
NEAR EAST UNIVERSITY

INSTITUTE OF APPLIED
AND SOCIAL SCIENCES

CACHING WEB PROXY SERVER USING JAVA
APPLICATION

Ahmed Abu Asi

MASTER THESIS

DEPARTMENT OF COMPUTER ,ENGIN.EERING

Nicosia 2003

<,

NEU JURYREPORT

DEPARTMENT OF Academic
COMPUTER ENGINEERING

STUDENT INFORMATION
Full Name Ahmed Abu Asi
Undergraduate degree BSc. Date Received Spring

2000
J.-~

Near East University CGPAInstitution 2.00
..::ı;:==-

THESIS
Title I Caching Web Proxy Server Using Java Application

Description t e, .
The aim of this thesis is~evelopmem:of client server based software to
implement caching web proxy servers based on network security.

Supervisor I Assoc.Prof Dr.Doğan İbrahim _ Departmen

~

Computer Engineering

JlIRY'S DECISION- 'i),,t-& ~ q/-- I t;-):_a,<..~-lı,c.~ ~ Ü ~ ~
I I

.ouslyI ey maioritv.

Assoc. Prof Dr., Rahib Abiyev; Chairman of the jury ,

Assist. Prof :Ör. Doğan Haktanır, Member

Assoc. Prof Dr. Ilham Huseynov, Member

Assoc.Prof Dr.Doğan İbrahim, Supervisor .

,---=..

Date
15/12/2003

Chairman of Department
Assoc. Prof Dr. Doğan İbrahim

APPROVALS

DEPARTMENT OF COMPUTER ENGINEERING
DEPARTMENTAL DECISION

Date: 15/12/2003

Subject: Completion ofM.Sc. Thesis

Participants: Assoc. Prof. Dr. Doğan İbrahim, Assoc. Prof. Rahib Abiyev ,Assist.Prof.
Dr. Doğan Haktanir, Assoc.Prof. Dr. Ilham Huseynov, Rami Raba, Alaa Eleyan,
Mohammed Janjawa, Ibaid Elsoud.

·,,

DECISION

We certify that the student whose number and name are given below, has fulfilled all
the requirements for a M . S. degree in Computer Engineering.

CGPA

960468 Ahmed Abu Asi 3

Assoc. Prof. Dr. Rahib Abiyev, Committee Chairman, Computer Engineering

~;;~
Assist. Prof. Dr. Doğan Haktanir, Commi~Member, Electricai and Electronic

Engineering Department, NEU

~
Assoc. Prof. Dr. Ilham Huseynov, Committe%ember, Computer Information System

Department, NEU

Assoc. Prof. Dr. Doğan Ibrahim, Supervisor, Chairman ofComputer
Engineering Department, NEU

Chairman ofDepartment
Assoc. Prof. Dr. Doğan İbrahim

Ahmed Abu Asi: Caching Web Proxy Server Using Java Application

Approval of the Graduate School of Applied and
Social Sciences

/
Prof. Dr. Fakhraddin Mamedov

Director

~-;>-

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee In Charge:

Assoc. Prof. Dr. Rahib Abiyev, C~ Chairman , Computer Engineering
d~epart~:,-NEU

~rg:;4
Assist. Prof. Dr. Doğan Baktanir, Onıı.ıf!itke Member, Electrical and

Electronic Engineering :vepartment, NEU

Assoc. Prof. Dr. Ilham Buseytiov(Coıt\n(iUee Member, Computer
Information System Department, NEU

Assoc. Prof. Dr. Doğan İbrahim, Supervisor, Chairman of
Computer Engineering Department, NEU

DEDICATION

I would like dedicating this thesis to myparents especially my dear mom and my

brother'' Mohamed'' they were the bestprovider to me during my study life.

ACKNOWLEDGMENT

I would like to thanks my supervisor Assoc.ProfDr Doğan İbrahim/or his advice and

comments on my thesis, andhis suggestions that helped to improve this thesis,

All errors are of course my own .

-
I would also like to thank my teachers especıally Assoc.Prof.Dr.Rahtb Abiyev

who supported me and taught me the true meaning of determination.

Finally, I want to thank myfriends who support me andfor their suggestions during

this thesis.

11

ABSTRACT

The designed Web proxy server is a specialized HTIP server. The primary use of a

proxy server is to allow internal clients access to the Internet from behind a firewall.

Anyone behind a firewall can now have full Web access past the firewall host with

minimum effort and without compromising security.

The proxy server listens for requests from clients within the firewall and forwards these

requests to remote internet servers outside the firewall. The proxy server reads

responses from the external servers and then sends them to internal client clients.

Jn the usual case, all the clients within a given subnet use the same proxy server. This

makes it possible for the proxy to cache documents efficiently that are requested by a

number of clients.

Jn this thesis I could implement the authentication protocol,caching, provision for the

adrninistartor to enforce rules like denying access to some sites and calculation of RTI

and effective bandwidth for each request.

The proxy server the proxy includes two applications. The main application starts up

and serves and a proxy server that listens to client's requests on a specific port, and

forwards the requests to a web server or to another web proxy (father proxy), then

sending the replies back to the clients. This application will be referred to as the proxy

application.

lJ1

LIST OF GLOSSARY

AccessControl List (ACL)
Associated with physical interface the packet came through.

Certificate Authorities
A trusted third-party organization or company that issues digital certificates used to

create digital signatures and public-private key pairs. The role of the CA in this process

is to guarantee that the individual granted the unique certificate is, in fact, who he or she

claims to be.

UUCP

UUCP (Unix-to-Unix CoPy) was originally developed to connect Unix (surprise!) hosts

together. UUCP has since been ported to many different architectures, including PCs,

Macs, Amigas, Apple lls, VMS hosts, everything else you can name, and even some

things you can't. Additionally, a number of systems have been developed around the

same principles as UUCP.

Content Distribution Network "CDN"
The physical network infrastructure of connecting global locations together which

allows for Web content to be distributed to the edges of the entire network

infrastructure.

Cryptographic algorithms
A cryptographic system that uses two keys - a public key known to everyone and a

private or secret key known only to the recipient of the message. An important element

to the public key system is that the public and private keys are related in such a way that

only the public key can be used to encrypt messages and only the corresponding private

key can be used to decrypt them. Moreover, it is virtually impossible to deduce the

private key if you know the public key.

ıv

Decrypt

The process of decoding data has been encrypted into a secret format Decryption

requires a secret key or password.

Digital Certificate

An attachment to an electronic message used for security purposes. The most common

use of a digital certificate is to verify that a user sending a message is who he or she

claims to be, and to provide the receiver with the means to encode a reply.

An individual wishing to send an encrypted message applies for a digital certificate

from a Certificate Authority.

Encrypt

The translation of data a secret code. Encryption is the most effective way to achieve

data security.

Unencrypted data is called plain text encrypted data is referred to as cipher text.

DES
1Data Encryption Standard, an encryption algorithm used by the U.S. Government.

1DSA

Digital Signature Algorithm, part of the digital authentication standard used by the U.S.

Government.

KEA

Key Exchange Algorithm, an algorithm used for key exchange by the U.S.

Government.

MD5

Message Digest algorithm developed by Rivest

RC2 andRC4

Rivest encryption ciphers developed for RSA Data Security.

V

_,

RSA key exchange

A key-exchange algorithm for SSL based on the RSA algorithm.

SHA-1
Secure Hash Algorithm, a hash function used by the U.S. Government.

SKIPJACK
A classified symmetric-key algorithm implemented in FORTEZZA-compliant hardware

used by the U.S. Government. (For more information, see FORTEZZA Cipher Suites.)

Triple-DES
DES applied three times.

HTTP
Short for Hypertext Transfer Protocol, the underlying protocol used by the World Wide

Web. HTTP defines how messages are formatted and transmitted, and what actions

Web servers and browsers should take in response to vari.ouscommands.

HTTPS
By convention, Web pages that require an SSL connection start with https: instead of

http.

IP
Abbreviation of Internet Protocol, pronounced as two separate letters. IP specifies the

format of packets, also called datagrams, and the addressing scheme. Most networks

combine IP with a higher-level protocol called Transport Control Protocol (TCP) that

establishes a virtual connection between a destination and a source.

IPSec
A secure network starts with a strong security policy that defines the freedom of access

to information and dictates the deployment of security in the network.

VI

ISP

Short for Internet Service Provider. A company that provides connection and services

on the Internet, such as remote dial-in access, DSL connections and Web hosting

servıces.

ISO

The International Standards Organization (ISO) Open Systems Interconnect (OSI)

Reference Model defines seven layers of communications types

OSI

Short for Open System Interconnection, an ISO standard for worldwide

communications that defines a networking framework for implementing protocols in

seven layers. Control is passed from one layer to the next, starting at the application

layer in one station, proceeding to the bottom layer, over the channel to the next station

and back up the hierarchy.

PIN

Short for Personal Identification Number. Typically PIN' s are assigned by financial

institutes to validate the identity of a person during a transaction.

RSA

An public key encryption technology developed by RSA Data Security, Inc. The

acronym stands for Rivest, Shamir, and Adelman, the inventors of the technique. The

RSA algorithm is based on the fact that there is no efficient way to factor very large

numbers. Deducing an RSA key, therefore, requires an extraordinary amount of

computer processing power and time.

SSL

Short for Secure Sockets Layer, a protocol developed by Netscape for transmitting

private documents via the Internet. SSL works by using a private key to encrypt data

that's transferred over the SSL connection.

Vil

SSL performs a negotiation between the two parties who are exchanging information,

the negotiation process involves understanding the key pairs, the protocols, and the type

of data request.

TCP

Abbreviation of Transmission Control Protocol, and pronounced as separate letters.

TCP is one of the main protocols in TCP/IP networks. Whereas the IP protocol deals

only with packets, TCP enables two hosts to establish a connection and exchange

streams of data

UDP

Short for User Datagram Protocol, a connectionless protocol that, like TCP, runs on top

of IP networks.

VPNs

(Virtual Private Networks). Traditionally, for an organization to provide connectivity

between a main office and a satellite one, an expensive data line had to be leased in

order to provide direct connectivity between the two offices.

Web

A system of Internet servers that support specially formatted documents. The

documents are formatted in with HTML (Hypertext Mark up Language) that supports

links to other documents, as well as graphics, audio, and video files.

Web Server Accelerators

A system that services Web servers by offloading TCP/IP connections, responding to

Web Client requests, replicating the Web content for availability and surge protection,

and enhancing Web server performance.
I

Web Sever

A computer that delivers (serves up) is Web pages. Every Web server has an IP address

and possibly a domain name.

Vlll

TABLE OF CONTENTS

DEDICATED
Ar'KNQWT .FOGFMFNT~ ii

ABSTRACT iii

L!ST OF GLOSS1i...RY iv

TABLE OF CONTENTS

INTRODUCTION

ix

1

1. NETWOP..K SECUR!TY
1.1. Overview
1.2. Security Policy

1.2.1. How packets are filtered out?
1.2.2. What information is used for filtering decision?

1.2.3. Why Filtering Routers are not enough?
1.3. What is a Network?

1 .4. Some Popular Networks?
1.4.1. UUCP

1.4.1.1. Batch-Oriented Processing
1.4.1.2. Implementation Environment

1.4.1.3 Popularity

3

3

3

4

5

6

6

7

7

7

7

9

9

10

10

11

11

12

12

12

12

13

14

14

1.4.1.-~. ~Pl'nnty

1.5. The Internet
1.5.1. What is the Internet?

1.6. TCP/IP The Language of the Internet
I. 6.1. Open Design
1.6.2 IP

1.6.2.1. Understanding IP

1.6.2.2. Attacks Against IP
1.6.2.3. IP Spoofing

1.6.2.4. IP Session Hijacking
1.6.3. TCP

1.6.3.1. Guaranteed Packet Delivery

IX

1.6.4.UDP 14

1.6.4.1. Lower Overhead than TCP 15
1.7. Types And ~l)llTl'P.<I 0-fNPhv()rk Threats 15

1.7.1. Denial-of-Service 15

1. 7.2. Unauthorized Access 16

1.7.3. Executing Commands Illicitly 16

1.7.Ll.Confidentiality Breaches 16

1.7.5. Destructive Behavior 17
l.?.5.1. nı:ıtı:ıniıiıiling 17

1.7.5.2. Data Destruction 17

1.8. Secure Network Devices 17

1.8.1. Secure Modems and Dial-Back Systems 18

1.8.2. Crypto-Capable Routers 18

1.9. Network Security Filters and Firewalls 19

1. 10. Transit Security 20

1.11. Traffic Regulation 22

1.12. Filters and access lists 22

1.13. IP Security 24

1.13.I. Benefits 26

1.13.2. Applications 26

1.14. IPSec Network Security 27

1.15. IPSec Encryption Technology 28

1.16.Sumrnary 29

2. F!RFW~ıl..LLS,.ıi~~ PACKET .F!LTE!UNG 30

2.1. Overview 30

2.1.1. What rı:ın ı:ı Firewall no? 32

2.1.2. What Can't a Firewall Do? 32

2.2. Firewall Politics 32

2.2.1.~Howit create a security policy 33

2.3. Types of Firewalls 34

2.3.1. Packet Filtering Firewalls 34

X

2.3.2. Proxy Servers

2.3.2.1. Application Proxy

2.3.2.2. SOCKS Proxy

2.4. Firewall Technologies

2.4.1. Packet Filtering

2.4.2 Application-level Proxies

2.5. Firewall Architecture

2.5.1. Dial-up Architecture

2.5.2. Single Router Architecture

2.5.3. Firewall with Proxy Server

2.5.4. Redundant Internet Configuration

2.6. Web Proxy Architecture

2.6.1. How the Web Proxy Service Works

2.6.1.1. The CERN-Proxy Protocol

2.6.2. HowHl !P Worı.~

34

35

35

35

35

36

37

37

38

3.8

39

40

40

40

41

41

42

44

44

45

46

47

47

48

48

50

52

2.6.3. How the GET Method Works

2.6.4. Examples of GET Usage with Proxy Service

2.7. Firewall placement

2.7.1. Before or after?
2.7.2. In-between

2.7.3. Types of traffic

2. 7.4. What to block

2.15. f<nrı:>ign~itP~

2. 7.6. Internal sites

2.7.7. Services

2.8. Common configuration problems

. 2.9. Summary

3. PROXY SERVERSSECURITY
3.1. Overview

3.2. Web Proxy Servers

3.2.1. What is Web Proxy Server?

3.2.2. When Web Proxy Servers are Useful

53

53

53

53

54

X1

3.3. Browser Access to the Internet

3.4. Caching Documents

3.5. Selectively Controlling Access to the Internet and Subnets

3.5.1. Configuring Browsers to Use the Proxy Server

3.5.2. HITP Browser Request to Remote HTTP Transaction

3.5.3. Advantages and Disadvantages of Caching Documents

3.5.4. Advantages of Caching on a Proxy Server

3.5.5. Managing Cached Documents

3.5.6. Proxy Server-to-Proxy Server Linking

3.6. Types of Caching

3.6. I. Passive Caching

3.6.2. Active Caching

3.6.3. Negative Caching

3.6.4. Hierarchical Caching

3.7. Interaction with Other Border Manager Services

3.8. Proxy Technology

3.9. Supported Protocols

3.10. Proxy Services Benefits

3. I 1. Application Proxies

3.11.1. HITP Proxy

3.11. I.I. HTTP or Forward Proxy

3.11.1.2. HITP Accelerator or Reverse Proxy

3.11.2. FTP Proxy

3.11.2.1. Benefits of FTP Proxy

3.11.2.2. FTP Reverse Proxy

3.12. Mail (SMTP/POP3) Proxy

3.13. News (NNTP) Proxy

3.14. ONS Proxy

54

55

56

56

58

58

61

61

62

63

63

63

64

64

64

65

65

66

67

67

67

68

69

69

70

70

71

73

733. ı 'i. HTrPK Pmxy

3.16. SOCKS Client

3.17. Generic Proxy

3.18. HITP Transparent Proxy

3.18.1. Gateway Client Transparent Proxy

73

74

75

75

Xll

3.18.2 H! ! P Transparent Proxy 75

3.19. Client servers 76

3.19.l. Client/Server Networking 76

3.19.2. What Is Client/Server? 76

3.19.3. Client/Server Applications 76

3.19.4. Client/Server at Home 77

3.19.5. Pros and Cons ofC1ient/Server 77

3.20. Summary 78

4. PUBL!C-KEY CRYPTOGP_ıi_pJJY).-1\ffi SECURE SOCKETS 79
LAYER

4.1. Overview

4.2. Internet Security Issues

4.3. Encryption and Decryption

4.3.1. Symmetric-Key Encryption

4.3.2. Public-Key Encryption

4.4. Key Length and Encryption Strength

79

79

80

81

82

83

84

86

86

87

88

89

92

92

93

94

95

95

96

96

97

97

4.5. Digital Signatures

4.6. Certificates and Authentication

4.6.1. A Certificate Identifies Someone or Something

4.6.2. Authentication Confirms an Identity
4.6.3. P::ı<:<mıorıi-R::ıı:PAAııthPntir.::ıtion

4.6.4. Certificate-Based Authentication

4.7. How Certificates Are Used

4.7.1. Types of Certificates

4.8. SSL Protocol

4.9. Signed and Encrypted Email

4.9.1. Single Sign-On
'

4.9.2. Single sign-on

4.9.3. Form Signing

4.9.4. Object Signing
4. 1 O. SP.f'.1 lTP. ~()f'VPt<: T aypr (~SL)

4.10.1. The SSL Protocol

Xlll

4.10.2. Ciphers Used with SSL 97

4.11. ServerAuthentication 101

4.11.1. Man-in-the-Middle Attack 103

4.12. ClientAuthentication l 04

4.13. Summary 106

5. CAf"HJNI': WFR P110YV~F11VF.11 JTSTI\Tl':,UVA APPT.TCATTOl\T !07

5.1. Overview 107

5.2. Remote administration 108

5.3. Accessingmultipleproxies remotely 109

5.4. Multithreading 11 O

5.5. Caching 110

.5.6. Cacheable Vs. Non-Cacheable objects 112

5.7. The admin thread 113

5.8. The config class I 14

5.9. CacheWeb Proxy Server Main Block Diagram I 15

5.10. Program Explanation 118

5 .11. Using the program 119

5.12. Summary 123

6. CONCLUSION 124

REFERENCES 126

APPENDIXA 129

APPENDIXB 158

XIV

INTRODUCTION

Network security involves any and all countermeasures taken to protect a network from

threats to its integrity. As modem networks have continued to grow and as more and

more networks have been connected to the public Internet, the threats to the integrity

and privacy of a company's networks have also grown. The attacks that are made on a

network are increasingly more complex and pervasive, and the tools used for such

purposes are easy to acquire. For example, anyone can log on to an Internet search

engine and perform a search on hacking and be presented with an immense amount of

sites that offer information and tools on hacking. Therefore, the need for network

security is obvious.

The main reason for using a proxy server is to give access to the Internet from within a

firewall. An application-level proxy makes a firewall safely permeable for users in an

organization, without creating a potential security hole through which one might get

into the subnet. The proxy can control services for individual methods, host and

domain, and more-filtering client transactions. A very important thing about proxies is

that even a client without DNS can use the Web It needs only the IP address of the

proxy. Application level proxy facilitates caching at the proxy. Usually, one proxy

server is used by all clients connected to a subnet. This is why the proxy is able to do

efficient caching of documents that are requested by more than one client. The fact that

proxies can provide efficient caching makes them useful even when no firewall machine

is in order. Configuring a group to use a caching proxy server is easy (Most popular

Web client programs already have proxy support built in), and can decrease network

traffic costs significantly, because once the first request was made for a certain

document, the next ones are retrieved from a local cache.

The aim of the thesis is the development of java application software for caching web

proxy servers based on network security. The java application based program has been

developed by the author, which applies caching proxy based network security.

1

Chapter 1 In this chapter we'll cover some of the foundations of computer networking

and network security.

Chapter 2 This chapter briefly describes what Internet firewalls can do for your

overall site security.

Chapter 3 Describes The network traffic proxy servers security problems due to the

repeated retrieving of objects from remote Web servers on the Internet.

Chapter 4 This chapter describes the Public-key cryptography and related standards

and techniques underlie security features of authentication and authorization -key

cryptography.

Chapter 5 Describes the designed and implemented a web proxy server, which can be

configured remotely over the Internet by its administrator.

Finally, the program developed by the author is given in an appendix at the end of the

thesis.

2

1. NETWORK SECURITY

1.1. Overview

Network security is a complicated subject, historically only tackled by well-trained and

experienced experts. However, as more and more people become "wired", an increasing

number of people need to understand the basics of security in a networked world. This

chapter was written with the basic computer user and information systems manager in

mind, explaining the concepts needed to read through the hype in the marketplace and

understand risks and how to deal with them Some history of networking is included, as

well as an introduction to TCP/IP and internetworking . We go on to consider risk

management, network threats, firewalls, and more special-purpose secure networking

devices. This is not intended to be a '' frequently asked questions" reference, nor is it a

"hands-on" document describing how to accomplish specific functionality. It is hoped

that the reader will have a wider perspective on security in general, and better

understand how to reduce and manage risk personally, at home, and in the workplace.

1.2. Security Policy

As was mentioned above firewall must inspect all the packets that come to and leave the

Local Network and filter out those packets that do not conform to the Security Policy

adopted for the Local Network.

Remember the ISO seven layers protocol model. The packet inspection can take place

on any of the layers. But packet inspection is most commonly implemented at

Application layer by Application layer firewalls and at Network layer by Network layer

firewalls. When talking about TCP/IP protocol suite the Application layer :firewalls are

commonly called Application Gateways or Proxies (further Proxies) and Network layer

firewalls Filtering Routers or Screening Routers (further Filtering Routers).

3

Figure 1.1 The ISO/OSI Reference Model layers

1.2.1. How packets are filtered out?

The function of ordinary IP router is receives IP datagram extracts destination IP

address and consults the routing table for next hop for this data gram. As its name

indicates Filtering Router in addition to routing function performs a filtering of the

packets it receives, that is before consulting the routing table it must decide whether this

packet should be forwarded towards its destination.

The filtering decision is made according to the Access Control List (further ACL)

associated with physical interface the packet came through.

ACL consists of the entries. Each entry specifies values for particular header fields and

action to be taken if arrived packet matches these values,

Each arrived packet is matched successively against the entries in the ACL if the match

occurs the action is taken [1]

4

ApplicaionIP I TCP

Applicaaon

Tranşoıt (TCP/lIDP)

Network (IP)

I Filuıri.ngRout.?rInspection

Data Liıılt

Physical

DoıJJ pact,t match I Yes .I Forward ths ıxıckst? I Yu
ths rule?

Yu:=r;
I.s th,r, anoth,r I No ~ drop I • endrule on the ACL?

Figure 1.2 Steps of filtering decision (that which is not expressively permitted is

prohibited approach).

The question arises : 0What is done with the packet that does not match any entry in the

ACL?".

In this situation two different approaches may be adopted:

1. That which is not expressively permitted is prohibited, that is

these packets will be dropped by the Filtering Router,

2. That which is not expressively prohibited is permitted, that is

these packets will forwarded by the Filtering Router,

1.2.2. What information is used for r.Jtering decision?

The portions that are parsed by the filtering router are IP header, and transport protocol

header whether TCP or UDP. Therefore the header fields that can be used in ACL

entries are:

• Source IP address (IP header)

• Destination IP address (IP header)

• Protocol Type (IP header, specifies whether the data encapsulated

in the IP datagram belongs to TCP, UDP or ICMP protocol)

• Source port (TCP or UDP header)

5

• Destination port (TCP or UDP header)

• ACK bit (TCP header, this bit specifies whether the packet is the

acknowledgınent for received TCP packet)

Not all filtering routers support all the fields listed above. Moreover not all filtering

routers support separate ACL for each physical interface (port). Bellow you can find

several examples that will clarify how Filtering Router can be configured to implement

various Security Policies for the Local Network.

1.2.3. Why Filtering Routers are not enough?

Protocols requiring setup of inbound connections Problem arises when dealing with

protocols that require connection setup to ports not known in advance on hosts on the

Local Network. Connection (client_port, client_IP_address, 21, server_IP_address) is

setup by FTP client and is used for control flow Connection (20, server_IP_address,

dient_port, client_IP_address) is setup by FTP server and is used for file transfer. For

Filtering Router to allow outbound (from Local Network to the Internet) FTP traffic it

must permit connections made from port number 20 to any port on a host on Local

Network, thus allowing outsiders access to any services running on any host on the

Local Network. You can ask: Why access to a server can pose any security problem?

First of all there are services that you do not want the outsider to access. But even if the

access to the server does not pose any problem, a server software is a complicated one

and as such contains many bugs which can be exploited to compromise the Local

Network. It is better not to allow outsiders to know your network topology. Such

knowledge can help compromise the Local Network. By inspecting the packets leaving

Local Network many things can be learned about it topology. Even more can be learned

through the access to your DNS server.

1.3. What is a Network?

A "rıetwork" has been defined as '' any set of interlinking lines resembling a net, a

network of roads an interconnected system, a network of alliances." This definition suits

our purpose well: a computer network is simply a system of interconnected computers.

6

How they're connected is irrelevant, and as we'll soon see, there are a number of ways to

do this.

1.4. Some Popular Networks?

Over the last 25 years or so, a number of networks and network protocols have been

defined and used. We're going to look at two of these networks, both of which are

"public" networks. Anyone can connect to either of these networks, or they can use

types of networks to connect their own hosts (computers) together, without connecting

to the public networks. Each type takes a very different approach to providing network

services.

1.4.1. UUCP

UUCP (Unix-to-Unix CoPy) was originally developed to connect Unix (surprise!) hosts

together. UUCP has since been ported to many different architectures, including PCs,

Macs, Amigas, Apple Ils, VMS hosts, everything else you can name, and even some

things you can't. Additionally, a number of systems have been developed around the

same principles as UUCP.

1.4.1.1. Batch-Oriented Processing

UUCP and similar systems are batch-oriented systems: everything that they have to do

is added to a queue, and then at some specified time, everything in the queue is

processed.

1.4.1.2. Implementation Environment

UUCP networks are commonly built using dial-up (modem) connections. This doesn't

have to be the case though: UUCP can be used over any sort of connection between two

computers, including an Internet connection.

Building a UUCP network is a simple matter of configuring two hosts to recognize each

other, and know how to get in touch with each other. Adding on to the network is

simple. if hosts called A and B have a UUCP network between them, and c would like

to join the network, then it must be configured to talk to A and/or B. Naturally, anything

7

that c talks to must be made aware of c's existence before any connections will work.

Now, to connect D to the network, a connection must be established with at least one of

the hosts on the network, and so on. Figure 1.3 shows a sample UUCP network.

A B

C

D

Figure 1.3 A Sample UUCP Network

In a UUCP network, users are identified in the format host!userid. The '' !0 character

(pronounced "bang" in networking circles) is used to separate hosts and users. A

bangpath is a string of host(s) and a userid like A!cmcurtin or C!B!A!cmcurtin. Ifl am a user

on host A and you are a user on host E, I might be known as A!cmcurtin and you as E!you.

Because there is no direct link between your host (E) and mine (A), in order for us to

communicate, we need to do so through a host (or hosts!) that has connectivity to both E

and A. In our sample network, c has the connectivity we need. So, to send me a file, or

piece of email, you would address it to C!A!cmcurtin. Or, if you feel like taking the long

way around, you can address me as C!B!A!cmcurtin.

The '' public" UUCP network is simply a huge worldwide network of hosts connected to

each other.

8

1.4.1.3 Popularity

The public UUCP network has been shrinking in size over the years, with the rise of the

availability of inexpensive Internet connections. Additionally, since UUCP connections

are typically made hourly, daily, or weekly, there is a fair bit of delay in getting data

from one user on a UUCP network to a user on the other end of the network. UUCP isn't

very flexible, as it's used for simply copying files (which can be netnews, email,

documents, etc.) Interactive protocols (that make applications such as the World Wide

Web possible) have become much more the norm, and are preferred in most cases.

However, there are still many people whose needs for email and netnews are served

quite well by UUCP, and its integration into the Internet has greatly reduced the amount

of cumbersome addressing that had to be accomplished in times past.

1.4.1.3. Security

UUCP, like any other application, has security tradeoffs. Some strong points for its

security is that it is fairly limited in what it can do, and it's therefore more difficult to

trick into doing something it shouldn't. it's been around a long time, and most its bugs

have been discovered, analyzed, and fixed. and because UUCP networks are made up of

occasional connections to other hosts, it isn't possible for someone on host E to directly

make contact with host B, and take advantage of that connection to do something

naughty.[4]

On the other hand, UUCP typically works by having a system-wide UUCP user account

and password. Any system that has a UUCP connection with another must know the

appropriate password for the uucp or nuucp account. Identifying a host beyond that

point has traditionally been little more than a matter of trusting that the host is who it

claims to be, and that a connection is allowed at that time. More recently, there has been

an additional layer of authentication, whereby both hosts must have the same sequence

number , that is a number that is incremented each time a connection is made.

Hence, if I run host B, I know the uucp password on host A If, though, I want to

impersonate host c, I'll need to connect, identify myself as c, hope that I've done so at a

time that A will allow it, and try to guess the correct sequence number for the session.

While this might not be a trivial attack, it isn't considered very secure.

1.5. The Internet

This is a word that we've heard way too often in the last few years. Movies, books,

newspapers, magazines, television programs, and practically every other sort of media

imaginable have dealt with the Internet recently.

l.5.1. What is the Internet?

The Internet is the world's largest network of networks. When you want to access the

resources offered by the Internet, you don't really connect to the Internet. you connect to

a network that is eventually connected to the Internet backbone, a network of extremely

fast (and incredibly overloaded!) network components. Tiıis is an important point: the

Internet is a network of networks - not a network of hosts. A simple network can be

constructed using the same protocols and such that the Internet uses without actually

connecting it to anything else. I might be allowed to put one of my hosts on one of my

employer's networks. We have a number of networks, which are all connected together

on a backbone that is a network of our networks. Our backbone is then connected to

other networks, one of which is to an Internet Service Provider (ISP) whose backbone is

connected to other networks, one of which is the Internet backbone. If you have a

connection "to the Internet" through a local ISP, you are actually connecting your

computer to one of their networks, which is connected to another, and so on. To use a

service from my host, such as a web server, you would tell your web browser to connect

to my host. Underlying services and protocols would send packets (small datagrams)

with your query to your ISP's network, and then a network they're connected to, and so

on, until it found a path to my employer's backbone, and to the exact network my host is

on. My host would then respond appropriately, and the same would happen in reverse:

packets would traverse all of the connections until they found their way back to your

computer, the network shown in Figure 1.4 is designated "LAN 1" and shown in the

bottom-right of the picture. This shows how the hosts on that network are provided

connectivity to other hosts on the same LAN, within the same company, outside of the

10

company, but in the same ISP cloud , and then from another ISP somewhere on the

Internet.

The Internet is made up of a wide variety of hosts, from supercomputers to personal

computers, including every imaginable type of hardware and software. How do all of

these computers understand each other and work together?

lrıtenıet Badcbcrıe

ISP BaekbcM Another ISP Backbc

Ccrrı,pany Z Badı:bcrıe Your Comp.any Backbcrıe

LAN 3

G I I H

F

l.AN2

I

Figure 1.4 A Wider View of Internet-connected Networks

1.6. TCP/IP The Language of the Internet

'TCP/IP (Transport Control Protocol/Internet Protocol) is the "language" of the

Internet. Anything that can learn to '' speak TCP/IP" can play on the Internet. This is

functionality that occurs at the Network (IP) and Transport (TCP) layers in the ISO/OSI

Reference Model. Consequently, a host that has TCP/IP functionality (such as Unix,

OS/2, MacOS, or Windows NT) can easily support applications (such as Netscape's

Navigator) that uses the network. [3]

1.6.1. Open Design

One of the most important features of TCP/IP isn't a technological one: The protocol is

an '' open" protocol, and anyone who wishes to implement it may do so freely.

11

Engineers and scientists from all over the world participate in the IETF (Internet

Engineering Task Force) working groups that design the protocols that make the

Internet work. Their companies typically donate their time, and the result is work that

benefits everyone.

1.6.2 IP

IP is a '' network layer" protocol. This is the layer that allows the hosts to actually '' talk"

to each other. Such things as carrying datagrams, mapping the Internet address (such as

10.2.3.4) to a physical network address (such as 08:00:69:0a:ca:8f), and routing, which

takes care of making sure that all of the devices that have Internet connectivity can find

the way to each other.

1.6.2.1. Understanding IP

IP has a number of very important features that make it an extremely robust and flexible

protocol. For our purposes, though, we're going to focus on the security of IP, or more

specifically, the lack thereof

1.6.2.2. Attacks Against IP

A number of attacks against IP are possible. Typically, these exploits the fact that IP

does not perform a robust mechanism for authentication, which is proving that a packet

came from where it claims it, did. A packet simply claims to originate from a given

address, and.there isn't a way to be sure that the host that sent the packet is telling the

truth. This isn't necessarily a weakness, per se, but it is an important point, because it

means that the facility of host authentication has to be provided at a higher layer on the

ISO/OSI Reference Model. Today, applications that require strong host authentication

(such as cryptographic applications) do this at the application layer.

1.6.2.3. IP Spoofing

This is where one host claims to have the IP address of another. Since many systems

(such as router access control lists) define which packets may and which packets may

not pass based on the sender's IP address, this is a useful technique to an attacker: he

can send packets to a host, perhaps causing it to take some sort of action.

12

Additionally, some applications allow login based on the IP address of the person

making the request (such as the Berkeley r-commands)[2]. These are both good

examples how trusting untrustable layers can provide security .

1.6.2.4. IP Session Hijacking

This is a relatively sophisticated attack, first described by Steve Bellovin [3]. This is

very dangerous, however, because there are now toolkits available in the underground

community that allow otherwise unskilled bad-guy-wannabes to perpetrate this attack.

IP Session Hijacking is an attack whereby a user's session is taken over, being in the

control of the attacker. If the user was in the middle of email, the attacker is looking at

the email, and then can execute any commands he wishes as the attacked user. The

attacked user simply sees his session dropped, and may simply login again, perhaps not

even noticing that the attacker is still logged in and doing things.

For the description of the attack, let's return to our large network of networks ın

Figure 1.4. In this attack, a user on host A is carrying on a session with host G. Perhaps

this is a telnet session, where the user is reading his email, or using a Unix shell account

from home. Somewhere in the network between A and B sits host H which is run by a

naughty person. The naughty person on host H watches the traffic between A and G, and

runs a tool which starts to impersonate A to G, and at the same time tells A to shut up,

perhaps trying to convince it that G is no longer on the net (which might happen in the

event of a crash, or major network outage). After a few seconds of this, if the attack is

successful, naughty person has '' hijacked" the session of our user. Anything that the

user can do legitimately can now be done by the attacker, illegitimately. As far as G

knows, nothing has happened.

This can be solved by replacing standard telnet-typeapplications with encrypted versions

of the same thing. In this case, the attacker can still take over the session, but he'll see

only'' gibberish" because the session is encrypted. The attacker will not have the needed

cryptographic key(s) to decrypt the data stream from G, and will, therefore, be unable to

do anything with the session.

13

1.6.3. TCP

TCP is a transport-layer protocol. It needs to sit on top of a network-layer protocol, and

was designed to ride atop IP. (Just as IP was designed to carry, among other things, TCP

packets.) Because TCP and IP were designed together and wherever you have one, you

typically have the other, the entire suites of Internet protocols are known collectively as

''TCP/IP." TCP itself has a number of important features that we'll cover briefly.

1.6.3.1. Guaranteed Packet Delivery

Probably the most important is guaranteed packet delivery. Host A sending packets to

host B expects to get acknowledgnıents back for each packet. If B does not send an

acknowledgment within a specified amount of time, A will resend the packet.

Applications on host B will expect a data stream from a TCP session to be complete,

and in order. As noted, if a packet is missing, it will be resent by A, and if packets arrive

out of order, B will arrange them in proper order before passing the data to the

requesting application. This is suited well toward a number of applications, such as a

telnet session. A user wants to be sure every keystroke is received by the remote host,

and that it gets every packet sent back, even if this means occasional slight delays in

responsiveness while a lost packet is resent, or while out-of-order packets are

rearranged. It is not suited well toward other applications, such as streaming audio or

video, however. In these, it doesn't really matter if a packet is lost (a lost packet in a

stream of 100 won't be distinguishable) but it does matter if they arrive late (i.e.,

because of a host resending a packet presumed lost), since the data stream will be

paused while the lost packet is being resent. Once the lost packet is received, it will be

put in the proper slot in the data stream, and then passed up to the application.

1.6.4. UDP

UDP (User Datagram Protocol) is a simple transport-layer protocol. It does not provide

the same features as TCP, and is thus considered ' 'unreliable." Again, although this is

unsuitable for some applications, it does have much more applicability in other

applications than the more reliable and robust TCP.

14

1.6.4.1. Lower Overhead than TCP

One of the things that make UDP nice is its simplicity. Because it doesn't need to keep

track of the sequence of packets, whether they ever made it to their destination, etc., it

has lower overhead than TCP. This is another reason why it's more suited to streaming­

data applications: there's less screwing around that needs to be done with making sure

all the packets are there, in the right order, and that sort of thing.

1.7. Types And Sources OfNetwork Threats

Now, we've covered enough background information on networking that we can

actually get into the security aspects of all of this. First of all, we'll get into the types of

threats there are against networked computers, and then some things that can be done to

protect you against various threats.

1.7.1. Denial-of-Servite

DoS (Denial-of-Service) attacks are probably the nastiest, and most difficult to address.

These are the nastiest, because they're very easy to launch, difficult (sometimes

impossible) to track, and it isn't easy to refuse the requests of the attacker, without also

refusing legitimate requests for service.

The premise of a DoS attack is simple: send more requests to the machine than it can

handle. There are toolkits available in the underground community that make this a

simple matter of running a program and telling it which host to blast with requests. The

attacker's program simply makes a connection on some service port, perhaps forging the

packet's header information that says where the packet came from, and then dropping

the connection. If the host is able to answer 20 requests per second, and the attacker is

sending 50 per second, obviously the host will be unable to service all of the attacker's

requests, much less any legitimate requests (hits on the web site running there, for

example). Such attacks were fairly common in late 1996 and early 1997, but are now

becoming less popular. Some things that can be done to reduce the risk of being stung

by a denial of service attack include

• Not running your visible-to-the-world servers at a level too close to

capacity

15

• Using packet filtering to prevent obviously forged packets from entering

into your network address space.
• Keeping up-to-date on security-related patches for your hosts' operating

systems.

1.7.2. Unauthorized Access

Unauthorized access is a very high-level term that can refer to a number of different

sorts of attacks. The goal of these attacks is to access some resource that your machine

should not provide the attacker. For example, a host might be a web server, and should

provide anyone with requested web pages. However, that host should not provide

command shell access without being sure that the person making such a request is

someone who should get it, such as a local administrator.

1.7.3. Execuông Commands Illicitly

h's obviously undesirable for an unknown and untrusted person to be able to execute

commands on your server machines. There are two main classifications of the severity

of this problem: normal user access, and administrator access. A normal user can do a

number of things on a system (such as read files, mail them to other people, etc.) that an

attacker should not be able to do. This might, then, be all the access that an attacker

needs. On the other hand, an attacker might wish to make configuration changes to a

host (perhaps changing its IP address, putting a start-up script in place to cause the

machine to shut down every time it's started, or something similar). In this case, the

attacker will need to gain administrator privileges on the host.

1.7A. Confidentiality Breaches

We need to examine the threat model: what is it that you're trying to protect yourself

against? There is certain information that could be quite damaging if it fell into the

hands of a competitor, an enemy, or the public. In these cases, it's possible that

compromise of a normal user's account on the machine can be enough to cause damage

(perhaps in the form of PR, or obtaining information that can be used against the

company, etc.)

16

While many of the perpetrators of these sorts of break-ins are merely thrill-seekers

interested in nothing more than to see a shell prompt for your computer on their screen,

there are those who are more malicious, as we'll consider next. (Additionally, keep in

mind that it's possible that someone who is normally interested in nothing more than the

thrill could be persuaded to do more: perhaps an unscrupulous competitor is willing to

hire such a person to hurt you.)

1.7.5. Destructive Behavior

Among the destructive sorts of break-ins and attacks, there are two major categories:

L7.5.1. Data Diddling

The data diddling is likely the worst sort, since the fact of a break-in might not be

immediately obvious. Perhaps he's toying with the numbers in your spreadsheets, or

changing the dates in your projections and plans. Maybe he's changing the account

numbers for the auto-deposit of certain paychecks. In any case, rare is the case when

you'll come in to work one day, and simply know that something is wrong. An

accounting procedure might tum up a discrepancy in the books three or four months

after the fact. Trying to track the problem down will certainly be difficult, and once that

problem is discovered, how can any of your numbers from that time period be trusted?

How far back do you have to go before you think that your data is safe?

1.7.5.2. Data Destruction

Some of those perpetrate attacks are simply twisted jerks who like to delete things. In

these cases, the impact on your computing capability - and consequently your business -

can be nothing less than if a fire or other disaster caused your computing equipment to

be completely destroyed.

1.8. Secure Network Devices

It's important to remember that the firewall only one entry point to your network.

Modems, if you allow them to answer incoming calls, can provide an easy means for an

attacker to sneak around (rather than through) your front door (or, firewall). Just as

castles weren't built with moats only in the front, your network needs to be protected at

all of its entry points.

1.8.1. Secure Modems and Dial-Back Systems

If modem access is to be provided, this should be guarded carefully. The terminal

server, or network device that provides dial-up access to your network needs to be

actively administered, and its logs need to be examined for strange behavior. Its

password need to be strong - not ones that can be guessed. Accounts that aren't actively

used should be disabled. In short, it's the easiest way to get into your network from

remote: guard it carefully. There are some remote access systems that have the feature

of a two-part procedure to establish a connection. The first part is the remote user

waling into the system. and providing the correct userid and password. The system will

then drop the connection, and call the authenticated user back at a known telephone

number. Once the remote user's system answers that call. the connection is established,

and the user is on the network. This works well for folks working at home, but can be

problematic for users wishing to dial in from hotel rooms and such when on business

trips. Other possibilities include one-time password schemes, where the user enters his

userid, and is presented with a ' 'challenge," a string of between six and eight numbers.

He types this challenge into a small device that he carries with him that looks like a

calculator. He then presses enter, and a " response" is displayed on the LCD screen. The

user types the response, and if all is correct, he login will proceed. These are useful

devices for solving the problem of good passwords, without requiring dial-back access.

However, these have their own problems, as they require the user to carry them, and

they must be tracked, much like building and office keys. No doubt many other schemes

exist. Take a look at your options, and find out how what the vendors have to offer will

help you enforce your security policy effectively.

1.8.2. Crypto-Capable Routers

A feature that is being built into some routers is the ability to session encryption

between specified routers. Because traffic traveling across the Internet can be seen by

people in the middle who have the resources (and time) to snoop around, these are

18

advantageous for providing connectivity between two sites, such that there can be

secure routes.

1.9.Network Security Filters and Firewalls

This article is a general introduction to network security issues and solutions in the

Internet. emphasis is placed on route filters and firewalls. It is not intended as a guide to

setting up a secure network. its purpose is merely as an overview. Some knowledge of

IP networking is assumed, although not crucial. In the last decade, the number of

oomputers in use has exploded. For quite some time now, computers have been a crucial

element in how we entertain and educate ourselves, and most importantly, how we do

business. It seems obvious in retrospect that a natural result of the explosive growth in

computer use would be an even more explosive (although delayed) growth in the desire

and need for computers to talk with each other. The growth of this industry has been

driven by two separate forces which until recently have had different goals and end

products. The first factor has been research interests and laboratories. these groups have

always needed to share files, email and other information across wide areas. The

research labs developed several protocols and methods for this data transfer, most

notably TCP/IP. Business interests are the second factor in network growth. For quite

some time, businesses were primarily interested in sharing data within an office or

campus environment, this led to the development of various protocols suited

specifically to this task. Within the last five years, businesses have begun to need to

share data across wide areas. This has prompted efforts to convert principally LAN­

based protocols into WAN-friendly protocols. The result has spawned an entire industry

of consultants who know how to manipulate routers, gateways and networks to force

principally broadcast protocols across point-to-point links (two very different methods

of transmitting packets across networks). Recently (within the last 2 or 3 years) more

and more companies have realized that they need to settle on a common networking

protocol. Frequently the protocol of choice has been TCP/IP, which is also the primary

protocol run on the Internet. The emerging ubiquitousness of TCP/IP allows companies

to interconnect with each other via private networks as well as through public networks.

This is a very rosy picture: businesses, governments and individuals communicating

with each other across the world. While reality is rapidly approaching this utopian

l9

,,,.
x»

_-V<:£

picture, several relatively minor issues have changed status from low priority to extreme

importance. Security is probably the most well known of these problems. When

businesses send private information across the net, they place a high value on it getting

to its destination intact and without being intercepted by someone other than the

intended recipient. Individuals sending private communications obviously desire secure

eommunications. Finally, connecting a system to a network can open the system itself

up to attacks. If a system is compromised, the risk of data loss is high.

It can be useful to break network security into two general classes:

• Methods used to secure data as it transits a network

• Methods which regulate what packets may transit the network

While both significantly effect the traffic going to and from a site, their objectives are

quite different.

1.10. Transit Security

Currently, there are no systems in wide use that will keep data secure as it transits a

public network. Several methods are available to encrypt traffic between a few

coordinated sites. Unfortunately, none of the current solutions scale particularly well.

Two general approaches dominate this area:

• Virtual Private Networks:

This is the concept of creating a private network by using TCP/IP to provide the

lower levels of a second TCP/IP stack. This can be a confusing concept, and is best

understood by comparing it to the way TCP/IP is normally implemented. In a

nutshell, IP traffic is sent across various forms of physical networks. Each system

that connects to the physical network implements a standard for sending IP

messages across that link. Standards for IP transmission across various types of

links exist, the most common are for Ethernet and Point to Point links (PPP and

SLIP). Once an IP packet is received, it is passed up to higher layers of the TCP/IP

stack as appropriate (UDP, TCP and eventually the application). When a virtual

private network is implemented, the lowest levels of the TCP/IP protocol are

20

implemented using an existing TCP/IP connection. There are a number of ways to

accomplish this which tradeoff between abstraction and efficiency. The advantage

this gives you in terms of secure data transfer is only a single step further away.

Because a VPN gives you complete control over the physical layer, it is entirely

within the network designers power to encrypt the connection at the physical

(virtual) layer. By doing this, all traffic of any sort over the VPN will be encrypted,

whether it be at the application layer (such as Mail or News) or at the lowest layers

of the stack(IP, ICMP). The primary

• advantages of VPNs are

they allow private address space (you can have more machines on a network), and

they allow the packet encryption/translation overhead to be done on dedicated

systems, decreasing the load placed on production machines.

Packet Level Encryption: Another approach is to encrypt traffic at a higher layer in

the TCP/IP stack. Several methods exist for the secure authentication and encryption of

telnet and rlogin sessions (Kerberos, SIK.ey and DESlogin) which are examples of

encryption at the highest level of the stack (the application layer). The advantages to

encrypting traffic at the higher layer are that the processor overhead of dealing with a

VPN is eliminated, inter-operability with current applications is not affected, and it is

much easier to compile a client program that supports application layer encryption than

to build a VPN. It is possible to encrypt traffic at essentially any of the layers in the IP

stack. Particularly promising is encryption that is done at the TCP level which provides

fairly transparent encryption to most network applications. It is important to note that

both of these methods can have performance impacts on the hosts that implement the

protocols, and on the networks which connect those hosts. The relatively simple act of

encapsulating or converting a packet into a new form requires CPU-time and uses

additional network capacity. Encryption can be a very CPU-intensive process and

encrypted packets may need to be padded to uniform length to guarantee the robustness

of some algorithms. Further, both methods have impacts on other areas (security related

and otherwise- such as address allocation., fault tolerance and load balancing) that need

to be considered before any choice is made as to which is best for a particular case.

1.11. Traffic Regulation

The most common form of network security on the Internet today is to closely regulate

which types of packets can move between networks. If a packet which may do

something malicious to a remote host never gets there, the remote host will be

unaffected. Traffic regulation provides this screen between hosts and remote sites. This

typically happens at three basic areas of the network: routers, firewalls and hosts. Each

provides similar service at different points in the network In fact the line between them

is somewhat ill-defined and arbitrary. In this article, I will use the following definitions:

• Router traffic regulation: Any traffic regulation that occurs on a router

or terminal server (hosts whose primary purpose is to forward the packets of

other hosts) and is based on packet characteristics. This does not include

application gateways but does include address translation.

• Firewall traffic regulation: Traffic regulation or filtering that ıs

performed via application gateways or proxies.

• Host traffic regulation: Traffic regulation that is performed at the

destination of a packet. Hosts are playing a smaller and smaller role in traffic

regulation with the advent of filtering routers and firewalls.

1.12. Filters and access lists

Regulating which packets can go between two sites is a fairly simple concept on the

surface- it shouldn't be and isn't difficult for any router or firewall to decide simply not

to forward all packets from a particular site. Unfortunately, the reason most people

connect to the Internet is so that they may exchange packets with remote sites.

Developing a plan that allows the right packets through at the right time and denies the

malicious packets is a thorny task which is far beyond this article's scope. A few basic

techniques are worth discussing, however.

• Restricting access in, but not out: Almost all packets (besides those at

the lowest levels which deal with network reachability) are sent to destination

sockets of either UDP or TCP. Typically, packets from remote hosts will attempt

to reach one of what are known as the well-known ports. These ports are

22

monitored by applications that provide services such as Mail Transfer and

Delivery, Usenet News, the time, Domain Name Service, and various login

protocols. It is trivial for modem routers or firewalls only to allow these types of

packets through to the specific machine that provides a given service. Attempts

to send any other type of packet will not be forwarded. This protects the internal

hosts, but still allows all packets to get out. Unfortunately this isn't the panacea

that it might seem.

• The problem of returning packets: Let's pretend that you don't want to

let remote users log into your systems unless they use a secure, encrypting

application such as SIK.ey. However, you are willing to allow your users to

attempt to connect to remote sites with telnet or ftp. At first glance, this looks

simple: you merely restrict remote connections to one type of packet and allow

any type of outgoing connection. Unfortunately, due to the nature of interactive

protocols, they must negotiate a unique port number to use once a connection is

established. If they didn't, at any given time, there could only be one of each

type of interactive session between any given two machines. This results in a

dilemma: all of a sudden, a remote site is going to try to send packets destined

for a seemingly random port. Normally, these packets would be dropped.

However, modem routers and firewalls now support the ability to dynamically

open a small window for these packets to pass through if packets have been

recently transmitted from an internal host to the external host on the same port.

This allows connections that are initiated internally to connect, yet still denies

external connection attempts unless they are desired.

• Dynamic route filters: A relatively recent technique is the ability to

dynamically add entire sets of route filters for a remote site when particular sets

of circumstances occur. With these techniques, it is possible to have a router

automatically detect suspicious activity (such as ISS or SATAN) and deny a

machine or entire site access for a short time. In many cases this will thwart any

sort of automated attack on a site.

Filters and access lists are typically placed on all three types of systems, although they

are most common on routers.

23

'

• Address Translation: Another advancement has been to have a router

modify outgoing packets to contain their own IP number. This prevents an

external site from knowing any information about the internal network, it also

allows for certain tricks to be played which provide for a tremendous number of

additional internal hosts with a small allocated address space. The router

maintains a table which maps an external IP number and socket with an internal

number and socket. Whenever an internal packet is destined for the outside, it is

simply forwarded with the routers IP number in the source field of the IP header.

When an external packet arrives, it is analyzed for its destination port and re­

mapped before it is sent on to the internal host. The procedure does have its

pitfalls. checksums have to be recalculated because they are based in part on IP

numbers, and some upper layer protocols encode/depend on the IP number.

These protocols will not work through simple address translation routers.

• Application gateways and proxies: The primary difference between

firewalls and routers is that firewalls actually run applications. These

applications frequently include mail daemons, ftp servers and web servers.

Firewalls also usually run what are known as application gateways or proxies.

These are best described as programs which understand a protocol's syntax, but

do not implement any of the functionality of the protocol. Rather, after verifying

that a message from an external site is appropriate, they send the message on to

the real daemon which processes the data. This provides security for those

applications that are particularly susceptible to interactive attacks. One

advantage of using a firewall for these services is that it makes it very easy to

monitor all activity, and very easy to quickly control what gets in and out of a

network.

1.13. IP Security

A secure network starts with a strong security policy that defines the freedom of access

to information and dictates the deployment of security in the network. Cisco Systems

offers many technology solutions for building a custom security solution for Internet,

extranet, intranet, and remote access networks. These scalable solutions seamlessly

:interoperate to deploy enterprise-wide network security. Cisco offers comprehensive

24

support for perimeter security, user authentication and accounting, and data privacy.

Cisco's IPSec delivers a key technology component for providing this total security

solution.

Cisco's IPSec offering provides privacy, integrity, and authenticity for networked

commerce-crucial requirements for transmission of sensitive information over the

Internet. Cisco's unique end-to-end offering allows customers to implement IPSec

transparently into the network infrastructure without affecting individual workstations

or PCs. Cisco IPSec technology is available across the entire range of computing

infrastructure: Windows 95, Windows NT 4.0, Cisco IOS™ software, and the Cisco

PIX Firewall.

IPSec is a framework of open standards for ensuring secure private communications

over the Internet. Based on standards developed by the Internet Engineering Task Force

(IETF}, IPSec ensures confidentiality, integrity, and authenticity of data

communications across a public network. IPSec provides a necessary component of a

standards-based, flexible solution for deploying a network-wid~ security policy.

aı11•nm

ııııB1~pm

Balı

Figure 1.7 IPSec with IKE Deployed across a Public IP Network

25

The component technologies include:

• Diffie-Hellman, a public-key method for key exchange-This feature is

used within IKE to establish ephemeral session keys.

• DES-The Data Encryption Standard (DES) is used to encrypt packet

data.
• MD5/SHA-The Message Digest 5/SHA hash algorithms are used to

authenticate packet data.

1.13.1. Benefits

IPSec is a key technology component of Cisco's end-to-end network service offerings.

Working with its partners in the Enterprise Security Alliance, Cisco will ensure that

IPSec is available for deployment wherever its customers need it. Cisco and its partners

will offer IPSec across a wide range of platforms, including Cisco IOS software, Cisco

PIX Firewall, Windows 95, Windows NT4.0, and Windows NT 5.0. Cisco is working

closely with the IETF to ensure that IPSec is quickly standardized and is available on all

other platforms. Customers who use Cisco's IPSec will be able to secure their network

infrastructure without costly changes to every computer. Customers who deploy IPSec

in their network applications gain privacy, integrity, and authenticity controls without

affecting individual users or applications. Application modifications are not required, so

there is no need to deploy and coordinate security on a per-application, per-computer

basis. This scenario provides great cost savings because only the infrastructure needs to

be changed. IPSec provides an excellent remote user solution. Remote workers will be

able to use an IPSec client on their PC in combination with Layer 2 Tunneling Protocol

(L2TP) to connect back to the enterprise network. The cost of remote access is

decreased dramatically, and the security of the connection actually improves over that

of dialup lines.

1.13.2. Applications

The Internet is rapidly changing the way we do business. While the speed of

communications is increasing, the costs are decreasing. This unprecedented potential for

increased productivity will reward those who take advantage of it. The Internet enables

such things as:

26

• Extranets: Companies can easily create links with their suppliers and

business partners. Today, this linkage must be accomplished with dedicated

leased lines or slow-speed dial lines. The Internet enables instant, on-demand,

high-speed communications.
• Intranets: Most large enterprises maintain unwieldy and costly wide­

area networks. While the cost of dedicated lines has been greatly reduced, there

is no question that the Internet offers a drastic cost savings.

• Remote users: The Internet provides a low-cost alternative for enabling

remote users to access the corporate network Rather than maintaining large

modem banks and large phone bills, the enterprise can enable the remote user to

access the network over the Internet. With just a local phone call to the Internet

service provider, the user can have access to the corporate network

These and other Internet applications are changing the way businesses communicate.

The Internet provides the public communications infrastructure necessary to make all

this possible. Unfortunately, the Internet is missing some key components, such as

security, quality of service, reliability, and manageability. IPSec is one of the key

technologies for providing security as a foundation network service.

1.14. IPSec Network Security

IPSec is a framework of open standards developed by the Internet Engineering Task

Force (IETF) that provides security for transmission of sensitive information over

unprotected networks such as the Internet. It acts at the network level and implements

the following standards:

• IP Sec

• Internet Key Exchange (IKE)

• Data Encryption Standard (DES)

• MD5 (HMAC variant)

• SHA (HMAC variant)

• Authentication Header (AH)

• Encapsulating Security Payload (ESP)

27

IPSec services provide a robust security solution that is standards-based. IPSec also

provides data authentication and anti-replay services in addition to data confidentiality

services, while CET provides only data confidentiality services.

1.15. IPSec Encryption Technology

IPSec shares the same benefitsc as CET both technologies protect sensitive data that

travels across unprotected networks, and, like CET, IPSec security services are provided

at the network layer, so you do not have to configure individual workstations, PCs, or

applications. This benefit can provide a great cost savings. Instead of providing the

security services you do not need to deploy and coordinate security on a per-application,

per-computer basis, you can simply change the network infrastructure to provide the

needed security services.

IPSec encryption offers a number of additional benefits not present in CET:

• Because IPSec is standards-based, enables Cisco devices to interoperate

with other IPSec-compliant networking devices to provide the IPSec security

services. IPSec-compliant devices could include both Cisco devices and non­

Cisco devices such as PCs, servers, and other computing systems.

Cisco and its partners, including Microsoft, are planning to offer IPSec across a

wide range of platforms, including Cisco IOS software, the Cisco PIX Firewall,

and Windows 2000.

• Enables a mobile user to establish a secure connection back to the office.

For example, the user can establish an IPSec "tunnel" with a corporate

firewall-requesting authentication services-in order to gain access to the

corporate network. all of the traffic between the user and the firewall will then

be authenticated. The user can then establish an additional IPSec tunnel­

requesting data privacy services-with an internal router or end system.

• Provides support for the Internet Key Exchange (IKE) protocol and for

digital certificates. IKE provides negotiation services and key derivation

services for IPSec. Digital certificates allow devices to be automatically

authenticated to each other without the manual key exchanges required by Cisco

Encryption Technology.

This support allows IPSec solutions to scale better than CET solutions, making

IPSec preferable in many cases for use with medium-sized, large-sized, and

growing networks, where secure connections between many devices is required.

1.21. Summary
A basic understanding of computer networks is requisite in order to understand the

principles of network security. We have covered some of the foundations of computer

networking, then move on to an overview of some popular networks. Following that,

we'll take a more in-depth look at TCP/IP, the network protocol suite that is used to run

the Internet and many intranets. Once we've covered this, we'll go back and discuss

some of the threats that managers and administrators of computer networks need to

confront, and then some tools that can be used to reduce the exposure to the risks of

network computing. This article is a general introduction to network security issues and

solutions in the Internet. emphasis is placed on route filters and firewalls. It is not

intended as a guide to setting up a secure network.

29

2. FIREW ALI.S AND PACKET FILTERING

2.1. Overview

Firewalls are a very effective type of network security. This chapter briefly describes

what Internet firewalls can do for your overall site security. describes the various types

of firewalls in use today. In building construction, a firewall is designed to keep a fire

from spreading from one part of the building to another. In theory, an Internet firewall

serves a similar purpose: if prevents the dangers of the Internet from spreading to your

internal network Jn practice, an Internet firewall is more like a moat of a medieval

castle than a firewall in a modem building. It serves multiple purposes:

• It restricts people to entering at a carefully controlled point.

• It prevents attackers from getting close to your other defenses.

• It restricts people to leaving at a carefully controlled point.

An Internet firewall is most often installed at the point where your protected internal

network connects to the Internet, as shown in figure 2.1

-- Internet

r Rrew~II 'J~ t j
ıtıtenıat Network

_ımıııı- ımınıı- _ 111111.uı -~ -.:..-~
,·~ 11111111!..,..

""- -
Figure 2.1 A firewall usually separates an internal network from the Internet

All traffic coming from the Internet or going out from your internal network passes

through the firewall. Because it does, the firewall bas the opportunity to make sure that

30

this traffic is acceptable. What does "acceptable" mean to the firewall? It means that

whatever is being done - email, file transfers, remote logins, or any kinds of specific

interactions between specific systems - conforms to the security policy of the site.

Security policies are different for every site; some are highly restrictive and others fairly

open. Logically, a firewall is a separator, a restricter, an analyzer. The physical

implementation of the firewall varies from site to site. Most often, a firewall is a set of

hardware components - a router, a host computer, or some combination of routers,

computers, and networks with appropriate software. There are various ways to

configure this equipment; the configuration will depend upon a site's particular security

policy, budget, and overall operations. A firewall is very rarely a single physical object,

although some of the newest commercial products attempt to put everything into the

same box. Usually, a firewall has multiple parts, and some of these parts may do other

tasks besides function as part of the firewall. Your Internet connection is almost always

part of your firewall. Even if you have a firewall in a box, it isn't going to be neatly

separable from the rest of your site; it's not something you can just drop in We've

compared a firewall to the moat of a medieval castle, and like a moat, a firewall is not

invulnerable. It doesn't protect against people who are already inside; it works best if

coupled with internal defenses; and, even if you stock it with alligators, people

sometimes manage to swim across. A firewall is also not without its drawbacks;

building one requires significant expense and effort, and the restrictions it places on

insiders can be a major annoyance. Given the limitations and drawbacks of firewalls,

why would anybody bother to install one? Because a firewall is the most effective way

to connect a network to the Internet and still protect that network. The Internet presents

marvelous opportunities. Millions of people are out there exchanging information. The

benefits are obvious: the chances for publicity, customer service, and information

gathering. The popularity of the information superhighway is increasing everybody's

desire to get out there. The risks should also be obvious: any time you get millions of

people together, you get crime; it's true in a city, and it's true on the Internet. Any

superhighway is fun only while you're in a car. If you have to live or work by the

ighway, it's loud, smelly, and dangerous. How can you benefit from the good parts of

the Internet without being overwhelmed by the bad? Just as you'd like to drive on a

highway without suffering the nasty effects of putting a freeway off-ramp into your

living room, you need to carefully control the contact that your network has to the

31

Internet. A firewall is a tool for doing that, and in most situations, it's the single most

effective tool for doing that. There are other uses of firewalls. For example, they can be

used as firewalls in a building that divide parts of a site from each other when these

parts have distinct security needs (and we'll discuss these uses in passing, as

appropriate).

2.1.1. What Can a Firewall Do?

Firewalls can do a lot for your site's security. In fact, some advantages of using firewalls

extend even beyond security.

2.1.2. What Can't a Firewall Do?

Firewalls offer excellent protection against network threats, but they aren't a complete

security solution. Certain threats are outside the control of the firewall. we need to

figure out other ways to protect against these threats by incorporating physical security,

host security, and user education into your overall security plan. Some of the

weaknesses of firewalls are discussed below.

2.2. Firewall Politics

Firewalls are used for two purposes:

1. to keep people (worms I crackers) out.

2. to keep people (employees I children) in.

How do we distinguish between the good and the bad network packets?

1. First of all, we know that the adversary is able to attach a new host to the internal

network, where a trusted host is a host controlled by the firewall administrator. The

fırewall should never let a network packet through from an untrusted host.

2. We know that any user can start any (potentially hostile) applications. So we need the

:firewall to distinguish between trusted and untrusted applications, where a trusted

application is an application installed by the firewall administrator on a trusted host.

The firewall should never let a network packet through from an untrusted application.

32

3. Lastly, we might consider some users to be more trust worthy than others. It would,

in fact, be a nice feature if we can allow trusted users to run potentially hostile

applications, while other users cannot. For instance, the system administrator might be

allowed to run some VPN application (Virtual Private Network}, which interconnects

one network to another. VPN software can certainly be used as a backdoor to the

system, other users must not be allowed to communicate with this software. If the

firewall can some how retrieve information about the identity of the host, the

application and the user, responsible for sending each network packet it receives, it has

a chance of determining whether the network packet should be allowed to proceed to

the outside or not.

2.2.1. How it create a security policy

we have seen some realy high folutin documentation on how to create a security policy.

After many years of experence we know now to say, don't believe a word of them.

Create a security policy is simple.

L describe what you need to service

2. describe the group of people you need to service

3. describe which service each group needs access to

4. for each service group describe how the service should be keep secure

5. write a statment making all other forms of access a vialation

Your policy will become more complicated with time but don't try to cover to much

ground now. Make it simple and clear.

33

2.3. Types of Firewalls

There are two types of firewalls :

1. Filtering Firewalls - that block selected network packets.

2. Proxy Servers (sometimes called firewalls) - that make network

connections for you.

2.3.1. Packet Filtering Firewalls

Packet Filtering is the type of firewall built into the Linux kernel.

A filtering firewall works at the network level. Data is only allowed to leave the system

if the firewall rules allow it. As packets arrive they are filtered by their type, source

address, destination address, and port information contained in each packet.

Many network routers have the ability to perform some firewall services. Filtering

firewalls can be thought of as a type of router. Because of this you need a deep

understanding of IP packet structure to work with one. Because very little data is

analyzed and logged, filtering firewalls take less CPU and create less latency in your

network.

Filtering firewalls do not provide for password controls. User can not identify

themselves. The only identity a user has is the IP number assigned to their workstation.

This can be a problem if you are going to use DHCP (Dynamic IP assignments). This is

because rules are based on IP numbers you will have to adjust the rules as new IP

numbers are assigned. I don't know how to automate this process. Filtering firewalls are

more transparent to the user. The user does not have to setup rules in their applications

to use the Internet. With most proxy servers this is not true.

2.3.2. Proxy Servers

Proxies are mostly used to control, or monitor, outbound traffic. Some application

proxies cache the requested data This lowers bandwidth requirements and decreases the

access the same data for the next user. It also gives unquestionable evidence of what

was transferred.

34

There are two types of proxy servers:

1. Application Proxies - that do the work for you.

2. SOCKS Proxies - that cross wire ports.

2.3.2.1. Applitation Proxy

The best example is a person telneting to another computer and then telneting from

there to the outside world. With a application proxy server the process is automated. As

you telnet to the outside world the client send you to the proxy first. The proxy then

connects to the server you requested (the outside world) and returns the data to you.

Because proxy servers are handling all the communications, they can log everything

1hey (you) do. For HTIP (web) proxies this includes very URL they you see. For FTP

proxies this includes every file you download. They can even filter out "inappropriate"

words from the sites you visit or scan for viruses. Application proxy servers can

authenticate users. Before a connection to the outside is made, the server can ask the

user to login first To a web user this would make every site look like it required a login.

2.3.2.2. SOCKS Proxy

A SOCKS server is a lot like an old switch board. It simply cross wires your connection

through the system to another outside connection. Most SOCKS server only work with

TCP type connections. And like filtering firewalls they don't provide for user

authentication. They can however record where each user connected to.

2.4. Firewall Technologies

2.4.1. Packet Filtering

This is the most basic means of implementing a firewall. It is a basic feature of routers

and computers that are set up to route. Basic packet filtering is based on the information

contained in the Layer 3 (IP) header of a packet. Decisions on security are based on the

following criteria:

35

o Source address

o Destination address

o Protocol being used (TCP, UDP, etc.)

o Port number (21, 23, 80, etc.)

By configuring a router with a table of filters, this information can be used to either pass

or block packets that flow through the router. If a connection request meets the criteria

of the filter, then it is allowed to pass, otherwise it is blocked. In this way, packet filters

look at the source and destination addresses and leave certain ports either open or

closed. The advantage of this is that packet filtering is very fast. However, because the

fılters are based on static entries, this form of firewall offers the least flexibility and

security. There is no way that the validity of a request can be verified in the context of

the connection, and various ports are left open to trojan horses or attacks that use IP

spoofing. So although this was the original and most inexpensive form of implementing

a firewall, most of today's modem networks cannot rely on packet filtering alone to

protect their networks. In order to provide the most flexible, secure protection against

modem network attacks, application level proxies and state.ful inspection systems have

come into existence.

2.4.2. Application-level Proxies

According to Webster's New World College Dictionary, proxy is defined as "the

authority to act for another." This is the principle behind firewalls that use application­

level proxies, or gateways. Instead of operating at a lower level of the protocol stack,

these operate at the application layer of the OSI model. Services that are made possible

by the application layer include e-mail, file transferring, web browsing, etc. A suite of

proxies, including a proxy for each of the protocols (such as POP, FTP, HITP, etc.) that

support these services, fully understands the various protocols and acts in behalf of the

services. In order for a connection to be authorized, the whole data stream is inspected.

Not only are things like IP addresses in the packet heading verified, but the payload is

also checked to see if it contains valid data and that the data belongs to the application

Rules are applied at the application layer, and if the data or the request does not meet

the criteria of these rules or if the data just doesn't make sense, then the connection is

denied. Every packet is processed, validated, and re-generated by the proxy. This

36

means that applications are not allowed to talk directly to each other, and as a result,

this form of firewall is extremely secure and effective, even against application-level

attacks. This means that a hacker would not be able to construct data packets that appear

to have valid info at the other layers and that pass other inspections, but that actually

contain harmful commands in the payload that could harm your network. Application­

level proxies, or gateways, also make use of NAT (Network Address Translation),

which hides your internal network's IP addresses from those on the outside. Instead, all

of the traffic that originates inside your network is given the IP address of your firewall

(in some cases, the packets may receive a public IP address that is different from your

fırewall's, but that are used only for that purpose). The firewall keeps track of which

packets belong to the different computers on your internal network, and forwards these

accordingly. This provides additional protection, since it keeps the IP addresses of your

"trusted" network hidden from the eyes of anyone who might have malicious intent.

2.5. Firewall Architecture

There are lots of ways to structure your network to protect your systems using a

firewall. If you have a dedicated connections to the Internet through a router, you could

plug the router directly into your firewall system. Or, you could go through a hub to

provide for full access servers outside your firewall. [8]

2.5.1. Dial-up Architedure

You may be using a dialup service like an ISDN line. In this case you might use a third

network card to provide provide a filtered DMZ. This gives you full control over your

Internet services and still separates them from your regular network.

!/_
Firewall I (LAN)

I Internet\----! System ı--(HUB)--1 Workstation/s

\ I
\I \I \I

(DMZ) (HUB)

Figure 2.2 Dial-up Architecture

37

2.5.2. Single Router Architecture

If there is a router or cable modem between you and the Internet. If you own the router

you could setup some hard filter rules in the router. If this router is owned by your ISP

so you may not the have the needed controls. You can ask your ISP to put in filters.

ı------"\
1 \ r--------, r--~-----, r--------,

/ \ I Router Or I I Fırewall I I I
(\ I Cbl d I I I I . IInternet , , a e M n ı (DMZ)ı system ı (LAN) 1 Workstatıon/ ı
\ I I l-r---1 f-------, I
\ I I I S\ / L J : (HUBi J (HUB) L J

------- I___ .•....__
/,,... OUTSIDE ',\

1, SERVER /' /.•... /--------
Figure 2.3 Single Router Architecture

2.5.3. Firewall with Proxy Server

If you need to monitor where users of your network are going and your network is

small, you can intergrate a proxy server into your firewall. ISP's some times do this to

create interest list of their users to resell to marketing agencies.

!!_ Proxy I

Firewall I (LAN)

I Internet\----! System ı--(HUB)--1 Workstation/s

\ I
\I \I \I

Figure2.4 Firewall with Proxy Server

You can put the proxy server on your LAN as will. In this case the firewall should have

rules to only allow the proxy server to connect to the Internet for the services it is

providing. This way the users can get to the Internet only through.the proxy.

38

/\ /\ ,---------- f

Firewall I (LAN) I . I
1 Workstatıon/s 1I Internet\----! System 1--(HUB)-ı ı

_ - - _/ I I ı L J
\/ \/ \/ I ,-----------,

L_ __ ~ Proxy server :
I I._ J

Figure2.5 Firewall with Proxy Server I LAN

2.5.4. Redundent Internet Configuration

/\ /\ _/_/_

/ ISP #1 \ --- I Partners\(WAN)

(HUB) I\ I \
\/ \/ \/ \/ \/ \/

/\ /\

I
/ ISP #2

I Firewall I I
I I (DMZ) I System I I (LAN)

\--1 Router 11-- (HUB)-- I (VPN) 11-- (HUB)-- I WS/s

\ I- - -
\/ \/ \/

(Outside) (Shared)

(Server) (Server) +----!Proxy

WS/s

VPN !-+

Figure 2.6 round-robin ONS techniques to provide access to multipule web servers

from one URL and multiple ISP's.

If you are going to run a service like YAHOO or maybe SlashDot you may want to

make your system by using redundant routers and firewalls. (Check out the High

Availability HowTo.) By using a round-robin DNS techniques to provide access to

multipule web servers from one URL and multiple ISP's, routers and firewalls using

High Avaibility technics you can create a I 00% uptime service. It is easy to let your

network get out of hand. Keep control of every connection. It only takes a user with a

modem to compromise your LAN.

39

2.6. Web Proxy Architecture

2.6.1. How the Web Proxy Service Works

2.6.1.1. The CERN-Proxy Protocol

The CERN-proxy protocol is widely recognized throughout the World Wide Web

(WWW) community as the standard for implementing proxy services in TCP/IP-based

networks. It has its origins within the standards for Hypertext Transfer Protocol (HTIP)

as a UNIX-based service first developed by members of Switzerland's Conseil

Europeen pour la Recherche Nucleair (European Laboratory for Particle Physics, or

CERN) in the early 1990s.

As the CERN staff added application-aware proxy support for Hypertext Transfer

Protocol daemon (HITPd) servers commonly known as Web servers to their libraries,

the WWW community built on these additions. In the time since it was first introduced,

the CERN-proxy protocol has become an accepted industry standard for implementing

HTIP proxy service. The Proxy Server Web Proxy service is fully compatible with the

CERN-proxy standard.

To better understand how CERN-proxy works, it is important to understand the

differences between how most Internet applications, such as File Transfer Protocol

(FTP) and Gopher, work and how HITP applications work.

Standard TCP/IP applications such as FTP use TCP (or in some cases, User Datagram

Protocol, or UDP) as the transport-level protocol for supporting client/server

communications. For HTTP-based applications, a set of commands (called methods) are

defined that are used in Web-based client/server communications. While CERN­

compatible proxy services support WWW (HTTP), FTP, and Gopher requests, it is

important to keep in mind that a CERN-based Web proxy server uses HITP for all

communications with its Web Proxy clients.

40

2.6.2. How HTTP Works

HTTP defines a set of commands (called methods) that a client can send to a server. The

two most common methods are:

• GET GET is used to forward a Uniform Resource Locator (URL) to a

server requesting the resource to which the URL refers.

• POST POST is used to forward a request that contains a URL and data;

typically, a user provides this data by completing a Hypertext Madrup Language

(HTML) form.

2.6.3. How the GET Method Works

In a simple HTIP request, a browser that is not configured for proxy service sends an

HTIP URL directly to a Web server. The browser sends the server a GET method,

which includes the path and resource name requested. In the process, the browser will

remove the protocol and site name from the URL (http://domatnname) before

forwarding the GET method request on to the site named in the URL.

For example, if the following URL is typed on the command line of a browser not

configured for proxy service

http://host.com/sales/report.htm

the browser parses the URL and sends the following command to Host.corn as:

GET /Sales/Report.htm

This type of processing simplifies communications because HTIP is the protocol for all

message requests that browser clients communicate to the server, but it limits browser

requests to sending and receiving by use of HTTP only. Browser requests for FTP

URLs can not be handled directly in this manner, although proxy service can support

these types of requests for browser clients. [5]

41

.2.6.4. Examples of GET Usage with Proxy Service

When a browser is configured for use with a proxy server, GET methods issued by the

browser are created with more detail about the resource included. The browser client

will issue the full URL without parsing the named protocol first. The named protocol

indicates the type of service being requested and whether the GET request is for a

WWW, FTP, or Gopher resource. The fully detailed GET method is then forwarded to

the proxy server.

GET http:J.ıhost.com/sales/doc.htm HTTP1 .O GET/sales/doc.htm HTT P/1.0

;

Client I HTTP I Microsoft I HTTP I ServerProxy Server , _

l l
Cache

Figure 2.7 following is an example of a WWW (HTTP) request that shows proxy-based

service for a document entitled Doc.htm in the Sales directory on the server Host.corn

The process by which a proxy request is serviced is as follows:

1. The Web browser sends the full URL request as a GET statement to the

proxy server.

2. The proxy server:

o Receives the request

o Parses the URL.

If the URL is in the cache, the request is serviced to the Web browser

from the cache.

o Identifies the type of resource the request is for (such as H fTP or

FTP).
o Resolves the domain name to an IP address.

o Requests Doc.htm from the Internet server by using the

appropriate protocol, such as HITP or FTP.

42

In this case, because the URL specified HITP, HTTP is the appropriate

protocol. Note that a request sent to a Web server is formatted by the

proxy service as a standard request, that is, a request not forwarded by

the proxy service.

3. The Web server:

o Receives the request.

o Responds by sending Doc.htın to the proxy by using HTTP.

4. The proxy server:

o Receives Doc.htm.

o Sends Doc.htın to the browser by using HTTP.

5. The Web browser receives Doc.htın and displays it on-screen,

completing the process.

Another example of this process will demonstrate how an FTP resource is requested and

handled under proxy service.

The following diagram shows how an FTP request is forwarded using proxy service.

The browser sends a request to the proxy service for an FTP-published document named

Q296.doc. The GET method that is used contains the full FTP URL entered at the

browser command line, ftp://host.com/sales/Q296.doc. (Note that the HTTP protocol is

used by the browser to send the GET method to the proxy.)

GET ftp ://host.com/saleslQ296 .doc HTTP
1.0

FTP request
...--- '.v -

Client I HTTP I Microsoft
-~ ServerProxy Server

~-
HTTPn .O 200 «document> FTP response

Figure 2.8 how an FTP request is forwarded using proxy service

In this case, the proxy service identifies the request as the FTP protocol, and requests

Q296.doc from host.corn by using the FTP protocol. Host.corn then returns Q296.doc to

the proxy by using the FTP protocol, and the proxy uses the HITP protocol to send the

document to the client.

43

Browsers that are not configured for the proxy service issue FTP and Gopher requests

by using the FTP and Gopher protocols, respectively. A browser that is not configured

for the proxy service cannot issue an FTP or Gopher requests by using IITTP.

Configuring a browser to communicate with a proxy server actually simplifies the work

that the browser needs to do, because all requests are processed with HfT P and have

complete URLs.[5]

2.7. Firewall placement

Security is not good if it isn't in the right place. Think about a modem office building,

where are the doors with locks? The lobby doors can always be locked, and usually the

doors on each floor have locks as well. If only the office doors had locks then it would

take a lot more effort to secure the building (i.e. many more locks would be needed) as

well as security guards to make sure no-one is trying to force a door. In a perfect world

every door would have a strong lock and a guard sitting next to it with a shotgun, but

since cost is a factor this won't happen. The same applies to networks, while there are

many free firewalls available the cost of installing and maintaining a firewall on each

machine would be high, it is much more efficient to have firewalls where your network

connects to untrusted networks. As well you should consider the type of traffic a

firewall will need to handle, the more traffic it must handle the more complex the rules

will need to be, and the greater a chance an attacker can slip in.

2.7 .1. Before or after?

It goes without saying that your internal LAN should have a firewall between it and the

Internet. But what about servers that won't work properly unless machines on the

Internet can connect to them? An Internet connection with no capacity for incoming

email, would be very Spartan indeed (web servers and DNS are also usually hosted on­

site in most cases). If you place the email server behind the firewall, on your corporate

LAN then you must "poke" holes in the firewall to let email in. If an attacker manages

to compromise the mail server then there is nothing between it and your internal LAN to

slow down further attacks. If you place the Email server in front of the firewall, you can

44

easily set up firewall rules to allow internal LAN hosts to connect to it and send/retrieve

email. If an attacker compromises the mail server they will not be able to access the

internal LAN, since there is a firewall. [6}

Internet ln!erfıet·

Firewall PubliG
·server

Internal LAN Public
server

Firewari·

~

Figure2.9 One the attacker has gained access 1Figure2.10 Attacker will have less

to the Public server they can easily attack the problems attacking the public server, but

internal LAN cannot use it to attack internal LAN as

easily

2. 7.2. In-between

For the best of both worlds you need two firewalls, on in front of your public servers,

and one in-between the public servers and the internal LAN. This setup is usually

refereed to as the ,;DMZ0, because the zone in-between the two firewalls is untrusted

and heavily restricted. Additionally you can setup application proxies (such as www and

ftp proxies), then block outbound access from the internal LAN on the exterior firewall

and force all clients to go through your application proxies (which can have anti-virus

capabilities for example). The DMZ should be a relatively "quiet" zone, any hostile

packets trying to enter it (from the Internet, or the Internal LAN) should be blocked at

either firewall, increasing the effectiveness of any intrusion detection systems (there

will be less false positives). But the DMZ concept is far from perfect too. It is common

to have the public servers and the internal LAN served off the same link and firewalls,

increasing the amount and types of traffic, and thus the complexity of the firewall rules.

Ideally you would have a path from the internal LAN to a DMZ with the public servers

45

that is only used for internal LAN to public servers traffic (i.e. website updates,

retrieving email, etc.). There would be a second path from the internal LAN to another

DMZ with proxy servers for Internet services (i.e. WWW, FTP)

·Firewall

İnternet

Pı.blic
'server

Figure 2.11 An attacker would need to get through the first firewall, and the second

one to penetrate the internal LAN

that is used for Internet traffic only. This would greatly reduce the complexity, on the

"public" DMZ the only traffic would be services you provide, and on the "internet

access" DMZ there would only be outgoing traffic with few or no incoming connections

being required (the notable exception being FTP). This of course would require 4

firewalls, and two completely separate configurations, however the reduction in

complexity (especially for large sites) is probably worth it. Also since the "public"

servers are more likely to be attacked then the proxy servers surviving attacks

(especially if you had separate İnternet links for each) would be much easier.

1..1.3. Types oftraftic

Generally speaking there are two types of traffic, inbound and outbound (if you see

traffic going sideways call me). Usually incoming traffic will generate a response in the

form of outgoing traffic, and vice versa İdeally you should place limits on what ports

foreign machines are allowed to connect to (i.e. locally ports 25, 53 and 80 are ok), and

limits should be placed on which ports internal hosts can connect out to. This is very

important with the growth of trojan horses and other "backdoors", attackers can send

infected email and in a matter of minutes an entire corporation can be infected with a

Melissa or "I love you" type virus. Imagine if it carried a payload such as Back Orifice

2000 (a popular Windows trojan) and was set to connect out to a certain host, from

46

which it would take commands (such as "send me the contents of C:\ My Documents"

or "log all keystrokes and email them to me"). The cost of cleaning up from such a

problem, let alone any cost associated with lost or stolen data, passwords and other

sensitive information is very high. By blocking (and logging) outgoing connections you

can detect improper usage of the network for example outgoing connections to port

6667 would indicate a user is chatting on IRC, and potential security breaches, or it

might be Back Orifice 2000 with the speak easy plugin broadcasting the machine it just

infected. Splitting the traffic load between two :firewalls (i.e. one for inbound and one

for outbound) doesn't make any sense since you won't be able to keep state for

connections. Splitting types of traffic (i.e. one for servers, and one for the internal

clients) does make sense. [7]

2.7.4. What to block

Oddly enough this is something many people don't think about a whole lot, in some

cases you can simply deny everything and have a few specific allow rules which results

in a pretty tight configuration. However it is more likely that you have specific blocking

rules and allow most other things. Also this is usually based on port numbers (i.e.

service) and destination, however source is a!so very important. Even if you only allow

a few trusted IP addresses to say connect to your "secret" web server, an attacker can

still spoof packets, and so on. You can reduce the risk by blocking IP addresses that are

in "high risk" environments, such as Universities, foreign countries and so on (assuming

of course you are not terribly interested in talking to them via the Internet).

2.7.5. Foreign sites

If your business is only concerned about North America for example then it might make

sense to heavily restrict access from other countries such as Russia, and China. If you

are securing network sites that are not providing public network services (such as

WWW sites) then you should probably restrict access from network blocks like 24.*

(cablemodern providers, a favorite jumping point for attackers). You may also wish to

restrict access to external sites, for reasons including content or employee distractions.

For example by blocking access to login.oscar.aol.com (152.163.242.24,

152.163.242.28, 152.163.241.120, 152.163.241.128) you can effectively cripple AOL

47

Instant Messenger (AIM) from working. If you wanted to block access to Freedom

network you would block outgoing connections to ports: 51102/tcp and 51112/tcp.[7]

If you have specific software or services you wish to block access to the best thing to do

is install it on a test machine (preferably behind a firewall). You can then run the

software and use "netstat" to find out who the machine is talking to, and if there is a

firewall in-between you can closely monitor what it is connecting to and so on (add a

logging rule for all packets to or from that host).

1.7.6. Internal sites

Chances are not all of your internal machines require access to the Internet, and by

blocking them you can head off problems. Machines without Internet access cannot

connect to "naughty" sites, and trojan horse software running on them cannot contact

outside sites to report it is installed, or send stolen passwords. Any machines providing

services to Internet users (such as ONS, WWW, Email) should b allowed access to the

Internet (otherwise they will not work), although you may wish to restrict it, for

example the mail server should only need to reply to clients that initiate connections,

and only establish connections to other mail servers (port 25), there is no need for the

mail server to establish connections to machines on any other port then 25. Thus if

someone were to break into your mailserver they would only be able to attack other

machines on a single port (port 25), instead of all 65,536 ports (and of course you would

be able to quickly detect this type ofbehavior). Web servers should only need to answer

queries to ports 80 (and 443 for secure web), and generally speaking do not need to

establish outbound connections. By heavily restricting the outbound access of machines

you can significantly reduce your exposure, and increase the chance of detecting a

security incident.

2.7.7. Services

There are many services, thousands in fact. However some of these services are so

common, and so dangerous that they warrant special attention. The most common

problems are in what I call network infrastructure protocols. Things that almost all

networks use such as OHCP; ONS, SNMP, LPR, NFS, SMB, which provide basic

network management, or services such as file and print sharing. Generally speaking

48

these do not need to be shared out across the Internet, and if remote users do need

access to them (such as file and print sharing) they should be tunneled through a VPN

(such as IPSec) and not allowed to go out in the clear.

23/tcp - telnet, cleartext authentication and sessions, should not be used (replace with

SSH).

37/tcp and udp - time, use ntp (Network Time Protocol) instead

67/tep and udp - bootp server, should only be used locally

68/tcp and udp - bootp client, should only be used locally

69/tcp and udp - tftp (Trivial FTP), should only be used locally

19/tcp - finger, should only be used locally

HO and 111/tcp and udp- POP2 and POP3, if remote users need access use SSL

wrapped POP or VPN

143/tcp and udp - IMAP, if remote users need access use SSL wrapped POP or VPN

161/udp - SNMP, attackers love this protocol

162/udp - SNMP-trap, attackers love this protocol

177/tcp and udp - xdmcp (X Display Manager Control Protocol, restrict access or VPN

389/tcp - LDAP, restrict access or VPN

512, 513 and 514/udp and tep - various remote services and logging, restrict access or

VPN

1812/tcp and udp - Radius, restrict access or VPN

And the list goes on and on. The decision tree should look like this:

Can we firewall it completely? If yes do so.

Can we restrict access to it to people via a VPN only (i.e. IPSec)? lfyes do so.

Can we firewall it restrictively (i.e. to "trusted hosts")? If yes do so.

Can we restrict access to it from "risky" sources (i.e. Canadian colleges, China, the

USA)? If yes do so.

Basically what is the most restrictive thing you can do, and the service is still useful.

49

2.8. Common configuration problems

There are many common configuration problems with firewalls, ranging in severity and

scope. By far the most common problems relate to what should be blocked or allowed.

This is often problematic because needs change, you may need to allow video streaming

for example, and unless done properly the addition of new firewall rules can seriously

undermirıe the security provided by a firewall. Before any changes are made to a

firewall you should sit down with whoever is responsible, and ensure they will not have

unintended side effects. I find the best way to do this is to print out the rules and make

sure the new rules fit logically into the existing structure. For example my rules

typically start with rules to block private and non routed network (like 10.*, 127.*, and

so on), followed by ICMP related rules, then I have rules that allow traffic in (like SSH,

Email, WWW and so on), and then depending on the security required I block the first

1024 ports (which are usually the most interesting ones), or I have a default deny policy.

If I need to add a new rule to let in secure WWW traffic for example I would not add it

to the front of the list, I would add it in the chapter with the specific allowals. Adding it

to the front of the list would result in attackers being able to send packets to port 443

(secure WWW) from non routed addresses. If your firewall has multiple administrators

this can be especially dangerous. You should sit down together and write out a

document describing how and why rules are in place, ideally this document should be

enline so it can be referred to, and modified as needed (always document changes!).

Another common problem is people not blocking broadcast traffic on firewalls.

Broadcast traffic almost never needs to be passed through firewalls, and generally

speaking traffic sent to the network address should not be passed either (in general this

means anything ending in a O or 255 should be blocked, your netmasks may be different

so make sure it's correct). Attackers will often try to use broadcast ICMP traffic to

attack other sites, this is called "smurfing". By pinging your broadcast address instead

of one host responding, many hosts respond, all they need to do is forge the return

address, and some unwitting victim gets blasted by your network Windows machines

are also in the habit of sending out a lot of broadcast traffic, the default installs of pretty

much every Microsoft OS results in it advertising it's name and any services it is

50

running, this is especially dangerous for NT servers. On a modem network there should

be very little broadcast traffic.

Firewalls should block certain network management protocols, especially bootp/bootpc,

SNMP and RPC based services. These are services attackers will attempt to

compromise because they are almost installed, and in many cases they will not be

configured securely (i.e. SNMP community names of "public" or "private" are far to

common). Windows file sharing should generally not be used across the Internet,

blocking ports 135 to 139 (udp and tep) at the :firewall is often a good idea, if people do

need access to their files this should be done through a virtual private network Ideally

the only things let into a corporate network should be public network services like DNS,

Email and WWW (and even then they should only be allowed to a few secured servers),

and returning packets from client connections. VPN technology has matured to the point

where there is not excuse not to use it to connect sites securely that need to transfer

sensitive information such as corporate files.

Management of firewalls is also often handled poorly. Telnet and R services should

never be used. Web based admin tools should not be used unless they provide an

encrypted link (i.e. https://), or through a VPN. Telnet, R services and unencrypted web

sessions mean that the passwords and so on can be gathered by an attacker, or if they

are sufficiently skilled they can hijack the connection and insert a few commands before

it is dropped (like flush all rulesets). Any management should be done from a handful of

highly secured workstations that are NOT equipped with mail readers, web browsers or

any unneeded software. There are far to many security problems in today's mail readers,

web browsers and other application software. If an attacker is able to seize control of

the administration workstation they can run a key logger, network sniffer or simply

seize control of it with programs like Back Orifice 2000. For day to day administration

of the firewall (i.e. service packs, updates, and so on) you should install OpenSSH or

the commercial version of SSH if it is UNIX, and if it is NT based you should

administer it locally or use a remote administration tools that support the GUI (i.e.

PCAnywhere and VNC) in conjunction with a VPN package (not PPTP!). Another

secure method is to manage the firewall "out of band", i.e. use the serial console on a

sparc/Cisco/etc., or PPP (or similar) on an NT box, this allows you to completely

disable all network services on the firewall, including remote logins, making it very

51

difficult for an attacker to get in using them (since they do not exist). Additionally when

someone attacks your firewall through a denial of service there is a better chance of

being able to login and correct it. If you decide to use a serial console/PPP and a modem

then make sure the modem is secured, the best way is to enable callback support, this

way an attacker would need to go to great lengths to connect to it.

Firewalls are an extremely useful component in any network security plan, they have

gone from "only the government needs firewalls" to "what is the best firewall for my

home computer?". Unless they are setup correctly, and managed correctly however they

are worse then useless (you will think you are secure when in fact you are not).

l.9. Summary

Firewalls can do much more than just block unwanted traffic from entering your

network. Most can perform a myriad of tricks, including filtering, mangling, and

NATing of traffic. More concisely, they can provide control over not only who comes

in and goes out, but help prioritize traffic (mangling), and masquerade internal hosts

behind one or more public IPs. Firewalls can also allow you to protect your Internet

servers (web, mail, FTP, etc.) while still allowing public access to those services

through port forwarding - that is, forwarding an attempted connection to the firewall

through to an internal host.

52

3. PROXY SERVERS SECURITY

3.1. Overview

The growth and increased popularity of the World Wide Web has created a

corresponding growth in network traffic. With this growth have come delays, slower

response times, and security concerns. The network traffic problems are partly due to

the repeated retrieving of objects from remote Web servers on the Internet. Proxy

Services can help improve performance by locally caching frequently requested Internet

information. In general, Proxy Services stores copies of frequently requested Web

information closer to the user, thereby reducing the number of times the same

information is accessed over an Internet connection, the download time, and the load on

the remote server.

3.2. Web Proxy Servers

3.2.1. What is Web Proxy Server?

A Web proxy server is a specialized HTIP server. The primary use of a proxy server is

to allow internal clients access to the Internet from behind a firewall. Anyone behind a

:firewall can now have full Web access past the firewall host with minimum effort and

without compromising security.

The proxy server listens for requests from clients within the firewall and forwards these

requests to remote internet servers outside the firewall. The proxy server reads

responses from the external servers and then sends them to internal client clients. In the

usual case, all the clients within a given subnet use the same proxy server. This makes it

possible for the proxy to cache documents efficiently that are requested by a number of

clients. People using a proxy server should feel as if they are getting responses directly

from remote servers.

Clients without Domain Name Services (DNS) can still use the Web. The proxy IP

address is the only information they need. Organizations using private network address

spaces such as the class A net 10. *. *. * can still use the Internet as long as the proxy is

visible to both the private internal net and the Internet.[9]

53

Most proxy servers are implemented on a per-access method basis. Proxy servers can

allow or deny internet requests according to the protocol of the requests. For instance a

proxy server can allow calls to FTP servers while denying calls to HTf P servers.

3.2.2. When Web Proxy Servers are Useful

You can use a proxy server in a number of ways including:

• Permitting and restricting client access to the Internet based on the client IP

address.

• Caching documents for internal documents.

• Selectively controlling access to the Internet and subnets based on the

submitted URL.

• Providing Internet access for companies using private networks.

• Converting data to HfML format so it is readable by a browser.

3.3. Browser Access to the Internet

Some machines on your local network might not be able to directly access Internet

resources. For instance, some browsers might not be able to directly access Internet

resources because they run on systems behind a protective firewall. In these cases, a

proxy server can retrieve the desired files for them.[10]

In Figure 3.1, the Proxy server is running on a firewall host and making connections to

the outside world using firewall software. You could also run the proxy server on

another internal host that has full internet access, or on a machine inside the firewall.

1be proxy server receives the request from the browser in the form of a URL. The

proxy server retrieves the requested information, converts it to HfML format and sends

it on to the browser behind the firewall. The proxy server can handle all network

requests if it is the only machine directly connected to the Internet.

54


~~~ - ?."J> ~ m <~z:; .-x. z~ ?.'l,ı-:t?,:Z?.":f's"l. -·· __ ::_;:,y;_:fr:_«::_:_,.. •• 1...

rı Br~

D-
Browser.ı-.

D-FTP

,t,,,., ..•,,.9..,..•,!i:~D-
HITP

Remote Serveı-.

Figure 3.1 Proxy Server Running on a Firewall

3.4. Caching Documents

Usually, the clients within a subnet access the same Web proxy server. Some proxy

servers let you cache internet documents for clients within the local area network

Caching documents means keeping a local copy of internet documents, so that the

server doesn't need to request them over and over again.

Caching is more effective on the proxy server than on each client system This saves

disk space because only a single copy is cached. Caching on the proxy server means

more documents that are often referenced by multiple browsers can be cached more

efficiently. The system administrator can predict which documents are worth caching

for a long time and which are not

It is easy to configure an entire workgroup to use the proxy server's cache of

documents. This reduces the load on the server by allowing it to get information from

the cache when responding to subsequent client requests for the same data.

Caching also makes it possible to browse the Web even if a Web server, or even the

external network, is down, as long as one can connect to the proxy server. This

55



improves service to remote network resources, such as busy FTP sites and transient

Gopher servers that are often unavailable remotely, but may be cached locally.

You can also cache a. presentation you plan to present elsewhere when you are unsure of

1he location's Internet capabilities.[10]

3.5. Selectively Controlling Access to the Internet and Subnets

When using a proxy server it is possible to filter client transactions at the protocol level.

The proxy can control access to services for individual methods, hosts, and domains.

Some proxy servers let you:

• Decide which requests to honor and which requests to turn down.

• Specify the URLs or URL masks of locations that you do not want the proxy

server to serve.

• Specify which protocols clients can use based on their IP addresses. For

example, you could let certain clients make HTTP requests but not let them use

FrP.

3.5.1. Configuring Browsers to Use the Proxy Server

For a browser to use a proxy server they must channel their internet requests through the

proxy server. Most browsers allow you to configure them so that they direct their

requests through a proxy server. Depending on the browser, you can identify a proxy

server by identifying the server's domain name or IP address. However, unless you

configure the browsers individually on your subnet to look for the proxy server, they

won't send their requests to it.

Providing Internet Access for Companies Using Private Networks:

Organizations that use one or more private network address spaces, such as class A

ıo. *. *. *, can still use the Internet. To access the Internet they need to have a proxy

server that is visible to the Internet and to the private internal network(s).

An Ordinary Web Transaction Via a Server

56



Many clients have their own IP address and a direct connection to servers on the

Internet. When a normal HfTP request is made by the browser, the HfTP server gets

only the path and keyword portion of the requested URL. Other parts of the URL, such

as the protocol specifier "http:" and the host name, are clear to the remote HfTP server.

The remote server knows that it is an HTIP server, and it knows the host machine that

on which it is running (see Figure 26). The requested path specifies the document or a

CGI program on the local filesystem of the server, or some other resource available

from that server.[II]

When a user enters:

http://mycompany.com/information/ProxyDetails.html

The browser converts it to:

GET /information/ProxyDetails.html

The browser connects to the server running on mycompany.com and issues the

command and waits for a response. In this example, the browser makes a request to the

HITP server and specifies the requested resource relative to that server. there is no

protocol nor host name specifier in the URL.

HTTP

document sent)(re al path from

GET http :/Ip ath /doc.html

Figure 3.2 A Normal Web Transaction

The request specified the path (Data Directory) of information and the

ProxyDetails.html document located in the Data Directory. The response is a document

or an error message. The user in this example could just as easily use FTP:// ----- in

'Which case the client sends the request to the specified FTP server.

57



• Communication Via a Proxy Server

The proxy server acts as both a server system and a client system. It is a server when

accepting HITP requests from browsers, and acts as a client system when its browser

software connects to remote servers to retrieve documents.

The proxy server uses the header fields passed to it by the browser without modification

when it connects to the remote server. This means the browser does not lose any

functionality when going through a proxy.

A complete proxy server should be able to communicate all the Web protocols, the most

important ones being HfTP, FTP, Gopher, and WAIS. Proxies that handle only a single

Internet protocol, such as HTIP, are possible, but a Web browser would then require

access to other proxy servers to handle the remaining protocols.

When a browser sends a request through a proxy server, the browser always uses HTIP

for the transactions with the proxy server. This is true even when the user wants to

access a remote server that uses another protocol. for example, FTP.

Instead of specifying only the pathname and search keywords to the proxy server, the

browser specifies the full URL. This way the proxy server has all the information

necessary to make the actual request to the remote server specified in the request URL,

using the protocol specified in the URL.

3.5.2. HTTP Browser Request to Remote HTTP Transaction

When you use a proxy server as a client system, it acts as a browser to receıve

documents. The following is a typical example of a proxied HfTP request

When you enter a full URL, for example:

http://mycompany.com/informationlProxyDetails.html

The browser converts the URL to:

GET http://mycompany.com/informationlProxyDetails.html

58



The browser then connects to the server, and then the proxy server provides the

connection to the.Internet.

The proxy server converts this request to:

GET /information/Proxy Details.html

The proxy server connects to the server running on mycompany. corn. The server then

issues the command and waits for a response, returns the response to the proxy server,

which then returns the response to the client. [ 11]

Figure 3.2 shows a browser making a request to the proxy server using HTTP and

specifying a full URL. The figure shows that the URL passed between the proxy server

and the remote server specifies neither the remote host name nor the HITP protocol.

Brov.ser \J\/eb Server

Figure 3.3 An HTTP Transaction via a Proxy Server

• HTTP Browser Request to Remote FTP Transaction

Figuer 3.4 shows a browser request via a proxy server using HTTP even though the

request specifies a document on an FTP server on the Internet. The proxy server sees

from the full URL that it should make an FTP connection. The proxy server makes the

connection and retrieves the file from the remote FTP server and sends it to the browser

using HTTP. In this case, the proxy server returns an FTP directory listing as an HTML

document.

59



We b_p roxy.my.do ma in
FTP Server

FTP response

ff ] GET ftp // .. /path/doc.him ı.ı : proxy

ııııiii!!M HTTP lı, Server J. L.~,=J
Browser HTTP document returned

FTP request

Figure 3.4 An FTP Transaction via a Proxy Server

3.5.3. Advantages and Disadvantages of Caching Documents

Caching documents means storing documents locally so users do not have to connect to

a remote server to get files. When a local browser requests a file, the server checks its

cache to see if it has the document. If the file exists in the cache, the server serves the

local copy to the browser. If you cache documents you need to decide:

• Which documents are used frequently enough to justify keeping them locally

• How long you can keep the documents in cache before fetching more recent

copies.

Figure 3.5 shows a proxy server caching a document retrieved from a remote server.

The client (or other clients) can request and receive this locally stored document at a

tater tiıne.

Web_proxy.my.domain

. HTTP
~ :] Get pathftile.html • o

~
(real path from document) ı:ıııın Sil-4 Web Server

ll!lt•••••••~•~••~•~e•• ••••••ı:ı:::ı

Figure 3.5 Caching Documents on a Proxy Server

60



If an up-to-date version of the requested document is found in the cache of the proxy

server no connection to the remote server is necessary as shown in Figure 3.6

Web _proxy .my .do main

o .

ııııııı =~ı:: .. :=:=:=:~

Web Server

HTTP
Get path/file.html

411
(real path from document)

••••ı········~~~~-~·-·······

Figure 3.6 Retrieving Cached Documents

3.5.4. Advantages of Caching on a Proxy Server

Caching documents can save users considerable time when they request documents

normally located out on the Internet. A proxy server can serve these documents much

more quickly than remote servers. In addition, caching a document that many users need

can save considerable network cost and connection time. Caching can also reduce the

amount of disk space browsers use because many local browsers can use a single copy

of a cached document.

Caching is disk based. when you restart the server, documents that you cache are still

available. If you want, you can also configure the proxy server to use only the local

cache. For instance, you can provide Internet documents to local browsers that do not

have an internet connection.

3.5.5. Managing Cached Documents

Many documents available on the Internet are "living" documents. Determining when

documents should be updated or deleted can be a difficult task. Some documents can

remain stable for a very long time and then suddenly change. Other documents can

change on a weekly or a daily basis. This means you need to decide carefully how often

to refresh or delete the documents held in cache.

61



3.5.6. Proxy Server-to-Proxy Server Linking

Chaining proxy servers lets you run a proxy server as a local cache on behalf of a

department within an organization. The individual departments have control over the

server and cache. These departmental proxy servers can connect to a proxy server on a

firewall between the Internet and the organization. This proxy server talks to the

Internet as shown in Figure 3.7.

Any restrictions for access set for the organization proxy server take precedence over

access restrictions set for the departmental proxy servers.

For example, departmental proxy server 1 might be set to allow all URL requests. The

organizational proxy server, as corporate policy, might be set to deny all URL requests

for certain online publications. A request for one of these publications coming into

proxy server 1 would be forwarded to the organizational proxy server. The

organizational proxy server would then deny the request.

II er.,~cra~l 1 ' I I ~;:i 1r'9 ~

Remote Servers

r: Depar1mental Proxy Servere

Figure 3.7 Proxy Linking

Conversely, proxy server I could be configured to deny URLs going to a designated

FTP site while proxy server 2 and 3 and the organizational server are all allowed access

to the site.

62



3.6. Types of Caching

There are four types of caching:

3.6.1. Passive Caching

With passive caching (also called basic or on-demand caching), the client (browser)

sends a request directly to a proxy server, an HTTP server that usually runs on a firewall

server. The proxy server locates the object in its cache and returns the object to the

client. If the object is not in the cache, the proxy retrieves a copy from the origin Web

server on the Internet, stores it in the cache on the proxy server, and returns a copy of

the object to the client. The object is cached for a preset period of time or until the cache

is full. If the cache disk space is low, older objects are removed from the cache.

Subsequent browser requests for the cached object are made to the proxy server at local

intranet speeds. This reduces Internet traffic and the request load on the source Web

server, thereby reducing the delays in returning information to the client.

To the client, the proxy server has the same basic functionality as the Web server (with

a subtle difference in submitting requests). To the Web server, the proxy server has the

same basic functionality as the client. The proxy builds its cache based on the Web sites

that users visit. When an object is retrieved from the Web and put in a cache, a Time­

To-Live (TTL) value is associated with the object. Before the TIL expires, requests are

filled from the cache for that object. When the TTL expires, the Web server is contacted

for a newer version, the update is stored in the cache, and a new TIL is calculated.[12]

3.6.2. Active Caching

Active caching is an add-on to passive caching that improves performance. With active

. caching, the proxy automatically sends a request to the origin server to retrieve an

object. The server updates objects that are more frequently accessed or requested, have

longer TILs, and are actively cached during periods of low server load.

63



3.6.3. Negative Cadıing

Negative caching occurs when a proxy attempts to resolve a request for a URL that does

not exist or cannot be located or accessed. In this case, the proxy caches the negative

result so that future requests for that URL are resolved quickly. The proxy continues to

check in the background and refreshes the cache when the pages become available.

Negative caching occurs for HTTP error conditions such as 403 (forbidden request) and

404 (URL not found).

3.6.4. Hierarchiral Caching

Hierarchical caching allows information to be retrieved from the nearby or closest

proxy servers instead of from the originating Web server. HTf P and Ff P acceleration

(reverse proxy cache acceleration) also allows static information to be cached by and

retrieved from the border proxy servers instead of the origin Web servers to reduce the

Web server load. The proxy cache uses cache aging information that Web servers

provide to browsers to determine how long pages should be cached.[12]

3.7. Interaction with Other BorderManager Services

Access control is issued by the Proxy Services software applications to forward and

filter connections for such services as HfTP, Gopher, and FTP. The host running Proxy

Services is known as the gateway. In general, Proxy Services allows services only for

which there are proxies. For example, if a gateway has proxies for FTP, then only FTP

can be requested. requests for all other services are ignored.

With gateways, you can hide the names and addresses of internal systems---the gateway

is the only hostname known outside the system. Also, traffic can be logged before it

reaches the internal hosts. Proxy Services improves security by hiding private network

domain names and addresses and sending all requests through a single gateway. For

more information about gateways.[12]

64



3.8. Proxy Technology

Proxy Services is based on both the first-generation CERN proxy technology and the

newer, second-generation Harvest/Squid hierarchical proxy cache technology. The

Harvest/Squid technology enhances standard CERN proxy cache services with negative

URL caching and negative Domain Name System (ONS) caching, and introduces

hierarchical caching through the Internet Cache Protocol (ICP). The Harvest project, an

Internet Resource Discovery Project contract performed by the University of Colorado,

introduced ICP hierarchical caching to improve Internet Web performance and

scalability. The project was transferred to the National Laboratory for Applied Network

Research (NLANR) in early I 996 as the basis for the Squid project. The goal of the

Squid project is to facilitate the evolution of an efficient national architecture for

handling highly popular information.[13]

3.9. Supported Protocols

BorderManager Proxy Services supports the following protocols and applications:

• HITP (0.9, I.O, and I.I), including HTIPS support and Secure Sockets Layer

(SSL)

• FTP

• Domain Name System (DNS)

• Gopher

• Simple Mail Transfer Protocol/Post Office Protocol 3 (SMTP/POP3)

• Network News Transfer Protocol (NNTP)

• RealAudio and RealVideo*

• SOCKS 4 and 5

• Generic TCP/UDP

• Transparent proxy

The passive mode (PASV) is supported for FTP to allow the firewall administrator to

deny incoming connections above port 1023, if necessary. Otherwise, normal (PORT)

FTP mode is used. Proxy Services also supports the HTTP protocol over the

Internetwork Packet Exchange™ (IPX™) software. Novell IPX/IP and IP/IP gateway

65



clients, as well as other clients, can directly access the proxy server using the gateway

client transparent proxy feature. For more information about the Novell IP Gateway.

3.10. Proxy Services Benefits

BorderManager Proxy Services combines an Internet proxy, a Web caching facility, and

the NDS™ software to provide World Wide Web access from within a firewall. Proxy

Services has the following benefits:

• Reduces WAN traffic to the Internet and on the primary Web server by

providing local LAN access to cached information. Proxy Services also reduces

the load on Web Internet servers and increases Internet and intranet performance.

• Uses a single protocol on the LAN (for HITP proxy only). Users do not need

to have separate clients-HTIP is used to communicate with a proxy server. The

proxy server uses the appropriate protocol-FTP, Gopher, and so on-for HITP

requests to access documents from the network.

• Improves intranet security by hiding the local network from the Internet.

Private network domain names and addresses are hidden and all requests are sent

through a single gateway. This applies to forward proxy only. Reverse proxy is

used to hide the origin host from the client or local network.

• Enhances intranet security with access control and content filtering.

• Distributes LAN client requests across multiple proxy servers, for example,

FTP requests on one server and HTIP requests on another server.

• Reduces the disk space requirements for retrieved information on client

workstations and reduces the load on Web Internet servers.

• Enables document access even when the Internet or intranet Web server is

down or inaccessible, if the document is already cached by the proxy server and

Time-To-Live is not expired.

• Undeletes and serves if the origin server is down.

• Provides a single point of NDS-based administration.

• Logs and filters client transactions.

66



These benefits apply to both Internet and intranet Web sites. Because Proxy Services

supports open Internet standards, it can be used with Novell's intranet and Internet

products, as well as with other vendors' browsers and Web servers.[13]

3.11. Application Proxies

This section describes in detail the following supported application proxies:

3.11.1. HTTP Proxy

There are two types ofHITP proxy:

•HTTP proxy (forward proxy)

•HTIP accelerator (reverse proxy)

3.11.1.1. HTTP or Forward Proxy

HTTP proxy resolves URL requests on behalf of Web clients on your network. This is

also known as forward proxy. These requests are cached, if possible, on the proxy

server to increase the speed of delivering the same content the next time the same

information is requested.

HTTP itself is an application-level protocol used for distributed, collaborative,

hypermedia information systems. It is generic and allows systems to be created

independently of the data being sent. It is also an object-oriented protocol that can be

used for name servers, distributed object management systems, and so on. HITP servers

use HITP as the primary application protocol, allowing users to access and exchange

Web files. The HITP protocol can also be used for communication between users,

proxıes, gateways, and other Internet protocols, such as SMTP, NNTP, FTP, and

Gopher.

HTIP communication is usually over TCP/IP connections, on default port 80, although

other ports can be used.

67



3.11.1.2. HTTP Accelerator or Reverse Proxy

The proxy server can be configured as an HTIP accelerator to protect an intranet server

from the Internet and reduce the load on the public Web servers maintained on the

mtranet, HTIP acceleration, also known as reverse proxy cache acceleration or Web

server acceleration, creates a front-end processor to a Web server. An HITP accelerator

server lies between one or more Web servers and the Internet and represents the Web

servers to any clients accessing them. An HITP accelerator can also be used to create a

local mirror site of a remote server.

When the Internet user queries ONS for the Web server address, it returns the address of

the requested Web server. The HITP accelerator listens for HTTP requests on port 80

(or another configured port) and processes all incoming Web requests. Requests for

objects that can be cached-static information that does not change often, such as HTML

pages and GIF images-are processed by the proxy. Requests for objects that cannot be

cached---dynamic information that changes frequently-are processed by the origin Web

server on port 80. In general, approximately 90 percent of a typical Web server content

is static and 10 percent is dynamic.

You can set up an HTIP accelerator server to retrieve information or references to

cachable objects from a Web server and cache the information on a BorderManager

server. This reduces loading on the Web server. The HTIP accelerator server forwards

only requests and references that are not in the cache to the Web server.

If your site receives requests for a high percentage of objects that can be cached, the

HTIP accelerator reduces the Web load. For even greater performance, you can cache

objects of a more volatile nature, such as stock quotes, and specify an accuracy delay

time to users.

BorderManager reverse proxy can handle more TCP connections than an origin Web

server (typically UNIX or Windows NT).[14]

HITP acceleration has the following benefits:

• Provides caching for Web servers

68



• Reduces the load on the Web servers and speeds them up

• Protects Web servers
• Protects IP networks in conjunction with the other BorderManager services

3.11.2. FTP Proxy

There are two types of FTP proxy:

3.11.2.1. Benefits of FTP Proxy

FTP is the standard Internet protocol used for file transfer. FTP proxy is used to proxy

FTP requests when users use pure FTP clients, for example, the LAN WorkPiace®

software, UNIX, Macintosh, and so on.

FTP proxy has the following benefits:

• Centralized access control

• Data caching for FTP data files

• Anonymous users allowed

• URL representation of FTP data

Standard FTP requires a user account on the server being accessed. Anonymous FTP

does not require a user account and provides access to specific files on the Internet. The

usemame is "anonymous" or "ftp". You can use proxy servers to control access to

authenticated FTP sites. When an FTP proxy server is placed on a firewall, all FTP

client requests in the intranet must pass through the FTP proxy server. This helps

enforce centralized control over Internet access and scans data that is being sent or

retrieved by users within an organization. The FTP intranet client (or user) must first

connect to the FTP proxy server by entering the IP address or name of the proxy server,

for example, ftp://novell.com. The user must then enter the following to identify the

origin host and connect to the FTP proxy:

USER ProxyUserName$DestFTPUserName$

DestFTPHostName

PASS UserNDSPassword$DestFTPPassword

69



where ProxyUserName is the NDS usemame, DestFTPUserName is the FTP usemame

on the destination server, DestFTPHostName is the hostname or IP address of the

destination FTP server, UserNDSPassword is the user's NDS password, and

DestFTPPassword is the user password on the destination server. Only the FTP

hostname DestFTPHostName is required. If the DestFTPUserName is missing, it is

assumed to be anonymous, and no password is required. The ProxyUserName is

required only if FTP authentication is enabled. The proxy makes the final connection to

the origin host or server.[14]

Both active and passive FTP modes are supported, and can be enabled or disabled.

Active mode (PORT) posts a listener on the intranet and allows clients to make a

connection to the intranet machine, a less secure method. Passive mode (PASV) for FTP

allows the client to initiate the connection to a remote FTP server. PASV mode is

supported to allow the firewall administrator to deny incoming connections above port

l023, if necessary.

3.11.2.2. FTP Reverse Proxy

FTP reverse proxy, or FTP accelerator, is an application that is placed in front of the

FTP server. The FTP accelerator acts as an FTP server to Internet users and protects the

FTP servers behind the firewall from outside break-ins. The FTP accelerator scans

inbound and outbound data, and with third-party support, can trap any viruses being

sent through the system.

The FTP accelerator also caches frequently requested data and FTP files for anonymous

users and helps accelerate FTP requests. This process is useful because most FTP

requests from the Internet are from anonymous FTP users. Caching shifts the load from

FTP servers to the reverse FTP proxy.

3.12. Mail (SMTP/POP3) Proxy

Electronic mail is the most fundamental and useful of Internet services. It is also the

most vulnerable. To create a secure environment, you must be able to restrict access to

outside mail to only a few machines, screen messages for hostile applets or scripts, and

avoid other malicious e-mail schemes.

70



SMTP handles electronic mail exchange between mail servers, accepting mail and

sending it directly to the destination mail domains or delivering it to an intermediate

relay agent. Post Office Protocol 3 (POP3) is used to handle the user electronic

mailboxes on servers.

The Mail proxy server provides secure SMTP mail services for incoming and outgoing

mail. SMTP allows intranet users to send mail to the Internet in a secure manner.

Similarly, Internet users can send mail through SMTP to intranet users in a secure

manner.

SMTP proxy can perform the following access control and filtering for outgoing and

incoming mail:

• Enforce access control based on usernames and mail domain names for

incoming and outgoing mail.

• Hide internal mail domain names and usernames. The Mail proxy can be

configured to overwrite the "From" address so that only the primary mail domain

name for an organization is exposed to the Internet.

• Filter for Multimedia Internet Mail Extensions (MIME). Mail is scanned and

filtered for attachments, including non-ASCII character sets, nontext data, rich

text messages (with formatted text), and multipart messages.

• Scan and filter incoming e-mail, with third party support, for viruses and junk

mail. Unwanted junk mail is scanned using access control lists that combine mail

domain filtering and content filtering.

Mail proxy can be used in an organization between the existing intranet mail server and

the Internet, or between the intranet and the Internet without an existing intranet mail

server. The following e-mail commands are allowed by the Mail proxy: HELO, MAIL,

RCPT, DATA, RSET, HELP, NOOP, and QUIT. For more information about

configuring mail filters and access control,

3.13. News (NNTP) Proxy

The News, or NNTP, proxy is used for accessing and using Usenet news, an Internet

bulletin-board-like feature that contains articles on many subjects. Articles are grouped

71



into subjects or news groups. More than I 0,000 public news groups exist on the

Internet. The News proxy provides secure NNTP news services for transferring news

postings or articles in both directions between the intranet and the Internet. The News

proxy is a TCP-based service that uses a store-and-forward type of protocol.

Internal or private news servers can use the proxy to exchange articles with outside or

public news servers in a secure manner. For public news servers, the News proxy acts as

a corporate news server and feeds all configured private news servers, if any. For

private news servers and news readers (for example, Netscape* Communicator*), the

News proxy acts as a public news server and feeds all configured public news servers.

The following news commands are allowed by the News proxy: POST, IHAVE,

NEWNEWS, NEWGROUPS.

If an intranet has no private news servers, such as in a small company, the News proxy

acts as a news server. All user requests for listings of groups, articles, and retrieval and

posting of articles are sent by the browsers or news readers to the News proxy. The

News proxy then sends the requests and information to the configured public news

servers and forwards all responses back to the users. The news reader utilities sort the

articles or groups and display the information to the users. No articles are cached in this

version of the News proxy.

Users can retrieve news articles by either specifying the article ID or selecting a group

and the article number. All commands for retrieving news articles are supported. You

should dedicate a server to the News proxy and services because they tend to consume

disk space quickly. News proxy performance is optimal when internal news servers are

available. This reduces the request load on the News proxy.

You can apply access control rules to the News proxy by specifying the following:

• A list of public or private news groups that can be allowed or denied. For

public groups, the allowed groups can be seen by the news readers and private

news servers. For private groups, the allowed groups can be seen by the public

news servers only.

72



• An article that can be allowed or denied posting to a news group by a user. The

user can be specified as ANY to apply the rule to all users or a list of news

groups.

3.14. DNS Proxy

DNS is a distributed data system that translates hostnames to IP addresses and vice

versa DNS also stores and accesses other information about hosts.

When enabled, the DNS proxy acts as a DNS server for clients on the intranet. A

listener is posted on the DNS port. When a DNS request is received from a client, the

ONS proxy checks its local DNS cache and returns a response, if available. If the

address is not in the cache, the DNS proxy forwards the request to the configured DNS

name servers. The proxy caches only the responses of Internet class and Internet address

queries.

The client must have the private IP address of the DNS proxy configured as the address

of its DNS server.

On the server, you can set up the IP addresses of the DNS name servers and the domain

name in the SYS:\ETC\RESOL V.CFG file.

3.15. HTTPS Proxy

HTTPS proxy provides the ability to access secure sites using SSL over a persistent IP

connection. The browser sends an HITPS request as an SSL request through the proxy,

which then tunnels the request to the origin Web server.

3.16. SOCKS Client

This features enables a proxy to authenticate through a SOCKS 5 firewall. This release

also supports the forwarding ofHITP traffic only.

SOCKS is a circuit-level gateway protocol. With SOCKS, hosts behind a firewall can

gain full access to the Internet without full IP support. When. SOCKS support is

73



enabled, all requests sent to the Internet are forwarded to a SOCKS 5 server when the

proxy is used for caching only.

When the proxy receives a request, it checks its cache. If the requested object is not in

the cache, the proxy makes a TCP connection to the SOCKS server and redirects the

request from the intranet to the SOCKS server, allowing for more secure Internet

access. The SOCKS server then connects to the origin server and retrieves the object.

The proxy simply acts as a SOCKS client to the SOCKS server and is used for caching

only. Null (no usemame or password) and usemame/password authentication are

supported. The Novell IP Gateway can also support the proxy as a SOCKS client.

This release requires that the proxy server and the SOCKS server are both on the same

intranet. The reason is that in the usemame/password combination, SOCKS

authentication uses clear text to send the password.

3.17. Generic Proxy

Generic proxy is a circuit-level, pass-through proxy used to serve multiple protocols

when an application proxy is not available. A mapping is created between the address

and ports, creating a tunnel to the destination host. When the generic proxy server

receives a connection request from the intranet, it forwards the request to the mapped

address, connects to it, and transfers data between the two connections.

For example, to establish a Telnet connection to an internal host from home, a generic

TCP proxy should be set up at the proxy server. You can also define a generic UDP

proxy. When connecting to the proxy, the user is connected to the internal host.

Authentication is available for generic TCP proxy---a user must be authenticated using

access control list rules before connecting to a remote host. Authentication is not

available for generic UDP proxy.

You can apply access control rules to generic TCP proxy. Access can be allowed or

denied based on the following:

• The IP address or hostname of the original host

• The port number associated with the origin host

74



• The IP address of the source host in the intranet

3.18. HTTP Transparent Proxy

Transparent proxy can be implemented using either of the following features:

3.18.1.Gateway Client Transparent Proxy

If the client is not configured to use a specific proxy or is not set up to use the HTTP

Transparent proxy feature of Proxy Services, the Novell IP Gateway client will enforce

the use of a proxy by capturing the browser request and redirecting it to an active proxy,

which the client finds through NDS. During initialization, if the gateway client

transparent proxy is enabled, the gateway client uses NDS to find active HTTP proxy

servers and sends the request to the first proxy server found that the user has permission

to access.[14]

3.18.2.HTTP Transparent Proxy

HTTP Transparent proxy enables users to use their Web browsers without having to

specifically reconfigure each browser to point to a proxy. This feature is useful if you

have limited time and cannot immediately reconfigure the browsers for all your users. It

is also useful when you want to enforce network security and ensure that all client

requests pass through a proxy.

The HTTP Transparent proxy intercepts traffic between the client and the origin Web

server, and funnels it to a proxy server. Relative URLs are translated to absolute URLs.

For HTTP Transparent proxy only, traffic from a configurable list of ports or IP

addresses is intercepted. Only the ports or addresses on the list participate in forwarding

traffic to the proxy.

To use HTTP Transparent proxy, you must ensure that all HTTP requests are sent

through the proxy server. Therefore, the proxy server must be the default router or

provide the only access to the Internet. The clients must use the proxy's private IP

address as the TCP/IP gateway address. IP forwarding must be enabled on the server.

75



3.19. Client servers

3.19.1. Client/Server Networking

Ages ago (in Internet time), when mainframe dinosaurs roamed the Earth, a new

approach to computer networking called "client/server" emerged. Client/server proved

to be a more cost-effective way to build many types of networks, particularly PC-based

LANs running end-user database applications. Many types of client/server systems

remain popular today.

3.19.2. What ls Client/Server?

The most basic definition of client/server comes from the corresponding Usenet FAQ

Client/server is a computational architecture that involves client processes requesting

service from server processes.

In general, client/server maintains a distinction between processes and network devices.

Usually a client computer and a server computer are two separate devices, each

customized for their designed purpose. For example, a Web server will often contain

large amounts of memory and disk space, whereas Web clients often include features to

support the graphic user interface of the browser such as high-end video cards and

large-screen displays. Client/server networking, however, focuses primarily on the

applications rather than the hardware. The same device may function as both client and

server. for example, Web server hardware functions as both client and server when local

browser sessions are run there. Likewise, a device that is a server at one moment can

reverse roles and become a client to a different server (either for the same application or

for a different application).[16]

3.19.3. Client/Server Applications

Some of the most popular applications on the Internet follow the client/server design:

• Email clients

• FTP (File transfer) clients

• Web browsers

76



Each of these programs presents a user interface (either graphic- or text-based) in a

client process, that allows the user to connect to servers. In the case of email and FTP,

the user enters a computer name (or sometimes an IP address) into the interface to set

up future connections to the server process.

For example, an Earthlink subscriber enters the name smtp.earthlink.net into the

configuration settings of their email client to allow them to send messages over the

Internet. In the case of email, a person generally enters the server information only one

time, as the server side of the connection rarely changes. In the case of FTP, however,

one typically enters a different server name each time they use the program. One day a

person may visit ftp.earthlink.net to download tools, the next day they may visit

ftp.microsoft.com to find a software patch, and so on. When using a Web browser, the

name or address of the server appears in the URL of each request. Although a person

may start a Web surfing session by entering a particular server name (such as

www.about.com), the name regularly changes as they click links on the pages. In the

Web model, server information is provided by the HTML content developer encoded in

the anchor tags.

3.19.4. Oient/Server at Home

Many home networkers use client/server systems without even realizing it. Microsoft's

Internet Connection Sharing (ICS), for example, relies on DHCP server and client

functionality built into the operating system. Cable modem and DSL routers like those

from Linksys also include a DHCP server with the hardware unit. Many home LAN

gaming applications also use a single-server/multiple-client configuration.

3.19.5. Pros and Cons of Client/Server

Client/server was originally developed to allow more users to share access to database

applications. Compared to the mainframe approach, client/server offers improved

scalability because connections can be made as needed rather than being hard-wired.

The client/server model also supports modular applications. In the so-called "two-tier"

and "three-tier" types of client/server systems, a software application is separated into

modular pieces, and each piece is installed on hardware specialized for that subsystem

77



One area of special concern in client/server networking is system management. With

applications distributed across the network, it can be challenging to keep configuration

information up-to-date and consistent among all of the devices. Likewise, upgrades to a

newer version of a client/server application can be difficult to synchronize or stage

appropriately. Finally, client/server systems rely heavily on the network's reliability.

redundancy or fail-over features can be expensive to implement.[16]

3.20. Summary

The primary use of a proxy server is to allow internal clients access to the Internet from

behind a firewall. The proxy technology, which has developed greatly in the last years,

offers the perfect solution for organizations sitting on a closed subnet behind a firewall,

who are interested in giving their employees a controlled access to the Internet. A proxy

is in fact, an http server that sits on a firewall machine and usually has a caching ability

making surfing much faster.

This ability makes it attractive also in case there is no firewall. It also allows one to read

documents "unplugged" to the Internet. This caching proxy functions as a server when

connected by a client, and as a client when contacting the original server. Today's

proxies are very sophisticated, so that the security "holes" are minimal.

78



4. PUBLIC-KEY CRYPTOGRAPHY AND SECURE SOCKETS

LAYER

4.1. Overview

Public-key cryptography and related standards and techniques underlie security features

of many Netscape products, including signed and encrypted email, form signing, object

signing, single sign-on, and the Secure Sockets Layer (SSL) protocol. This chapter

introduces the basic concepts of public-key cryptography.

4.2. Internet Security Issues

All communication over the Internet uses the Transmission Control Protocol/Internet

Protocol (TCP/IP). TCP/IP allows information to be sent from one computer to another

through a variety of intermediate computers and separate networks before it reaches its

destination.[20]

The great flexibility of TCP/IP has led to its worldwide acceptance as the basic Internet

and intranet communications protocol. At the same time, the fact that TCP/IP allows

information to pass through intermediate computers makes it possible for a third party

to interfere with communications in the following ways:

• Eavesdropping. Information remains intact, but its pnvacy ıs

compromised. For example, someone could learn your credit card number,

record a sensitive conversation, or intercept classified information.

• Tampering. Information in transit is changed or replaced and then sent

on to the recipient. For example, someone could alter an order for goods or

change a person's resume.

• Impersonation. Information passes to a person who poses as the

. intended recipient. Impersonation can take two forms:

o Spoofing. A person can pretend to be someone else. For example,

a person can pretend to have the email address jdoe@mozilla.com, or a

computer can identify itself as a site called www.mozillacom when it is

not. This type of impersonation is known as spoofing.

79



o Misrepresentation. A person or organization can misrepresent

itself. For example, suppose the site www.mozilla.com pretends to be a

furniture store when it is really just a site that takes credit-card payments

but never sends any goods.

Normally, users of the many cooperating computers that make up the Internet or other

networks don't monitor or interfere with the network traffic that continuously passes

through their machines. However, many sensitive personal and business

communications over the Internet require precautions that address the threats listed

above. Fortunately, a set of well-established techniques and standards known as public­

key cryptography make it relatively easy to take such precautions.

Public-key cryptography facilitates the following tasks:

• Encryption and decryption allow two communicating parties to

disguise information they send to each other. The sender encrypts, or scrambles,

information before sending it. The receiver decrypts, or unscrambles, the

information after receiving it. While in transit, the encrypted information is

unintelligible to an intruder.

• Tamper detection allows the recipient of information to verify that it has

not been modified in transit. Any attempt to modify data or substitute a false

message for a legitimate one will be detected.

• Authentication allows the recipient of information to determine its

origin--that is, to confirm the sender's identity.

• Nonrepudiation prevents the sender of information from claiming at a

later date that the information was never sent.

The chapters that follow introduce the concepts of public-key cryptography that

underlie these capabilities.

4.3. Encryption and Decryption

Encryption is the process of transforming information so it is unintelligible to anyone

but the intended recipient. Decryption is the process of transforming encrypted

information so that it is intelligible again. A cryptographic algorithm, also called a

80



cipher, is a mathematical function used for encryption or decryption In most cases, two

related functions are employed, one for encryption and the other for decryption.[21]

With most modem cryptography, the ability to keep encrypted information secret is

based not on the cryptographic algorithm, which is widely known, but on a number

called a key that must be used with the algorithm to produce an encrypted result or to

decrypt previously encrypted information. Decryption with the correct key is simple.

Decryption without the correct key is very difficult, and in some cases impossible for all

practical purposes.

The chapters that follow introduce the use of keys for encryption and decryption.

4.3.1. Symmetric-Key Encryption

With symmetric-key encryption, the encryption key can be calculated from the

decryption key and vice versa. With most symmetric algorithms, the same key is used

for both encryption and decryption, as shown in Figure L

Encryption Decryption
Dev Ale

1 1I~••...,
reviemod
d.e Dew...

Original Symmetric Scrambled Symmetric Original
data key data key data

Figure 4.1 Symmetric-key encryption

Implementations of symmetric-key encryption can be highly efficient, so that users do

not experience any significant time delay as a result of the encryption and decryption.

Symmetric-key encryption also provides a degree of authentication, since information

encrypted with one symmetric key cannot be decrypted with any other symmetric key.

Thus, as long as the symmetric key is kept secret by the two parties using it to encrypt

communications, each party can be sure that it is communicating with the other as long

as the decrypted messages continue to make sense.

Symmetric-key encryption is effective only if the symmetric key is kept secret by the

two parties involved. If anyone else discovers the key, it affects both confidentiality and

authentication. A person with an unauthorized symmetric key not only can decrypt

81



messages sent with that key, but can encrypt new messages and send them as if they

came from one of the two parties who were originally using the key.

Symmetric-key encryption plays an important role in the SSL protocol, which is widely

used for authentication, tamper detection, and encryption over TCP/IP networks. SSL

also uses techniques of public-key encryption, which is described in the next chapter.

4.3.2. Public-Key Encryption

The most commonly used implementations of public-key encryption are based on

algorithms patented by RSA Data Security. Therefore, this chapter describes the RSA

approach to public-key encryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys--a

public key and a private key--associated with an entity that needs to authenticate its

identity electronically or to sign or encrypt data. Each public key is published, and the

corresponding private key is kept secret. Data encrypted with your public key can be

decrypted only with your private key. Figure 2 shows a simplified view of the way

public-key encryption works.

Encryption Decryption
Doı.rAlt
I h~"'
reviewed
Ute new...- t Y I ~:."'·

- reviewed
the new...-Original

data
Public

key
Scrambled

data
Private

key
Original

data

Figure 4.2 Public-key encryption

The scheme shown in Figure 4.2 lets you freely distribute a public key, and only you

will be able to read data encrypted using this key. In general, to send encrypted data to

someone, you encrypt the data with that person's public key, and the person receiving

the encrypted data decrypts it with the corresponding private key.

Compared with symmetric-key encryption, public-key encryption requıres more

computation and is therefore not always appropriate for large amounts of data.

However, it's possible to use public-key encryption to send a syinmetric key, which can

then be used to encrypt additional data. This is the approach used by the SSL protocol.

82



As it happens, the reverse of the scheme shown in Figure 4.2 also works: data encrypted

with your private key can be decrypted only with your public key. This would not be a

desirable way to encrypt sensitive data, however, because it means that anyone with

your public key, which is by definition published, could decrypt the data Nevertheless,

private-key encryption is useful, because it means you can use your private key to sign

data with your digital signature--an important requirement for electronic commerce and

other commercial applications of cryptography. Client software such as Communicator

can then use your public key to confirm that the message was signed with your private

key and that it hasn't been tampered with since being signed. Digital Signatures and

subsequent chapters describe how this confirmation process works.

4.4. Key Length and Encryption Strength

In general, the strength of encryption is related to the difficulty of discovering the key,

which in tum depends on both the cipher used and the length of the key. For example,

the difficulty of discovering the key for the RSA cipher most commonly used for

public-key encryption depends on the difficulty of factoring large numbers, a well­

known mathematical problem.

Encryption strength is often described in terms of the size of the keys used to perform

the encryption: in general, longer keys provide stronger encryption. Key length is

measured in bits. For example, 128-bit keys for use with the RC4 symmetric-key cipher

supported by SSL provide significantly better cryptographic protection than 40-bit keys

for use with the same cipher. Roughly speaking, 128-bit RC4 encryption is 3 x 1026

times stronger than 40-bit RC4 encryption.

Different ciphers may require different key lengths to achieve the same level of

encryption strength. The RSA cipher used for public-key encryption, for example, can

use only a subset of all possible values for a key of a given length, due to the nature of

the mathematical problem on which it is based. Other ciphers, such as those used for

symmetric key encryption, can use all possible values for a key of a given length, rather

than a subset of those values. Thus a 128-bit key for use with a symmetric-key

encryption cipher would provide stronger encryption than a 128-bit key for use with the

RSA public-key encryption cipher.

83



This difference explains why the RSA public-key encryption cipher must use a 512-bit

key (or longer) to be considered cryptographically strong, whereas symmetric key

ciphers can achieve approximately the same level of strength with a 64-bit key. Even

this level of strength may be vulnerable to attacks in the near future. [22]

Because the ability to surreptitiously intercept and decrypt encrypted information has

historically been a significant military asset, the U.S. Government restricts export of

cryptographic software, including most software that permits use of symmetric

encryption keys longer than 40 bits. For detailed information about these restrictions as

they apply to Netscape products, see Export Restrictions on International Sales.

4.5. Digital Signatures

Encryption and decryption address the problem of eavesdropping, one of the three

Internet security issues mentioned at the beginning of this chapter. But encryption and

decryption, by themselves, do not address the other two problems mentioned in Internet

Security Issues: tampering and impersonation.

This chapter describes how public-key cryptography addresses the problem of

tampering. The chapters that follow describe how it addresses the problem of

impersonation.

Tamper detection and related authentication techniques rely on a mathematical function

called a one-way hash (also called a message digest). A one-way hash is a number of

fixed length with the following characteristics:

• The value of the hash is unique for the hashed data. Any change in the

data, even deleting or altering a single character, results in a different value.

• The content of the hashed data cannot, for all practical purposes, be

deduced from the hash--which is why it is called "one-way."

As mentioned in Public-Key Encryption, it's possible to use your private key for

encryption and your public key for decryption. Although this is not desirable when you

are encrypting sensitive information, it is a crucial part of digitally signing any data

Instead of encrypting the data itself: the signing software creates a one-way hash of the

data, then uses your private key to encrypt the hash. The encrypted hash, along with

other information, such as the hashing algorithm, is known as a digital signature.

84



Figure 4.3 shows a simplified view of the way a digital signature can be used to validate

the integrity of signed data

Original
D•rA5l dataI ~ı.-.e

~'
~~w . .J

,.....;e.,..d
ti,., new ...-..--

One-way

HashingJ hash
algorithm "[:==J}

I 9 Identical
.. EZ] -~- [:==J hashes

Digital Public key One-way validate
signature decryption hash data

integrity

Hashing
algorithm

c=J----t ~
One-way Private key

hash encryption
Digital

signature

Figure 4.3 Using a digital signature to validate data integrity

Figure 4.3 shows two items transferred to the recipient of some signed data: the original

data and the digital signature, which is basically a one-way hash (of the original data)

that has been encrypted with the signer's private key. To validate the integrity of the

data, the receiving software first uses the signer's public key to decrypt the hash. It then

uses the same hashing algorithm that generated the original hash to generate a new one­

way hash of the same data , the receiving software compares the new hash against the

original hash. If the two hashes match, the data has not changed since it was signed. If

they don't match, the data may have been tampered with since it was signed, or the

Signature may have been created with a private key that doesn't correspond to the public

key presented by the signer.[.22]

If the two hashes match, the recipient can be certain that the public key used to decrypt

the digital signature corresponds to the private key used to create the digital signature.

Confirming the identity of the signer; however, also requires some way of confirming

that the public key really belongs to a particular person or other entity. For a discussion

of the way this works, see Certificates and Authentication

The significance of a digital signature is comparable to the significance of ahandwritten

signature. Once you have signed some data, it is difficult to deny doing so later-­

assuming that the private key has not been compromised or out of the owner's control.

This quality of digital signatures provides a high degree of nonrepudiation--that is,

85



digital signatures make it difficult for the signer to deny having signed the data. In some

situations, a digital signature may be as legally binding as a handwritten signature.

4.6. Certificates and Authentication

4.6.1. A Certificate Identifies Someone or Something

A certificate is an electronic chapter used to identify an individual, a server, a company,

or some other entity and to associate that identity with a public key. Like a driver's

license, a passport, or other commonly used personal IDs, a certificate provides

generally recognized proof of a person's identity. Public-key cryptography uses

certificates to address the problem of impersonation (see Internet Security Issues).

To get a driver's license, you typically apply to a government agency, such as the

Department of Motor Vehicles, which verifies your identity, your ability to drive, your

address, and other information before issuing the license. To get a student ID, you apply

to a school or college, which performs different checks (such as whether you have paid

your tuition) before issuing the ID. To get a library card, you may need to provide only

your name and a utility bill with your address on it. [23]

Certificates work much the same way as any of these familiar forms of identification.

Certificate authorities (CAs) are entities that validate identities and issue certificates.

They can be either independent third parties or organizations running their own

certificate-issuing server software (such as Netscape Certificate Server). The methods

used to validate an identity vary depending on the policies of a given CA-just as the

methods to validate other forms of identification vary depending on who is issuing the

ID and the purpose for which it will be used. In general, before issuing a certificate, the

CA must use its published verification procedures for that type of certificate to ensure

that an entity requesting a certificate is in fact who it claims to be.

The certificate issued by the CA binds a particular public key to the name of the entity

the certificate identifies (such as the name of an employee or a server). Certificates help

prevent the use of fake public keys for impersonation. Only the public key certified by

the certificate will work with the corresponding private key possessed by the entity

identified by the certificate.

86



In addition to a public key, a certificate always includes the name of the entity it

identifies, an expiration date, the name of the CA that issued the certificate, a serial

number, and other information. Most importantly, a certificate always includes the

digital signature of the issuing CA. The CA's digital signature allows the certificate to

function as a "letter of introduction" for users who know and trust the CA but don't

know the entity identified by the certificate.

For more information about the role of CAs, see How CA Certificates Are Used to

Establish Trust.

4.6.2. Authentication Confirms an Identity

Authentication is the process of confirming an identity. In the context of network

interactions, authentication involves the confident identification of one party by another

party. Authentication over networks can take many forms. Certificates are one way of

supporting authentication.

Network interactions typically take place between a client, such as browser software

running on a personal computer, and a server, such as the software and hardware used to

host a Web site. Client authentication refers to the confident identification of a client by

a server (that is, identification of the person assumed to be using the client software).

Server authentication refers to the confident identification of a server by a client (that is,

identification of the organization assumed to be responsible for the server at a particular

network address). 

Client and server authentication are not the only forms of authentication that certificates

support. For example, the digital signature on an email message, combined with the

certificate that identifies the sender, provide strong evidence that the person identified

by that certificate did indeed send that message. Similarly, a digital signature on an

HTML form, combined with a certificate that identifies the signer, · can provide

evidence, after the fact, that the person identified by that certificate did agree to the

contents of the form. In addition to authentication, the digital signature in both cases

ensures a degree of nonrepudiation--that is, a digital signature makes it difficult for the

signer to claim later not to have sent the email or the form.

Client authentication is an essential element of network security within most intranets or

extranets. The chapters that follow contrast two forms of client authentication:

87



• Password-Based Authentication Almost all server software permits

client authentication by means of a name and password. For example, a server

might require a user to type a name and password before granting access to the

server. The server maintains a list of names and passwords; if a particular name

is on the list, and if the user types the correct password, the server grants access.

• Certificate-Based Authentication Client authentication based on

certificates is part of the SSL protocol. The client digitally signs a randomly

generated piece of data and sends both the certificate and the signed data across

the network. The server uses techniques of public-key cryptography to validate

the signature and confirm the validity of the certificate.[24]

4.6.3. Password-Based Authentication

Figure 4.4 shows the basic steps involved in authenticating a client by means of a name

and password. Figure 4 assumes the following:

• The user has already decided to trust the server, either without

authentication or on the basis of server authentication via SSL.

• The user has requested a resource controlled by the server.

• The server requires client authentication before permitting access to the

requested resource.

O User enters~l and password. Web
server O Server

authorizes
access for
authenticated
identity.

8 Client sends name and
password across network. GServer uses

password to
authenticate
user's id entity.

Figure 4.4 Using a password to authenticate a client to a server

These are the steps shown in Figure 4.4:

88



1. In response to an authentication request from the server, the client

displays a dialog box requesting the user's name and password for that server.

The user must supply a name and password separately for each new server the

user wishes to use during a work session.

2. The client sends the name and password across the network, either in the

clear or over an encrypted SSL connection.

3. The server looks up the name and password in its local password

database and, if they match, accepts them as evidence authenticating the user's

identity.

4. The server determines whether the identified user is permitted to access

the requested resource, and if so allows the client to access it

With this arrangement, the user must supply a new password for each server, and the

administrator must keep track of the name and password for each user, typically on

separate servers.

As shown in the next chapter, one of the advantages of certificate-based authentication

is that it can be used to replace the first three steps in Figure 4.4 with a mechanism that

allows the user to supply just one password (which is not sent across the network) and

allows the administrator to control user authentication centrally.

4.6.4. Certificate-Based Authentication

Figure 4.5 shows how client authentication works using certificates and the SSL

Protocol. To authenticate a user to a server, a client digitally signs a randomly generated

piece of data and sends both the certificate and the signed data across the network. For

the purposes of this discussion, the digital signature associated with some data can be

thought of as evidence provided by the client to the server. The server authenticates the

user's identity on the strength of this evidence.

Like Figure 4.4, Figure 4.5 assumes that the user has already decided to trust the server

mıd has requested a resource, and that the server has requested client authentication in

the process of evaluating whether to grant access to the requested resource. Unlike the

process shown in Figure 4.4, the process shown in Figure 4.5 requires the use of SSL.

Figure 4.5 also assumes that the client has a valid certificate that can be used to identify

the client to the server. Certificate-based authentication is generally considered

S9



preferable to password-based authentication because it is based on what the user has

(the private key) as well as what the user knows (the password that protects the private

key).

O User enters
private-key password.

l SSL oonnoct;on

8 Client sends
certificate and

• Cl . evidence
ıent. across network.

retrıeves
private key
and uses it to
create "evidence"
(digital signature).

Web
server

1111--- 9server
authorizes
access for
authenticated
identity.

C, Server uses
certificate and
evidence to
authenticate
the user's identity.

Figure 4.5 Using a certificate to authenticate a client to a server

However, it's important to note that these two assumptions are true only if unauthorized

personnel have not gained access to the user's machine or password, the password for

the client software's private key database has been set, and the software is set up to

request the password at reasonably frequent intervals.

• Important Neither password-based authentication nor certificate-based

authentication address security issues related to physical access to individual

machines or passwords. Public- key cryptography can only verify that a private

key used to sign some data corresponds to the public key in a certificate. It is the

user's responsibility to protect a machine's physical security and to keep the

private-key password secret.

These are the steps shown in Figure 4.3:

1. The client software, such as Communicator, maintains a database of the

private keys that correspond to the public keys published in any certificates

issued for that client. The client asks for the password to this database the first

time the client needs to access it during a given session--for example, the first

time the user attempts to access an SSL-enabled server that requires certificate­

based client authentication. After entering this password once, the user doesn't

90



need to enter it again for the rest of the session, even when accessing other SSL­

enabled servers.

2. The client unlocks the private-key database, retrieves the private key for

the user's certificate, and uses that private key to digitally sign some data that

has been randomly generated for this purpose on the basis of input from both the

client and the server. This data and the digital signature constitute "evidence" of

the private key's validity. The digital signature can be created only with that

private key and can be validated with the corresponding public key against the

signed data, which is unique to the SSL session.

3. The client sends both the user's certificate and the evidence (the

randomly generated piece of data that has been digitally signed) across the

network.

4. The server uses the certificate and the evidence to authenticate the user's

identity. (For a detailed discussion of the way this works, see Introduction to

SSL.)

5. At this point the server may optionally perform other authentication

tasks, such as checking that the certificate presented by the client is stored in the

user's entry in an LDAP directory. The server then continues to evaluate whether

the identified user is permitted to access the requested resource. This evaluation

process can employ a variety of standard authorization mechanisms, potentially

using additional information in an LDAP directoıy, company databases, and so

on. If the result of the evaluation is positive, the server allows the client to

access the requested resource.

As you can see by comparing Figure 4.5 to Figure 4.4, certificates replace the

authentication portion of the interaction between the client and the server. Instead of

:requiring a user to send passwords across the network throughout the day, single sign­

on requires the user to enter the private-key database password just once, without

sending it across the network.

For the rest of the session, the client presents the user's certificate to authenticate the

user to each new server it encounters. Existing authorization mechanisms based on the

authenticated user identity are not affected.

91



4.7. How Certificates Are Used

4.7 .1. Types of Certificates

Five kinds of certificates are commonly used with. Netscape products:

• Client SSL certificates: Used to identify clients to servers via SSL

(client authentication). Typically, the identity of the client is assumed to be the

same as the identity of a human being, such as an employee in an enterprise. See

Certificate-Based Authentication for a description of the way client SSL

certificates are used for client authentication. Client SSL certificates can also be

used for Form Signing and as part of a Single Sign-On solution.

Examples: A bank gives a customer a client SSL certificate that allows the

bank's servers to identify that customer and authorize access to the customer's

accounts. A company might give a new employee a client SSL certificate that

allows the company's servers to identify that employee and authorize access to

the company's servers.

• Server SSL certificates: Used to identify servers to clients via SSL

(server authentication). Server authentication may be used with or without client

authentication. Server authentication is a requirement for an encrypted SSL

session. See SSL Protocol.

Example: Internet sites that engage in electronic commerce (commonly known

as e-commerce) usually support certificate-based server authentication, at a

minimum, to establish an encrypted SSL session and to assure customers that

they are dealing with a web site identified with a particular company. The

encrypted SSL session ensures that personal information sent over the network,

such as credit card numbers, cannot easily be intercepted.

92



• S/MIME certificates: Used for signed and encrypted email. As with

client SSL certificates, the identity of the client is typically assumed to be the

same as the identity of a human being, such as an employee in an enterprise. A

single certificate may be used as both an S/MIME certificate and an SSL

certificate. See Signed and Encrypted Email. S/MIME certificates can also be

used for Form Signing and as part of a Single Sign-On solution.

Examples: A company deploys combined S/MIME and SSL certificates solely

for the purpose of authenticating employee identities, thus permitting signed

email and client SSL authentication but not encrypted email. Another company

issues S/MIME certificates solely for the purpose of both signing and encrypting

email that deals with sensitive financial or legal matters.

• Object-signing certificates: Used to identify signers of Java code,

JavaScript scripts, or other signed files. See Object Signing.

Example: A software company signs software distributed over the Internet to

provide users with some assurance that the software is a legitimate product of

that company. Using certificates and digital signatures in this manner can also

make it possible for users to identify and control the kind of access downloaded

software has to their computers.

• CA certificates: Used to identify CAs. Client and server software use

CA certificates to determine what other certificates can be trusted. See How CA

Certificates Are Used to Establish Trust.

Example: The CA certificates stored in Communicator determine what other

certificates that copy of Communicator can authenticate. An administrator can

implement some aspects of corporate security policies by controlling the CA

certificates stored in each user's copy of Communicator.

4.8. SSL Protocol

The Secure Sockets Layer (SSL) protocol, which was originally developed by Netscape,

is a set of rules governing server authentication, client authentication, and encrypted

93



communication between servers and clients. SSL is widely used on the Internet,

especially for interactions that involve exchanging confidential information such as

credit card numbers.

SSL requires a server SSL certificate, at a minimum. As part of the initial "handshake"

process, the server presents its certificate to the client to authenticate the server's

identity. The authentication process uses Public-Key Encryption and Digital Signatures

to confirm that the server is in fact the server it claims to be. Once the server has been

authenticated, the client and server use techniques of Symmetric-Key Encryption, which

is very fast, to encrypt all the information they exchange for the remainder of the

session and to detect any tampering that may have occurred.

Servers may optionally be configured to require client authentication as well as server

authentication. In this case, after server authentication is successfully completed, the

client must also present its certificate to the server to authenticate the client's identity

before the encrypted SSL session can be established.

4.9. Signed and Encrypted Email

Some email programs (including Messenger, which is part of Communicator) support

digitally signed and encrypted email using a widely accepted protocol known as Secure

Multipurpose Internet Mail Extension (S/MIME). Using S/MIME to sign or encrypt

email messages requires the sender of the message to have an S/MIME certificate.

An email message that includes a digital signature provides some assurance that it was

in fact sent by the person whose name appears in the message header, thus providing

authentication of the sender. If the digital signature cannot be validated by the email

software on the receiving end, the user will be alerted.

The digital signature is unique to the message it accompanies. If the message received

differs in any way from the message that was sent--even by the addition or deletion of a

comma--the digital signature cannot be validated. Therefore, signed email also provides

some assurance that the email has not been tampered with. As discussed at the

beginning of this chapter, this kind of assurance is known as nonrepudiation. In other

words, signed email makes it very difficult for the sender to deny having sent the

message. This is important for many forms of business communication. S/MIME also

makes it possible to encrypt email messages. This is also important for some business

94



users. However, using encryption for email requires careful planning. If the recipient of

encrypted email messages loses his or her private key and does not have access to a

backup copy of the key, for example, the encrypted messages can never be decrypted.

4.9.1. Single Sign-On

Network users are frequently required to remember multiple passwords for the various

services they use. For example, a user might have to type a different password to log

into the network, collect email, use directory services, use the corporate calendar

program, and access various servers. Multiple passwords are an ongoing headache for

both users and system administrators. Users have difficulty keeping track of different

passwords, tend to choose poor ones, and tend to write them down in obvious places.

Administrators must keep track of a separate password database on each server and deal

with potential security problems related to the fact that passwords are sent over the
network routinely and frequently.

Solving this problem requires some way for a user to log in once, using a single

password, and get authenticated access to all network resources that user is authorized

to use--without sending any passwords over the network. This capability is known as

4.9.2. single sign-on

Both client SSL certificates and S/MIME certificates can play a significant role in a

comprehensive single sign-on solution. For example, one form of single sign-on

supported by Netscape products relies on SSL client authentication (see Certificate­

Based Authentication). A user can log in once, using a single password to the local

client's private-key database, and get authenticated access to all SSL-enabled servers

that user is authorized to use--without sending any passwords over the network. This

approach simplifies access for users, because they don't need to enter passwords for

each new server. It also simplifies network management, since administrators can

control access by controlling lists of certificate authorities (CAs) rather than much
longer lists of users and passwords.

In addition to using certificates, a complete single-sign on solution must address the

need to interoperate with enterprise systems, such as the underlying operating system,

that rely on passwords or other forms of authentication.

95



For information about the single sign-on support currently provided by Netscape

products, see Single Sign-On Deployment Guide.

4.9.3. Fonn Signing

Many kinds of e-commerce require the ability to provide persistent proof that someone

has authorized a transaction. Although SSL provides transient client authentication for

the duration of an SSL connection, it does not provide persistent authentication for

transactions that may occur during that connection S/MIME provides persistent

authentication for email, but e-commerce often involves filling in a form on a web page

rather than. sending an. email.

The Netscape technology known as form signing addresses the need for persistent

authentication of finan.cialtransactions. Form signing allows a user to associate a digital

signature with web-based data generated as the result of a transaction, such as a

purchase order or other finan.cialchapter. The private key associated with either a client

SSL certificate or an S/MIME certificate may be used for this purpose.

When a user clicks the Submit button on a web-based form that supports form signing, a

dialog box appears that displays the exact text to be signed. The form designer can

either specify the certificate that should be used or allow the user to select a certificate

from among the client SSL an.d S/MIME certificates that are installed in Communicator.

When the user clicks OK, the text is signed, and both the text and the digital signature

are submitted to the server. The server can then use a Netscape utility called the

Signature Verification Tool to validate the digital signature.

4.9.4. Object Signing

Communicator and other Netscape products support a set of tools and technologies

called object signing. Object signing uses stan.dard techniques of public-key

cryptography to let users get reliable information about code they download in much the

same way they can. get reliable information about shrink-wrapped software.

Most importantly, object signing helps users and network administrators implement

decisions about software distributed over intranets or the Intemet--for example, whether

96



to allow Java applets signed by a given entity to use specific computer capabilities on

specific users' machines.

The "objects" signed with object signing technology can be applets or other Java code,

JavaScript scripts, plug-ins, or any kind of file. The "signature" is a digital signature.

Signed objects and their signatures are typically stored in a special file called a JAR file.

Software developers and others who wish to sign files using object-signing technology

must first obtain an object-signing certificate.

4.10. Secure Sockets Layer (SSL)

This chapter introduces the Secure Sockets Layer (SSL) protocol. Originally developed

by Netscape, SSL has been universally accepted on the World Wide Web for

authenticated and encrypted communication between clients and servers. The new

Internet Engineering Task Force (IETF) standard called Transport Layer Security (TLS)

is based on SSL. This was recently published as an IETF Internet-Draft, The TLS

Protocol Version 1.0. Netscape products will fully support TLS. This chapter is

primarily intended for administrators of Netscape server products, but the information it

contains may also be useful for developers of applications that support SSL. The

chapter assumes that you are familiar with the basic concepts of public-key

cryptography, as summarized in the companion chapter Introduction to Public-Key

Cryptography. [25]

4.10.1. The SSL Protocol

The Transmission Control Protocol/Internet Protocol (TCP/IP) governs the transport

and routing of data over the Internet. Other protocols, such as the HyperText Transport

Protocol (HTTP), Lightweight Directory Access Protocol (LDAP), or Internet

Messaging Access Protocol (IMAP), run "on top of' TCP/IP in the sense that they all

use TCP/IP to support typical application tasks such as displaying web pages or running

email servers.

97



~I LDAP 16 ...
Application layer

Network. layer

Fıgure 4.6 SSL runs above TCP/IP and below high-level application protocols

The SSL protocol runs above TCP/IP and below higher-level protocols such as Hff P or

IMAP. It uses TCP/lP on behalf of the higher-level protocols, and in the process allows

an SSL-enabled server to authenticate itself to an SSL-enabled client, allows the client

to authenticate itself to the server, and allows both machines to establish an encrypted

connection.

These capabilities address fundamental concerns about communication over the Internet

and other TCP/IP networks:

• SSL server authentication allows a user to confirm a server's identity.

SSL-enabled client software can use standard techniques of public-key

cryptography to check that a server's certificate and public ID are valid and have

been issued by a certificate authority (CA) listed in the client's list of trusted

CAs. This confirmation might be important if the user, for example, is sending a

Credit card number over the network and wants to check the receiving server's

identity,

• SSL client authentication allows a server to confirm a user's identity.

Using the same techniques as those used for server authentication, SSL-enabled

server software can check that a client's certificate and public ID are valid and

have been issued by a certificate authority (CA) listed in the server's list of

trusted CAs. This confirmation might be important if the server, for example, is

a bank sending confidential financial information to a customer and wants to

check the recipient's identity.

• An encrypted SSL connection requires all information sent between a

client and a server to be encrypted by the sending software and decrypted by the

receiving software, thus providing a high degree of confidentiality.

Confidentiality is important for both parties to any private transaction. In

98



addition, all data sent over an encrypted SSL connection is protected with a

mechanism for detecting tampering--that is, for automatically determining

whether the data has been altered in transit.

The SSL protocol includes two sub-protocols: the SSL record protocol and the SSL

handshake protocol. The SSL record protocol defines the format used to transmit data

The SSL handshake protocol involves using the SSL record protocol to exchange a

series of messages between an SSL-enabled server and an SSL-enabled client when

they first establish an SSL connection. This exchange of messages is designed to

facilitate the following actions:

• Authenticate the server to the client.

• Allow the client and server to select the cryptographic algorithms, or

ciphers, that they both support.

• Optionally authenticate the client to the server.

• Use public-key encryption techniques to generate shared secrets.

• Establish an encrypted SSL connection.

4.10.2. Ciphers Used with SSL

The SSL protocol supports the use of a variety of different cryptographic algorithms, or

ciphers, for use in operations such as authenticating the server and client to each other,

transmitting certificates, and establishing session keys. Clients and servers may support

different cipher suites, or sets of ciphers, depending on factors such as the version of

SSL they support, company policies regarding acceptable encryption strength, and

government restrictions on export of SSL-enabled software. Among its other functions,

the SSL handshake protocol determines how the server and client negotiate which

cipher suites they will use to authenticate each other, to transmit certificates, and to

establish session keys.

The cipher suite descriptions that follow refer to these algorithms:

• DES: Data Encryption Standard, an encryption algorithm used by the

U.S. Government.

• DSA: Digital Signature Algorithm, part of the digital authentication

standard used by the U.S. Government.

99



• KEA: Key Exchange Algorithm, an algorithm used for key exchange by

the U.S. Government.

• MD5: Message Digest algorithm developed by Rivest.

• RC2 and RC4: Rivest encryption ciphers developed for RSA Data
Security.

• RSA: A public-key algorithm for both encryption and authentication.

Developed by Rivest, Shamir, and Adleman.

• RSA key exchange: A key-exchange algorithm for SSL based on the
RSA algorithm.

• SHA-1: Secure Hash Algorithm, a hash function used by the U.S.
Government.

• SKIPJACK: A classified symmetric-key algorithm implemented in

FORTEZZA-compliant hardware used by the U.S. Government. (For more

information, see FORTEZZA Cipher Suites.)

• Triple-DES: DES applied three times.

Key-exchange algorithms like KEA and RSA key exchange govern the way in which

the server and client determine the symmetric keys they will both use during an SSL

session. The most commonly used SSL cipher suites use RSA key exchange.

The SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites.

Administrators can enable or disable any of the supported cipher suites for both clients

and servers. When a particular client and server exchange information during the SSL

handshake, they identify the strongest enabled cipher suites they have in common and
use those for the SSL session.

Decisions about which cipher suites a particular organization decides to enable depend

on trade-offs among the sensitivity of the data involved, the speed of the cipher, and the
applicability of export rules.

Some organizations may want to disable the weaker ciphers to prevent SSL connections

with weaker encryption. However, due to U.S. government restrictions on products that

support anything stronger than 40-bit encryption, disabling support for all 40-bit ciphers

effectively restricts access to network browsers that are available only in the United

States (unless the server involved has a special Global Server ID that permits the

ıoo



international client to "step up" to stronger encryption). For more information about

U.S. export restrictions, see Export Restrictions on International Sales.

To serve the largest possible range of users, it's administrators may wish to enable as

broad a range of SSL cipher suites as possible. That way, when a domestic client or

server is dealing with another domestic server or client, respectively, it will negotiate

the use of the strongest ciphers available. And when an domestic client or server is

dealing with an international server or client, it will negotiate the use of those ciphers

that are permitted under U.S. export regulations.

However, since 40-bit ciphers can be broken relatively quickly, administrators who are

concerned about eavesdropping and whose user communities can legally use stronger

ciphers should disable the 40-bit ciphers.

4.11. Server Authentication

Netscape's SSL-enabled client software always requires server authentication, or

cryptographic validation by a client of the server's identity. As explained in Step 2 of

The SSL Handshake, the server sends the client a certificate to authenticate itself The

client uses the certificate in Step 3 to authenticate the identity the certificate claims to

represent. To authenticate the binding between a public key and the server identified by

the certificate that contains the public key, an SSL-enabled client must receive a "yes"

answer to the four questions shown in Figure 4.7, Although the fourth question is not

technically part of the SSL protocol, it is the client's responsibility to support this

requirement, which provides some assurance of the server's identity and thus helps

protect against a form of security attack known as "man in the middle." [27]

ıoı



Seiwertr Certl8aıte
i ::no »1"'~ :, mticiıh"fflf

Server's public key ...0
Certificate's serial number

,I Certificate's validity period tf~ I~ tod~y:s date.
, wıthın valıdıty perıod?

Server's DN

ı ;ıf) ls issuing CA a
trusted CA?Issuer's DN

CHents list of
trusted C.As

lmulD&CAlıı
Cırtlfcate
Issuer's DN

,~ Issuers digital~I Issuer's public key....O
~, . ~r! _ 8 Does issuing CA's Issuer's digital

public key validate slınature
issuer's d igit:al signature? . '",,.,,.,,,_;ı._, ..

C, Does the doman
name specified in the
server's DN match
the server's actual
domain name?

Figure 4.7 How a Netscape server authenticates a client certificate

An SSL-enabled client goes through these steps to authenticate a server's identity:

1. Is todayfs date within the validity period? The client checks the server

certificate's validity period. If the current date and time are outside of that range,

the authentication process won't go any further. If the current date and time are

within the certificate's validity period, the client goes on to Step 2.

2. Js the issuing CA a trusted CA? Each SSL-enabled client maintains a

list of trusted CA certificates, represented by the shaded area on the right side of

Figure 4.12. This list determines which server certificates the client will accept.

If the distinguished name (ON) of the issuing CA matches the ON of a CA on

the client's list of trusted CAs, the answer to this question is yes, and the client

goes on to Step 3. If the issuing CA is not on the list, the server will not be

authenticated unless the client can verify a certificate chain ending in a CA that

is on the list .

3. Does the issuing CAfs public key validate the Issuer's digital
signature? The client uses the public key from the CA's certificate (which it

102



found in its list of trusted CAs in step 2) to validate the CA's digital signature on

the server certificate being presented. If the information in the server certificate

has changed since it was signed by the CA or if the CA certificate's public key

doesn't correspond to the private key used by the CA to sign the server

certificate, the client won't authenticate the server's identity. If the CA's digital

signature can be validated, the server treats the user's certificate as a valid "letter

of introduction" from that CA and proceeds. At this point, the client has

determined that the server certificate is valid. It is the client's responsibility to

take Step 4 before Step 5.

4. Does the domain name in the server's certificate match the domain

name of the server itself? This step confirms that the server is actually located

at the same network address specified by the domain name in the server

certificate. Although step 4 is not technically part of the SSL protocol, it

provides the only protection against a form of security attack known as a Man­

in-the-Middle Attack. Clients must perform this step and must refuse to

authenticate the server or establish a connection if the domain names don't

match. If the server's actual domain name matches the domain name in the

server certificate, the client goes on to Step 5.

5. The server is authenticated. The client proceeds with the SSL

handshake. If the client doesn't get to step 5 for any reason, the server identified

by the certificate cannot be authenticated, and the user will be warned of the

problem and informed that an encrypted and authenticated connection cannot be

established. If the server requires client authentication, the server performs the

steps described in Client Authentication.

After the steps described here, the server must successfully use its private key to decrypt

the premaster secret the client sends in Step 4 of The SSL Handshake. Otherwise, the

SSL session will be terminated. This provides additional assurance that the identity

associated with the public key in the server's certificate is in fact the server with which

the client is connected.

4.11.1. Man-in-the-Middle Attack

103



As suggested in Step 4 above, the client application must check the server domain name

specified in the server certificate against the actual domain name of the server with

which the client is attempting to communicate. This step is necessary to protect against

a man-in the middle attack, which works as follows.

The "man in the middle" is a rogue program that intercepts all communication between

the client and a server with which the client is attempting to communicate via SSL. The

rogue program intercepts the legitimate keys that are passed back and forth during the

SSL handshake, substitutes its own, and makes it appear to the client that it is the server,

and to the server that it is the client.

The encrypted information exchanged at the beginning of the SSL handshake is actually

encrypted with the rogue program's public key or private key, rather than the client's or

server's real keys. The rogue program ends up establishing one set of session keys for

use with the real server, and a different set of session keys for use with the client. This

allows the rogue program not only to read all the data that flows between the client and

the real server, but also to change the data without being detected. Therefore, it is

extremely important for the client to check that the domain name in the server

certificate corresponds to the domain name of the server with which a client is

attempting to communicate--in addition to checking the validity of the certificate by

performing the other steps described in Server Authentication.

4.12. Client Authentication

SSL-enabled servers can be configured to require client authentication, or cryptographic

validation by the server of the client's identity. When a server configured this way

requests client authentication (see Step 6 of The SSL Handshake), the client sends the

server both a certificate and a separate piece of digitally signed data to authenticate

itself The server uses the digitally signed data to validate the public key in the

certificate and to authenticate the identity the certificate claims to represent.

The SSL protocol requires the client to create a digital signature by creating a one-way

hash from data generated randomly during the handshake and known only to the client

and server. The hash of the data is then encrypted with the private key that corresponds

to the public key in the certificate being presented to the server.

104



To authenticate the binding between the public key and the person or other entity

identified by the certificate that contains the public key, an SSL-enabled server must

receive a "yes" answer to the first four questions shown in Figure 4.8. Although the fifth

question is not part of the SSL protocol, Netscape servers can be configured to support

this requirement to take advantage of the user's entry in an LDAP directory as part of

the authentication process. [28]

An SSL-enabled server goes through these steps to authenticate a user's identity:

1. Does the user's public key validate the user's digital signature? The

server checks that the user's digital signature can be validated with the public

key in the certificate. If so, the server has established that the public key asserted

to belong to John Doe matches the private key used to create the signature and

that the data has not been tampered with since it was signed. At this point,

however, the binding between the public key and the DN specified in the

certificate has not yet been established. The certificate might have been created

by someone attempting to impersonate the user. To validate the binding between

the public key and the DN, the server must also complete Step 3 and Step 4.

105



John Dcıe'ıı OmJftcııte
e·· - CW'"'F' '''"'rıNCWWı?2ılW

John Doe's public keys=O
Certificate's serial number

Ser-.er's list of
trusted CAs

Certificate's validityperiodH~ I~ tod~'.s date
wıthın valıdıtyperiod?

John Doe's DN

8 ls issuing CA a
trusted CA?

lsulnJrCA,S
Cet'tltkııteIssuer's DN
Issuer's DN

Issuer's digttal
sipature

----------ıl Issuer's public key-O

O I Does user's
public key
validate user's
digital signature?

4I ls user's certificate
listed in LD\P entry for
user?

Random data

John Does digital
signature

Directory Server

Figure 4.8 How a Netscape server authenticates a client certificate

2. Is today's date within the validity period? The server checks the

certificate's validity period. If the current date and time are outside of that range,

the authentication process won't go any further. If the current date and time are

within the certificate's validity period, the server goes on to Step 3.

3. Is the issuing CA a trusted CA? Each SSL-enabled server maintains a

list of trusted CA certificates, represented by the shaded area on the right side of

Figure 4.8 This list determines which certificates the server will accept. If the

DN of the issuing CA matches the DN of a CA on the server's list of trusted

CAs, the answer to this question is yes, and the server goes on to Step 4. If the

issuing CA is not on the list, the client will not be authenticated unless the server

can verify a certificate chain ending in a CA that is on the list (see CA

Hierarchies for details). Administrators can control which certificates are trusted

or not trusted within their organizations by controlling the lists of CA

certificates maintained by clients and servers.

4. Does the issuing CA's public key validate the issuer's digital
signature? The server uses the public key from the CA's certificate (which it

106



found in its list of trusted CAs in Step 3) to validate the CA's digital signature on

the certificate being presented. If the information in the certificate has changed

since it was signed by the CA or if the public key in the CA certificate doesn't

correspond to the private key used by the CA to sign. the certificate, the server

won't authenticate the user's identity. If the CA's digital signature can be

validated, the server treats the user's certificate as a valid "letter of introduction"

from that CA and proceeds. At this point, the SSL protocol allows the server to

consider the client authenticated and proceed with the connection as described in

Step 6. Netscape servers may optionally be configured to take Step 5 before

Step 6.

5. Is the user's certificate listed in the LDAP entry for the user? This

optional step provides one way for a system administrator to revoke a user's

certificate even if it passes the tests in all the other steps. The Netscape

Certificate Server can automatically remove a revoked certificate from the user's

entry in the LDAP directory. All servers that are set up to perform this step will

then refuse to authenticate that certificate or establish a connection. If the user's

certificate in the directory is identical to the user's certificate presented in the

SSL handshake, the server goes on to step 6.

6. Is the authenticated client authorized to access the requested

resources? The server checks what resources the client is permitted to access

according to the server's access control lists (ACLs) and establishes a connection

with appropriate access. If the server doesn't get to step 6 for any reason, the

user identified by the certificate cannot be authenticated, and the user is not

allowed to access any server resources that require authentication.

4.13. Summary

This chapter introduces the basic concepts of public-key cryptography. To transfer

information privately and securely across the Internet, the Secure Socket Layer (SSL)

protocol was developed. This chapter examines the SSL protocol and details how to

improve the performance and scalability of Web sites by off-loading SSL processing

and object delivery from Web servers.

107



5. CACHING WEB PROXY SERVER USING JAVA APPLICATION

5.1 Overview

The designed and implemented caching web proxy server using java, which can be

configured remotely over the Internet by its administrator. The proxy handles only

HTTP communications. The source is written in Java, which makes the code cross­

compiler and the application cross-platform. The Java technology enables the main

proxy application to send Java applets to remote administrator, sitting on a different

machine on a remote network, and accessed over the Internet by standard TCP\IP

communication.

The proxy includes two applications. The main application starts up and serves and a

proxy server which listens to clients requests on a specific port, and forwards the

requests to a web server or to another web proxy (father proxy), then sending the replys

back to the clients.. This application will be referred to as the proxy application.

The proxy application also does caching. When a client requests an object, the proxy

checks if the object is cached. If so, it does not forward the request, and replies to the

client with the cached object (this is called a cache hit). If the requested object is not

cached (cache miss), the request is forwarded, and when the reply arrives to the proxy,

it both sends it back to the client and caches it on its machine, for future use. Thus, if a

client requests an object which has already been requested (by the client or by another

client), the proxy retrieves the object from its local machine cache and sends it back,

without searching for the object out there on the Internet. This feature gives a

performance boost to the proxy itself and to the client (and to all other clients who will

request these cached objects in the future). Caching the objects on the local machine is

done using the host machine file system, thus the cache size is dependent on the local

system resources in terms of hard disk free space. [29]

The feature of forwarding requests to another web proxy or to a web server, along with

the caching behavior, enables one to use a hierarchy of caching proxy servers. Modem

client browsers do caching on the client local machine, so caching is really done in

levels (hierarchy): The first level is in the RAM on the client machine (usually the

107



browser caches a few web pages in memory). The size of this level is depended on the

memory resources of the browser machine. The second level, also done by the browser,

is keeping the objects in a persistent storage, using the local file system on the browser

machine. The third level is the caching done by the proxy, on its machine. Then, if the

proxy can forward requests to another proxy, thus creating a chain or a hierarchy of

proxies, each one of them does its caching on its machine, and by this creating a new

caching level. If the requested object could not be found throughout the cache chain, the

request is finally forwarded to the web server, which delivers the bits back through the

chain of proxies, enables each of them to cache the reply for future use.

5.2. Remote administration

The second application is a Java applet, referred to as the applet. It enables the proxy

administrator to remotely manage the proxy, from his machine, via its web browser.

When the administrator wants to, he can access the desired proxy server by typing the

proxy machine's IP address (or machine name) on the URL address window in the

browser plus the suffix '/admin' (for instance, 'techst02/admin' ). The browser

considers this to be a valid client request, and forwards it on to the proxy (or chain of

proxies). When the proxy monitors this request, it compares it at run-time to the IP

address (or machine name) of the host machine on which it runs. If they do not match,

1he proxy forwards this as a normal request on to the father proxy (or web server). But,

if they do match, then the proxy assumes that an administrator is trying to attach. It

responses by sending back a Java applet that handles all the remote configuration and

the necessary security issues (such as password login), and of course does not forward

that request. [30]

Back on the administrator machine, the browser gets a Java applet and starts it The

applet starts by requesting a password from the administrator and sending it to the proxy

application. The applet and the proxy now talk full duplex. If the password is correct,

the proxy sends Ack to the applet, and the applet responses by presenting all the

parameters and status of the proxy, enables the administrator to alter parameters, thus

change the proxy behavior (in terms of traffic management and cache activities), and

sending the new parameters to the proxy. All of the operations in the administrator

machine take place through its browser, by the applet, thus having full Graphical User

108



Interface (Gun support which is not restricted only to HTML web forms, seen on

search engines for example. It is the power of Java applets technology that gives the

administrator the ability to control the proxy remotely, plus the friendly graphical

environment to do so - thus, if we or anyone else in the future decide to enhance the set

of configurable parameters or the user interface to the administrator, the infrastructure is

there to be used and enhanced. We're talking applets here, not just a dull IITML page

form.

A note on security: The applet only present GUI to the administrator and handles

communications to the proxy application. When the administrator enters the login

password, the applet sends it over the Internet to the proxy. The proxy checks the

validity of the password and sends back to the applet Ack/Nack, based on that the applet

logs the administrator in or not. So attackers can learn nothing at the password from

viewing the applet operations.

5.3. Accessing multiple proxies remotely

We talked about a structure of proxy hierarchy, and how the proxy and the cache

behavior support that. The remote access feature also support this design.

The administrator can access a unique proxy by specifying its IP address or machine

name on the browser URL window. The requested proxy will be the only one to

respond to the administrator by sending the applet. The applet and the requested proxy

will talk full duplex over the Internet, and over all other chained proxies in the

hierarchy. When the administrator alters the proxy parameters, only the requested proxy

will be affected - all the other proxies will not change. This is important because it

enables one administrator fully control the behavior of each and every one of the

proxies in the structure. It also enables a group of administrators to control their proxies

(the US administrator will control the proxies in the US, and independently the France

administrator will control the proxies in France. Now, is that hot or what??).

Still, there's a potential design problem here. Let's say two or more administrators

want to control a certain proxy. They both access the proxy at the same time, and each

of them does not know about the other. Now, if one of them wants the proxy to behave

109



in a certain manner, and the other administrator wants the opposite, it will lead - in the

best case of implementation - to inconsistent result from one of the administrator point

of view ("what the hell is going on here, I instructed the proxy to do something and it

does the opposite!"). This is a design problem, and we solved it by deciding that

remotely controlling a certain proxy is limited to one human administrator at a time.

When an administrator controls the proxy, no other administrator can control the same

proxy (this is very similar to protecting shared resources from multiple threads in a

multithreaded environment). So; this solution ensures that a scenario like that could not

happen. [31]

5.4. Mulôthreading

.All the clients' requests plus the administrator remote configuration are done parallelly

by using threads. A certain proxy can handle multiple client requests at the same time,

plus be remotely controlled by an administrator. For instance, in a certain time frame,

1he proxy can handle a request from client A, a request from client B, two requests from

client C (this could happen because the modem browsers use threads too ... ) and

communications with a remote applet running on the administrator machine. Non of

these users (clients and administrator) would notice the difference.

Using threads leads to special problems, concerning shared resources and

synchronization issues.

5.5. Caching

The cache manager is a static object. It encapsulates all the details of caching from the

other components in the application. For example, the proxy thread does not aware of

the file name in which the requested object is cached - it just delivers a URL argument

to the cache manager, which in its turn generate a file name out of that URL. Thus, if

we will want in the future to change the mechanism of file name generation, the only

rode we should change is the code of the cache manager - the proxy thread's code

would not be affected. This kind of encapsulation is supported by object oriented

development environments, such as Java

HO



Caching objects is done using the host machine (onwhich the proxy runs) file system

When the cache manager is called to cache an object, it first generates a file name out of

the URL of the object. The stream of bits coming from the father proxy or web server is

written to a file. In addition, the cache manager holds a hash table data structure. Each

entry in the hash table has two fields: a key and a value. The key is the file name, and

the value is a date structure. When a new object is cached, it is stored on disk and then

in the hash table a new entry created, into which the cache manager inserts the file name

end the date it was created (year, month, day, hour, minute, etc.). Later, when the cache

manager is asked to check if an object is cached, it first generates a file name out of the

URL of the object, then enumerates the hash table to find the file name. If the file name

is found, the cache manager returns it to the proxy thread; otherwise, it returns a status

mdicating 'not cached.[30)

If a requested object is found in the cache (a cache hit), the entry in the hash table is

updated with the current date. This enables the Least Recently Used (LRU) algorithm to

take place when the cache if full and a file needs to be deleted. So if the free space of

the cache is going under a minimum level, the LRU algorithm enumerates the hash table

and deletes the LRU file. If we would like in the future to change this policy (maybe to

Least Frequently Used, for instance) we should change the value field of the hash table

to be some other class, and change the code in the methods incharging of making more

free space - all other components are unaware of this mechanism

The cache manager methods are called from the multiple proxy threads. This could raise

problems of synchronization and shared resources protection. We solve these problems

by putting multithreading synchronization locks on all shared resources, as supported by

the synchronizedt) Java native method. Methods involving the hash table are

multithreaded-safe because the hash table object synchronizes all actions performed on

it internally (supported by Java hash table methods). Files are multithreaded protected

by the Java File object and by our code. For example, there is a chance that one thread

will read from a file, and a second thread will try to delete this file (a scenario like that

could happen, if the first thread is reading a cached object A, and the second thread is

caching object B, thus making the cache size grow, and causing the cache manager to

make more free space; the algorithm will detect that object A is the LRU, and try to

delete it). This will cause the proxy to break in the worst case, or to failure in either the

Hl



read or the delete operation, in the best case. We should not allow it, so we added code

to check if write and delete operations are allowed before doing them.

5.6. Cacheable Vs. Non-Cacheable objects 

Not all the replys are to be cached. For example, when a client sends a request to a

search engine, typically the search engine treats that request as a query, and generates an

HTML web page with the results of the query. This result page should not be cached on

the proxy, because next time an identical query will be sent to the engine, different

results are likely to be returned (because of the frequent changes in the engine

database). These generated pages are called dynamic pages, while regular web pages

that sit somewhere on a web server waiting to be retrieved are called static pages.

The problem is to identify that a certain web page is a dynamic one. We do not know a

ıoo percent solution to this problem, so we can only follow conventions. For example,

dynamic pages can be generated by CGI scripts, and there's no way for the proxy to

know that the page is a result of a CGI script, unless it gets some help from the HTIP

reply headers or the URL of the page. It is a convention that CGI generated pages are

taken from a URL which contains the sub-string "cgi-bin", so we added code to check

the URL of each request, and if it contains this sub-string we do not cache the reply. We

also check for URLs containing special characters, indicating that this URL is a query.

For example, the question mark "?" is a typical character used to submit queries. The

proxy also gets help from the reply return code. If it contains a return code other then

OK, for example, we do not cache the reply.

Let us just note that this problem is not as serious to the browser cache mechanism as it

is to the proxy cache manager. Modem browsers manage caching on the browser cache,

and theoretically they could be faced with the same problem - what should not be

cached. But even if the browser do cache a non cacheable object, the user can always

instruct it to "refresh" or "reload" the object from the Internet - in that case, the browser

will re-send the request and wait for reply. On the other hand, proxies behave very

differently, and the main reason for that is that the user should not be aware of them. So,

if a proxy caches a non cacheable object, and the client will ask to refresh (reload) on

his machine, the browser will re-send the request to the proxy, and the proxy would

H2



treat that request as a cache hit (because it has the requested object in its cache), will not

forward the request, and reply with the cached bits. So it is extremely important for

proxies to try to identify which object should not be cached.

5.7. The admin thread 

One of the initialization operations done at startup by the web daemon is constructing

the admin thread. This thread handles communication with a remote administrator, and

sets/gets parameters from other components (such as the cache manager). It first creates

a socket (admin socket) and listens on a special (admin) port.

When the administrator accesses the proxy, the proxy thread catch the event and sends

him back a web page with the admin applet. The applet starts by presenting a login

dialog box, and waiting for the administrator to enter password; then it sends the

password to the proxy application, to the admin port, thus the admin thread at the main

application could catch that request without interfering the handling of all client

requests. The admin thread in the main application processes the password and sends

back to the applet, on the admin port, an answer (Ack/Nack). Again, having the applet

and the main application "talking" full duplex does not reflect on the activities going on

in the main application (handling client requests).

At this phase, if another administrator accesses the main application, the proxy thread

will catch that and send an admin applet to him too. The applet will run on his machine,

and will try to talk to the main application. However, the admin thread in the main

application talks only with the first administrator and ignores the second. As soon as the

:first administrator finishes, the admin thread will treat the second one. This protects the

main application from multiple administration accesses, preventing the scenario of two

or more remote administrators trying to control the same proxy, thus causing to

mccnsistenr behavior of the proxy or unfriendly behavior in the applets on their

machines (see above for a full description of the potential problem). The second

administrator do get the applet (otherwise he could think the proxy is unreachable), but

sending admin requests to the proxy is blocked until the first administrator finishes. We

thought this is the best design approach for the problem, and implemented the solution

that way.

113



After the password check, the administrator gets a full GUI window with the status of

the proxy and parameters that can be altered. This is not just an HTML based form, but

a powerful Java applet with all the GUI that we wanted (or any developer will want in

the future) - including dialogs, check boxes, etc., and getting those user interface

controls out of the browser area in a windowing manner. (32]

5.8. The config class 

When the administrator changes parameters and chooses to send them to the main

application, the applet sends the bits to the proxy, and the proxy gets them and alter its

behavior. To help both the proxy and the applet with the job of getting and setting

parameters, we designed a special class called con.fig. This class appears both in the

applet code and in the proxy code, and handles all get/set methods involved with the

configurable parameters.

The confıg class calls methods on other object to retrieve status of their parameters

(these are get methods), and calls different set of methods on the other object to change

their parameters (these are set methods). It also does the job of packaging these

parameters and sending them over sockets to a remote machine. So, the applet uses the

get ability of the confıg class to learn about the status of the main application, and

present this status to the administrator, providing him the interface required to change

this status, while as the main application uses the set ability of the confıg class to

change its parameters. Both the applet and the main application use the confıg class

ability to send the parameters to each other.

We thought this is a good design, for a couple ofreasons: First, we should write all the

code incharge of managing the configurable parameters only once, and let both the

proxy and the applet use it. Second, it support encapsulation and object oriented

philosophy - all the details are in the confıg class and not spread out all over the code,

so future changes can be made more easily. For example, if we decide to encrypt the

parameters before sending and decrypt them on retrieving, thus making the

communication between the applet and the proxy more secure, we should add code to

do that only in the confıg class; all other objects would not be aware to the change.

114



5.9. The software main block diagram 

Start

Initializing

Check Server Port

Connect To LAN

Enter the Address
and Port

NO 

Connect to Internet

Request web page

Stop

This requested
web page was

forbidden

Display all data about the
requested web page

115



Deny Flowchart 

Enter the web page
address

Stop

No Req- web page
was forbidden

Yes

Deny file

Check the
requested web
page existing

Open the web

No

Requested object was not
found)

End

116



Cache Flowchart 

Start

Open web page

Call it from
cache file

No

Call the web page from
remote server

Store the web page in
cache file

117



5.10. Program Explanation 

In this thesis, I implement the following functions:

1. Basic Authentication 

Ask the client to enter its userid and username first, then the proxy sever identify if it

is the legal user. If the client is a legal user, the proxy allows it connect to other server

through the proxy

2. Load Balance 

If the client dosn't specify any server name which it wishes to connect with, the proxy

randomly chooses one of the server names it has to connect to and fetches web pages to

send them to the client.

3. Fault Tolenrance 

If the client give a wrong server name that the proxy can't reach, the proxy

automatically choose one of the server name it has to connect and fetches web pages to

send them to the client

4. Deny some websites 

If the client wish to connect with a web server whose name is in the name lists which

the proxy established to forbid connectting with, the proxy sends not-found reply to the

client.

5. Caching 

a The proxy receives the request of the client and connects the server to fetch web

pages, then sends them to the client , meantime caches some of these web pages

according to their reply code.

b. The proxy receives the request of the client and finds it has cached the web pages

which the client wishes to get, then the proxy read these web page files and send them

to the client.

118



c. The cache space isn't unlimited. If there isn't enough space for the proxy to save more

web pages, it deletes some old files according to the date of these files. It's better to

delete these files according to the expire date which can be extract from the reply

header. But I didn't implement it

6. Calculation 

a Calculate RTT from the proxy to the web server and from the proxy to the client.

b. Calculate Effective Bandwidth of the links from the proxy to the web server and from

the proxy to the client.

7. Statistics 

a. The total number of requests that the proxy receives from the client

b. The percentage of cached files which has been hit, which means that how many

times the cached files has been sent to the client among the total requests.

c. The percentage of caching files, which means that how many files has been

cached among the total requests.

8. This program supports multiple clients to send their requests.

5.11. Using the program 

1. MainO 

Initialize the proxy

1.1 Set the local host and local port

1.2 Set the userid and password for the proxy.

1 .3 Creat directory to cache file if there isn't such a directory

1.4 Establish a hashtable of the cached files if there has been a cache directory and

some cached files.

1.5 Creat a sokect to listen to the request from clients. Whenever it accepts a

connection request, it starts a thread to handle it.

119



2. Proxy.java 

Handle the requests comming from the client

2.1 Call HttpRequest class to extract related information

2.2 If a basic authentication is necessary ?

2.3 If the request has a appropriate web server name ?

2.3 .1 If it doesn't specify any server, the proxy randomly choose aserver from the list of

the server names which is in the proxy to connect. This is stored in a file "hostname"

and it can be modified by the administrator of the proxy.

2.3 .2 If it has a server name but the server is forbidden, send a "not found" reply to

client. The proxy has a denyID file to record the forbbidden server name and the file can

be modified by the administrator of the proxy.

2.2.3 If it has a server name which is not the case metioned above, connect to it.

2.3.4 If it has a server name but it isn't connectable, randomly choose a server from the

server name list which is in the proxy.

2.4 If the web page has been cached?

2.4.1 If cached, read the cache file and send them back to the client.

2.4 .2 If the web page has not been cached yet, fetch it and send it back to the client

while caching it.

2.6 Record the time when proxy send request to web server, when the proxy gets

response from web server, when proxy send the response back to the client and when

the proxy receive next request.

2.7 Display the results of calculation of RTT and Effective Bandwidth and disply the

statistics

3. HttpRequest.java 

Process data received from the client

3.1 parsekeqt)

Receive data from the client and classified them according to HTIP protocol

3.2 rebuildHeaderO
Rebuild a request needed to be sent to the web server as if the proxy is a client to the

web server.

120



4. HttpReply.java 

Build reply data

4.1 Form reply data to challenge the client for basic authentication

4.2 Form Not Found reply

4.3 General forming reply function to prepare for adding more replys

5. Cache.java 

Process data received from the web server

5.1 parsekeplyı)

Receive data from the web server and classified them according to HTTP protocol

(but I didn't use it in my program. I write this function because it will be useful if I wish

to use lots of fields in the reply header)

5.2 rebuildkeplyı)
Use the information received from web server to build a reply sent to client as if the

proxy is the web server which the client wish to connect with. ( I don't use it in my

program. I prepared it for my sniffing ads and change the address of the ads, but finally

I didn't do it)

5.3 IsCachedO

See if this request that comes from the client has been cached

5.4 Cachingt)

Cache web page according the reply code , meantime add this file name into the

hashtable

5.5 CacheAllO
Cache all web pages received from th web server. I implement this function mainly for

me to analyse the reply data.

5.6 CacheDeleteO

Delete the oldest cached file until the proxy has space to cache newly received web

pages

6. Contig.java 

Set and get some data related with the proxy

6.1 Set authentication data (userid and usemame)

121



6.2 Get and set wether the proxy has authenticated the client(this function has not

been completely implemented because I'm still not very clear about authentication

mechanism. If each client needs to be authenticated? When the authenticated state is

unvalid?)

6.3 Set and get proxy host name and port number

6.4 getRandHost()

When the client does not indicate the server it wishes to connect,this

function randomly choose one server from the list the proxy has prepared

6.5 denyWebsite()

See if the server that the client wish to connect with is in the list the proxy denies to

connect.

6.6 isCorrect()

See if the client has sent the right userid and usemame.

7. Statistic.java 

Set and get some data related with statistics and calculations

7. 1 Set and get total number of requests that the proxy has received

7.2 Set and get times that the cached files has been hit

7 .3 Set and get the number of files that ptoxy has cached

7.4 Calculate percentage of hitting cached files

7 .5 Calculate percentage of caching files

7.6 Calculate RTT and Effective Bandwidth

8. Base64.java 

An algorithm for basic authentication.(It comes from "http://www.gjt.org/

servlets/JCVSlet/show/ice/corn/ice/convert/Base64.javalHEAD") (33]
-.

122



5.12. Summary 

this chapter describes how to use the program and web proxy server using java, which

can be configured remotely over the Internet by its administrator. The proxy handles

only HTTP communications. The source is written in Java, which makes the code cross­

compiler and the application cross-platform. The Java technology enables the main

proxy application to send Java applets to remote administrator, sitting on a different

machine on a remote network, and accessed over the Internet by standard TCP\IP

communication. Before writing code for the thesis, I should do research carefully first.

Since I didn't understand this thesis well at the beginning, the structure of the code is not

good for me to add some new features. So, it's very important to build an efficient and

robust structure for my program.

~

123



CONCLUSION 

The growth and increased popularity of the World Wide Web has created a corresponding

growth in network traffic. With this growth have come delays, slower response times, and

security concerns. The network traffic problems are partly due to the repeated retrieving of

objects from remote Web servers on the Internet. Proxy Services can help improve

performance by locally caching frequently requested Internet information. In general, Proxy

Services stores copies of frequently requested Web information closer to the user, thereby

reducing the number of times the same information is accessed over an Internet connection,

the download time, and the load on the remote server.

The fact that proxies can provide efficient caching makes them useful even when no

firewall machine is in order. Configuring a group to use a caching proxy server is easy.

Caching web proxy servers can decrease network traffic costs significantly, because once

the first request was made for a certain document, the next ones are retrieved from a local

cache.

The proxy handles only HfTP communications. The source is written in Java, which makes

the code cross-compiler and the application cross-platform. The Java technology enables

the main proxy application to send Java applets to remote administrator, sitting on a

different machine on a remote network, and accessed over the Internet by standard TCP\IP

communication.

The thesis is includs introduction,five chapters, conculsion and tow appendixes followed

by a java application program which allow the server and client to get a comp~

page.

In chapter I the basic principles of computer network security and solution of security

problems in internet is introduced.

In chapter 2 the description of internet firewaJJs for security is given. The use of fırewaJJ

teqnique allow to restrict people to enter at controlled points, it is also restricts people to

124



leaving at a carefully controlled point. It allows protecting internet servers from public

access.

In chapter 3 the functions and types of proxy servers and their securities have been

described . The use of proxy servers allow internal clients access to internet from behind the

firewall, and it's also has a caching ability that make surfing much faster.

In chapter 4 the function public key cryptography algorithms that are useful in internet

security are given. This chapter examines the SSL protocol and details how to improve the

performance and scalability of Web sites by off-loading SSL processing and object delivery

from Web servers.

Finally, chapter 5 has described the software and analyzed the application. A java

application program has configured remotely over the internet by its administrator.

All the clients' requests plus the administrator remote configuration are done parallel by

using threads. A certain proxy can handle multiple client requests at the same time, plus be

remotely controlled by an administrator.

125



REFERENCES 

[l] Mechil,O." Internet Security & Acceleration Server", May 2000
http://www.microsoft.com/isaserver/

[2] [D Pence] Stateful Inspection versus Proxy Servers by Derek Pence
http://www.tersiacom. Vol. 10, No. 5 "October .1998. 15

[3] "Security Mechanism", http://www.versign.com/wss.pdf.

[4] Adams, C. "Simple and Effective Key Scheduling for Symmetric Ciphers."

Proceeding, Workshop in Selected Areas of Cryptography, SAC" 94. 1994.

[5] "Secure Socket Layers Protocol and Application" Allan Schiffman:
Tersia System.Inc{http://www.tersiacom}.

[6] Ahsan, Muninder P. Firewalls: a perpective: Dataquest Perspective. March
8,2000. http://enterprise.cnet.com/enterprise/0-9567-7- 743.html?tag=st.it. 9567-
7- 2481742.txt.9567-7-2481743.

[7] Ahsan, Muninder P. PIX Firewall 520: Datapro June 17, 1999.
http://enterprise.cnet.com/enterprise/0-9567-707-2455823.html?tag=st.it.9567-
701-2455823.navreview.9567-707-2455823-235444. Berrmingham, Eileen.
Firewalls Solve Network Security Puzzles: CNET.

[8] Curtin, Matt and Marcus J. Ranum. Internet Firewalls: Frequently Asked
Question. October 31, 2000. http://www.interhack.net/pubs/fwfaq.

(9] Enterprise. August, 15 2000.http://enterprise.cnet.com/enterprise/0-9567-7-
2481742.htrnl?tag=st.it.9567-7-2481743-rost.subdir.9567-7-2481742.Gallegos,
Jeff. Interviewed, November 7, 2000 and December 1, 2000.

[10] Wiener, M. "Efficient DES Key Search." Proceeding, Crypto'93 , 1993.

[11] Comparison of Protocols for Secure www.SSL and S-HTTP, National
Institute of Standards and Technology, U.S. Department of Commerce.DRAFT,
May 1994

~

[12] RT. Morris, 1985. A Weakness in the 4.2BSD Unix TCP/IP Software.
Computing Science Technical Report No. 117, AT&T Bell Laboratories,
Murray Hill, New Jersey.

(13] S.M. Bellovin. Security Problems in the TCP/IP Protocol Suite. Computer
Communication Review, Vol. 19, No. 2, pp. 32-48, April 1989.

[14] [Y. Rekhter], R Moskowitz, D. Karrenberg, G. de Groot, E. Lear,
'' Address Allocation for Private Intemets." RFC 1918. J.P. Holbrook, J.K
Reynolds. "Site Security Handbook."

126



[15] RFC 1244. M. Curtin," Snake Oil Warning Signs: Encryption Software to
Avoid."6 USENET <sci.crypt> Frequently Asked Questions File.

[16] M. Arlitt and C. Williamson.
' 'Trace-driven Simulation of Document Caching Strategies for Internet Web
Servers".

[17] H-W Braun and KC. Claffy.
' 'Web Traffic Characterization: An Assessment of the Impact of Caching
Documents from NCSA's Web Server".
Computer Networks and ISDN Systems, 28:37-51, 1995.

[18] P. Cao and S. Irani.
'' Cost-Aware WWW Proxy Caching Algotithms" .
Technical report, Dept. of Computer Sciences, University ofWisconsin­
Madison, 1997.

[19] M.E. Crovella, A. Bestavros, and C.R. Cuhna.
'' Characteristics of WWW Client-based Traces" .
Tr-95-010, Computer Science Dept., Boston University, 1995.

[20] http://www.cert.org/tech _tips/home_ networks.html

[21] P. Lorenzetti and L. Rizzo. "Replacement Policies for a Proxy Cache".
http://www.iet.unipi.it/ luigi/caching.ps.gz.

[22] E. Markatos. "Main Memory Caching of Web Documents".
In Proceedings of the 5th World Wide Web Conference '1996, Paris, France,
May 1996.

[23] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox.
'' Caching proxies: Limitations and potential" .
In Proceedings of the Fourth World Wide Web Conference '1995, Boston, MA,
1995.

~
[24] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox.
"Removal Policies in Network Caches for World-Wide Web Documents".
In Proceedings of the ACM SIGCOMM '96, Stanford University, 1996.

[25] R. Wooster and M. Abrams." Proxy Caching that Estimates Page Load
Delays"
In Proceedings of the 6th World Wide Web Conference, Santa Clara, California,
1997.

[26] http://www.microsoft.com/isaserver/ - Internet Security & Acceleration
Server

[27] HTTP http://www.w3.org/Protocols/rfc2616/rfc2616.html
http ://www.ietf org/rfc/rfc26 l7.txt

127



[28] HTML

http://www.jmarshall.com/easy/html/

[29] SSL
http://developer.netscape.com/docs/manuals/security/sslin/contents.htın

[30] CGI http://www.jmarshall.com/easy/cgi/

[31] Base64
http://www.gjt.org/servlets/JCVSlet/show/ice/com/ice/convert/Base64.java
/head.

[32] JAVA

http://javasun.com/products/jdk/l.2/docs/api

[33] SAMPLE

http://22Cl 78.cs. uiowaedu/article/11.html
http://www.cs.technion.ac.il/Courses/Computer-Networks­
Lab/projects/spring97 /projectl.

~

128



APPENDIX A 

1. Main
2. Proxy.java
3. HttpRequest.java
4. HttpReply.java
5. Cache.java
6. Confıg.java
7. Statisticjava
8. Base64.java
9. Deny

/********************************************************************** 
File Name: Proxy.java
**********************************************************************/ 

import java.io. *;
import java.net. *;
import java.util.*;
import java.lang. *;

public class Proxy extends Thread
{

static Cache cache = null;
static Config config ;;;. null;
static Statistic statistic = null;

String locall-lost= null;
String localIP = null;

Socket client ;

String message = new Stringı);
boolean running = true;
URL url;

long sendTime_ts=O, rcvTime_ts=O;
long sendTime_tc=O, rcvTimetc=O;
int mesl.ength _ts=O.mesl.ength_tc=O;
Date date;

String websrv = new String();
int sokid = O;

double k = 0.8;
double EstimatedRTT = O;

129



//main()
public static void main(String args[l)
{

int port;
ServerSocket srv = null;
int i = O;
String websrv = new String();

if(args.length > O)
{

try
{

}
port= Integer.parselnt(args[O]);

catch (NumberFormatException e)
{

System.out.println("Error: Invalid daemon port");
return;

}

}

else
{

port; 8000·
. '

}

I/Initialize the proxy
try
{

System.out.println("\nlnitializing ... ");
config = new Configf);
config.setLocalHost(InetAddress.getLocalHost().getHostName() );
String tmp = lnetAddress.getLocalHost().toString();
config.setLocalIP(tmp.substring(tmp.indexOf('/')+ l));
config.setProxyPort(" :"+port);

System.out.println("Running Statistic Function ...");
statistic = new Statistic();

System.out.println("Creating Cache Manager ...");
cache = new Cache( statistic );
srv = new ServerSocket(port);
System.out.println(''The server: "+config.getLocalHost() +

config.getProxyPort());
System.out.println("Proxy up and running ....\n");

//listen to the cnnection request from the client

130



while( true)
{

Socket connectToClient = srv.accepu);
i++·'Proxy pro= new Proxy(connectToClient, i);
pro.startı);

}
}
catch(Exception e)
{

System.outprintln(e);
System.exit(l );

}

finally
{

try
{

srv.close();
}
catch(Exception e)
{ } 

}
}

//constructor for the Proxy class
public Proxy(Socket sk, int id)
{

localHost = config.getLocalHost();
localIP = config.getLocalIP();
client ;;. sk;
sokid = id;

}

public void run()
{

HttpRequest req = new HttpRequest( config);
HttpReply reply = new HttpReply();
Socket sc=null;

System.outprintln("Proxy thread"+ sokid);

while(true)
{

try
{

II Parse information from the request
req.parseReq( client.getlnputStream() );

131



I/record time when the client send request
date = new Date();
rcvTime_tc = date.getTime();
statistic.Calculate(sendTime_tc, rcvTime_tc, mesLength_tc, sokid,

"CLIENT");
int reqNum = statistic.getReqCount();
reqNum++;
statistic.setReqCount(reqNum);

//Need authentication?
if(!config.getAuthState())
{

System.out.println(''Not the right client");
reply.sendReply(client, reply.formUnauthorized());
closeConnection( client);
break;

}

//Need not authentication
else
{

//Request not containing server name
if((req.url).compareTo("/") :;;a,; O)
{

websrv = config.getRandHost(Math.random());
config.setWeb(websrv);
req.url = confıg.getWebO + req.url ;

}

else if(req.url.charAt(O) l= 'h')
{

req.url = confıg.getWebO + req.url;
}
System.out.println("\nreqUrl--"+req.url + '\n');

url = new URL(req.url);

I/Request containing the local server

if(url.getHost(). equalslgnoreCase(localHost)llurl. getHost(). equalslgnoreCase(localIP)
{

sendLoginPage();
break;

}

I/The server is forbidden
else if(confıg.denyWebsite(url.getHost()))
{

132



System.out.println("This website is forbidden!");
reply. sendReply( client, reply .formNotFoundO );
closeConnection( client);
break;

}

I/The requested webpage has been cached
else if(cache.IsCached(req.url))
{

String s=nııll;

int hit= statistic.getHitCountO;
hit++;
statistic.setHitCount(hit);

System.out.println("Getting from cache ... ");

DatalnputStream in = new
DatalnputStream(cache.getFilelnputStream(req.url));

DataOutputStreaın out= new
DataOutputStream( client.getOutputStreamO );

while((s=in.readLine())!=null)
{

s+= '\n';
out writeBytes(s);

}
out.flushı);
in.close();
client.close();

}

I/The requested webpage has not been cached yet
else
{

String message=null;
String s=nııll;

//Connect to me server
try
{

sc=new Socket(url.getHost(),80);
}
catch(IOException e)
{

url =new
URL(confıg.getRandHost(Math. random()));

sc=new Socket(url.getHost(),80);

133



}
System.out.println("\nConnection:"+sc +'\n');

lnputStream inse= sc.getinputStreamO;
OutputStream outsc = sc.getOutputStreamO;

lnputStream ine = client.getlnputStream();
OutputStream outc = client.getOutputStream();

I/Rebuild the request from the client and send it
message=req.rebuildHeader() + '\n';

mesLength_ts = message.length();
//Record the time when the request is sent to the server
date= new Date();
sendTime_ts = date.getTime();
outsc.write(message.getBytes());
outsc.flush();

byte bufl] = new byte[4096];
boolean first = true;
String storeMes ;:: new String();
int dataLen = O;

//Receive reply form the server and cache it
while(true)
{

int num = inse.read(buf);
date= new Date();
if(num>O)
{

if(first)
{

//Record the time when the proxy gets the
reply from the server

rcvTime_ts = date.getTime();
statistic.Calculate(sendTime _ts,

rcvTime_ts, mesLength_ts, sokid, "SE~ER");
date= new Date();
JJRecord the time when the proxy sends the

reply to the client
sendTimejc = date.getTime();
first = false;

}
outc.write(buf,O,num);
outc.flush();

storeMes += new String(buf,O,num);
dataLen += num;

134



}
else
{

mesLength_tc = dataLen;
cache.Caching(req. url, storeMes);
break;

}
}
if(!(req.connection).equalsignoreCase(''KEEP-ALIVE"))
J

closeConnection( client);
break;

}

}
}//end of else

}//end of try
catch (Exception e)
{

//Systemout.println("Catch an exception in proxy");
closeConnection( client);
if(sc != null)

closeConnection(sc);
break;

}
}//end of while

//Display the results of statistics
System.out.printlnr'Snıt'I'otal Requests: 11 + statistic.getReqCount());

System.out.prinrlru'Xtf'ache Percentage: "+ statistic.calPerCache() + '%');
System.out.printlnr'Xtf'ache Hit Percentage: 11 + statistic.calPerHit(

) + '%' + '\n');

}

//Send the login page
public void sendLoginPage()
{

String page=null;
String s=null;

System.out.println("Sending the Login Page ... 11);

try
{

File loginPage=new File("login");
String path= loginPage.getAbsolutePath();

135



System.out.println(""+path);
loginPage = new File(path + File.separator+ "login");

DatalnputStream in = new DatalnputStream( new
FilelnputStrearn(loginPage) );

DataOutputStream out= new
DataOutputStrearn( client.getOutputStreamO);

while((s=in.readLine())!=null)
page+= s;

in.closet);

out. writeBytes(page );
out.flushı);
ouı.closeı);
System.out.println("End of the Login Page !11);

}
catch(Exception e)
{

System.out.println("Error: can't open login html page");
}

}

//Close connection
private void closeConnection(Socket s)
{

try
{

System.out.println("Deconnection: "+s);
s.close();

}
catch(Exception e)
{

System.err.println(e);
System.exiu l);

}
}

}

136



/********************************************************************** 
File: HttpRequest.java
Function: Handle information received from the client
**********************************************************************/ 

import java.io. *;
importjava.util. *;
import java.net. *;

public class HttpRequest
{

public String method;
public String url;
public String file;
public String version;
public String referer;
public String connection;
public String userAgent;
public String accept;
public String headRemainder;
public String authData;
Confıg config;

public HttpRequest(Confıg c)
{

confıg = c;
}

I/Parse information from the header of request.
public void parseReq ( InputStream in)
{

/JHeader information of the HTIP request
method= new Stringt);
url = new Stringt);
file = new Stringt);
version = new String();
referer = new String();

137



connection = new Stringt);
user Agent= new Stringı);
accept= new String();
headRemainder = new String();
authData = new String();

DatalnputStream din ;
StringT okenizer tz;
String token= new String();

try
{

din= new DatalnputStream(in);
tz = new String'I'okenizer ( din.readLine());

}
catch(Exception e)
{

return;
}

· method= tz.nextToken();
url=- tz.nextToken();
version= tz.nextToken();

while(true)
{

try
{

tz = new StringTokenizer (din.readLine());

}
catch(Exception e)
{

return;
}

try
{

token= tz.nextToken();
}
catch(NoSuchElementException e)
{

break;
}

I*
if(token.equalslgnoreCase("REFERER:"))

referer = getRemainder(tz);

138.



else if(token.equalslgnoreCase(" CONNECTION:"))
connection= getRemainder(tz);

else if(token.equalslgnoreCase("USER-AGENT11))

userAgent = getRemainder(tz);

else if(token.equalslgnoreCase("ACCEPT11))

accept= getRemainder(tz);
*I ,
if(token.equalslgnoreCase(11CONNECTION: 11))

connection= getRemainder(tz);
else if(token.equalslgnoreCase("AUTHORIZATION:11))

{
authData = tz.nexfI'okenf);
authData = getRemainder( tz);

}
else headRemainder +s= token+ 11 11 + getRemainder(tz) + '\n';

}

//If the tag of authentication needs to be set or reset?
if(authData.lengthO !;;a O)
{

if(confıg.isCorrect(authData))
{

config.setAuthState();
}

}
else

confıg.resetAuthState();
}

//rebuild the request header after extract the URL
public String rebuildHeader ( )
{

String header = new String();
URLtmp;

if(url.charAt(O)= 'h')
{

try
{

tmp = new URL(url);
header= method+''+ tmp.getFile() +''+version+ '\n';

}
catch(Exception e)
{}

}
else

139



header= method + ' ' + url + ' ' + version + '\n';

if(connection.length() > O)
header += "Connection: " + connection + 'uı';

header += headRemainder;

return header;
}

private- String getRernainder(StringTokenizer tk)
{

String str = new String();
while (tk.hasMoreTokens())

str += tk.nextToken();
return str;

}

}

/********************************************************************** 
File: HttpReply.java
Function: Build reply messages for the proxy and send the message
**********************************************************************/ 

importjava.net. *;
import java.io. *;
import java. util.*;

public class HttpReply
{

static String CR="\r\n";
static String HITP_PROTOCOL="HTTP/1.1 ";
static String HITP_SERVER="Java Proxy Server";

//Form unauthorized reply
public String forrnUnauthorized()
{

String header ; new String();
File file= new File("auth.html");
FilelnputStream in ;

header+> "HTTP/1.1 401 Authorization Required"+ CR;
header+= "Date: " + new Date() + CR;
header+= "Server: " + HTTP_SERVER +CR;
header+= "WWW-Authenticate-:Basic realm=\"Java Proxy\""+ CR;
header+= "Connection: close" + CR;
header+= "Content-Type: text/html" + CR;

140



header +::; CR;
header+= CR;

try
{

in= new FilelnputStream(file);
byte[} buf= new byte[4096J;
int num = in.read(buf);
header+= new String(buf,O,num);
header+= CR;
in.close();

}
catch(Exception e)
{}

return header;
}

//Form "not found" reply
public String formNotFoundO
{

return formError("404 Not_found","Requested object was not found");
}

//Send reply message
public void sendReply(Socket s, String mes)
{

OutputStream out;

try
{

out= s.getOutputStreamO;
out.write(mes.getBytes());
out.flusht);

}
catch(Exception e)
{}

}

//Form general reply message
private String forrnError(String Error,String Description)
{

String out= new Stringı);

out+= HITP PROTOCOL +" " + Error+ CR- 'out+="Server: "+ HTTP_SERVER + CR;
out +="Content-type: text/html" + CR;
out +="Last-Modified: " + new Dateı) +CR;
out+=CR;

141



//Generate Error Body
out :;;;:"<HTML><HEAD>" + CR;
out+= "<TITLE>" + Error+ "<ffITLE>" + CR;
out +="</HEAD><BODY>" + CR;
out +="<H2>" + Error +"</H2>" + CR;
out+"" Description+ "<P>" + CR;
out +="</BODY></HTML>" + CR;

return out;
} }

/********************************************************************** 
File: Cache.java
Function: Handle information received from the server
**********************************************************************/ 

import java.util.*;
import java.io. *;
import java.net. *;

public class Cache
{

public Hashtable fileTable = new Hashtableı);

public String version;
public String ret;
public String statu;
public String date;
public String connection;
public String contl.ength;
public String replyRemainder;

private File[] fileList = null;

public String basepath;
private File cacheDir = new File("cache");

private long MaxDirSpace = 180000;
private long CurFreeSpace = MaxDirSpace;

Statistic statistic;

I/Constructor
public Cache( Statistic st)
{

statistic = st;

142



cacheDir .mkdirs();
basepath = cacheDir.getAbsolutePath();

fileList = cacheDir.listFiles();

for(int i=O; i<fileList.length; i++)
{

long modiDate = fileList[i].lastModified();
fileTable.put(fileList[i].getName(), new Date(modiDate) );
Curf'reeôpace-s- fileList[i].length();

}
System.out.println("Current Free Space :"+CurFreeSpace);

}

/!Parse information of the reply got from the server
public void parseReply(InputStream in)
{

version = new String();
ret = new String();
date = new String() ;
connection = new String();
contLength = new Stringı);
replyRemainder = new String();

DatalnputStream din ;
StringTokenizer tz;
String token= new Stringı);

din= new DatalnputStream(in);
while(true) ·
{

try
{

tz = new StringTokenizer ( din.readLine());
}
catch(Exception e)
{

return;
}

version= tz.nextToken();
if((version.substring(0,3)).e.qualslgnoreCase("HTI'P"))
{

ret= tz.nextToken();
statu = tz.nextToken();
break;

}

}

143



while(true)
{

try
{

tz = new StringTokenizer(din.readLine());
}
catch(Exception e)
{

return;
}

try
{

}
token= tz.nextToken();

catch(NoSuchElementException e)
{

break;
}

if(token.equalslgnoreCase("DATE:"))
date= getRemainder(tz);

else if(token.equalslgnoreCase("CONTENT~LENGTH:"))
contLength = getRemainder(tz);

else if(token. equalslgnoreCase("CONNECTION: "))
connection= getRemainder(tz);

else replyRemainder +=token+ " " + getRemainder(tz);

}
}

I/Rebuild the reply
public String rebuildReply()
{

String reply = new String();

reply= version+""+ ret+""+ statu + '\n';

reply += "Date: " + date + '\n';
reply += "Connection: " + connection+ '\n';
reply+= "Content-Length: "+ contLength + '\n';
reply += replyRemainder;

return reply;
}

I/If the webpage has cached?
public boolean IsCached(String rawurl)
{

144



String fileNaıne = getFileNaıne(rawurl);

if(fileNaıne = null)
return false;

return(fileTable.get(fileNaıne) !=null);
}

public FilelnputStreaın getFilelnputStreaın(String rawurl)
{

FilelnputStreaın in = null;
try
{

String filename = basepath + "/" + getFileName(rawurl);

in > new FilelnputStream(filename);
}
catch (FileNotFoundException fnf)
{

try

{
System.out.println("File Not Found:"+getFileNaıne(rawurl)+"

"+fnf);
}
catch (Exception e)
{}

}
finally
{

return in;
}

}

//Cache the webpage if it's cachable
public synchronized void Caching(String rawurl, String content)
{

FileOutputStream out= null;
byte[] line ;
URL url = null;
String fileName = new String();
boolean cachable = false;

while(CurFreeSpace < content.length())
CacheDelete();

fileName = getFileName(rawurl); \145



if(fileName \:;:;::; null)
cachable = true;

try
{

url = new URL(rawurl);

StringTokenizer tz;
tz > new StringTokenizer(content.substring(O,

content.indexOf("\n")));
String retCode = tz.next'Fokeaı);
retCode = tz.next'I'okent);

if ((retCode.equals("200") II retCode.equals("302") II
retCode.equals("304")) && ((url.getFile()).compareTo("/") = O))
cachable = true;

}
catch(MalformedURLException e)
{

cachable :;;;;;_ false;
}

if(cachable)
{

System.out.println("Caching this reply ... ");
try
{

out= new FileOutputStream (basepath+"/"+
fileName);

line= new byte[content.lengthO];
line= content.getBytes();
out.write(line);

fileTable.put(fileName,new Date());

int cacheNum = statistic.getCacheCount();
cacheNum++;
statistic.setCacheCount( cacheNum);

}
catch(Exception e)
{}
finally
{

try
{

out.close();
}
catch(Exception e)
{}

146



}
}

}

//Cache all replys got from the server
public synchronized void CacheAll(String rawurl, String content, int Id)
{

FileOutputStream out = null;
byte[] line ;
URL url = null;
String fileName = new String();
boolean cachable = false;

while(CurFreeSpace < content.lengthô)
CacheDelete();

System.out.println("Caching this reply ... ");
try
{ .

url = new URL(rawurl);
fileName = url.getHostO + Id;

out= new FileOutputStream(basepath+"/"+ fıleName);

line= new byte[content.length()];
line= content.getlsytesf);
out.write(line);

fıleTable.put(fileName,new DateO);
}
catch(Exception e)
{}
finally
{

try
{

out.close();
}
catch(Exception e)
{}

}
}

//Parse file name from the String
private String getFileNarne(String urlName)
{

String filename = ur1Name.substring(7).replace('/' , '_') ;

147

~



if (filename.indexOf('?') != -1 II filename.indexOf("cgi-bin") I= -1)
{

return null;
}

'return filename;
}

//delete the earliest cache file
private synchronized void CacheDeleteO
{

String fıleDelete :aa. null;
long lastTime = O;
long fıleLen = O;

System.out.println("There isn't enough space, deleting file ...");
fileList = cacheDir.listFilesO;
for(int i=O; i<fileList.length; i++)
{

long modiDate = fileList[i].lastModified();
if(i=O)
{

lastTime = modiDate;
fileDelete = fileList[i].getName();
fileLen = fileList[i].length();

}
else if (modiDate < lastTime)
{

lastTime = modiDate;
fıleDelete =a fileList[i].getName();
fileLen = filel.istlij.lengthı);

}
}
System.out println("Deleting " + fileDelete + " ... ");

File file= new File(basepath + File.separatorChar + fileDelete);
if(file.deleteO)
{

CurFreeSpace +:;;;. fileLen;
fileTable.remove(fileDelete);
System.out.println("One file has been deleted!");

}
}

private String getRemainder(StringTokenizer tk)
{

String str = new Stringı);

/ 148



while (tk.hasMoreTokens())
str += tk.nextToken();

retumstr;
}

}

/********************************************************************** 
File: Config.java
Function: Config the proxy; set or get data or status for the proxy
**********************************************************************/ 

import java.util.*;
import java.net. *;
import java.io. *;
import java.math. *;

public class Confıg
{

private String localHost;
private String localIP;
private String pro:xyPort;
private String websrv;
private String authData;
private boolean authState;

//Initialiszee userid and password, authentication status and default server name
public Confıg()
{

websrv = "http://www.yahoo.com";
authState = false;
authData = "Aladdin.open sesame";

}

//Set new userid and password
public void setAuthData( String s)
{

authData :;;;;_ s;
}

//Set authentication status as "has authenticated"
public void setAuthState()
{

authState :;;;;_ true;
}

149



//Clear authentication status as "need authentication
public void resetAuthStateO
{

authState :;;;. false;
}

//Get authentication status
public boolean getAuthStateO
{

return authState;
}

I/Initialize the proxy address
public void setLocalHost(String host)
{
localHost :;;;. host;
}

public String getLocalHostO
{
return localHost;
}

public void setLocallP(String ip)
{
localIP = ip;
}

public String getLocalIPO
{
return localIP;
}

public void setProxyPort(String port)
{

proxyPort :;;;. port;
}

public String getProxyPortO
{

return proxyPort;
}

public void setWeb(String webname)
{

websrv = webname;
}

150



public String getWebO
{ '

return websrv;
}

//Get a random server name
public String getRandHost(double randnum)
{

String line = new Stringt);
String temp = null;
int count = O;
int nameNum ;;:;.0;
String[] nameList = new String[O];
StringTokenizer s;
System.out.println("randnum:"+randnum);
try
{

File hostFile = new File ("hostname");
DatalnputStream fileln = new DatalnputStream( new

FilelnputStream(hostFile) );
do
{

temp= filelnreadLine();
line+= temp+ " ";
count++;

}while(temp != null);

s =new StringTokenizer (line);
nameList = new String[count];

for(int i=O;i<count;i++)
nameList[i]=s.nextToken();

fileln. close();
}
catch(Exception e)
{
}

nameNum = (int) ((count-2) * randnum);
return nameList[nameNum];

}

//If the server name is in denyID file?
public boolean denyWebsite(String hostName)
{

File dr = new File("deny");
String path= dr.getAbsolutePath();
File file- new File(path + 'f + ·~



DatainputStream fileln;
String line = new Stringt);
String temp = null;
int count= O;
int nameNum = O;
String[] nameList = new String[OJ;
StringTokenizer s;

try
{

fileln = new DatalnputStream(new FilelnputStream(file));

do
{

temp = fileln.readLineO ;
line+s=temp +" ";
count++;

}while(temp != null);

s = new StringTokenizer (line);
nameList = new String[countJ;

for(int i=O;i<(count-2);i++)
{

nameList[ i]=s.nextTokenı);
}
fileln.close();

}
catch(Exception e)
{

return true;
}

for(int i:;;O;i<(count-2);i++)
{

if(hostName.compareTo(nameList[i]) = O)
return true;

}

return false;
}

I/If the userid and password are correct?
public boolean isCorrect(String s)
{

StringBufferlnputStream rawStr;
StringBuffer desStr;
Base64 base = new Base64();

~
152



try
{

rawStr = new StringBufferlnputStream(s);
desStr = new StringBuffer();
base.decode(rawStr, desStr);
String tmpStr = desStr.substring(O);
if(tmpStr.compareTo(authData) =O)

return true;
return false;

}
catch(Exception e)
{

return false; } } }

/********************************************************************** 
File: Statistic.java
Function: Handle some calculations
**********************************************************************/ 

import java. util.*;

public class Statistic
{

private int hitCount;
private int reqCount;
private int cacheCount;
private int SampleRTT;
private int EstimatedRTT;
private long effBandwidth;

//Constructor
public Statistic()
{

cacheCount = O;
reqCount ;;;;;_ O;
hitCount = O;
SampleRTI = O;
EstimatedRTT ;;;;_Q;
eflBandwidth = O;

}

//Set the number which represents how many times the cached file has been hit
public void setHitCount(int num)
{

hitCount ;;;;;_ num;
}

public int getHitCount()
{

153



return hitCount;
}

//Set the number which represents how many requests the client has sent
public void setReqCount(int num)
{

reqCount = num;
}

public int getReqCountO
{

return reqCount;
}

//Set the number which represents how many files has been cached
public void setCacheCount(int num)
{

cacheCount :;;;_ num;
}

public int getCacheCount()
{

return cacheCount;
}

//Calculate persentage of caching
public int calPerCacheO
{

if(reqCount = O)
return O;

else
return((int)(cacheCount * 100 I reqCount));

}

//Calculate persentage of hitting the cached files
public int calPerHitO
{

if(reqCount = O)
return O;

else
retum((int)(hitCount * 100/ reqCount));

}

//Calculate RTT and Effective Bandwidth
public void Calculate(long sendTime, long rcvTime, int length, int id,

String derection)
{

if(sendTime = O)

154



return; ·

SampleRTI = (int) (rcvTime - sendTime);
System.out.println("\n\tRTT from PROXY to"+ derection +" is: "+

SampleRTI + " milliseconds");

efiBandwidth = length I SampleRTI * 8 *1000;
System.out.println("\tEffective Bandwidth from PROXY to " + derection + "

is: " + eflBandwidth + " bps\n" );
}

public int getSampleRTIO
{

return SampleRTI;
}

public long getBandwidthO
{

return eftBandwidth;
}} 

/********************************************************************** 
This code is found on
"http://www.gjt.org/servlets/JCVS1et/show/ice/com/ice/convert/Base64.jav
a/HEAD".
I modified it in order to be used in my program

File: Base64java
Function: Decode the userid and password
**********************************************************************/ 

import java.io. *;
import java.lang. *;

public class Base64
{

private static final char pad64 = '=';
private static final String charSet =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzO 123456789+
/"·'

J/public static int decode(Reader reader, OutputStream output)
public static int decode(StringBufferlnputStream str,StringBuffer sout)

throws IOException
{

char inChar;

155



byte{} outNibble = new byte[3];
int state = O;

for (;;)
{

llinChar = (char) reader.readı);
inChar = (char) str.readt);
if ( inChar = -1 )

break;

if ( Character.isWhitespace( inChar))
continue;

if ( inChar = Base64.pad64)
break;

int pos= Base64.charSet.indexOf( inChar );
if ( pos = -1 ) // A non-base64 character

return -1;

II System.err.println( "IN"'+ inChar +"' POS"+ pos);

switch (state)
{

case O:
outNibble[O] = outNibble[l] = outNibble[2] = O;
outNibble[OJ= (byte) ( pos << 2 );

state= l;
break;

case 1:
outNibble[O) i= (pos>> 4);
outNibble[l] = (byte) ( (pos & OxOf) << 4 );
state= 2;
break;

case 2:
outNibble[l] i= (pos>> 2);
outNibble(2} = (byte) ( (pos & Ox03)<< 6 );
state= 3;
break;

case 3:
outNibble[2] I= pos;

II System.err.println
II ( "[O) "' + outNibble[O]
II + "' [1] "' + outNibble(l}
I I + "' [2) "' + outNibble[2] + ""' );

156



sout. append( (char )outNibble[ O]);
sout.append((char)outNibble[l]);
sout.append((char)outNibble[2]);
//output. write( outNibble[O] );
//output. write( outNibble[l] );
//output. write( outNibble[2) );
state= O;
break;

} }

II We are done decoding Base-64 chars. Let's see if we ended
II on a byte boundary, and/or with erroneous trailing characters.

if ( inChar = Base64.pad64) II We got a pad char
{

//inChar = (char) reader.readı);
inChar = (char) str.readı);

switch ( state )
{

case O: // Invalid = in first position
case l: // Invalid = in second position

return -1;

// UNDONE - no integrity checks yet, should check
I I that there are correct number of pads per state.
II
case 2:

//output.write( outNibble[O] );
sout.append((char)outNibble[O]);
break;

case 3:
sout.append((char)outNibble[O});
sout.append((char)outNibble[l]);
//output.write( outNibble[OJ);
I/output.write( outNibble[ l});
break;

}
}
else if ( state != O )
{

I I We ended by seeing the end of the stream.
I/ But we had unprocessed and unpadded bytes!

return-I;
}
return O; } }

157



APPENDIXB 

~~~~~~
: ~JAVA

!r:~.:~'.:,aj $l ~}~.hffll~L
.· ••..•......··········-:--·-:-:-·-:-:-:--:«<::i:,-:--:-:v:-:-;x::::;z1;,:ı::m@£1

158

I

I

I~ ~
~iwıaır•!!ııwc:!1rnwgn;ıı,ıw;11ır:11iıt1ıııı01ısrım11tllllıfa,lıl

162

163

ıJ@f%1$SEı.%ffff_.-4$'~M%f@ll~~£~fü~-a-fU-4ii

I a: 404 Not_found <

~:~il fillillil•iiii@!I)

,.,.,..::)t.:)~: :::••,rıa1J(~:-~ı~·•~J:~••

164

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	NEU JURY REPORT

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 3
	Titles
	~;;~

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	Ahmed Abu Asi: Caching Web Proxy Server Using Java Application
	Approval of the Graduate School of Applied and
	Prof. Dr. Fakhraddin Mamedov
	We certify this thesis is satisfactory for the award of the
	Examining Committee In Charge:
	~rg:;4

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	DEDICATION

	Images
	Image 1

	Page 6
	Titles
	ACKNOWLEDGMENT

	Images
	Image 1
	Image 2

	Page 7
	Titles
	ABSTRACT

	Images
	Image 1

	Page 8
	Titles
	LIST OF GLOSSARY

	Images
	Image 1

	Page 9
	Titles
	_,

	Page 10
	Images
	Image 1

	Page 11
	Titles
	RSA

	Images
	Image 1

	Page 12
	Titles
	UDP

	Images
	Image 1
	Image 2

	Page 13
	Titles
	TABLE OF CONTENTS
	1

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	INTRODUCTION

	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Titles
	1. NETWORK SECURITY
	1.1. Overview
	1.2. Security Policy

	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	Figure 1.2 Steps of filtering decision (that which is not expressively permitted is
	The question arises : 0What is done with the packet that does not match any entry in the
	In this situation two different approaches may be adopted:
	1. That which is not expressively permitted is prohibited, that is
	these packets will be dropped by the Filtering Router,
	2. That which is not expressively prohibited is permitted, that is
	these packets will forwarded by the Filtering Router,
	1.2.2. What information is used for r.Jtering decision?
	The portions that are parsed by the filtering router are IP header, and transport protocol
	entries are:
	• Source port (TCP or UDP header)
	5

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1
	Table 2

	Page 24
	Titles
	1.3. What is a Network?

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 25
	Titles
	1.4. Some Popular Networks?
	7

	Images
	Image 1
	Image 2

	Page 26
	Titles
	B

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Titles
	1.5. The Internet

	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Titles
	1.6. TCP/IP The Language of the Internet

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Titles
	1.7. Types And Sources Of Network Threats

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 34
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 35
	Titles
	1.8. Secure Network Devices

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Images
	Image 1

	Page 37
	Titles
	1.9. Network Security Filters and Firewalls
	,,,.

	Images
	Image 1

	Page 38
	Titles
	1.10. Transit Security

	Images
	Image 1
	Image 2

	Page 39
	Images
	Image 1
	Image 2

	Page 40
	Titles
	1.11. Traffic Regulation
	1.12. Filters and access lists

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 41
	Images
	Image 1
	Image 2

	Page 42
	Titles
	'
	1.13. IP Security

	Images
	Image 1
	Image 2

	Page 43
	Titles
	ııııB1~pm

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 44
	Images
	Image 1

	Page 45
	Titles
	1.14. IPSec Network Security

	Images
	Image 1
	Image 2

	Page 46
	Titles
	1.15. IPSec Encryption Technology

	Images
	Image 1
	Image 2

	Page 47
	Titles
	1.21. Summary

	Images
	Image 1

	Page 48
	Titles
	_ımıııı-
	Internet
	--
	-
	2. FIREW ALI.S AND PACKET FILTERING
	2.1. Overview

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 49
	Images
	Image 1
	Image 2

	Page 50
	Titles
	2.2. Firewall Politics

	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Titles
	2.3. Types of Firewalls

	Images
	Image 1

	Page 53
	Titles
	2.4. Firewall Technologies

	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Titles
	2.5. Firewall Architecture

	Images
	Image 1

	Page 56
	Titles

	1 \ r--------, r--~-----, r--------,

	Images
	Image 1
	Image 2

	Page 57
	Images
	Image 1

	Page 58
	Titles
	2.6. Web Proxy Architecture

	Images
	Image 1

	Page 59
	Titles
	41

	Images
	Image 1

	Page 60
	Titles
	FTP).

	Images
	Image 1

	Tables
	Table 1

	Page 61
	Images
	Image 1

	Tables
	Table 1

	Page 62
	Titles
	2. 7. Firewall placement

	Images
	Image 1

	Page 63
	Titles
	45

	Images
	Image 1

	Page 64
	Images
	Image 1
	Image 2
	Image 3

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1

	Page 67
	Images
	Image 1

	Page 68
	Titles
	2.8. Common configuration problems

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	l.9. Summary

	Images
	Image 1

	Page 3
	Titles
	3. PROXY SERVERS SECURITY
	3.1. Overview
	3.2. Web Proxy Servers

	Images
	Image 1

	Page 4
	Titles
	3.3. Browser Access to the Internet

	Images
	Image 1

	Page 5
	Titles
	3.4. Caching Documents
	D
	-
	-
	.ı-.
	D
	-

	Images
	Image 1
	Image 2

	Page 6
	Titles
	3.5. Selectively Controlling Access to the Internet and Subnets

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	\J\/eb Server
	Brov.ser

	Images
	Image 1
	Image 2

	Page 10
	Titles
	ııııiii!!M HTTP lı, Server J. L.~,=J
	Web_proxy.my.domain
	. HTTP
	~ :] Get pathftile.html • o
	~ (real path from document) ı:ıııın Sil
	-4
	Web Server
	ll!lt•••••••~•~••~•~e•• ••••••ı:ı:::ı

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 11
	Titles
	o
	ııııııı =~ı
	Web Server
	••••ı········~~~~-~·-·······
	HTTP
	411

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	r:
	II er.,~ cra~l 1 ' I I ~;: i 1r'9 ~

	Images
	Image 1

	Page 13
	Titles
	3.6. Types of Caching

	Images
	Image 1

	Page 14
	Titles
	3.7. Interaction with Other BorderManager Services

	Images
	Image 1

	Page 15
	Titles
	3.8. Proxy Technology
	3.9. Supported Protocols

	Images
	Image 1

	Page 16
	Titles
	3.10. Proxy Services Benefits

	Images
	Image 1

	Page 17
	Titles
	3.11. Application Proxies

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	3.12. Mail (SMTP/POP3) Proxy

	Images
	Image 1

	Page 21
	Titles
	3.13. News (NNTP) Proxy

	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Titles
	3.14. DNS Proxy
	3.15. HTTPS Proxy
	3.16. SOCKS Client

	Images
	Image 1

	Page 24
	Titles
	3.17. Generic Proxy

	Images
	Image 1

	Page 25
	Titles
	3.18. HTTP Transparent Proxy

	Images
	Image 1

	Page 26
	Titles
	3.19. Client servers

	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Titles
	3.20. Summary

	Images
	Image 1

	Page 29
	Titles
	4. PUBLIC-KEY CRYPTOGRAPHY AND SECURE SOCKETS
	4.1. Overview
	4.2. Internet Security Issues

	Images
	Image 1

	Page 30
	Titles
	4.3. Encryption and Decryption

	Images
	Image 1

	Page 31
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 32
	Titles
	Y I~:."'·
	-
	t
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 33
	Titles
	4.4. Key Length and Encryption Strength

	Images
	Image 1

	Page 34
	Titles
	4.5. Digital Signatures

	Images
	Image 1

	Page 35
	Titles
	.. EZ] -~- [:==J hashes
	c=J----t ~
	85

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 36
	Titles
	4.6. Certificates and Authentication

	Images
	Image 1

	Page 37
	Images
	Image 1

	Page 38
	Images
	Image 1
	Image 2
	Image 3

	Page 39
	Images
	Image 1

	Page 40
	Titles
	1111---

	Images
	Image 1
	Image 2

	Page 41
	Images
	Image 1

	Page 42
	Titles
	4.7. How Certificates Are Used

	Images
	Image 1

	Page 43
	Titles
	4.8. SSL Protocol

	Images
	Image 1

	Page 44
	Titles
	4.9. Signed and Encrypted Email

	Images
	Image 1

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Titles
	4.10. Secure Sockets Layer (SSL)

	Images
	Image 1

	Page 48
	Titles
	98
	~I LDAP 16 ...

	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1

	Page 50
	Titles
	ıoo

	Images
	Image 1

	Page 51
	Titles
	4.11. Server Authentication
	ıoı

	Images
	Image 1

	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 53
	Images
	Image 1

	Page 54
	Titles
	4.12. Client Authentication

	Images
	Image 1

	Page 55
	Images
	Image 1

	Page 56
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 57
	Titles
	4.13. Summary

	Images
	Image 1

	Page 58
	Titles
	5. CACHING WEB PROXY SERVER USING JAVA APPLICATION
	5.1 Overview

	Images
	Image 1

	Page 59
	Titles
	5.2. Remote administration

	Images
	Image 1

	Page 60
	Titles
	5.3. Accessing multiple proxies remotely

	Images
	Image 1

	Page 61
	Titles
	5.4. Mulôthreading
	5.5. Caching

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	5.6. Cacheable Vs. Non-Cacheable objects

	Images
	Image 1

	Page 3
	Titles
	5. 7. The admin thread

	Images
	Image 1

	Page 4
	Titles
	5.8. The config class

	Images
	Image 1

	Page 5
	Titles
	5.9. The software main block diagram
	NO

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	Stop

	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Titles
	5.10. Program Explanation

	Images
	Image 1

	Page 9
	Titles
	5.11. Using the program

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	-.

	Images
	Image 1

	Page 13
	Titles
	5.12. Summary

	Images
	Image 1

	Page 14
	Titles
	CONCLUSION

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	REFERENCES

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	APPENDIX A

	Images
	Image 1

	Page 20
	Titles
	}
	}
	{

	Images
	Image 1

	Page 21
	Titles
	'
	{ }
	}
	}

	Images
	Image 1

	Page 22
	Titles
	}

	Images
	Image 1

	Page 23
	Titles
	}
	}
	}
	{
	{
	}
	133

	Images
	Image 1

	Page 24
	Titles
	{

	Images
	Image 1

	Page 25
	Titles
	{
	}
	J
	}
	{
	}

	Images
	Image 1

	Page 26
	Titles
	}
	}
	}

	Images
	Image 1

	Page 27
	Titles
	File: HttpRequest.java
	Function: Handle information received from the client
	{

	Images
	Image 1

	Page 28
	Titles
	}
	}

	Images
	Image 1

	Page 29
	Titles
	*I ,
	}
	}
	{

	Images
	Image 1

	Page 30
	Titles
	}
	/**
	File: HttpReply.java
	Function: Build reply messages for the proxy and send the message
	**/

	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Titles
	/**
	File: Cache.java
	Function: Handle information received from the server
	**/

	Images
	Image 1

	Page 33
	Titles
	{
	{
	}
	}
	}

	Images
	Image 1

	Page 34
	Titles
	}

	Images
	Image 1

	Page 35
	Titles
	{
	}
	}
	}
	{
	\

	Images
	Image 1

	Page 36
	Titles
	}
	}
	{
	}
	{}

	Images
	Image 1

	Page 37
	Titles
	}
	{
	{ .

	Images
	Image 1

	Page 38
	Titles
	}
	}
	148
	/
	{
	}
	}
	'
	{
	}
	{
	}
	{
	}

	Images
	Image 1

	Page 39
	Titles
	}
	File: Config.java
	Function: Config the proxy; set or get data or status for the proxy
	}
	{
	}

	Images
	Image 1

	Page 40
	Titles
	}
	}
	}
	}

	Images
	Image 1

	Page 41
	Titles
	{ '
	{
	}

	Images
	Image 1

	Page 42
	Titles
	}
	}

	Images
	Image 1

	Page 43
	Titles
	/**
	Function: Handle some calculations
	}

	Images
	Image 1

	Page 44
	Titles
	{

	Images
	Image 1

	Page 45
	Titles
	}}
	'

	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Titles
	} }
	II
	}

	Images
	Image 1

	Page 48
	Titles
	APPENDIXB
	~~~~~~ 
	!r:~.:~'.:,aj $l ~}~.hffll~L 
	158 

	Images
	Image 1


	Page 49
	Images
	Image 1


	Page 50
	Images
	Image 1


	Page 51
	Images
	Image 1


	Page 52
	Titles
	I 

	Images
	Image 1
	Image 2


	Page 53
	Images
	Image 1


	Page 54
	Titles
	I a 
	~:~il fillillil•iiii@!I) 
	••,rıa1J(~:-~ı~·•~J:~•• 

	Images
	Image 1


	Page 55
	Images
	Image 1



