP.

3.2.2 Concise MIB Definitions.-«RFC 1212

Prior to the publication ofRFC 1212, there were two waysto define objects: a
51



textual definition and the ASN .1-0BJEC'f -TYPE macro. RFC 1212 embedded the textual

definition within the OBJECT-TYPE macro, reducing the amount of documentation. The

Concise SMI Definition includes this macro.

3.2.3 Elements of the OBJECT-TYPE macro

Since the OBJECT-TYPE macro seems-cryptic to most people, a few words-of

explanation are in order. Each object has a number of attributes: SYNTAX, ACCESS,

STATUS, DESCRIPTION, -REFERENCE, INDEX, .and DEFY AL. SYNTAX defines the

object's data structure. Simple data types such as INTEGER, OCTET STRING, or N()LL

are examples of these data structures. SYNTAX-also-defines specialcases.of the simple

objects, including an enumerated integer that defines an integer value, and a DisplayString

restricted to printable ASClLcharacters. Table objects use the -SEQUENCE OF syntax.

ACCESS defines the minimum level of access to (or support of) an object. ACCESS may

have values of read-only, read-write.not-accessible, .or write-only. SNMP .does not permit

the write-only value. Table or row objects define ACCESS to be not-accessible. STATUS

defines the implementation .supportfor the .object, which may be mandatory, optional,

deprecated (discouraged), or obsolete. When STATUS defines a level of support for a

particular group, that level applies to-all objects within.the.group. Objects that have been

replaced by backwards-compatible objects are "deprecated." Objects that are no longer

supported are "obsolete." DESCRIPTION, which is not-always present.providesa textual

definition of an object type. REFERENCE, also not necessarily present, is a textual cross

reference to an object defined by.another.Mlls module. INDEX worksonly with-row

objects. It indexes the order ill which objects appear in a row, that is, the column order

Agents use DEFY AL, also optional, .to.popıılate values .of.colıımnar objects. For example,

when an SNMP agent creates a new row, the DEFY AL clause assigns a default value to the

objects within the row. For example, .an OCTET STRING object may have a DEFY AL

clause of' FFFFFFFFFFFF'H

3.2.4 Defining Table Structures in MIBs

Definition 3-1 (taken from RFC 1213) dissects the elements of a table. The

italicized text after each section is my explanation. Double hyphens (--) indicate a comment

52



line within the table structure. The comment defines the purpose of the table.

Definition 3-1. Defining the UDP Listener table from RFC 1213

-- the UDP Listener table

-- The UDP listener table contains information about this

-- entity's UDP end-points on which a local application is

-- currently accepting datagrams.

udpTable OBJECT-TYPE

SYNTAX SEQUENCE OF lldpEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTlON

"A table containing UDP listener information."

::= { udp 5}

The object name (or table name) udpTable identifies a table

object. Note that this name begins witha lowercase Jetter.

The SYNTAX defines a SEQUENCE OF UdpEntry. This refers to a

type definition (listed below).that.defines.theobjects .that

make up each row of the tqble.

udpEntry OBJECT-TYPE

SYNTAX UdpEntl)'

ACCESS not-accessible

STATUS mandatory

DESCRIPTION
""Information about a particular current UDP listener."

INDEX { udpl.ocatAddress, udpLocalPort }

: := { udp'Table 1 }

The object name (or row name) udpEntry defines each row of the

table. The INDEX clause specifies-instancesfor columnar objects

in the table. The instance values determine the order in which

the objects are retrieved.

UdpEntry ::=

53



SEQUENCE {

udpLocalAddress IpAddress,

udpLocalPort INTEGER (0,,65535)

}

The type definition UdpEntry identifies the objects that make

up the row. Note that the oı,pe .definition, often.called a

sequence name, is the same as the row name except that it begins

with an uppercase letter. Eachrow .has two.columns, .the

udpLocalAddress (an lpAddress type) and the udpLocalPort (an

INTEGER type).

udpLocalAddress OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION

"The local IP address for this UDP listener. A UDP listener

willing to accept datagrams for anyJP .interface.asscciaıed with

the node, uses the value O. O. O. O."

: := { udpEntry 1 }

The notation { udpEntry 1} indicates the first column in the

table. The SYNTAX is a definedtype.Jpnddress . .Ihe.description

provides the address

{O.O.O.O}. 

udpLocalPort OBJECT-TyPE

SYNTAX INTEGER (0.. 65535)

ACCESS read-only

STATUS mandatory

DESCRIPTION

"The local port number for this UDP listener."

: := { udpEntry 2 }

The notation { udpEntry 2} indicates the second column in the

54



table. The SYNTAX is an INTEGER type, with values ranging from

O to 65,535.

An example of this table would be:

Local.Address Local Port

0.0:0.0

O.O.O.O

O.O.O.O

69(TFTP)

161 (SNMP)

520 (Router)

In this example, the tab-le contains three rows and two columns. All local addresses are

[O.O.O.O], which indicates thatthe table is willing to accept IP datagrams from any address

on this port.

3 .3 MIB I and MIB II Groups
Managed objects are arranged into groups for two reasons. First, a logical grouping

facilitates the use of the object identifiers and tree structure. Second, it makes the-SNMP

agent design more straightforward because the implementation of a group implies the

implementation of all objects within the group. Thus, both the software developerand the

end user can clearly understand a statement of support for, say, the TCP Group. MIB-I

contained 114objects. MIB-II, which is backward-compatible with MIB"'."1, contains these

114 objectsplus 57 more, for .a total of 171 objects.

3.3 .1 The System Group

The System group provides a textual description of the entity in printable ASCII

characters. This text includes· a system description, OID,. the length of time since the

reinitialization of its network management entity, and other-administrative details.

Implementation of the System group is mandatory. The OID tree for the System group is

designated { L3.6.1.2.1. l}.

55



3.3.2 The Interfaces Group

The Interfaces group { 1.3 .6.1.2.1.2} provides information about the hardware

interfaces on a managed device. This information is presented in a table. The first object

(ifNumber) indicates the number of interfaces on the device. For each interface, a row entry

is made into the table, with 22 column entries per row. The column entries provide

information about the interfaces, such as the interface speed, physical (hardware) address,

current operational state, and packet statistics.

3.3. 3 The Address Translation Group

MIB-I included the Address Translation group but it was deprecated in MIB-II. The

"deprecated" status means that MIB-II includes the Address Translation group for

compatibility with MIB-I, but will probably exclude it from future MIB releases. The

Address Translation group provided a table that translated between IP addresses and

physical (hardware) addresses. In MIB-II and future releases, each protocol group will

contain its own translation tables. The Address Translation group is designated

{ 1.3.6.1.2.1.3}. It contains one table with three columns per row.

3. 3 .4 The IP Group

The Internet Protocol (IP) group is mandatory for all managed nodes and provides

information on host and router use of the IP. This group includes a number of scalar objects

that provide IP-related datagram statistics and the following three tables: an address table

(ipAddrTable); an IP to physical address trans1ationtable (ipNetToMediaTable); and an IP

forwarding table (ipf'orward'Ieble). Note that RFC 1354 defined the ipForwardTable,

which replaces and obsoletes the ipRoutingTable in MIB-II. The IP subtree is designated

{ 1.3 .6.1.2.1.4 }.

3.3.5 The ICMP Group

The Internet Control Message Protocol (ICMP) group is a mandatory component of

IP and is defined in RFC 792. The ICMP group provides intranetwork control messages

and represents various ICMP operations within the managed entity. The ICMP group

contains 26 scalar objects that maintain statistics for various ICMP messages, such
56



as the number of ICMP Echo Request messages received or ICMP Redirect messages sent.

This group is designated {1.3.6.1.2.1.5} on the OID tree.

3.3.6 The TCP Group

The Transmission Control Protocol (TCP) group is mandatory and provides

information regarding TCP operation and connections. This group contains 14 scalar

objects and one table. The scalar objects record various TCP parameters and statistics, such

as the number of TCP connections that the device supports, or the total number of TCP

segments transmitted. The table, tcpConnTable, contains information concerning a

particular TCP connection. The OID for this group is {1.3.6.1.2.1.6}.

3.3.7 The UDP Group

The User Datagram Protocol (UDP) group is mandatory and provides information

regarding UDP operation. Because UDP is connectionless, this group is much smaller than

the connection-oriented TCP group. It does not have to compile information on connection

attempts, establishment, reset, and so on. The UDP group contains four scalars and one

table. The scalar objects maintain UDP-related datagram statistics, such as the number of

datagrams sent from this entity. The table, udpTable, contains address and port information.

The OID for this group is {l.3.6.1.2.1.7}.

3.3.8 The EGP Group

The Exterior Gateway Protocol (EGP) group is mandatory for all systems that

implement the EGP. The EGP communicates between autonomous (self-contained)~
systems, and RFC 904 describes it in detail. The EGP group includes 5 scalar objects and

one table. The scalars maintain EGP-related message statistics. The OID for this group is

{ 1.3.6.1.2.1.8}.

3.3.9 The CMOT (OIM) Group

At one time, during the development of the Internet Network Management

Framework, there was an effort to use SNMP as an interim step in the push for a network

management standard, and to make the Common Management Information Protocol

57



(CMIP) over TCP/IP (CMOT) the long-term, OSI-compliant solution. As a result, the

CMOT group was placed within MIB-11. Experience has shown, however, that SNMP is

not an interim solution, and that the OSI-related network management protocol requires

unique MIBs. Therefore, it's unlikely that we will encounter the OIM group within any

commercially available SNMP managers or agents.

3.3. 10 The Transmission Group

The Transmission group designated { 1 .3.6. 1.2. 1. 10}, contains objects that relate to

the transmission of the data. RFC 1213 defines none of these objects explicitly. However,

the document does say that these transmission objects will reside in the experimental

subtree { 1.3.6.1.3} until they are "proven."

3 .3. 11 The SNMP Group

Since this book is about SNMP, we should be especially interested in the SNMP

group, which provides information about SNMP objects (Figure 3.2). There are a total of

30 scalar objects in this group, including SNMP message statistics, the number ofMIB

objects retrieved, and the number of SNMP traps sent. This group is designated

{ 1.3 .6.1.2.1. 11}.

3.4. The Ethernet RMON MIB

As networks have become increasingly distributed, geographically and logically,

network management has become more challenging. One solution is to place remote

management devices, sometimes called probes, on remote segments. The probes act as the

eyes and ears of the network management system, providing managers with statistical

information. The remote network monitoring (RMON) MIB standardizes the management

information sent to and from these probes; it is presented in RFC 1757. A vendor-specific

RMON implementation is the focus of"Continuous Monitoring of Remote Networks. The

RMON MIB is assigned OID { 1.3.6.1.2.1. 16} and contains 9 groups. All of these groups

are optional (not mandatory), but the implementation of some groups requires other groups.

For example, the Filter group requires the Packet Capture group. The following is a

summary of the nine Ethernet groups:

58



system
(1)

interfaces
(2)

transrnission
(10)

u,mp*
(1"1)

translation
(3)

(9)

ip
(4} tep

(6)

/
snmplnPkts• (1)
snmpOutPkts•· ('2)
.ımmplriBadVemions•·cs) ..
snmplı:ıBadCommuı'tityNamas•·(4)
snmp.ln&dCommunilyUses"(5)
srimplnASNParseErrn· {6)
ls riot usad" (71
snmp InTooBigs • (3)
sf'lmplrıNoSuehNamm• (9)
snmpln8adVa.lues"'(10)
snmpin ReııdOrılys"' (11)
snmplnGer:ıErrs• (12} ·
snmplnTotalReqVars" (13)
snmplnTotalSetVars" (14)
snmplnGetRequasts• (15)
snmp In GınNeııts*' (16)
snmplnSetAequestsk (17)
snm~lnGetHesıx:ınses· (18)
snmplnTraps"' (19}
snmpOutTooBigs• (26)
snmpOutNoSuchNıınıes"' (21)
snmpOutBa.dValues•· (22) ·
ls not used• (23)
snmpOutGenE(rs* (24}
snmpOUtGetREquests• (25)
sı:ımpOiJtGmNexlıı,"' (26)
snmpOutSetREquasts"' (27)
snmpOutGetRespo nsas• (28)
Sf1fDp0Uffraps"(29) ..
snmpEnableA.utt:ıenTraps" (.20)

• Added by MIB-11

Figure s.z The SNMP group

59



Group Description

statistics (1)

history (2)

alarm (3)

host{4)

Provides probe-measured statistics, such as the number and- sizes

ofpackets, broadcasts, collisions..and so on.

Records periodic statistical.samples over time thatyou can use to

analyze trends.

Compares statistical samples with presetthresholds, - generating

alarms when a particular threshold is crossed.

Maintains statistics ofthe hosts onthe network, including the

MAC addresses of the active hosts.

hostTopN (5) Provides reports sorted by host table statistics; indicatingwhich

hosts are at the top of the list in a particular category.

matrix (6) Stores statistics in a traffic matrix that tracks conversations

between pairs of hosts.

filter (7)

capture (8)

event(9)

Allows packets to be matched accordingto a filter equation.

Allows packets to be captured afterthey pass through alogical

channel.

Controls the _generationand notification of events, which may

include SNMP trap messages.

3 .5 The Token Ring RMON MIB

The token ring RMON MIB is under development as an extension to the Ethernet.
RMON MIB. Because of the popularity of token ring networks, this MIB has received a

great deal of attention. The Ethernet RMON MIB defines nine groups, Statistics through

Events. The token ring RMON MIB extends two of these groups, Statistics and History,

andadds one unique group. This new group.is called tokenRing, with object identifier {

rmon 1 O } . The statistics extensions allow an RMON-compatible device to collect token

ring MAC-Layer errors and promiscuous errors. The MAC-Layer errors, such as token

60 



errors and frame-copied errors, are specific to the token ring protocol; the promiscuous

errors, such as counting number of broadcast packages or data packets between 512 and

1023 octets in length, are more general. Similarly, the history information is divided into

MAC-Layer and promiscuous details. The token ring group contains four sub groups: ring

station, which monitors station- andring-specific events; ring station order, which tracks

the network topology; ring station configuration, which controls the removal and/or

configuration of stations on the ring; and source routing, which details source routing

bridging information.

3.6RMON2

The original·RMON MIBs · for Ethernet and token ring networks are primarily

concerned with the operation and management ofthe Physical and Data Link Layers of a

remote network. As such, they can compile statistics and historical information regarding

Ethernet·collisions; token ring.frame copied errors, and so on; but they.cannot look into the

operation of the OSI Network through Application layers of that remote network.

RMON2, defined in RFC 2021, extends the RMON capabilities to those higher

layers by adding 1 O new groups, designated { rmon 11} through { rmon 20}. Figure 3 .3

illustrates the OID·branches for both RMON andRMON2. Thus, the higher layer protocols,

such as TCP/IP or SPX!IPX, can be monitored for greater management visibility within the

internetwork.

The tengroups within RMON2 are:

Group Description

protocolDir (11) Protocol Directory: lists, in a table, the inventory of

protocols that the probe has the capability of

monitoring.Each protocol is described by an entry in

the table.

61



itu-t (O) ]oint-iso~1tu-t (2'/iao(1)

org (S)

~
dod (6)

-~

internet (1)

direı::torı, (1) mgmt (2) experiments! (3)

~

priwte {4) aeı:ıu rity (5) en mpV2 (61 ma.il {7')

mib-2 (1)

ıramırnlesian
(fil)

nnmCorıfarman.ı::e
(liö'J

prdJeOanillg
(19)

proıı:ıoolDlsı
('İ2)

pır.:ı!ooQiDlr
(H)

RMON1
!ckenF:ılng

(ill)

Figure 3.3 RMONI and RMON2 object trees.

62



ProtocoIDist (12) Protocol Distribution: collects the relative amounts of octets

and packets for the different protocols that are detected on a

network segment. Each protocol is described by an entry in a

table, and the network management station can easily

determine the bandwidth consumed per protocol by accessing

the information in that table.

addressMap (13) Address Map: correlates Network Layer addresses and MAC

Layer addresses, and stores the information in tables.

nlHost (14)

nlMatrix (15)

alHost (16)

alMatrix ( 1 7)

usrHistory (18)

Network Layer Host: counts the amount of traffic sent from

and to each Network Layer address discovered by the probe,

and stores the information in tables.

Network Layer Matrix: counts the amount of traffic sent

between each pair of network addresses discovered by the

probe, and stores the information in tables from both source to

destination and destination to source.

Application Layer Host: counts the amount of traffic, by

protocol and by host, that is sent from and to each network

address discovered by the probe.

Application Layer Matrix: counts the amount of traffic, by

protocol, sent between each pair of network addresses

discovered by the probe, and stores this information in tables.

This group is similar to the nlMatrix group, but the focus is on
1"

the protocol in operation.

Combines mechanisms seen in the alarm (3) and history (2)

groups to provide user-specified history collection, and

storing that information in tables.

63



probeConfıg (19) Controls the configuration of various operational parameters

by the-probe, such as.the Ethernet and token ring RMON

groups that are supported by the probe, software and hardware

revision numbers of the probe, a trap destination table, and so

on.

rmonConformance Describes the requirements for conformance to the RMON2

(20) MIB.

3.7 Private MIBs

Many vendors have developed private MIBs that support hubs, terminal servers, and

other networking systems. We can find these MIBs under the enterprises subtree,

{ 1.3.6.1.4.1.A}. The A indicates a private enterprise code, defined in the "Assigned

Numbers" RFC (RFC 1700) in the network management section. Because of these private

MIBs are vendor-specific, interoperability is not always possible.

3 .8. Accessing a MIB

This section gives an example of an SNMP management console retrieving values

for MIB objects from a remote-SNMP agent. In this case, the manager is a Sun

Microsystems' SunN et Manager, and the agent is located in a Protean' s p4100+ router.

Both devices connect to an Ethernet backbone. A Network General Corp. Sniffer protocol

analyzer captured the data shown in Trace 3.9.
1'

A protocol analyzer captures, then decodes, frames of data as they are transmitted

on the LAN or WAN. These frames are numbered sequentially and stored in the same
~

order. The analyzer can display these frames several ways; it can show all of the protocol

layers, or just one. The example in this section shows only the highest layer, SNMP. The

analyzer also lets us choose the amount of detail included. The minimum detail is a single

summary line, and the maximum is the hexadecimal representation of the bits received on

the wire. This exchange between the manager and the agent {Trace 3.9) involves two

frames of information. Frame 109 contains an SNMP GetRequest PDU (protocol data unit,

64



the core of the SNMP message) and Frame 110 contains a GetResponse PDU.

The manager sends the GetRequest to the agent asking for the values of the objects

within the system subtree, OID { 1.3 .6.1.2.1. 1}. The PDU requests information about all

seven of the objects: sysDescr, sysObjectlD, sysUpTime, sysContact, SysName,

sysLocation, and sysServices. On the trace, we can see two coding elements for each of

these objects. First, the manager requests the sysUpTime object to determine whether the

agent within the router has restarted (warm or cold boot). Second, the manager asks for the

values of each individual object in order. This trace also illustrates the use of the

SEQUENCE type encoding of VarBinds. Each object is encoded with an OBJECT

IDENTIFIER type, for example { 1 .3. 6. 1 .2. 1. 1 .2. O}. The Object Value field is encoded with

a NULL type because the manager does not know this information.

Frame 110 gives the agent's GetResponse. The response returns each object and its

associated value in the order that Frame 109 requested. The sysDescr provides a textual

description of the device (Portable 180386 C Gateway ... ). The sysObjectID has a value of

{1.3.6.1.4.1.1.1.1.41}. From the prefix {1.3.6.1.4.1}, we know that this is a private

enterprise subtree. The next digit(. 1) is the enterprise code for Proteon, Inc. The

sysUpTime object has a value of263,621,778 hundredths of a second, which translates to

roughly 30 days because the router's network management system was restarted. Two of

the objects, sysContact { system 4} and sysLocation { system 6} appear not to. have a value.

In reality, they have a value of a zero-length string, but the network manager entered no

values for those objects in the router's configuration file. The sysName is the domain name

of the node (boulder.org). Finally, the sysServices {system 7} is a calculated sum that

indicates the services this node performs. In this case, the value is 72, indicating a host
"'

offering application services (RFC 1213).

Trace 3.9 Browsing the system subtree (SNMP protocol decode)

SnifferNetwork Analyzer data 10-Nov at 10:42:04 file ASAN_SYS.ENC Pg 1

------------------------------ Frame 109 --------------------------

SNMP: ----- SimpleNetwork Management Protocol----

SNMP:

SNMP: Version = O

SNMP: Community= boulder

65



SNMP: Command = Get request

SNMP: Request ID = O

SNMP: Error status =D {No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.O)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.1.0} (sysDescr.0)

SNMP: Value = NULL,

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.2.0} (sysObjectID.O)

SNMP: Va)ue = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.0)

SNMP: Value = NULL

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.4.0} (system.4.0)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.5.0} (system.5.0)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.6.0} (system 6.0)

SNMP: Value ::!::: NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.7.0} (system 7.0)

SNMP: Value = NULL

SNMP:

------------------------------- Frame 11 O -----------------------------

SNMP: --~-- SimpleNetwork Management Protocol-----

66



SNMP: Version= O

SNMP: Community = boulder

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0] (sysUpTime.0)

SNMP: Value= 263621778 hundredths ofa second

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.1.0} (sysDescr.O)

SNMP: Value= Portable 180386 C Gateway BOULDER.ORG SIN XXX Vl2.0

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.2.0} (sysObjectID.O)

SNMP: Value= { 1.3.6.1.4.1.1.1.1.41}

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.3.0} (sysUpTime.0)

SNMP: Value= 263621778 hundredths ofa second

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.4.0} (system.4.0)

SNMP: Value=

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.5.0} (system.5.0)
I'<

SNMP: Value= BOULDER.ORG

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.6.0} (system.6.0)

SNMP: Value =

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.7.0} (system.7.0)

SNMP: Value= 72

SNMP:

67



CHAPTER FOUR

THE SIMPLE NETWORK MANAGEMENT PROTOCOL

This chapter completes the discussion of the Internet Network Management Framework by

looking at SN1\1P, the protocol that communicates management information.

4.1 SNMP Objectives and Architecture

RFC 1157 states that "SN1\1P explicitly minimizes the number and complexity of

management functions realized by the management agent itself'. In other words, SN1\1P is

designed to be simple. SN1\1P does this in three ways. By reducing the development cost of

the agent software, SNMP has decreased the burden on vendors who wish to support the

protocol, thereby increasing the protocol's acceptance. Second, SN1\1P is extensible,

allowing vendors to add network management functions. Third, it separates the

management architecture from the architecture of hardware devices, such as hosts and

routers, widening the base of multivendor support.

SN1\1P has a very straightforward architecture. Figure 4. la compares the SNMP

architecture to the ISO/OSI model and the Advanced Research Projects Agency (ARPA)

model, around which the Internet protocols and TCP/IP were developed. The four layerş of

the ARPA model do not map evenly to the seven layers of the OSI model.

Let's use an example to see how the processes within the SN1\1P architecture

interact. Suppose a management console requests information about one of the managed

nodes. The SN1\1P processes in both the manager and the agent respond to the console. The

ASN.1 encoding at the Application layer provides the proper syntax for the SN1\1P

message. The remaining functions authenticate the data (attach the SN1\1P header) and

communicate the information request.

68



OSI Layer AR.PALııyerSNMP ~ A.elated F-Unction

Application Management Application
tSNM-PPDU)

Preeess I

Presentation
Structure of

Management.Information
(AS:N.1 &BEH Eıınıdıng)

A:pplfcatio 11

Se.SSion
Authentication

(SN MP-Header}

Trail.sport
User Datagram-Protocol

fUDP}

.Netwoık
lntemet Pmtoool

(IP} tn-temet

DataUnk
·NetworkLAN or WAN

lnte rfac e.Protocol
lnterface

Physical

Figure4~laComparing the SNMP architecture with the OSI and ARPAmodels

Because most management information does not demand the reliable delivery that

connection-oriented systems previde, the communication.channel between the SNMP

manager and the agent is connectionless. When we compare the SNMP model to the

ISO/OSI model, SNMP's-cormectionless communication mechanism removes some of the

need for a Session layer and reduces the responsibilities of the lower four layers. For most

implementations, the User Datagram Protocol {UDP)performs the Transport layer

functions, the Internet Protoool{IP) provides the Network layer functions, and LANs such

asEthernet ortokenring or WANs_such.asa leased line or a frame relay connection

provide the Data.Link-aad Physical layer.functions.
Ifwe compare SNMPto the Internet (or ARPA) architectural model-ff'igure 4.1b),

we will notice that the ARPA model uses four·layers to describe the entire communication

functien. In-the.Alcl'A-model, SNMP would reside at the Process/Application layer.

69 



However, while the ARPAHos-Mo-Host layer provides end-to-end communication

reliability, SNMP's use of UDP assures only proper portaddressinganda checksum; it

does notprovide octet-by-octet.error control. IP providesthe Internet layer functions, such

asaddressing and fragmentation, -that are-necessary to deliver an SNMP message-from the

source to the destination. Finally, the Network Interface layer deals withtheLAN .or.WAN

hardware, such as an interface to an FDDI or Frame Relay network connection. Figure 4 .1b

also shows the relative complexities of the host and router functions. Hosts implement all

four layers of-the ARPAmodel, whereas routers implement only the lower two.

Host A HostZ

Process/Application
Layer

(SNMP}

P roceösl A.ppliGation
Layer

(SNMP}

Host,.to•.Host
Layer
{UDP)-RouterB RouterY

Internet Layer
(IP)

Internet Internet
Layer: :lay.er
(IP) (•P}

.h--~-,'--,-----t ••• - -
N.i: ·Nt NI NI

_Networkfnteım.c e
Layer

lntemettayer
(fP)

.Network Interface
Layer

~ ...SA z
T1T

Figu~e4.;-lh. Applicaıion-to-applicaticn connection
- -

Comparing the.SNMP.architecture to.the ISO/OSI .andARPAarchitectııral models

provides a theoretical·basis for this discussion. But from a practical perspective, the SNMP

model works as shown in Figure4.2. This model contains several elements. It includes a

management system that.uses the SNMP manager, an SNMPagent, and mana_ged

resources, and the SNMP messages communicate management information via five SNMP

protocol-dataunits.(PDUs). The management application issues the Get, GetNext~or Set

PDUs. The managed s¥stem returns .a GetResponse PDU. The agent may initiate a Trap

(sometimes called an Event) PDU when predefined conditions are met.

70



SNMP
Management System

SNMP
Managed S.ystem

I Managed
Resources

Mamigement App I ıoanen ~ SN.MP
Application

. ~·
Managed ObjectsManages Objects

1 ~ ·~~ı i ·l ~ ı r . >< ııı
ı::' 1= ar i j c:· i·çı, i,,. Cfl ~ı ~ Cl ....,i. o·

aı ' cı. uı. Cl 1ii!=. r or 

SNMP
SNMP Manager . L SNMP Agent

Messages

UDP UDP
IP -IP

Unk link

~Gommunications.Netwo~

--------
Figure 4.2 SNMParchitecture (c 1990, IEEE)

4 .2 SNMP Operation

The SNMP · processes must occur in physical devices. For.example, a router must

have a physicalprocessor that implements the software acting as an SNMPagent. Two sets

of logical processes occur within those physical.elements: the relationships that are

specified between various net~ork management entities, and the waynetwork management

information is· communicated.

4.2.l ·NetworkManagement Relationships

The SNMP standard, RFC 1157, and the "SNMPAdministrativeMo.del," RFC

1351, define a number-of terms. Many of these definitions describe relationships between

management entities:

• Network management stations are devices that execute the management applications that

control and monitor the network elements.

71



• Network elements are devices such as hosts, bridges, routers, and hubs that contain an

agent and perform the network management functions that the network management

stations request.

• The SNMP allows network management stations and the agents in the network elements

to communicate.
• SNMP application entities reside at either a management station or a managed node, and

use SNMP as a communication mechanism.

• Protocol entities are peer processes that implement SNMP, thus supporting the SNMP

application entities.
• The SNMP community pairs an SNMP agent with an arbitrary set of SNMP application

entities. The network administrator assigns the community a name (called the community

name) which is essentially a password with associated rights and privileges. A management

application with multiple community names may belong to multiple communities.

• Authentic SNMP messages are SNMP messages sent from an application entity to a

specific SNMP community. The message contains the community name ofinterest.

• The authentication scheme is the method by which an SNMP message is identified as

belonging to a specific SNMP community.
• TheMIB View is the subset ofMID objects, which may be contained within several

subtrees, that pertain to a network element.

• The SNMP access mode determines the level of access to objects that a particµlar

application entity is allowed. The choices are read-oıily and read-write.

• The community profile pairs the SNMP access mode with the SNMP MID View. The

community profile represents specific access privileges for the variables in a MID view.
l'

• The SNMP accesspolicy pairs an SNMP community with a SNMP community profile.

The access policy represents the specific community profile that an agent permits the other

members of the community to have.
• The SNMPproxy agent provides management functions on behalf of network elements

that would otherwise be inaccessible.

Figure 4.3 illustrates some of the definitions described above.

72



'<ı'"l'mıı
(1)

SNMP
Manager

D ~mn5misııioo
(il'))

SNMP_- H - IIAgent __ -_- - -MfB Vievır
for

Wor.kstation

SNMP
Agent

mıb-2(1)
Proxy
Agent

I
I

I
ıj,

\
\
\
\
"!}

WAN
Gonnection,ı,

I
I
I
I
\y

Communication.with
devices notaccessible

u5ing SNMP
MIBView

for
Router

Figure, 4.3 Network management relationships

4.2.2 Identifying and Communicating Object Instances

SMI managed object types have an.object identifier (OIO}thatımiquely names

them and locates their place on the object tree. An instance ofan object type is an
il>

occurrence of that object type and has an assigned value.-For example, the object sysDescr

{ 1.3.-6. L2. L 1 .1.O} might have a value of "Retix Remote Bridge Model 2265M." Suppose

a network management station wishes to retrieve an instance-ofa specific object. The

management station mustuseBNMP to communicate its qııestionto.the.agent. Now,

suppose multiple instances (or occurrences) of that object are possible. For example, say a

router's Touting table contains a number of entries. How would the network management

-stationretrievejust the value ofthe third.entry in the table?

73



For these SNMP operations, a variable name uniquely identifies each instance of an

object type. This name consists of two parts of the form x.y. The x portion is the object type

defined in the MIB, and the y portion is an OID fragment that identifies the desired

instance. The following example should clarify this.

Consider a scalar object that has one instance. The objects contained in the System

group are all scalar objects. For example, the sysServices object has an OID of

{1.3.6.1.2.1.1.7} and occurs once. Thex portion of the variable name is the OID, and they

portion has been assigned to O. We can derive this by following the OID tree down to the

object sysServices and adding the appropriate instance suffix (with the suffix, ory portion,

shown in boldface type):

iso org dod internet mgmt mib-2 system sysServices Instance

1361 21 1 7 O

Thus, the variable name for sysServices is {1.3.6.1.2.1.1. 7.0}.

The variable name for a columnar object is more complicated because it must

identify the location of an object within a two-dimensional data structure, such as a table

having both rows and columns. (Within the RMON MIB, three-dimensional data structures

are added, making the identification even more complex.) Using the familiar speadsheet as

an example, the identification of a particular cell requires two coordinates, X and Y, which

describe the horizontal and vertical positions, respectively. With columnar objects, an

indexing scheme, specified in the INDEX clause in the ASN. l definition for that object,

provides a means for identifying the specific instance. The INDEX clause then further

identifies the syntax to be used. And as one might expect, some of the indexing schemes are
!!I

more complicated than others.

A final example (derived from RFC 1157) is from the TCP Connection Table,
'

tcpConnTable. Suppose we wish to retrieve the state of the connection between port 575 on

local address {a.b.c.d} and port 441 on remote address {w.x.y.z}. The OID for

tcpConnState is {1.3.6.1.2.1.6.13. 1.1 }. The INDEX clause consists of four parts:

tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress, and tcpConnRemPort.

They suffix would therefore be expressed as {a.b.c.d.575.w.x.y.z.441 }. Therefore, the

complete variable name would be:
{1.3.6.1.2.1.6.13.1.1.a.b.c.d.575.w.x.y.z.441} 

74 



The following examples show specific variable names for both scalar and columnar object

types:

• The description of this system's services:
sysServices ::= 

{1.3.6.1.2.1.1.7.0} 

• The speed of interface 3:
ifSpeed.3 ::=

{1.3.6.1.2.1.2.2.1.5.3} 

• The physical address associated with interface 2 and IP address {a.b.c.d} (Note that the

first component is a. 1, which indicates an IP address [see RFC 1157, page 13]):
atPhysAddress.2.1.a.b.c.d: :=

{1.3.6.1.2.1.3.1.1.2.2.1.a.b.c.d) 

• The maximum IP datagram reassembly size associated with IP address {a.b.c.d}:
ipAdEntReasmMaxSize.q.b.c.d ::= 

{1.3.6.1.2.1.4.20.1.5.a.b.c.d} 

• The number ofICMP Echo (request) messages received at this device:
icmpinEchos ::= 

{1.3.6.1.2.1.5.8.0} 

• The state of a TCP connection between local porte, local address {a.b.c.d}, and remote

port j, remote address { f.g.h.i}:
tcpConnState.a.b.c.d.e.f.g.h.i.j 

{1.3.6.1.2.1.6.13.1.1.a.b.c.d.e.f.g.h.i.j} 

• Verification that a UDP listener is operational on porte of local IP address a.b.c.d:
udpLocalAddress.a.b.c.d.e ::= 

{1.3.6.1.2.1.7.5.1.1.a.b.c.tj.e} 

• The neighbor state for the IP address a.b.c.d:
egpNeighState.a.b.c.d ::= 

{1.3.6.1.2.1.8.5.1.1.a.b.c.d} 

• The number of SNMP messages delivered to this device with unknown community

names (a scalar):
snmpinBadCommNames ::= 

{1.3.6.1.2.1.11.4.0} 

75



4.3 ·SNMP Protocol Data Uni:ts(PDUs)

We will begin the discussion ofPDUs by describing the position of.the SNMP

message within a transmitted frame. The frame is the unit of information transmitted

between network nodes. For example, an·IEEE 8ü2.5 frame format defines the transmission

between token ring nodes, and an ANSI T1.617 format defines the transmission between

Frame Relay nodes. The local network header and trailers defined by the LAN or WAN

protocol delimit.the frame (Figure 4.4). The transmitted data is called an InternetProtocol

(JP) datagram. The IP datagram is a self-contained unit of information sent from the- source

host.to its intended destination via the internetwork. Inside the datagram is a destination IP

address that steers the datagram to the intended recipient. Next, the User Datagram Protocol

(UDP) header identifies the higher-layer proteool process (SNMP}that will process the

datagram; and provides error control.using.a checksum. The SNMP message is the

innermost part -ofthe frame, carrying the actual data from the manager to and from the
agent.

Local
Network
Header

IP
Header

UDP
Header

Local
Neiw.nrk
Trailer

~ UDP Datagram ~

ı IP Datagram1-----..ı

-------~LocalNe1workFrame~-------.:...ı

Figure 4.4 SN.MP message within a transmission-frame

When the IP is too long to fit inside one frame, it may be divided{or fragmented)

into several frames for transmission on the LAN. The SNMP message itself is divided into

two sections: a version identifier plus community name, and a POU. The version identifier

76 



and community name are sometimes referred to as the SNMP authentication header, There

are five differentPDU types: GetRequest, GetNextRequest, GetRespons.e, SetRequest, and

Trap. The Get, Set, and Response PDUs have a common format (Figurea.S), while the

Trap PDU format is unique.

f"- SNMP Message .,.I
Version I Community 6 etRequest, G etNextRequ est, Get Response

or Betflequest PDU

PDU
Type

Error
Index

Object 1, Value 1 I Object2, Value .2ı .. • • •Request
lD 

Error
Status

,.., V.ariable Bindings ••• ,

Figure, 4.5 The SNMP GetRequest, GetNextRequest, GetResponse, and SetRequest PDU

structures

Theversion number (an INTEGER type) assures that both manager and agent are

using the same version of the SNMP.protocol.Messages between manager and agent

containing different version numbers are discarded without further processing. The

community name (an OCTET STRING type) authenticates the manager before allowing

access to the agent. The community name, along with the manager's IP address, is stored in
I'

the agent's community profile.:If there's a difference between the manager and agent

values-for the community name.the agent will.sendanauthentication failure trap message

to the manager. If both the version number and community name from the manager:match

the ones stored in the agent, the SNMP PDU begins processing.

77 



43.1 Get, Set, and Response PDU Formats

The GetRequest, GetNextRequest, SetRequest, and GetResponse PDU s share a

common format (Figure4.5). The first field, PDU Type, specifies the type of PDU the

message contains:

PDU PDU Type.Field Value

GetRequest o
GetN extRequest 1

GetResponse 2

SetReqııest 3

Trap 4

The Request ID field is an INTEGER type that correlates the manager's request to the

agent's response. The Error Status field is an enumerated INTEGER type that indicates

normal operation (nolirror) or one of five error conditions .. The possible values are:

Error Value Meaning

noError

TooBig

o
I

noSuchName 2

badValue 3

readOnly 4

Proper manager/agent operation.

The size .of the required GetResponse PDU

exceeds a local·limitation.

The requested object name did not match the

names available in the relevant.Mlls View.

A SetRequest contained an inconsistent type,

length, and value for the variable.

Not defined in RFC 1157. (Historical footnote:

this error is listed, butthe description of the

SetRequest PDU processing does not describe

78



how this error is generated. The standard

interpretation is that this error should not be

generated, although seme vendor's agents

nevertheless do.)

genErr 5 Other errors, not explicitly defined, have

occurred.

AV ariable Binding (VarBind) pairs a variable name with.its value. AVarBind.List

is a list of such pairings. Note that within the Variable Bindings fields of the SNMP PDU s

(Figures 4.5 through4.10), the word Object identifies the variable name (OID encoding of

object type plus the instance) for which a value is being communicated .. Also note that

GetRequest or GetNextRequestPDUs use a value of NULL, which is a special ASN.1 data

type.

Ma.Aagement
Console

Manager·1o __.

Agent
l'lmı,uıı!I! I POLI ...
i!hr fıqı>QııdJ<I.

Agent,.____ to

Manager
E:rll!f

indiN.-.1)
fif:liJ ı Rııııu!llll

fi;-pıh :ı ıo •• ,

Gel:~eı;poose PDU
Agent
within
Rouler

Figure 4.6 GetRequest/GetResponse PDU transmission (with no errors) (Courtesy 3Com

Corp.)

79



Management
Go.n.sole

D Managerto __.

Agent
tni>r 

inı:i'l!ıf~D'

ı+-------- Gıe,l~xiReqııestPDU--------ı.ı

Agent,._ to
Manager

Agent
within
Router

Figure 4.7 GetNextRequest/GetResponse PDU transmission (with no errors) (Courtesy

3Com Corp.)

Management
Console

D Manager
to ~

Agı:ınt
Rı,qiı•.ı I P!liJ
lthr "fyfi> ••.3'

ı----------SestReqı.ıast POU--------

A,gsnt,,.__ to
Manager

."'-

Ge,\Re~onse POU ·---------.ı
A£jeni
within
Router

Figure 4~8 SetRequest/GetResponse PDUtransmission (with no errors) (Courtesy3Com

Corp.)

80 



l,.ıı..-------- SNMPMessage I

I Vera~n I Oom~n~ I O•p POU I

PD·U· 'Enınrprise I Agent .I Ganerie · I Spoc:ific JTımest.amp lôbjrot 1;Vıılue 1 I-Objoot2, Valııa 21" " •Tm;ıe .· Address "Trap T~ TrapTwe

Ml Variable Bindings ••• ,

Figure 4~9 SNMP Trap POU structure
Management

Console

D

Agent
.-- · to

Mruıa.ger
Trap,f)DU-----------ıı.l

Agent
within

Router

Figure 4410 trap POU operation (Courtesy 3Com Corp.)

4.3.2 Usingthe GetReqııest POU

The manager uses the GetRequest PDU to retrieve the value of one or more

object(s) from an agent. In most cases, these are scalar, not columnar, objects. To generate

the GetRequestPOU, the manager assigns POUType= O, specifies a locally defined

Request ID, and sets both the ErrorStatus and Errorlndex to O. A VarBindList, containing

the requested variables and corresponding.NULL (placeholder) values, completes the POU.

Under error-free conditions, the agent generates a GetResponse POU, which is assigned

81



PDU Type= 2, the same value of Request ID, Error Status= noError, and Error Index= O.

The Variable Bindings now contain the values associated with each of the variables noted

in the GetRequest PDU (Figure 4.6). Recall that the term variable refers to an instance of a

managed object.

4.3.3 Using the GetNextRequest PDU

The manager uses the GetNextRequest PDU to retrieve one or more objects and

their values from an agent. In most cases, these multiple objects will reside within a table.

As in Figure 4.7, to generate the GetNextRequest PDU the manager assigns PDU Type= 1,

specifies a locally defined Request ID, and sets both the ErrorStatus and the Errorlndex to

O. A VarBindList, containing the OIDs and corresponding NULL (placeholder) values,

completes the PDU. These OIDs can be any OID (which may be a variable) that

immediately precedes the variable and value returned. Under error-free conditions, the

agent generates a GetResponse PDU, which is assigned PDU Type= 2, the same value of

Request ID, Error Status= noError, and Error Index= O. The Variable Bindings contain the

name and value associated with the lexicographical successor of each of the OIDs noted in

the GetNextRequest PDU.

4.3.4 Using the SetRequest PDU

The manager uses the SetRequest PDU to assign a value to an object residing in the

agent. As you can see in Figure 4.8, to generate that PDU the manager assigns PDU Type=

3, specifies a locally defined Request ID, and sets both the ErrorStatus and Errorlndex to O.

A VarBindList, containing the specified variables and their corresponding values,
"completes the PDU. When the agent receives the SetRequest PDU, it alters the values of

the named objects to the values in the variable binding. Under error-free conditions, the

agent generates a GetResponse PDU of identical form, except that the assigned PDU Type

= 2, Error Status = noError, and Error Index = O

4.3.5 The Trap PDU Format

The Trap PDU has a format distinct from the four other SNMP PDUs, as in Figure

4.9. The first field indicates the Trap PDU and contains PDU Type= 4. The Enterprise field

82



identifies the management enterprise under whose registration authority the trap was

defined. For example, the OID prefix { 1.3.6.1.4.1.110} would identify Network General

Corp. as the Enterprise sending a trap. The Agent Address field, which contains the IP

address of the agent, provides further identification. If a non-IP transport protocol is used,

the value O.O.O.O is returned. The Generic Trap type provides more specific information on

the event being reported.

4.3.6 Using the Trap PDU

The agent uses the Trap PDU to alert the manager that a predefined event has

occurred. To generate the Trap PDU, the agent assigns PDU Type = 4 and fills in the

Enterprise, Agent Address, Generic Trap, Specific Trap Type, and Timestamp fields, as

well as the Variable Bindings list. By definition (and convention), Traps are application

specific. Therefore, it would be difficult to cover the range ofuses for this PDU. Figure

4. 1 O illustrates how an agent in a router could use a Trap to communicate a significant

event to the manager.

4.3.7 SNMP POU Encoding

SNMP PDUs are encoded using the context-specific class, with a tag that identifies

the PDU. The Length and Value fields are then constructed to convey a particular structure

and quantity of information. Now that we have discussed the structure of the SNMP POUs,

we can revisit these encodings in more detail.

Figure 4.11 shows an example of a TLV encoding of an SNMP PDU. Note that the

entire encoding begins with a SEQUENCE OF type. The version is an INTEGER type, and
I>

the community name is an OCTET STRING type. A context-specific type then indicates

the specific PDU and its length. Three INTEGER types provide the Request ID, Error

Status, and Error Index. The VarBind list, consisting of multiple SEQUENCE OF

encodings, completes the PDU. The following examples illustrate the details of this

encoding structure.

83



4.4 Application Examples

To illustrate the SNMP PDUs discussed in this.chapter, this section presents some

examples of the protocol in use. The network analyzer captured each sample from an

Ethernet backbone, which contained several other Ethernet segments connected by bridges

and routers (Figure 4.12). For these cases, the SNMP managerwas a Sun-workstation

running SunNet Manager, and a Proteon router contained the SNMP agent. In all of these

examples, the traces are filtered to show only the SNMP protocol interaction.

'Ty~ Length Value

• Gorırext-,ıpedllc ıy.pe ıhaı idi>nıillosthe POU

Figure 4.11 TLV encoding ofan SNMP PDU (CourtesyNetwork General Corp.)

84



Management
consoıe

.,t,
j SNMP Traps _J I [)OOC163.y.z]IL

I

......_. _...................

Goldengate 11
'-'

Bridge
Protean
AOuter

[XXX.163.1 z]

Paul Kathy
To He mote

Netv.ork

Figure 4.12 SNMP traps from a networkanalyzer

4.4. 1 SNMPGetRequest Example

GetRequest PDU retrieves one or more objects. Trace 4.4. 1 illustrates how the-UDP

group does this.

Trace 4.4.1. Retrieving scalar data using the Getkequest PDU: The UDP Group

SnifferNetwork Analyzer data 10-Nov at 11:03:08,file UDP.ENC, Pg 1

---- ---------------------------- Frame 61 ----------- -------------

SNMP: --~-- SimpleNetw-orkManagement Protocol----

SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Get request

SNMP: Request ID = O

SNMP: Error.status = O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= {1.3.6.1.2. Ll.3.0} (sysUpTime.0)

SNMP: Value = NULL

85



SNMP:

SNMP: Object= { 1.3.6.1.2.1.7.1.0} (udplnfratagrams.O)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1. 7.2.0} (udpNoPorts.0)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.7.3.0} (udplnErrors.O)

SNMP: Value =NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.7.4.0} (udpöutlıatagrams.O)

SNMP: Value = NULL

SNMP:

--------------------------------- Frame 62 -------------------, ----

SNMP: ----- Simple Network Management Protocol----

SNMP:

SNMP: Version= O

SNMP: Community= Brutus.

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status = O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTim~.O)

SNMP: Value = 263748621 hundredths of a second

SNMP:

SNMP: Object= {1.3.6.1.2.1.7.1.0} (udplnDatagrams.0)

SNMP: Value = 573894 datagrams

SNMP:

SNMP: Object= {1.3.6.1.2.1.7.2.0} (udpNoPorts.0)

SNMP: Value = 419103 datagrams

86



SNMP:

SNMP: Object= { 1.3.6.1.2.1.7.3.0} (udplnErroııs.0)

SNMP: Value = O datagrams

SNMP:

SNMP: Object= { 1.3.6.1.2.1.7.4.0} (udpöuttıatagrams.O)

SNMP: Value = 288892 datagrams

SNMP:

Trace 4.4.1 consists of two SNMP PDUs: the GetRequest (Frame 61) and the

GetResponse (Frame 62). Both frames illustrate their respective PDU structures: Version=

O, Community = Brutus, Command (PDU Type O or 2), Request ID = O, Error Status = O,

and Error Index= O. Next, the VarBindList indicates the variables and associated values

being requested or supplied.

We can observe two things here. First, the SunNet Manager always asks for the

sysUpTime before requesting other objects. (Other management consoles may construct the

VarBindList in another fashion.) The sysUpTime provides a time-stamp update for the Sun

console, and is an input to the Sun graphical display of the network management statistics.

Second, the values associated with the objects in the GetRequest have a Value = NULL.

Recall that NULL is the ASN.1 type used as a placeholder in the data stream. When you

look at the GetResponse in Frame 62, you'll see that each NULL value has been replaced

with a measured value. For example, the number ofUDP datagrams that have been

delivered to UDP users, udplnDatagrarns { 1.3.6.1.2.1.7.1.0}, has a value of 573,S94

datagrams.

4.4.2 SNMP SetRequest Example

This example issues a SetRequest PDU for an object on the Proteon router, then

issues a GetRequest for the same object (Trace 4.4.3) to verify that the action was properly

completed. Frames 1 and 2 retrieve the current value of ipDefaultTTL; Frames 3 and 4 set a

new value for that object; Frames 5 and 6 verify the new value; Frames 7 and 8 set the

value back to the original; and finally, Frames 9 and 1 O verify the previous operation. The

GetResponse PDU (Frame 2) contains the requested value (60) of ipDefaultTTL (the

default value of the Time-to-Live field within the IP header). Frame 3 contains a

87



SetRequest PDU, assigning Value= 64 to ipDefaultTTL. The router sends a confirming

GetResponse PDU in Frame 4. Frame 5 issues a GetRequest PDU to verify that the

SetRequest changed the value of ipDefaultTTL to 64 (Frame 6). Frame 7 issues a second

SetRequest, this time with Value= 60, which is acknowledged in Frame 8. Frames 9 and 10

confirm that the operation was successful.

Trace 4.4.2. SNNP Set ipDefaultTTL details

SnifferNetwork Analyzer data 11-Dec at 15: 16:52 file SETIPTTL.ENC

Pg 1

--------------------------------- Frame 1 --------------------,-----

SNMP: ----- SimpleNetwork Management Protocol----

SNMP:

SNMP: Version = O

SNMP: Community = Brutus

SNMP: Command = Get request

SNMP: Request ID = O

SNMP: Error status = O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.0)

SNMP: Value =NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.1.0} (ipf'orwarding.O)

SNMP: Value =NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTJ.,.O)

SNMP: Value = NULL

SNMP:

--------------------------------- Frame 2 --------------------,-----

SNMP: ----- SimpleNetwork Management Protocol----

SNMP:

SNMP: Version= O

88



SNMP: Community = Brutus

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysl.Jp'I'ime.O)

SNMP: Value = 16862273 hundredths of a second

SNMP:

SNMP: Object= { 1.3.6.1.2. 1.4.1.0} (ipForwardin~.O)

SNMP: Value = 1 (gateway)

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 60

SNMP:

--------------------------------- Frame 3 -------------------- . ----

SNMP: ----- Simple Network Management Protocol----

SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Set request

SNMP: Request ID = O

SNMP: Error status= O (No error)
II>

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2. 1.4.2.0} (ipDefaultTTJ.,.O)

SNMP: Value = 64

SNMP:

--------------------------------- Frame 4

SNMP: ----- Simple Network Management Protocol----

SNMP:

89 



SNMP: Version = O

SNMP: Community = Brutus

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status = O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= {1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 64

SNMP:

--------------------------------- Frame 5 --------------------,-----

SNMP: ----- Simple Network Management Protocol ----

SNMP:

SNMP: Version = O

SNMP: Community = Brutus

SNMP: Command = Get request

SNMP: Request ID= O

SNMP: Error status= O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.0)

SNMP: Value =NULL

SNMP:
I'>

SNMP: Object= {1.3.6.1.2.1.4.1.0} (ipf'orwarding.O)

SNMP: Value = NULL

SNMP:

SNMP: Object= {1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value =NULL

SNMP:

--------------------------------- Frame 6 --------------------r----
SNMP: ----- Simple Network Management Protocol -----

90 



SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status = O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.O)

SNMP: Value = 16863228 hundredths of a second

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.1.0} (ipforwarding.O)

SNMP: Value = 1 (gateway)

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 64

SNMP:

--------------------------------- Frame 7 --------------------,----

SNMP: ----- Simple Network Management Protocol-----

SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Set request
~

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 60

SNMP:

--------------------------------- Frame 8 -------------------------

91



SNMP: ----- Simple Network Management Protocol----

SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 60

SNMP:

--------------------------------- :Frame 9 --------------------, ----

SNMP: ----- Simple Network Management Protocol ----

SNMP:

SNMP: Version= O

SNMP: Community = Brutus

SNMP: Command = Get request

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.0)
1'

SNMP: Value =NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.1.0} (ipf'orwarding.O)

SNMP: Value = NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = NULL

SNMP:

92 



------------ ,-------------------- Frame 1 O -------------------------

SNMP: ----- Simple Network Management Protocol o-c

SNMP:

SNMP: Version = O

SNMP: Community = Brutus

SNMP: Command = Get response

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index = O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTime.O)

SNMP: Value = 16863846 hundredths of a second

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.1.0} (ipl-orwarding.O]

SNMP: Value = 1 (gateway)

SNMP:

SNMP: Object= { 1.3.6.1.2.1.4.2.0} (ipDefaultTTL.O)

SNMP: Value = 60

SNMP:

4.4.3 SNMp Trap Example

The final example shows how a Trap PDU indicates an alarm condition to the network

manager. In this case, the agent generating the trap is a Network General Sniffer protocol
"'analyzer (Figure 4.12). One set of network statistics is network utilization. Network

utilization is a ratio between the total number of bits transmitted in aperiod oftime (in this.
case five seconds) divided by the total number of bits that could theoretically be transmitted

during the same period. A typical network would have a network utilization in the 5 to 20

percent range. For this example, we set the threshold to the unrealistically low value of 1

percent over a five second period. When the network reaches that threshold, the Sniffer

generates a Trap PDU and sends it to the SunNet Manager. Another Sniffer analyzer

captured the results.

93



Trace 4.4.3. An enterprise-specific trap: Network utilization exceeded 1 percent during a

five second period.

Sniffer Network Analyzer data 11-Dec at 16: 13:26 file SNIFTRAP.ENC

Pg 1

--------------------------------- Frame 1 --------------------,-----

SNMP: ----- Simple Network Management Protocol----

SNMP:

SNMP: Version = O

SNMP: Community = public

SNMP: Command = Trap

SNMP: Enterprise = { 1. 3. 6. 1. 4.1. 11 O. 1. 1. ı . O}

SNMP: Network address= [132.163.128.102]

SNMP: Generic trap= 6 (Enterprise specific)

SNMP: Specific trap= 7

SNMP: Time ticks = 244894900

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.1.1.1.l.l.1}

(Network General Corp. 1 .1.1.1.1. 1. 1 .1)

SNMP: Value = 53 (counter)

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.1.1.1.1.ı.1}

(Network General Corp. 1. 1. 1. 1. 1. 1 .2.1)

SNMP: Value = 1

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.1.1.l.1).1}

(Network General Corp. 1. 1. 1.1. 1. 1.3.1)

SNMP: Value = Abs usage exceeded 1%

SNMP:

SNMP: Object= { 1.3.6. 1.4.1. 110.1.1.1.1.1.1.4. 1

(Network General Corp. l. l .1.1.1.1.4. l)

SNMP: Value = 5

94



SNMP:

SNMP: Object= { l.3.6.1.4.1.110. l. l.1. l. l. ı.s. 1}

(Network General Corp.1. 1. 1. 1. 1. 1.5.1)

SNMP: Value = O

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.l.1.l.l.p.l}

(Network General Corp.1. 1. 1. 1. 1. 1.6.1)

SNMP: Value = 7

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.1.l.l.l.7.1}

(Network General Corp.1. 1. 1. 1. 1. 1.7.1)

SNMP: Value = 724119640 (counter)

SNMP:

SNMP: Object= {l.3.6.1.4.1.110.1.1.1.l.1.l.8.l}

(Network General Corp. 1. 1. 1. 1. 1. 1.8.1)

SNMP: Value = Global Network

SNMP:

4.5 The ASN.1 SNMP Definition

To conclude the discussion of SNMP protocol operation, Definition 4. 1 is the

ASN. 1 definition of SNMP (RFC 1157). Of special interest are the constructs of the various

SNMP PDUs. Those constructs summarize the variables used within the PDUs, plus the

values that those variables mayı.assume.

Definition 4.1 The ASN. 1 definition of SNMP
RFC1157-SNMP DEFINITIONS ::= BEGIN

IMPORTS

ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks

FROM RFC1155-SMI;

top-level message

Message : :=

SEQUENÇE

version -- version-1 for this RFC

INTEGER

95



version-1(0)

} '
community

OCTET STRING,

data

ANY

protocol data units

PDUs ::=

CHOICE

get-request

GetRequest-PDU,

get-next-request

GetNextRequest-~DU,

get-response

GetResponse-fDU,

set-request

SetRequest-BDU,

trap

Trap-PDU

-- PDUs

GetRequest-PDU : :=

[ o J

IMPLICIT PDtı

GetNextRequest-PDU ::=

[ 1]

IMPLICIT PDU

GetResponse-PDU

[2]

IMPLICIT PDU

SetRequest-PDU : :=

[3]

IMPLICIT PDU

PDU : :=

SEQUENCE

request-id

-- community name

e.g., PDUs if trivial

authentication is being used

96



INTEGER,

error-status

INTEGER {

noError(O),

too Big ( 1),

noSuchName(2),

badValue(3),

readünly ( 4) ,.

genErr(5)

} '
error-index

INTEGER,

variable-bindings

VarBindList

Trap-PDU : : =
[ 4 J

IMPLICIT SEQUENCE

enterprise

OBJECT IDENTIFIER,

agent-addr

NetworkAddress,

generic-trap

INTEGER {

coldStart(O),

warmStart(l),

linkDown(2),
lo.

linkup (3),

-- sometimes igno{ed

-- sometimes ignored

-- values are sometimes ignored

type of object generatin9

trap, see sysObjectID in [5)

address of object generating

trap

generic trap type

authenticationFailure(4),

egpNeighborLoss(5),

enterpriseSpecific(6)

} '
specific-trap

INTEGER,

time-stamp

TimeTicks,

specific code, present even

if generic-trap is not

-- enterpriseSpecific

time elapsed between the last

(re-)initialization of the

97



variable-bindings

VarBindList

variable bindings

VarBind : :=

SEQUENÇE

name

ObjectName,

value

ObjectSyntax

VarBindList

SEQUENCE OF

VarBind

END

network

entity and the generation of

the trap

-- "interesting" information

98



CHAPTER FIVE

. SNMP VERSION 2

The original version of SNMP (SNMPvl) was derived from the Simple Gateway

Monitoring Protocol (SGMP) and published as an RFC in 1988. At that time, the industry

agreed that SNMP would be an interim solution until OSI-based network management

using CMIS/CMIP became more mature. Since then, however, SNMP has become more

popular while the OSI solution has been less widely adopted than was anticipated

originally. As a result, it became appropriate to revise and improve SNMPvl.

5 .1 The SNMPv2 Structure of Management Information
MIB modules provide a mechanism for grouping similar objects. The SMI for

SNMPv2 defines the subset of the ASN.1 language that describes various MIB modules.

SNMPv2 has two documents that support the SMI: the Conformance Statements and the

Textual Conventions. The Textual Conventions define the data types used within these

MIB modules and make it easier to read the modules. The conformance statements proyide

an implementation baseline and include, for example, a lower bound on what agents must

support. The SMI also defines two new branches of the Internet OID tree: security

{1.3.6.1.5} and snmpV2 {1.3.6.1.6}. Under snmpV2 are the Transport domains

(snmpDomains); Transport proxies (snmpProxys); and Module identities (snmplvlodules).

Defined under the snmpModules are the SNMPv2 MIB (snmpMIB); the Manager to

Manager MIB, (snmpM2M); and the Party MIB (partyMIB). Figure 5.1 illustrates the

positions of these new elements of the OID tree.

The SMI is divided into three parts:

• Module definitions which are used to describe information modules, such MIB

modules, compliance statements for MIB modules and capability statements for

agent implementations

• . Object Definitions, which are used to describe managed objects

• Notification definitions, which are used to describe unsolicited transmissions of

management information, such as tr~ps.

99



~~o~itu-t(2)itu-ffo) iİo (1)

·~ıg(3)

~od{G}

"' . · .. ·ıntemat(1)

- -~. .~ I --..._ ---.... -~ ... 
d irootory (1) m gmt (2) eıperimeiıtat (.21) private (4) set:u[ity (5) · snrrpV2 (6) maı I (7)I-···-~

~. erıterprises (1) ~ · ı .· · ·~
mib-2 (1) snmpDomains (1) snmpProxys (2) aınırıplhdulu (3}

snmp/\ıllB (1) snmpM2M (2) !;l!lcrtyMIB·(.3)

Figur-e 5~1 :SNMPv2elements within the.OID tree

5. 1: 1. SNMPv2.SMI ModuleDefinitions

Module definitions are used when describing information modules. An ASN.l

macro, called MODULE-IDENTITY, is used to convey the semantics of an information

module. More specifically, it conveys.the contact and revision history.for each:information

module, using the following clauses: LAST-UPDATED,.ORGANIZATION;CONTACT

INFO,DESCRIPTION, and-REVISION.

5.1.2 SNMPv20bjectDef1nitions

The object definitions -in SNMPv2 are enhanced from SNMPv1 through the use of

the new OBJECT-IDENTITY module, some new data types thatwere not used in

SNMPvl, and a revised OBJECT-:TYPE module. The OBJECT-IDENTITY module is used

to define informationabout. an OBJECT IDENTIFIER assignment. This module includes

the following clauses: STATUS, DESCRIPTION,and REFERENCE.

NewSNMPv2 data types include:

100



Data Type · Description

Counter32

A defined type that represents.integer-valued information

beıween -231 and231-linclusive{-2147483648 and

214 748364 7 decimal), :(Note: This type is

indistinguishable from the INTEGER type, although the

INTEGER type may have different numerical

constraints.)

A defined type that represents a non-negative integer that

monotonically· increases until it reaches a maximum

value of 232-1 (4294967295 decimal): then wraps around

and starts increasing again from zero. 

Integer32

Counter64 A defined type, that. represents a nonnegative integer that

monotonicallyincreases until it reaches.a.maximum

vahıeof264~1 (1"8446744073709551615-decimal), then

wraps around and-starts increasing again from zero.

Counter64 is used for objects for which the 32-bit

counter (Counter3 2} is too small, or which would wrap

around too quickly, RFC 1902 .states that.ıhe Counter64

type may be used only if the information being modeled

would wrap in less :than one. hour using the Counter3 2

type.

Unsigned32 "A defined type that represents integer-valued information

between Oand232-:1(4294967295 decimal), inclusive.

Gauge32 A defined type that represents a nonnegative integer

which may.increase or decrease, but which never

exceeds a maximum value (232-1, as above).

Aconstruet. which represents .an enumeration of named

bits.

BITS

101



5. 1 .3 SNMPv2 SW Notification Definitions

The SNMPv2 SW' s new NOTIFICATION-TYPE macro defines the information

contained within the unsolicited transmission of management information. This includes an

SNMPv2-Trap-PDU or an Inform-Request-POU. SWv2 also references three other new

ASN. 1 macros: MODULE-COMPLIANCE, OBJECT-GROUP, and AGENT-

CAP ABILITIES.

5 .2 SNMPv2 Conformance Statements
The Conformance Statements are used to define acceptable lower bounds of

implementation, along with the actual level of implementation for SNMPv2 that is achieved

by the device. The Conformance Statements document, RFC 1904, defines the notations,

along with ASN.1 macros, that are used for these purposes. Two kinds of notations are

used:

• Compliance statements, which describe requirements for agents with respect to obJyct

definitions. The MODULE-COMPLIANCE macro is used to convey a minimum set of

requirements with respect to implementation of one or more MIB modules. In other

words, the MODULE-COMPLIANCE macro conveys a minimum conformance

specification, including objects and groups required, which may come from different Mill

modules.

• Capability statements, which describe the capabilities of agents with respect to object

definitions. The AGENT-CAPABILITIES macro describes the capabilities of an

SNMPv2 agent. It defines the MIB modules, objects, and values implemented within the

agent. A description of the precise level of support that an agent claims is bound to the
ıı.

instance of the sysORID object. (See the SNMPv2 MIB, RFC 1907, for a complete

definition of the sysORID object and other objects that convey object resource

information.)

5.3 SNMPv2 Protocol Operations
When it comes to processing protocol messages, an SNMPv2 entity may act as an

agent, a manager, or both. The entity acts as an agent when it responds to protocol

messages (other than the Inform notification, which is reserved for managers) or when it

102



sends Trap notifications. The entity acts .asa manager whenit initiates protocol messages or

responds to Trap or Inform notifications. The entity may also act as a proxy agent.

SNMPv2 provides three types of access to network management information: these types

are determined bythenetwork management entity's role and relate to the Manager-to

Manager capabilities .. The first type of interaction.called request-response, is where an

SNMPv2 manager sends a request to an SNMPv2 agent, which responds. The second type

of interaction is a request-response where both entities are SNMPv2 managers .. The third

type is an unconfirmed inıeraetion.. wherean SNMPv2 agent sends an unsolicited message,

or trap, to the manager and no response is returned. SNMPv2 has significantly enhanced the

PDUs that.convey.this management infonnation(Figur-e 5.2). SNMPv2.offers new PDUs

and adds error codes and exception responses. The latter allows a management application

to easily determine why a management operation failed.

5.3.1 SNMPv2PDUs

SNMPv2 -defines eight PDUtypes, .of which three are new: the GetBulkRequest, the

InformRequest, and.the Report. Inaddition, the SNMPv2-Trap PDU format has been

revised from the SNMPv l Trap to eonferm to the format and- structure of the other POU s

(In SNMPv 1, the Trap -PDU had: a.unique format).

The following is a list of all the SNMPv2 PDUs, along witlı- their assigned tag numbers:

· PDU/Tag Number Description

GetNextRequest [1]

Retrieves values of objects listed within the variable

bindings-field.

Retrieves values. of objects that are thee lexicographical

. successors of the variables, up to the end of the MIB

view of this request.

GetRequest [O]

103



r' .SNMPv2 Message. !Jt-1

/.> 
-PDU
Type

Request
ID

1'41 Variable Bindings ııı,

\11/raı::,per

PDU Tyıze :

Requ;ıst-JD :

.Error status

Er ror Jm:leıc

Nan-Rp!r :

Variable Bindir-gs

Error Staıus.+ Errorlndex
Ob.ject1, Value 1 iObject2,Value .2:ı • • •or

Ncm-Rptr
or

.M.ax-Re~

Co.rilaiı:s authenh::ati.on and privın:y information

iipec:ifias the POU being !ranıımiitad:
O =GeiRequest
.i = GetN.eıdRequest
2 =Reep:ınse
3 =SetRequest
4 =obsolete
5 = Ge:IBulkRequeat
6 =trifı:ırmRequ6Bl
7 :SNMP'll2-Trap
B-a=Heıxırt

Used to®rrelate the Requm and ResJ:10nııe

Excsplion Con:litiım for .!he ıeqLli:lııt Valuee are:
O =n:ııErnır
1 =11:ıoBig
2 =-roSLCh Narre
8 "'badValue
4 = readOnly
5 = 93nErr
B = roAı::cess
7 = 'l'i!'OngType
B = 'M'DngLerglh
g = 'MDngEncoding

1 O :c 'iı'tı'ongValue
11 = rnıGreıedion
12= iot:onııis!en!Vatue
13 = resı:ıuroaUn.awilabl.e
·14 "' !lQfTlffiilfailed
1S..,:undoFailEd
16 = aulh:JıJmfunError
17 =mt.Wıilable
18= ircı:ınıiisleıntNarrıe

Pointeda the Variable Birding that caused the error

Non-Repeaters, h:ıw many of flıe ıeqL.Bsted variables mll not be prooessed
rep.eatettı.v,e.g. singte iı:etam:Ee of variabjsa. Used in GatBulkRequ:.ıırta only.

Maximum-Aapertitiore, !he maximum number of. repeated execuh:ı na to
ı:etrie'iia s-pecific wriablea. Useıd in GetB ul-kReqll!!sl:s en !Y. ·

Pairirg of objoot name an:! value

Figure 5.2 SNMPv2 PDU structure

104



Response [2] Generated in response to a GetRequest, GetNextRequest,

GetBulkRequest, Setkequest, or Informkequest PDU.

SetkequestB] Establishes.the value ofa variable.

GetBulkRequest Retrieves a large amount ofdata, such as the contents of a large

[5} table.

InformRequest Allows one manager to communicate information in its MIB

[6] view to another manager.

SNMPv2-Trap Used by an SNMPv2 agent to provide information regarding an

P] exceptional condition. The Trap PDU, defined forS.NMPvl·with

tag [4], is now considered obsolete .. The Coexistence document,

RFC 1908, discusses conversion from the Trap PDU to the

SNMPv2-Trap .PDU.

Included in SNMPv2, but its usage is not defined in REC 1905.Report [8]
It is expected that anyAdministrative Framework that.makes

use of this PDUwould-defıne its usage and semantics (see RFC

1905,page 6).

The PDUs that the SNMPv2 entity generates or receives depend on the entity's role as an

agent or manager:

Manager
SNMPv2 PDU Agent Generate.Agent Receive

Generate.

Manager

Receive

GetRequest X X

GetNextRequest X X

Response X X X

SetRequest X X

Get-BulkRequest X X

Informkequest X X

105



SNMPv2-Trap x X

5-3 .2 SNMPv2 PDU syntax

The SNMPv2 message consists of the wrapper that encapsulates an SNMPv2-PDU.

The wrapper is determined by the administrative framework and may contain the

authentication and privacy information. The syntax of the SNMPv2 PDU s is similar to the

structures defined in SNMPvl. Significant enhancements include errorstatus codes that

detail why protocol operations were unsuccessful. The PDU consists of four fields=-the

PDU Type field, the Request ID field, the Error Status field, and the Error Index field

(Figure 5.2)-p-lus the variable bindings. The PDU Type field specifies which one of the

eight PD.Us is being transmitted. The Request ID .correlates the request and response PDUs.

The Error Status field includes new exception conditions .. When errors occur in the

processing of the. GetRequest, GetNextRequest,. GetBulkRequest, SetRequest, or

Informkequest PDU s, the SNMPv2 entity prepares a-ResponsePDU with the Error Status

field set to help the manager identify. and correct the problem. The following table .shows

how the PDUs use these error codes:

SNMPv2 Error Get GetNext. GetBulk Set Inform

nofirror X X X X X

.toclsig X X X X

"
n0Sucl:1Name1

badvalue'

readOnly1

genErr X X X X

noAccess X

.wrong'Iype X

wrongbength X

106



wrongEncoding · X

wrong Value X

noCreation X

inconsistentValue X

resource Unavailable X

commitFailed X

undoF-ailed X

authorizationError x2 x2 x2 x2 x2

notWritable X

inconsistentName X

The Error Index field is used with the Error Status code. When-errors occur in the

processing of the variable bindings, the Error Index field identifies the binding that caused

the error. An error in the first binding would have Index = 1, an error in the second binding

would have Index= 2, and .so on.

5 A ·SNMPv2 Transport Mappings
SNMP versionl was originally defined for transmission over UDP and IP.

Subsequent research explored the use of SNMP with other transport protocols. including

OSI transport, AppleTalk' s Datagram Delivery Protocol {DDP), and Novell·

Packet Exchange (IPX). SNMPv2.formally defines implementations over

transports in the Transport Mgpping document, RFC 1906 {Figure 5-3 ..

SA. 1 SNMPv2 over UDP

SNMPv2 over:UDPis the preferred transport mapping. l,TIP

withSNMPvl at both the Transport and Network layers, altho ...,

such as SNMPv2 PDU structures, remain: RFC 1906 also su

continue. the practice oflistening on UDP port 161, and that noti:fiı :aı•:YK

port 162. (UDP port 162waspreviously defined for SNMP

_agents

on UDP

ı:--- , .:l illustrates the

107



details of the UDP header, which precedes the SNMP message within the transmitted

frame.

I SNMPv2 Message

//
User

Datagram
Protccol
{UDP}

OSI
Coı:ınectionless-rrode

Transport Service
(CLTS~ \

Internet
Protocol

(IP)

OSI
Conn ection
leııs-rrode
Net!.!iOrk
Service
(ctNS)

OSI
Connection

Oriented
Network
Service
(CON SJ

Apple Talk
Datagram
Delivery
Protocol

(DDP)

Novell
Internetwork

Packet
&clıanga

(IPX)

LAN or WAN
Interface Protoool

Figure 5.3 Transport mappings.for SNMPv2

5.4.2 SNMPv2 over OSI

RFC 1449 defines two o~tions for transmittingSNMPv2 messages over OSI

protocols. Both send the SNMPv2 message in a single transport service data unit (TSDU)

using the provisions of the OSI Connectionless-mode Transport Service (CLTS). Then at

the Network layer, either a Connectionless-mode Network Service (CLN.S)or a

Connection-oriented Network Service (CONS}may be used.

108



~ Local Network Frame . ı
20 I 
I 

Local
Network
Header

JP
Header

SNMPv.2
Messa.ga

Local
Network
Trailer

8 octets

Source Port . octets 1 .~ 2

Destination Port octets 3 ~ 4

length ootets.5 ~ 6

Checksum· octets 7 ~ 8

Figure 5.4 SNMPv2 over UDP

SA.3 SNMPv2 overAppleTalk DDP

Apple Computer's AppleTalk protocol suite. is another option available for

SNMPv2transport .. The SNMPv2 message is sent in a singleDatagram Delivery Protocol

(DDP) datagram, which operatesatthe0S1Network layer. Figure 5.6 showsthedetailsof

the DDP header and the position of.the -8NMPv2message within the transmission frame.

The final octet of the DDP header specifies theDDP Type, indicating the protocol in use.

SNMPv2 messages use DDe J:'ype =;· 8, since Apple has previously defined types·l · through

7. Other DDP parameters, such as socket numbers, are also defined·for SNMPv2 use.

SNMPv2 entities acting in the agent role use DDP socket number ·8; · notification sinks,

which are entities receiving a notification; use DDP socket number 9.

109



14 . · Local Network Frame ıı,I

I 
Local

Neiwork•
Header

CLTS
Header

SNMPv2
Message.

Local
Network
Trailer

Length ~Rdicabr

octet ı
octet 2 

Netınıork Layer Protocol Identifier

Version I Protocol ID Extension octet 3

ljfetime

SP I ·MS lBRi Type

ootet4

ootet5

Seg_mentlength octets 6 - 7

Checksum octets 8 - 9

DestinationAddress length Indicator octet 10

Destination Ackjress octets 1 t to rn-ı

Source Addıess length lndtca.1or octet m

Source Ad:ılress octets m+1 to n-1

Dalia Unit Identifier octsts.n, n+1

Segrrıent Offset octets n+.2, o-s

Total LengUı eotets rı+4, n+5

Options octets n-+6 to p

CLN P: OSI Conneetionleas.Netı.-.orkProtocol
CLTŞ: OSI Connectlonless-rrode Transport Service
SP: Segmentation Permitted flag
MS; More Seg,mentsflag
E!R: 'Error Report flag
Type; SpecifyData.or Error' PDUs

Figure 5.5 SNMPv2 over ISO CLNP

110



~ _- Local- Ne1workFrame _ •I
Local

Network
Header

SNMPv2
Message

Local
_ Ne'lw.o:rk

Trailer

00 Da1agram
Length octets 1 ~ 2. 

Datagram Checksum octeta.3 ~ 4

Oestirıaflon Network octets 5 ~- 6

Source Network octets 7 ~ 8

Destination
Node ID

Sourc-e
Node JD

octets9 ~ 10

Destination
Socket Nu_mber

Source
SocketNumber

octets H .. 12

DOP
Type

octet 13

Figure 5.6 SNMPv2 over the AppleTalk DDP

5.4:4. SNMPv2 over Novell IPX

Novell Inc, 's.Net Ware protocol suite defines the Internetwork Packet Exchange

(IPX) protocol at.the Network layer. SNMPv2 messages are serialized into a single IPX

datagram, as.shown in Figure 5 .7. Within the IPX header is a Packet Type parameter that

specifies- the protocol in use. SNMPv2 messages use Packet Type= 4, which is defined as a

Packet Exchange Protocol packet. SNMPv2 entities acting in the agent role listen on IPX

socket number 36879 (900FH), while notification sinks listen on socket 3.6880 (901 OH).

111



~ Local Ne1work Frame "I
Local

-Network
Header

SNMPv2
Message

Local
Network
Trailer

I ~ 
Checksum ı octets 1 "'2. 

Packet Length I octets 3 - 4

Transport
Control

Packet
Type

octets 5 .~ 6

Destination
Network

uetsts.r ~ 10

Destination
Node

octets 11 ~ 16

Destination Socket octets 17 ~ 18

Source
Network

octets 19 ~ 22

Sourc_e
Node

octets 23 - 28

Source Socket octets 2-9 - 30

Figure 5. 7- SNMPv2 over Novell IPX

5 .5 The SNMPv2.MIB
The April 1993 version of SNMPv2 (RFC s 1441-14 5 2) provided. three .MIB

documents. The first, RFC 1450, described a MIB module for SNMPv2 objects, which was

identified by {snmpModules. 1}. The.second, RFC 1451, coordinated multiple management

112



stations and•wasthereforecalled.theManager-to-Manager MIB; identified as

{ snmpModules 2}. The third module, RFC 1447, supported the SNMPv2 security protocols

and was called the Party MIB { snmpModules 3}. With the. removal of the security-related

aspects in the January 1996 version.of SNMPv2(RFCs 1901-1908), the MIB required

revision as well. The fundamental structure is still the same, however {Figure 5 .1):

Branch OID RFC References

snmpV2 { 1.3.6.1.6} 1442, 1902

snmpDomains O 1.3.6.1.6.1 } 1442, · 1902, 1906

.snmpl'roxys { 1.3.6.1.6.2 } 1442, 1902, 1906

snmpModules { 1.3:6.L6.3 } 1442, 1902

snmpMIB { 1.3.6.1.6.3.1 } 1450, 1907

snmpM2M { 1.3:6.l.6.3.2:} 1451

partyMIB { 1.3.-6.1.6.3.3 } 1447

5;6:Coexistence ofSNMPvl and SNMPv2
The Coexistence·document, RFC 1908,presents a number of guidelines that outline

the modifications.necessary for successful coexistence of SNMPv1 and SNMPv2.

From a practical point ofview, two methods are defined to achieve coexistence: a proxy

agent and a bilingual manager. The proxy agent translates between SNMPv1 to/from
•

SNMPv2messages (Figure 5.8). When translating from SNMPv2 to SNMPvl, Getkequest,

GetNextRequest, -or SetR-equestPDUs from themanager are-passed directly to the

SNMPvl agent. GetBulkRequest PDUs are translated into GetNextPDUs. For translating

fromSNMPvl to SNMPv2, the GetResponsePDU is passed unaltered to the manager. An

SNMPv1. Trap PDU is mapped to an SNMPv2-Trap PDU, with the two new variable

bindings, sysl.Ip'I'ime.O and snmpTrapOID.O;prepended to the variable bindings.field. The

second alternative is a bilingual manager, whichincorporates both the SNMPvl and

113



SNMPv2 protocols. When the manager needs to communicate with an agent, it selects the

protocol appropriate for the application

GetHequest

GetNextRequest

SetRequest

GetBulkRequest

SNMPv2.

Hesı,:::onse

SNMPvl

Proxy

Agent

. GetRequest

GetN extRequ est

Set Request

GetNextRequ est

GetResponse ·

Trap

to I from

SNM Pıı.2-Trap

Sf'ılMPv2
Manager

Network
-ıManagar [::Jl .

~
SNMPııı

Agent

Figure 5.8 SNMPvl/SNMPv2 proxy agent operation

5.7 SNMPv2· Security
When SNMPv 1 was first published, the community name and the version number in

the SNMP header provided the only message security capabilities. This provision, known

as the trivial protocol, assured that both agent and manager recognized the same

community name before. proceeding with network management. operations. Additional

research into security issues yielded three documents on.the subject.

RFC "Title

1351

1352

1353

SNMP Administrative Model

SNMP Security Protocols

Definitions for Managed Objects for Administration of

SNMP Parties

114



These RFCs were designed to address the authentication and privacy of network

management communication. Authentication assures the appropriate origin of the messpge,

whileprivacy protects the messages from disclosure. Unfortunately, implementing these

enhancements proved to be more complex than either vendors or network managers

anticipated; consequently, few products containing these improvements were developed.

In addition, two alternatives have been proposed to address the security aspects in

particular. The first is called SNMPv2U, which stands for a User-based security model. The

second is called SNMPv2* (pronounced SNMP vee-two-star).

115



- CHAPTER SIX

LOWER LAYER SUPPORT FOR SNMP
An underlying communication infrastructure is necessary for the manager and agent to

communicate network management information. This infrastructure exists at the OSI

Transport, Network, and Data Link layers, or at the ARPA Host-to-Host, Internet, and

Network Interface layers. SNMP messages fit inside the OSI Data Link layer or ARPA

Local Network layer frame. To send SNMP messages, the system requires the User

Datagram Protocol (UDP) and the Internet Protocol (IP), as shown in Figure 6. I. Together,

the SNMP message, plus UDP and IP headers, comprise an IP datagram. This chapter

discusses these supporting protocols.

Loca!
Network
Header

IP
Header

UDP
Header

Local
Network
Trailer

~ UDP Datagram "

ı IP Datagram-------

--------Local Net\.ıvork Frame---------

Figure 6.1 An SNMP message within a transmission frame

6.1 User Datagram Protocol (UDP)
UDP provides a connectionless host-to-host communication path for the SNMP

message. A connectionless path is one in which the communication channel is not

established prior to the transmission of data. Instead, the network transmits-the data in a

package called a datagram. The datagram contains all of the addressing information

necessary for the SNMP message to reach its intended destination. The UDP service

requires minimal overhead, and therefore uses the relatively small UDP header shown in

Figure 6.2. Note in the figure that each horizontal group of bits, called a word, is

116



- -----------

32 bits wide.

·, 1 1 1 1 11 11122 2 2 2 2 2 2 2 2 3 3
01234567890123456789012345678901 Bits

Source Port Destination Port

Length Checksum

Data
(SNMP Message)

Figure 6.2 The User Datagram Protocol (UDP) header

6 .2 Internet Protocol (IP)
IP works closely with UDP. IP handles datagram delivery. In other words, the IP

destination address routes the datagram to the correct host on the specified network. The

UDP port address then routes the datagram within the host to the correct host process.

To deliver datagrams, IP deals with two issues: addressing and fragmentation. The address 

assures that the datagram arrives at the correct destination. Fragmentation is necessary

because the sequence ofLANs and WANs that any particular datagram may traverse can

have differing frame sizes, and the IP datagram must fit within these varying frames

(Figure 6.1). For example, if the endpoint is attached to an IEEE 802.3 LAN with a

maximum data field size of 1500 octets, IP must fragment the large IP datagram into

smaller pieces (fragments) that will fit into the constraining frame. The distant node then

reassembles the fragments back into a single IP datagram.In Figure 6.3, the IP header

contains at least 20 octets of control information.

6.3 Internet Addressing
Each 32-bit IP address is divided into Host ID and Network ID sections, and may

take one of five formats, Class A through E addresses, as shown in Figure 6.4. The formats

differ in the number of bits allocated to the Host and Network IDs and are identified by the

first three bits. Class A addresses are designed for very large networks having many hosts;

they are identified by Bit O= O. Bits 1 through 7 identify the network, and Bits 8 through 31

117



identify the specific host on that network. With a seven-bit Network ID, only 128 class A

addresses are available. Of these, addresses O and 127 are reserved.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
O 1234561 B 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 B 9 O 1 Bi~

Ver j m~ I Type of Service Total length

Identifier Rags I FragmeıitOffset

Timetolive I Protocol Header Check.sum

Source Address

Destination Add ress

Options+ Padding

Figure 6.3 Internet Protocol (IP) header

Class B addresses are identified by the first two bits having a value of 10 (binary).

The next 14 bits identify the Network and the remaining 16 bits identify the Host. As many

as 16,384 Class B addresses are possible, with addresses O and 16,383 reserved. Class C

addresses begin with a binary 110. The next 21 bits identify the Network, and the

remaining 8 bits identify the Host. A total of2,097,152 Class C addresses are possible, with

addresses O and 2,097,151 reserved. Class D addresses begin with a binary 111O and are

intended for multicasting. Class E addresses begin with a binary 1111 and are reserved for

future use. All IP addresses are written in dotted decimal notation, in which each octet is

given a decimal number from O to 256. For example, network 10.56.31.84 is represented in

binary as

0000101000110111 00011111 1010100

• The first bit (O) indicates a Class A address.

• The next seven bits (0001010) represent the Network ID (decimal 10).

• The last 24 bits (00110111 00011111 1010100) represent the Host ID.

118



- -----

1. 1 1 1 11 1 1 1 122,222 2 2 22 2 3 3
O 1. 2 .3 A 5 6 7 8 9 O 12- 3 4 5 B 7 8 9 O . 1 2 3 4. 5 6 7 8 9 O 1

Jof. NetworklD •l' Host ID.

CJass. A Address

1 111 1 1 1 1 1 122 22 2 22 2 22 3 3
O 1 2 3 4 5 6 1 B 9 O 1 2 8 4 5 6 7 8 9 O 1.2 3 4 5 6 7 8- 9- O 1

[ill! Network ID ı Host ID

C~assB Address

11111111112222222~2233
0123456789012345£789012~45678901

{1]1Jo) Network JD J.· Ho~tıo

Class C Address

1 111t11 1 1 12222 2 2 22 2 2 3 3
012345~7~9012S4567890t2345S78901

Mutticast Address.

Class .D Ad.dmss

1111111111222222222233
012345£799012345~789012345678901

Reserved

Class :E Address

Figure 6.4 JP .addressformats

6.4 Intemet.Control Message Protocol {ICMP}
IP provides a connectionless service to the attached hosts but requires .an. additional

module; known as the Internet Control Message Protocol (ICJMP)~to report any errors that

may occur in the processing ofthose datagrams. Examples.oferrors would be undeliverable

119



datagrams or incorrect routes. The protocol is also used to test the path to a distant host

(known as a PING) or to request an address mask for a particular subnet. ICMP is an

integral part of IP and must be implemented in IP modules contained in hosts and routers.

IP datagrams contain ICMP messages. In other words, ICMP is a user (client) of IP, and the

IP header precedes the ICMP message. The datagram would thus be IP header, ICMP

header, and finally ICMP data. Protocol= 1 identifies ICMP within the IP header. A Type

field within the ICMP header further identifies the purpose and format of the ICMP

message. Any data required to complete the ICMP message follows the ICMP header.

Thirteen ICMP message formats have been defined, each with a specific ICMP header

format. Two of these formats (Information Request/Reply) are considered obsolete, and

several others share a common message structure. The result is six unique message formats,

as shown in Figure 6.5_

6.5 Network Interface Protocols
The lowest layer of the ARPA architectural model is the Network Interface layer,

which encompasses the OSI Data Link and Physical layers. This layer is responsible for the

network hardware and topology, such as Ethernet, token ring, FDDI, and so on. WA~

protocols, such as dial-up or leased-line connections, X.25, or Frame Relay, can also be

implemented at this layer. Because most ~~ implementations involve local, not remote

manager/agent relationships, we will concentrate on the LAN protocols in this section.

6.5.1 Ethernet

The Ethernet frame format. shown in Figure 6.6, defines a length between 64 and

1518 octets, including the header. dara, and trailer. The header consists of Destination and

Source addresses that are 6 ocıers ı'48 bits) each, plus a 2-octet field known as the Type (or

Ethertype) field. The Bthemet-designaıed destination address for broadcast frames is all

ONES (FFFFFFFFFFFFH). The rype designates the higher-layer protocol in use within the

Data field.

120



1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 B 3
O 1 2 3 4 5 6 7 B g ö 1 2 8 4 5 6 7 B g O 1 2 3 4 5 6 7 B.9 O 1 B~s

Type I Code I Checksum

Identifier 1 Seqı;ıence Number

Data

Echo and Ec::hoRepl_y Messages

1 1 1 1 1 1 1 1 1 1 2 22 2 2 2 2 2 2 2 3 3
O 1. 2 3 4 5 6 7 B 9 o 1 2 3 4 5 6 7 B 9 O 1 2 3 4 5. 6 7 B g O 1 Bits

Type I Code. l Checksum

Unused

Internet Header+ 64 bits of Origin.al Datagram Data

.l:1'!stlnatıonUnreachable, Source Que:nch and.Time Exceeded Messages

1 1 1 1 1 ,., 1 1 1 2 2 2 ~ ~ __2 2 2 2 3 3

O 1 2 B 4 5 .6 7 B I! O 1 2 B 4 5 6 7 il, g O 1 2 3 4· 5 6 7 B 9 O 1 -Bits

Type I Code Checks um

Pointer I Unused

Internet Header+ 64 bits of Original Datagram Data

Parameter Problem Me•age

1 1 1 1 1 1 1 1 1 1 2 2 2 2.2 2 2 2 2 2 3 3
O 1 .2 3 4 5. 6 7 B g O 1 2 -8 4 5 6 7 B g O 1 2 !3 4 5 6 7 B g O 1 Bits

Type ı Code Checksum

Gatewa1( I r:ıtemet Add.ress

Internet Header+ 64.bJt.sof Oı:ig.Ji:ıal Oatag.ı:am Data

Redirect Message

1 1 1 1 1·1 1 1 ·1 1 2 2 2 2 2 2 -2 2 2 2 3 3
O 1 2 B 4 5 6 7 B 9 O 1 2 3- ·4 5 6 t B g O 1 2 S 4 5 6 7 ·B g O 1 Bits

Type I Code Checksum

idemi.tier -ı Seq.uence Number

Originate Tjrnestarrıp

Receive Timestamp

Traosmit Timestamp

Tlm•tamp and Tl rneırtampReply M•sages

1 1 1 1 1·1 1 11122222 2 2 2_2 2 B 3
O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 B 6 7 B 9 O 1 2 3 4 5 6 7 s.g O 1 B~s

Type I Code Checksum

Identifier l Sequence Number

Address Mask

A.dclreaııMmk Request and Add re• Mask Reply Messages

Figure 6.5 ICMP message formats

121



,~~ ---- ~

Preamble O estinatkın Sou roe Ty.pe Dara FCS

8 I 6 6 2 41i~1500 4 I .octets.

UDP j · SNMP
H8afi3r l Message. '.

14---,------ 64-1518--------

Notes;

Preamble:
OQstinat~on:
Sou roe:
Type:

1010,u 1011 Dala= Higher.Layer iri formation
Destihalioıi f'.boo Aa:tress FGS: ,Frame Check SEsquence(CRC-82)
Source Nede A.c.tte.ss IP:: . lnle,met Protoool
Higher Layer Protoool Typg. (Ethertype) UDP; User Datagram Pretocot

Figure 6.6 Ethernet framewith SNMP message(©1982 Digital Equipment Corp.)

6.5.2 IEEE802.3

Figure 6.7 shows the IEEE 802.3 format. IEEE 802.3' s Destinaıionaad Source

address fields may be 2 or n octets long, although.the ö-octet length, which matches the

Ethernet address lengths, is most common: The Address Resolution Protocol (ARP).maps

the. IP address (32 bits}to the IEEE 802 address (48 bits). The ARP hardware code for

IEEE 802 networks. is 6. However, broadcast addresses for both Ethernet and IEEE 802

networks are consistent.with all Ones .. Next, the IEEE 802.3 frame defines a Length field,

which specifies the length of the Data unit.

653 JEEE.802.5

The IEEE 802. 5 token ring has enjoyed great success, partly because ofstrong

support from major networking companies such as Apple, IBM; and Protean; and partly

because of the protocol'shuilt-,-in provision forintemetworking. This provisionis known as

source routing and uses the Routing Information (RI) field to connect rings via bridges.

The RI field -specifies the.patlı the frame must take from its source.to its destination. The

mechanism. for determining that path is called route discovery. 

The IP Datagram occupies the Information field of the token ring frame, as shown in Figure

122



------ ----- c.-.--

6.8.

FCS

4 octets

11 1 ,J s 21 I
j,.-8022ll.-G --~- SNAP tı4 aB-1492~

Notes:

Pmamble: 1010 101_ 1
SFD: Start Frame Deli.miter
DE:Stinafön:- . Destination-No~ Address
Sourı:a: Soumg Now Addmss
Len: Length,ofDatı. Unit
Data Unit: Higher Laygr Information
Pad: Pad Charactaıs (lo reach

rriirıimumframe siz:Eı)
FOS• Frame.Checit$Equen::e (GRC..32)

octets

DSAP: Destination 89.1\lice A~ss PointAddress
SSAP: Source Sel\lice Access Pojnt Address
Control: CofllroJ lrılormafön
LLC~ Leg lcal UnlcControl
Protocol ID: Protorol ldentificafön
Ethlrt~:. Etherrgt ProtocolType
SNAP: Subnetwork.Accsss Protccol
IP: ınm-rmt Protocol
UDP: UserDatagram Protocol

F-igure 6.7IEEE 802.3 frame with SNMP message-(©199D, IEEE)

Starting. ı Access ı Frame
DelimiiQr Control Control

SouroEt R.o-ute ı·nfor.mation' FCS -· Endfng 1 Frame
Addr 1nlo-, Freid Delim ite~ Status

aor s 2 or6 0-30 variable 4 1
octets

j 1 1 1-~ 3 2 ı- I octets
j,ı-- 802.2. LLG ~ SNAP • ._ · variable ----.ı

Siruting Dalimi!er. Baginnin;ı C'1 Fraım,
Acee.as Control: Trarrarnisa on Para~&ra
Frama Control: Frames Tyµe
Dest Mı:lr: Daa'i:inafönNod'& Address.
ScıurmAı:fıir: Soun:s N'ı:ıdia Aıftfraag
Route Info: Roı.ıtingı İh!ormS!ion Fiaki
ln!orrrati:ın: Hgher lıı._flH lnforrmfön
FCS: FrameCheck Seqµenı::e.(CRC-32)
Endingı Deli rntar: Endi of Frame
FrameShıtus: Reı::ewıı,r-provid'ed! Feedback

DSAP: Desiimilion SeıvK:a-Accaas PcintAı:!\::lreas
SSAP: Source-Sen.rice ,/\ı:;css; Point liı:ldrsas
C'oriirı:ıl: Corıirı:ıl 1-rifoımalion
LLC: Logical un kContrci
Protııcol lD: P roı'iı:ıcol lı:lılrltifüalion
Bhe:rt,,pe: . Elhemeii: Prniloocl T~ıpe.
SfılAP: Sıb•n•lllf·k,i\ccs-se Protocol
IP: I nt&rnst Protoool
UDP: lJ.ea-r DatagıramProtocol

Figure 6~.8 IEEE 802.S frame with; SNMP message

123



---- --

fi5AEDD1

ANSideveloped the FiberDataDistributed Interface(FDDI) as a.standard forfiber

optic data transmission. FDDI is a token-passing ringarchitecture. that operates at 100

Mbps. {The actualdata rate for FDDI is 125 Mbps, but 1 out of 5 bits handles overhead.)

Because of its transmission rate, FDDlmay emerge as a significant alternative to Ethernet

Of token ring for localdata transport. The FDDI frame.structure, shown in Figure 6.9, is

similar toJEEE.802.6.

14 SFS - - FCS Coverage -ı,ıı EA;

PA SD I FG I DA J SA INFO FGS ED IFS

2 2ore 2or6 4 1 1
oetets

IP
Hoo.d'Br

UOP I SNMP
Hsia.der · Mli$:aa91} -

I 1 1 1 J I
I--- 802-.2 LLG 4 4,475 -----.!

{Muimum)

_octets

t<bles:

SFS:
PA:
SD:
FC:
DA:
SA
IMFO:
FCS:
EFS:

Slarteıf ı=rame :Sequenı'.:e
Preamble i16 or more I symbols)
S1ai11ii~ Oeılii'iil0f (1 JK symbol pair?
Frame C0ınt!ôl (2 a:vmbols)
0'-1$,tlnafön Acktrass ~.{l or 12 symbols)
Sourc.e Att::ıress (4 or 12 symbols)
II nb rma1ion to or i'm<rı.idr.ym bols)
Ftam8' Check SeqLieMeı (8 syi'iibols)
Enc! eıI Frams Sacıuent:eı

ED: Ending tieliml*3t (1 Tsymbol)
FS: l!rarra Status (3 or mora R or S symbols)
OOAP: QM!ina!ionServl:::e Atıe.ess Pç;int Mdrasi,is
SSAP: SourceSeNlceAccess Polıit Mdi1ı5s
Conlrol:. Cön!rol lniormatlM
LLC: L~ica.l LinkControl
IF': I n~rnm P roıncol
UDP: !Jsat t:l\i!agtai'ii P ıotooöl

Figure 6.9 FDDI frame with SNMP message (Courtesy American National Standards 

Institute) 

6 :6 Address Translation
The translationbetw-een the physical and.logical addresses.is necessary. The

124



Address Resolution Protocol (ARP} described in RFC 826 tr.anslates from an IP address to

a hardware address, The Reverse Address Resolution Protocol {RA.RP), detailed in RFC

903, does the opposite, as -its name implies.

6.6, 1 Address ResoluıicnProtocol (ARP)

Assume that a device on an Ethernet; Host X, wishes to deliver a datagram to

another device on the same EthernetHost Y. Host XknowsHost.Y's destination protocol

(IP) address, hut does not know Host Y's hardware (Ethernet) address. Host X would

therefore broadcast an ARP packet (shown in Figure 6.10)on the Ethernet to determine
J 

Host Y's hardware address. The.packet consists of 28 octets, primarily addresses, contained

within the Data field of a local network frame. A device that recognizes its own protocol

address responds with the requested hardware address. The: individual fields of the- ARP

message show .howthe .protocol operates.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
O 1 2 34 5 8 7 B 9 O 1 2 3 4 5 6 7 B 9 Q 1. 2 3 4 .5 6 1 B 9 O .1 Bits

Hardware Type P ro.1Dool Type

HA Length· I PALength Operation

Sendtır HA (octets 0~3)"

Sender· HA {ootets.4-5} Sender PA (octets 0-1)

Target ,HA-.(ootets 2.5}

Ta.rg_et PA (octets O..J)

Notes:
•

" Field. lengths assume HA= 6 octets an.ct PA= 4 octets

Figure 6.10 Address Resolution Protocol (ARP) and Rev-erse Address Resolution Protocol

(RARP} packet formats

6:6.2 Reverse Address Resolution Protocol (RA.RP)

The process of determining an unknown protocol address is similar to that of

finding an·unknown hardware address. The same. packet structure- is used, with only minor

125



- ---- --

modifications to the field values required. The Operation field adds two new values, 3

(RARP Request) and 4 (RARP Reply).

6.7 Using SNMP with UDP and IP
This section shows how the SNMP GetRequest and GetResponse PDUs fit within

the structure of an Ethernet frame. In this section we will examine the Ethernet frame

format, the IP header, the UDP header, the SNMP PDUs. Trace 6.7a shows four layers of

protocol operating in two Frames, 7 and 8.

Trace 6.7a. Using SNMP with Ethernet, IP, and UDP

SnifferNetwork Analyzer data 10-Nov at 10:29:36 file GOLD_SYS.ENC Pg 1

--------------------------------- Frame 7 -------------------------i----

DLC: ----- DLC Header-----

!)LC:

DLC: Frame 7 arrived at 10:29:37.30; frame size is 138 (008A hex) bytes
i

DLC: Destination= Station Retix 034CF1, GoldGate

DLC: Source = Station Sun 0900C8, Suıify1gr. .

DLC: Ethertype = 0800 (IP)

PLC:

IP: ----- IP Header -----

IP:

IP: Version= 4, header length= 20 bytes

IP: Type of service = 00

IP: 000. . = routine

IP: O = normal delay ı.

IP: O = normal throughput

IP: O .. = normal reliability

IP: Total length= 124 bytes

IP: Identification = 20055

IP: Flags= OX

IP: .O = may fragment

IP: .. O. . . . . = last fragrp.ent

126



IP: Fragment offset = O bytes

IP: Time to live= 60 seconds/hops

IP: Protocol = 17 (UDP)

IP: Header checksum= ASCS (correct)

IP: Source address= [X:XX.YYY.128.4]

IP: Destination address= [X:XX.YYY.1.10]

IP: No options

IP:

UDP: ----- UDP Header .,.----

UDP:

UDP: Source port = 3234 (SNMP)

UDP: Destination port= 161

UDP: Length= 104

UDP: No checksum

UDP:
SNMP: ----- Simple Network Management Protocol (Version 1) r----

SNMP:

SNMP: Version = O

SNMP: Community = public

SNMP: Command = Get request

SNMP: Request ID = O

SNMP: Error status = O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= {l.3.6.1.2.1.1.3.0} (sysUpTim~.O)

SNMP: Value =NULL

SNMP:

SNMP: Object= {l.3.6.1.2.1.1.1.0} (sysfrescr.O)

SNMP: Value = NULL

SNMP:
SNMP: Object= { 1.3.6.1.2.1.1,2.0} (sysObject~.O)

127



SNMP: Value =NULL

SNMP:

SNMP: Object= {1.3.6.1.2.1.1.3.0} (sysUpTim~.O)

SNMP: Value =NULL

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.6.0} (system.6.0)

SNMP: Value =NULL

SNMP:

------------------------------- :Frame 8 --------------------------------
,

DLC: ----- DLC Header-----

DLC:

DLC: Frame 8 arrived at 10:29:37.33; frame size is 195 (OOC3 hex) bytes
) 

DLC: Destination= Station Sun 0900C8, SunMgr

DLC: Source = Station Retix 034CF'l, Goldfiate

DLC: Ethertype = 0800 (IP)

DLC:·

IP: ----- IP Header ----

IP:

IP: Version= 4, header length= 20 bytes

IP: Type of service = 00

IP: 000 = routine

IP: O = normal delay

IP: O = normal throughput
~

IP: ..... O .. = normal reliability

IP: Total length = 181 bytes

IP: Identification= O

IP: Flags= OX

IP: .O = may fragment

IP: .. O. . = last fragment

IP: Fragment offset= O bytes

IP: Time to live= 16 seconds/hops

128



IP: Protocol= 17 (UDP)

IP: Header checksum= 1FE4 (correct)

IP: Source address = [XXX. YYY.1.1 OJ

IP: Destination address= [XXX.YYY.128.4]

IP: No options

IP:

UDP: ----- UDP Header v-»

UDP:

UDP: Source port= 161 (SNMP)

UDP: Destination port= 3234

UDP:. Length= 161

UDP: Checksum= 6417 (correct)

UDP:

SNMP: ----- Simple Network Management Protocol (Version 1) r---

SNMP:

SNMP: Version= O

SNMP: Community= public

SNMP: Command = Get resp~mse

SNMP: Request ID = O

SNMP: Error status= O (No error)

SNMP: Error index= O

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.3.0} (sysUpTi~e.0)
~

SNMP: Value = 240267300 hundredths of a second

SNMP:

SNMP: Object= {l.3.6.1.2.1.1.1.0} (sysDesçr.0)

SNMP: Value = Retix Local Ethernet Bridge Model 2265M

S~:

SNMP: Object= { 1.3.6.1.2.1.1.2.0} (sysObjectip.O)

SNMP: Value = {1.3.6.1.4.1.72.8.3}

S~:

129



SNMP: Object= {l.3.6.1.2.1.1.3.0} (sysUpTime.O)

SNMP: Value = 240267300 hundredths of a second

SNMP:

SNMP: Object= { 1.3.6.1.2.1.1.6.0} (system.ô.O)

SNMP: Value =

SNfyiP:

130



CONCLUSION

A network management system contains two primary elements: a manager and

agents. The manager is the console through which the (human) network administrator

performs network management functions. Agents are the entities that interface to the actual

devices being managed. Bridges, routers, switches, or network servers are examples of

managed devices that contain managed objects. These managed objects might be hardware,

configuration parameters, performance statistics, and so on, that directly relate to the

current operation of the device in question. These objects are arranged in what is known as

a virtual information database, called a management information base (MIB). SNMP allows

managers and agents to communicate for the purpose of accessing these objects.

There are a number of advantages of SNMP that contribute to its popularity.

Because it requires relatively little code to implement, vendors can easily build SJiMP

agents into their products. SNMP is extensible, allowing vendors to easily add network

management functions. Also SNMP separates the management architecture from the

architecture of the hardware devices, which broadens the base of multivendor support.

131



REFERENCES 

[1] Klerer, S. Mark. "The OSI Management Architecture: An Overview." IEEE Network 
(March 1988): 20-29.

[2] Yemini, Yechiam. "The OSI Network Management Model." IEEE Communications 
Magazine (May 1993): 20-29.

[3] Institute of Electrical and Electronics Engineers. LAN/MAN Management. ANSI/IEEE
Std 802.lB, 1995.

[4] http://www.intraspection.com.

[5] http://www.cabletron.com/spectrum.

(6) http://www.hp.com/go/openview/.

[7] http://www.sun.CQm.

[8] http://www.tivoli.com.

[9] Rose, M.T., and K McCloghrie. "Structure and Identification of Management

Information for TCP/IP-based Intemets." RFC 1155, May 1990.

[IO] Steedman, Douglas. Abstract Syntax Notation One (ASN.l), the Tutorial and 

Reference. Isleworth, Middlesex, UK: Technology Appraisals, Ltd. ISBN 1-871802-

06-7, 1990.

[11] McCloghrie, K., and MT. Rose. "Management Information Base for Network

Management of TCP/IP-based Internets." RFC 1156, May 1990.

[12] Case, J.D., M. Fedor, M.L. Schoffstall, and C. Davin. "Simple Network Management

Protocol (SNMP)." RFC 1157, May 1990.

[13] Davin, J., J. Galvin, and K Mcloghrie. "SNMP Administrative Model." RFC 1351, 

July 1992
••[14] McCloghrie, K., editor. "An Administrated Infrastructure for SNMPv2." RFC 1909,

February 1996.
(15] Finlayson, R., et= al. "A Reverse Address Resolution Protocol." RFC 903, June 1984.

[16] Postel, J. "User Datagram Protocol." RFC 768, ISI, August 1980.

[17] http://www.us-epanorama.net

132


