
NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED AND SOCIAL
SCIENCES

MICROCONTROLLER BASED AQUARIUM
CONTROL SYSTEM

Mahmut Kısacık

Master Thesis

Department of Computer Engineering -

Nicosia - 2006

Mahmut Kısacık : Microcontroller Based Aquarium Control System

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakhraddin Mamedov
D~

We certify this thesi
Degree of Master o

Examining Committee in charge:

Assist. Pro~rwıcuk, Chairman , Electrical Engineering
Department, NEU

Assoc. Prof. Dr. Adil Amircanov, Member, Computer Engineering
Department, NEU,

/"

~-- "
Assist. Prof. Dr. Ozgur Ozerdem, Member, Electrical Engineering

Department, NEU
JJ~ IJL:-

Prof. Dr.'boğan Ibrahim, Supervisor, Computer Engineering
Department, NEU

ACKNOWLEDGEMENTS

First, I am very grateful to my family and my wife for their indulgence.

Second, I would like to thank my supervisor Prof. Dr. Doğan İbrahim for his

invaluable advice and belief in my work and myself over the course of this MSc.

Degree.

Finally, I would also like to thank all my friends for their help to collect my

simulation parts.

ABSTRACT

This thesis is about the microcontroller based control of an aquarium. The

thesis describes how to control the main three elements of an aquarium: the

temperature, feeding the fish, and the lights. A temperature control system has

been developed to keep the aquarium water temperature at the required level.

Also, a microcontroller based automatic fish feeding mechanism has been

developed which delivers food to the fish every day, at pre-specified times of the

day. Proper lighting of an aquarium is very important for the healthy living of the

fish and the plants inside the aquarium. The thesis describe the development of a

microcontroller based lighting system which controls the aquarium lights every

day, at pre-specified times of the day. The Peripheral Interface Controller (PIC)

microcontrollers are very popular and these microcontrollers are used in the

thesis.

The hardware of the system was built on several Personal Control Blocks

(PCB), and the software has been developed using the assembler language of the

PIC microcontrollers. The system developed was connected to real aquariums

and its performance tested. The results obtained were highly satisfactory since a

complete aquarium could be controlled automatically without any human

intervention. The only maintenance required was to change the water at weekly

intervals.

11

CONTENTS

ACKN"OWLEDGEMENT .i

ABSTRACT .ii

CONTENTS .iii

LIST OF FIGURES vii

LIST OF TABLES .ix

CHAPTER 1

1. INTRODUCTION 1

CHAPTER 2

2. MICROCOMPUTER SYSTEMS 3

2.1. Introduction to Microcomputer Systems 3

2.2. Microcontroller Systems .4

2.3. Why Microcontrollers are Used? 11

2.4. Microcontroller Memories 12

2.4.1. RAM 12

2.4.2. ROM · 13

2.4.3. EPROM ~ 13

2.4.4. EEPROM 13
~

2.4.5. Flash EEPROM 14

2.5. Microcontroller Features 14

2.5.1. Supply Voltage 14

2.5.2. The Clock 15

2.5.3. Timers .15

2.5.4. Watchdog 16

111

2.5.5. Reset Input. 16

2.5.6. Interrupts 17

2.5.7. Brown-out Detector 17

2.5.8. Analogue-to-Digital Converter. 18

2.5.9. Serial Input-Output 18

2.5.10. EEPROM Data Memory 19

2.5.11. LCD Drivers 19

2.5.12. Analogue Comparator 20

2.5.13. Real-time Clock .20

2.5.14. Sleep Mode 20

2.5.15. Power-on Reset 20

2.5.16. Low Power Operation .21

2.5.17. Current Sink/Source Capability 21

2.6. Microcontroller Architechtures 21

2.6.1. RISC and CISC 22

2.7. Examples ofMicrocontrollers .23

2.8. PIC Microcontrollers 23

2.8.1. 12-bit Instruction word .27

2.8.2. 14-bit Instruction word 28

2.8.3. 16-bit Instruction word 35

2.9. Inside a PIC microcontroller 35

2.9.1. Program memory (Flash) 35

2.9.2. Data memory (RAM) 36

2.9.3. Register file map and special function registers .36

2.9.4. Option register 37

ıv

2.9.5. I/O Registers 39

2.9.6. Timer registers 40

2.9.7. TMROand Watchdog .41

2.9.8. INTCON Register .44

2.9.9. AID Converter Registers .46

2.9.10. Oscillator circuits 52

2.9.11. Crystal operation 52

2.9.12. Resonator operation 53

2.9.13. RC oscillator 54

2.9.14. Reset Circuit 54

2.9.15. Interrupts 56

2.9.16. The configuration word 57

2.10. Hardware Programmers and Software Programs Used 58

2. 11 The MPLAB Assembler 60

2.12 The Commands ofMPASM Assembler 60

CHAPTER 3

3. AQUARIUMS 65

3.1. Types of Aquariums•.. 65

3.2. Aquarium Material. 68

3.3. Size 69

3.4. Cycling 70

3.5. Aquarium Furnishings 71

3.6. Heater. 72

3.7. Air Pump ··:·················· 72

3 .8. Filtration 72

V

3.9. Bucket and Siphon 73

3.10. Setting Up Equipment 73

3.10.1. Location of the Aquarium 74

CHAPTER 4

4. DEVELOPMENT OF A MICROCONTROLLER BASED AUTOMATIC

AQUARIUM SYSTEM 75

4.1. Overview 75

4. 1. 1. The water temperature 75

4.1.2. Feeding the fish 76

4.1.3. Aquarium lighting 77

4. 1 .4. Cleaning the aquarium 78

4. 1 .5. Designing a computer based aquarium system 78

4.2. Development of the Aquarium Control System 82

4.2.1. The clock Microcontroller 84

4.2.2 Date Microcontrollers 86

4.2.3 Fish Feeding and Light Control. 87

4.2.4. Ligth Flasher Display 89

4.2.5. Feed Flasher Display 89

4.2.6. Controlling the Aquarium Water Temperature 89

4.2.7. Results 96

CHAPTER 5

5. CONCLUSION 100

REFERENCES 102

APPENDICES

Appendix 1 - Year Program 103

Vl

Appendix 2 - Month and Day program 115

Appendix 3 -Clock Program 126

Appendix 4 - Light on-off flasher Program 134

Appendix 5 - Feed on-off flasher Program 147

Appendix 6-Light and Feeding on-off Program 160

Appendix 7 - Digital thermometer and heater control program 167

vıı

Vlll

LIST OF FIGURES

Figure 2. 1. Embedded microcontroller system 5

Figure 2.2. Some microcontrollers 6

Figure 2.3. Microcontroller based oven temperature control system 7

Figure 2.4. Temperature control system with a keypad and LCD 8

Figure 2.5. More sophisticated temperature controller 9

Figure 2.6. The simplest microcontroller architecture 1 O

Figure 2. 7. The main idea of a microcontroller 1 1

Figure 2.8. Von Neumann and Harvard architectures 22

Figure 2.9. Pin-out diagram of PIC16F84 29

Figure 2.10. Memory map of the PIC16F84 microcontroller 30

Figure 2.11. Block diagram of the PIC16F84microcontroller. 31

Figure 2.12. Pin-out diagram of the PIC16F877 microcontroller. 32

Figure 2.13. Block diagram of the PIC16F877 microcontroller 33

Figure 2.14. Memory map of the PIC16F877 microcontroller 34

Figure 2.15. OPTION_REG bit definitions 38

Figure 2.16. TMRO and watchdog circuit. .42

Figure 2. 17. INTCON register bit definitions .44

Figure 2.18. Multiplexed AID structure .47

Figure 2.19. ADCONObit definitions .47

Figure 2.20. ADCONI bit definitions 51

Figure 2.21. Crystal oscillator circuit. 53

Figure 2.22. Resonator oscillator circuit 53

Figure 2.23.

Figure 2.24.

Figure 2.25.

Figure 2.26.

Figure 3.1.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

RC oscillator circuit 54

Using the power on reset 55

Using an external reset button 56

Usb PIC programmer photo 59

Some type of aquariums 66

Block diagram of the BAMU aquarium control system 79

Automated Aquarium Systems Inc. aquarium control system 81

Neptun Systems aquarium control system 82

Block diagram of the system 83

Block diagram of the Clock circuit 85

Circuit diagram of the Clock circuit.. 85

Block diagram of the fish feeding and light control.. 87

Circuit diagram of the fish feeding and light control circuit.. 88

Block diagram of the temperature control system 90

Circuit diagram of the temperature control system 91

Picture of the aquarium control system 95

Picture of the aquarium control system 96

ıx

Table 4.1.

Table 5.1.

Table 5.2.

LIST OF TABLES

Aquarium lighting and feeding times 89

Results of the measurement using a real aquarium 99

Advantages and disadvantages of the thesis 99

X

1

CHAPTER 1

1. INTRODUCTION

Aquariums are very good adornments. They are placed in the best place in the

houses, offices, restaurants, hotels etc. Aquariums make people relax, but setting up the

ideal aquarium environment can be a challenge since there are fundamental principles

about taking proper care of the fish that must be taken into serious consideration. It is

necessary to exercise the utmost care in creating and maintaining an environmental

balance. Most people like aquariums but they do not have the time to care for their

aquariums. Aquariums need care throughout the year and they can not be left on their

own when, for example, the owner goes on holiday.

The aim of this thesis is to automate the aquarium maintenance process using

microcontroller based control systems. Popular PIC series of microcontrollers are used

in the thesis. These are small integrated circuits in the form of single-chip computers

with memories, timers, interrupt circuits, and, serial and parallel I/0. The thesis

describes the development of control systems to control the 3 basic elements of an

aquarium: the lighting control, the feeding control, and the temperature control of the

aquarium water. Fish need certain amount of light each day for their healthy living. A

light control system has been developed which turns the aquarium lights on and off at

pre-defined times of the day. Fish also need food daily and a microcontroller based
~

feeding system has been developed which provide the correct amount of food to the fish

at pre-defined times of each day. Finally, the temperature of an aquarium is very

important for the healthy living of its inhabitants (e.g. fish and plants). A

microcontroller based temperature control system has been developed which keeps the

aquarium temperature at a pre-defined value through the year.

2

The thesis is organized as follows: In Chapter 2, detailed explanation of

microcomputer systems and the main parts of these systems are given.

Chapter 3 covers the explanation of aquarium types, parts of an aquarium, and

the basic maintenance of aquariums. Also, in this chapter explains the aquarium

materials, sizes, cycling, aquarium furnishings, heater, air pump, filtration and setting

up equipment.

Chapter 4 the development of a microcontroller based aquarium system is

described in detail. The described things are the water temperature, feeding the fish,

aquarium lighting, cleaning the aquarium. The development of the aquarium control

system describes the clock microcontroller, date microcontrollers, fish feeding and light

control, light flasher display, feed flasher display, controlling the aquarium water

temperature.

In chapter 5, the thesis results are described

Finally, in chapter 6, the conclusion and suggestions for future work are given at

the end of the thesis.

3

CHAPTER 2

2. MICROCOMPUTER SYSTEMS

2.1. Introduction to Microcomputer Systems

In 1969 Bob Noyce and Gordon Moore set up the Intel Corporation to

manufacture memory chips for the mainframe computer industry. Later in 1971, the

first microprocessor chip 4040 was manufactured by Intel for a consortium of two

Japanese companies. These chips were basically designed for a calculator named

Busicom which was one of the first portable calculators. This was a very simple

calculator which could only add and subtract numbers, 4 bits (a nibble) at a time. 4040

chip was so successful that it was soon followed by Intel's 8-bit 8008 microprocessor.

This was a simple microprocessor with limited resources, poorly implemented interrupt

mechanisms, and multiplexed address and data busses. This microprocessor had

separate address and data busses with 64K byte of address space which was enormous

in 1975 standards. 8080 microprocessor was the first microprocessor used in homes as

a personal computer named Altair[l2]. 8080 has been a very successful microprocessor

but soon other companies began producing microprocessor chips. Motorola introduced

the 8-bit 6800 chip which had a different architecture to the 8080 but has also been very

popular. In 1976 Zilog introduced the Z80 microprocessor which was much more
~

advanced than the 8080. The instruction set of Z80 was downward compatible with the

8080 and this made Z80 to be one of the most successful microprocessors of the time.

Z80 was used in many microprocessor based applications, including home computers

and games consoles. In 1976 Motorola created a microprocessor chip called 6801

which replaced a 6800 chip plus some of the chips required to make a complete

computer system. This was a major step in the evolution of the microcontrollers which

4

are basically computers consisting of only one chip. In later years, we see many other

microcontroller chips in the market, such as Intel 8048, 8049, 8051, Motorola 6809,

Atmel 89C51 etc.

The term microcomputer is used to describe a system that includes a minimum

of a microprocessor, program memory, data memory, and input-output (I/0)[1]. Some

microcomputer systems include additional components such as timers, counters,

analogue-to-digital converters, and so on. Thus, a microcomputer system can be

anything from a large computer having hard disks, floppy disks, and printers, to a single

chip embedded controller.

The consideration of the type of microcomputers that consists of a single silicon

chip. Such microcomputer systems are also called microcontrollers and they are used in

many household goods such as microwave ovens, TV remote control units, cookers, hi

fi equipment, CD players, personal computers, fridges, watering plants, etc.

2.2. Microcontroller Systems

A microcontroller is a single chip computer (see Figure 2.1). Micro suggests

that the device is small, and controller suggests that the device can be used in control

applications. Another term used for ınicrocontrollers is embedded controller, since

most of the microcontrollers are built into (or embedded in) the devices they control.

An example embedded microcontroller system is shown in Figure 2.1.

A microprocessor differs from a microcontroller in many ways. The main

difference is that a microprocessor requires several other components for its operation,

such as program memory and data memory, input-output devices, and external clock

circuit. A microcontroller on the other hand has all the support chips incorporated

inside the same chip. All microcontrollers operate on a set of instructions (or the user

program) stored in their memory. A microcontroller fetches the instructions from its

program memory one by one, decodes these instructions, and then carries out the

required operations.

Microcontrollers have traditionally been programmed using the assembly

language of the target device. Although the assembly language is fast, it has several

disadvantages. An assembly program consists of mnemonics and it is difficult to learn

and maintain a program written using the assembly language. Also, microcontrollers

manufactured by different firms have different assembly languages and the user is

required to learn a new language every time a new microcontroller is to be used.

Microcontrollers can also be programmed using a high-level language, such as BASIC,

PASCAL, and C. High-level languages have the advantage that it is much easier to

learn a high-level language than the assembler. Also, very large and complex programs

can easily be developed using a high-level language.

Figure 2.1.: Embedded microcontroller system

In general, a single chip is all that is required to have a running microcontroller

system. In practical applications additional components may be required to allow a

5

6.

microcomputer to interface to its environment. With the advent of the PIC family of

microcontrollers the development time of an electronic project has reduced to several

hours. Developing a PIC microcontroller based project simply takes no more than five

or six steps:

• Type the program into a PC

• Assemble (or compile) the program

e Optionally simulate the program on a PC

• Load the program into PIC's program memory

• Design the hardware

.:P Test the project

Figure 2.2.: Some microcontrollers

Basically, a microcomputer executes a user program which is loaded in its

program memory. Under the control of this program data is received from external

devices (inputs), manipulated and then sent to external devices (outputs). For example,

in a microcontroller based oven temperature control system the temperature is read by

the microcomputer using a temperature sensor. The microcomputer then operates a

heater or a fan to control and keep the temperature at the required value. Figure 2.4

shows the block diagram of our simple oven temperature control system.

Microcontroller OVEN

Fan

input
··:::::::::::::::::::::::::1::::::::::::::::::::::,:::,:-

Figure 2.3.: Microcontroller based oven temperature control system

The system shown in Figure 2.3 is a very simplified temperature control system.

In a more sophisticated system we may have a keypad to set the temperature, and a

LCD to display the current temperature. Figure 2.4 shows the block diagram of this

more sophisticated temperature control system.

For example the design even more sophisticated (see Figure 2.5) by adding an

audible alarm to inform us if the temperature is outside the required values. Also, the

temperature readings can be sent to a PC every second for archiving and further

processing.

7

LCD

~

OVEN
·::::::;:;:;:::;=::::::::::::::::;:::::::;::::::

output ı---

output I 1JıılHeater

output I 1Jııl Fan /
Sensor

inputs

Microcontroller ~
':777:~:::::ı:::::::::::::::::::::::::;

DD D
DD D
DD D

Keypad

Figure 2.4.: Temperature control system with a keypad and LCD

For example, a graph of the daily temperature can be plotted on the PC. As you

can see, because the microcontrollers are programmable it is very easy to make the final

system as simple or as complicated as we like.

A microcontroller is a very powerful tool that allows a designer to create

sophisticated input-output data manipulation under program control. Microcontrollers

are classified by the number of bits they process. 8-bit microcontrollers are the most

popular ones and are used in most microcontroller based applications.

8.

LCD

I

Microcontroller OVEN
::::::;::::::::::::::::;:::::::::::.:::::,:::.::

output

output I ıı,,IHeater

Fan
Sensor

output
input Ml4ılı-----.

input output

o o o
o o o
DOD

PC

Keypad

Figure 2.5.: More sophisticated temperature controller

16- and 32-bit microcontrollers are much more powerful, but usually more

expensive and not required in many small to medium size general purpose applications

where microcontrollers are generally used.

As shown in Figure 2.6, the simplest microcontroller architecture consists of a

microprocessor, memory, and input-output. The microprocessor consists of a central

processing unit (CPU), and the control unit (CU). The CPU is the brain of the

9

CPU -Memory Input-output -~ .
cu

External
devices

microcontroller and this is where all of the arithmetic and logic operations are

performed. The control unit controls the internal operations of the microprocessor and

sends out control signals to other parts of the microcontroller to carry out the required

instructions.

Figure 2.6: The simplest microcontroller architecture

Memory is an important part of a microcontroller system. Depending upon the

type use we can classify memories into two groups: program memory, and data

memory. Program memory stores the program written by the programmer and this

memory is usually non-volatile. i.e. data is not lost after the removal of power. Data

memory is where the temporary data used in the program are stored and this memory is

usually volatile. i.e. data is lost after the removal of power. Figure 2.7. shows the main
\il

idea of a PIC.

10

EJ
An
entire
computer
ona
single chip.

From Computer Desktop Encyclopedia
© 199S The Computer Langu:age Co. Inc.

114"

Processoı
(CPU)

Figure 2.7.: The main idea-of a microcontroller.

2.3. Why Microcontrollers are Used?

There are a lot of reasons why microcontrollers are incorporated in control

systems:

A. Cost: Microcontrollers with the supplementary circuit components are much

cheaper than a computer with an analog and digital VO .

B. Size and Weight: Microcontrollers are compact and light compared to

computers.

11

C. Simple applications: If the application requires very few number of I/O and

the code is relatively small, which do not require extended amount of

memory and a simple LCD display is sufficient as a user interface, a

microcontroller would be suitable for this application.

D. Reliability: Since the architecture is much simpler than a computer it is less

likely to fail.

E. Speed: All the components on the microcontroller are located on a single

piece of silicon. Hence, the applications run much faster than it does on a

computer.

Memories are an important part of all microcontroller systems. There are

basically five types of memories as summarised below.

2.4. Microcontroller Memories

In this section the properties of some commonly used semiconductor memories

are given.

2.4.1. RAM

RAM means Random Access Memory. It is a general purpose memory which
'

usually stores user the data used in a program. RAM is volatile. i.e. data is lost after the

removal of power. Most microcontrollers have some amount of internal RAM. 256

bytes is a common amount, although some microcontrollers have more, some less. In

general it is possible to extend the memory by adding external memory chips.

12

13

2.4.2. ROM

ROM is Read Only Memory. This type of memory usually holds program or

fixed user data. ROM memories are programmed at factory during the manufacturing

process and their contents can not be changed by the user. ROM memories are only

useful if you have developed a program and wish to order several thousand copies of it.

2.4.3. EPROM

EPROM is erasable Programmable Read Only Memory. This is similar to

ROM, but the EPROM can be programmed using a suitable programming device.

EPROM memories have a small clear glass window on top of the chip where the data

can be erased under UV light. Many development versions of microcontrollers are

manufactured with EPROM memories where the user program can be stored. These

memories are erased and re-programmed until the user is satisfied with the program.

Some versions of EPROMs, known as OTP (One Time Programmable), can be

programmed using a suitable programmer device but these memories can not be erased.

OTP memories cost much less than the EPROMs. OTP is useful after a project has

been developed completely and it is required to make many copies of the program

memory.

2.4.4. EEPROM

EEPROM is Electrically Erasable Programmable Read Only Memory, which is

a non-volatile memory. These memories can be erased and also be programmed under

program control. EEPROMs are used to save configuration information, maximum and

minimum values, identification data etc. Some microcontrollers have built-in EEPROM

14

memories (e.g. PIC16F84 contains a 64-byte EEPROM memory where each byte can be

programmed and erased directly by software). EEPROM memories are usually very

slow.

2.4.5. Flash EEPROM

This is another version of EEPROM type memory. This memory has become

popular in microcontroller applications and is used to store the user program. Flash

EEl>ROM is non-volatile and is usually very fast. The data is erased and then re

programmed using a programming device. The entire contents of the memory should

be erased and then re-programmed.

2.5. MICROCONTROLLER FEATURES

Microcontrollers from different manufacturers have different architectures and

different capabilities. Some may suit a particular application while others may be totally

unsuitable. The hardware features of microcontrollers in general are described in this

section.

2.5.1. Supply Voltage

Most microcontrollers operate with the standard logic voltage of +5V. Some

microcontrollers can operate at as low as +2.7V and some will tolerate +6V without any

problems. You should check the manufacturers' data sheets about the allowed limits of

the power supply voltage.

15

A voltage regulator circuit is usually used to obtain the required power supply

voltage when the device is to be operated from a mains adaptor or batteries. For

example, a SV regulator is required if the microcontroller is to be operated from a 5V

supply using a 9V battery.

2.5.2. The Clock

All microcontrollers requite a clock (or an oscillator) to operate. The clock is

usually provided by connecting external timing devices to the microcontroller. Most

microcontrollers will generate clock signals when a crystal and two small capacitors are

connected. Some will operate with resonators or external resistor-capacitor pair. Some

microcontrollers have built-in timing circuits and they do not require any external

timing components. If your application is not time sensitive you should use external or

internal (if available) resistor-capacitor timing components for simplicity and low cost.

An instruction is executed by fetching it from the memory and then decoding it.

This usually takes several clock cycles and is known as the instruction cycle. In PIC

microcontrollers the instruction cycle takes four clock periods. Thus, the

microcontroller is actually operated at a clock rate which is a quarter of the actual

oscillator frequency.

2.5.3. Timers

Timers are important parts of any microcontroller. A timer is basically a counter

which is driven either from an external clock pulse or from the internal oscillator of the

microcontroller. A timer can be 8-bits, or 16-bits wide. Data can be loaded into a timer

under program control and the timer can be stopped or started by program control.

2.5.5. Reset Input

A reset input is used to reset a microcontroller. Resetting puts the

Most timers can be configured to generate an interrupt when they reach a certain

count (usually when they overflow). The interrupt can be used by the user program to

carry out accurate timing related operations inside the microcontroller.

Some microcontrollers offer capture and compare facilities where a timer value

can be read when an external event occurs, or the timer value can be compared to a

preset value and an interrupt can be generated when this value is reached.

It is typical to have at least one timer in every microcontroller. Some

microcontrollers may have two, three, or even more timers where some of the timers

can be cascaded for longer counts.

2.5.4. Watchdog

Most microcontrollers have at least one watchdog facility. The watchdog is

basically a timer which is refreshed by the user program and a reset occurs if the

program fails to refresh the watchdog. The watchdog timer is used to detect a system

problem, such as the program being in an endless loop. A watchdog is a safety feature

that prevents runaway software and stops the microcontroller from executing

meaningless and unwanted code. Watchdog facilities are commonly used in real-time

systems where it is required to regularly"check the successful termination of one or

more activities.

microcontroller into a known state such that the program execution starts from address O

of the program memory. An external reset action is usually achieved by connecting a

16

microcontroller the ISR starting address is 4 in the program memory. Some

microcontrollers with multi-interrupt features have just one interrupt vector address,

while some others have unique interrupt vector addresses, one for each interrupt source.

Interrupts can be nested such that a new interrupt can suspend the execution of another

interrupt. Another important feature of a microcontroller with multi-interrupt capability

is that different interrupt sources can be gi¥en different levels of priority.

:ı·

push-button switch to the reset input such that the microcontroller can be reset when the

switch is pressed.

2.5.6. Interrupts

Interrupts are very important concepts in microcontrollers. An interrupt causes

the microcontroller to respond to external and internal (e.g. a timer) events very quickly.

When an interrupt occurs the microcontroller leaves its normal flow of program

execution and jumps to a special part of the program, known as the Interrupt Service

Routine (ISR)[l3]. The program code inside the ISR is executed and upon return from

the ISR the program resumes its normal flow of execution.

The ISR starts from a fixed address of the program memory. This address is

also known as the interrupt vector address. For example, in a PIC16F84

2.5.7. Brown-out Detector

Brown-out detectors are also common in many microcontrollers and they reset a

microcontroller if the supply voltage falls below a nominal value. Brown-out detectors

are safety features and they can be employed to prevent unpredictable operation at low

voltages, especially to protect the contents of EEPROM type memories.

17

18

2.5.8. Analogue-to-digital Converter

An analogue-to-digital converter (AID) is used to convert an analogue signal

such as voltage to a digital form so that it can be read by a microcontroller. Some

microcontrollers have built-in AID converters. It is also possible to connect an external

AID converter to any type of microcontroller. AID converters are usually 8-bits, having

256 quantisation levels. Some microcontrollers have 1 O-bit AID converters with 1024

quantisation levels. Most PIC microcontrollers with AID features have multiplexed

AID converters where more than one analogue input channel is provided.

The AID conversion process must be started by the user program and it may take

several hundreds of microseconds for a conversion to complete. AID converters usually

generate interrupts when a conversion is complete so that the user program can read the

converted data quickly.

AID converters are very useful in control and monitoring applications since most

sensors (e.g. temperature sensor, pressure sensor, force sensor etc.) produce analogue

output voltages.

2.5.9. Serial Input-Output

Serial communication (also çalled RS232 communication) enables a

microcontroller to be connected to another microcontroller or to a PC using a serial

cable. Some microcontrollers have built-in hardware called USART (Universal

Synchronous-Asynchronous Receiver-Transmitter) to implement a serial

communication interface. The baud rate and the data format can usually be selected by

the user program. If any serial input-output hardware is not provided, it is easy to

19

develop software to implement serial data communication using any I/O pin of a

microcontroller.

Some microcontrollers incorporate SPI (Serial Peripheral Interface) or ı'c
(Integrated Inter Connect) hardware bus interfaces. These enable a microcontroller to

interface to other compatible devices easily.

2.5.10. EEPROM Data Memory

EEPROM type data memory is also very common in many microcontrollers.

The advantage of an EEPROM memory is that the programmer can store non-volatile

data in such a memory; and can also change this data whenever required. For example,

in a temperature monitoring application the maximum and the minimum temperature

readings can be stored in an EEPROM memory. Then, if the power supply is removed

for whatever reason, the values of the latest readings will still be available in the

EEPROM memory.

Some microcontrollers have no built-in EEPROM memory, some provide only

16 bytes of EEPROM memory, while some others may have as much as 256 bytes of

EEPROM memories.

2.5.11. LCD Drivers

LCD drivers enable a microcontroller to be connected to an external LCD

display directly. These drivers are not common since most of the functions provided by

them can be implemented in software.

20

2.5.12. Analogue Comparator

Analogue comparators are used where it is required to compare two analogue

voltages. Although these circuits are implemented in most high-end PIC

microcontrollers they are not common in other microcontrollers.

2.5.13. Real-time Clock

Real-time clock enables a microcontroller to have absolute date and time

information continuously. Built-in real-time clocks are not common in most

microcontrollers since they can easily be implemented by either using a dedicated real-

time clock chip, or by writing a program.

2.5.14. Sleep Mode

Some microcontrollers (e.g. PIC) offer built-in sleep modes where executing this

instruction puts the microcontroller into a mode where the internal oscillator is stopped

and the power consumption is reduced to an extremely low level. The main reason of

using the sleep mode is to conserve the battery power when the microcontroller is not

doing anything useful. The microcontroller usually wakes up from the sleep mode by

external reset or by a watchdog time-out.

2.5.15. Power-on Reset

Some microcontrollers (e.g. PIC) have built-in power-on reset circuits which

keep the microcontroller in reset state until all the internal circuitry has been initialised.

This feature is very useful as it starts the microcontroller from a known state on power-

up. An external reset can also be provided where the microcontroller can be reset when

an external button is pressed.

2.5.16. Low Power Operation

Low power operation is especially important in portable applications where the

microcontroller based equipment is operated from batteries. Some microcontrollers

(e.g. PIC) can operate with less than 2mA with SV supply, and around 15µA at 3V

supply. Some other microcontrollers, especially microprocessor based systems where

there could be several chips may consume several hundred mill amperes or even more.

2.5.17. Current Sink/Source Capability

This is important if the microcontroller is to be connected to an external device

which may draw large current for its operation. PIC microcontrollers can source and

sink 25mA of current from each output port pin. This current is usually sufficient to

drive LEDs, small lamps, buzzers, small relays etc. The current capability can be

increased by connecting external transistor switching circuits or relays to the output port

pins.

2.6. Microcontroller Architectures

Usually two types of architectures are used in microcontrollers (see Figure 2.8):

Von Neumann architecture and Harvard architecture[14]. Von Neumann architecture is

used by a large percentage of microcontrollers and here all memory space is on the

same bus and instruction and data use the same bus. In the Harvard architecture (used

21

Data
memory CPU Program

memory

Program
CPU ~ memory

by the PIC microcontrollers), code and data are on separate busses and this allows the

code and data to be fetched simultaneously, resulting in an improved performance.

Figure 2.8.: Von Neumann and Harvard architectures

2.6.1. RISC and CISC

RISC (Reduced Instruction Set Computer) and CISC (Complex Instruction

Computer) refer to the instruction set of a microcontroller. In an 8-bit RISC

microcontroller, data is 8-bits wide but the instruction words are more than 8-bits wide

(usually 12, 14 or 16-bits) and the instructions occupy one word in the program

memory. Thus, the instructions are fetched and executed in one cycle, resulting in an

improved performance. PIC microcontrollers ate RISC based devices and they have no

more than 35 instructions.

In a CISC microcontroller both data and instructions are 8-bits wide. CISC

microcontrollers usually have over 200 instructions. Data and code are on the same bus

and can not be fetched simultaneously.

22

23

2.7. Examples of Microcontrollers

There are a lot of PIC microcontrollers such as: 8 bit microcontrollers are start

with PIClO, PIC12, PIC14, PIC16, PICl 7, PIC18. 16 bit microcontrollers are start with

PIC24.

PICs are small integrated circuits known correctly as micro controllers and can

be used for many applications from traffic light control, digital thermometer, propeller

clock, satellite encryption decoding and so on. They are manufactured by Microchip and

can also take the form ofEPROMs as well.

2.8. PIC Microcontrollers

The PIC microcontroller family of microcontrollers is manufactured by

Microchip Technology Inc. Currently they are one of the most popular microcontrollers

used in many commercial and industrial applications. Over 120 million devices are sold

each year.

The PIC microcontroller architecture is based on a modified Harvard RISC

(Reduced Instruction Set Computer) instruction set with dual-bus architecture,

providing fast and flexible design with an easy migration path from only 6 pins to 80

pins, and from 384 bytes to 128Kbytes of program memory.

PIC microcontrollers are available with many different specifications depending

on:

• Memory Type

o Flash

o OTP (One-time-programmable)

o ROM (Read-only-memory)

• Memory Size

o 0.5K-1K

o 2K~4K

o 8K-16K

o 24K-32K

o 48K-64K

o 96K-128K

,II

o ROMless

• I/O Pin Count

o 4-18 pins

o 20 -28pins

o 32 -44 pins

o 45 and above pins

• Special Features

o CAN

o USB

o LCD

o Motor Control

o Radio Frequency

24

25

Although there are many models of PIC microcontrollers, the nice thing is that

they are upward compatible with each other and a program developed for one model can

very easily and in many cases with no modifications be run on other models of the

family. The basic assembler instruction set of PIC microcontrollers consists of only 33

instructions and most of the family members (except the newly developed devices) use

the same instruction set. This is why a program developed for one model can run on

another model with similar architecture without any changes.

All PIC microcontrollers offer the following features:

• RISC instruction set with only a handful of instructions to learn

• Digital I/O ports

• On-chip timer with 8-bit prescaler

• Power-on reset

• Watchdog timer

• Power saving SLEEP mode

• High source and sink current

• Direct, indirect; and relative addressing modes

• External clock interface

• RAM data memory

• EPROM or Flash program memory

Some devices offer the following additional features:

• Analogue input channels

• Analogue comparators

• Additional timer circuits

• EEPROM data memory

26

• External and internal interrupts

• Internal oscillator

• Pulse-width modulated (PWM) output

• USART serial interface

Some even more complex devices in the family offer the following additional

features:

• CAN bus interface

• ı'c bus interface

• SPI bus interface

• Direct LCD interface

• USB interface

• Motor control

Although there are several hundred models of PIC microcontrollers, choosing a

microcontroller for an application is not a difficult task and requires taking into account

these factors:

• Number of VO pins required

• Required peripherals (e.g. USART, USB)

• The minimum size of program memoryI'

• The minimum size of RAM memory

• Whether or not EEPROM non-volatile data memory is required

• Speed

• Physical size

• Cost

27

The important point to remember is that there could be many models which

satisfy all of the above requirements. You should always try to find the model which

satisfies your minimum requirements and the one which does not offer more than you

may need. For example, if you require a microcontroller with only 8 I/O pins and if

there are two identical microcontrollers, one with 8 and the other one with 16 I/O pins,

you should select the one with 8 I/O pins.

Although there are several hundred models of PIC microcontrollers, the family

can be broken down into three main groups, which are:

• 12-bit instruction word (e.g. 12C5:XX, 16C5X)

• 14-bit instruction word (e.g. 16F8X, 16F87X)

• 16-bit instruction word (e.g. 17C7:XX, 18C2:XX)

All three groups share the same RISC architecture and the same instruction set,

with a few additional instructions available for the 14-bit, and many more instructions

available for the 16-bit models. Instructions occupy only one word in memory, thus

increasing the code efficiency and reducing the required program memory. Instructions

and data are transferred on separate buses, thus the overall system performance is

increased.

The features of some microcontrollers j.n each group are given in the following

sections

2.8.1. 12-bit Instruction word

Some of the popular microcontrollers in this group are the PIC12C508 and

PIC16C5X. Brief details of these microcontrollers are given below:

28

PIC12C508: This is a low-cost, 8-pin device with 512 x 12 EPROM program

memory, and 25 bytes of RAM data memory. The device can operate at up to 4MHz

clock input and the instruction set consists of only 33 instructions. The device features

6 I/O ports, 8-bit timer, power-on reset, watchdog timer, and internal 4MHz oscillator

capability. One of the major disadvantages of this microcontroller is that the program

memory is EPROM based and it can not be erased or programmed using the standard

programming devices. The program memory has to be erased using an EPROM eraser

device (an ultraviolet light source).

The "F" version of this family (e.g. PIC12F508) is based on flash program

memory which can be erased and re-programmed using the standard PIC programmer

devices. Similarly, the "CE" version of the family (e.g. PIC12CE518) offers an

additional 16-bytenon-volatile EEPROM data memory.

PIC16C5X: This is one of the earliest PIC microcontrollers. The device is 18-

pin with a 384 x 12 EPROM program memory, 25 bytes of RAM data memory, 12 1/0

ports, a timer, and a watchdog. Some other members in the family, e.g. PIC16C56 have

the same architecture but more program memory (1024 x 12). PIC16C58A has more

program memory (2048 x 12) and also more data memory (73 bytes of RAM).

2.8.2. 14-bit Instruction word

This is a big family including many models of PIC microcontrollers. These

devices are supported by both the PicBasic and PicBasic Pro compilers. Most of the

devices in this family can operate at up to 20MHz clock rate. The instruction set

consists of 35 instructions. These devices offer advanced features such as internal and

external interrupt sources. Some of the popular microcontrollers in this group are

PIC16C554 PIC16F84, PIC16F627, and PIC16F877. Brief details of these

microcontrollers are given below:

PIC16C554: This microcontroller has similar architecture to the PIC16C54 but

the instructions are 14 bits wide. The program memory is 512 x 14 and the data

memory is 80 bytes of RAM. There are 13 I/O pins where each pin can source or sink

25rnA current. Additionally, the device contains a timer, and a watchdog.

PIC16F84: This has been one of the most popular PIC microcontrollers for a

very long time[2]. This is an 18-pin device and it offers 1024 x 14 flash program

memory, 36 bytes of data RAM, 64 bytes of non-volatile EEPROM data memory, 13

I/O pins, a timer, a watchdog, and internal and external interrupt sources. The timer is

8-bits wide but can be programmed to generate internal interrupts for timing purposes.

PIC16F84 can be operated from a crystal or a resonator for accurate timing. A resistor-

capacitor can also be used as a timing device for applications where accurate timing is

not required. PIC16F84 is used in the design in this thesis.

Pin-out description of the PIC16F84 is given in Figure 2.9

- OSC,lCLKOUT
-voo

Rf,4.'TOCKI -y s 1i!
-~ (")..•.

Q)..,,
cı,
""1)>

B

Figure 2.9: Pin-out diagram of PIC16F84

The data memory in PIC16F84 is partitioned into two areas. The first is the

Special Function Registers (SFR) area, while the second is the General Purpose

29

8Ch

Registers (GPR) area. The SFRs control the operation of the device. Portions of data

memory are banked. This is for both the SFR area and the GPR area. The GPR area is

banked to allow greater than 116 bytes of general purpose RAM. The banked areas of

the SFR are for the registers that control the peripheral functions. Banking requires the

use of control bits for bank selection. These control bits are located in the STATUS

Register. Figure 2.10. shows the memory map of the PIC16F84 microcontroller.
·····-·-··-·- ----- ... ····--·-···--·--·-····-----··--·····--·-····

! File ~~resslndirect oddr.<1>· !ndir&<:l oddr.11,ı=Jıe ;:ressı Olh -···-····TMRÖ·-·--· - OPTİON_REG- 81h

02h PCL PCL 82h

j 03h --- STATUS ~_ı_=-STATus···--~- B3h

! 04h FSR \ FSR 84h

I osh -PORTA -ı_ TRıSA- esh
06h PORTB t TRISB 86h

I
07h _ . - _==ı=:--=-- 87h
08h EEDATA j EECON·t . 88h
09h EEADR I EECON2f1> 89h

I OAh PCLATH i PC LATH 8Ah

I
--------. --------

OBh
O Ch

I
ı t= I4Fh J CF"hI 50h -~1------1OOh

I~~--
\

7Fh _ı------.._.._, SFh

Bank O Bo.nk. 1

D Unimplemented data memorı location. read as, 'o'. l
İ Note 1: Net o phys.teal register. j

tNTCON f INTCON---·--1 8Bh

68
G<:!!nen:ıl
Purpos.e
~~~~

Meccecı
teccesses)
in Bonk o

Figure 2.10.: Memory map of the PIC16F84 microcontroller

The block diagram of the PIC16F84 rnicrocontrolelr is shown in Figuree 2.11

30



13
Flashıl10M M Program Coun1er r: I I EEPROM Dala Memory

Program
t/eriıory

PIC1 BFB3ıCRB3

I I
File ı:1isleıs I IEHE~M512x14 B Leıel stack EEDATh Data MemoryPIC18F84,CRB4 PIC1 BFBM:RB3 B4XB

1Kx14 (13-lxl 3Bx8
Pl C1 BFWCRB4

B8x8
Prrf4

ii :~
ınstn.ıd1ion r:;- ı

looiMCI 1MRODirectMır

FSRr~
' ' ~

RA4/TDCKI

Power-ıJp
nmeı-----, If---

Instruction
Deaıde &
Control

RA3RAO

Timing HI waıcooog II II l w ••• I II I ~XI RB7:RB1
Geııeıalıon nmeı

----

~
OSC2/CLKOUT t.İCLR Voo, vss

OSC.1/CLKIN

Figure 2.11 Block diagram of the PIC16F84 microcontroller

PIC16F877: This microcontroller is a 40-pin device and is one of the popular

microcontrollers used in complex applications [3]. The device offers 8192 x 14 flash

program memory, 368 bytes of RAM, 256 bytes of non-volatile EEPROM memory, 33

l/0 pins, 8 multiplexed AID converters with 1 O-bits resolution, PWM generator, 3
l!l

timers, analogue capture and comparator circuit, USART, and internal and external

interrupt facilities. PIC16F877 is used in the design in this thesis.

Figure 2.12 shows the pin-out diagram of the PIC16F877 microcontroller.

31

',,



PDIP

MCLR/VPP-:;:=ı3RA2/AN21VREF- - 4

RA3iAN3. NRcF+ - 5
RA4/TOCKI - 6

RA5;AN4iS$ - 7

14
15
16
17
18
19
20

40
39
38
37
36
35

"II' ,34,...
co-,...,...
co
il.
tO .•..
oa:

- RD5,PSP5
-RD4,f>SP4
- RC7iRX/DT
- RC6lTXiCK
- RC5iSD0
- RC4/SD1!SDA
- RD3ıi'SP3
- RD2f>SP2

Figure 2.12 Pin-out diagram of the PIC16F877 microcontroller

The block diagram of the PICl 6F877 microcontroller is shown in Figure 2.13.

32

! t



Rl!Oı1NT
RB1
RB2
~
Rll4
RBS
RBilıl'GC
RB7ıl'Gll

Device "'°Pli D;ıta lll!moıy Dala
FLASH WROM

PıCtGF87~ « 192 Byle5 !~Byles
PIC16F877 8K ~Byles 2!'ı6Byle5

POATA

8l.8VIIISb(i.
(13-lill

n-rıJ.....ıııı RAO/MIO
Rt.t/AN1
W/ılN2Mu
RA3iAN3/V!Ut
IWITOCIU
RM,\\N4/l,""$

~ RCMIOSM1CKI
Rı:1/T10SIICCPZ
RC2ı'CIPI
liCJı'SCKl3CI.
R~
RC5ISOO
Rtemıı:K

l...1.....1...J RC7ııııı.m

Figure 2.13.: Block diagram ofıothe PIC16F877 microcontroller

The PIC16F877 microcontroller memory consists of 4 banks. The memory map

of the PIC16F877 microcontroller is shown in Figure 2.14.

33 



rı:ırect a:>i".<'i \ ()(Jtı
~- f= ··--ı 01h

PCl 1 ıJ2h
STATUS i rot,

-·F§ıt·-1 o4h
PORTA i !l5tı
PORTS \ 00h
PORTC ! (Jl1ı
PORTO m i oatı
PORTE :11 ; rJ9h

---P.:LA.n-t -1 (]Ah
IUTCa-1 i 06h
:mCJOCh

PIR2 ! ODh
TI.t'\1L i 031

-~1H jOFh
T1COI, i 10lı
TMR2 I 1ıh

T2CON J 12h
• SSP3iJfı 131ı

SSPCON I 14h
CCPR1L I 15h
CCPR1H i 1611

CCP1CON i 17h
·- RCSTA __j 1811

TY.REG I 191\r-· RCREG -·11Ah
CCPR2L ! 1Bh
CCPR2H ı 1Ch
CCP2CONI 10h
ADRESH 1131
AOCOIIO , 1Fhr·-·--·- ı 20tı

I
I
I

General I
\ Plr'tAs.e I

I
Re',107.ff :

96 6,t.. I
: I~.- - ~~--~--- ?r=h

6111;0

1 h<irect add:".rı füJı
L n.-Ra __ 101h

PCL 102h
STATUS 103h

---f§.li- 64h FSR 104/ı
TRISA 85h 105h
TRISB ll6h PORIB 10oh

1----"""""--.-a 67Jı 107h
681ı ---- 10-311
8911 109h

O?TION REG 81h
PCL ô21ı

STA.TUS 8311

PCLA.TH ôAh f P-..'ü\TH 10-'!ı
66h i IIITCON 106h
8Ch İ EEDATA HlCh
80h İ EEi,OR 10Dh•-~ ..... -·-~"'"'
ô3ı 1 EE[ll.TH 10Eh

1-----1 a=ıı EEAD,'vl lORı
1-----1901ı 110h

91h 111h
92h 112h
93h 113h

_ !:-:SPSTAT . 94h 114h
ı----l 95h 115h
I----! 96h 116h

97Jı ~ 1117h
Re;°= 11,3h
16&,tes 11'3h

11Ah
116h
11Ch
11Dh
11Eh
11Aı
120h

TXSTA 9811
SPERG 9911

,---·-----, 9Ah i
96h i
9Ch I

I-----~ 90h.
931 I
~-;, I
AOh !----

!
~mı ı-=~ ! ~.;
&O Bytes EFh ! 90 6:,tes

ace= FOh ! accesses
Tılh-7Rı ! 70h-7Rı

'-----' FFh I 17Rı
Bank 1

ADRESL
ADCON1

6ook2

'

l i:il lximplemenı.a <b:a ""':ııol'/lo::,tioos, readas ·o·.
• Nol a ;,lı,'Sirel fe<Ji;lf{.

ııoı,, 1: nı- ro,;:sıeıs are net im;ılemen_lM _on 28-p\n de-,ices.,
2: Theooregi;te{s ere reoer,ed, n,-aıntoın tıere reg,sı...-. cear

1Soh•.....1~.......__._ I 1-'!9h

Pa.ATH i 13Ah
INTCCN ) 1-3Sh

EECOIJ1 / 18Ch
• EEC01<2 .. j l3ıJhı~ı~:

i ::
İ 19211I ıg:;ı,
I 13411
I 1951\ı 136h

Gerıtta! { 197h
Pıırııose \ t'lShR.eçister t
16 Bt.es I 199h

f t9Ah

1
196h

' t3Çh
I 13Dhı n-:ıı
{ 19Fh--ı IAOh
I

=IRe<Jiste< I
ôO Bytes l I EFh

- --~ 1PJhaccesses
7(Xı. 7Fh

'1Ffh

Figure 2.14.: Memory map of the PIC16F877 microcontroller

PIC16F627: This is an 18-pin microcontroller with 1024 x 14 flash program

memory. The device offers 224 bytes of RAM, 128 bytes of non-volatile EEPROM

memory, 16 I/O pins, two 8-bit timers, one 16-bit timer, a watchdog and comparator

circuits. This microcontroller is similar to PIC16F84, but offers more I/O pins, more

program memory, and a lot more RAM memory. In addition, PIC16F627 is more suited

to applications which require more than one timer.

34



In early microprocessors and microcontrollers the program memory was J,

2.8.3. 16-bit Instruction word

16-bit microcontrollers are at the high end of the PIC microcontroller family.

Most of the devices in this group can operate at up to 40 MHz, have 33 l/0 pins, and 3

timers. They have 23 instructions in addition to the 35 instructions found on the 14-bit

microcontrollers.

2.9. Inside a PIC microcontroller

Although there are many models of microcontrollers in the PIC family, they all

share some common features, such as program memory, data memory, input-output

ports, and timers. Some devices have additional features such as AID converters,

USART and so on. Because of these common features, we can look at these attributes

and cover the operation of most devices in the family.

2.9.1. Program memory (Flash)

EPROM which meant that it had to be erased using UV light before it can be re-

programmed. Most PIC microcontrollers nowadays are based on the flash technology

where the memory chip can be erased or re-programmed using a programmer device.
~

Most PIC microcontrollers can also be programmed without removing them from their
~

circuits. This process (called in-circuit serial programming or ISP) speeds up the

development cycle and lowers the development costs. Although the program memory is

mainly used to store a program, there is no reason why it can not be used to store

constant data used in programs.

35



36

PIC microcontrollers can have program memories from O.SK to over 16K. It is

interesting to note that PICs are known as 8-bit microcontrollers. This is actually true

as far as the width of the data memory is concerned, which is 8-bits wide. Microchip

calls the 14-bits a word, even though a word is actually 16-bits wide. When power is

applied to the microcontroller or when the MCLR input is lowered to logic O, execution

start from the Reset Vector, which is the first word of the program memory. Thus, the

first instruction executed after a reset is the one located at address O of the program

memory. When the program is written in assembler language the programmer has to

use special instructions (called ORG) so that the first executable instruction is loaded

into address O of the program memory.

2.9.2. Data memory (RAM)

The data memory is used to store all of your program variables. This is a RAM

memory which means that all the data is lost when power is removed. The width of the

data memory is 8-bits wide and this is why the PIC microcontrollers are called 8-bit

microcontrollers.

The data memory in a PIC microcontroller consists of banks where some models

may have only 2 banks, some models 4 banks and so on. A required bank of the data

memory can be selected under program control.

2.9.3. Register file map and special function registers

Register File Map (RFM) is a layout of all the registers available in a

microcontroller and this is extremely useful when programming the device, especially

when using an assembler language. The RFM is divided into two parts: the Special



Function Registers (SFR), and the General Purpose Registers (GPR). For example, on

a P1Cl6F&4 microcontroller there are 68 GPR registers and these are used to store

temporary data.

SFR is a collection of registers used by the microcontroller to control the

internal operations of the device. Depending upon the complexity of the devices the

number of registers in the SFR varies. It is important that the programmer understands

the functions of the SFR registers fully since they are used both in assembly language

and in high-level languages.

Depending on the model of PIC microcontroller used there could be other

registers. Some of the important SFR registers that you may need to configure while

programming using a high-level language are:

• OPTION register

• VO registers

• Timer registers

• INTCON register

• AID converter registers

The functions and the bit definitions of these registers are described in detail in

the following sections.

2.9.4. Option register

This register is used to setup various internal features of the microcontroller and

is named as OPTION REG. This is a readable and writable register which contains

37

l·



38 

various control bits to configure the on-chip timer and the watchdog timer. This register

is at address 81 (hexadecimal) of the microcontroller and its bit definitions are given in

Figure 2.15. The OPTION_REG register is also used to control the external interrupt

pin RBO. This pin can be setup to generate an interrupt for example when it changes

from logic O to logic 1. The rnicrocontroller then suspends the main program execution

and jumps to the interrupt service routine to service the interrupt. Upon return from the

interrupt, normal processing resumes.

7 6 5 4 3 2 1 o

RBPU INTEDG TOCS TOSE PSA PS2 PSI PSO

Figure 2.15.: OPTION REG bit definitions

Bit 7: PORTB Pull-up Enable

1: PORT B pull-ups disabled

O: PORT B pull-ups enabled

Bit 6: INT Interrupt Edge Detect

1: Interrupt on rising edge of INT input

O: Interrupt on falling edge of INT input

Bit 5: TMROClock Source

1: TOCKI pulse

O: Internal oscillator



39

Bit 4: TMRO Source Edge Select

1: Increment on HIGH to LOW of TOCKl

O: Increment on LOW to HIGH ofTOCKl

Bit 3: Prescaler Assignment

1 : Prescaler Assigned to Watchdog Timer

O: Prescaler Assigned to TMRO

Bit 2-0: Prescaler Rate

000 1:2

001 1:4

010 1:8

011 1:16

100 1:32

101 1:64

110 1:128

111 1:256

2.9.5. 1/0 Registers

These registers are used for the input-output control. Every I/O port in the PIC

microcontroller has two registers: port data register andport direction control register.

Port data register has the same name as the port it controls. For example,

PIC16F84 microcontroller has two port data registers PORTA and PORTB. A

PIC16F877 microcontroller has 5 port data registers PORTA, PORTB, PORTC,



PORTD, and PORTE. An 8-bit data can be sent to any port, or an 8-bit data can be read

from the ports. It is also possible to read or write to individual port pins. For example,

any bit of a given port can be set or cleared, or data can be read from one or more port

pins at the same time.

Ports in a PIC microcontroller are bi-directional. Thus, each pin of a port can be

used as an input or an output pin. Port direction control register configures the port pins

as either inputs or outputs. This register is called the TRIS register and every port has a

TRIS register named after its port name. For example, TRISA is the direction control

register for PORTA. Similarly, TRISB is the direction control register for PORTB and

soon.

2.9.6. Timer registers

Depending on the model used, some PIC microcontrollers have only one timer,

and some may have up to 3 timers. In this section we shall look at the PIC16F84

microcontroller which has only one timer. The extension to several timers is similar

and we shall see in the projects section how to use more than one timer.

The timer in the PIC16F84 microcontroller is an S-bit register (called TMRO)

which can be used as a timer or a counter. When used as a counter, the register

increments each time a clock pulse is applied to pin TOCKl of the microcontroller.

When used as a timer, the register increments at a rate determined by the system clock

frequency and a prescaler selected by register OPTION_REG. Prescaler rates vary from

1 :2 to 1 :256. For example, when using a 4MHz clock, the basic instruction cycle is 1

microsecond (the clock is internally divided by four). If we select a prescaler rate of

1: 16, the counter will be incremented at every 16 microseconds. A timer interrupt is

40



41

generated when the timer overflows from 255 to O. This interrupt can be enabled or

disabled by our program. Thus, for example if we require generating interrupts at 200

microsecond intervals using a 4MHz clock, we can select a prescaler value of 1 :4 and

enable timer interrupts. The timer clock rate is then 4 microseconds. For a time-out of

200 microseconds, we have to send 50 clocks to the timer. Thus, the TMRO register

should be loaded with 256 - 50 = 206. i.e. a count of 50 before an overflow occurs.

The watchdog timer's oscillator is independent from the CPU clock and the

time-out is 18 msec. To prevent a time-out condition the watchdog must be reset

periodically via software. If the watchdog timer is not reset before it times out, the

microprocessor will be forced to jump to the reset address. The prescaler can be used to

extend the time-out period and valid rates are 1, 2, 4, 8, 16, 32, 64 and 128. For

example, when set to 128, the time out period is about 2 seconds (18msec x 128 = 2304

msec). The watchdog timer can be disabled during programming of the device if it is

not used.

Since the timer and watchdog are very important parts of the PIC

microcontrollers more detailed information is given on their operation below.

2.9.7. TMROand Watchdog

TMRO and a watchdog are found nearly in all PIC microcontrollers. Figure

2.16. shows the functional diagram of TMROand the watchdog circuit. The operation

of the watchdog circuit is as described earlier and only the TMROcircuit is described in

this section.

The source of input for TMROis selected by bit TOCSof OPTION_REG and it

can be either from the microcontroller oscillator fosc divided by 4, or it can be an



external clock applied to the RA4/TOCK1 input. Here we will only look at using the

internal oscillator. If a 4MHz crystal is used the internal oscillator frequency is fosc I 4 =

1MHz which corresponds to a period of T = 1 I f = ıo-6 , or 1 µsec. TMRO is then

selected as the source for the prescaler by clearing PSA bit of OPTION_REG. The

required prescaler value is selected by bits PSO to PS2 as shown in Figure 2.8. Bit PSA

should then be cleared to O to select the prescaler for the timer. All the bits are

configured now and TMRO register increments each time a pulse is applied by the

internal oscillator. TMROregister is 8-bits wide and it counts up to 255, then creates an

overflow condition, and continues counting from O. When TMROchanges from 255 to

O it generates a timer interrupt if timer interrupts and global interrupts are enabled (see

INTCON register. Interrupt will be generated if GIE and TMRO bits of INTCON are

both set to 1 ). See the section on Interrupts for more information.

o

14/
OCKI l___f

TOSE TOCS
Watchdog
T . ----.--~.ııımer

PSA PS2:PSO

TMRO ı .... Overflow

WDT
Timeout

PSA

Figure 2.16.: TMROand watchdog circuit

42



TMRO = 256- (Overflow time) I (4 x Tosc x Prescaler) (2.2)

By loading a value into the TMRO register we can control the count until an

overflow occurs. The formula given below can be used to calculate the time it will take

for the timer to overflow (or to generate an interrupt) given the oscillator period, value

loaded into the timer and the prescaler value.

Overflow time = 4 x Tosc x Prescaler x (256 - TMRO)

Where,

Overflow time is in µs

Tosc is the oscillator period in µs

Prescaler is the prescaler value chosen using OPTION_REG

TMRO is the value loaded into TMROregister

For example, assume that we are using a 4MHz crystal, and the prescaler chosen

as 1:8 by setting bits PS2:PSO to "010". Also assume that the value loaded into the

timer register TMROis 100. The overflow time is then given by:

4MHZ clock has a period, T = 1 If= 0.25µs

using the above formula,

Overflow time= 4 x 0.25 x 8 x (256 -100) = 1248µs

Thus, the timer will overflow after l .248msec and a timer interrupt will be generated if

the timer interrupt and global interrupts are enabled.

What we normally want is to know what value to load into the TMRO register

for a required Oveflow time. This can be calculated by modifying equation 2.1 as:

43



TMRO = 256-500 I (4 x 0.25 x 8) = 193.5 (2.1)

For example, suppose that we want an interrupt to be generated after 500µs and

the clock and the prescaler values are as before. The value to be loaded into the TMRO

register can be calculated using (2.1) as:

The nearest number we can load into TMROregister is 193.

2.9.8. INTCON Register

This is the interrupt control register. This register is at address OB and 8B

(hexadecimal) of the microcontroller RAM and the bit definitions are given in Figure

2.17.

7 6 5 4 3 2 1 o

GIE EEIE TOIE INTE RBIE TOIF INTF RBIF

Figure 2.17.: INTCON register bit definitions

Bit 7: Global Interrupt Enable

1: Enable all un-masked interrupts

O: Disable all interrupts

Bit 6: EE Write Complete Interrupt

1: Enable EE write complete interrupt

O: Disable EE write complete interrupt

44



45

Bit 5: TMO Overflow Interrupt

1: Enable TMRO interrupt

O: Disable TMRO interrupt

Bit 4: INT External Interrupt

1: Enable INT External Interrupt

O: Disable INT External Interrupt

Bit 3: RB Port Change Interrupt

1 : Enable RB port change interrupt

O: Disable RB port change interrupt

Bit 2: TMRO Overflow Interrupt Flag

1: TMRO has overflowed

O: TMRO did not overflow

Bit 1: INT Interrupt Flag

1 : INT interrupt occurred

O: INT interrupt did not occur

Bit O: RB Port Change Interrupt Flag

1: One ot more ofRB4-RB7 pins changed state

O: None ofRB4-RB7 changed state



46

2.9.9. AID Converter Registers

The AID converter is used to interface analogue signals to the microcontroller.

The AID converts analogue signals (e.g. voltage) into digital form so that they can be

connected to a computer. AID converter registers are used to control the AID converter

ports. On most PIC microcontrollers equipped with AID, PORT A pins are used for

analogue input and these port pins are shared between digital and analogue functions.

PIC16F876 includes 5 AID converters. Similarly, PIC16F877 includes 8 AID 

converters. There is actually only one AID converter as shown in Figure 2.18 and the

inputs are multiplexed and they share the same converter. The width of the AID 

converter can be 8-bits or 10-bits. Both PIC16F876 and PIC16F877 have l O-bit

converters. PIC16F73 has 8-bit converters. An AID converter requires a reference

voltage to operate. This reference voltage is chosen by programming the AID converter

registers and is typically +5V. Thus, if we are using a 1 O-bit converter (1024

quantisation levels) the resolution of our converter will be 5/1024 = 0.00488V, or

4.88mV. i.e. we can measure analogue voltages with a resolution of 4;88mV. For

example, if the measured analogue input voltage is 4.88mV we get the 1 O-bit digital

number "0000000001", if the analogue input voltage is 2 x 4.88 = 9.76mV, the 10-bit

converted number will be "0000000010", if the analogue input voltage is 3 x 4.88 =
•

14.64mV, the converted number will be "0000000011" and so on.

In a similar way, if the reference voltage is +5V and we are using an '8-bit

converter (256 quantisation levels), the resolution of the converter will be 5/256 =

19.53mV. For example, if the measured input voltage is 19.53mV we get the 8-bit

number "00000001", if the analogue input voltage is 2 x 19,53 = 39.06mV we get the 8-

bit number "00000010" and so on.



Channel O •
Channel 1
Channel 2 • y ~ ConvertedChannel 3 • AID Digital
Channel 4 • Converter Signal
Channel 5 •Channel 6
Channel 7 •

Multiplexer

Figure 2.18.: Multiplexed AID structure

The AID converter is controlled by registers ADCONO and ADCONl. The bit

pattern of ADCONO is shown in Figure 2.19. ADCONO is split into four parts, the first

part consists of the highest two bits ADCS 1 and ADC SO and they are used to select the

conversion clock. The internal RC oscillator or the external clock can be selected as the

conversion clock as in the following table:

00 External clock I 2

O 1 External clock I 8

1 O External clock I 32

1 1 Internal RC clock

7 6 5 4 3 2 1 o
ADCS1 ADC SO CHS2 CHS1 CHSO GO/DONE - ADON

Figure 2.19.: ADCONO bit definitions

47 



48

Bit 7-6: ND Converter Clock Select

00 fosc / 2

01 fosc 78

10 fosc / 32

11 Internal RC oscillator

Bit 5-3: ND Channel Select

000 Channel O

001 Channel 1

010 Channel 2

011 Channel 3

100 Channel 4

101 Channel 5

110 Channel 6

111 Channel 7

Bit 2: GO/DONE bit

1: Start conversion

O: ND conversion is complete

Bit 1: Not used

Bit O: ADON bit

1: Turn ON ND circuit

O: Turn OFF ND circuit



49

The second part of ADCONOconsists of the three bits CHS2, CHS1 and CHSO.

These are the channel select bits, and set which input pin is routed to the AID converter.

The selection is as follows:

CHS2:CHS 1 :CHSO

000 Channel O

001 Channel 1

010 Channel 2

011 Channel 3

100 Channel 4

101 Channel 5

110 Channel 6

111 Channel 7

The third part of ADCONO is the single GO/DONE bit. This bit has two

functions: firstly by setting the bit it starts the AID conversion. Secondly, the bit is

cleared when the conversion is complete and this bit can be checked to see whether or

not the conversion is complete.

The fourth part of ADCONO is also a single bit ADON which is set to turn on

the AID converter circuitry.

ADRESH and ADRESL are the AID converter result registers. ADRESL is the

low byte and ADRESH is the upper 2 bits (if a 1 O-bit converter is used). We shall"see

how to configure the result of the conversion later.

ADCONl is the second AID control register. This register controls the format

of converted data and mode of the PORT A inputs. The bit format of this register is

shown in Figure 2.20. Bit O is called ADFM and when this bit O the result of the AID 



50

conversion is left justified, when it is 1, the result of the AID conversion is right

justified. If we have an 8-bit converter we can clear ADFM and just read ADRESH to

get the 8-bit converted data. If we have a 1 O-bit converter we can set ADFM to 1 and

the 8 bits of the result will be in ADRESL, 2 bits of the result will be in the lower bit

positions of ADRESH. The remaining 6 positions of ADRESH (bit 2 to bit 7) will be

cleared to zero.

7 6 5 4 3 2 1 o

ADFM - - - PCFG3 PCFG2 PCFGl PCFGO

Bit 7: AID Converter Result Format Select

1: AID converter output is right justified

O: AID converter output is left justified

Bit 6: Not used

Bit 5: Not used

Bit 4: Not used

Bit 3-0: Port Assignment and Reference Voltage Selection

(see Table below)



PCFG3- AN7 AN6 AN5 AN4 AN3 AN2 ANI ANO Vref+ Vref- '

PCFGO

0000 A A A A A A A A Vdd Vss

0001 A A A A Vref+ A A A RA3 Vss

0010 D D D A A A A A Vdd Vss

OOll D D D A Vref+ A A A RA3 Vss

0100 D D D D A D A A Vdd Vss

0101 D D D D Vref+ D A A RA3 Vss

OllO D D D D D D D D Vdd Vss

Olll D D D D D D D D Vdd Vss

1000 A A A A Vref+ Vref- A A RA3 RA2

1001 D D A A A A A A Vdd Vss

1010 D D A A Vref+ A A A RA3 Vss

lOll D D A A Vref+ Vref- A A RA3 RA2

ııoo D D D A Vref+ Vref- A A RA3 RA2

llOl D D D D Vref+ Vref- A A RA3 RA2

lllO D D D D D D D A Vdd Vss

l ll 1 D D D D Vref+ Vref- D A RA3 RA2

Figure 2.20.: ADCONl bit definitions

Bits PCFG0-3 control the mode of PORT A pins. As seen in Figure 2.20, a

PORT A pin can be programmed to be a digital pin or an analogue pin. For example, if

51



52

we set PCFG0-3 to "011 O" then all PORT A pins will be digital l/0 pins. PCFG0-3 bits

can also be used to define the reference voltage for the AID converter. As we shall see

in the projects section of the book, the reference voltage Vref+ is usually set to be equal

to the supply voltage (Vdd), and Vref- is set to be equal to Vss. This makes the AID 

reference voltage to be +SV.

2.9.10. Oscillator circuits

An Oscillator circuit is used to provide a microcontroller with a clock. A clock

is needed so that the microcontroller can execute a program. PIC microcontrollers have

built-in oscillator circuits and this oscillator can be operated in one of five modes:

• LP - Low power crystal

• XT - Crystal/resonator

• HS - High speed crystal/resonator

• RC resistor - capacitor

• No external components (only on some PIC microcontrollers)

2.9.11. Crystal operation

As shown in Figure 2.21, in this mode of operation an external crystal and two
ill

capacitors are connected to the OSCl and OSC2 inputs of the microcontroller. The

capacitors should be chosen to be between 22-33 Pico farads.



53

PIC
16F84

OSC1 OSC2

~C o, --1-. C222pl 4MHZ :ı:22pF

Figure 2.21.: Crystal oscillator circuit

2.9.12. Resonator operation

Resonators are available from 4MHz to about 8 MHz. They are not as accurate

as crystal based oscillators. Resonators are usually 3 pin devices and the two pins at

either sides are connected to OSCl and OSC2 inputs of the microcontroller. The

middle pin is connected to the ground. Figure 2.22 shows how a resonator can be used

in a PIC microcontroller circuit.

PIC
16F84

Figure 2.22.: Resonator oscillator circuit



54

2.9.13. RC oscillator

For applications where the timing accuracy is not important we can connect an

external resistor and a capacitor to the OSC 1 input of the microcontroller as in Figure

2.23. The oscillator frequency depends upon the values of the resistor and capacitor.

Vdd

R

PIC
Microcontroller

ı------ı osc 1

Figure 2.23.: RC oscillator circuit

2.9.14. Reset Circuit

Reset is used to put the microcontroller into a known state. Normally when a

PIC microcontroller is reset execution starts from address O of the program memory.

This is where the first executable user program resides. The reset action also initialises

various SFR registers inside the microcontroller.

PIC microcontrollers can be reset w.herı one of the following conditions occur:

• Reset during power on (POR- Power On Reset)

• Reset by lowering MCLR input to logic O

• Reset when the watchdog overflows



55

As shown in Figure 2.24, a PIC microcontroller is normally reset when power is

applied to the chip and when the MCLR input is tied to the supply voltage through a

4.7K resistor.

+Vdd

4.7K

MCLR

PIC
Microcontroller

Figure 2.24.: Using the power on reset

There are many applications where we want to reset the microcontroller, e.g. by

pressing an external button. The simplest circuit to achieve an external reset is shown

in Figure 2.25. In this circuit, the MCLR input is normally at logic 1 and the

microcontroller is operating normally. When the reset button is pressed this pin goes to

logic O and the microcontroller is reset. When the reset button is released the

microcontroller starts executing from address O of the program memory.



+Vdd

MCLR

PIC
Microcontroller

Figure 2.25.: Using an external reset button

2.9.15. Interrupts

Interrupts are an important feature of all microcontrollers. An interrupt can

either occur asynchronously or synchronously. Asynchronous interrupts are usually

external events which interrupt the microcontroller and request service. For example,

pin INT (RBO)of a PICl 6F84 microcontroller is the external interrupt pin and this pin

can be used to interrupt the microcontroller asynchronously. i.e. the interrupt can occur

at any time independent of the program being executed inside the microcontrollei'.

Synchronous interrupt are usually timer interrupts, such as the timer overflow

generating an interrupt.

Depending on the model used, different PIC microcontrollers may have different

number of interrupt sources. For example, PIC16F84 microcontroller has the following

four sources of interrupt:

• External interrupt from INT (RBO)pin

• TMROinterrupt caused by timer overflow

• External interrupt when the state ofRB4, RBS, RB6 or RB7 pins change

56



57

• Termination of writing data to the EEPROM

Interrupts are enabled and disabled by the INTCON register. Each interrupt

source has two bits to control it. One enables interrupts, the other one detects when an

interrupt occurs. There is a common bit called GIE (see INTCON register bit

definitions) which can be used to disable all sources of interrupts. The completion

status has to be cleared to zero if we want the same interrupt source to be able to

interrupt again.

Assuming that we wish to use the external interrupt (INT) input, and interrupts

should be accepted on the low to high transition of the INT pin, the steps before and

after an interrupt are summarised below:

• Set the direction of the external interrupt to be on rising edge by setting

INTEDG = 1 in register OPTION_REG

• Enable INT interrupts by setting INTE =1 in register INTCON ·

• Enable global interrupts by setting GIE = 1 in register INTCON

• Carry out normal processing. When interrupt occurs program will jump to the

ISR

• Carry out the required tasks in the ISR routine

• At the end of the ISR, re-enable the INT interrupts by clearing INTF = O

2.9.16. The configuration word

PIC microcontrollers have a special register called the Configuration Word.

This is a 14-bit register and is mapped in program memory 2007 (hexadecimal). This

address is beyond the user program memory space and can not be directly accessed in a

program. This register can be accessed during the programming of the microcontroller.



58

The configuration word stores the following information about a PIC microcontroller:

• Code protection bits. These bits are used to protect blocks of memory so that

they can not be read.

• Power-on timer enable bit.

• Watchdog (WDT) timer enable bit.

• Oscillator selection bits. The oscillator can be selected as XT, HS, LP, RC, or

internal (if supported by the microcontroller).

For example, in a typical application we can have the following configuration

word selection during the programming of the microcontroller:

• Code protection OFF

• XT oscillator selection

• WDT disabled

• Power-up timer enables

· 2.10. Hardware Programmers and Software Programs Used

The microcontroller used in this thesis is the PIC series of microcontrollers

manufactured by Microchip Inc. In order to develop a microcontroller based system,

one needs an assembler (or a compiler), and, a chip programmer. There are many

assemblers for the PIC microcontrollers, but perhaps MPLAB is one of the best one
~

available for the developers. This assembler has been developed by the Microchip

company. MPLAB also provides a simulator which helps the programmer to simulate

his design before implementing it in hardware.

A chip programmer is a hardware device which enables the system developer to

download his code to the memory of a microcontroller. The chip programmer is



59

normally connected to a PC using a serial line, a parallel line, or the USB port of the

PC. In a typical application the chip programmer hardware is connected to the PC, the

user then inserts the microcontroller to be programmed into the socket on the chip

programmer. A program is then run on the PC which transfers the program code to the

memory of the microcontroller.

There are many types of chip programmers in the market. The one used in this

thesis was the DELAB D128, which is a USB based programmer, and it can be used to

program most types of PIC microcontrollers. Figure 2.26 shows a picture of the DELAB

D128 chip programmer.

Figure 2.26.: USB PIC chip programmer



60

2.11. The MPLAB Assembler

The MPLAB assembler is developed by the Microchip Inc. and it is used in this

thesis to develop the various programs. The current version of the compiler is

MPLAB[l 1] version 03.20, and it can be downloaded free of charge from the web-site:

http://www.microchip.com/1000/pline/tools/picmicro/devenv/mplabi/.

There are basically two methods of writing assembly programs:

1- Use a text editor and convert this txt file to an ".ASM" file.

2- Use the built-in editor of the MPLAB assembler.

In this thesis the first option was selected as it was easier to develop the program

outside the assembler environment. After the program was developed, it was compiled

using the MPLAB assembler. The assemblergenerates a number of output files. The

list file (extension .LST) contains the assembled program with the memory allocations

and the error messages. This file is useful when the program contains errors as it

enables the programmer to locate and correct these errors. The hexadecimal output file

(extension .HEX) is used to download the program code to the memory of the target

microcontroller using a chip programmer.

2.12. The Commands of MPASM Assembler

In this section the basic commands of the MPLAB assembler used during the

development of the programs in this thesis are given.

LIST: list [<list_option>, ... , <list_option>]

p=<type> Set processor type; for example, PIC16F84 or PIC16F877.

INCLUDE: #include "<include file>"



61

The specified file is read in as source code. For example a include file is

pic16f84.inc or pic16f877.inc

CONFIG: __ config <expr>

Sets the processor's configuration bits to the value described by <expr>.

_RC_OSC: RC Resistor/Capacitor type Oscillator.

_XT_OSC: XT Crystal/Capacitor type oscillator. This oscillator type is used in this

thesis.

_WDT: The Watchdog Timer is a free running On-Chip RC Oscillator Which does not

require any external components.

_PWRTE: Power up timer.

_CP: Code protection. If the code protection bit(s) have not been Programmed,the on

chip program memory can be read out for verification purposes.

EQU: <label> equ <expr>

The value of <expr> is assigned to <label>. For example four equ four.

ORG: [<label>] org <expr>

Set the program origin for subsequent code at the address defined in <expr>.

CLRF: Clear f. The contents of register 'f are cleared and the Z bit is set. Z bit is a

Status affected.

PORTB: PORTB is an 8-bit wide, bi-directional port. The corresponding data direction

register is TRISB. Setting a TRISB bit (= 1) will make the corresponding

PORTB pin an input (i.e., put the corresponding output driver in a Hi

Impedance mode). Clearing a TRISB bit (= O) will make the corresponding

PORTB pin an output (i.e., put the contents of the output latch on the selected

pin).



62

PORTA: PORTA is a 5-bit wide, bi-directional port. The corresponding data direction

register is TRISA. Setting a TRISA bit (= 1) will make the corresponding

PORTA pin an input (i.e., put the corresponding output driver in a Hi-

Impedance mode). Clearing a TRISA bit (= O) will make the corresponding

PORTA pin an output (i.e., put the contents of the output latch on the selected

pin).

MOVLW: [label] MOVLW k

Move Literal to W. The eight-bit literal 'k' is loaded into W register. The

don't cares will assemble as O's.

M:OVWF: [ label ] MOVWF f

Move W to f. Move data from W register to register 'f'.

BSF: [ label] BSF f,b

Bit Set f. Bit 'b' in register 'f is set.

BCF: [ label] BCF f,b

Bit Clear f. Bit 'b' in register 'f is cleared.

RPO: Data memory is partitioned into two banks which contain the general purpose

registers and the special function registers. Bank O is selected by clearing the RPO

bit (STATUS<S>). Setting the RPO bit selects Bankl. Each Bank extends up to
•

7Fh (128 bytes).

CALL: [ label ] CALL k

Call Subroutine. First, return address (PC+1) is pushed onto the stack. The

eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of

the PC are loaded from PCLATH. CALL is a two-cycle instruction.

DECFSZ: [ label ) DECFSZ f,d



63

Decrement f, Skip if O. The contents of register 'fare decremented. If 'd' is

O, the result is placed in the W register. If 'd' is 1, the result is placed back in

register 'f'. If the result is 1, the next instruction is executed. If the result is

O, then a NOP is executed instead, making it a 2TCY instruction.

GOTO: [ label ] GOTO k

GOTO is an unconditional branch. The eleven-bit immediate value is loaded

into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>.

GOTO is a two cycle instruction.

Al>DLW: [label] ADDLW k

The contents of the W register are added to the eight bit literal 'k' and the

result is placed in the W register

ANDLW: [label] ANDLW k

The contents of W register are AND'ed with the eight bit literal 'k'. The

result is placed in the W registers.

BTFSC: [label] BTFSC f,b

If bit 'b' in register 'f' is 1 then the next instruction is executed. If bit 'b' in

register 'f', is 'O' then the next instruction is discarded, and a NOP is executed

instead, making the instruction.

BTFSS: [label] BTFSS f,b

If bit 'b' in register 'f' is O then the next instruction is discarded and NOP is

executed instead, making the instruction.

INCF: [label] INCF f,d

The contents of register 'f' are incremented. If 'd' is Othe result is placed in the

W register. If 'd' is 1 the result is placed back in register 'f'.



INCFSZ: [label] INCFSZ f,d

The contents of register 'f' are incremented. If 'd' is O the result is placed in

the W register. If 'd' is 1 the result is placed backing register 'f'. If the result

is 1, the next instruction is executed.

MOVF: [label] MOVF f,d

The contents of register f is moved to a destination dependant upon the status

of d. If d=O, destination is W register. If d=l, the destination is file register f

itself. d=1 is useful to test a file register since status flag Z is affected.

NOP: [label] NOP

No operation.

RETLW: [label] RETLW k

The W register is loaded with the eight bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two cycle

instruction.

RETURN: [label] RETURN

Return from subroutine.

RLF: [label] RLF f,d

The contents of register 'f' are rotated one bit to the left through the carry flag. If
lo

'd' is O the result is placed in the W register. If 'd' is 1 the result is stored back in

register 'f". If 'd' is 1 the result is placed back in register 'f.

RRF: [label] RRF f,d

The contents of register 'f' are rotated one bit to the right through the carry flag.

If ' d' is O the result is placed in the W register. If 'd' is 1 the result is placed

back in register 'f'.

64



65

CHAPTER 3

3. AQUARIUMS

3.1 Typesof Aquariums

The word aquarium is taken from the Latin aqua, meaning water, and rium,

meaning place or building[l5]. Keeping fish in artificial environments for display

purposes dates back to Sumerians. But the development of glass aquariums and the

keeping of aquarium as a hobby dates back to the 18th century. Aquarium became

popular as houses became universally electrified after World War 1. With electricity

great improvements were made in aquarium technology, allowing artificial lighting as

well as the filtration; and heating of the water temperature. There are currently

estimated 60 million aquarium hobbyists worldwide. The hobby is widely accepted in

Europe, Asia, and North America. In the United States, a large minority (40%) of

aquarists maintain two or more tanks at any one time.

The types of aquariums are divided into two parts. Freshwater and saltwater are

the types of aquariums. There are too many types of aquariums to list them all for the

shapes. It is mostly based on personal taste and budget. Standard aquariums are in the

rectangular shape and come in sizes from 2 gallons to custom sized that are over 1,000

gallons. Other shapes are pentagonal, hexagonal, octagonal, flat-back, euro, comer,

high, long, desktop, and table to name a few.

There are two types of aquariums (see Figure 3.1): freshwater aquariums, and

saltwater aquariums. The common freshwater aquarium maintained by a home aquarist

typically includes a filtration system, an artificial lighting system, air pumps, and a

heater. In addition, some freshwater tanks use power heads to increase water circulation.



Figure 3.1. Some types of aquariums

Combined biological and mechanical filtration systems are now common; these

are designed to remove potentially dangerous build up of nitrogenous wastes and

phosphates dissolved in the water, as well as particulate matter. Filtration systems are

the most complexly engineered component of most home aquaria, and various designs

are used. Most systems use pumps to remove a small portion of the tank's water to an

external pathway where filtration occurs; the filtered water is then returned to the

aquarium. Protein skimmers, filtration devices that remove proteins and other waste

from the water, only work in salt water aquaria."

Air pumps are employed to adequately oxygenate the water. These devices,

once universal, are now somewhat less commonly used as some newer filtration

systems create enough surface agitation to supply adequate gas exchange at the surface.

Aquarium heaters are designed to act as thermostats to regulate water temperature at a

level designated by the aquarist when prevailing temperature of air surrounding the

aquarium is below the desired water temperature. Coolers are also available for use in

66



cold water aquaria or in parts of the world where the ambient room temperature is above

the desired tank temperature.

An aquarium's physical characteristics form another aspect of aquarium design.

Size, lighting conditions, density of floating and rooted plants, placement of bogwood,

creation of caves or overhangs, type of substrate, and other factors can all affect the

behavior and survivability of tank inhabitants.

The solute content of water is perhaps the most important aspect of water

conditions, as total dissolved solids and other constituents can dramatically impact basic

water chemistry, and therefore how organisms are able to interact with their

environment. Salt content, or salinity, is the most basic classification of water

conditions. An aquarium may have fresh water, simulating a lake or river environment;

salt water, simulating an ocean or sea environment; or brackish water, simulating

environments lying between fresh and salt, such as estuaries.

Home aquarists typically use modified tap water supplied through their local

water supply network to fill their tanks. For freshwater aquaria, additives formulated to

remove chlorine or chloramines are often all that is needed to make the water ready for

aquarium use. Brackish or saltwater aquaria require the addition of a mixture of salts

"and other minerals, which are commercially available for this purpose. More

sophisticated aquarists may make other modifications to their base water source to

modify the water's alkalinity, hardness, or dissolved content of organics and gases,

before adding it to their aquaria. In contrast, public aquaria with large water needs often

locate themselves near a natural water source such as a river, lake, or ocean in order to

have easy access to a large volume of water that does not require further treatment.

67



68

Secondary water characteristics are also important to the success of an aquarium.

The temperature of the water forms the basis of one of the two most basic aquarium

classifications; tropical vs cold water. Most fish and plant species tolerate only a

limited range of water temperatures: Tropical or warm water aquaria, with an average

temperature of about 25°C, are much common, and tropical fish are among the most

popular aquarium denizens. Cold water aquaria are those with temperatures below what

would be considered tropical; a variety of fish are better suited to this cooler

environment.

3.2. Aquarium Material

Basically two types of materials used in aquarium construction: glass and

acrylic. The advantages and disadvantages of both types of aquariums are given below.

Scratching: Glass is very difficult to scratch. Acrylic is highly scratchable. An acrylic

aquarium can be scratched by a person brushing it with their clothing, jewelry, purse, or

bag.

Weight: Glass is denser and therefore heavier than acrylic. A glass tank is in general 4-

1 O times as much as an acrylic tank of the same.volume.

Breaking and cracking: Glass can be broken or shattered with a sharp impact. Acrylic

is much more difficult to break or shutter.

Shape: Glass is relatively rigid and brittle and because of this, it is difficult to make fish

tanks from glass that is not rectangular or spherical in shape. Acrylic on the other hand

is easier to bend can easily be molded and formed into almost any shape.

--



Support and rigidity: Glass can support considerably more than its own weight. Because

of this, glass aquariums are kept on stands with an open or incomplete top with little or

no risk. Acrylic tanks require a stand that will support the entire bottom of tha tank, or

else the bottom of the tank may break from the weight of the water.

Refraction of light: Glass has different index of refraction than water. This means that

as light passes through the air, then the glass, then the water to bounce off a fish and get

reflected back through the water, the light is bent four times. Each time the light is bent,

the image is distorted. Acrylic has nearly same index of refraction as water. This means

that when we see a fish in an acrylic tank, the light has only been bent once or twice.

Because of this, the only distortion we are likely to see is that the fish is slightly

misplaced, but the size and colour are true.

Clarity: Glass maintains its clarity over time. Many types of acrylic will yellow with

age, particularly if they are kept under a full spectrum light or exposed to direct

sunlight.

Cost: Glass tanks are in general cheaper than acrylic ones.

3.3. Size

An aquarium can range from a small glass bowl containing less than a liter of

water to massive tanks built in public aquaria which are limited only by engineering

constraints and can house entire ecosystems. In general, larger aquarium systems are

typically recommended to hobbyists due to their resistance to rapid fluctuations of

temperature, allowing greater system stability.

69



3.4. Cycling

Aquaria kept in homes by hobbyists can be as small as 11 liters. This size is

widely considered the smallest practical system with filtration and other basic systems.

Public aquaria designed for exhibition of large species or environments can be

dramatically larger than any home aquaria. Some public aquaria can be as large as 60

feet long by 20 feet high (e.g. the Monterey Bay Aquarium).

Generally, the bigger the tank the better it is because a larger aquarium will tend

to have much more stable water parameters. For example, take a 5 gallon versus a 55

gallon tank. In the 5 gallon tank the temperature may fluctuate up to 1 O degrees

Fahrenheit every day whereas the temperature isn't going to fluctuate as much in the 55

gallon. Having more water will usually buy us more time to correct anything that should

happen.

Newly built aquaria do not usually have the required populations of bacteria for

the handling of nitrogen waste. In a process called cycling, aquarists cultivate these

bacteria as fish and other producers of nitrogen waste are gradually added to the tank

over the course of several weeks. Aquarists use several different methods to jump start

this process, including the use of water additives containing small populations of the

bacteria, or seeding a new tank with a mature bacteria colony removed from another

aquarıum.

Other cycling methods that have gained popularity in recent years are the

fishless cycle and the silent cycle. As the name of the former implies, no fish are kept in

a tank undergoing a fishless cycle. Instead, small amounts of ammonia are added to the

tank to feed the bacteria being cultured. During this process, ammonia nitrite, and

70



71

nitrate levels are tested to monitor progress. The silent eyde is basically nothing more

than densely stocking the aquarium with fast growing aquatic plants and relying on

them to consume the nitrogen products rather than bacteria.

Improperly cycled aquaria can quickly accumulate toxic concentrations of

nitrogen waste and kill their inhabitants.

3.5. Aquarium Furnishings

Several substances are used as aquarium furnishing material. Some commonly

used material are:

Gravel: The gravel in an aquarium serves both an aesthetic and a practical purpose.

The composition of gravel is important and if plants are kept in the tank, the gravel

should be 2-Smm in diameter. The gravel can be added to the tank and arranged levelly

or terraced.

Rocks: The tank should be furnished with rocks and the rocks used should not dissolve

or crumble in water, nor release calcium.

Wood: Wood provides a refuge, a spawning site, and can be used to adjust the acidity

of the water.

Lighting: The type of lighting is not especially important if plants are not grown. Plants

require light in order to carry out photosynthesis and grow. Several different types of

lights can be used. E.g. fluorescent tubes or mercury lamps. Fluorescent tubes are the

most commonly used lights. They consume little power, produce little heat, and are



72

bright. Mercury vapor lamps are not very common and they are usually used in tanks

with a depth greater than 50cm.

3.6. Heater

Correct temperature of an aquarium is very important for the healthy living of

the fish. The most popular means to heat the aquarium is a glass immersion heater. Most

heaters include a thermostat, so that once the temperature is set it remains at the desired

level. Heaters using electronic thermostats and timers are now very commonly used. A

thermometer should be used to check the water temperature at regular intervals to make

sure that the water temperature is normal.

3.7. Air Pump

The air pump is an important part of the aquarium as they produce surface

disturbance for oxygenation. The major drawback to air pumps is the noise they

produce.

3.8. Filtration

The filter is one of the most important pieces of equipment in the aquarium. The

filter used in a tank should be large enough to handle the amounts of wastes produced

by the tank. Many filters are rated in terms oflitres per hour.There are basically 3 types

of filtration methods; mechanical filtration, chemical filtration, and biological filtration.



for the filtration of the water.

Mechanical filtration: This refers to the filtering ofwater through a mechanical

strainer to remove particles from the water.

Chemical fıltration: This is the filtration method where chemicals are used for the

filtration. One popular material for chemical filtration is ammonia.

Biological filtration: In this type of filtration break down from organic wastes are used

3.9. Bucket and Siphon

A bucket and a siphon are needed for water changes and adding fresh water to

the tank. The bucket should be used only for the aquarium.

3.10. Setting up Equipment

The heater should be installed but should not be plugged in until the water is

about the right temperature. Hook up the filter and any other equipment you have, then

top off the aquarium water to just under the hood lip. Place your hood and tank light on

the aquarium and then check your power cords to be sure that they are free of water.
••

The recommend think is using a drip loop on all of the power cords to be extra cautious.

Plug all of the equipment into a power strip and then "turn on" the aquarium.

The time is now to add some fish to the aquarium. But, in order to do this right,

we have to wait until the aquarium has cycled before adding any fish. Only add one or

two fish at a time. Adding a couple fish at a time gives the filtration system the time

needed to take on the increased biological load that the new fish introduce. When you

73



74

bring the fish home let the bag float in the tank for about 15 minutes so that the fish can

become acclimated to the temperature and pH of the aquarium water. After 5 minutes of

floating the bag you should add some of the aquarium water to the bag so that the fish

can become acclimated to the pH level in the aquarium. This will help reduce the

amount of stress imposed on the fish. Stressed fish often leads to dead or diseased fish.

Don't feed your fish on the first day. They probably wouldn't eat any food on the first

day anyway.

3.10.1 Location of the Aquarium

The aquarium should be placed in an area where the light and temperature of the

tank won't be affected by external sources such as windows and heater vents. Sunlight

that enters the room through an unshaped window could affect the temperature of your

tank. This could also lead to green algae problems for your tank down the road. You

will want to place your aquarium on a stand that will be able to hold its total weight.

You also want to be sure that the floor is able to support the total weight of the

aquarium and stand.

A fish tank is just like having a dog or a cat when it comes to the amount of

effort on your part. In order to have a successful fish tank you will have to work at it.~

Once a week, or at most once every two weeks, you will need to perform some kind of

'maintenance on the tank. Most of the time you will be performing water changes. You

will also have to feed your fish at least once a day.



75

CHAPTER 4

4. DEVELOPMENT OF A MICROCONTROLLER BASED AUTOMATIC

AQUARIUM SYSTEM

4.1 Overview

Aquariums are very good adornments but they require maintenance and daily

care. Maintenance involves mainly cleaning the inside and outside of the aquarium,

changing the water, and making sure that the aquarium equipment are in good working

order. Maintenance is usually carried out once a week in small aquariums, and once

every 2-3 weeks in larger aquariums.

Aquariums care consists of 4 types of work:

• Controlling the aquarium temperature

• Feeding the fish

• Providing light to the aquarium

• Cleaning and changing the water of the aquarium

4.1.1 The Water Temperature

The water temperature of an aquarium is very important for the healthy living of

the fish and the plants inside the aquarium. The ideal aquarium temperature for freshwater
I'

fish is around 29°C. Too hot or too cold water temperature call kill the fish and also effect

the growth of the plants inside the aquarium. In this thesis a microcontroller based

temperature control system has been developed for the aquarium to keep the temperature at

the required level.



4.1.2 Feeding The Fish

It is very important that the fish should be fed daily, and once a day. The

amount of food and the time of feeding are important factors affecting the health of the

fish. Too much food can kill the fish.. Similarly, the fish could starve and die if enough

food is not supplied to the aquarium. In general, enough food should be povided to last

the fish for about 2 minutes. The most common reasons for premature fish death are

over-feeding and inadequate maintenence. Also, excess food in the aquarium will begin

to decay, and in the limited capacity of a aquarium, the water can become toxic rapidly.

In this thesis an automatic microcontroller based fish feed mechanism has been

developed which deliver food to the fish on a daily basis and at the same time in each

day.

There are a lot of types of fish foods are exist.Feeding your fish an improper diet

is as common a mistake as overfeeding. Providing the correct diet is essential for fish

growth and health. Dietary deficiencies will not only shorten the lifespan of fish and

cause many diseases, but will also contribute to a deteriorating water quality by

polluting the water.

The diet of fish varies based on their individual nutritional needs. Some require

meaty foods (carnivores), some plants (herbivores) and some a combination of both
ı.

(omnivores).
..•

Besides requiring specific dietary and nutritional needs, fish also have varying

feeding habits. Generally three feeding groups can be identified. There are bottom

feeders, mid-water feeders, and top or surface feeders. Fish are usually easily

categorized by their mouths. While bottom feeders have downward positioned mouth,

an upward facing mouth is easily distinguishable for surface feeders.

76



To accommodate feeding preferences and habits, fish food is available in many

shapes and sizes: flakes, pellets (sinking and floating), live foods, frozen, dried food,

small, medium, and large for all species in various sizes and forms.

In nature, fish scavenge for food all day long, detecting food by varıous

techniques such as movement, smell, visually, taste, color, and flavor. In aquariums fish

need to be "trained" to eat food that otherwise would not be part of their diet.

Fish food consists basically of proteins, carbohydrates, fiber, fats, vitamins, and

minerals. The diet is composed based on nutritional needs; Values are in %, average

moisture content 6-10% and - 40% of carbohydrates.

Fish need protein mainly for their growth. Fish in general need less food to grow

than other animals. It has to be noted that adult fish will not utilize all the protein

provided in the food. It is important to use less protein rich foods for adult fish because

the excess protein is being excreted as ammonia

Fry need more protein, so do fast moving fish. High protein diets are

recommended to make fish spawn as more protein is needed for egg production.

Less protein is required for cool water species like goldfish as the metabolism slows

significantly the lower the temperature.

4.1.3 Aquarium Lighting

An aquarium needs light for about 4-6 hours a day. Different plants require

different levels of aquarium lighting, usually measured in watts per gallon of aquarium

water. If we are growing live plants or live corals, then we should increase the light

- duration to 6-8 hours per day. Light helps the plants to make photosynthesis. CO2 is

77



78

also required for photosynthesis. CO2 can come from fish respiration process and is

released into the tank. However, if we have a heavily planted tank, we may want to get

CO2 injector for the aquarium because we will not get enough CO2 from the fish. Algae

is the bane of every aquarium owner. Algae grows in every healthy aquarium, no

matter how well, or how often the tank is cleaned. There is absolutely no safe way to

completely prevent or stop the growth of algae. Once it starts to grow in an aquarium, it

does so very rapidly. A small patch of algae can triple in size in a few days. It is normal

for algae to begin growing back in an aquarium within three weeks after the tank is

cleaned. So, the light and nutrients in the water are the major causes of algae growth.

In this thesis a microcontroller based light control system has been developed.

The system controls the aquarium lights at predefined times of the day.

4.1.4 Cleaning The Aquarium

Aquarium cleaning consists of cleaning the inside and the outside of the

aquarium, and changing the water inside the aquarium. How often the water must be

changed. depends on how many fish we have and the quality of our filtration system. In

lightly stocked tanks, the recommended changing is 1 O percent of the water once a

week. We could probably get by with vacuuming the gravel once every two weeks

depending on the population of our tank. Heavier stocked tanks will need larger (25% or

more) weekly water changes and gravel vacuuming.

4.1.5 Designing a computer based aquarium system

The idea of designing a computer based aquarium system is not new. Evans [7]

reports an aquarium management system called BAMU. This system is based on a

NEC EV9835 microcontroller development system (see the block diagram of BAMU is

Figure 4.1). The system controls the aquarium lighting, controls the aquarium



temperature, and also provides automatic food to the fish. This system in addition

monitors the state of the air pressure pump in the aquarium. In addition, BAMU

provides various alarms such as the failure of the heater, detection of low water inside

the tank, failure of the lighting system and so on.

Pump
Simularcr

FrontRectifier
-Fitter

Panel
".,Vaıer Simulator

LED',

Tbernıistcr Hearer

3.3 V~-h
Reg

FP Switch
Pot orTbemı

FPWateı:
Switch

liglıı
Simula.ioı

ACPoweı
Adapter

CDS CELL J5

NEC EV9835 EVALUATION BOARD

To Battery Holder

Figure 4.1. Block diagram of the BAMU aquarium control system
79



Carstensen [8] reports an 8031 microcontroller based aquarium control system.

The microcontroller runs on its own but is connected to a PC with a terminal program

using the RS232 communications protocol. The microcontroller is equipped with a 4-

digit LCD display which shows the pH of the water, the water temperature, air

temperature, time of the day, and the conductivity of the aquarium water. In addition, a

feed switch is provides which is turned on at specified times of a day in order to provide

food to the fish. The microcontroller receives instructions from the PC and then

monitors and controls the aquarium. One disadvantage of this system is that it is PC

based and a PC is required for its programming.

An automated aquarium system is described by Automated Aquarium Systems

Inc. [9]. This system (see Figure 4.2) is also based on a PC and a distribution panel.

Sensors such as flow sensor, temperature sensor, pH sensor, lights, and CO2 sensor are

placed in the aquarium water circulation path and they are connected to the distribution

panel. The PC can be programmed to control various aquarium parameters and also to

display the state of the aquarium on the screen. One disadvantage of this system is that

it is also based on a PC and a PC is required to control and monitor the system.

80



LiQhtS

Wln95PC,-
ı='•

JDistribution
Panel

Figure 4.2. Automated Aquarium Systems Inc. aquarium control system

Neptune Systems [10] aquarium control system is based on a small portable unit

with a LCD display as shown in Figure 4.3. The unit is used to monitor and also to

control the pH, ORP, and the temperature of the aquarium water. A timer is provided

which enables the user to start and stop various activities. The unit can be connected to

a PC for programming. One advantage of this system is that the sunrise and sunset can

be simulated, moon cycle can be simulated, and the pumps can be controlled to provide

a waves in the water.

81



Figure 4.3. Neptun Systems aquarium control system

4.2 Development of the Aquarium Control System

Figure 4.4 shows the block diagram of the overall system. The system consists

of seven microcontrollers. Six PIC16F84 type microcontrollers are used to control the

date and time, automatic feeding, and flashing mechanisms. One PIC16F877 type

microcontroller is used to control the temperature of the aquarium water. Parts of the

system are described in more detail in the following sections.

82



r----l------5v to 240v
i p IC I _:hang:'.~

i 16F I
: I

i 84A ( 5~ İo 24v
L J changer

Light 

Aquarium \24v
1 .step
· motor

Clock PIC
16F
84A

-1 i~~~ I I . D .··· ····. :·-·
84A I Day & month I =•r - . - L ..
PIC ,· '(ı .. D,_ '

! L...._ •.• ::::-=:i f--- I

16F ------~~-r I ::=:ı
1=-=---:

84A ... '

Lm35
analog
sensor

D ~- --- I ----

-··-···-· . . \ .
' I, ,_ ,------. :-- . r=-j

' I ',' .
-· ··ı ! : l

~~~ I ~~ghh~~~n-off flasher'· ···· = =='
84A ı ligh off! ~. ····" , •

-' J---------------------------- --- ---: :

PIC jı feeeeddo~~~ff flasher ı__ J ı-----, :-··:-:16F
1

' -- --· ·-

! feed offf I84A 1----------- ------- L -------·
l o·,__-------- --_--------- ---------

__ ! Heater on-off flasher
heat onnn . --- - , j '-~ _j

heat offf :___: P_I_C __T__ --- ------- - - ·-" - - -- _I__ - - --- -· ----

16F I Temperature

877 : flasher
i 27°C

--------··---.L -· ···-·.-- ----·-··· --·-----

..'.---··

j
!

__L.___ ---- ----

s~ıo 240~--ı Heater
changer ı· --- - · ·

Figure 4.4. Blockdiagram of the system

83

Four Digit
hex Displays

1

2

3

4

5

6

7 ~

ı

HH:MM (

4.2.1. The Clock Microcontroller

The system clock provides real time clock to the system and also displays the

hours and minutes on a 4-digit, 7-segınent display. The clock circuit is based on a

PIC16F84 type microcontroller working with 4MHz crystal and it is connected to four

seven segment hex displays. Seven segment hex display consists of 8 LEDs. The

individual LEDs segments are turned ON when logic O is applied to the segment. A

digit is selected by applying a logic 1 to the required digit. The displays are time

multiplexed and each digit of the display is turned ON for about one millisecond.

The block diagram of the clock circuit is shown in Figure 4.5. The circuit

diagram of the clock circuit is given in Figure 4.6. The assembly program listing of the

clock circuit is given in Appendix A1. Time is displayed in the following format:

,•

where,

HH is the hours (00 to 23)

MM is the minutes (00 to 59)

Basically a timer loop is formed and the minutes field is incremented every
1'

minute. When the minutes field reached 59, it is cleared to zero and the hours field is
'

incremented by one. The hours and minutes fields are displayed and updated whenever

necessary.

The clock displays are flashed ON and OFF with an interval of one second.

84

PIC
16

F84A

7-segment display for the Clock

Figure 4.5. Block diagram of the Clock circuit

As shown in Figure 4.6, the microcontroller is powered from a +SV supply and

is timed from a 4MHz crystal. PORT B of the microcontroller controls the LED

segments. Similarly, PORT A of the PIC16F84 microcontroller controls the digits of

the 7-segment LED display.

+

u~u u~u o u~u

,V
u<===>u u<===>u u~u u<===>u

!a. <===>o <===>o o <===>o
ABCOEFG DP 1234

- vcc I I

MCLR
RBO 7-SEGMENT DISPLAY- RB1
RB2

PIC14F84~B~
RB5
RB6

L GND RAO
RA1 ..
RA2

- RA3-
OSC1 OSC2

r-~~nh_')"I .-. r4MHz
p

Figure 4.6. Circuit diagram of the Clock circuit

The display is flashed ON and OFF at one second intervals.

85

Two PlC l 6F84 type microcontrollers and two 7-segment hex displays are used

for the real-time date information. The date microcontrollers provide real-time day and

month information to the system. The first display shows the day and month, and the

second display shows the The block diagram and the circuit diagram of the date

microcontroller is as in Figure 4.5 and Figure 4.6 respectively, but two microcontrolelrs

are used instead of one and each microcontroller drives a separate 7-segment hex

display.

The date microcontroller displays the current month and the date in the

following format:

DD:MM

where,

DD is the day number (O 1 to 31)

MM is the month number (O 1 to 12)

The assembly program listing of the year display program is given in Appendix

A2. Year is displayed in the following format:ııı

yyyy

Basically a timer loop is formed and the day field is incremented every day.

When the day field reached 30 or 31, it is cleared to zero and the month field is

86

incremented by one. The days and minutes fields are displayed and updated whenever

necessary. The displays are flashed ON and OFF at one second intervals.

4.2.3 Fish Feeding And Light Control

Automatic fish feeding control system is based on a motor and a glass which

holds the food, and is controlled from a PIC16F84 type microcontroller. The

microcontrolelr is powered from a +5V supply and is timed from a 4MHz crystal

oscillator. Figure 4.7 shows the block diagram of the fish feeding control system.

j 5V Relay j EJPIC

~I svRelay I ı Motor I
16

F84A

I

Figure 4.7. Block diagram of the fish feeding and light control

The motor rotates under the control of the microcontroller and this pushed the

food out of the glass and into the aquarium. The motor operates from a 12V standard

supply and thus a relay is used to control the motor from the microcontroller. The relay

is connected to port pin RBI of the microcontroller (bit 1 of PORT B).

The aquarium light control system is also controlled from the same PIC 16F84

microcontroller. The lights are programmed to turn ON at 17:00 o'clock every

afternoon, and then turn OFF at 22:00 o'clock in the evening. Lights operate normally
87

,)

with a 240V mains supply, and thus, a relay is used to control the lights. The relay is

connected to port pin RBO of the microcontroller (bit O of PORT B).

Figure 4.8 shows the circuit diagram of the fish feeding and light control circuit.

The assembly program listing of the light control system is given in Appendix A4.

Also, the assembly listing of the automatic feed control system is given in Appendix

A3.

+5V 240V41 2--,...::
VCC I 1 JRC-19F
MCLR RBO• ~ RELAY ~ (() LAMP

PIC14F84 · ı12V-¢
GND I 1 I JRC-19F~ I RB1 - RELAY

osc 1 osczl -:-
1 I

22pF I_._. I o I I-'-- 22pF
4MHz

l

Figure 4.8. Circuit diagram of the fish feeding and light control circuit

The program has been adjusted so that the lighting and the feed times are as shown in..
Table 4.1. Notice in this table that the feeding starts at 17 :00 hours and then stops at

17:01 hours. Similarly, lights are turned on between the hours of 17:00- 22:00

88

HOURS LIGHTS FEEDER

00:00 - 17:00 OFF OFF

17:00 - 17:01 ON ON

17:01 - 22:00 ON OFF

22:00-23:00 OFF OFF

Table 4.1. Aquarium lighting and feeding times

4.2.4. Light Flasher Display

The light flasher display is controlled from a PIC16F84 microcontroller. The

block diagram and the circuit diagram of this aystem are as given in Figure 4.5 and

Figure 4.6 respectively. When the lights are turned ON the 4-digit display flashes the

text "LIGH ON" at one second intervals. Similarly, when the lights are OFF, the 4-digit

display flashes the text "LIGH OFFF" at one second intervals.

4.2.5. Feed Flasher Display

The feed flasher display is controlled from a PIC16F84 microcontroller. The

block diagram and the circuit diagram of this system are as given in Figure 4.5 and

Figure 4.6 respectively. When the feed mechanism is ON the 4-digit display flashes the

text "FEEd ON" at one second intervals. Similarly, when the mechanism is OFF, the 4-..
digit display flashes the text "FEEd OFFF" at one second intervals.

4.2.6. Controlling The Aquarium Water Temperature

The last step is to make a digital thermometer and to control the temperature of

the aquarium water. In this thesis, PIC-16F877 microcontroller is used with 4 MHz

oscillator and the microcontroller is powered from a +5V supply.

89

1111 Temperature

Temperature is measured using a LM35 type analog sensor[4]. LM35 is a

popular temperature sensor integrated circuit which can operate from a single +5V

supply and can measure the temperature between the range 0°C to +100°C. The sensor

provides a voltage which is directly proportional to the ambient temperature. The output

voltage of the LM35 sensor is 10mV/°C. For example, if the ambient temperature is

15°C then the output voltage of LM35 will be 150mV. Similarly, if the ambient

temperature is 30°C, the output voltage of the sensor will be 300mV and so on.

Figure 4.9 shows the block diagram of the temperature control system.

HEATER

1111 Heater
ON/OFFPIC

16F877LM35
sensor

Figure 4.9. Block diagram of the temperature control system

The main reason of using PIC-16F877 microcontroller is it has an analog to

digital converter. LM35 analog sensor is connected to one of the analog to digital (AID)

converter legs of the PIC16F877 microcontroller as shown in Figure 4.10.

LM35 analog sensor has 3 legs. One of the legs is connected to ground, the other

leg is connected to the +5V supply, and the third leg is the output leg which is

connected to analog input ANO of the PIC16F877 microcontroller. The temperature is

90

measured and then displayed on a 4-digit ?-segment display every second. In addition,

if the temperature is below the required value then the heater is operated to heat-up the

aquarium water. If on the other hand the aquarium water temperature is above the

required value then the heater is turned off.

The PIC16F877 microcontroller has 8 analog to digital converter (AID) each of

them is 10 bit. Fundamentally, it has only one AID but analog legs are multiplexed and

used the same AID. Port A legs are used both digital or analog signaling. If these legs

are used for analog, they are named with ANO-AN7.AID normally works with 5V. For

this reason, 1 O bit input signal is to come into 1024 levels. Every level has 5000/1024 =

4.88mV. The temperature sensor gives lOmV for every Celsius degree so, the

sensitivity of the measuring temperature is 0.5 Celsius degree [5].

+5V

tjvcc
MCLR ~B~

RB2

PIC
RB3
RB4

16F877 ~~ı~8~
RAS

ANO RDO
RD1
R02
RD3

..,. ~i
TEMPERATURE RC?

SENSOR
~§2R 3

(l--h (11"1 (111 (ı;-h
JI II II II 11 II II II

;i-X ıi-----X ii--h ;,-·-11
II II II II II II II II,_. _,. \.J--------t..' v--',' '-!====::,\·() ·--·o ·--·o ·--·o

ABCOEFG OP 1 e341-----'rrı ı ı ~..SEGMENT DISPLAY

I . I ' I RELAY [9
• IT t HEATER

I ı 1117..SEGMENT DISPLA~

~

22pF J:-iI 4MOH~z I
_ _ 22pF
. -

((if1·1 '.)(~
11 II II II
'·' !.) \J •,.,!,t----'h ,-;---r,
II II II II

o,--~
(1 (\
II 11
;+-I';
11 11

~-"rl'"ı
11 II
;1-----:\
11 II
t,J__ y

Figure 4.10. Circuit diagram of the temperature control system

91

I'
I

The AID conversion operation is carried out as follows:

• ADCONl register is used for setting up the ports for analog or digital. For

example, if ADCONl register is '10001110' (Ox8E),the ANO (RAO) leg of port

A comes analog and the rest of RA 1 -RA7 legs comes to digital input/output. In

addition, the voltage of analog port is chosen by +VDD and ADRESH and

ADRESL are rotated to the right and keep the 10 bit conversion.

• ADCONO register is used for choosing analog channel and clock sequence.

Afterwards, make active the analog to digital converter. If 4 MHz crystal is used

and clock sequence is Fosc/8, the ADCONl register must be '01000001' (Ox41).

• To start the conversion, the GO/DONE bit must be logic 1.

• Wait until the conversion finished. The GO/DONE bit is logic O, if the

conversion is finished.

• Read the converted value from the register ADRESL and ADRESH.

The assembly listing of the program is given in Appendix A5. In the program,

first of all we configure the PORT A and Port B input-output directions. Then, we load

hexadecimal Ox8E to the ADCONl register and RAO is configured to be an analog

input. In addition, the analog voltage reference is set to +SV. Afterwards, BANKO is

selected and the hexadecimal value Ox41 is loaded into register ADCONO register in

order to select the cock rate for the AID conversion, and to enable the AID converter

circuit. The AID conversion is then started by setting the GO bit of the ADCONO

register to logic 1. This bit is then tested continuously as it is cleared automatically by

the microcontroller when the conversion is complete. After the conversion is

completed, the 10 bit result is available in registers ADRESH and ADRESL. The high

92

,,
'

93

2 bits of the converted data is stored in register ADRESH. Similarly, the low 8 bits of

the converted data is stored in register ADRESL.

The analog to digital converter of the PIC 16F877 microcontroller is 1 O bit wide.

In this case, the numerical value is between O and 1023. The reference voltage used is

+5V (5000m V). So, a converted "n" numerical value has the real voltage value of "n x

5000/1024 mV". For example, if the output value of the analog to digital converter is

256, the real value of the voltage read can be calculated as (n = 256): 256x5000/1024 =

1250mV. In this case, the analog voltage read at the ANO leg of the microcontroller is

+1.25 V. The sensor that used gives 10mV/°C. So the result temperature comes like

this

V = 5000xT
1024x10

Or approximately, this is equivalent to T/2. In this case, the obtained result can

be divided by two to reach the actual value of the voltage read at the analog input. The

LM35 analog sensor read the temperature between O and 100 °C. For example, if the

temperature is 100°C, it gives lOOOmV. The numerical conversion of this value is

1000x1024/5000 = 204. It is possible to keep this value in 8 bit register. In this case,

high-byte is always O and low-byte gives the temperature. To summarize this, only

taking 8 low bit and divided by two of converted numerical value gives the- real

temperature in °C. The easiest way to divide a number by two is to rotate the register to

the right by one place:

Divide two

bcf status, C

rrf result, 1

return

At the end of this, the temperature is read from the LM35 sensor[6]. This read

signal is then sent to the seven segment hex displays by using PORT D and PORT C.

The actual process works like this: send a signal to the first seven segment hex display

for a millisecond, and then send the other signal to the other seven segment hex display

and repeat this process in a loop. The temperature program also controls the heater to

keep the temperature at 29° Celsius which is the ideal temperature for the fish.

The two 7-segment 4-digit displays connected to the temperature control circuit

display the current temperature of the aquarium and the status of the heater. The first

display shows the text "CELS" and then after one second the temperature of the

aquarium in °C. This is repeated continuously. For example, if the aquarium

temperature is 29°C, the first display will show alternately: CELS 29°C CELS 29°C

CELS and so on.

The second 4Mdigit display shows the status of the heater. If the heater is turned

ON the text "HEAT" and then after one second the text "Onnn" is displayed. Similarly,

if the heater is turned OFF, the text "HEAT" and then "OFFF" is displayed at one

second intervals. This display is repeated continuously.

Figure 4.11 and Figure 4.12 show the picture of the aquarium control system.

ı :

94

95

Figure 4.11. Picture of the aquarium control system

In the above picture the feed mechanism is shown on the right hand side. The

microcontroller circuit built on a breadboard is shown at on the back left hand side. The
ı,.

4-digit hex displays are at the front left hand side of the picture.

l
i
I

i
!

Figure 4.12. Picture of the aquarium control system

In Figure 4.12 the feed mechanism is shown at the right hand side of the picture. The 4-

digit hex displays are shown stacked at the left hand side of the picture. The

microcontroller circuit is shown in the middle of the picture.

4.2.7. Results

This thesis is about the development of a microcontroller based automatic

aquarium control system.

Basically, an aquarium requires 4 types of services: feeding the fish,.providing

light to the aquarium, controlling the temperature of the aquarium, and changing the

96

i::{-

water of the aquarium. In this thesis a microcontroller based system has been developed

to control the first three services of an aquarium.

An automatic microcontroller based food feed mechanism has been developed

which provides food to the fish at pre-specified times of a day. This system is based on

a motor and two cups.

Aquarium Iights are controlled from a microcontroller whereby 6-8 hours of

light is provided to the aquarium daily.

The temperature of the aquarium is controlled using a microcontroller. A

temperature sensor integrated circuit is used which measures the temperature of the

aquarium water and gives this signal to a microcontroller. The microcontroller attempts

to control the temperature of the water so that it is around 29°C which is the ideal

temperature for the fish. If the temperature is below this value then a heater is operated

to increase the temperature. If on the other hand the temperature of the aquarium water

is above this value then the heater is turned off.

In addition to the control circuitry; a number of 7-segment LED displays are

used to give information to the user, such as the time and date, state of the heater, and

the state of the feed mechanism.

Table 5.1 shows the results obtained from a typical real aquarium. The

temperature of the aquarium water, the state of the lights, and the feed mechanism have

all been observed over a 24 hour period. As shown in the table the results are

satisfactory and as expected. The lights and the feed mechanism were operated at the

required times of the day. The average temperature of the aquarium was kept at 29°C

despite of the changes in the external ambient temperature.

97

.)

i

HRS LIGHTS FEED AQUARIUM TEMP AMBIENT

TEMP

00:00 OFF OFF 29 22

01:00 OFF OFF 29 21

02:00r OFF OFF 29 20

03:00 OFF OFF 29 21

04:00 OFF OFF 29 22

05:00 OFF OFF 29 23

06:00 OFF OFF 29 24

07:00 OFF OFF 29 25

08:00 OFF OFF 29 26

09:00 OFF OFF 29 27

10:00 OFF OFF 29 28

11:00 OFF OFF 29 29

12:00 OFF OFF 29 29

13:00 OFF OFF 29 29

14:00 OFF OFF 29 29

15:00 OFF OFF \< 29 29

16:00 OFF OFF 29 28
'

17:00 ON ON 29 27

17:01 ON OFF 29 26

18:00 ON OFF 29 25

19:00 ON OFF 29 24

9R

I,,

20:00 ON OFF 29 24

21:00 ON OFF 29 23

22:00 OFF OFF 29 22

23:QO OFF OFF 29 22

Table 5.1 Results of the measurement using a real aquarium.

The advantages and disadvantages of this thesis are shown in the table 5.2.

Reliability Seven microcontrollers are used. If one is not working the others are

continue to work. The other systems stop completely.

Cost Seven microcontrollers are used; it's not good for the cost.

Ease It has clock and date. It automatically makes feeding, controls

temperature of the water and controls the light.

Table 5.2 Advantages and disadvantages of the thesis.

99

I,,

CHAPTER 5

5. CONCLUSION

This thesis has described the development of a microcontroller based automatic

aquarium control system. The system is based on seven PIC type microcontrollers. The

system developed can control the temperature of the aquarium water so that the water

temperature stays at the optimum value for the healthy living of the fish. The system

can also deliver food to the fish automatically at predefined times of the day. Proper

feeding of the fish in an aquarium is very important since over-feeding could kill the

fish, and under-feeding could starve the fish to death. Another feature of the system is

that the aquarium lights can be turned on or off at predefined times of a day. Proper

lighting of an aquarium is very important for the maintenance of the aquarium material,

and for the healthy living of the fish and the plants inside the aquarium.

The microcontroller based aquarium control system developed in this thesis also

uses a number of 7-segment LED displays to show the current status of the system. For

example, the date and time is displayed continuously, the temperature of the aquarium is

also displayed continuously. When the feed mechanism operates, or when the lights are

turned on or off, a flashing display indicates the state of the aquarium.

The microcontroller based automatic aquarium control system described in this~

thesis can be developed further. For example, a timer based automatic changing of the

aquarium water system can be developed so that the water can be changed at predefined

days of the week. Also, an external keypad can be provided to program the required

temperature, feed times and the time that the lights should be turned on and off.

100

i

I

i.'

Another suggestion is to use a more powerful microcontroller with multi-tasking

capabilities. This way, only one microcontroller could be used to control all aspects of

an aquarium. Also, LCD based displays could be used instead of the simple 7-segment

displays used in the thesis. It should be possible to display the date and time and the

various aquarium parameters on a single LCD display. Controlling the heater by using a

red lamp is very important for the fish safety. Because the fish is dead, if the heater is

not working. Measuring the Ph degree of the water and, if the water Ph degree is low,

the program changes the water of the aquarium automatically. These types of alarms are

valid for feeding and light control units. At the end, these are all future work of this

thesis.

101

)ı

I

., __

REFERENCES

[1] Computer desktop encyclopedia, the computer language co. inc., 1998,

www.computerlanguage.com/techweb.html.

[2] PIC16F84A datasheet, microchip company, www.micr<,chip.com

[3] PIC16F877 Datasheet, microchip company, www.microchip.com

[4] LM35 datasheet, www.national.com/JPN/ds/LM/LM35.pdf.

[5] Doğan İbrahim and Hamit İ Mustafa, PIC Programming and PIC Projects, Bilesim

Yayincilik, 36, Turkey, 2001.

[6] Barbaros Asuroğlu, Antrak Magazine, 43,2001, www.antrak.org.tr.

[7] Brian Evans, Aquarium Management System (BAMU), EDN, July 12, 2006.

[8] Thomas Cartensen, Computerized Tank, www.thekrib.com.

[9] Automated Aquarium Systems Inc., www.automatedaquariums.com.

(10} Neptun Systems, www.neptunesys.com/aquaContro11er2.htm

[11) MPLAB integrated development environment,

www.microchip.com/stellent/idcplg?IdcS~rvice=SS.

(12) MITS Altair 8800, 1974, http://www.weller.to/com/comp·mits-altair.htm.

(13) Information about PIC microcontroller ,www.electronic-engineering.ch/microchip.

(14) Von neuman and Harvard architecture,

www.esacademy.com/automation/faq/primer/4.htm.

(15) Information about aquariums, http://www.aquariumfısh.net/pages/information.htm.

102

•,
)
I

APP~NDICES

Appendix 1 - Year Program

MAHMUT KISACIK 20034186 YEAR USING PIC16F84A

LIST p=16f84A ;MPLAB command

#include p16f84A.inc ;MPLAB command

_CONFIG _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF ;crystal osc

DIGITl EQUh'OD' ;initializations

DIGIT2 EQUh'OE'

COUNT EQUh'OF'

COUNTERl I EQU h'l2' ;:,

'

COUNTER22 EQUh'l3' '
..

,;ı

DIGIT4 EQUh'l4'

DIGIT3 EQUh'15'

COUNTER12 EQU h'16'

DIGITS EQUh'17i

DIGIT6 EQUh'18'

DIGIT? EQUh'19'

COUNTERS EQU h'20'

Dl EQU h'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQU h'24'

103

COUNTX EQUh'25'

GUNl EQUh'26'

GUN2 EQUh'27'

AYl EQUh'28'

AY2 EQUh'29'

YILI EQUh'30'

YIL2 EQUh'31'

YIL3 EQUh'32'

YIL4 EQUh'33'

INIT

BSF STATUS,5 ;Jump Bankl

CLRF TRISB ;All pins of PortB is output

CLRF TRISA ;All pins of PortA is output

BCF STATUS,5 ;Jump BankO

CLRF PORTA ;All pins are at logic O level

CLRF PORTB ;All pins are at logic O level

MAIN

MOVLWh'02'

MOVWFD4

MOVLWh'03'

MOVWFD3

MOVLWh'OS'

MOVWFD2

;D4=02

;D3=03

;D2=05

104

,ı

MOVLWh'09'

MOVWFDl

MOVLWh'03'

MOVWFGUNl

MOVLWh'Ol'

MOVWFGUN2

MOVLWh'Ol'

MOVWF AYl

MOVLWh'02'

MOVWFAY2

MOVLWh'02'

MOVWFYIL4

MOVLWh'OO'

MOVWFYIL3

MOVLWh'OO'

MOVWFYIL2

MOVLWh'06'

MOVWFYILl

GOTO LOOPN99

LOOP Al

INCFSZ YIL 1,F

MOVLWh'OO'

MOVWF AYl

;D1=09 initial time is 23:59

;Day=31

;Month=12

;Year=2006

;jump to loopn99

;year increment

;clearing the first digit of month

105

MOVLWh10l1

MOVWFAY2 ; pass to the first month

MOVLWh1001 ;clearing the first digit of days

MOVWFGUNl

MOVLWh'Ol' ;pass to the first day

MOVWFGUN2

GOTOLOOPA5

LOOPA2

MOVLWh'OO' ;clearing the first digit of month

MOVWFAY2

LOOPA3

MOVLWh'OO' ;clearing the second digit of day
,s

MOVWFGUNl
,.
:

,I

LOOPA4

MOVLWh'OO' ;clearing the first digit of days

MOVWFGUN2

LOOPAS

MOVLWh'OO' ;clearing the firşt digit of hours

MOVWFD4

LOOPN77

MOVLWh'OO' ;clearing the second digit of hours

MOVWFD3

LOOPN66

MOVLWh'OO' ;clearing the first digit ofminutes

106

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFD1

LOOPN99

MOVLWOX048

MOVWF COUNTERS

LOOPY

MOVLWOX037

MOVWF COUNTX

LOOPVV

MOVLWh'OO'

MOVWFPORTA

MOVLWh'CO'

MOVWFPORTB

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

DECFSZ COUNTX,F

GOTOLOOPVV

MOVLWOX038

;clearing the second digit of minutes

;loop for real time clock speed

;clearing porta

;cO means zero to portb

;loop for a second without led light

107

108

MOVWF COUNTER12

LOOP123

MOVLWh'OO' ;clearing porta

MOVWFPORTA

MOVFYILl,W ;entering yil 1 to w register

CALL SEVNS TABL ;changing it to the seven segment for the same

number

MOVWFPORTB ;output this number by using portb

MOVLWh'Ol' ;opening first digit

MOVWFPORTA .by using porta

CALL DELAY ;give a milisecond

MOVLWh'OO' ;clearing porta

MOVWFPORTA

MOVFYIL2,W ;entering yi12 to w register

CALL SEVNS TABL ;changing it to the seven segment for the same

number

MOVWFPORTB ;output this number by using portb
I>

MOVLWh'02' ;opening second digit

MOVWFPORTA ;by using porta

CALL DELAY ;give a milisecond

MOVLWh'OO' ;clearing porta

MOVWFPORTA

MOVFYIL3,W ;entering yil3 to w register

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'04'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFYIL4,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'08'

MOVWFPORTA

CALL DELAY

;changing it to the seven segment for the same

;output this number by using portb

;opening third digit

;by using porta

;give a milisecond

;clearing porta

; entering yil4 tow register

;changing it to the seven segment for the same

;output this number by using portb

;opening fourth digit

;by using porta

;give a milisecond

DECFSZ COUNTER12,F

GOTO LOOP123 ;loop for a second 4 digit at the same time

DECFSZ COUNTERS,F

GOTOLOOPV

BSFPORTA,4

MOVLWh'09'

;loop continues about a minute

;test if the first digit of minutes is 9

109

GOTO LOOPN99 ;go back and continue for one minute

SUBWFD1,W

BTFSS STA TUS,2

GOTOART221 ;if it not 9

GOTOLOOPl ;if it is 9

ART221

INCFSZD1,F ;increment the first digit of the minutes

LOOPl

MOVLWh'OS' ;test if the second digit of minutes is 5

SUBWFD2,W

BTFSS STATUS,2
,,

;if it is not 5
ı'

GOTOLOOP2 :

GOTOLOOPN2 ;ifitisS

LOOP2

INCFSZ D2,F ;increment the second digit of minutes

GOTO LOOPN55 ;go back and continue for one minute

LOOPN2 "
MOVLWh'03' ;test if the first digit of hours is 3

SUBWFD3,W

BTFSS STATUS,2

GOTOLOOP3 ;if it is not 3

GOTOLOOPN3 ;if it is 3

LOOP3

110

INCFSZ D3,F ;increment the first digit of hours

GOTO LOOPN66 ;go back and continue for one minute

LOOPN3

MOVLWh'02' ;test if the second digit of hours is 2

SUBWFD4,W

BTFSS STATUS,2

GOTOLOOP5X ;if it is not 2

GOTOLOOPN5 ;if it is 2

LOOP5X

INCFSZD4,F ;increment the second digit of hours

GOTO LOOPN77 ;go back and continue for one minute

LOOPN5
.,.
,,,.

MOVLWh'Ol' ;test if the first digit of days is 1 :

SUBWF GUN2,W

BTFSS STATUS,2

GOTOLOOPT2 ;if it is not 1

GOTOLOOPT3 ;if it is 1

LOOPT3 "
MOVLWh'03' ;test if the second digit of days is 3

SUBWF GUNl,W

BTFSS STATUS,2

GOTOLOOPT4 ;if it is not 3

GOTOLOOPT5 ;if it is 3

LOOPT2

111

LOOPT4

MOVLWh'09' ;test if the first digit of days is 9

SUBWF GUN2,W

BTFSS STATUS,2

GOTOLOOPT6 ;if it is not 9

GOTOLOOPT7 ;if it is 9

LOOPT6

INCFSZ GUN2,F ;increment the first digit of days

GOTOLOOPA5 ;go back and continue for one day

LOOPT7

INCFSZ GUNl,F ;increment the second digit of days

GOTOLOOPA4 ; go back and continue for one day
·,,.

LOOPT5

MOVLWh'02' ;test if the first digit ofmonth is 2

SUBWF AY2,W

BTFSS STATUS,2

GOTOLOOPM2 ;if it is not 2

GOTOLOOPM3 ;ifitis2 il

LOOPM3

MOVLWh'Ol' ;test if the second digit of month is 1

SUBWF AYl,W

BTFSS STATUS,2

GOTOLOOPM4 ;if it is not 1

GOTOLOOPAl ;if it is 1

112

LOOPM2

LOOPM4

MOVLWh'09'

SUBWF AY2,W

BTFSS STATUS,2

GOTOLOOPM6

GOTOLOOPM7

LOOPM6

INCFSZ AY2,F

GOTOLOOPA3

LOOPM7

INCFSZ AYl,F

GOTOLOOPA2

;NOT NECESSARY

;test if the first digit of month is 9

;if it is not 9

;ifitis9

;increment the first digit of days

; go back and continue for one day

;increment the second digit of days

; go back and continue for one day

SEVNS TABL

ADDWF PCL,F ;PCL=W(h'04')+PCL.

RETL W h'CO' ;O

RETL W h'F9' ; 1

RETL W h'A4' ;2

RETL W h'BO' ;3

RETLWh'99' ;4

RETL W h'92' ;5

RETL W h'82' ;6

RETL W h'F8' ;7

RETL W h'80' ;8

113

RETL W h'90' ;9

RETL W h'88' ;A

RETL W h'83' ;B

RETL W h'C6' ;C

RETLWh'Al' ;D

RETL W h'86' ;E

RETL W h'8E' ;F

RETL W h'7F' ;.

DELAY

MOVLWh'04'

MOVWF COUNTERl 1 ;delayl loop for a milisecond

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTOLOOP99

DECFSZ COUNTERl 1,F

GOTOLOOP9X

RETURN

END

114

Appendix 2 - Month and Day program.

MAHMUT KISACIK 20034186 MONTH AND DAY USING PIC16F84A

LIST p=16f84A

#include p16f84A.inc

;mplab command

;mplab command

CONFIG XT OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF ;crystal osc

DIGITl EQU h'OD'

DIGIT2 EQU h'OE'

COUNT EQU h'OF'

COUNTERl 1 EQU h'12'

COUNTER22 EQU h'l3'

DIGIT4 EQUh'14'

DIGIT3 EQU h'15'

COUNTER12 EQU h'16'

DIGIT5 EQU h'l 7'

DIGIT6 EQU h'18'

DIGIT7 EQU h'19'

COUNTERS EQU h'20'

Dl EQUh'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQUh'24'

COUNTX EQU h'25'

;initializations

115

GUNl EQU h'26'

GUN2 EQU h'27'

AYl EQU h'28'

AY2 EQU h'29'

INIT

;d4=02

BSF STATUS,5 ;Jump Bankl

CLRF TRISB ;All pins of PortB is output

CLRF TRISA ;All pins of PortA is output

BCF STATUS,5 ;Jump Banko

CLRF PORTA ;All pins are at logic O level

CLRF PORTB ;All pins are at logic O level

MAIN

MOVLWh'02'

MOVWFD4

MOVLWh'03'

MOVWFD3

MOVLWh'05'

MOVWFD2

MOVLWh'09'

MOVWFDl

MOVLWh'03'

MOVWFGUNl

MOVLWh'Ol'

MOVWFGUN2

;d3=03

;clock=23 :59

;d2=05

;dl=09

;day=31

116

MOVLWh'Ol'

MOVWF AYl

MOVLWh'02'

MOVWFAY2

GOTO LOOPN99

OOPAl

MOVLWh'OO'

MOVWF AYl

MOVLWh'Ol'

MOVWFAY2

MOVLWh'OO'

MOVWFGUNl

MOVLWh'Ol'

MOVWFGUN2

GOTOLOOPA5

LOOPA2

MOVLWh'OO'

MOVWFAY2

LOOPA3

MOVLWh'OO'

MOVWFGUNl

LOOPA4

MOVLWh'OO'

MOVWFGUN2

;month=l2

;clearing the first digit of month

;clearing the second digit of month and initial it by 1

;clearing the first digit of day

;clearing the second digit of day and initial it by 1

;clearing the second digit of month

;clearing the first digit of day

;clearing the second digit of day

117

;clearing the first digit of hoursLOOP AS

MOVLWh'OO'

MOVWFD4

LOOPN77

MOVLWh'OO'

MOVWFD3

LOOPN66

MOVLWh'OO'

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFD1

LOOPN99

MOVLWOX048

MOVWF COUNTERS

;clearing the second digit of hours

;clearing the first digit of minutes

;clearing the second digit of minutes

LOOPY

MOVLWOX037

MOVWF COUNTX

LOOPVV

MOVLWh'OO'

MOVWFPORTA

MOVLWh'CO'

MOVWFPORTB

CALL DELAY

;loop for one minute

;clears porta, clears selection of hex displays

;outputs O

118

CALL DELAY

CALL DELAY

CALL DELAY

DECFSZ COUNTX,F

GOTOLOOPVV

BCFPORTA,4

MOVLWOX038

MOVWF COUNTER12

LOOP123

MOVLWh'OO'

MOVWFPORTA

MOVFAY2,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'Ol'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVF AYl,W

CALL SEVNS TABL

number

MOVWFPORTB

;loop for a second without led light

;clears porta, clears selection of hex displays

;entering ay2 to w register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the first hex display

;by using porta

;give a milisecond
lo

~
;clears porta, clears selection of hex displays

;entering ay2 tow register

;changing it to the seven segment for the same

;output this number by using portb

119

M.O\lL W \.füT ·,se\ectin.g the secon.d. hex. d.isl)\ay

M.OVWll VOKIA ·,b'f usıng l)Orta

CALLDELA'Y ;givea mi\isecono.

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVF GUN2,W ;entering gun2 tow register

CALL SEVNS_TABL ;changing it to the seven segment for the same

number

MOVWFPORTB

MOVLWh'04'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFGUNl,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'08'

MOVWFPORTA

CALL DELAY

DECFSZ COUNTER12,F

GOTO LOOP123

one sec

;output this number by using portb

;selecting the third hex display

; by using porta

;give a milisecond

;clears porta, clears selection of hex displays

;entering gunl tow register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the fourth hex display

; by using porta

;loop for see all hex display at the same time for

120

DECFSZ COUNTERS,F

GOTOLOOPV

BSFPORTA,4

MOVLWh'09'

SUBWFD1,W

BTFSS STATUS,2

GOTOART221

GOTOLOOPl

ART221

INCFSZD1,F

GOTO LOOPN99

;loop for one minute

;test if first digit of minutes is 9

;if it is not 9

;ifitis9

;increment the first digit of minutes

;go back to the loop for one minute

LOO Pl

MOVLWh'05'

SUBWFD2,W

BTFSS STATUS,2

GOTOLOOP2

GOTOLOOPN2

LOOP2

INCFSZ D2,F

GOTO LOOPN55

LOOPN2

MOVLWh'03'

SUBWFD3,W

BTFSS STATUS,2

;test if the second digit of the minutes is 5

;if it is not 5

;if it is 5

;increment the second digit of minutes

;go back to the loop for one minute

;test if the first digit of the hours is 3

121

122

GOTOLOOP3 ;if it is not 3

GOTOLOOPN3 .if it is 3

LOOP3

INCFSZ D3,F ;increment the first digit of hours

GOTO LOOPN66 ;go back to the loop for one minute

LOOPN3

MOVLWh'02' ;test if the second digit of the hours is 2

SUBWFD4,W

BTFSS STATUS,2

GOTOLOOPSX ;if it is not 2

GOTOLOOPNS ;if it is 2

LOOPSX

INCFSZ D4,F ;increment the first digit of hours

GOTO LOOPN77 ;go back to the loop for one minute

LOOPNS

MOVLWh'Ol' ;test if the first digit of the days is 1

SUBWF GUN2,W

BTFSS STATUS,2

GOTOLOOPT2 ;if it is not 1

GOTOLOOPT3 ;if it is 1

LOOPT3

MOVLWh103' ;test if the second digit of the days is 3

SUBWF GUNl,W

BTFSS STATUS,2

GOTOLOOPT4

GOTOLOOPT5

LOOPT2

LOOPT4

MOVLWh'09'

SUBWF GUN2,W

BTFSS STATUS,2

GOTOLOOPT6

GOTOLOOPT7

LOOPT6

INCFSZ GUN2,F

GOTOLOOPA5

LOOPT7

INCFSZ GUNl,F

GOTOLOOPA4

LOOPT5

MOVLWh'02'

SUBWF AY2,W

BTFSS STATUS,2

GOTOLOOPM2

GOTOLOOPM3

LOOPM3

MOVLWh'Ol'

SUBWF AYl,W

;if it is not 3

;if it is 3

;test if the first digit of the days is 3

;if it is not 9

;ifitis9

;increment the first digit of days

;go back to the loop for one minute

;increment the second digit of days

;go back to the loop for one minute

;test if the first digit of the months is 2

;if it is not 2

;if it is 2

;test if the second digit of the months is 1

123

BTFSS STATUS,2

GOTOLOOPM4

GOTOLOOPAl

LOOPM2

LOOPM4

MOVLWh'09'

SUBWF AY2,W

BTFSS STATUS,2

GOTOLOOPM6

GOTOLOOPM7

LOOPM6

INCFSZ AY2,F

GOTOLOOPA3

LOOPM7

INCFSZ AYl,F

GOTOLOOPA2

;if it is not 1

;if it is 1

;NOT NECESSARY

;test if the first digit of the months is 9

;if it is not 9

;if it is 9

;increment the first digit of months

;go back to the loop for one minute

;increment the second digit of months

;go back to the loop for one minute

SEVNS TABL

ADDWF PCL,F ;PCL=W(h'041)+PCJ..,.

RETLW h'CO';O

RETLW h'F9' ; 1

RETLW h'A4' ;2

RETLW h'BO';3

RETLW h'99' ;4

RETLWh'92' ;5

124

LOOP99 ;delay loop for a milisecond
"'

RETL W h'82' ;6

RETL W h'F8' ;7

RETL W h'80' ;8

RETL W h'90' ;9

RETL W h'88' ;A

RETL W h'83' ;B

RETL W h'C6' ;C

RETL W h'Al' ;D

RETL W h'86' ;E

RETL W h'8E' ;F

RETLWh'7F' ;.

DELAY

MOVLWh'04'

MOVWF COUNTER! I

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

DECFSZ COUNTER22,F

GOTOLOOP99

DECFSZ COUNTERI 1,F

GOTOLOOP9X

RETURN

END

125

126

Appendix 3 - Clock program.

MAHMUT KISACIK 20034186 CLOCK USING PIC16F84A

LIST p=16f84A

#include p16f84A.inc

;mplab command

;mplab command

_CONFIG _XT_OSC & _ WDT_OFF & _PWRTE_ON & _CP_OFF ;crystal osc

DIGITl EQU h'OD'

DIGIT2 EQU h'OE'

COUNT EQU h'OF'

COUNTERl 1 EQU h'12' .initializations

COUNTER22 EQUh'13'

DIGIT4 EQU h'14'

DIGIT3 EQU h'15'

COUNTER12 EQU h'l6'

DIGITS EQU h'17'

DIGIT6 EQU h'18'

DIGIT7 EQU h'l9'

COUNTERS EQU h'20'

Dl EQUh'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQUh'24'

COUNTX EQU h'25'

INIT

BSF STATUS,5 ;Jump Bankl

CLRF TRISB ;All pins of PortB is output

CLRF TRIS A ;All pins of PortA is output

BCF STATUS,5 ;Jump Bank.O

CLRF PORTA ;All pins are at logic O level

CLRF PORTB ;All pins are at logic O level

MAIN

MOVLWh'02'

MOVWFD4

MOVLWh'03'

MOVWFD3

MOVLWh'05'

MOVWFD2

MOVLWh'09'

MOVWFD1

GOTO LOOPN99

LOOPN88

MOVLWh'OO'

MOVWFD4

LOOPN77

MOVLWh'OO'

MOVWFD3

LOOPN66

;initialization clock 23:59

;clearing second digit of hours

;clearing first digit of hours

127

MOVLWh'OO'

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFD1

LOOPN99

MOVLWOX048

MOVWF COUNTERS

LOOPV

MOVLWOX037

MOVWF COUNTX

LOOPVV

MOVLWh'OO'

MOVWFPORTA

MOVLWh'CO'

MOVWFPORTB

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

DECFSZ COUNTX,F

GOTOLOOPVV

BCFPORTA,4

;clearing second digit of minutes

;clearing first digit of minutes

;loop for one minute

;clears porta, clears selection of hex displays

;output O

;delay loop for a second without led light

128

MOVLWOX038

MOVWF COUNTER12

LOOP123

MOVLWh'OO'

MOVWFPORTA

MOVFD1,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'Ol'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFD2,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'02'

MOVWFPORTA

CALL DELAY

;clears porta, clears selection of hex displays

;entering dl tow register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the first hex display

;by using porta

;give a millisecond delay

;clears porta, clears selection of hex displays

;entering d2 to w register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the second hex display

;by using porta

;give a millisecond delay

129

MOVLWh'OO'

MOVWFPORTA

MOVFD3,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'04'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFD4,W

CALL SEVNS TABL

number

MOVWFPORTB

MOVLWh'08'

MOVWFPORTA

CALL DELAY

DECFSZ COUNTER12,F

GOTO LOOP123

same time

DECFSZ COUNTERS,F

GOTOLOOPV

;clears porta, clears selection of hex displays

;entering d3 to w register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the third hex display

;by using porta

;give a millisecond delay

;clears porta, clears selection of hex displays

;entering d4 to w register

;changing it to the seven segment for the same

;output this number by using portb

;selecting the fourth hex display

;by using porta

;give a millisecond delay

;one second delay to see four hex display at the

;loop for one minute

130

BSF PORTA,4

MOVLWh'09'

SUBWFD1,W

BTFSS STATUS,2

GOTOART221

GOTOLOOPl

ART221

INCFSZD1,F

GOTO LOOPN99

LOO Pl

MOVLWh'05'

SUBWFD2,W

BTFSS STATUS,2

GOTOLOOP2

GOTOLOOPN2

LOOP2

INCFSZD2,F

GOTO LOOPN55

LOOPN2

MOVLWh'03'

SUBWFD3,W

BTFSS STATUS,2

GOTOLOOP3

GOTOLOOPN3

;test if first digit of minutes is 9

;if it is not 9

;if it is 9

;increment the first digit of minutes

;go back to the one minute loop

;test if second digit of minutes is 5

;if it is not 5

;if it is 5

;increment the second digit of minutes

;go back to the one minute loop
I'

;test if first digit of hours is 3

;if it is not 3

;if it is 3

131

132

LOOP3

INCFSZD3,F

GOTO LOOPN66

LOOPN3

MOVLWh'02'

SUBWFD4,W

BTFSS STATUS,2

GOTOLOOPSX

GOTOLOOPNS

LOOP5X

INCFSZ D4,F

GOTO LOOPN77

LOOPNS

GOTO LOOPN88

;increment the first digit of hours

;go back to the one minute loop

;test if second digit of hours is 2

;if it is not 2

;if it is 2

;increment the second digit of hours

;go back to the one minute loop

;go back and initializing clock

SEVNS TABL

ADDWF PCL,F ;PCL=W(h'04')+PCL.

RETL W h'CO' ;O

RETL W h'F9' ; 1

RETL W h'A4' ;2

RETL W h'BO' ;3

RETL W h'99' ;4

RETL W h'92' ;5

RETL W h'82' ;6

RETL W h'F8' ;7

RETL W h'80' ;8

RETL W h'90' ;9

RETL W h'88' ;A

RETL W h'83' ;B

RETL W h'C6' ;C

RETL w h'Al I ;D

RETL W h'86' ;E

RETL W h'8E' ;F

RETLWh'7F' ;.

DELAY

MOVLWh'04'

MOVWF COUNTERl 1

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTOLOOP99

DECFSZ COUNTERl l,F

GOTOLOOP9X

RETURN

END

;delay loop for a milisecond

133

Appendix 4 - Light on-off flasher program.

MAHMUT KISACIK 20034186 LIGHT ON OFF FLASHER USING PIC16F84A

all working principle is same with clock except the outputs

LIST p=l6f84A

#include pl6f84A.inc

_CONFIG _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP _OFF

DIGITl EQU h'OD'

DIGIT2 EQU h'OE'

COUNT EQU h'OF'

COUNTERl 1 EQU h'l2'

COUNTER22 EQUh'l3'

DIGIT4 EQU h'l4'

DIGIT3 EQU h'l5'

COUNTER12 EQU h'16'

DIGITS EQU h'l 7'

DIGIT6 EQU h'l8'

DIGIT7 EQU h'l9'

COUNTERS EQU h'20'

Dl EQUh'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQUh'24'

Dll EQU h'25'

134

D12 EQU h'26'

D 13 EQU h'27'

D14 EQU h'28'

COUNTX EQU h'29'

test EQU h'30'

D21 EQU h'31'

D22 EQU h'32'

D23 EQU h'33'

D24 EQU h'34'

INIT

BSF STATUS,5 ;Jump Bankl

CLRF TRISB ;All pins of PortB is output

CLRF TRIS A ;All pins of PortA is output

BCF STA TUS,5 ;Jump Bank.O

CLRF PORTA ;All pins are at logic O level

CLRF PORTB ;All pins are at logic O level

MAIN

bcfPORTA,O

bcfPORTA,1

bcfPORTA,2

bcfPORTA,3

bcfPORTB,O

bcf PORTB,1

bcfPORTB,2

;clearing all porta O, 1 ,2,3

;clearing all portb 0,1,2,3,4,5,6,7

135

bcfPORTB,3

bcfPORTB,4

bcfPORTB,5

bcfPORTB,6

bcfPORTB,7

MOVLWh'02'

MOVWFD4

MOVLWh'03'

MOVWFD3

MOVLWh'05'

MOVWFD2

MOVLWh'09'

MOVWFDl

GOTO LOOPN99

LOOPN88

movlwh'Ol'

movwftest

;BSF PORTB,O

;BSF PORTB,1

MOVLWh'OO'

MOVWFD4

LOOPN77

MOVLWh'OO'

;initializing clock 23:59

;test=Ol

;open portb O and 1

;so,open the light and feeder this for the on of program

;clearing the second digit of hours

;clearing the first digit of hours

136

MOVWFD3

LOOPN66

MOVLWh'OO'

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFD1

LOOPN99

MOVLWOX048

MOVWF COUNTERS

LOOPV

MOVLWOX037

MOVWF COUNTX

LOOPVV

MOVLWh'OO'

MOVWFD11

MOVLWh'Ol'

MOVWFD12

MOVLWh'02'

MOVWFD13

MOVLWh'03'

MOVWFD14

MOVLWh'OO'

;clears the second digit of minutes

;clears the first digit of minutes

.loop for a minute

;loop for a second

;dl l=OO=L

;d12=01=I ~

;d13=02=G

;d14=03=H

;clears porta, clears selection of hex displays

137

NWfl>ORTA

MOVFD11,W

;enters d 12 to w register

;enters d11 to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

-·~OVWF PORTB ;output this number by using portb

M.O"\J\...~ \\\)\' \"::.e\ec\'m% \l\e \.\.t'::.\\\.~~ ~\~~\a:ı

MG\TWf ı>GRTA ;by using l)Orta

C.ı\.LLDELA.'{ ;loo\) for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD12,W

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWFPORTB

MOVLWh'02'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFD13,W

;output this number by using portb

;selecting the second hex display

;by using porta

;loop for a milisecond

;clears porta, clears selection of hex displays

;enters d13 tow register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'04' ;selecting the third hex display

MOVWF PORTA ;by using porta

138

;loop for a second

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVF Dl4,W ;enters d14 tow register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'08' ; selecting the fourth hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

DECFSZ COUNTX,F

GOTOLOOPVV

BCF PORTA,4

MOVLWOX038

MOVWF COUNTER12

LOOP123

MOVLWh'Ol'

subwf test,w

BTFSS STATUS,Z

goto off

MOVLWh'04'

MOVWFD21

MOVLWh'OS'

;loop for a second

;check if tcst,> 1

;if it not 1 pass and goto off section

;continue if it is 1, d24=04=0

;d22=0S=n

139

MOVWFD22

MOVLWh'05'

MOVWFD23

MOVLWh'05'

MOVWFD24

;d23=05=n

;d24=05=n

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWF PORTA ;enters d21 tow register

MOVFD21,W

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'Ol' ; selecting the first hex display

MOVWF PORTA ;by using potta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD22,W ;enters d22 to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'02' ; selecting the second hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

140

MOVLWh'OO'

MOVWFPORTA

MOVFD23,W

;clears porta, clears selection of hex displays

;enters d23 to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'04' ; selecting the third hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD24,W ;enters d24 to w register

CALL SEVNS_TABL ;changing it to the seven segment for the same number

;output this number by using portb

;selecting the fourth hex display

;by using porta

;loop for a milisecond

;pass the off section

;off section starts

MOVWFPORTB

MOVLWh'08'

MOVWFPORTA

CALL DELAY

goto dong

off

MOVLWh'04'

MOVWFD21

MOVLWh'06'

MOVWFD22

MOVLWh'06'

;d21=04=0

;d22=06=F

;d23=06=F

141

MOVWFD23

MOVLWh'06'

MOVWFD24

MOVLWh'OO'

MOVWFPORTA

MOVFD21,W

;d24=06=F

;clears porta, clears selection of hex displays

.enters d2 l to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'O l' ;selecting the first hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVL W h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD22,W ;enters d22 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWFPORTB

MOVLWh'02'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFD23,W

;output this number by using portb

;selecting the second hex display

;by using porta

;loop for a milisecond

;clears porta, clears selection of hex displays

;enters d23 to w register

142

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'04' ;selecting the third hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD24,W ;enters d24 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'08' ;selecting the fourth hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

goto dong

dong

DECFSZ COUNTER12,F

GOTO LOOP123

DECFSZ COUNTERS,F

GOTOLOOPV

;loop for a second

;loop for a minute

MOVLWh'Ol'

SUBWFDI,W

BTFSS STATUS,2

;check if the D 1 is 1

143

GOTOLOOPKK

BCFPORTB,1

LOOPKK

MOVLWh'09'

SUBWFDl,W

BTFSS STATUS,2

GOTO ART221 ;if it is not 1

;if it is not 1

;if it is 1 turn off the feeder

;check if the first digit of minutes is 1

GOTO LOOPl ;ifit is 1

ART221

INCFSZ D 1 ,F ;increment the first digit of minutes

GOTO LOOPN99 ;go back to the one minute loop

LOO Pl

MOVLWh'OO'

MOVWFtest

BCFPORTB,O

MOVLWh'05'

SUBWF D2,W -

BTFSS STATUS,2

GOTOLOOP2

GOTOLOOPN2

LOOP2

;test=O

;turn off the light

;check if the second digit of minutes is 5

;if it not 5

;if it is 5

INCFSZ D2,F ;increment the second digit of minutes

GOTO LOOPN55 ;go back to the one minute loop

LOOPN2

144

MOVLWh'03'

SUBWFD3,W

BTFSS STATUS,2

GOTOLOOP3

GOTOLOOPN3

LOOP3

;check if the first digit of hours is 3

;if it is not 3

;if it is 3

INCFSZ D3,F ;increment the first digit of hours

GOTO LOOPN66 ;go back to the one minute loop

LOOPN3

MOVLWh'02'

SUBWFD4,W

BTFSS STATUS,2

GOTOLOOP5X

GOTOLOOPN5

LOOP5X

INCFSZD4,F

GOTO LOOPN77

LOOPN5

GOTO LOOPN88

SEVNS TABL

;check if the second digit of the hours is 2

;if it is not 2

;ifitis2

;increment the second digit of hours

;go back to the one minute loop

;go back to the one minute loop

ADDWF PCL,F ;PCL=W(h'04')+PCL.

RETL W h'C7' ;L

RETL W h'F9' · I
a '

RETLW h'82' ·G'

145

RETLWb'ı9' Jl

RETL W h'CO' ;O

RETL W h'AB' ;n

RETL W h'8E' ;F

DELAY

MOVLWh'04'

MOVWF COUNTERl 1

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTOLOOP99

DECFSZ COUNTERl 1,F

GOTOLOOP9X

RETURN

END

146

;delay loop for a milisecond

Appendix 5 -Feed on-off flasher program.

MAHMUT KISACIK 20034186 FEED ON-OFF FLASHER USING PIC16F84A

LIST p=16:f84A ;mplab command

#include p 16:f84A.inc ;mplab command

CONFIG XT OSC & WDT OFF & PWRTE ON & CP OFF- - - -

DIGITl EQUh'OD'

DIGIT2 EQUh'OE'

COUNT EQUh'OF'

COUNTERl 1 EQU h'l2' ;initializations

COUNTER22 EQUh'l3'

DIGIT4 EQU h'14'

DIGIT3 EQUh'15'

COUNTER12 EQU h'16'

DIGITS EQU h'17'

DIGIT6 EQU h'l8'

DIGIT? EQUh'l9'

COUNTERS EQU h'20'

Dl EQU h'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQUh'24'

Dll EQUh'25'

147

D12 EQU h'26'

D13 EQU h'27'

D14 EQU h'28'

COUNTX EQUh'29'

test EQUh'30'

D21 EQUh'31'

D22 EQUh'32'

D23 EQU h'33'

D24 EQUh'34'

INIT

BSF STATUS,5 ;Jump Bank.1

CLRF TRISB ;All pins of PortB is output

CLRF TRISA ;All pins of PortA is output

BCF STATUS,5 ;Jump BankO

CLRF PORTA ;All pins are at logic O level

CLRF PORTB ;All pins are at logic O level

MAIN

bcfPORTA,O

bcfPORTA,l

bcfPORTA,2

bcfPORTA,3

bcfPORTB,O

bcfPORTB,1

bcfPORTB,2

;clearing all ports of porta

148

~ci"\lOR'"t~~

bcfPORTB,4

bcfPORTB,5

bcfPORTB,6

bcfPORTB,7

MOVLWh'02'

MOVWFD4

MOVLWh'03'

MOVWFD3

MOVLWh'OS'

MOVWFD2

MOVLWh'09'

MOVWFDl

GOTO LOOPN99

LOOPN88

movlwh'Ol'

movwftest

BSFPORTB,O

BSF PORTB,l

MOVLWh'OO'

MOVWFD4

LOOPN77

MOVLWh'OO'

;clearing all ports of portb

;initializing clock 23:59

;test=Ol

;this commands work in on-off program

;this commands work in on-off program

;clears the second digit of hours

;clears the first digit of hours

149

MOVWFD3

LOOPN66

MOVLWh'OO'

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFDl

LOOPN99

MOVLWOX048

MOVWF COUNTERS

LOOPV

MOVLWOX037

MOVWF COUNTX

LOOPVV

MOVLWh'OO'

MOVWFDll

MOVLWh'Ol'

MOVWFD12

MOVLWh'02'

MOVWFD13

MOVLWh'03'

MOVWFD14

;clears the second digit of minutes

;clears the first digit of minutes

;loop for one minute

;loop for one second

;dll=OO=F

;dl2=0l=E

;d13=02=E

;dl4=03=d

150

MOVLWh'OO'

MOVWFPORTA

MOVF Dll,W

;clears porta, clears selection of hex displays

;enters dl 1 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'Ol' ;selecting the first hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD12,W ;enters d 12 to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWFPORTB

MOVLWh'02'

MOVWFPORTA

CALL DELAY

MOVLWh'OO'

MOVWFPORTA

MOVFD13,W

;output this number by using portb

;selecting the first hex display

;by using porta

;loop for a milisecond

;clears porta, clears selection of hex displays

;enters d 13 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWFPORTB

MOVLWh'04'

;output this number by using portb

;selecting the third hex display

151

152

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVF Dl4,W ;enters dl4 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'08' ;selecting the fourth hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

DECFSZ COUNTX,F

GOTO LOOPVV ;loop for a second

BCFPORTA,4

MOVLWOX038

MOVWF COUNTER12 ;loop for a second

LOOP123

MOVLWh'Ol' ;test=Ol

subwf test? w

BTFSS STATUS,Z

goto off

MOVLWh'04'

;if test is not 1 pass to the off loop

;d21=04=0

MOVWFD21

MOVLWh'05' ;d22=05=F

MOVWFD22

MOVLWh'05' ;d23=05=F

MOVWFD23

MOVLWh'05' ;d24=05=F

MOVWFD24

MOVLWh'OO'

MOVWFPORTA

MOVFD21,W

;clears porta, clears selection of hex displays

;enters d2 l to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'Ol' ;selecting the first hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD22,W ;enters d22 to w register

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'02' ;selecting the second hex display

MOVWF PORTA ;by using porta

153

CALL DELAY ;loop for a milisecond

MOVLWb'OO'

MOVWFPORTA

MOVFD23,W

;clears porta, clears selection of hex displays

;enters d23 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'04' ;selecting the third hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD24,W ;enters d24 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWFPORTB ;output this number by using portb

MOVLWh'08' ;selecting the fourth hex display

MOVWFPORTA ;by using porta

CALL DELAY .loopfor a milisecond

goto dong

off

MOVLWh'04'

MOVWFD21

MOVLWh'06'

154

MOVWFD22

MOVLWh'06'

MOVWFD23

MOVLWh'06'

MOVWFD24

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVF D21,W ;enters d21 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'Ol' ;selecting the first hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVF D22,W ;enters d22 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'02' ;selecting the secoond hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

155

156

MOVLWh'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD23,W ;enters d23 to w register

CALL SEVNS TABL ;changing it to the seven segment for the same

number

MOVWF PORTB ;output this number by using portb

MOVL W h'04' ;selecting the third hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porta, clears selection of hex displays

MOVWFPORTA

MOVFD24,W ;enters d24 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'08' ;selecting the fourth hex display

MOVWF PORTA ;by using porta

CALL DELAY ;loop for a milisecond
I'

goto dong

dong

DECFSZ COUNTER12,F

GOTO LOOP123 ;loop for a second

DECFSZ COUNTERS,F

GOTOLOOPV ;loop for a minute

;check if dl is 1MOVLWh'Ol'

SUBWFD1,W

BTFSS STATUS,2

GOTO LOOPKK ;if it is not 1

MOVL W h'OO' ;if it is 1

MOVWF test ;make test=O

BCF PORTB,l ;turn off the feed

LOOPKK

MOVLW h'09' ;check if the first digit of minutes is 9

SUBWFD1,W

BTFSS STATUS,2

GOTO ART221 ;if it is not 9

GOTO LOOPl ;ifit is 9

ART221

INCFSZ Dl,F ;increment the first digit of minutes

GOTO LOOPN99 ;go back to the one minute loop

LOO Pl

BCFPORTB,O

MOVLWh'OS'

SUBWFD2,W

BTFSS STATUS,2

GOTOLOOP2

GOTOLOOPN2

LOOP2

;tum off the light

;check if the second digit of the minutes is 5

;if it is not 5

;if it is 5

157

INCFSZ D2,F ;increment the second digit of minutes

GOTO LOOPN55 ;go back to the one minute loop

LOOPN2

MOVLW h'03' ;check if the first digit of the hours is 3

SUBWFD3,W

BTFSS STATUS,2

GOTO LOOP3 ;if it not 3

GOTO LOOPN3 ;if it is 3

LOOP3

INCFSZ D3,F ;increment the first digit of the hours

GOTO LOOPN66 ;go back to the one minute loop

LOOPN3

MOVLW h'02' ;check if the second digit of the hours is 2

SUBWFD4,W

BTFSS STATUS,2

158

GOTOLOOP5X

GOTOLOOPN5

LOOP5X

;if it is not 2

;if it is 2

INCFSZ D4,F ;increment the second digit of the hours

GOTO LOOPN77 ;go back to the one minute loop

LOOPN5

GOTO LOOPN88 ;go back to the one minute loop

SEVNS TABL

ADDWF PCL,F ;PCL=W(h'04')+PCL.

RETL W h'8E' ;F

RETL W h'86' ;E

RETL W h'86' ;E

RETLWh'Al' ;d

RETLWh'CO' ;O

RETL W h'AB' ;n

RETLW h'8E' ;F

DELAY

MOVLWh'04'

MOVWF COUNTERl 1

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTO LOOP99

DECFSZ COUNTERl 1,F

GOTOLOOP9X

RETURN

END

;delay a milisecond

159

Appendix 6 - Light and feeding On-off program.

MAHMUT KISACIK 20034186 LIGHT AND FEEDING ON-OFF

;MECHANISM USING PIC16F84A

LIST p=16f84A

#include p16f84A.inc

;mplab command

;mplab command

CONFIG XT OSC & WDT OFF & PWRTE ON & CP OFF ;crystal osc- - - - -

DIGITl EQU h'OD'

DIGIT2 EQU h'OE'

COUNT EQU h'OF'

COUNTERl 1 EQU h'l2' ;initializations

COUNTER22 EQUh'l3'

DIGIT4 EQU h'l4'

DIGIT3 EQU h'l5'

COUNTER12 EQU h'16'

DIGITS EQU h'l 7'

DIGIT6 EQU h'18'

DIGIT7 EQU h'19'

COUNTERS EQU h'20'

Dl EQUh'21'

D2 EQUh'22'

D3 EQUh'23'

D4 EQUh'24'

160

COUNTX EQUh'25'

INIT

BSF STATUS,5 ;Jump Bankl

CLRFTRISB ;All pins of PortB is output

CLRFTRISA ;All pins of PortA is output

BCF STATUS,5 ;Jump BankO

CLRFPORTA ;All pins are at logic O level

CLRFPORTB ;All pins are at logic O level

MAIN

bcfPORTA,O

bcfPORTA,1 ;clear all ports of porta

bcfPORTA,2

bcfPORTA,3

bcfPORTB,O

bcfPORTB,1

bcfPORTB,2

bcfPORTB,3

bcfPORTB,4 ;clear all ports of portb
!I>

bcfPORTB,5

bcfPORTB,6

bcfPORTB,7

MOVLWh'02'

MOVWFD4

MOVLWh'03'

161

MOVWFD3

MOVLWh'05'

MOVWFD2

MOVLWh'09'

MOVWFDl

GOTO LOOPN99

LOOPN88

BSF PORTB,O

BSFPORTB,l

MOVLWh'OO'

MOVWFD4

LOOPN77

MOVLWh'OO'

MOVWFD3

LOOPN66

MOVLWh'OO'

MOVWFD2

LOOPN55

MOVLWh'OO'

MOVWFDl

LOOPN99

MOVLWOX048

MOVWF COUNTERS

LOOPV

;initializing clock=23:59

;tum on feed

;tum on light

;clears the first digit of hours

;clears the second digit of hours

.clears the first digit of minutes

;clears the second digit of minutes

;loop for one minute

162

MOVLWOX037

MOVWF COUNTX

LOOPVV

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

DECFSZ COUNTX,F

GOTOLOOPVV

MOVLWOX038

MOVWF COUNTER12

LOOP123

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

DECFSZ COUNTER12,F

GOTO LOOP123

DECFSZ COUNTERS,F

GOTOLOOPV

MOVLWh'Ol'

SUBWFD1,W

BTFSS STATUS,2

GOTOLOOPKK

;make some delay to work synchronously

;to the other programs

;same that above

;check if the first digit of the clock is 1

;if it not 1

163

;check if the first digit of minutes is 9

BCFPORTB,1

LOOPKK

MOVLWh'09'

SUBWFDl,W

BTFSS STATUS,2

GOTO AR T22 l ;if it is not 9

;if it is 1,turn off the feed

GOTO LOOPl ;ifit is 9

ART221

INCFSZ Dl,F ;increment the first digit of the minutes

GOTO LOOPN99 ;go back to the one minute loop

LOO Pl

BCF PORTB,O ;tum off the light

MOVLW h'05' ;check if the second digit of the minutes is 5

SUBWFD2,W

BTFSS STATUS,2

GOTO LOOP2 ;if it not 5

GOTO LOOPN2 ;if it is 5

LOOP2

INCFSZ D2,F ;increment the second digit of the minutes

GOTO LOOPN55 ;go back to the one minute loop

LOOPN2

MOVLWh'03'

SUBWFD3,W

BTFSS STATUS,2

;check if the first digit of the hours is 3

164

GOTO LOOP3 ;if it is not 3

GOTO LOOPN3 ;if it is 3

LOOP3

INCFSZ D3,F ;increment the first digit of the hours

GOTO LOOPN66 ;go back to the one minute loop

LOOPN3

MOVLWh'02'

SUBWFD4,W

BTFSS STATUS,2

GOTO LOOP5X ;if it not 2

;check if the second digşt of the hours is 2

GOTO LOOPN5 ;ifit is 2

LOOP5X

INCFSZ D4,F ;increment the second digit of the hours

GOTO LOOPN77 ;go back to the one minute loop

LOOPN5

GOTO LOOPN88 ;go back to the one minute loop

SEVNS TABL

ADDWF PCL,F ;PCL=W(h'04')+PCJ.a.

RETL W h'CO' ;O

RETL W h'F9' ; 1

RETL W h'A4' ;2

RETL W h'BO' ;3

RETLWh'99' ;4

RETLWh'92' ;5

165

RETLWh'82' ;6

RETLW h'F8' ;7

RETL W h'80' ;8

RETL W h'90' ;9

RETL W h'88' ;A

RETL W h'83' ;B

RETL W h'C6' ;C

RETLWh'Al' ;D

RETL W h'86' ;E

RETL W h'8E' ;F

RETL W h'7F' ;.

DELAY

MOVLWh'04'

MOVWF COUNTER! 1

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTO LOOP99

DECFSZ COUNTER! 1,F

GOTOLOOP9X

RETURN

END

;delay loop for a milisecond

166

Appendix 7 - Digital thermometer and heater control program.

MAHMUT KISACIK 20034186 DIGITAL THERMOMETER & HEATER

CONTROL USING ;PIC16F877

LIST p=l6f877

#include pl 6f877.inc

;mplab command

;mplab command

_CONFIG _XT_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF ;crystal osc

COUNTERl l EQU h'OF'

COUNTER22 EQUh'lO'

COUNTER12 EQUh'll'

V7 EQU h'l2' ;initializations

Dl EQUh'l3'

D2 EQUh'l4'

D3 EQUh'l5'

COUNTX EQUh'l6'

Zl EQU h'l7'

Z2 EQU h'l8'

RESULTL EQU h'l9'

GEC EQUh'20'

GECX EQUh'21'

Gl EQUh'22'

G2 EQUh'23'

G3 EQUh'24'

167

04 EQUh'25'

GS EQUh'26'

06 EQUh'27'

V8 EQUh'28'

V9 EQUh'29'

vıo EQUh'30'

INIT

BSF STATUS,5 ;Jump Bankl

movlw b'OOOOOOOl' ; input for analogue temp sensor

movwf TRISA

CLRF TRISB ;All pins of PortB is output

CLRF TRISC ;All pins of Porte is output

CLRFTRISD ;All pins of Portd is output

BCF STATUS,5 ;Jump Bank.O

CLRFPORTC ;All pins are at logic O level

CLRFPORTD ;All pins are at logic O level

CLRFPORTB ;All pins are at logic O level

CLRFPORTA ;All pins are at logic O level
I"

MAIN

BSF STATUS,RPO ;jump bank 1

168

MOVLWOxOl ;porta O is analog output

MOVWFTRISA

MOVLW0x8E ;ref=vdd ,adfm=1

MOVWF ADCONl

BCF STATUS,RPO ;jump bank O

MOVLWOX41

MOVWF ADCONO

CEVIRT

CLRF TRISD

CLRF TRISC

;fosc/8 because of 4mhz crystal,A/D is active now

BSF ADCONO,GO ;start to AID converter

MOVLWh'OA'

MOVWFGECX

ART ;small delay loop for getting temp correctly

DECFSZ GECX,F

GOTO ART

BAK.LE

BTFSC ADCON0,2 ;is converting finished or not

GOTO BAK.LE ;if it is not

BSF STATUS,5 ;finished, jump to bankl

MOVF ADRESL,w ;read low 8 bit

169

BCF STATUS,5 ;jump banko

MOVWF RESULTL ; keep the bits in resultl

BCF STATUS,C

RRF RESULTL,1 ;divide the number by two

INCF RESULTL,f ;get the correct temperature by six times adding

INCF RESULTL,f

INCF RESULTL,f

INCF RESUL TL,f

INCF RESUL TL,f

INCF RESUL TL,f

CLRFDl

CLRFD2

CLRFD3

MOVF RESUL TL,w ;enters resultl to w register

MOVWFGEC ;enters w to gee

MOVLW .100

Bl ;if the number is 037 degree dl =O d2=3 d3=7

INCF Dl,f ;increment the first character

SUBWF GEC,f

BTFSC STATUS,C

GOTO Bl

DECF Dl,f ;decrement the first character

ADDWFGEC,f

MOVLW .10

B2 !I>

INCF D2,f ;increment the second character

SUBWF GEC,f

BTFSC STATUS,C

GOTOB2

DECF D2,f ;decrement the second character

ADDWFGEC,f

170

MOVFGEC,w

MOVWFD3

MOVLWh'OA'

MOVWFZl

MOVLWh'OB'

MOVWFZ2

MOVLWh'll'

MOVWFG6

BCF PORTA,5;

MOVLWh'Ol'

SUBWFD2,W

BTFSS STATUS,2

GOTOART22X

GOTOLOOP2

ART22X

MOVLWh'02'

SUBWFD2,W

BTFSS STATUS,2

GOTOART221

GOTOLOOPl

ART221

MOVLWOX060

MOVWF COUNTX

LOOPVV

;zl =OA=O for celsius

;z2=0B=C

;g6=ll=F

;turn off the heater

;check if the second digit is O 1

;if it is not 1

;if it is 1

;check if the second digit is 2

;if it is not 2

;if it is 2

;loop for one second

171

MOVLWh'OO' ;clears porte, clears selection of hex displays

MOVLWh'OB' ;enters d24 to w register

MOVWFPORTC

MOVWFV7

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'Ol' ;selecting the first hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

172

MOVWFPORTC

MOVLWh'OD'

MOVWFV8 ;enters v8 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'02' ;selecting the second hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond
ı.

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'l2' ;enters v9 to w register

MOVWFV9

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'04' ;selecting the third hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a rnilisecond

MOVL W h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'05' ;enters v l O tow register

MOVWFVlO

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'08' ;selecting the fourth hex display

173

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'OC' ;enters gl tow register

MOVWFGl

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb
fl

MOVLW h' 1 O' ;selecting the fifth hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'OD' ;enters g2 tow register

MOVWFG2

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'20' ;selecting the sixth hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'OE' ;enters g3 to w register

MOVWFG3

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'40' ;selecting the seventh hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'OF' ;enters g4 to w register

MOVWFG4

CALL SEVNS_TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVLW h'80' ;selecting the eigth hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

174

DECFSZ COUNTX,F

GOTOLOOPVV ;loop for a second

MOVLWOX062

MOVWF COUNTER12

LOOP123

MOVLWh'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVFD2,W ;enters d2 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVLW h'Ol' ;selecting the first hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVL W h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVFD3,W ;enters d3 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

175

MOVWF PORTD ;output this number by using portd
"'

MOVL W h'02' ;selecting the second hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVF Zl,W ;enters z 1 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'04' ;selecting the third hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVL W h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVF Z2,W ;enters z2 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTD ;output this number by using portd

MOVL W h'08' ;selecting the fourth hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVLWh'OO'

MOVWFG5 ;enters g5 tow register

CALL SEVNS _TABL;changing it to the seven segment for the same number

176

MOVWFPORTB
!o

;output this number by using portb

MOVLWh'lO' ;selecting the fifth hex display

MOVWFPORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLWh'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVFG6,W ;enters g6 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'20' ;selecting the sixth hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVL W h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVFG6,W ;enters g6 to w register

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWF PORTB ;output this number by using portb

MOVL W h'40' ;selecting the seventh hex display

MOVWF PORTC ;by using porte

CALL DELAY ;loop for a milisecond

MOVLW h'OO' ;clears porte, clears selection of hex displays

MOVWFPORTC

MOVFG6,W ;enters g6 tow register

177

CALL SEVNS _TABL;changing it to the seven segment for the same number

MOVWFPORTB ;output this number by using portb

MOVLWh'80' ;selecting the eigth hex display

MOVWFPORTC ;by using porte

CALL DELAY ;loop for a milisecond

DECFSZ COUNTER12,F

GOTO LOOP123 ;loop for a second

GOTO MAIN ;go back and take the new temp

LOO Pl

MOVLWh'09' ;check if the third digit is 9

SUBWFD3,W

BTFSS STATUS,2

GOTOLOOP2 ;if it is not 9

GOTOART221 ;if it is 9

LOOP2

BSF PORTA,5 ;turn on heater

MOVLWh'lO'

MOVWFG6 ;G6=10

GOTOART221

SEVNS TABL

addwf PCL,f ; W + PCL -> PCL

RETLW h'CO' ;O

RETLW h'F9' ; 1

RETLW h'A4' ;2

RETLW h'BO' ;3

RETLW h'99' ;4

RETLW h'92' ;5

RETLW h'82' ;6

RETLW h'F8' ;7

RETLW h'80' ;8

RETLW h'90' ;9

178

RETL W h'9C' ;A o

RETL W H'C6' ;B C

RETL W H'89' ;c H

RETL W H'86' ;D E

RETL W H'88' ;E A

RETL W H'8F' ;F 1-

RETL W H'AB' ;10 n

RETLW H'8E' ;11 F

RETLW H'C7' ;12 L

DELAY

MOVLWh'04'

MOVWF COUNTERl l

;delay for a milisecond

LOOP9X

MOVLWh'FF'

MOVWF COUNTER22

LOOP99

DECFSZ COUNTER22,F

GOTOLOOP99

DECFSZ COUNTERl l,F

GOTOLOOP9X

RETURN

END

179

