$$
E E-400
$$

GRADUATION PROJEGT

WATTS DG TO AG INVERTER \& POWER AC

SUPERVIEED BY
ASSOG. PROF. DR. SENOL BEKTAS

PREPARED BY RAHEEL MOHIUDDIN

NEAR EAST UNIVERSITY

LEGTRIGAL \& ELEGTRONIGS ENGINEERING

PREFACE

Inverter is a very useful unit. Depending upon the output power the inverter has the capability of supplying power for many items that normally don't go on camping trips, such as TV, a stereo, an electric razor, or a desk lamp. However, it also has many other uses, such as supplies for computers, variable speed ac motor drives to power the oscilloscope or soldering iron when doing electronic work in the field.

My project is about the inverter, that draws a max. of 5 amp, which is completely safe for an automobile cigarette lighter socket, and no load current is only half an amp. The output voltage is regulated and remains fairly constant from no load to full load.

INTRODUCTION

Inverters convert dc power to ac power at some desired output and frequency. Application of inverter include stand by power supplies, uninterruptible power supplies for computers, variable speed ac motor drives, aircraft power supplies, induction heating and output of the dc transmission

lines.

In most of the inverter applications, it is necessary to control both the output voltage and the output frequency. The controllable voltage requirement may arise out of the need to overcome regulation in the connected ac equipment or to maintain constant flux in ac motors driven at variable speed by variation of their supply frequency. If the dc input voltage is controllable, then an inverter with a fixed ratio of dc input voltage to ac output voltage may be satisfactory. If the dc input voltage is not controllable, then control of the output voltage must be obtained by employing pulse width modulation.

The output voltage wave form of an inverter is non sinusoidal and in most applications the voltage harmonics have a significant effect on the overall system performance. These harmonics may be reduced at the cost of increasing the complexity of the inverter circuit, and an economic decision must be made on the degree to which this should be done.

Inverter circuit designs are generally divided into

30 classifications. First there are amplifier type inverter: mose inverters that use transistors as amplifier, operating = zonsaturation condition. Second, there are the saturated mitch types of inverter: these inverters operate with the switches either in a fully saturated conducting mode, or in $=\mathrm{I}$ off blocking mode.

CHAPTER ONE

DESIGN CONSIDERATIONS FOR STATIC INVERTERS

Inverters convert d.c. power to a.c power at some sesired output voltage and frequency. Applications of inverters include the following.

1. Stand by power supplies.
2.Uninterruptable power supplies for computers.
2. Variable-speed ac motor drives.
3. Aircraft power supplies.
4. Output of dc transmission lines.

In most of the inverter applications, it is necessary to
be able to control both the output voltage and output
frequency. The controllable voltage requirement may arise out of the need to overcome regulation in the convected ac equipment or to maintain constant flux in ac motors driven at variable speed by variation of their supply frequency. If the dc input voltage is not controllable, then control of the output voltage must be obtained by employing pulse-width modulation.

The output voltage wave form of an inverter is non sinusoidal and in most applications the voltage harmonics have a significant effect on the over all system performance. There harmonibs jay $3 \uparrow$ "t!!Ua $\pm 0 \uparrow "$
${ }^{\circ}{ }_{8} \pm ;^{7} 3^{4} 7900_{4}^{342}$

A Static inverter is a solid state (semiconductor)
=rice designed to convert a dc electrical power input into a \equiv electrical power output with a sinusoidal wave form, without an operational dependance on relative mechanical sotion between component parts.

Estatic inverter must provide the following:
dc to ac power conversion
conversion to a fixed-frequency output voltage
a sinusoidal wave shape for variations of both dc input Eistortion.
output voltage regulation for variation of both dc input voltage and ac load including power factor.

- some means of protecting the inverter from over loads on the output.
The static inverter is composed of the following functional components:
- A power stage or number of power stages that convert the dc input into relatively crude ac output.

The ac contains not only the fundamental ac frequency desired, but also unwanted harmonic frequencies. The power stage is the simplest power stage that can produce an ac voltage. By definition the stage uses four semiconductor switches (transistor or SCR) which can only produce square wave or two valued voltage.

- An ac output filter that eliminates the unwanted harmonics generated by the power stage. So as to provide the load a sinusoidal wave form with a given max. distortion.

The amount of deviation between a true sine wave and the
output voltage can be measured in the form of total c distortion (THD). The ac filter size is determined Ialy the amount of unwanted harmonics in the power sut-also by the frequencies of these harmonics.
The lower the harmonic frequencies generated by the Etage the larger will be the ac filter. Consequently if order frequencies in the power stage wave form (3 rd , etc.) can be reduced in magnitude or eliminated the ac $-=\tau$ size can be made smaller.
togic to provide proper sequential control over the SCR's L-2 power stage or power stages such as to provide one or [r= of the following: frequency control = Woltage regulation
= Current limiting (for over load protection)
= synchronization to external sources
(paralleling of inverters (with load sharing)
Inverter circuit designs are generally divided into two llassifications. First, there are the amplifier-type चverter: those inverters that are transistors as amplifiers, pperating in a non saturated condition. Second, there are the saturated-switch types of inverters (using either transistor $=S C R^{\prime} s$) these inverters operate with the switches either in a fully saturated conducting mode, or in cutoff blocking mode

The amplifier-type inverter circuit are characterized by lower efficiencies, high power dissipation in the transistor
ers, cross over distortions (in class B and C push--rpes), as well as many other well known problems. These of inverters are quite satisfactory of the applications =refully selected, if the power level are low if the factor loads are not a consideration, and if efficiency att of the key criteria to the inverter design. Because of tese limited applications, the amplifier type inverters are - very practical.

2 INVERTER REQUIREMENTS:-

Each requirement must be considered in terms of total eight, efficiencies, and reliability.

Ipical electrical performance characteristics for static -verters are listed below:
-output power 500 to 1500 VA, 1000 VA nominal
-output voltage 115 to 200 V rms, 3 phase, $+/-0.5 \%$
-output frequency $400 \mathrm{~Hz}+0.01 \%$
-output harmonic distortion 3%
-power factor range max. variation of 0.2
-efficiency 75\%
-input voltage 24 to 30 V DC
-output phase angle 120 (+2)
-temperature range -35 C to +71 C
The inverter should have overload protection, be able to withstand environmental conditions.

1.3 CONSIDERATIONS COMMON TO ALL INVERTERS.

There are several design considerations that are common to
inverters, and these are as follows:

FEBD BACK IN AN INVERTER:-

A static inverter is comparable to an oscillator driving Iner amplifier; an arrangement used by early low-powered matic inverters. A 400 Hz sinusoidal signal is produced in $=$ oscillator, and this signal is power amplified in =mventional class A or class B power amplifier stages. This peration is still practical for inverters of less than 50 VA ze= phase, but at higher levels, low frequency makes the technique inadequate.

It is possible to have as many as three different types \# feed back in static inverter: Voltage, current and phase Eeedback. They are generally defined as follows.

(i) VOLTAGE FEED BACK:-

Regulation of ac output voltage with changes in input dc voltage output load is provided by voltage feedback. Normally the output ac voltage is detected and rectified to provide a dc voltage is detected and rectified to provide a dc voltage. This dc voltage is compared with a zenner reference diode, and the error voltage is fed back to the driver or power stage, to control the ac output amplitude. Such detection any be root-mean-square, average, or peak sensing and may occur either before or after the filter. The largest variations in static inverter design arise from the exact manner in which this dc error signal regulates the ac output.

In a three phase inverter, either combined or single tase voltage feed back may be used. A three phase detector sused in the combined system and the same error signal is pplied to all these phase. If large load and power factor -balances are expected, it is better to regulate the system is through it were three separate single inverters.

(ii) CURRENT FEED BACK:-

Current feed back provide overload protection for the static inverter. This protection may be either or the types. I= first, current in excess of the maximum results in shutdown of the inverter. That is, the output voltage drops to zero, this protecting the unit. With this type of shutdown, the output turns on and off with in a period, preventing damage to any of the components. The second type of current feedback results in the inverter as constant current generator for load current in excess of maximum. This protects the unit and often maintains the operation of loads during transistor over-load. In general, this latter system is better through some what more difficult to achieve. Normally, a current feedback system is designed to work in conjunction with the voltage feedback system, and in effect, over rides the voltage feedback during overload condition.

(iii) PHASE FEED BACK:-

Phase feed back is sometimes used in three phase static
\ln. Normally, the inverter oscillator provides exact \#i̇se angle at the input to the driver stages. If each $=$ is equally loaded, the phase shift thought the driver, [and filter stages if each phase is equal resulting in = same 120 phase angle at the output. Frequently however, =loads or power factor are unbalanced, which may result in - $=$ =rent phase shift through each phase.

Phase feed back is applied by comparing the angle of two zases with respect to the third and generating two feed back _nals proportional to the differences from the nominal 120. tere two feed back signals then act in phase shifting =rcuit in two of these three oscillator output signals in Fuh a way that the inverter output are held at an exact 120 -th respect to each other.

b) POWER STAGE DESIGN:-

Power variation in the design of static inverter power stages are few, but good design in this area is more important then elsewhere, since most if the dissipated power occurs here and in the filter. In general, inverters may be grouped as bridge or parallel inverters, with different basic circuit resulting in the power stage. Following figure shows the
schematic diagram of a basic parallel inverter power stage.

fig. 1.1

Transistor Q and $Q z$ operate in push pull, each during He half of the cycle. Transformer $T 2$ is the power output =ransformer. Parallel inverters are more common than bridge inverters. A typical bridge inverter power stage is shown in Eig 1.2 .

fig. 1.2

Transformer $T 5$ is the output transformer, which has =erminals that are alternately switched from plus to minus by attion of $\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3$ and Q 4 arranged as a bridge. Transistors 21 and Q3 operate together, as do Q2 and Q4. In a bridge inverter, each transistor is subjected only to the supply voltage during cut off because there is no induced voltage present. This indicates that the bridge inverter will operate safely with twice the supply voltage for a given transistor type. This primary disadvantage of the bridge inverter is its greater complexity. Since it requires twice the number of transistors for the same power rating and at the same supply voltage as compared to the parallel inverter. It is possible with three-phase inverters to eliminate the
aradvantages of bridge inverters while retaining their arztages. A three-phase bridge inverter power stage is menn

in fig 1.3

The input drive consists of three push pull square [res, 120 out of phase. Each transistor conducts for half \#le and non conducting for the remaining half-cycle. \#cause of the three-phase relationship, the conduction reriods of the transistor overlap, causing three transistor $=$ be conducting at any given instants. This is combined in He delta-connected primary of Tl , giving outputs with F=celled third harmonics. Each transistor is subjected to saly the supply voltage during cut off.

Proper design of the power transistor drive circuitry, the output transformer, and the filter are necessary for
efficient switching of the power transistors. The design of the output transformer is of particular importance. In
[ral, this transformer should be designed with low leakage _rance and good high-frequency response. The three-phase - former have to achieve an efficiency of about 95\% - urder to achieve an over all inverter efficiency of 85\% (-ning filter efficiency of 95% and switching transistor E_ciency of 95\%)

= INDUCTANCE SWITCHING IN TRANSISTORS:-

The ability of an inverter to operate into power factor rads, and the ability of the main power transistor to switch s square pattern and directly related. Under normal unity zever factor operation, the switching pattern or the =ansistor begins to look more like the circular pattern Hlustrated in fig 1.4

fig. 1.4

In order to optimize the efficiency of the power transistor in switching mode, switching patterns may be produced on an oscilloscope and analyzed to determine regions of transistor operation with high dissipation. Circuit adjustments, filter and load changes may be made and their

- on the transistor may be made by means of the ning pattern.

FFFICIENCY:

The efficiency of an ac. device where power factor is a mideration, is often misunderstood. Efficiency is usually -rined as "watts output divided by watts input multiplied by expressed as percentage ". For dc input, this rule holds =-e and is a excellent measure of performance of a piece of nipment. For a static inverter operating under power factor sad, this is often very misleading as a measure of zerformance.

For example, a static inverter operating at maximum molt- ampere output into a zero power factor load would reflect a zero efficiency by the above definition. Because the voltage and current are phase-shifted full 90 degree. There are no output watts to measure, since the inverter is producing no real power in watt. The inverter is, however, operating at full volt-ampere load, and requiring very real power in watts from the dc input.

By this, it can be seen that a power factor has a severe effect on the "apparent efficiency" of the inverter. The only true indication of performance of the inverter is when efficiency is measured at unity power load.

Take the example of 350 VA static inverter that operates at 80% efficiency into a 350 VA resistive
load (unity performance). The internal losses of inverter are
epproximately 87 W total.
This same inverter operating into a 350 VA load at 0.65 power factor would be delivering a real power of only 350 * 0.65 or approximately 227 W. This 227 W is a power that goes straight through the inverter. In addition 350 VA at the above power factor of 0.65 represents also plain reactive power of $350 *[\{1-(0.65)(0.65)\} E 0.5]$ or 256 VA . the only way a dc source can simulate a power factor, is to deliver the power to the inverter, then receive it back from the inverter.

In this manner, assuming the handling efficiency of the inverter at 80% then the inverter's internal losses could be computed by the two formulas :

$$
\begin{aligned}
& 80 \%=227 /[227+(\text { internal loss } A)] \\
& 80 \%=265 /[265+(\text { internal loss } B)]
\end{aligned}
$$

Total internal Losses $=A+B=123 W$. Total efficiency is therefore, by definition 227W /[227 + 127] = approximately 65 \%

This is no doubt, an extreme example, but it illustrate the severe impact that a power factor has on the apparent efficiency of an inverter.

Inverter losses (that determine efficiency) can be classified into three general categories.
(i) There are fixed losses. These are generally easy to measure, simply by removing all loads from the inverter, and measuring its power consumed. These are no load losses and
=re always fixed.
ii) Second, there are the losses that are directly zroportional to the output power. These are semiconductor saturation resistance losses, etc.
(iii) Third, there are losses that rise quadratically with the output power. There are flux density losses, etc. This is what causes the inverter efficiency to reach a maximum point, then decrease as additional loads are applied.

Losses are really the best measure of an inverter's efficiency, and in general, losses and not the efficiency should be specified in an inverter specification.

An other factor to be considered is the size(volt-ampere output rating) of the inverter. High power inverter can always be more efficient than lower power inverter, if all other factors are equal. One basic reason for this fact is the internal efficiency of the transformer.

(e) OUTPUT FILTERS:-

The design of the static inverter output filters is an extremely difficult task. If the requirements are constant, the task is eased, if, however, the load and/or power factor varies widely and very low harmonics content is necessary, the design is difficult, and the filter will be heavy.

The filter should be efficient(95\% overall efficiency). Its input impedance at higher frequencies should be capacitive (never inductive if possible), and it should be of maximum weight. The maximum harmonics permitted from most
=saile or aircraft inverter is 5%, same systems require as
\Rightarrow as 2% harmonics.
Now resonant, first and second order critically damped Elter, as shown in the fig. 1.5

1st. order

2nd. order
fig 1.5

A common filter of 4 th order is shown in the fig 1.6 . In this filter, L 2 and C 2 are made resonant at the fifth order.

$$
\text { fig. } 1.6
$$

A disadvantage with these filters is that their filtering ability is the function of their loading capacity, and the input impedance of the filter is not resistive at the
fundamental. These objections are overcome by the 4 th. order resonant filter shown in fig. 1.7. In this filter L1 and C1 are tuned to series resonance at the fundamental, and L2 and $C 2$ are tuned to shunt the load impedance. This filter actually works better if L 1 and C 1 are tuned above 350 Hz and if L2 and C2 are tuned to about 450 Hz . Also L2 should predominate in the L2 C2 product. This filter will filter to 2% harmonics over a zero range of 20 degrees.

fig 1.7
The physical size of the filter components is often a problem and may be partially overcome by the use of transformers to scale the filter components values.

Only a few general rules for filter design have been indicated. The mathematical design of such filter is so complicated that a digital computer might will be used in the design of the filter. The computer may be programed to vary a great many parameters to derive the best filter for the weight. The filter should be designed so that the reactance of the load is used as the part of the filter. For example, if the load has a lagging power factor of 0.4 , this inductance should be figured as part of $L 2$ when using the 4 th. order resonant filter. This would make the static inverter higher than if the power were unity. In general the
more lagging or leading the power factor, the higher the Eilter becomes.

(e) INPUT FILTER:-

The function of the input filter is two folds. the filter is intended to remove the transient from the dc input line. It must prevent transients and noise from being produced on dc line by the action of static inverter.

The reduction of transient is difficult if the source impedance of the dc power is not low, and if other loads which are being switched are present on this source. Usually, this sort of transient may be reduced by the use of low-pass T-section filter.

(1.4) SATURATED SWITCH TYPE INVERTERS:-

Under this topic we will discuss only the voltage driven inverter.

VOLTAGE DRIVEN INVERTERS:

The voltage driven inverter circuit is the generally accepted circuit employed in most of the today's static inverter design. A power source is connected through a pair of semiconductor switches, into the end of a center tapped transformer primary. The power source is a betray, with more than adequate capacity, and with a source impedance so low that it is negligiable. A schematic representation of the voltag-driven inverter is illustrated in fig. 1.8 .

A voltage driven inverter is defined as follows:
a voltage driven inverter in which the design of the circuit connects the dc voltage source through the semiconductor svitches directly to the primary of the transformer.

fig. 1.8

This means that when SI is closed, the full source voltage(minus the semi conductor saturation losses, which we will ignore) appear across the AB primary of the transformer T1, and conversely, when S 2 is closed, the full source voltage BC primary.

The switching drive circuit alternately saturates and cuts off the semiconductor switches, causing a alternating voltage to be generated across the windings of the transformer T 1 , and to be deliver to the load. The power source voltage is directly imposed onto the primary of the transformer Tl , and therefore, the voltage across the transformer is always a square wave, no matter what the load and no matter how the load power facto varies. The current wave form in the primary of the transformer $T 1$, is a different story. It is affected by changes in load, and most
\#portant, it is affected by changes in power factor.
i) THE EFFECTS OF POWER FACTOR:-

Now let us examine the current wave form in the primary IET1, under various power factor conditions. The current चave form (in phase relationship) in the primary of $T 1$ is composed with the voltage impressed by the power source across the primary of $T 1$, when load is a pure resistive load(power factor1.0). This comparison reveals wave forms as illustratedin fig 1.9.

fig. 1.9

The current wave form will be identical to the voltage
wave form. It can be seen that each switch is conducting a _-11 180 degrees, and current through the switch, and through the transformer primary, is as high as required to deliver the power demanded by the load. The power delivered by each switch through the transformer primary is represented $b y$ the formula $P=E I d t$. When the voltage and current are both in phase, and square in wave form, then the cross hatched areas in the current wave forms are proportional to the power delivered by the each semiconductor switch.

An AC power source that is operating into a power factor load, is delivering power to the load, and then receiving power back from the load. This function occurs with each half cycle. Power is pushed into the load, and then received back from the load.

(ii) THE EFFECT OF AN INDUCTIVE LOAD:-

Considering an extreme case, with a completely inductive load(power factor zero lagging). The phase relation of the voltage wave form across the primary of $T 1$ is compared with the current wave form through the primary of T , in fig. 1.10 .

fig. 1.10

When the voltage driven inverter must operate into an inductive load, the power that the load attempts to feed back in to transformer $T 1$ effects the current wave form in the primary, semiconductor switch S 1 should begin conduction at the 0 degree conduction angle, but the inductive load is attempting to force a reverse current flow through the switch. Because all semiconductor switches are unidirectional, the switch blocks the required reverse current. This interruption of the current flow from the load, when it is at its maximum point, causes a reverse voltage spike to build up on the primary of $T 1$, and this spike rises until it fails(short circuits) the semiconductor switch. In theory, the spike could rise to an infinite voltage, and therefore, the voltage rating of the semiconductor switch is of no consequence; it still will fail. When switch S 2 attempts to conduct, at the 180 degree conduction angle, it

Eaces the same untimely end.

(iii) THE EFFECTS OF CAPACITIVE LOAD:-

Because the inverter must deliver power into a power factor load and then receive it back, the effect of the capcitive load on the voltage driven inverter also are important. Again, the extreme case of the inverter with a completely capacitive load (power factor zero leading) is examined and the phase relation of the voltage wave form across the primary of $T 1$ is compared with the current wave form through the primary of T i in fig. 1.11.

Similarly to the situation encountered with the inductive load, a capacitive load changes the current wave form through the primary of $T 1$, but the voltage remains uneffected. The voltage wave form remains square wave, but tremendous current spikes now appear in the primary each time the semiconductor swatches begin to conduct. When the switches begin conducting, they are supplying power to reverse charge
the capacitor through a very low impedance. With a voltage constant, the current rises to extremely high levels. Until the capacitor charge rises, there is a very little impedance to slow the current in rush, other than the slight resistance in the transformer wire and the saturation resistance of the semiconductor switches.

fig. 1.11
Because the current level rise to such a extremely high values as each switch begins to conduct, the I*I*R losses in the inverter suddenly rise to a very high values, and the efficiency decreases.

The end result of these current spikes on the operation of the semiconductor switches is permanent device destruction. The high peak currents cause transistor switches to run out of the drive power and pull out of saturation into a high dissipation mode of operation. In very short time they burn out. SCR switches simply generate instantaneous hot spots due to the extremely high peak currents and also burn out.

THE OSCILLATOR CIRCUIT

It is decade counter with 10 outputs. Inputs include a
_iock, a reset, and a clock inhibit signal. Schmitt trigger =tion in the clock input circuit provides pulse shaping that Lllows the unlimited clock inputs pulse rise and fall time. These counters are advanced one count at the positive \#lock signal transition, if the clock inhibit signal is low. \#unter advancement via a lock line is inhibited the clock -hibited signal is high. A high reset signal clears the cunter to the zero count. Each decoded output remains high for a full clock cycle. A carry out signal completes one Fycle every 10 clock input cycles in the CD 4017.

- Faulty static operation.
- Medium speed operation (10 M Hz at Vdd $=10 \mathrm{v}$)
- 100% tested for quiescent current at 20 V .
- 5v,10v and15v parametric ratings

In inverter circuit the 4017 is used as the
frequency divider. It divides the frequency of the clock input by 4 . Since pin 10 is connected to pin 15 , so after counting 3 , it will reset and start counting from zero again. The frequency produced by the oscillator is 309.6 Hz and this counter divides the frequency by 4 , and it becomes 77.4 Hz . The 77.4 rather then 60 Hz is used to avoid transformer saturation. Decade counter IC2 controls the timing of the reference signal and the gaiting on of the error amp. signal to the proper set of the FETS.

IC1: LM 324

The LM 324 consists of four independent, high gain,
-ternally frequency compensated operational amplifiers, with are designed specially to operate from a single power nply over a wide range of voltages. Operation from split Zver supples is also possible, and low power supply current =ain is independent of the magnitude of the power supply oltage.

In the inverter circuit IC1-a is used in the oscillator circuit in order to produce frequency. IC1-b is used as comparator in order to keep the output of the transformer stable. IC1-C and IC1-d are used as buffers, that means that vhatever is the input output will be the same, and these are the source to gate-ON and off the MOSFETS which are used as switches.

The diodes D1 and D2 at the output of these buffers will either conduct or in cut off. If the output of the buffers is zero then these diodes will conduct, and if the output is high then these diodes will not conduct.

The LM-78XX series of three terminals regulators is available with several fixed output voltages, making them Iseful in wide range of applications. One of these is located 01 card regulation, eliminating the distribution problems, Essociated with single point regulation. The voltage available, allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipments. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

FEATURES:-

- Output current in excess of 1A.
- Internal thermal over load protection
- No external components required.
- Output transistor safe area protection
- Internal short circuit current limit.

In the inverter circuit LM_7805 is used, so the voltage range is 5 volts, which is used as a reference voltage.

The IRF-511 power MOSFET transistors have very low ONBtate resistance combined with high transconductance and Freat device raggedness.

These transistors also feature all of the well
established advantages of the MOSFETS such as voltage control, freedom from second break down, very fast switching, ease of the paralleling, and temperature stability of electrical parameters.

In the inverter circuit, these are used as switches. When ever the gate source voltage (Vgs) is low, these are gated off and when the gate source voltage is high these are gated-ON. These mosfets behave as excellent switches.

Characteristic of the MOSFET

THE BRIDGE RECTIFIER

The circuit shown above is bridge rectifier. To understand the operation of this circuit, it is necessary only to note that two diodes conducts simultaneously. For example during the portion of cycle when the transformer polarity is that which is shown in the fig. D1 and D3 are conducting, and current passes from positive to the negative of the load. During the next half cycle, the transformer voltage reverses its polarity, and diodes 2 and 4 send current through the load in the same direction as during the previous half cycle.

The principal features of the bridge rectifier are, the current down in both the primary and the secondary of the transformer are sinusoidal, and therefore smaller transformer may be used for full wave circuit of the same output.

The simplified fig. is as follows:

$$
\begin{aligned}
& \text { Vin }=5 v \\
& \text { I1 }=\operatorname{Vin} / \mathrm{R} 26 \\
& I 2=-\frac{\text { Vf-Vin }}{\text { R28 }} \\
& I 2=I 1+I 3 \\
& I 3=I 2-I 1 \\
& \mathrm{Vo}=\mathrm{R} 26 *(-\mathrm{I} 3)-\mathrm{R} 25(\mathrm{I} 1) \\
& \text { Vo }=\mathrm{V} 1-\mathrm{R} 25[(\mathrm{Vf}-\mathrm{Vin}) / \mathrm{R} 28-\mathrm{Vin} / \mathrm{R} 26] \\
& \mathrm{Vo}=2.23 \mathrm{Vin}-0.213 \mathrm{Vf}
\end{aligned}
$$

INVERTER OPERATION

The inverter, the schematic diagram of which is shown in
the fig. 2.1 is actually push-pull audio amplifier. The input If the reference signal, is 5 volts square wave. The output 240 volts peak to peak AC signal. The feed back signal is rectified in order to match the DC reference signal. On the =-e half of the AC wave form, the upper three FETs are gated $J N$, and on the other half, the lower three FETs are gated ON. Normally, 120 -volts AC outlets have one side at ground and one side that is HOT. The hot side alternates from -170-170 volts. The inverter output is little different. On one half of the AC cycle, one side is nearly ground and other is at +170. During the other half of the cycle the situation is reversed.

Operation amplifier IC1-a and its associated components form approximately 300 Hz clock oscillator and the counter IC-2 divides the clock signal by four to obtain a 75 Hz inverter frequency and after counting four pulses that is counting $0,1,2,3$ it RESETS and start counting again from zero, since pin 10 is connected to pin 15 which the RESET pin. The 75 Hz rather than 60 Hz is used to avoid transformer saturation. Some electronic clocks will run fast with that frequency, but most electronic gear will work just fine. Decade counter IC2 controls the timing of the reference signal and the gating on of the error amplifier signal to the proper set of the FETs. The timing diagram is shown below.

CLOCK

FIG 2.1

When IC2, pin 3 goes high, the output of the buffer IC1-c is high, that reverse biases the D1 and allows the error amplifier signal to reach Q1, Q2, Q3 and the common drain of the Q1, Q2 and Q3 which is attached to the primary of the centre tapped transformer $T 1$, are at 12 volts till the output of the pin3 remains high.

At the same time, IC2 pin 4 is low which causes the output of the buffer IC1-d to be low, that grounds the gates of Q4, Q5, and Q6 and therefore turning them OFF. A 5 volts reference from the regulator IC3 is now present at the error amplifier IC1-b, non inverting input. The reference signal rise time is slowed by $R 12$ and $C 2$ in order to avoid the output overshoot, and the gain and the frequency response of the error amplifier is set by R15, R25 and C3.

Next, pin2 of the IC2 goes high which turns $Q 7$ on, and the reference signal is pulled to ground. PIN3 and PIN4 are now low and the FETs gates are grounded, turning them OFF, the drain of the FETs is now approximately zero, and it remains zero till PIN3 and PIN4 are at zero level. Then PIN4 of the IC-2 goes high and reverse bias the D2, and the reference signal now rises to 5 volts and other three FETs are gated $O N$ and the other half of the $A C$ output wave form is generated. at this point, the drain voltage of FETs Q4, Q5 and Q 6 is -12 volts. We got this inverted signal due to the oposite polarity of the centre tapped transformer. The next clock pulse causes the pin7 of the IC2 to go high, all FETs are now OFF and the reference is set to zero. The following clock pulse resets IC2 and another cycle begins.

If we consider the FETs Q1, Q@, and Q3 as a switch A and FETs Q4, Q5 and Q6 as the switch B, then the output of these two switches in accordance to the timing diagram is shown below.

A filter that protects the CMOS circuitry against
\#lternates spikes and reverse input polarity is formed by R7, C8 and D7. Components R9 and C4, filter output spikes, and 218-R21 are pre load resistors to stabilize the inverter when so load is connected. Although the FETs have no currentequalizing source resistors, they still share current fairly equally. (When a FET Hog current, it heats up more and its on resistance increases, causing it to draw less current).

CHAPTER THREE
 SUMMARY AND CONCLUSION

SUMMARY OF THE VOLTAGE-DRIVEN INVERTER PROBLEM

A summary of the problems inherent in the voltage driven inverter circuit, and the reasons why these problems are present is presented below.
(i) The voltage-driven inverter can handle inductive power factor only through a limited range, and only with difficulty. This is because the voltage-driven inverter holds the voltage fixed in phase relative to a switch conduction, being unidirectional current device, will not operate in this mode. Auxiliary circuit are necessary to either burn up the power, fed back from the inductive load, or bypass the switches and return the power to the power source. (ii) The voltage driven inverter can not handle a capacitive power factor. Bleeder resistor to modify the power factor have to be used, or a series impedance in the output is necessary to restrict the current surges. The inverter will still destroy the switches if the power factor of the load becomes leaking to an approximate extent.
(iii) The voltage driven inverter utilization of the semiconductor switches is poor. The current rating of the switches must be several times larger than necessary to handle the current peaks created by the power factor loads. The high peak currents for short durations are not a desirable condition for the operation of semiconductors, therefore the reliability of the switches is not good. (iv) The voltage driven inverter utilization of the output of
$=$ power transistor is poor. Because of the short conduction -e, causing high peak currents as required by the power antor loads, and will be larger and heavier than necessary. T) The voltage driven inverter circuits will have to be zqge and heavy. The actual volt-ampere circulating in the Elter circuits will be large, causing losses and driving up -ue size and weight of the filter section.
vi) Voltage driven inverter can not use simple, efficient Zalse-width modulation as a means of regulation because of the transformer problem, and because of the circulating currents required by the filter section. Almost with out exception, voltage driven inverter use pre regulator, decreasing efficiency due to double conversion losses, or they use phase shift, forcing the use of multiple inverters for every output provided.
(vii)Voltage driven inverters are never satisfactory when they operate with motors as loads, because the current surge capacity required during motor start up is always coupled with highly inductive power factors, and these conditions change through wide ranges, as the motor comes up to speed. The worst case condition for the voltage driven inverter is when a single motor constitute the only load that the inverter has to drive.
(viii) The voltage driven inverter is a highly intensity generator of radiated and conducted EMI. This is inherent in the circuit. Extensive fixes must be incorporated in each different voltage driven inverter, depending on its
application to reduce these EMI levels. Even with the fixes, it is seldom that the radiated and conducted EMI can ever be brought down to acceptable levels of MIL-I- 26600 or MIL-I5181, standards and keep the inverter size and weight with in reason.

This project gives a comprehensive knowledge about IVERTERS. Inverter is a device which coverts DC power to AC power at some desired output and frequency. There are several Jesign considerations that are common to all inverters, that include, the feed back which might be of voltage feed back, current feed back or phase feed back. Then comes the design of the power stage, it is most important part since most of the power is dissipated here. Inductive switching in transistors, efficiency and input and output filters are also key points to be considered for the inverter design.

The INVERTERS are classified in two categories. Firstly the voltage driven inverters, secondly, the current driven inverters. My project is based on the first type, that is the voltage driven inverters. The voltage driven inverter is the one in which the design of the circuit connects the DC voltage source through the semiconductor switches, directly to the primary of the transformer.

The switching drive circuit alternately saturates and cuts off the semiconductor switches, causing an alternating voltage to be generated across the windings of the transformer, and to be delivered to the load. The power source voltage is directly impressed on the primary of the transformer, and therefore, the voltage across the transformer is always a square wave, no matter what the load and no matter how the load power factor varies.

To my father, mother, brothers \& sister.

ACKNOWLEDGMENT

I would like to express my special thanks my supervisor Assoc.Prof.Dr Senol Bektas , who Эve me a lot of knowledge and skills to carry on fith this project. Also I would like to thank my triends who helped me in completing this project.

The output of the buffers should be the same as the t but I observed that output of the buffers is different the input. There should be two voltage levels but I erved three levels, these are approximately $9.0,1.6$, 0 volts. At the high level the switches should be at $O N$ te and at lower level these should be in OFF state. But the third level which is 1.6 volts these FETE conduct
tially and because of this the output of the inverter is joyed. The cause of this third level is due to the -SET voltage of the buffers.

This problem may be solved by using the buffers with low OFF-SET voltage .

7B, CD4022B Types

Fig 1 - Logic diagram for $\operatorname{CONOT} 78$

Fig. 4 - Tining diagram for CD4022B.

 TEQR
$H E X F E T$ TRAKUESTMFI

1RF5EO IRF5E1 1RF52e MRF523

0.3 Ohm HEXFET
 LB Plastic Package

lechnology is the key to International Rectiline of power MOSFET transistors. The effiand unique processing of the HEXFET design low on-state resistance combined with high nce and great device ruggedness.
FIransistors illso fcature all of the well estabages of MOSFETs such as vollage control, freeecond breakdown, very fast switching, ease of
and temperature stability of the electrical param.
suited for applications such as switching power tator controls, inverters, choppers, audio amplifienergy pulse circuits.

Features:

- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- No Second Breakdown
- Excellent Temperature Stability

Product Summary

PaI Number	VoS	RDSIon)	1 D
IRF520	100 V	0.30Ω	8.0 A
IRF521	60 V	0.3052	8.0 A
IRF522	100 V	$0.40 \Omega 2$	7.0 A
IRF523	60 V	0.1052	7.0 A

laximum Ratings

Parameter	IRF520	IRF521	1RF522	IRF523	Units
Drain - Source Voitage (1)	100	60	100	60	v
-ram. Gate Vohage IRGS = 1 M M (1)	100	60	100	60	V
Continuous Drain Current	8.0	8.0	7.0	7.0	A
Continuous Drain Current	5.0	5.0	4.0	4.0	A
Pulsed Drain Current (3)	32	32	28	28	A
Eate - Source Voltage	± 20				V
= Max. Power Dissipation	40 (See Fig. 14)				W
Linear Derating Factor	0.32 (See Fig. 14)				W/K
Inductive Current, Clamped	(See Fig. 15 and 16) $\mathrm{L}=100 \mu \mathrm{H}$				A
Operating Junction and Storage Temperaturc Range	-55 to 150				${ }^{\circ} \mathrm{C}$
Lrad Temmointure.	$300(0.063 \mathrm{in}$. $(1.6 \mathrm{mml}$ from ease for 10 s)				${ }^{\circ} \mathrm{C}$

Characteristics @ ${ }^{\top} \mathrm{C}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)

Resistance

- Con-Caso	ALL	-	-	3.12	K/W	
2 mos - mmk	ALL	-	1.0.	-	K/W	Mounting surface flat, smooth, and greased.
-	ALL	-	-	B0	K/W	Freo Ail Opmeration

Source-Drain Diode Ratings and Characteristics

$=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. (2) Pulse Test: Pulse width $\leqslant 300 \mu \mathrm{~s}$. Duty Cycle 42%.
(3) Repultive Rating: Pulse width limuted by max. junction temperature.
See Transient Thermal Impodance Curve (Fig. 5).

Fig. 1 - Typical Output Characteristics

Fig. 3 - Typical Saturation Characteristics

Fig. 2 - Typical Transfer Characteristics

Fig. 4 - Maximum Safe Operating Area

20, IRF521, IRF522, IRF523 Devices

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 8 - Breakdown Voltage Vs. Temperature

VSO. SOURCE-TO-DRAIN VOLTAGE (VOLTS)
Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 9 - Normalized On-Rewiner $v=-$ -

IRF520, IRF521, IRF522, IRF523 Devices

- Typical Capacitance Vs. Drain-to-Source Voltage

2 - Typical On-Resistance Vs. Drain Current

Fig. 11 - Typical Gate Charge Vs. Gate.to Source Voltage

Fig. 13 - Maximum Drain Current Vs. Case Temperature

Fig. 14 - Power Vs. Temperature Derating Curve

WaY io TO OBTAIN EZJPED PEAK IL

Fig. 15 - Clamped Inductive Test Circuit

Fig. 16 - Clamped Inductive Waveforms

Fig. 17 - Switching Time Test Circuit

Fig. 18 - Gate Charge Test Circuit

National Semiconductor

Operational Amplifiers/Buffers

LM124/LM224/LM324, LM124ALLM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gin, internally frequency compensated operational am2ifiers which were designed specifically to operate from single power supply ovel a wide range of voltages. Ideration from split power supplies is also possible and the low power supply current drain is independent of the -zgnitude of the power supply voltage.

Application areas include transducer amplifiers. dc gain bocks and all the conventionat op amp circuits which ow can be more easily implemented in single power upply systems. For example, the LM124 series can be crectiy operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ powel supply voliage which is used in digital systems and wit sasily provide the required interface electronscs without requiring the additional $\pm 15 \mathrm{~V}_{\text {DC }}$ power supplies.

Unique Characteristics

- In the linear mode the input common mode voliage range includes ground and the output voltage can also swing to ground, even though operated from only a single power suppiy voltage.
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated.

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and Vout also goes to GND
- Compatible with all forms of logic
- Power dram suitabie for batiery operatiosi

Features

- Internally frequency compensated for unlty yaill
- Large dc voltaye gain
- Wide banciwidth funtiy gain
(temperature compensated)
- Wide power supply iange

> Single suoply

- Very low supply current dram $(800 \mu \mathrm{~A})$ - essentially independent of supuly voltage $(1 \mathrm{~mW}$ iop amp at $+5 \mathrm{~V}_{\text {DC }}$
- Low input brasing current (temperature compensated)
- Low input offset voltage
$2 m V_{D C}$ and offset current $5 \cap A_{D C}$
- Inpur common-mode voltage range includes grourd
- Differential input voltage range equal to the buwer supply voltage
- Large output voltage $\quad O V_{D C} 10 \mathrm{~V}^{*}-1.5 \mathrm{~V}_{D C}$ swing

Connection Diagram

Order Number LM124J, LM124AJ, LM224J, LM224AJ, LM324J, LM324AJ or LM2902J
See NS Package J14A

Schematic Diagram (Each Amplifier)

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM124A			LM224A			1 M32nA			LM12n/LM22n			IM323			(M7902			UNITS
		MIN	typ	MAX	MIN	TYF	MAX	MIN	TYP	MAX										
Input Offset Voltage	(Note 5)			4			4			5			± 7			$\underline{19}$:10	$m V_{D C}$
Input Offset Voltoge Drift	RS - OS		7	20		7	20		7	30		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	I'INT+1-IIN(-)			30			30			75			± 100			± 150		45	± 200	${ }^{n} A_{D C}$
Input Offset Current Drift	-		10	200		10	200		10	300		10			10			10		$\mathrm{OA}_{\mathrm{DCO}}{ }^{\circ} \mathrm{C}$
Indut Bias Current	$11 \mathrm{~N}+$ +1 or $11 \mathrm{~N}(-)$		40	100		40	100		40	200		40	300		40	500		40	500	${ }^{n A D C}$
Input Common-Mode Voliage Range (Note 7)	$\mathrm{v}^{+}=30 \mathrm{VDC}$	0		$\mathrm{v}^{+}-2$	0		$v^{+}-2$	0		$\mathrm{v}^{+} \cdot 2$	0		$\mathrm{v}^{+}-2$	0		$v^{+}-2$	0		$v^{+}-2$	$V_{\text {DC }}$
Large Signai Voltage Gain	$\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}$ (For Large V_{O} Swing) $R_{L} \geq 2 k \Omega$	25			25			15			25			15			15			V/mv
Output Voltage Swing VOH VOL	$\begin{aligned} & V^{+}=+30 V_{D C} . R_{L}=2 \mathrm{k} \Omega \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & V^{+}=5 V_{D C} . R_{L} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 5 \end{aligned}$	109	$\begin{gathered} v_{D C} \\ v_{D C} \\ m v_{D C} \end{gathered}$
Output Current Source Sink	$\begin{aligned} & V_{1 N^{+}}=+1 V_{D C} . V_{N_{N}}=0 V_{D C}, V^{+}=15 V_{D C} \\ & V_{I N}=+1 V_{D C} . V_{N_{N}}=0 V_{D C} . V^{+}=15 V_{D C} \end{aligned}$		$\begin{aligned} & 20 \\ & 15 \end{aligned}$						$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \geqslant \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$		mADC mADC
Differentisl Input Voltage	(Note 7)			32			32			32			32			32			26	

 LM324A temperatare specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq \mp 70^{\circ} \mathrm{C}$, and the LM2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}^{\top} \mathrm{A} \leq+85 \mathrm{C}$

आ"Mmers

Ferformance Characteristics

10 is
DOWER SUPP: Y VOLTAGE $\left(\cdot V_{D C}\right)$

- suppir voltagi $\left(V_{i x}\right)$

Iage Follower Puise
lisponse

Output Characteristics
Current Sourcing

Input Current

Open Loop Frequency Response

Valtage Follower Pulse
Response (Small Signal)

Output Characteristics
Current Sinking

Supply Current

Common Mode Rejection Ratıo

Large Sugnal Frequency Response

Typical Performance Characteristics (LM2902 only)

V^{4}-SUPPLY VOLTACE IVDC

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differentia! inputs, and remain in the linear mode with an inpu: common-mode voliage of 0 Voc. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down so a minimum supply voltage of 2.3 V DC

The pinouts of the package have been designed to simpiify PC board layouts. Inverting inputs are adjaceni to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1 7, 8, and 14).

Precautions should be taken to insure that the cower supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited curren: surge through the resulting forward diode within the IC could cause lusing of the internal conductors and result in a destroyed unit

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the inpu: voliages from going negative more than $-0.3 V_{D C}$ (at $25^{\circ} \mathrm{C}$). An inpu! clamp diode with a resistor to the $1 C$ input terminal can be used.

To insuce ithe power supply current dram, the amplifiers have a class A output stage for small sigial levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chipvertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should
be used, from the output of the amplifier to ground to increase the class A bias current and prevent crosscue distortion. Where the load is directly coupled, as in o applications, there is no crossove: distortion

Capacitive loads which are anplied directly to the outor of the amplifier reduce the loop stability margin. Valu of 50 pF can be accommodated using the worst-case non invering unity gain connection. Large closed loop gains or resistive isolation should be used if larger lox capacitance must be driven by the amplifier.

The bias network of the LMi24 estabi:shes a drain current which is independent of the magnitude of the power supply voltage over the range of crom $3 \mathrm{~V}_{D C}$ to $30 V_{D E}$.

Output short circuits either to ground or to the positive power supply should be of short lime duration. Uniss can be destroved, no: as a result of the short circut current causing metal fusing, but rather due to the larof increase in IC chip dissipation which will cause eventur failure due to excessive junction temperatures. Putting direct shori-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the oupput leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a targer output cur rent capability at elevated temperatures (see iypical performance ciaracteristies) inan a standard IC op amp.

The circuits presented in the section on typical applica tions emphasize operation on only a single power supply voltage. If complementary power supplies are available. all of the standard op amp circuits can be used. In general, introducing a pseudo ground (a bias voltage reference of $\mathrm{V}^{+} / 21$ will allow operation above and below this value in single power supply systems. Many applicz tion circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications (Continued) $\left(V^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Low Drif: Patar Defacio

Comgerator wrih Hysterous

Ground Referencing A Differential inpus Signal

ingle-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{VoC}\right)$

Voltage Controltad Oncillator Circuit

AC Coupled Inverting Amplifier

High Inpui Z.DC Differential Amplifier

Typical Single-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Using Symmetrical Amplifiers to Reduce input Current (Goneral Concept)

Bridge Current Amplifier

Bandpass Active Filter

CD4017B, CD4022B Types

; Counier/Dividers

$=20$. Volt Rating)
Einter with
$=$ Outputs

-unter with

=ed Outputs

- nd CDA02.2B are 5

Gison counters having

- outputs. respectively,

EOCK, a RESET, and a
Jgnal. Schmuii trigger
Erput fircuit provides
ztinews unlemited clock
4 tat inics.

- Exanced ont: conme .11 E-tal liant:ion if the Fana is low Commer Ethet lime is mhithteri T+113, simmet is hup
 - The Johnsom cumbtat hrgin-apeet upees dion, EEng and spokefree teEtratt yaterg is providest
 - E nommally lewt and gu Intrelive desothal bime potput remans high for A CARRY.OUT siunnil gele eviny 10 clock min! 24017! in rvily 8 clurtk © CD4022B and is used 10

Featlures.

- Fully static operation
- Mcdium-specd uperation 10 MHz (typ) at $\mathrm{V}_{D D}=10 \mathrm{~V}$
- Standardized, symmetrical output characteristics
- 100% icsted for quiescent current at 20 V
- 5.V. $10-\mathrm{V}$, and $15 \cdot \mathrm{~V}$ parametric ratings
- Mects all requirements of JEDEC Tentative Standard No. 13A. "Standard Specifications for Description of ' B ' Scries CMOS Devices"

Applications:

- Decarle counter/decimal decode display (CD4017B)
- Binary coumter/decuder
* Fimpurncy livisum
- Counter contral/baners
- Divedr-by N courating
- For further application mformation. spe ICAN-6160 "COS/MOS MSI Counter and Register Design and Applicathans:"
minde cloch tha: sucreetting slevice in a multirevice conntine cham.

 chamic pack ages (D and F suffixes), 16 lead dual.ildine plastic package (E suffix), and in chin form (II suffix)

top view CD40178 TERMINAL DIAGRAM

TOP VIEW NC F no comection

CD40228 TERMINAL DIAGRAM

CD4017B, CD4022B Types

Fig. 6-Minimum ousput low (sink) current characteristics.

Fig. 7-Typical output high (source) current characteristics.

17B, CD4022B Types

E ELECTRICAL CHARACTERISTICS

$-{ }^{\circ}{ }^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$

CTERISTIC	$\begin{gathered} \text { CONDITIONS } \\ V_{D D}(V) \end{gathered}$	LIMITS			UNITS		
		Min.	Typ.	Max.			
ED OPERATION							
	5	-	325	650	ns		
aro Delay Time, tphl. ${ }^{\text {tplH }}$	10	-	135	270			
	15	-	85	170			
4		-	300	600			
	10	-	125	250			
	15	-	80	160			
-ime, ithl. ${ }^{\text {itLH }}$		-	100	200	ns		
- Decode Out Line	10	-	50	100			
- Dock Input Frequency, ICL*	15	-	40	80			
	5	2.5	5	-	MHz		
	10 15	5	10	-			
	15	5.5	11	-			
Sock Pulse Width, tw		-	100	200	ns		
	10 15	-	45	90			
- F Fall Time, $\mathrm{t}_{\mathrm{r}} \mathrm{CL}, \mathrm{t}_{4} \mathrm{CL}$	5, 10, 15	UNLIMITED					
					ns		
Dock Inhibit Setup Time, t_{5}	5	$\begin{array}{l\|r\|} \hline- & 115 \\ - & 50 \\ - & 35 \\ \hline \end{array}$		$\left[\begin{array}{r} 230 \\ 100 \\ 7.5 \\ \hline \end{array}\right.$			
	10						
	15						
Scrance, $\mathrm{CIN}_{\text {IN }}$	Any Input	5		-	pF		
DERATION							
- Delay Time, tphl, tplh	5			-	265	530	ns
-2r Decode Out Lines	10		115	230			
bet Puise Width, tw	15	-	85	170			
	5	- 1	130	260	ns		
	15	-	30	60			
- Frat Removal Time	5		200	400	ns		
	10		140	280			
	15		7515	150			

- respect to carry output line.

delays measureo between 50% levels on all waveforms
Fig. 9- Propagation delay, serup. and
hold time waveforms.

Fig. 10 - Typical transition time as a function

Fig. 11 - Typical propagation delay time as a function of losd capacitance (clock to decode output).

Fig. 12 - Typical propagntion delay tirne es and function of laad capacitance felock to cirry-ourt).

Fig. 13 - Trpical dyanamic power diasipetion as function of clock input frequency.

When the $\mathrm{N}^{\prime \prime}$ decocted autput is reached ($N^{\text {th }}$ clock pulse) the S.R flip flop (con. stucted from two NOR gates of the CD40018) generdtes a reset pulse which drears the CD4017B or CD4022B to its zero sexunt At this then, if the $\mathrm{N}^{\text {th }}$ decoded outfur is efrenter than or exwat to 6 in the CD. 40178 - 5 is the CDA022B. the COUT line ques thigh to slock the next CD40178 or CD. $4022 B$ counter sectuon. The " 0 " decoded
 dence of the clock low and decoded "O" whtul low wint the S R flap thop to enable the CD40178 © CD40228. If the $\mathrm{N}^{\text {th }}$ de. coded sutput is thess than 6 (CD40178) or 5 (CDN022B), the COUT line will not go high did, therefore, cannot be used, in this case " 0 " decoded output may be used to perform the clocking function for the next counter.

CD4017BH

The photugraphs , mit amiensions of endeh COS PAOS rhip represtot a chis when if is purt ot the water
 argles are 59° insteat of 90° with respect $10=$ fuce of the chip therefure. the isolured 5 cha acluallv $7 \mathrm{mils}(0.17 \mathrm{~mm} / \mathrm{lurger}$ in bort bell

ational emiconductor
 Series Voltage Regulators
 Description

Voltage Regulators

eries of three terminal regulators is everal fixed output voltages making them
z range of applications. One of these is -gulation, eliminating the distribution eact with single point regulation. The t allow these regulators to be used in -atrumentation, HiFi, and other solid Qupment. Although designed primarily regiflators these devices can be used monents to obtain adjustable voltages

- is avalable in an aluminum TO 3 - If allow weit 1.0 A load curtent if idir: 9 is provided. Current limiting is - her pok owtput currem 10 a sate value Di fot the output 1 ansistor is provided Dowe dissmation. If internal power pres 100 high for the heat sinking hermal shu:down circuit lakes over - trom overheating.

2- 211 was expended to make the LM78XX - 5 easy in use and minimize the number
of external components. It is not necessary to bypass the output, although this does improve transient response. input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V

Features

- Output current in excess of 1 A
- Internal therinal overload protection
- No external components required
- Outpur transistor safe area protection
- Internal shori circuit current limit
- Avalable in the aluminum TO. 3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

and Connection Diagrams

Order Numbers
LM7805CK
LM7812CK
LM7815CK
Sue Package KC02A

Plastic Package TO. 220 (T)

Order Numbers
LM7805CT
LM7812CT
LM7815CT
See Package T03B

solute Maximum Ratings

Voltage (Vo $=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V)
nal Power Dissipation (Note i)
ating Temperature Range (T_{A})
amum Junction Temperature
(K Package)
(T Package)
age Temperature Range
Temperature (Soldering, 10 seconds)
$\begin{array}{ll}\text { TO-3 Package K } & 300^{\circ} \mathrm{C} \\ \text { TO-220 Package T } & 230^{\circ} \mathrm{C}\end{array}$

Bectrical Characteristics LM78XXC (Note 2) $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant 125^{\circ} \mathrm{C}$ unless otherwise noted

-JTPUT VOLTAGE					5 V		12 V		15 V	
PUT VOLTAGE (unless otherwise noted				10 V		19 V		23 V		
	PARAMETER	CONDITIONS		MIN	TYP MAX	MIN	TYP MAX	RAIN	TYP	MAX
Output Voltage		$T_{1}=25^{\circ} \mathrm{C} 5 \mathrm{~mA} \leqslant 10 \leqslant 1 \mathrm{~A}$		4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4	15	15.6
		$P_{D} \leq 15 W=5 \mathrm{~mA}<10 \leqslant 1 A$ $V_{M I N}=V_{I N}=V_{M A X}$		$\left(7 \leqslant V_{I N} \leqslant 20\right\}$		$\left(14.5 \leqslant V_{1 N} \leqslant 27\right)$		$\begin{array}{\|l\|} \hline 14.25 \\ 17.5 \\ \hline \end{array}$	$V_{I N}$	$\begin{array}{r} 15.75 \\ \times 301 \\ \hline \end{array}$
\%	Line Regulauon.	in $\quad 500 \mathrm{~mA}$	$\begin{aligned} & Y_{1}=25^{\circ} \mathrm{C} \\ & \therefore V_{1 N} \end{aligned}$		$\begin{array}{rr} 30 \\ \left.V_{\text {IN }} \leqslant 25\right) \\ \hline \end{array}$	114.5	$\begin{array}{ll} 4 & 120 \\ V_{1 N} \leqslant & 30 \mid \\ \hline \end{array}$	1175	$\begin{gathered} 4 \\ \leqslant \\ V_{I N} \end{gathered}$	$\begin{array}{r} 150 \\ -\quad 30) \\ \hline \end{array}$
			$\begin{aligned} & 0^{\circ} \mathrm{C} \cdot \mathrm{~T} \cdot \cdot 125^{\circ} \mathrm{C} \\ & \therefore V_{\text {IN }} \end{aligned}$		$\begin{array}{r} 50 \\ \left.V_{I N}=20\right) \end{array}$		$\begin{array}{r} 120 \\ V I N=271 \\ \hline \end{array}$	1185 :	$V_{1 N}$	$\begin{array}{r} 150 \\ -\quad 301 \\ \hline \end{array}$
		$10 \cdot 14$	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C} \\ & \therefore V_{I N} \end{aligned}$	173	$\begin{array}{r} 50 \\ V_{1 N}=201 \end{array}$	1146	$=\begin{array}{r} 120 \\ V \\ N \end{array}$	1177		$\begin{array}{r} 150 \\ -\quad 301 \\ \hline \end{array}$
			$\begin{aligned} & 0^{\circ}=T_{1}+125^{\circ} \mathrm{C} \\ & \Delta V_{\mathbb{N}} \end{aligned}$		$1 \mathrm{~N} \leqslant 12)^{25}$	116	$\begin{array}{r} 60 \\ V_{I N}=221 \end{array}$	1204		$\begin{gathered} 75 \\ 26 \end{gathered}$
\bigcirc	Load Regula'	$T_{1}-25^{\circ} \mathrm{C}$	$5 \mathrm{~mA}=1 \mathrm{O}=5 \mathrm{~A}$ 250 mA ¢ $0=150 \mathrm{~mA}$		$10 \quad 50$ 		$12 \quad$120 60		12	$\begin{aligned} & 150 \\ & 75 \end{aligned}$
		$5 \mathrm{~mA} 10 \cdot 1 \mathrm{~A} 0^{\circ} \mathrm{C} \cdot \mathrm{J} \cdot 125^{\circ} \mathrm{C}$			50		120			150
0	Owescent Current	$10^{-1 a}$	$T_{1}=25{ }^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C} \leqslant \mathrm{r}_{1} \leqslant+125^{\circ} \mathrm{C}$		$\begin{gathered} 8 \\ 8.5 \end{gathered}$		$\begin{gathered} 8 \\ 85 \end{gathered}$			$\begin{gathered} 8 \\ 85 \end{gathered}$
0	Qurescent Curient Change	$5 \mathrm{~mA} \cdot 10 \cdot 1 \mathrm{~A}$			0.5		05			05
		$\begin{aligned} & T_{1}-25^{\circ} \mathrm{C} \cdot 10: V_{1 A} \\ & V_{\text {MIN }} \text { VIN: VMAX } \end{aligned}$			$\begin{array}{r} 10 \\ \leqslant V_{I N}=201 \\ \hline \end{array}$	1148	$\begin{array}{r} 10 \\ 8 V_{1 N}+27 \\ \hline \end{array}$	1179	: V	$\begin{array}{r} 1.0 \\ =301 \\ \hline \end{array}$
		$\begin{aligned} & 10 \leqslant 50 \mathrm{CmA} \cdot 0^{\circ} \mathrm{C} \leqslant T_{1} \leqslant+125^{\circ} \mathrm{C} \\ & \text { VMIN } \text { VIN } \leqslant V_{\text {MAX }} \end{aligned}$			$V_{I N} \leqslant 25 j$	1145	$\leqslant V_{1 N} \times 30$	1175	V_{10}	$\begin{array}{r} 10 \\ \leqslant 30) \end{array}$
${ }^{\mathrm{N}} \mathrm{N}$	Outout Noise Voltage	$T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant 1 \leqslant 100 \mathrm{kHz}$			40		75		90	
$\frac{\therefore V_{I N}}{\therefore V_{\text {OUT }}}$	Tipple Rejection	$1=120 \mathrm{~Hz}\left\{\begin{array}{l} 1^{\circ}<1 \mathrm{~A} \cdot \mathrm{~T}_{1}=25^{\circ} \mathrm{C} \mathrm{Or} \\ \mathrm{O}=500 \mathrm{~mA} \\ 0^{\circ} \mathrm{C}=\mathrm{T}_{1}=+125^{\circ} \mathrm{C} \end{array}\right.$ $V_{M I N} \cdot V_{I N} \leqslant V_{\text {MAX }}$		$\begin{aligned} & 62 \\ & 62 \\ & 18 \end{aligned}$	80 $V_{(N}=\{8)$	55 55 115	$\leqslant V_{i N}=251$	$\begin{gathered} 54 \\ 54 \\ 185 \end{gathered}$	70 VIN	$285!$
${ }^{2} 0$	Dindout Vollage Outpul Resistance Shorl. Circuls Current Peak Output Current Average TC of VOUT	$\begin{aligned} & T_{1} 25^{\circ} \mathrm{C} \cdot \text { IOUT }=1 \mathrm{~A} \\ & 1=1 \mathrm{kHz} \\ & T_{1}=25^{\circ} \mathrm{C} \\ & T_{1}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}=T_{1}+125^{\circ} \mathrm{C} \quad 1 \mathrm{O}=5 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 20 \\ 8 \\ 2.1 \\ 2.4 \\ 06 \end{gathered}$		$\begin{aligned} & 20 \\ & 18 \\ & 15 \\ & 24 \\ & 15 \end{aligned}$		20 19 1.2 24 1.8	
$\mathrm{V}_{1} \mathrm{~N}$	Input Vollage Requires to Man:ain Line Requiation	$T_{1}=25^{\circ} \mathrm{t} \cdot 10^{\circ} \cdot 1 \mathrm{~A}$		7.3		14.6		177		

NOTE 1: Thermal resistance of the TO 3 package (K, KCl is iypucally $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistar TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
NOTE 2: All characteristics are moasured with capacitor across the inut of $0.22 \mu \mathrm{~F}$, and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characte cept noise voltage and ripple rejection ratio are measured using pulse techniques $l i w \leqslant 10 \mathrm{~ms}$, duty cycte $\leqslant 5 \%$). Output voltage chang changes in internal temperature musi be taken into account separately.

Characteristics

100125
malize 4

Dropour Voliage

JUNCTION TEMPERATUGE (C)

sə!コอS XX8LWา

Ement Current

Quiescent Current

