
NEAR EAST UNIVERSITY

GRADEUATE SCHOOL OF APPLIED AND SOCIAL
SCIENCES

ADVANCE ENCRYPTION STANDARD ANALYSIS
AND IMPLEMENTATION

TAMERS. FATAYER

MASTER THESIS

DEPARTMENT OF COMPUTER ENGINEERING

Nicosia 2004

NEU JURY REPORT

DEPARTMENT OF
COMPUTER ENGINEERING

Academic Year: 2003-2004

STUDENT INFORMATION

Full Name Tamer SA Fatayer
Undergraduate degree BSc. Date Received Spring

1998-2002
University The Islamic University

of Gaza CGPA 3.18

THESIS
Title I Advance Encryption standard Analysis and Implementation

Description
This thesis analyze the five candidate's algorithms for Advance Encryption Standard
algorithm, specially analyze to RC6 TM. And to apply this algorithm as software over
network communication channel to secure the data from the attacker

Supervisor Pro£ Dr. Fakhraddin Mamedov Department Computer Engineering

DECISION OF EXAMlNlNG COMMITTEE

The jury has decided to accept I~ the student's thesis.
The decision was taken unanimously I 9"-majerity.

COMMITTEE MEMBERS

Number Attending I 3 Date 5/2/2004

Name
Assoc. Prof. Dr. Rahib Abiyev, Chairman of the jury

Assist. Prof Dr. Dogan Haktarur, Member

Assoc. Pro£ Dr. Ilham Huseynov, Member

APPROVALS
Date
5/2/2004

Chairman of Department
Assoc. Prof. Dr. Dogan Ibrahim

DEPARTMENT OF COMPUTER ENGINEERING
DEPARTMENTAL DECISION

Date: 5/2/2004

Subiect: Completion of M.Sc. Thesis

Partidpants: Prof Dr. Fakhraddin Mamedov, Assoc. Prof Dr. Rahib Abiyev,
Assist.Prof Dr. Dogan Haktanir, Assoc.Prof Dr, Ilham Huseynov, Mohammed abdelal,
Mohammed Alcliri.

DECISION

We certify that the student whose number and name are given below, has fulfilled all
the requirements for a M .S. degree in Computer Engineering.

CGPA

20021298 Tamer S A Fataye~ 3.92

Assoc. Prof. Dr. Rahib Abiy,v, Committee Member, Computer Engineering

Jofij:;~1, ~u
Assist. Prof. Dr. Dogan Haktanir ,-Committee Member , Electrical and Electronic

Engineering Department, NEU £ D,

Assoc. Prof. Dr. Ilham HuseynovfCominittee Member, Computer Information System
r Department, NEU

Prof. Dr. Fakhraddin Mamedov, Supervisor, Dean of Engineering Faculties, NEU

!~ Chairman of Department
~ Assoc. Prof Dr. Dogan Ibrahim

Tamer SA Fatayer: Advance Encryption standard Analysis and
Implementation.

Approval of the Graduate School of Applied and
Social Sciences

Examining Committee in charge:

~{-
Assoc. Prof. Dr. Rahib ~ember, Computer Engineering

_ Department, NEU

chr:fl~ ·
Assist. Prof. Dr. Dogan Haktanir, Member , Electrical and

Eleznic Engineering Department, NEU

Assoc. Prof Dr. Ilham ~ember, Computer
Information System Department, NEU

Prof. Dr. Fakhraddin Mamedov, Supervisor, Dean of Engineering
Faculties, NEU

ACKNOWLEDGEMENTS

Many people supported me during the completion of this thesis with criticism, helpful

assistance and references. This thesis would have never been possible without them.

First, I would like to thank my supervisor the professor Fakhraddin Mamedov for his guidance

and encouragement. He was a wonderful supervisor whose assistance and motivation were

greatly appreciated.

I would like also to thank my brother Ali, and all my friends, especially Alaa El-Azayza,

Hazem El-Baz, Mohammad klaib, Mohammad abu-Agrab, Hossam Salha, and Mohammad

Basher for sharing wonderful comments.

I would like to thank my sisters heba, Myson, Myada, Anwar, and Khulud fatayer for them

inspirational and moral support.

Last but certainly not least, I would like to show my gratitude to my parents Saad and Halema

Fatayer, who have been generous with their encouragement throughout. This thesis is

dedicated to them.

ABSTRACT

In the late 1990's DES was felt by many experts to be vulnerable to brute force attack by

specialized computing machines. The National Institute of Standards and Technology held a

public competition for replacement DES, and a number of algorithms were proposed.

Among the 15 preliminary candidates, MARS, RC6, Rijndeal, Serpent, and Twofish were

announced as the finalist candidates on August 9, 1999 for further evaluation, which all these

algorithms consider as symmetric-key encryption algorithms.

The five finalists will be the subject of further study before the selection of one or more of

these algorithms for inclusion in the Advanced Encryption Standard (AES). A thesis discusses
security, cryptography, public key, private key and many related topics.

Also a thesis discusses secure communication using Advanced Encryption Standard algorithm

based on Rijndael, Serpent, Towfish, RC6™, and MARS algorithms. Also author developed a

software using Visual C+t- 6 for advanced RC6™. Also a thesis proves that all five of the

finalist algorithms very strong cipher algorithms.

11

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS

ABSTRACT ii

TABLE OF CONTENTS iii

INTRODUCTION 1

1 OVERVIEW OF SECURITY AND CRYPTOGRAPHY 3

1.1. Objectives associated with information security 4

1.2. Achieve Security information need cryptography 5

1.3. Models for evaluating security 6

1.4. Cryptography Information 8

1.4.1. Basic definitions of cryptographic system 9

1.4.2. Independent characteristic of Cryptographic system 9

1.4.3. Operations used by Cryptographic System 10

1.4.4. Cryptographic goals 10

1.5. Cryptanalysis and Attacker 11

1.5 .1. Cryptanalysis 11

1.5.2.Brut-force attack 14

1.6. Summary 14

2 CRYPTOGRAPHIC ALGORITHMS 15

2.1. Overview 15

2.2. Restricted algorithm 15

2.3. Key based algorithms 16

2.3.1. Symmetric cryptography algorithms 16

2.3.1.1. Symmetric algorithms operations 17

2.3.1.2. Classical algorithms 18

2.3.1.3. Recent algorithms 21

2.3.2. Asymmetric cryptography algorithms 23

2. 3 .2.1. A Symmetric algorithms operations 24

lll

2.3.2.2 Common public key algorithms

2.4. One-time pads.

2.4.1. Definition of one-time pads

2.4.2. How one-time pad works

2.4.3. Drawback of one-time pads

2.6. Summary

3 FIVE CANDIDATES ALGORITHMS FOR AES

3 .1. Overview

3.2. Rijndael algorithm

3.2.1. Introduction to Rijndeal algorithm

3.2.2. Construction of the S-Box

3 .2.3. Key Expansion

3.2.4. Encryption algorithm

3.2.5. Decryption algorithm

3.2.6. Security, efficiency are key to Rijndael

3 .3. Serpent algorithm

3.3.1. Introduction

3.3.2. Encryption and Decryption algorithms

3.3.3. Construction of S-box

3.3.4. Key generation

3.3.5. Security

3.4. Twofish algorithm

3.4.1. Introduction

3.4.2. Encryption and decryption algorithms

3.4.3. Key Schedule

3 .5. MARS algorithm

3.5.1. Introduction

3.5.2. Encryption and Decryption Algorithms

3.5.3. Construction of S-box

3.5.4. Key expansion

25

25

25

26

27

27

28
28

28

28

30

31

32

34

37

37

37

37

40

41

42

42

42

43

47

48

48

48

53

54

IV

3.6. RC6 algorithm

3 .6.1. Introduction

3.6.2. Basic operation

3.6.3. Key schedule

3.6.4. Encryption and decryption

3.6.5. Security and simplicity

3.6.6. Good performance for a given level of security
.r

3.6.7. Security ofRC6

3.6.8. Flexibility and Future Directions

3.7. Comparison between five candidates algorithms for AES

3.7.1. General differences

3.7.2. Operational differences

3.7.3. Encryption and Decryption times Differences

3.8. Summery

4 RC6™ IMPLEMENTATION USING VISUAL C++ 6.0

4.1. Overview

4.2. Application Requirements

4.2.1. Visual C++ 6.0

4.2.2. ActiveSkine 4.3

4.2.3. Network

4.3. Flow Chart Of Application

4.3.1. Encryption Algorithm

4.3.2. Decryption Algorithm

4.3.3. Sending Algorithm

4.3.4. Receiving algorithm

4.4. Using Application

4.4.1. Main Menu

4.4.2. Encrypt File Menu

4.4.3. Decrypt File Menu

4.4.4. Sending File Menu

57

57

57

58

59

62

65

65

67

68

68

69

70

70

71

71

71

71

72

73

74

75

76

77

78

79

79

80

82

84

V

4.4.5. Receiving File Menu

4.5. Summary

CONCLUSION

REFERENCES

APPENDIX A

85

86

87

89

94

/

VI

INTRODUCTION

Information is becoming a crucial if not the most important resource of the economy and

the society at large. Information differs radically from other resources, for instance, it can
be copied without cost, it can be communicated at the speed of light, and it can be

destroyed without leaving traces. This poses new challenges for the protection of this new

resource and of intellectual-property in general.

Information security, in particular cryptography, is an enabling technology that is vital for

the development of the information society (28].

A cryptographic algorithm is the mathematical function used for encryption and

decryption. There are two basic kinds of encryption algorithms are use today:

• Private key cryptography, which uses the same key to encrypt and decrypt the

message. This type is also known as symmetric key cryptography.

• Public key cryptography, which uses a public key to encrypt the message and a
,-,, ,,,--...

private key to~ de~t it (26].

This thesis discusses information security and cryptography, both types of cryptosystem
and many related topics, but concerns on the symmetric key cryptography algorithms

specially five candidates algorithms for AES theses algorithms are Rijndeal, Serpent,

Twofish, RC6™, and Mars algorithms. It also concerns on the RC6™ algorithm and the
related functions.

Author presents an application of symmetric key cryptography using the RC6™ to secure

data over network and the Internet channels, with some modification on RC6™. Author
adds another key to this algorithm, which makes it more secure.

The aim of this thesis is to analyze the five candidate's algorithms for Advance Encryption

Standard algorithm, specially analyze to RC6™ which author make multiples encryption to

each block to make the algorithm more secure. And to apply this algorithm as software

over network communication channel to secure the data from the attacker.

This thesis includes four chapters covering the main topics related in the following
structure:

Chapter 1, describes the overview to security and cryptography; which include information

security, relation between security and cryptography, basic definitions of cryptosystem,

main operation of cryptography, goal of cryptography, cryptanalysis, brut-force attack,

and cryptology.

Chapter 2, describes cryptography algorithms, which include restricted algorithm Key

based algorithms, operation is often used in symmetric algorithms, classical symmetric
C'

algorithms, Recent symmetric algorithms, Asymmetric cryptography algorithms, operation

is often used in asymmetric algorithms, Common public key algorithms, One-time pads,

Drawback of one-time pads.

Chapter 3, describes five candidates algorithms for AES, which include Rijndeal, Serpent,

Twofish, RC6™, and MARS algorithms. And describe each algorithm how its work,

encryption and decryption, and security. At end of this chapter there is comparison between

these algorithms.

Chapter 4, presents an application of symmetric key cryptography developed by author
using the RC6™ to secure data over network and the Internet channels. With some

modification on RC6™ author will add another key to this algorithm which maybe
"

consider as another private key to make the algorithm more secure or make it as public key

to make this algorithms as asymmetric key cryptosystem.

Finally in conclusion the obtained important results for the thesis are given.

2

1. OVERVIEW OF SECURITY AND CRYPTOGRAPHY

Security may define as a condition that result from the establishment and maintenance of

protective measures that ensures a state of inviolability from hostile acts or influences.

With respect to classified matter, the condition that prevents unauthorized persons from

having access to official information that is safeguarded in the interests of national security

Information systems professionals as being vital have long viewed security. Computing

facilities and the information systems they support have become increasingly accessible as

a result of the explosion of the open, public Internet since about 1993.

The demand for security safeguards has long been dominated by the military. As a result,

the orientation is rather different from what corporations, government agencies and the

public really need. Meanwhile, computing and communications specialists have dominated

the supply of security safeguards. As a result, the language used is arcane.

Information is becoming a crucial if not the most important resource of the economy and

the society at large. Information differs radically from other resources, for instance, it can

be copied without cost, it can be communicated at the speed of light, and it can be

destroyed without leaving traces. This poses new challenges for the protection of this new

resource and of intellectual property in general. Information security, in particular

cryptography, is an enabling technology that is vital for the development of the information

society [28].

The concept of information will be taken to be an understood quantity. To introduce

cryptography, an understanding of issues related to information security in general is

necessary. Information security manifests itself in many ways according to the situation

and requirement. Regardless of who is 'involved, to one degree or another, all parties to a

transaction must have confidence that certain objectives associated with information

security have been met [1].

3

1.1. Objectives associated with information security

• Privacy or confidentiality: is protection of transmitted data from passive attacks.

With respect to release of message contents, several levels of protection can be id

Keeps information secret from all but those who are authorized to see.it [38].

• Data integrity: integrity can apply to a stream of messages, or selected fields

within a message. Integrity to ensure the information has not been altered by

unauthorized or unknown means.

• Entity authentication or identification: the authentication service is concerned

with assuring a communication authentic, the function of authentication service is

to assure the recipient that the message is from the source that is claims to be from.

In this case of an ongoing interaction such as the connection of terminal to a host.

• Signature is a means to bind information to an entity.

• Authorization: Conveyance, to another entity, of official sanction to do or be

something. Or Authorization is finding out if the person, once identified, is

permitted to have the resource. This is usually determined by finding out if that

person is a part of a particular group, if that person has paid admission, or has a

particular level of security clearance.

• Validation: is a means to provide timeliness of authorization to use or manipulate

information or resources.
• Access control: is the ability to limit and control the access to host system and

application via communication links. To achieve this control, each entity trying to

gain access must be identified, or authenticated, so that access rights can be tailored

to the individual.
• Certification: Comprehensive evaluation of the technical and non-technical

security features of an AIS (automated information system) and other safeguards,

made in support of the approval/accreditation process, to establish the extent to

which a particular design and implementation meet a set of specified security

requirements Endorse of information by a trusted entity.

• Timestamping: A collection of digital data created with a purpose to prove

temporal relationship (before, after) between different events. Records the time of

creation or existence of information. In distributed databases, a concurrency control

mechanism that assigns a globally unique timestamp to each transaction.

4

• Witnessing: verifies the creation or existence of information by an entity other than

the creator.

• Receipt: receipts acknowledgement that information has been received.

• Confirmation: is acknowledgement that services have been provided.

• Ownership: means to provide an entity with the legal right to use or transfer a

resource to anther. Or All rights, benefits and privileges under policies that are

controlled by their owners. Policy owners may or may not be the insured.

Ownership may be assigned or transferred by written request of current owner.

• Anonymity: conceals the identity of an entity involved in some process. Or

Protection of names and other pieces of information that can identify participant's

researchers do not ask participants to reveal information that would aid the

researcher in identifying participant's individual data.

• Non-repudiation: prevents either sender or receiver from denying a transmitted

message. Thus, when message is send, the receiver can prove that the massage was

in fact sent by alleged sender. Similarly, when a message is receive, the sender can

prove that the massage was in fact received by alleged receiver.

• Revocation: An instrument which takes away certain powers or privileges of an

individual who had been given certain powers or privileges. Or retraction of

certification or authorization [2].

1.2. Security information needs cryptography
Over the centuries, an elaborate set of protocols and mechanisms has been created deal

with information security issues when the information is conveyed by physical documents.

Often the objectives of information security cannot solely be achieved through

mathematical algorithms and protocols alone, but require procedural techniques and

abidance of laws to achieve the desired result. For example, privacy of letters is provided

sealed envelopes delivered by an accepted mail service. The physical security of the

envelope is, for practical necessity, limited and so laws are enacted which make it a

criminal offense to open mail for which one is not authorized. It is sometimes the case that

security is achieved not through the information itself but through the physical document

recording it. For example, paper currency requires special inks and material to prevent

counterfeiting. Conceptually, the way information is recorded has not changed

dramatically over time. Whereas information was typically stored and transmitted on

5

paper, much of it now resides on magnetic media and is transmitted via

telecommunications systems, some wireless. What has changed dramatically is the ability

to copy and alter information. One can make thousands of identical copies of a piece of

information stored electronically and each is indistinguishable from the original. With

information on paper, this is much more difficult [2]. What is needed then for a society

where information is mostly stored and transmitted in electronic form is a means to ensure

information security which is independent of the physical medium recording or conveying

it and such that the objectives of information security rely solely on digital information

itself. One of the fundamental tools used in information security is the signature. It is a

building block for many other services such as non-repudiation, data origin authentication,

identification, and witnessing, to mention a few. Having learned the basics in writing, an

individual is taught how to produce a handwritten signature for the purpose of

identification. At contract age the signature evolves to take on a very integral part of the

person's identity. This signature is intended to be unique to the individual and serve as a

means to identify, authorize, and validate. With electronic information the concept of a

signature needs to be redressed; it cannot simply be something unique to the signer and

independent of the information signed. Electronic replication of it is so simple that

appending a signature to a document not signed by the originator of the signature is almost

a triviality. Achieving information security in an electronic society requires a vast array of

technical and legal skills. There is, however, no guarantee that all of the information

security objectives deemed necessary can be adequately met. The technical means is

provided through cryptography. There are many aspects to security and many applications,

ranging from secure commerce and payments to private communications and protecting

passwords. One essential aspect for secure communications is that of cryptography (29].

1.3. Models for evaluating security
The security of cryptographic primitives and protocols can be evaluated under several

different models. The most practical security metrics are computational, and provable,

although the latter is often dangerous. The confidence level in the amount of security

provided by a primitive or protocol based on computational or ad hoc security increases

with time and investigation of the scheme. However, time is not enough if few people have

given the method careful analysis.

6

• Unconditional security

The most stringent measure is an information theoretic measure whether or not a

system has unconditional security. An adversary is assumed to have unlimited

computational resources, and the question is whether or not there is enough

information available to defeat the system. Unconditional security for encryption

systems is called perfect secrecy. For perfect secrecy, the uncertainty in the

plaintext, after observing the ciphertext, must be equal to the a priori uncertainty

about the plaintext observation of the ciphertext provides no information

whatsoever to an adversary. A necessary condition for a symmetric key

encryption scheme to be unconditionally secure is that the key be at least as long

as the message. The one-time pad is an example of an unconditionally secure

encryption algorithm. In general, encryption schemes do not offer perfect secrecy,

and each ciphertext character observed decreases the theoretical uncertainty in.the

plaintext and the encryption key. Public key encryption schemes cannot be

unconditionally secure since, given a ciphertext c, the plaintext can in principle be

recovered by encrypting all possible plaintexts until c is obtained.

• Complexity-theoretic security
An appropriate model of computation is defined and adversaries are modeled as

having polynomial computational power. An objective is to design a

cryptographic method based on the weakest assumptions possible anticipating a

powerful adversary. Asymptotic analysis and usually also worst case analysis

is used and so care must be exercised to determine when proofs have practical

significance. In contrast, polynomial attacks which are feasible under the model

might, in practice, still be computationally infeasible. Security analysis of this

type, although not of practical value in all cases, may nonetheless pave the way

to a better overall understanding of security. Complexity theoretic analysis is

invaluable for formulating fundamental principles and confirming intuition.

This is like many other sciences, whose practical techniques are discovered

early in the development, well before a theoretical basis and understanding is

attained.

7

• Provable security

A cryptographic method is said to be provably secure if the difficulty of defeating it

can be shown to be essentially as difficult as solving a well known and

supposedly difficult (typically number-theoretic) problem, such as integer

factorization or the computation of discrete logarithms. Thus, "provable" here

means provable subject to assumptions. This approach is considered by some to

be as good a practical analysis technique as exists. Provable security may be

considered part of a special sub-class of the larger class of computational security

considered next.

• Computational security
This measure the amount of computational effort required, by the best currently

known methods, to defeat a system; it must be assumed here that the system has

been well studied to determine which attacks are relevant. A proposed technique

is said to be computationally secure if the perceived level of computation required

to defeat it exceeds, by a comfortable margin, the computational resources of the

hypothesized [3].

1.4. Cryptography information
Cryptography is the study of mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and data origin

authentication. Or cryptography is the science of writing in secret code and is an ancient

art; the first documented use of cryptography in writing dates back to circa 1900 B.C.

when an Egyptian scribe used non-standard hieroglyphs in an inscription. Some experts

argue that cryptography appeared spontaneously sometime after writing was invented, with

applications ranging from diplomatic missives to war-time battle plans. It is no surprise,

then, that new forms of cryptography came soon after the widespread development of

computer communications. In data and telecommunications, cryptography is necessary

when communicating over any untrusted medium, which includes just about any network,

particularly the Internet [29].

8

1.4.1 Basic definitions of cryptographic system

• Plaintext: is an original intelligible message or data that fed into the algorithm as

input.

• Enciphering algorithm: the encryption algorithm performs various substitution

and transformation on plaintext.

• Key: is sequence of symbols that controls the operation of a cryptographic

transformation. In practice a key is normally a string of bits used by a

cryptographic algorithm to transform plain text into cipher text or vice versa. The

key should be only part of the algorithm that it is necessary to keep secret.

• Ciphertext: this is scramble message produce as output. It depends on the plaintext

and secret key. For given message, tow different keys will produce two different

ciphertext

• Deciphering algorithm: This is essentially the encryption algorithm run is reverse.

It takes the ciphertext and the secret key and produces the original plaintext.

• Cryptosystem: is a communication system designed for transmitting information

securely [25].

• Cryptology: is all-inclusive term for study of secrecy systems in communication

over nonsecure channels and related problems. In anther words cryptology is

computation between cryptography and cryptanalysis [30].

1.4.2 Independent characteristic of Cryptographic system

1. The type of operation used for transforming plaintext to ciphertext

All encryption algorithms are based on tow general principles: Substitution and

Transposition.

2. The number of key used
If both sender and receiver use the same key, the system is referred to as

symmetric, single-key, secret-key, or conventional encryption. If the sender and

receiver each use a different key, the system is referred as asymmetric or public­

key encryption.

9

3. The way in which the plaintext is processed.

There are tow processes

• A block cipher processes: which the input one block of element at the time,

producing an output block for each input block.

• A stream cipher processes the input elements continuously, producing

output one element at the time, as it goes along [3].

1.4.3. Operations used by Cryptographic System
Although the methods of encryption/decryption have changed dramatically since the

advent of computers, there are still only two basic operations that can be carried out on a

piece of plaintext - substitution and transposition. The only real difference is that whereas

before these were carried out with the alphabet, nowadays they are carried out on binary
A

bits. The operations are:

• Substitution: Substitution operations replace bits in the plaintext with other bits

decided upon by the algorithm, to produce ciphertext. This substitution then just

has to be reversed to produce plaintext from ciphertext.

• Transposition: Transposition (or permutation) does not alter any of the bits in

plaintext, but instead move their positions around within it. If the resultant

ciphertext is then put through more transpositions, the end result is increasingly

secure.
• XOR: is an exclusive-or operation. It is a Boolean operator such that if 1 of two

bits is true, then so is the result, but if both are true or both are false then the result

is false.

1.4.4. Cryptographic goals
Of all the information security objectives listed in section 1.2.1, the following four form a

framework upon which the others will be derived: privacy or confidentiality, data integrity,

authentication and, non-repudiation.

Confidentiality: is a service used to keep the content of information from all but those

authorized to have it. Secrecy is a term synonymous with confidentiality and privacy.

10

There are numerous approaches to providing confidentiality, ranging from physical

protection to mathematical algorithms, which render data unintelligible.

Data integrity: is a service, which addresses the unauthorized alteration of data. To assure

data integrity, one must have the ability to detect data manipulation by unauthorized

parties. Data manipulation includes such things as insertion, deletion, and substitution.

Authentication: is a service related to identification. This function applies to both entities

and information itself. Two parties entering into a communication should identify each

other. Information delivered over a channel should be authenticated as to origin, date of

origin, data content, time sent, etc. For these reasons this aspect of cryptography is usually

subdivided into two major classes: entity authentication and data origin authentication.

Data origin authentication implicitly provides data integrity (for if a message is modified,

the source has changed).

Non-repudiation: is a service, which prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying that certain actions

were taken, a means to resolve the situation is necessary. For example, one entity may

authorize the purchase of property by another entity and later deny such authorization was

granted. A procedure invol):ing a trusted third party is needed to resolve the dispute. A

fundamental goal of cryptography is to adequately address these four areas in both theory

and practice. Cryptography is about the prevention and detection of cheating and other

malicious activities.

1.5. Cryptanalysis and attacker:
There are two general approaches to attacking cryptosystem scheme Cryptanalysis and

Brut-force attack.

1.5.1. Cryptanalysis
Cryptanalysis strictly, includes methods and techniques of recovering information from

encrypted material without knowledge of the key, or Cryptanalysis is the process of

breaking someone else's cryptographic writing. This sometimes involves some kind of

statistical analysis of a passage of encrypted text. Someone who performs cryptanalysis is

11

called a cryptanalyst. In reality, cryptanalysis includes any method which can do so, and

the most successful attacks on well implemented modem crypto systems are almost

certainly not strictly cryptanalytic ones. Cryptanalytic attacks rely on the nature of the

algorithm plus perhaps some knowledge of general characteristics of the plain text or even

some sample plaintext-ciphertext pairs. This type of attack exploits the characteristics of

the algorithm to attempt to deduce specific plaintext or to deduce the key being used. If the

attack succeeds in deducing the key, the effect is catastrophic: All future and past message

encrypted with that key are composed. There are many cryptanalytic techniques. Some of

the more important ones for a system implementer are described below.

• Ciphertext-only attack: This is the situation where the attacker does not know

anything about the contents of the message, and must work from ciphertext only. In

practice it is quite often possible to make guesses about the plaintext, as many types

of messages have fixed format headers. Even ordinary letters and documents begin

in a very predictable way. For example, many classical attacks use frequency

analysis of the ciphertext, however, this does not work well against modem ciphers.

Modem cryptosystems are not weak against ciphertext-only attacks, although

sometimes they are considered with the added assumption that the message

contains some statistical bias.

• Known-plaintext attack: The attacker knows or can guess the plaintext for some

parts of the ciphertext. The task is to decrypt the rest of the ciphertext blocks using

this information. This may be done by determining the key used to encrypt the data,

or via some shortcut. One of the best known modem known-plaintext attacks is

linear cryptanalysis against block ciphers.

• Chosen-plaintext attack: The attacker is able to have any text he likes encrypted

with the unknown key. The task is to determine the key used for encryption. A

good example of this attack is the differential cryptanalysis which can be applied

against block ciphers (and in some cases also against hash functions).

• Man-in-the-middle attack: This attack is relevant for cryptographic

communication and key exchange protocols. The idea is that when two parties, A
' and B, are exchanging keys for secure communication, an adversary positions

12

himself between A and B on the communication line. The adversary then intercepts

the signals that A and B send to each other, and performs a key exchange with A

and B separately. A and B will end up using a different key, each of which is

known to the adversary. The adversary can then decrypt any communication from

A with the key he shares with A, and then resends the communication to B by

encrypting it again with the key he shares with B. Both A and B will think that they

are communicating securely, but in fact the adversary is hearing everything. The

usual way to prevent the man-in-the-middle attack is to use a public key

cryptosystem capable of providing digital signatures. For set up, the parties must

know each others public keys in advance. After the shared secret has been

generated, the parties send digital signatures of it to each other. The man-in-the­

middle can attempt to forge these signatures, but fails because he cannot fake the

signatures.

• Correlation between the secret key and the output of the cryptosystem is the main

source of information to the cryptanalyst. In the easiest case, the information about

the secret key is directly leaked by the cryptosystem. More complicated cases

require studying the correlation (basically, any relation that would not be expected

on the basis of chance alone) between the observed (or measured) information

about the cryptosystem and the guessed key information.

"
• Attack against or using the underlying hardware: in the last few years as more

and smaller mobile crypto devices have come into widespread use, a new category

of attacks has become relevant which aim directly at the hardware implementation

of the cryptosystem. The attacks use the data from very fine measurements of the

crypto device doing, say, encryption and compute key information from these

measurements. The basic ideas are then closely related to those in other correlation

attacks. For instance, the attacker guesses some key bits and attempts to verify the

correctness of the guess by studying correlation against her measurements [4].

13

1.5.2. Brut-force attack

What is a brute force attack?

The attacker tries every possible key on piece of ciphertext until an intelligible translation

into plaintext is obtained. On average, half of all possible keys must be tried to achieve

success [3]. Millions of keys are used in simultaneous attempts to decrypt the ciphertext,

assuming the decryption method is known and the result in each case is tested to ascertain

whether it is something intelligible. Brute force attacks against specific cryptosystems can

be compared since the average time required by a brute force attack is half the number of

possible keys multiplied by the time required to test each key. It is true that if the size of

the key space associated with a cryptosystem is small (e.g. i16 = 65,536) then the

cryptosystem is vulnerable to a brute force attack. But if a cryptosystem has a very large

key space (e.g. about (10100) if a 60-character key is permitted) then a brute force attack is

not feasible and so any weakness in the system, if it exists, must be sought elsewhere [37].

What can be done to prevent brute force attack?
The simplest thing to prevent brute force attacks from succeeding is to choose truly

random keys that are not based on words in any language and are longer than 8 letters. The

longer the key, the longer it would take a brute force tool to find, by not using a word (or a

pattern based on a word) you eliminate the chance of a dictionary attack working; by using

a truly random sequence of letters, numbers, and characters you ensure that only an

exhaustive search will find your key, giving you the advantage of time. The second most

important thing is to change your keys frequently. If someone does guess your key you can

limit how long they have access to your account by frequently changing your key [38].

1.6. Summary
The data is very important in our delay life and it must be secure from attack or from lost.

To achieve security to date we need cryptography. There are many benefits of security like

Privacy or confidentiality, Data integrity, Entity authentication or identification, Message

authentication, and Signature. There are many goals of cryptograph like Confidentiality,

Data integrity, Authentication, and Non-repudiation Privacy or confidentiality, Data

integrity, Entity authentication or identification, Message authentication, and Signature.

14

2. CRYPTOGRAPHY ALGORITHMS

2.1. Overview
A cryptography algorithm is the mathematical function used for encryption and

decryption.

There are two basic kinds of encryption algorithms in use today

• Private key cryptography, which uses the same key to encrypt and decrypt the

message. This type is also known as symmetric key cryptography.

• Public key cryptography, which uses a public key to encrypt the message and a

private key to decrypt it. The name public key comes from the fact that you can

make the encryption key public without compromising the secrecy of the

message or the decryption key. Public key systems are also known as

asymmetric key cryptography [26].

2.2. Restricted Algorithm.
If the security of the message being sent relies on the algorithm itself remaining secret,

then that algorithm is known as a restricted algorithm

The problem or drawback of restricted algorithm
The algorithm obviously has to be restricted to only those people that you want to be

able to decode your message. Therefore a new algorithm must be invented for every

discrete group of users or in other meaning restricted algorithms allows no quality

control or standardization. Every group of users must have their own unique algorithm.

They have to write their own algorithms and implementations. A large or changing

group of users cannot use them, as every time one user leaves the group, everyone must

change algorithm, so that people outside the group won't know the top secret (algorithm

itself). If someone accidentally finds out the secret how the algorithm works, the group

must change their algorithm If the algorithm is compromised in any way, a new

algorithm must be implemented Modern cryptography or key based algorithm solves

the problems that are presented by Restricted Algorithm [23]

15

2.3. Key Based Algorithms.
There are two categories of cryptographic key based algorithms: conventional and

public key.

2.3.1 Symmetric cryptography algorithms
Symmetric cryptography, also known as Conventional cryptography, requires that the

sender and receiver have shared a key, which is a secret piece of information that is

used to encrypt or decrypt a message. If this key is secret, then nobody other than the

sender or receiver can read the message [26]. Using Figures 2.1 below explains how

symmetric key work.

Shared Key Shared Key

l ,I,
Secure

Plaintext ! Encryption Channef Encryption Ciphertext ~ algorithm algorithm ~ •.. •..

Figure 2.1 Model of Symmetric cryptosystem

Suppose a message in plaintext is X, K is shared key used for the same for sender and

receiver, mean for encryption and decryption, and Y is ciphertext so we can get cipher-

text through this formula,
Y=EK (X).

This formula indicates that Y (cipher text) is obtained by using encryption algorithm E

as function of plaintext X. In the receiver receive the ciphertext (Y) and the shared key

and used decryption algorithm (D), which is the inverse of E to obtain ciphertext,

X=DK (Y).

Opponent, observing Y but not having access to k or X, may attempt to recover X or K

or both of them [1].

16

2.3.1.1. Symmetric algorithms operations

• S-boxes: Lookup tables that map n bits to m bits (where n and m often are

equal). There are several ways of constructing good S-boxes for ciphers, as well

as several ways of measuring them. Some designers use a rigorous mathematical

approach to create S-boxes, which can be proven to be resistant against some

particular attacks. Other designers use heuristic approaches, which may lead to

S-boxes that are more difficult to handle in mathematical proofs [4].
""

• Feistel networks: A Feistel network is a general device of constructing block

ciphers from simple functions. The original idea was used in the block cipher

Lucifer, invented by Horst Feistel. Several variations have been devised from

the original version. Put simply, the standard Feistel network takes a function

from n bits to n bits and produces an invertible function from 2n bits to 2n bits.

The basic function upon which the structure is based is often called the round

function. The essential property of Feistel networks that makes them so useful in

cipher design. The security of the Feistel structure is not obvious, but analysis of

DES has shown that it is a good way to construct ciphers.

• The operation of taking the user key and expanding it. Key expanding in Feistel

rounds is called key scheduling. This is often a non-linear operation.

• Expansion, Permutation: These are common tools in mixing bits in a round

function. They are linear operations.

• Bitslice operations: is bitwise logic operations XOR, AND, OR, NOT and bit

pennutations. The idea of bitslice implementations of block ciphers is due to Eli

Biham. It is common practice in vector machines to achieve parallel operation.

• Pseudo-Hadamard Transformation: A pseudo-Hadamard transform (PHT) is

a simple mixing operation that runs quickly in software. Given two inputs, a and

b, the 32-bit PHT is defined as:
a' =a+ b mod 232 ,

b' =a+ 2b mod 232 [8].

17

• MDS Matrices: A maximum distance separable (MDS) code over a field is a

linear mapping from field elements to b field elements, producing a composite

vector of a + b elements, with the property that the minimum number of non­

zero elements in any non-zero vector is at least b + 1. Between any two distinct

vectors produced by the MDS mapping is at least b + 1. It can easily be shown
that no mapping can have a larger minimum distance between two distinct

vectors, hence the term maximum distance separable. MDS mappings can be

represented by an MDS matrix consisting of ax b elements. Reed-Solomon (RS)

error-correcting codes are known to be MDS. A necessary and sufficient

condition for an a x b matrix to be MDS is that all possible square sub matrices,

obtained by discarding rows or columns, are non-singular [8].

• Whitening: Whitening, the technique of xoring key material before the first

round and after the last round. Whitening substantially increases the difficulty of

key search attacks against the remainder of the cipher.

2.3.1.2. Classical algorithms
Caesar cipher: one of the earliest cryptosystem is often attributed to Julius Caesar.

Cease cipher depend on shift the letter by value. For example suppose if the shift value

equal to 3.

Plaintext T H I s I s M y T H E s I s
Shift value 3

Ciphertext w K L V L V p B w K H V L V

Means that cipher text is obtain by

C=E (P)=(P + n) mod (26).

Where (n) shift value, and its rang between [1-24]. Plaintext can obtain by

P=D(C)=(C - n) mod (26) [3].

Hill Cipher: Developed by .Lester Hill in 1992. The core of Hill cipher is matrix

manipulations. Both encryption and decryption are nothing more than matrix

multiplications, the encryption algorithm takes m successive plaintext letters and

18

substitutes for them m ciphertext letters. The substitutes is determine by m linear

equations in which each character is assigned a numerical value (a=O, b= 1, ... ,z = 25).

Form= 3, the system can be described as follows:

c1 = (k11P1 + k11P1+k11P1) mod 26

c2 = (k11P1 + k11P1 + k11P1) mod 26

c, = (k11P1 + k11P1 + k11P1) mod 26

This can be expressed in term of column vectors

26

Or can expressed as C = KP mod 26 [l, 36].

Vigenere Cipher: the Vigenere cipher is a polyalphabetic cipher based on usmg

successively shifted alphabets, a different shifted alphabet for each of the 26 English

letters. The Vigenere tableau in table 2.1 can be used directly. For each letter of the

message use the letter of the keyword to determine a row and go across the row to the

column headed by the corresponding letter of the message. We illustrate this row-

column look-up.

Example To Vigenere Cipher:

Keyword RELAT ION SR ELATI ONSRE LA TIO NS REL
(Row)

Plain text TOBEO RN OTT OB ETH ATIST HEQUE STION
(column)

Cipher KSMEH ZBBLK SMEMP OGAJX SEJCS FLZSY
Text

19

Now there are many symmetric algorithms can be historical divided into a Classical

algorithm and recent algorithm.

abcDefj h i J k 1 mnopqr st uvwxyz

a A B C DE F G H I J K L iv'. N 0 p Q R S T U ·y Vv XY z
b B CD E F 'G H I J K L M NO ·p QR S T UV Vv XY Z A

C C DE F G H I J K L :rv N 0 p QR S T UV v.. XY Z A B

d D E F GH I J KL iv'. N 0 p QR S T UY v.. X YZ A B C

e E F G H I J K L Iv NO p QR . s TU VVv XY Z A B C D

f F GH I J KL M NO p QR S T u V Vv XY z AB CD E

g G H I J K L Iv NO p Q R S T UV \\ X y z A B C D E F

h H I J K L Iv NO p Q R S T UV v.. X y z AB C D E F G

i I J K L M N 0 p QR s T u V Vv X y z A B C D E F GH

j J K L :rv N 0 p Q R S T u V Vv X y z A B C D E F G H I

kK L M N 0 p QR S T u V Vv X y z A B C D E F G H I J

1 L :rv N 0 p Q R S T u V Vv X y z A B C D E F G H I J K

n 1\1 N 0 p Q R s T u V Vv X y z A B C D E F G H I J K L

nN 0 p Q R s T u V \\ X y z A B C D E F G H I J K L :rv

0 0 p Q R s T u V v.. X y z A B C D E F G H I J K L M N

pp Q R s T u V Vv X y z A B C D E F G H I J K L M N 0

q Q R s T u V \\ X y z A B C D E F G H I J K L :rv N 0 p

r R s T u V v.. X y z A B C D E F G H I J K L 1\1 N 0 p Q

s s T u V Vv X y z A B C D E F G H I J K L :rv N 0 p Q R

t T u V Vv X y z A B C D E F G H I J K L :rv N 0 p Q R s
u u V \\ X y z A B C D E F G H I J K L :rv N 0 p Q R s T

V V v.. X y z A B C D E F G H I J K L :rv N 0 p Q R s T u
V v.. X y z A B C D E F G HI J K L M N 0 p Q R s T u V

X X y z A B C D E F G H I J K L M N 0 p Q R s T u V Vv

y y z A B C D E F G H l J K L i\.~ N 0 p Q R s T u V \\ X

z z A B C D E F o H I J K L :rv N 0 p Q R s T u V Vv X y

Table 2.1 The Vigenere Tableau [1].

20

Playfair cipher:

In 1854, Sir Charles Wheatstone invented the cipher known as "Playfair" named for his

friend Lyon Playfair, first Baron Playfair of St. Andrews, who popularized and

promoted the cipher. Its simplicity and its cryptographic strength compared to simple

substitution and Vigenere (a polyalphabetic substitution cipher) made it an immediate

success as a field cipher, used by the British in the Boer War and the First World War,

and by several armed forces as an emergency back-up cipher in the Second World War.

When Lt. John F. Kennedy's PT-109 was sunk by a Japanese cruiser in the Solomon

Islands, for instance, he made it to shore on Japanese-controlled Plum Pudding Island

and was able to send an emergency message in Playfair from an Allied coast-watcher's

hut to arrange the rescue of the survivors from his crew [34].

2.3.1.3 Recent Algorithms

DES: The US National Bureau of Standards (NSB) published the Data Encryption
,..,._

Standard in 1975. Created by IBM, DES came about due to a public request by the NSB

requesting proposals for a standard cryptographic algorithm that satisfied the following

criteria:

• The security depends on keys, not the secrecy of the algorithm

• The security is capable of being evaluated

• The algorithm is completely specified and easy to understand

• It is efficient to use and adaptable

• Must be available to all users

• Must be exportable

• Provides a high level of security

DES has now been in world-wide use for over 20 years, DES is symmetric, block­

cipher algorithm with a key length of 64 bits [1]

IDEA: Was created in its first form by Xuejia Lai and James Massey in 1990, this was

called the Proposed Encryption Standard (PES) In 1991, Lai and Massey strengthened

the algorithm against differential cryptanalysis and called the result Improved PES

(IPES) The name of IPES was changed to International Data Encryption Algorithm

21

(IDEA) in 1992. IDEA is a symmetric, block-cipher algorithm with a key length of 128

bits, a block size of 64 bits.

Five candidate algorithms for Advanced Encryption Standard
~

On January 2, 1997, the National Institute of Standard and Technology (NIST) invited

proposals for new algorithm for Advanced Encryption Standard to replaced the old Data

Encryption standard (DES). Among the 15 preliminary candidates, MARS, RC6, Renal,

Serpent, and Two fish were announced as the finalist candidates on August 9, 1999 for

further evaluation. After studying all information and public comments on these finalist

candidates, NIST announced in October 2000 that Rijndeal was the selected as the AES

algorithm [5].

1. Rijndael: The ,cJpher Rijndael is one of the five finalists of the Advanced

Encryption Standard. Joan Daemen and Vincent Rijmen have designed the

algorithm. It is a block cipher. The length of the block and the length of the key

can be specified to be 128, 192, 256 bits [1 OJ.

2. Serpent: Is a 128-bit block cipher has been designed by Ross Anderson, Eli

Biham and Lars Knudsen. Serpent is considering a candidate for the Advanced

Encryption Standard algorithm [12].

3. Twofish: Developed by Counterpane Systems, Two fish is a 128-bit block

cipher that accepts a variable-length key up to 256 bits. The cipher is a 16-round

Feistel network [8].

4. RC6: developed by Ron Rivest, is a new block cipher submitted to NIST for

consideration as the new Advanced Encryption Standard (AES). RC6 is more

accurately specified as RC6-w/r/b where the word size is w bits, encryption

consists of a nonnegative number of rounds r, and b denotes the length of the

encryption key in bytes [9].

5. MARS: developed by IBM, a shared-key (symmetric) block cipher supporting

128-bit blocks and variable key size. MARS is designed to take advantage of the

22

powerful operations supported in today's computers, resulting in a much

improved security/performance tradeoff over existing ciphers [11].

2.3.2. Asymmetric cryptography algorithms
Asymmetric cryptography, also know as Public key cryptography were invented in the

late 1970's, with some help from the development of complexity theory.

Source A I I Destination B Public Key Private Key

l Secure
Channel

Plain text ll-.! Encryption I I Encryption
algorithm ' ~ algorithm ~ Ciphertext

Figure 2.2 Model of Asymmetric Cryptosystem

Around that time, Asymmetric cryptography solves the key exchange problem by

defining an algorithm, which uses two keys, one of them can be used to encrypt, usually

(public key), a message, and another key, usually private key, used to decrypt a

massage. Using Figures 2.2 explain how asymmetric key work. Suppose the source A

that produces a message or plaintext is X, the message is intended for destination B, B

generates a related pair of keys: a public key, Kub, and private key KRb. KRb is known

to only to B, whereas Kub is public available and accessible by A. with message X, E

encryption algorithm and encryption key Kub as input to get the ciphertext Y using this

formula, Y=EKub(X), The intended receiver use its private key to be able to invert

transformati on, X = DKRb(Y).

Opponent, observing Y and having access to Kub but not having access to KRb or X,

may attempt to recover X or KRb or both of them. The basic ingredient in any public

key cryptosystem is a difficult computational problem. The security of the cryptosystem

is based on the fact that the private key can be computed from the public key only by

solving this difficult problem.

23

2.3.2.1. Asymmetric algorithms operations

• Algorithm: algorithm is an explicit description how a particular computation

should be performed. The efficiency of an algoritlun can be measured as the

number of elementary steps it takes to solve the problem. So if we claim that the

algorithm takes time O (n) then we mean that it takes n elementary steps, but we

do not specify how long one step takes.

• Computational complexity: A problem is polynomial time or in P if it can be

solved by an algorithm, which takes less than O (nt) steps, where tis some finite

number and the variable n measures the size of the problem instance.

• Primes: A prime number is a number that has no divisors except for itself and

on the number (1), thus the integers 2, 3, 5, 7, 11, 13, 17, 19, 23 and so on are

pnmes.

• Factoring: Every integer can be represented uniquely as a product of prime

numbers. For example, 10 = 2 * 5 and it is unique. The art of factorization is
almost as old as mathematics itself. However, the study of fast algorithms for

factoring is only a few decades old. One possible algorithm for factoring an

integer is to divide the input by all small prime numbers iteratively until the

remaining number is prime.

• Discrete logarithms: Another important class of problems is the problem of

finding n given only some y such that y = gn. The problem is easy for integers,

but when we are working in a slightly different setting it becomes very hard.

• Knapsacks: given a small set of integers, the knapsack problem consists of

determining a subset of these integers such that their sum is equal to a given

integer. For example, given (2, 3, 5, 7) and l 0, we can find the solution 2 + 3 + 5

= 10, and thus solved the knapsack problem, by brute force search [4].

24

2.3.2.2. Common Public key Algorithms

RSA: The Rivest, Shamire and Adelmen (RSA) design for a public key cipher in 1978.

RSA is based on the use of product of two very large number prime, and relying on the

fact that the determination of the prime factors of such large numbers is so

computationally difficult as to be effectively impossible to compute [7].

Diffie-Hellman: Is a commonly used protocol for key exchange. In many

cryptographically protocols two parties wish to begin communicating. However, assume

they do not initially possess any common secret and thus cannot use secret key

cryptosystems. The key exchange by Diffie-Hellman protocol remedies this situation by

allowing the construction of a common secret key over an insecure communication

channel. It is based on a problem related to discrete logarithms, namely the Diffie­

Hellman problem. This problem is considered hard, and it is in some instances as hard

as the discrete logarithm problem. The Diffie-Hellman protocol is generally considered

to be secure when an appropriate mathematical group is used.

ElGamal: ElGamal is public key cipher. This is a straightforward extension of Diffie­

Hellman's original idea on shared secret generation. Essentially, it generates a shared

secret and uses it as a one-time pad to encrypt one block of data.

Elliptic Curve: Is just another way of implementing discrete logarithm methods. An

elliptic curve is basically a set of points that satisfy the equation y2 = x3 + ax + b when
considered in finite field of characteristic p (where p must be larger than 3). A slightly

different equation is needed for the cases of small characteristic, p = 2 and p = 3.
The points on elliptic curves can be added together and they form a structure called a

group. This is just a way of saying that you can do arithmetic with them as you can do

with integers when using just addition and subtraction.

2.4. One-Time Pads.

2.4.1. Definition of One-Time Pads
The one-time pad was invented by Major Joseph Mauborgne and Gilbert Bemam in

1917, and is an unconditionally secure symmetric algorithm [5]. The theory behind a

one-time pad is simple. The pad is a non-repeating random string of letters. Each letter

25

on the pad is used once only to encrypt one corresponding plaintext character means

that the length of bad same length of message. After use the pad must never be re-used.

As long as the pad remains secure, so is the message. This is because a random key

added to a non-random message produces completely random ciphertext and ciphertext

bears no statistical relationship to plaintext, and there is absolutely no amount of

analysis or computation that can alter that. If both pads are destroyed then the original

message will never be recovered [23].

2.4.2. How One-time Pad works
To use a one-time pad you need tow copies of the pad, there are two pads issued to each

user. One for encipher and one for decipher, typically the pads are set up in blocks of

five letter random groups. The key text may not be reused and to use the OTP, a method

is needed for correlating a letter of plain text with the next letter of the key text (from the

pad), to produce a letter of enciphered text. The method used is called a "Vigenere's

Tableau", as discus before. The table has the alphabet in the left-most column, and also

across the top. For each row, there is a shifted-reverse alphabet. To encipher the first

letter in a message, go to the row corresponding to the plain-text letter, then go to the

column indicated by the first letter on your OTP. The letter at the row-column

intersection is the enciphered letter. Note that the Vigenere's table itself does not contain

any secret information, it simply provides the mechanism for combining plain and key

text into enciphered text. For example, suppose that the message is "Dead drop Alpha

three AM tonight" [1, 2, 23].

Plain DEADD ROPAL PHATH REE AM TONIO HTXXX
Text

Text from BNJEX KQPBC LZCXV PK TUY QFHNG QWERT
OTP

Encipher VIQSZ YVVYM ZTXJX TLCFP QGFEN CKYLJ
Text

26

2.4.3. Drawback of one-time pads

It is extremely hard to generate truly random numbers, and a pad that has even a couple

of non-random properties is theoretically breakable. Secondly, because the pad can

never be reused no matter how large it is, the length of the pad must be the same as the

length of the message - fine for text, but virtually impossible for video.

2.5. Summary

Public key (symmetric algorithm) and private key(asymmetric algorithm) are the most

important cryptography algorithms, Symmetric algorithms can be divided into stream

ciphers and block cipher. The most popular symmetric-key system is the Data

Encryption Standard (DES), and now days it replaced Advanced Encryption Standard

(AES). Public key algorithms use a different key for encryption. The most popular

asymmetric-key system is RSA (Rivest-Shamir-Adelman) developed by Ron Rivest. A

symmetric algorithm is faster than symmetric algorithm [29].

27

3. FIVE CANDIDATES ALGORITHMS FOR AES

3.1. Overview
The AES (Advanced Encryption Standard) is symmetric-key block cryptographic

algorithm that was approved by the US National Institute of Science and Technology

(NIST) as a replacement for the Data Encryption Standard (DES), which had been

approved for the encryption of financial information since the late l 970's.In the late

1990's DES was felt by many experts to be vulnerable to brute force attack by

specialized computing machines. NlST held a public competition for replacement DES,

and a number of algorithms were proposed. Among the 15 preliminary candidates,

MARS, RC6, Rijndael, Serpent, and Twofish were announced as the finalist candidates

on August 9, 1999 for further evaluation. These five algorithms are well balanced

looking to the various evaluation criteria of expected and proposed security,

implementation and performance characteristics. Selecting all 5 as AES-FIPS (Federal

Information Processing Standard) is inappropriate with initial goal of NIST. After

studying all information and public comments on these finalist candidates, NIST

announced in October 2000 that Rijndael was the selected as the AES algorithm [5].

3.2. Rijndael algorithm

3.2.1. Introduction to Rijndael
The Rijndael proposal for AES defined a cipher in which the block length and the key

length can be independently specified to be 128,] 92, 256 bits. The AES specification

uses the same three key size alternatives but limits the block length to 128 bits.

Table 3 .1 shows that the numbers of Rijndael parameter depends on the size of key [1].

--
-· Key size 4/16/128 6/24/192 8/32/256

(words/bytes/bits) ·-
Plaintext block size 4/16/128 4/16/128 4/16/128
(words/bytes/bits)

12 14 Number of rounds 10
.

Round key size 4/16/128 4/16/128 4/16/128
(words/bytes/bits)

-·
Expanded Key size 44/176 52/128 60/240

___ _(\\7?r~_s/byt~.&_ __ ------

Table 3.1 AES Parameters.

28

----~------------- ---------- -----~---- ---···-----------------------

To explains this table. When the key is 128 bits is equivalents to 16 bytes or equivalents

to 4 words because the word contains four bytes. Other will explain later.

State array
RUndael operates on a two dimensional array of bytes called the state that contains 4

rows and Nk columns, where Nk is the length of key length divided by 32. This state

array, denoted by the symbol S, each individual byte has two indexes: its row

Number r, in the range O < r < 4, and its column number c, in the range O < c < Nk,

hence allowing it to be referred to either as S,.,c or S[r, c]. For AES the range for c

depend on the key means c maybe 4,6,8 when the length of key is 128, 192, 256 bits,

respectively. At the start or end of an encryption or decryption operation the bytes of the

cipher input or output are copied to or from this state array in the order shown in Figure

3 .1 show when key is 128 so the number of row is 4 and each' row contain 4 bytes.

Jnput bytes

ino 1114 in8)1112

in, in, in9 ~ '7

1112 in6 in 10 in 14
~
i113 1117 rn" 11l 15

State array Output bytes

So,o So,1 So,2 So,3

s,,o s., s,,2 S1,3

S2,o S2,1 S2,2 Sv

S3,o S3,1 S3,2 S3,3

Out- Out, Out, Out-,

Out, Out, o.«, Out13
' Out, Out, Out10 Out.,

Out, Out- Out11 Out15

Figure 3.1 mapping of input bytes, State array and output bytes [5].

Hence at the start of encryption or decryption the input array in is copied to the state

array according to the scheme:
s[r, c] = in[r + 4c] for O < r < 4 and O <c < Nk.

And when the cipher is complete the state is copied to the output array, out, according

to the scheme:
out[r + 4c] = s[r, c] for O < r < 4 and O < c < Nk.

The AES algorithm is alternative algorithm. The total number of round (iteration), Nr, is

JO when Nk=4, Nr=12 when Nk=6, and Nr=14 when Nk=8.

29

3.2.2. Construction of the S-Box
First computing the multiplicative inverse of each element in GF(28) with irreducible

polynomial rn(x)=x8 + x4 +x 3+ x + 1. Second the affine transformation over GF(2)

defined by:
bj=b, EB b(i+4)mod8i@ b(i+5)mod8 EB b(i+6)mod8 EB b(i+7)mud8+Ci [10).

For O < i < 8 where bi is bit i of the byte and Ci is bit i of a byte C with the value {63} or

{ 01100011}. Here and elsewhere a prime on a variable on the left of an equation

jndicates that its value is to be updated with the value on the right. In matrix form the

latter component of the S-box transformation can be expressed as: [3].

b'o 10001111 bi]

b'1 l 1 0 0 0 1 1 1 b2 1

b'2 1 1 100011 b3 0

b'3 1 1 1 1 0 0 0 1 b4 + 0
= s, l 1 1 1 1 0 0 0 bs 0

b's 01111100 b6 1

b'G 0 0 1 1 1 1 1 0 b1 1

b1 00011111 bs 0

The final result of this two-stage transformation is given in the following S-box

table 3.2 S-Box For Rijndael

x
-

() 1 2 3 4 5 6 7 8 9 A Tl C D E F

I
0 63 7C 77 713 F2 6B 6F cs 30 OJ 67 2B FE 1)7 AB 76

-·-·- -
1 CA 82 C:9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 co

2 87 ['[) 93 26 36 31" F7 cc 34 AS E5 Fl 71 08 31 15

---- ___ i..__.

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 82 75
L------ 4 09 83 2C IA lB 6E SA AO 52 38 D6 B3 29 E3 2F 84
- DI ED FC 58 6A CB BE 39 4A 4C
5 53 0() 20 Bl 58 er

6 DO EF AA rn 43 40 33 85 45 F9 02 7E 50 3C 9F AS
1-- ff
7 51 A3 40 SF 92 9D 38 F5 BC B6 DA 21 10 F3 D2

y ____ -----
8 CD oc 13 EC SF 97 44 17 C4 A7 7E 3D 46 51) 19 73

-- --
L----- --

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E OB DI3 I

;\ EO 32 3A OA 49 06 24 5C C2 03 AC 62 91 95 E4 79

-· -- -- -

13 E7 cs 37 60 8D 05 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 7R 25 2E JC A6 134 C6 ES DD 74 IF 4B BD 8B 8A

D 70 38 135 66 48 03 F6 OE 61 35 57 139 R6 Cl ID 9E

I - --· IE . ~F9 I F El FR 98 11 69 D9 8E 94 98 CE 55 28 DF

-
I F RC Al 89 ()I) BF F6 42 68 41 99 2D I OF BO 54 1313 16

- -

30

3.2.3. Key Expansion
In AES algorithm, Key expansion generates a total of (Nb* (Nr+l)) words, where Nb is

number of bytes in the rows. The Key, K, is used as the initial set ofNk words, and the

reset of the words are generated from the key iteratively. The output of key expansion is

an array of 4-byte words denoted by w., where Os i<Nb (Nr+ 1). Each Round Key is a

concatenation of 4 words from the output of key expansion, roundiij=tw«, W4i+l, Wi+2,

w;+3). Figure 3.2 show pseudo code foe key expansion [10].

KeyExpansion (byte key (4*Nk), word w (Nb*(Nr+l)), NK)

begin

word temp

i=O

while (i<NK)
w(i)= word [key[4*i+3], key[4*i+2], key(4*i+1], key[4*i]]

i = i + 1

end while

i=Nk

while (i <Nb* (Nr + 1))

word temp = k[i - 1]

if (i mod Nk = 0)

temp= SubWord(RotWord(temp)) xor Rcon[i I Nk]

else if ((Nk > 6) and (i mod Nk = 4))

temp= SubWord(temp)

end if

k[i] = k[i - Nk] xor temp

i = i + 1

end whiJe

end

Figure 3.2 Pseudo code for Key Expansion

31

Subword in figure 3.2 applies S-box (see Table 3.2) to each of the four bytes in a word.

The function RotWord rotates each byte in a word one position to the left. For example,

if the input is a word [a0, ai, a2, a3], RotWord returns the word [an, a., a2, aj]. Rcon(i) is

the round constant word array, whose value is [RC(i),{00}, {00}, {00}]. The values of

Rc(i) are listed as follows:

RC(l)={OJ} RC(2)={02J

RC(6)={20} RC(7)={40} RC(8)={80}

RC(4)={08}

RC(9)={l b}

RC(5)={ 10}

RC(l0)={36}.

RC(3)={04}

3.2.4. Encryption algorithm
At tlw start of the cipher the cipher input is copied into the internal state using the

conventions described in section 3.2.1. An initial round key is then added after that Nr

round of encryption are performed. The first Nr-1 is the same, with the small different

in the final round. As illustrated in Figure 3.3, each of the first Nr-1 consist of 4

transformation [5).

Plaintext (128 bits)

Roundkey (0)

SubBytes

ShiftRows
For i=l to Nr-1

Mix Columns

Roundkey (i)

SubBytes

Final Round ShiftRows

Roundkey (Nr)

Ciphertext (128 bits)

Figure 3.3 AES Encryption Structure algorithm [5].

32

t. Snbllyte Transformation

Tl1e Sub Bytes transformation is a non-linear byte substitution that acts on every byte of

the state in isolation to produce a new byte value using an S-box substitution table

which discus above in Table 3 .2. Write a byte as 8 bit, 4 bits to determine the row and

other 4 bits to determine the column, if the input is 10000101 l, looking in row 8 (the

ninth row) and column 11 (the twelfth), the intersection between row and columns will

be the rustle which is 61or1111101 in binary.

2. ShiftRows Transformation
The ShiftRows transforrnatiori operates individually on each of the last three rows of the

state by cyclically shiftingthe bytes in the row to the left [2].

So.o So,1 So.2 So,3 No Shift

••
S1,o Su S1,2 S1,3 One Shift

Ill-
1--

S2,1 S2,2 S2,3 Two Shift S2.o

••
s., S3,I s3.2 s3,3 Three Shift

- ••

So,o So.1 So,2 So.:i

S1,1 S1,2 Su S1,o

S2,2 S,, S2.o S2.1 -,0

s3,3 s3,o S:i,1 s3,2

Figure 3.4 ShiftRows Transformation.

As illustrated in Figure 3.4 the first row no shift. The second, third, and fourth rows

shift cyclically to the left one byte, two bytes, and three bytes, respectively.

3. MixColumns Transformation

The MixColumns transformation acts independently on every column of the state and

treats each column as a four-term polynomial over GF(28) and multiplied by a(x)

modulo x4+ 1 where a(x) = {03}x3 + {01 }x2 + {Ol}x + {02}.In matrix form this

transformation can be expressed as: I So,, {02} {03} {01} {01} s.,
S Le {OJ} {02} {03} {01} S1.c
s 2 C -· { 0 l } { 01 } { 02} {03} S2.c I Os c < Nk.
',

l_ S 3,c {03} {01} {Ol} {02} s..

33

4. A<ldRoundKey Transformation
In AdclRciundKey transformation, a round key is added to the state by bitwise

Exclusive-OR (XOR) operation: Each round Key consist of Nb words generated by

from key expansion describe above.

3.2.5. Decryption algorithm
The decryption structure is show below in Figure 3.5 corresponding to the

transformation in the encryption, InvSubBytes, InvShifRows, InvmbcColumns, and

AddRoundKey are transformation used in the decryption. The round Keys are the same

as those in encryption generated by key expansion, but are used in inverse order [10].

Ciphertext (128 bits)

Roundkey (Nr)

lnvShiftRow

lnvSubBytes
i from Nr- l to 1

Roundkey (i)

JnvM.ixColrnnns

[nvShiftRow

Final Round lnvSubBytes

Roundkey (0)

Plaintext (128 bits)

Figure 3.5 Straightforward Decryption Structure.

34

1. lnvShiftRows Transformation

The JnvShi:ftRows transformation operates individually on each of the last three rows of

the state by cyclically shifting the bytes in the row into the right [1 O]

-
So,1 So,2 So,3 So,e) No Shift

•••
s., S1,1 s,,2 Su One Shift

•••
S2,o S2.1 S2,2 S2,3 Two Shift

S3,o S3,I S3,2 S3,3 Three Shift

•••

-
So,o So,1 So,2 So,3

-
S1,1 S1,2 S1,3 S1,o

S2,2 S2,3 S2,o S2,1

S3,3 s., S3,1 S3,2

Figure 3.6 InveShiftRows Transformation.

As illustrated in Figure 3.6 the first row no shift. The second, third, and fourth rows

shift cyclically to the right one byte, two bytes, and three bytes, respectively.

2. JnvSubBytes Transformation

The inverse S-box table needed for the InvSubBytes transformation. The pseudo code

for this transformation is as follows:

InvSubBytes(byte state[4,Nk], Nk)

begin

for r = 0 step 1 to 3

for c = 0 step 1 to Nk - 1

state[r,c] = lnvSbox[state[r,c]]

end for

end for

end

gives the full inverse S-box, the inverse of the affine transformation being:

b';=b(ii2)mod8i EB b(i+5)n,od8 EB b(i+7)mod8 EB d, Wherebyted= {05} [10].

35

The inverse S-B'ox is show below in Table 3.3.

--- j X

' 0 1 ; 2 3 4 5 6 7 8 9 A B C D E F

--- t--L-
0 52 09, 6A DS 30 36 AS 38 BF 40 A3 9E 81 F3 D7 FB

i - -1- 7C EJ 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

·- -
2 5,1 78 94 32 A6 C2 23 3D EE AC 95 OB 42 FA C3 4E

;
- I

-

3 08 2E Al 66 28 D9 24 B2 76 SB A2 49 6D 8B D1 25

··--- ---- ··-'·- 1--- -- --
4 72 FB F6 64 86 68 98 16 D4 A4 SC cc . SD 65 B6 92

-- --- .__i_ ---
5 6C 70 48 50 FD ED 89 DA SE 15 46 57 A7 80 9D 84

---·- --·- i---L.-- ---- -·- -~ -- -
6 90 D8 AB 00 SC BC D3 OA F7 E4 58 05 B8 133 45 06

I -- - --- .. ·-

7 DO 2C IE sr CA 3F OF 02 Cl AF BD 03 01 13 8A 6B

v -- ---- --'. f----· --
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE FO B4 E6 73

9
I --

96 Ab 74 22 E7 AD 35 85 £2 F9 37 E8 IC 75 OF 6E
' ,_ 1-+-

A 47 Fl IA 71 1D 29 20 9A DB co 62 OE AA 18 BE 1B

--- -- ~ -- ~- ·-- ---
B FC 56 3E 48 C6 D2 79 20 9A DB co FE 78 CD SA F4
,_
C IF DD A8 33 88 07 C7 31 Bl 12 10 59 27 80 EC SF

T) 60 51 7r, A9 19 BS 4A OD 2D ES 7A 9F 93 C9 9C EF

-- >---- -- -- f---

E AO EO 3B 4D AE 2A FS BO C8 EB BB 3C ~3 53 99 61

. '-
F 17 2B 04 7E j OA 77 D6 26 E.1 69 14 63 55 21 oc 7D_J

- -

Table 3.3 Inverse S-box for Rijndael.

3. InvMixCol~mns Transformation
The InvMixColumns transformation acts independently on every column of the state, as

similar to l\1ixColumns transformation, and treats each column as a four-term

polynomial GF(28) and multiplied by a-'(x) modulo x4+1. Where a-1<_x) = {Ob}x3 +

f Od} x2 + { 09} x + { Oe}. The below matrix explains the Inverse MixColunms

transformation [5].

{Oe: f0b} f()d"l f09' lJl tJlJ
{09} {Oe} {Ob} {Od}
{Od} {09} {Oe} {Ob}
{Ob} {Od} {09} {Oe}

So,c
S1,c

S2,c

S3,c

Os c<Nk

36

3.2.6. Security and efficiency is key to Rijndael

Riindael is a;n encryption algorithm that has been designed with the state of art in the

cryptographic research and is still believed very secure by many people. lt has been

designed to have very strong resistance against the classical approximation attacks, such

as linear cryptanalysis, differential cryptanalysis. The version of AES with a key length

of 128 hits is likely to be the one most commonly implemented; this length is sufficient

to provide security and requires less processing time than a longer key length. Thus far

there doesn't appear to be any critical weaknesses in either AES or 'rdple-DES, so the

level of security is directly proportional to the key length.

3.3. Serpent algorithm
Serpent is a 128-bit block cipher designed by Ross Anderson, Eli Biham and Lars

Knudsen as a candidate for the Advanced Encryption Standard, meaning that data is

encrypted and decrypted in 128-bit chunks. The key length can vary, but for the

purposes of the AES it is defined to be 128, 192, or 256 bits. This block size and

variable key length is standard among all AES candidates and was one of the major

design requirements specified by NIST. The Serpent algorithm uses 32 rounds, or

iterations of the main algorithm. Using the largest possible key size to ensure that the

user always enjoys the best possible security. Like DES, Serpent includes an initial and

final permutation of no cryptographic significance, these permutations are used to

optimize the data before encryption.

3.3.2. Encryption and Decryption algorithms
Serpent is a 32-round SP-network operating on four 32-bit words, thus giving a block
size of 128 bits. All values used in the cipher are represented as bit streams. The indices

of the bits are counted from O to bit 31 in one 32-bit word, 0 to bit 127 in 128-bit

blocks, 0 to bit 255 in 256-bit keys, and so on. For internal computation, all values are

represented in little endian, where the first word (word 0) is the least significant word,

and the last word is the most significant, and where bit O is the least significant bit of

word 0. ExternaJJy, each block write as a plain 128-bit hex number. Serpent encrypts a

128-bit plaintext P to a 128-bit ciphertext C in 32 rounds under the control of 33 128'-bit

subkeys K o. ,K 32. The user key length is variable, but for the purposes of this

submission it fix it at 128, 192 or 256 bits, short keys with Jess than 256 bits are mapped

37

to foll-length keys of 256 bits by appending one "I" bit to the MSB end, followed by as

many "O" hits as required to make up 256 bits. This mapping is designed to map every

short key to a full-length key, with no two short keys being equivalent. The cipher itself

consists of:

• An initial permutation IP

• 32 rounds, each consisting of a key mixing operation, a pass through S-boxes,

and (in all but except last round) a linear transformation. In the last round, an

additional key mixing operation replaces this linear transformation.

• A final permutation FP.

The initial and final permutations do not have any cryptographic significance. They are

used to simplify an optimized implementation of the cipher. The initial permutation IP

is applied to the plaintext P giving B·o, which is the input to the first round. The rounds

are numbered from Oto 31, where the first round is round O and the last is round 31.The

output of the first round is B'1, the output of the second round is B\, the output of round

i is B'\+1, and so on, until the output of the last round (in which the linear transformation

is replaced by an additional key mixing) is denoted by B"32. The final permutation FP is

now applied to give the ciphertext C. Each round function R; (i E { 0, ... , 31 }) uses

only a single replicated S-box. For example, Ro uses S0, 32 copies of which are applied

in parallel. Thus the first copy pf So takes bits 0, 1, 2 and 3 of B" o EB K''o as its input and

returns =s output the first four bits of an intermediate vector; the next copy of So inputs

bits 4- 7 of B.1 EB K.1 and returns the next four bits of the intermediate vector, and so on.

The intermediate vector is then transformed using the linear transformation, giving s·'1•
Similarly, R1 uses 32 copies of S1 in parallel on B 1 EB K 1 and transforms their output

using the linear transformation, giving B.2. The set of eight S-boxes is used four times.

Thus after using S7 in round 7, useing SO again in round 8, then S, in round 9, and so

on. The last round R31 is slightly different from the others: applying S1 on B.31 EB K.31,

and XOR the result with K.32 rather than applying the linear transformation. The result

B
32
is then permuted by FP, giving the ciphertext. Thus the 32 rounds use 8 different S­

boxes each of which maps four input bits to four output bits. Each S-box is used in

precisely four rounds, and in each of these it is used 32 times in parallel. The S-box

design is discussed below. As with DES, the final permutation is the inverse of the

initial permutation. Thus the cipher may be formally described by the following

equations:

38

Bo= IP(P)

B i+I = Ri(B i)

C = FP(B 32)

Where

. .
R;(X) = S ; (X EB K ;) EB K 32

i=0, ... ,30

i = 31
Ri(X) = L(S i(X EB K ;))

where S i is the application of the S-box S; mod 8 32 times in parallel, and L is the linear

transformation.

Decryption algorithm

Decryption is different from encryption in that the inverse of the S-boxes must be used

in the reverse order, as well as the inverse linear transformation and reverse order of the

subkeys [25]. As in Figure 3.7 below:

Final Operation

S - boxes -I

EB-<11111--- K 32 -r

y

N

Linear Transformation -I

Initial operation

Figure 3.7 Decryption Structure

39

3.3.3. Construction of S-box

The S-boxes of Serpent are 4-bit permutations with the following properties:

Each differential characteristic has a probability of at most Y:,, and a one-bit input

difference will never lead to a one-bit output difference. Each linear characteristic has a

probability in the range ~".z ± V,i , and a linear relation between one single bit in the input

and one single bit in the output has a probability in the range Y2 ± 1/8.The nonlinear

order of the output bits as a function of the input bits is the maximum, namely 3. The S­

boxes were generated in the following manner, which was inspired by RC4. Using a

matrix with 32 arrays each with 16 entries. The matrix was initialized with the 32 rows

of the DES S-boxes and transformed by swapping the entries in the rth array depending

on the value of the entries in the (r+ I) array and on an initial string representing a key.

If the result array has the desired properties, save the array as a Serpent S-box. Repeat

the procedure until 8 S-boxes have been generated. More formally, let serpent [.] be an

array containing the least significant four bits of each of the 16 ASCll characters in the

expression "sboxesforserpent". Let S-Box [.][.] be a (32 x 16)-array containing the 32

rows of the 8 DES S-Boxes, where S-Box[r][.] denotes the rth row. The function swap

entries (. , .) is self-explanatory. The following pseudo-code generates the Serpent S-

boxes.

index := 0

repeat

currentsbox := index modulo 32

for i:=O to 15 do

j := sbox [(currentsbox+l) modulo 32][serpent[i]]

swapentries (sbox [currentsbox] [i],sbox [currentsbox][i])

if sbox[currents box] [.] has the desired properties, save it

index := index + 1

until 8 S-boxes have been generated

In Serpents, using the DES S-boxes in order to inspire a high level of public confidence

that it must had not inserted any trapdoor in them. A similar assurance for Serpent.

comes from the fact that the S-boxes have been generated in this simple deterministic

manner.

40

3.3.4. Key Generation
The input is pad of user key to 256 bits. After that it expanded to 33 128-bit subkeys

Ko, ... , K32, in th,, following way. Writing the key K as eight 32-bit words w - 8, ... ,

,v _ l and expand these to an intermediate key (which call prekey) wo, ... , w,31 by the

following a:IIined recurrence:
w, := (w;-8 EB wi-f EB Wi-3 EB Wj-J EB <jJ EB i) <<< 11. Figure 3.8 below explains the

key generation [12 J.

Figure 3.8 Serpent Key Generation

where <jJ is the :fractional part of the golden ratio (Js + l) I 2 or Ox9e3779b9

in hexadecimal. The underlying pblynomfal x8 + x7 + x5 + x3 + l is primitive, Which

together with the addition of the round index is chosen to ensure an even distribution of

key bits throughout the rounds, and to eliminate weak keys and related keys. The round

keys are now calculated from the prekeys using the S-boxes, again in Bitslice mode.

41

The S-boxes is used to transform the prekeys w, into words k, of round key in the

following way:

{ko, k1, k2, k3}

{ka, ks, k6, k7}

{ks, k9, k10, k. i}

{k12, k13, k14, k1s}

{k16, k17, k18, k19}

SJ(wo, wi, w2, w3)

S2(W4, W5, W6, W7)

S1(ws, W9, W10, W11)

S0(W12, W13, W14, W15)

S?(w16, w17, W1R, W19)

{k124, k125, kl26, km}

{kus, k129, k130, krn}

S4(W124, W125, W126, W127)

S3(w12s, W129, W130, wui)

After that renumber the 32-bit values ~i as 128-bit subkeys Ki (for i E 2 {O, ... , r}) as

follows: Ki := (k4i, k4i+I, k4i+2, k4i+J). Now apply IP to the round key in order to place

the key bits in the correct column [25].

3.3.5. Security
As mentioned above, the initial version of Serpent used the DES S-boxes, as their

differential and linear properties are well understood. The estimates indicated that the

number of known/chosen plaintexts required for either type of attack would be well

over i00. Having investigated how these S-boxes worked in our structure, It realized

that it was simple to find S-boxes that would improve this to 2256, and the aim to offer

the best candidate algorithm led us to change to the S-boxes. By strength of 2256, it

means that a differential or linear attack against any key would take that many texts,

assuming that they were available.

3.4. Twofish algorithm

3.4.1. Introduction
Developed by Bruce Schneier as a successor to his 64-bit Blowfish block cipher, John

Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Fergus on 5 June 1998.

Twofish meets all the required NIST criteria, 128-bit block;] 28, 192, and 256-bit key,

efficient oh various platforms, and some strenuous design requirements, performance as

well as cryptographic. Twofish can be:

42

• Encrypt data at 285 clock cycles per block on a Pentium Pro, after a 12 700

clock-cycle key setup.

• Encrypt data at 860 clock cycles per block on a Pentium Pro, after a 1250 clock-

cycle key setup.

• Encrypt-data at 26500 clock cycles per block on a 6805 smart card, after a 1750

clock-cycle key setup [8].

• No weak keys.

• Efficiency, both on the Intel Pentium Pro and other software and hardware

platforms.

• Flexible design: e.g., accept additional key lengths, be implemental on a wide

variety of platforms and applications; and be suitable for a stream cipher, hash

function, and MAC. Simple design, both to facilitate ease of analysis and ease of

implementation.

3.4.2. Enc1j1ption and decryption algorithms

Figure 3 .9 shows an overview of the Twofish block cipher. Two.fish uses a 16-r round

Feistel-like structure with additional whitening of the input and output. The only non­

Feistel elements are the I-bit rotates. The rotations can be moved into the F function to

create a pure Feist el structure, but this requires an additional rotation of the words just

before the output-whitening step. The plaintext is split into four 32-bit words. In the

input-whitening step, these are xor with four key words. Sixteen rounds follow this. In

each round, the two words on the left are used as input to the g functions. The g

function consists of four byte-wide key-dependent S-boxes, followed by a linear mixing

step based on an MDS matrix. The results of the two g functions are combined using a

Pseudo-Hadamard Transform (PHT), and two keywords are added. These two results

are then xor into the words on the right (one of which is rotated left by 1 bit first, the

other is rotated right afterwards). The left and right halves are then swapped for the

next round. After all the rounds, the swap of the last round is reversed, and the four

words are xor with four more key words to produce the ciphertext. More formally, the

J 6 bytes of plaintext po, ... , Pis are first split into 4 words Po, ... , P3 of 32 bits each

using the little-endian convention [].
j

P; = L p (4i+j). 28.i
.1~0

i=O, ... , 3

43

In the input-whitening step, these words are xor with 4 words of the expanded key.

Ro.i = Pi EB Ki

In each of the 16 rounds:

i = 0, ... , 3

• The fast two words are used as input to the function F, which also takes the

round number as input.

o The third word is xor with the first output of F and then rotated right by one bit.

• The fourth word is rotated left by one bit and then xor with the second output

word off.

• Finally, the two halves are exchanged.

The previous step can be explain as:

(Fr,O Fr, 1) = F(Rr,o,Rr,1, r)

Rr+l ,O = ROR(Rr,2 © Fr,O, 1)

Rr+l,l =ROL(Rr,3, 1) EB Fr,!

Rr~l, 2 = Rr,O

Rr+J, 3 = Rr,l

For r = 0, ... , J 5 and where ROR and ROL are functions that rotate their first argument

left or right by the number of bits indicated by their second argument. The output­

whitening step undoes the · swap' of the last round, and xor the data words with 4 words

of the expanded key.

Ci= Ri6,(i+2) mod 4 EB Ki+4 .i= 0, ... , 3.

The four words of ciphertext are then written as 16 bytes co, ... , c15 using the same

little-endian conversion used for the plaintext [8]

Ci = [Cfii4J I 28 (i mod 4)] mod 28 i= 0, ... , 15.

44

-- ----------------------:-----i

···················· ······························· .

J input !(:; ,.,·hit-r-ning:

r- --- -- --- -- --- -- --- -- -,
I
I
I
I
I
I
I

M.DS 11- t: ;e~: Hl=tt-i,-t---i-moffi_l..___,,j '"LU ;.-:.p

Olli::'

ro•m·J

I I I

L----------------- ----~
r----------------------,

I
I
I
I
I
I
I
L----------------------~

......................... ··

---,-·,-· --"

_,.1...--·-

_J

]

15
[lli}t!'.'1

round,,

l uud» l.,,Grl:­
:;vtl·[lr• ---- ---,·

!C, .1(~; J ,:,nt-p1.1I __ J(-;· ,,"I.,' hi t.:i?n.i.n@',

Figure 3.9 Encryption cipher of Two fish

The Function F
The function F is a key-dependent permutation on 64-bit values. It takes three

arguments, two input words Ro and R1, and the round number r used to select the

appropriate subkeys. Ro is passed through the g function, which yields T0• R1 is rotated

left by 8 bits and then passed through the g function to yield T 1• The results TO and T 1

are then combined in a PHT and two words of the expanded key are added.

To= g(Ro)

45

T1 = g(ROL(R1 , 8))

Fo =(To+ T1 + K2r+s) mod 232

F, =(To+ 2T 1 + K2r+9) mod l32

\Vhere (Fo, F 1) is the result of F function.

The Function g
The function g forms the heart of Twofish. The input word X is split into four bytes.

Each byte is run through its own key-dependent S-box. Each S-Box is objective, takes 8

bits of input, and produces 8 bits of output. The four results are interpreted as a vector

of length 4 over GF(28), and multiplied by the 4x4 MDS matrix (using the field GF(28)

for the computations). The resulting vector is interpreted as a 32-bit word, which is the

result of g.

Xi= [XJ28i] mod 28

Yi= s;[xi]

i= 0, , 3

i= 0, , 3

MDS

3

zZ= I
i=O

z, .28i

Where s, are the key-dependent S-boxes and Z is the result of g. For this to be well­

defined, it needs to specify the correspondence between byte values and the field

elements of GF(28). It represents GF(28) as GF(2)[x]/v(x), where v(x) = x8 + x6 + x5 + x3

+ I is ;ci primitive polynomial of degree 8 over GF(2). The field element a = I;=o
with a; E GF(2). The MDS matrix is given by:

MDS=

01 EF 5B 5B
5B EFEF 01
EF SB 01 BF
EF 01 EF SB

Where the elements have been written as hexadecimal byte.

46

3.4.3. Key Schedule
The key schedule has to provide 40 words of expanded key Ko, ... , K39, and the 4 key-

dependent S-boxes used in the g function. Twofish is defined for keys of length N =

128, N = 192, and N = 256. Padding them with zeroes until the next larger defined key

length can use keys of any length shorter than 256 bits. Defining k = N=64. The key M

consists of 8k bytes mO, ... ,rnsk_ 1. The bytes are first converted into 2k words of 3 2 bits

each.

M; = ""' m (4i+j) .L..,=o i=O, ... , 2k-l.

And then into two word vectors of length k.

Me= (Mo, M2, ,M2k_2)

Mo= (M1,M3, ,M2k_1)

/\ third word vector of length k is also derived from the key. This is done by taking the

key bytes in groups of 8, interpreting them as a vector over GF(28), and multiplying

them by a 4x8 matrix derived from an RS code. Each result of 4 bytes is then

interpreted as a 32-bit word. These words make up the third vector.

lllgj

1113;+1

ms+2
S;,o Jnsi+3
Si,1 RS llJg;+4

=
ms;+s Si.2

Zi,3 l1lgj+6

msi+7

The RS matrix is given by:

01 A4 55 87 SA 58 DB 9E
RS = I A4 56 82 F3 l E C6 68 ES

02 Al FC Cl 47 AE 3D 19
A4 55 87 SA 58 DB 9E 03

The three vectors Me, Mo, and S forms the basis of the key schedule.

47

3.5, MARS algorithm

3.5.J. Introduction
[VIARS is a shared-key block cipher, with a block size of 128 bits and a variable key

size, ranging from 128 to over 400 bits. It was designed to meet and exceed the

requirements for a standard for shared-key encryption in the next few decades. The

main theme behind the design of MARS is to get the best security/performance tradeoff

by utilizing the strongest tools and teeQlliques available today for designing block

ciphers. As a result, MARS provides a very high level of security, combined with much

better performance than other existing ciphers. MARS offers better security than triple­

DES. ln particular, all the known cryptanalytical attacks (including linear and

diffe•·ential cryptanalysis) require more data than is available and hence these attacks are

impossible against MARS. Also, the design principles of MARS make it likely that

MARS would remain resilient even in the face of new cryptanalytical techniques [11].

3.5.2. Encryption and Decryption Algorithms
MARS takes as input four 32-bit data words. The cipher itself is word oriented,

in that all the internal operations are performed on 32-bit words, and hence the internal

structure is endian-neutral [32].

plaintext: D[3] D[2] D[l] D[O]

-l forward mixing

'---~---~---~---~-·__J ,..

key addition

eight rotmds of
unkeyed forward mixing

key subtraction

'-----~---~---~--'-1 •vryptographic
J c.0001'

L_ -·· ~~

t backwards mixin g

j

eight rounds of keyed
forward trausfom1ation

eight roamds of keyed
ba,cb-.;.•ards transformation

eight rounds of
unkeyed backwards mixing

,ciphertext: D'[3] D'[2] D'[t] D'[O]

Figure 3.10 High-level Structure of Encryption.

48

High level structure
The gen,eral structure of the cipher is depicted in Figure 3. l O the cipher consists of a

"cryptographic core" of keyed transformation; which is wrapped with two layers

providing rapid key avalanche. Means the encryption structure consist of three phases:

• The first phase provides rapid mixing and key avalanche, to frustrate chosen­

plaintext attacks, and to make it harder to "strip out" rounds of the cryptographic

core in linear and differential attacks. It consists of addition of key words to the

data words, followed by eight rounds of S-box based, unkeyed type-3 Feistel

mixing.

• The second phase is the "cryptographic core" of the cipher, consisting of sixteen

rounds of keyed type-S Feistel transformation. To ensure that encryption and

decryption have the same strength, the first eight rounds is performed in

"forward mode" while the last eight rounds are performed in "backwards mode".

"' The last phase again provides rapid mixmg and key avalanche, this time to

protect against chosen-ciphertext attacks. This phase is essentially the inverse of

the first phase, consisting of eight rounds of the same type-3 Feiste] mixing as in

the :first phase (except in "backwards mode"), followed by subtraction of key

words from the data words.

Forward mixing
In this phase first thing is to add a key word to each data word, and then perform eight

rounds of unkeyed type-3 Feistel mixing, combined with some additional mixing

operations. In each round it need to use one data word (called the source word) to

modify the other three data words (called the target words). The four bytes of the source

word as indices into two S-boxes, SO and S 1, each consisting of 256 32-bit words, and

xor or add the corresponding S-box entries into the other three data words. lf it denote

that the four bytes of the source words by b0, b., b2, b, (where b0 is the lowest byte and

bJ is the highest byte), then using bo, b2 as indices into the S-box SO and b., b3 as indices

into the S-box S 1. First thing xor SO[bo] into the first target word, and then add S 1 [bi] to

the same word. Also add SO[b2] to the second target word and xor S l [b3] to the third

49

target word. Finally, rotate the source word by 24 positions to the right. For the next

round rotating the four words, so that the current first target word becomes the next

source word, the current second target word becomes the next first target word, the

current third target word becomes the next second target word, and the current source

word become the next third target word. In addition, after each of four specific rounds it

need to add one of the target words back into the source word, Specifically, after the

first and fifth rounds adding the third target word back into the source word, and after

the second and sixth rounds adding the first target word back into the source word. The

reasons for these extra mixing operations are to eliminate some easy differential attacks

against the mixing phase, to break the symmetry in the mixing phase and to get faster

avalanche. Figure 3 .11 shows the forward mixing phase [11].

D[:~J D[2J D[JJ D[Ol

-Kl.2]

ffi c~chJ,:,f.,~e- c-1·

ff] add:H inn

I SO 11 SI j 8 x 32 S-boxe.s

S.>·::~·:--> rF.gJ~.t-r-otation hy :8

Figure 3.11 Structure of forward mixing phase.

Main keyed transformation
The "cryptographic core" of the l\1ARS cipher is a type-3 Feistel network, consisting of

sixteen rounds. In each round using a keyed E-function (E for expansion), which is

50

based on a novel combination of multiplication, data-dependent rotations, and an

lookup. This function takes as input one data word and returns three data words as

output. The structure of the Feistel network is depicted in Figure 3.12, and the E­

function itself is diagrammed in Figure 3.13. In each round using one data word as the

input to the £-function, and the three output words from the £-function are added or

xored to the other three data words. In addition, the source word is rotated by 13

positions to the left. To ensure that the cipher has the same resistance to chosen

ciphertext attacks as it has for chosen plaintext attacks, the three outputs from the £­

function are used in a different order in the first eight rounds than in the last eight

rounds. Namely, in the first eight rounds adding the first and second outputs of the £­

function to the first and second target words, respectively, and xor the third output into

the third target word. In the last eight rounds, add the first and second outputs of the £­

function to the third and second target words, respectively, and xor the third output into

the first target word [13].

{)tr!

/r-­

!x\l -
_____ _// ,--·,,_

1x,n1 . ~ , __
outl

D12J---·-

DPJ--+--+--~--~

(
Dt21 I ED / /\ \ ?nt2 x=, r: ~,, .E!J /

out I , -

~-EB--- / 'L _/

,i;mt3

mil

EB addition

[gJ 32 s. 96 expan,i.on fonction

l3<<< len~rotntinn by n
® exclns:ive-or

Figure 3.12 Type-3 Feistel network of main keyed transformation.

The E-function
The E-function takes as input one data word and uses two more key words to produce

three output words. In this function using three temporary variables, denoted below by

L, M and R (for left, middle and right). Below it also refer to these variables as the three

51

"lines" in the function. Initially, setting R to hold the value of the source word rotated

by 13 posit ions to the left, and setting M to hold the sum of the source word and the first

key word. Aller that view the lowest nine hits of M as an index to a 512-entry S-box S

(which is obtained by concatenating SO and S 1 from the mixing phase), and set L to

hold the value of the corresponding S-box entry. After that multiply the second key

word (constrained to contain an odd integer) into R and then rotate R by 5 positions to

the left (so the 5 highest bits of the product becomes the' 5 lowest bits of R after the

rotation). Then xoring R into L, and also view the five lowest bits of R as a rotation

::imount between O and 31, and rotate M to the left by this amount. Next, rotating R by 5

more positions to the left and xor it into L. Finally, again the five lowest bits of R view

as a rotation amount and rotate L to the left by this amount. The first output word of the

E-function is L, the second is M and the third is R (21].

- . •. . s: .,,.c'~r-- n. I ""' on(~ I t ", <.c 5 I I . .., - - I I

I YI:<::<: k' (oddJ

··1· I , r I ·-·~· .-- I I -~· I ·"" I ,_; ~.; .~ r.,. "" >f~l,hL.

le

nITl (j .,. i ;,' ,., .,_L -,~·
L.".::'..J ,, .. ~--~·Pl.a,.

n-·,::-<< fol:t-rr.,1n1k,r.n by 11

<J~< l·],'>l:!>-{k•p"'tl(0i. ent ~·o•·n,!·"1·-(;,1 . ,u• :1. · w'i .. ,: .,:;;; "' ~-,. I! j.,.1-1.1:1. .. ,1

Figure 3.13 The E-function of the main keyed transformation.

Backwards mixing
The structure of the backward mixing showed in Figure 3 .14 very similar to the one of

the forward mixing. It consists also of 8 rounds of a unkeyed type-3 Feistel network,

followed by a key subtraction step.

52

D[:IJ D[2J 0[1] DIOJ

K[39] K'[.37.'. . j, '-K[36]

subtraction (a-b) 8 x 32 S-boxes

exclusive-or 8<0::;< lefl-rotfltion by 8

Figure 3.14 Structure of the backwards-mixing phase

The decryption process is the inverse of the encryption process. The code for decryption

is similar (but not identical) to the code for encryption. to see more details about

decryption (l 1].

I 3.5.3. Construction of S-box
In the design of the S-box S, generated the entries of S in a "pseudorandorn fashion"

and tested that the resulting S-box has good differential and linear properties. The

53

"pseudorandom" Svboxes were generated by setting for i= 0, ... , 122, j= 0, ... ,4.

S[5i+j]= SHA-1(5iJ ell c2J c3) (where SHA1(), is the .ith word in the output of SHA1).

Here i view as a 32-bit unsigned integer, and cl,c2,c3 are some fixed constants. In this

thesis c=Oxb7el5162, c2= Ox243f6a88 and varied c3 until S-box with good properties.

SHA- l as an operation on byte-streams, and use little-endian convention to translate

between words and bytes. The properties of the S-box, which it tested as following:

Differential properties. Requiring that the S-box has the following properties:

(]) The S-box does not contain the all-zero or the all-one word.

(2) Within each of the two S-boxes So and SI every two entries differ in at least tbree

of the four bytes. (Note that it is very unlikely that a random S-box will have this

property, and so first "fix" the S-box by modifying one of the entries in each pair that

violates this condition).

(3) S does not contain two entries S[i], S[j](i * j)such that s[i]=s[j], s[i] = -s[j]
(4) S has (2512) distinct xor-differences and 2 x (2512) distinct subtraction-differences.

(5) Every two entries in S differ by at least four bits.

Linear properties. Trying to minimize the following quantities:

(6) Parity bias: I Prx[parity[S[x]=O] - ~] \. Requiring that the parity bias of S be at

most 1/30.

(7) Single-bit bias: V j, I Pr x[parity[S[x L = O] - ~) \ . Requiring that the parity bias of

S be at most 1/30.

(8) Two consecutive bits bias.Vj, \ Pr [parity[S[x]j EB S[x]j+1 = O] - ~) \. Requiring

that the two-bit bias of S be at most 1/30.

(9) Single-bit correlation: V i, j \ Pr [parity (S [x L EB Xi= O] - ;) \ .

3.5.4. Key expansion
The key expansion procedure expands a given key array k[], consisting of n 32-hit

words (where n is any number between 4 and 14) into an array K[] of 40 words. No ting

54

that the original key is not required to have any structure .In addition, the key expansion

procedure also guarantees that the key words, which are used for multiplication in the

encryption procedure, have the following properties

• The two lowest bits in a key word which is used for multiplication are set to l

• None of these key words contains ten consecutive O's or ten consecutive l's.

The procedure consists of the following steps
l. Initially, the original key material is copied into a temporary table T[] of 15 words,

followed by the number of words n, and zeroes. Namely, setting

T [O ... n-l j=k [O ... n-l], T [n]=n, T [n+l. .. 14]=0.

2. Then, the following process is repeated four times, where each iteration

computes the next ten words of the expanded key:

(a) The array T[] is transformed using the following linear formula

T [i] EB ((T[i- 7 mod 15] EB T [i-2 mod 15]) <<< 3) EB (4i+j),
where j is the iteration number initialize by zero, and i from Oto 14.

(b) Next, stir the array T [] using four rounds of type-I Feistel-network.

Specifically, repeatting four times the operation.

T [i] = (T [i] + S [low 9 bits ofT [i-1 mod 15]]) <<< 9,

OJ, ... 14.

where i=

(c) Then take 10 of the words in T [] and reorder them into the next ten words

of the expanded key array, K []. This is done by setting

K [1 Oj + i] = T [4i mod 15], i=O, 1, ... ,9, and j is the iteration number.

3. Finally, going over the sixteen words, which are used in the cipher for

multiplication (these are words K[5], k[7], ... , k[3 7]), and modify them to have the

two properties from above. Noting that the probability that a randomly chosen word

does not have the second property is about 1/41. Process each of the words K [5], k

[7], ... , K[37] as follows:

55

1. Recording the two lowest bits of K[i], by setting j = K[i] 8 3 and then consider

the word with these two bits set to 1, w = KU] V 3.

ii. Cousrructing a mask M of the bits in w, which belong to a sequence of ten (or

more) consecutive O's or l's. Namely, having 1'v1L if and only if wj belongs to a

sequence of ten consecutive O's or 1 's. Then resetting to O the l's in M that

correspond to the "end-points of runs of O's or l's in w", and also the two

lowest bits and the highest bit in M. More precisely, the ith bit of M is reset to

0 if i<2, i=3 l ,or if the ith bit of W differs from either the (i+ 1)th or the(i-1)th

bits. For example, assume that w = 031130121011 (where by O;, l ' denote as

consecutive O's or 1 's, respectively). In this case the first set M = 03 125 04, and

then reset the 1 's in bit positions 4, 15, 16 and 28 to get M= 041100110o5

m. Next, using a fixed four-word table B to "fix w", where the four entries in B

are chosen so that they (and their cyclic shifts) do not contain any seven

consecutive O's or ten consecutive l's. Specifically, using the table B[] =

mxa4a8d57b, Ox5b5dl 93b, Oxc8a8309b, Ox73f9a978, (these are entries 265

through 268 in the S-box). The reason to choose these entries is that there are

only 148-bit patterns, which appear twice in these entries (and their cyclic

shifts), and no pattern appears more than twice. Using the two recorded bits j

to select an entry from B, and use the lowest five bits of K[i-1]to rotate this.

rv. Entry= BLi] <<< (lowest 5 bits ofK[i-1]).

v. Finally, then xoring the pattern p into w under the control of the mask M, and

store the result in k[i], K[i] = w EB (p8 M). Since the lowest two bits of M

are O's, then the lowest two bits of K[i] will be 1 's (since those in re).also, the

choice of B guarantees that K[i] will meet not have a sequence of ten

consecutive O's or l's.

56

3.6. RC6 algorithm

3.6.1. Introduction
RC6TM is a new block cipher submitted to NIST for consideration as the new Advanced

Encryption Standard (AES). The design of RC6 began with a consideration of RCS [17]

as a potential candidate for an AES submission. Modifications were then made to meet

the AES requirements, to increase security, and to improve performance. Like RCS,

RC6 is a fully parameterized family of encryption algorithms. A version of RC6 is more

accurately specified as RC6-w/r/b where the word size is w bits, encryption consists of a

nonnegative number of rounds r, and b denotes the length of the encryption key in

bytes. Since the AES submission is targeted at w = 32 and r = 20, using RC6 as

shorthand to refer to such versions. When anv other value of w or r is intended in the • I

text, the parameter values will be specified as RC6-w/r. Of particular relevance to the

AES effort will be the versions of RC6 with 16, 24, and 32 byte keys.

3.6.2. Basic operation
For all variants, RC6-w/r/b operates on units of four w-bit words using the following six

basic operations. The base-two logaritlun of w will be denoted by Jgw.

• a+ b integer addition modulo 2w

e a - b integer subtraction modulo 2w

., a EB b bitwise exclusive-OR of w-bit words

• a x b integer multiplication modulo 2w

11 a<<<b rotate the w-bit word a to the left by the amount given by the least

significant lgw bits of b

• a>>>b rotate the w-bit word a to the right by the amount given by the least

significant lgw bits of b

3.6.3. Key schedule
The key schedule of RC6-w/r/b is practically identical to the key schedule of RC5-

w/r/b. The only difference is that more words are derived from the user-supplied key for

use during encryption and decryption. To generate key schedule must follow these step

~ The user supplies a key of b bytes. Sufficient zero bytes are appended to give a

key length equal to a non-zero integral number of words,

57

., These key bytes are then loaded in little-endian fashion into an array of c w-bit

words L[Ol, ... , L[c - 1].

• Thus the first byte of key is stored as the low-order byte of L[O], ... , and L[c-1]

is padded with high-order zero bytes if necessary.

• The number of w-bit words that will be generated for the additive round keys is

(2r + 4) and these are stored in the array S [O, ... , 2r + 3].

• The constants P32 = B7E15l63 and Q32 = 9E3779B9 are the same "magic

constants" as used in the RCS key schedule. The value of (P32) is derived from

the binary expansion of (e - 2), where (e) is the base of the natural logarithm

function. The value of Q32 is derived from the binary expansion of <D -1, where
<D is the Golden Ratio. Figure 3.15 explains the key schedule [2].

Input: User-supplied b byte key preloaded into the c-word

array L [O, ... ,c - 1], r: number of round

Output: w-bit round keys S [O, ... 2r + 3]

Procedure:

S[O] = r;
for i = l to 2r + 3 do
S[i] = S[i _ 1] + Ow
A=B=i=j=O

v = 3 x max (c, 2r + 4)
For s = 1 to v do

Begin

A = S [i] = (S [i] +A+ B)<<<3

B = L Li]= (L rn +A+ B)<<<(A + B)
i = (i + l)mod(2r + 4)
j = (i + 1)mod c

End

Figure 3.15 key schedules for RC6-w/r/b.

58

3.6.4. Encryption and decryption

RC6 works with four w-bit registers A, B, C, D which contain the initial input plaintext

as well as the output ciphertext at the end of encryption. The first byte of plaintext or

ciphertext is placed in the least-significant byte of A, the last byte of plaintext or

ciphertext is placed into the most-significant byte of D. Using (A, B, C, D) = (B, C, D,
A) to mean the parallel assignment of values on the right to registers on the left.

Figure3 .16 below explain the procedure of encryption operation [9].

Output:

Procedure:

Begin

Plaintext stored in four w-bit input registers A, B, C, D

r: Number of rounds

w-bit round keys S[O, , 2r + 3] which obtained by key

schedule.

Ciphertext stored in A, B, C, D

Input:

Pre-whitening

B = ~ + S [O]

D=D+S[l]

r-round iterations

For i = l To r do

Begin

t =(Bx (2B + l))<<<lg w

u = (D x (2D +]))<<<lg w

A= ((A EB t)<<<u) + S [2i]
C = ((C EB u)<<<t) + S [2i+ 1]

(A, B, C, D) = (B, C, D, A)
End For

Post-whitening

A= A+ S[2r + 2]
C = C + S [2r + 3]

End

Figure 3.16 Encryption with RC6-w/r/b

RC6 consists of three parts, pre-whitening, r-round iterations of round function, and

post-v11hitening, RC6 encryption algorithms support multiple data block sizes. 128-bit

RC6 encryption supports 20 rounds with each round using 2 round keys. 4 additional

keys are used during pre and post rounds. Each round of RC6 encryption uses two

multiplications, two additions, two exclusive-or operations, two fixed rotations and two

variable rotations. Now the block diagram that explains encryption algorithm operation

is show below in Figure 3.17 [18].

Figure 3.17 Encryption with RC6-w/r/b.

60

Note that the function fused in figure 3.17 is f (x) = (x) x (2x + 1). Suppose the

parameter to this function is register D then f (D) = D x (2D + 1). For decryption

operation is opposite of encryption operation so the Figure 3.18 explain the procedure

of decryption operation [9].

Input: Ciphertext stored in four w-bit input registers A, B, C, D.

Number r of rounds

Output:

Procedure:

w-bit round keys S[O, , 2r + 3]
Plaintext stored in A, B, C, D

Begin

Pre-whitening

C=C-S[2r+3]

A = A - S [2r + 2]
Rvround iterations

For i = r down To 1 do

Begin For

(A,B,C,D)=(D,A,B,C)

u = (D x (2D + l))<<<lg w

t = (B x (2B + l))<<<lg w

C = ((C - S[2i + l])>>>t) EB u

A= ((A- S [2i])>>>u) EB t

End For

Post-whitening

D=D--S[l]

B = B- S [O]

End

Figure 3.18 Decryption with RC6-,,1/r/b.

61

3Ji.5. Security and simplicity
During the design of RC6 the following considerations were uppermost Security,

simplicity, good performance. The simplicity of RCS has made it an attractive object for

research. By being readily accessible to both crude and sophisticated analysis many

people have been encouraged to look at the cipher and to assess the security it offers.

RC6 was designed to build on the experience gained in using RCS and to build on the

security offered by a remarkably simple cipher. One can view the design of RC6 as

progressing through the following steps:

• Start with the basic half-round loop of RCS:

for i = 1 to r do

{

A= ((AEB B)<<<B) + S [i]
(A, B) = (B, A)

• Run two copies of RCS in parallel: one on registers A, B and one on registers C,

n.
For i = 1 tor do

{

A= ((A EB B)<<<B) + S[2i]
C = ((CEB D)<<<D) + S[2i+ 1]

(A, B) = (B, A)
(C, D) = (D, C)

}

• At the swap stage, instead of swapping A with B and C with D, permute the

registers by (A, B, C, D) = (B, C, D, A), so that the AB computation is mixed

with the CD computation. At this stage the inner loop looks like:

For i = 1 tor do

A= ((A EB B)<<<B) + S [7i]

62

C = ((CED D)<<<D) + S [2i+ l]

(A, B, C, D) = (B, C, D, A)
l
J

• Mix up the AB computation with the CD computation further, by switching

where the rotation amounts come from between the two computations:

for i = 1 to r do

{

A= ((AEB B)<<<D) + S [2i]
C = ((C EB D)<<<B) + S [2i+ l]

(A,B,C,D)=(B,C,D,A)

}

• Instead of using B and D in a straightforward manner as above, usmg

transformed versions of these registers, for some suitable transformation. Out'

security goals are that the data-dependent rotation amount that will be derived

from the output of this transformation should depend on all bits of the input

word and that the transformation should provide good mixing within the word.

The particular choice of this transformation for RC6 is the function f(x) = x(2x +
l)(mod 2") followed by a left rotation by five bit positions. This transformation

appears to meet our security goals while taking advantage of simple primitives

that are efficiently implemented on most modern processors. Note that f(x) is

one-to-one modulo 2w, and that the high-order bits of f(x), which determine the

rotation amount used, depend heavily on all the bits of x. See The Security of the

RC6TM Block Cipher.

for i == 1 to r do

{

t =(Bx (2B + 1))<<<5

u = (D x (2D + 1))<<<5
A= ((AEB t)<<<u) + S[2i]

C = ((CEB u)<<<t) + S[2i+ l]

63

(A,B,C,D)=(B,C,D,A)

• At the beginning and end of the r rounds, add pre-whitening and post-whitening

steps. Without these steps, the plaintext reveals part of the input to the first

round of encryption and the ciphertext reveals part of the input to the last round

of encryption. The pre- and post-whitening steps help to disguise this and leaves

us with RC6:

B = B + S[O]
D=D+S[l]

for i = l to r do

{

t =(Bx (28 + 1))<<<5
u = (D x (2D + l))< < <5
A= ((AEB t)<<<u) + S[2i]
C = ((CEt> u)<<<t) + S[2i+ 1]

(A,B,C,D)=(B,C,D,A)

}

A= A + S [2r + 2)
C = C + S [2r + 3]

• While it might appear that the evolution from RCS to RC6 was straightforward,

it in fact involved the design and analysis of literally dozens of alternatives. RC6

is the design that captures the spirit of our three goals of security, simplicity and

performance the most effectively. Note that in the preceding development, the

decision to expand to four 32-bit registers was made first (for performance

reasons), and then the decision to use the quadratic function f(x) = x(2x +

1)(mod 2w) was made later. If you had decided to stick with a two register

version of RC6 then you might have had the following encryption scheme as an

intermediate:

B = B + S[O]
for i = 1 to r do

64

{

t =Bx (2B + 1)<<<5
A= ((A EB t)<<<t) + S [i]
(A, B) = (B, A)

}

A=A+S[r+l]

This variant of RC6 may be of independent interest, particularly when sup-Port

for 64-bit arithmetic in C improves. However merely mention this as and aside

here.

3.6.6. Good performance for a given level of security

Two significant changes in RC6 are the introduction of the quadratic function B x (2B +
]) and the fixed rotation by five bits. The quadratic function is aimed at providing a
faster rate of diffusion thereby improving the chances that simple differentials will spoil

rotation amounts much sooner than is accomplished with RCS. The quadratically

transformed values of B and D are used in place of B and D lo modify the registers A

and C, increasing the nonlinearity of the scheme while not losing any entropy (since the

transformation is a permutation). The fixed rotation by five bits plays a simple yet

important role in complicating both linear and differential cryptanalysis.

3.6. 7. Security of RC6
Conjecturing that to attack RC6 the best approach available to the cryptanalyst is that of

exhaustive search for the b-byte encryption key (or the expanded key array S [O, ... , 43]

when the user-supplied encryption key is particularly long). The work effort requited

for this is min (28b, 21408) operations. Don Coppersmith observes, however, that at the

expense of considerable memory and off-line pre-computation one can mount a meet­

in-the-middle attack to recover the expanded key array S [O, ... ,43]. This would require

2704 on-line computations and so the work effort required to recover the expanded key

array might best be estimated by min (28\ 2704) operations. The more advanced attacks

of differential and linear cryptanalysis, while being feasible on small-round versions of

the cipher, do not extend well to attacking the full 20-round RC6 cipher. The main

difficulty is that it is hard to find good iterative characteristics or linear approximations

65

with which an attack might be mounted. It is an interesting challenge to establish the

most appropriate goals for security against these more advanced attacks. To succeed,

these attacks typically require large amounts of data, and obtaining 2a blocks of known

or chosen plairuext-ciphertext pairs is a very different, task from trying to recover one

key from among 23 possibilities. It is worth observing that with a cipher running at the

rate of one terabit per second (that is, encrypting data at the rate of 1012 bits/second), the

time required for 50 computers working in parallel to encrypt 264 blocks of data is more

than a year; to encrypt 280 blocks of data is more than 98, 000 years, and to encrypt i28
blocks of data is more than 1019 years. While having a data requirement of 264 blocks of

data for a successful attack might be viewed as sufficient in practical terms, the

community as a whole will decide which level of security a cipher, in particular AES

candidates should satisfy. Should this be less than a data requirement of 212R blocks of

data then the number of rounds of RC6 could potentially be reduced from our initial

suggestion of 20 rounds, thereby providing an improvement in performance. For

attacking an eight-round version of the cipher, RC6-32/8/b, one can construct six-round

characteristics or linear approximations. Assuming that these could be used to attack the

eight-round version of the cipher the estimated data requited to mount a differential

cryptanalytic attack on RC6-32/8/b would be around 256 chosen plaintext pairs, and to

mount a linear cryptanalytic attack would be around 247 known plaintexts. This includes

some consideration of more sophisticated phenomena such as differentials and linear

hulls, hut we might still expect more customized techniques to reduce these figures by a

moderate amount. However they provide a reasonable illustration of the security that

might be offered by a version of RC6 with a few rounds. Currently, it seems that a

differential attack on the full 20-round RC6 cipher appears to be most easily

accomplished by using a six-round iterative characteristic together with some

customized beginning and ending characteristics. Considering a variety of options, the

probability of one of the best 18-round characteristics we are aware of in attacking RC6

is around T238 and uses integer subtraction as the notion of difference. To use this

characteristic in' an attack would require mdre than the total number of available chosen

plaintext/ciphertext pairs. While we expect the amount of data required for an attack to

drop as more detailed analysis takes place we do not believe that differential

cryptanalysis can be successfully applied to RC6. To mount a linear cryptanalytic

attack, there appear to be two different options. The first might be to fmd a linear

66

approximation over several rounds that use a linear approximation across the quadratic

function. Since there appear to be some very suitable linear approximations using the

least significant bits of this function, this might be an appealing strategy. Indeed, one

can establish useful six-round iterative linear approximations that can, at least in

principle, be used to attack reduced-round versions of RC6. However, the bias of these

approximations drops rapidly as more rounds are added, and soon the amount of data

required for a successful attack exceeds the amount of data available. Instead, we note

that an attacker might well pursue an alternative approach. It is possible to find a two­

round iterative linear approximation that does not use an approximation across the

combination of the quadratic function and fixed rotation by five bit positions. Using

basic but established techniques to predict the bias of such an approximation, it wi:ll be

observe that the data requirement to exploit this approximation over a version of RC6

with 16 rounds is about 2142 known plaintexts. Further analysis suggests that additional

techniques might potentially be used to bring the data requirements down to a little

under 2128 known plaintexts. This provided our rationale for choosing 20 rounds for

RC6. With our current knowledge, the most successful avenue for a linear cryptanalytic

attack on RC6 would be to use the two-round iterative approximation it have just

mentioned to build up an 18-round linear approximation with which to attack the cipher.

Using the same techniques as before to predict the data requirements to use this

approximation at first sight it might need 2182 known plaintexts, an amount which

exceeds the available data. Enhanced techniques might be useful in reducing this figure

by a moderate amount (a pessimistic view suggests that such reductions would still

leave an attack requiring 2 155 known plaintexts) but in the final assessment we believe

that the number of known plaintexts needed to exploit this approximation readily

exceeds the maximum number of plaintexts available. We conclude that a linear

cryptanalytic attack against RC6 is not possible using these techniques. Further, we

believe that the use of more sophisticated techniques are exceptionally unlikely to

provide sufficient gains as to offer attack requiring less than 2'28 known plaintexts [9].

3.6 ~. flexibility and Future Directions
As it has already observed RC6 provides the user with a great amount of flexibility with

regards to the size of the encryption key, the number of rounds and the word size of the

basic computational unit. While the submission of RC6 for consideration as the

67

forthcoming AES is based around the use of 32-bit words (giving a block size of 128

bits), future developments and market demand might encourage an extension of RC6 to

other block sizes. Of most importance may be block sizes of 256 bits, which would take

advantage of a word size of 64 bits and the performance offered by the next generation

of system architectures. Noting that further that the structure of RC6 allows one to

exploit a certain degree of parallelism in the encryption and decryption routines. For

example, the computation oft and u at each round can be computed in parallel, as can

the updates of A and C. As processors move to include an increasingly amount of

internal parallelism (e.g., with the move to superscalar architectures), implementations

of RC6 should show increased throughput.

3. 7. Comparison between five candidates algo,;thms for AES

3.7.1. General differences

The Table 3 .4 shows the main differences between the five candidates algorithms for

AES.
Table 3.4 General Differences

Algorithms
Properties

Rijndael Serpent Two fish RC6 MARS
~·----

I Core
Substitution Substitution Feistel Feistel Feistel
Permutation Permutation Network

structure Network Network
Network Network

Modified Modified

Design
Substitution Substitution Modified Modified Mixed
Permutation Permutation Blowfish structure

Principles Network- Network-
RCS DES

Square Bitslice
'

-

Carolynn

Professor Burwick,
Ross Ronald L. Don

Joan Anderson, Bruce Rivest, Coppersmith,

Design hy
Dae men Eli Biham, Schneider Sidney, Edward

and Vincent and Lars andT. D 'Avignon,
Rijmen Knudsen Yin IBM I

Corporation. I

I
I

-·----------~-------- --~-------.!

68

~urn be:- 10, 12, 14 32 round 16 rounds 20 rounds 32 round
f round rounds

a variable-
length key

Key 128, 192, or 128, 192, (128-, 128, 192, Variable key
length

256 bit key 256 bit key 192-, or 256 bit
256-bit key size

key)

128-bit 128-bit 128-bit 128-bit 128-bit
Block Size block block block block block

cipher cipher cipher cipher cipher

Year Of September 24th March 15 June August September,
Design 3, 1999 2000 1998 20, 1998 22 1999

Minimal
Secure lO round 17 round 12 round 20 round 20 round
Round --------·

3. 7.2. Operational differences

The Table 3.5 below shows the difference, which belongs to operation used by each

,, lgorithrn.

Table 3.5 Operational Differences

µf g_orithip.s Operation used
Fixed x(GF(28)) Rijndael S-box rotation

EB (Key) ---
'---

Serpent
EB S-box

EB (Linear Permutation Mixing
(Key) Transformation) operation

Two fish S-box x(GF(28)) X(mod 232) +(mod EB 232)(Key)

RC6 x(mod 5-bit Xor(EB)
Variable +(mod

212) rotation rotation 232)(key)

Fixed
Data

MARS S-box rotation EB depend ---
rotation

69

3.8.3. Encryption and Decryption times Difference

Table 3.6 compares the speed of encryption of five candidates for AES on Pentium

Pro/II. The Table below explains the RC6 is very faster when byte is increase.

Table 3.6 Clock Cycles, per Byte, to encrypt different text sizes

Text size Algorithms
(bytes) Riindael Serpent Two fish RC6 MARS

16 53 193 132 118 246

32 36 125 93 67 133

64 27 90 73 41 76

128 23 73 64 28 48

256 20 65 48 22 34

512 19 61 33 19 27
210 19 58 25 17 24
211 18 57 20 16 22
21.L 18 57 18 16 21
213 18 57 17 16 20
214 18 56 17 16 20

3.8. Summary
It is fair to say that all five of the finalist algorithms very strong cipher algorithms. They

are all symmetric ciphers, similar to AES in terms of block size and key lengths. RC6™

appears to be the best choice for the AES-FIPS. It scores maximum points because of its

proven security, simplicity implementation. Its scaleable performance characteristics

make it more flexible for the different demanding environments [14].

70

4. RC6™IMPLEMENTATION USING VISUAL C++ 6.0

4.1. Overview
By the times software for the encryption algorithms become easy to decrypt by attacker,

may be because of weakness of algorithms or attacker uses development equipments or

devices. For that we need algorithm that depends on strong computation and long key,

so the suitable type of cryptography algorithms for that is single-key cryptography.

Especially the five advanced algorithm for AES. This chapter describes the

implementation ofRC6™ and transmits data through the secure channel.

4.2. Application Requirements

The application works under the following requirements

4.2.1. Visual C++ 6.0

Why using Visual C++ version 6.0

• Visual C++ version 6.0 is a completely self-contained environment for creating,

compiling, linking, and testing windows program.

• Visual C++ version 6.0 a range of fully integrated tools designed to make the

whole process of writing windows program easy.

• Visual C++ version 6.0 includes two important tools which work in a wholly

integrate way to help you write windows program. These are the App Wizard and

the Class Wizard.

• The editor provides an interactive environment for creating and editing C++

source code. As well as usual facilities, such as cut and past.

• The compiler converts your source code into machine language, and detects and

reports error in the compilation process. The compiler can detect a wide range of

errors that are due to the invalid program code [33].

71

4.2.2. ActiveSltine 4.3

ActiveSkin is a powerful ActiveX control that changes the visual appearance of form­

or dialogs, providing developers with full-featured support for 'application skins', or

'application look and feel'. ActiveSkin makes it easy to create programs with visuallj

stunning, fully interactive user interfaces. The interfaces can even be created or editeu

directly at runtime. With ActiveSkin you could make your program look exactly like it

was from another OS, or create your own user WinAmp-like "skinned" interfaces, or

just give it a different, distinctive look.

ActiveSkin supports features such as irregular or layered windows with animated

shapes, soft shadows, animation, up to 50 transition effects, skin compression, hue

adjusting, procedural textures, the ability to build any number of the skins directly into

the application executable, a rich collection of SkinObjects (SkinForm, SkinFreeForm,

SkinButton, SkinStatic, SkinTab, SkinFrame, Popup menus and more) that can be used

in windowed and windowless mode and many more.

The ActiveSkin package also includes a selection of free skins and the "SkinBuilder"

application, a visual skin editor that can be used to easily modify, preview or create

skins.

ActiveSkin features:

• Full support for standard skins makes it possible to skin the entire application

with a single line call

• Advanced application-specific skins support enables you to create stunning skins

for your application only

• Full support of translucent layered windows for soft shadows, glows or glass­

like effects

• Animated, interactive skins can be created entirely in SkinBuilder, without any

additional coding needed

72

• Improved performance and reduced memory usage

• Lots of skins, that are available for royalty-free use to ActiveSkin customers

• Fade-In transitions make it possible to create splash screens

• Up to 50 built-in transition effects, alpha-blending operations, hue transforms

and other image effects.

• Compiled skins, that can be built directly into executable

• An easy to use yet powerful SkinBuilder application -

The ActiveSkin component is compatible with:

• Microsoft Windows 9x, ME, 2000 & XP

• Microsoft Visual Basic 5-6

• Microsoft Visual C++ 5-6

• Inprise/Borland Delphi 3-6

• Inprise/Borland C++ Builder 3-5 [35].

4.2.3. Network

This application sends ad receives files through network, so we need at least tow

computer with this requirement:

• Microsoft Windows 9x, ME, 2000, and XP because Visual C++ for building 3 2-

bit application. So each computer must satisfy these following requirements:

1. At least a 486 Dx4 with 32-bit Mb of memory for windows NT.

2. At least a 486 CPU and minimum 16Mb of memory for windows 0x:.

3. SVGA monitor.

73

4.3. Flow Chart Of ApplicationO

The below Figure 4.1 describes the general structure of my application that consist of

flowing structures:

Start

Main Menu f41

Yes G:)

Yes~

Yes Gv

Yes·~

Yes
T

~

Figure 4.1 Main Flow Diagram

• Encryption operations appear when the decryption Button is pressed which will

illustrated in Figure 4.2

• Decryption operations appear when the decryption Button is pressed which will

illustrated in Figure 4.3

74

• Sending file operations appear when the sending Button is pressed which will

illustrated in Figure 4.4

• Receiving file operations when the receiving Button is pressed which will

illustrated in Figure 4.5

• Finally the programs will be exit when the exit Button is pressed.

4.3.1. Encryption Algorithm
The below diagram show in Figure 4.2 show the operation or the step of encryption.

Encryption
Menu

NO

Enter Private key

and encryption times

No

Select File
Menu

Yes NO

Encryption Processes
Success

Figure 4.2 Encryption flow diagram

75

First thing you must enter the private key and encryption times. The . length for

private key is 16 characters (128-bit), which is the length of RC6™. then if you

press accept and the length is correct after that selecting file that will encrypt and

then apply the RC6 encryption algorithm that described in chapter three then the

encryption operation finish. But if the length of key is not correct or when selecting

file menu you pres cancel you must begin from the first.

4.3.2. Decryption Algorithm
The below diagram show in Figure 4.3 show the operation or the step of decryption

algorithms.

Decryption
MPn11

Enter Private key

and encryption times

NO

No

Select File
MP.1111

Yes NO

Decryption Processes
~nrrP<:<:

Figure 4.3 Decryption flow diagram

76

First thing you must enter the private key and decryption times. The length for

private key is 16 characters (128-bit), which is the length of RC6™ . then if you

press accept and the length is correct after that selecting file to decrypt it and then

apply the RC6 decryption algorithm that described in chapter three then the

decryption operation will be finish. But if the length of key is not correct or when

selecting file menu you pres cancel you must begin from the first.

4.3.3. Sending Algorithm
The below diagram show in Figure 4.4 show the operation or the step of sending

algorithms.

Sending File
Menu

Yes

Select File
Menu

Sending File
Menu

No

Sending
File

Sending
operation

Finish accept
from Receiver

Figure 4.4 Sending algorithm

77

First thing you must select file to send it after that press the button send and wait the

receiver to accept this file. If the receiver accepts this file the sending operation will

be successful and return back if you want to send again. Or you can write directly

type the name of file without selecting form selecting file menu. Note that if you

press sending file button without selecting file, the program will be blocked. If you

press cancel the program returns back to main menu.

4.3.4. Receiving algorithm
The below diagram show in Figure 4.5 show the operation or the step of sending

algorithms.

Receive File
Menu

Enter IP address

of sender and

destination file

Finish
Receiving

Figure 4.5 Receiving algorithm

78

First thing you must enter the IP address for sender and local destination that you

will receive file in this location after that you will press button receive, you will

receive file in that location if the sender IP is correct and he send that file, else the

operation will be not successful. If you press return or refuse you will return to RC6

maim menu.

4.4. Using Application

4.4.1. Main Menu
The program start with the main menu interface as see in Figure 4.6 below that

describes encryption, decryption, send, and receive file operation that easy interface

for user to understand the program.

RC6 FRAM !f)

... Sender

·:o-Rec~I I
L~-~

Figure 4.6 Main Menu

Also this Figure 4.6 contain network of sender and receiver. I mean by sender her the

server, which publishes the IP address for the client (receiver). Now if the users want to

encrypt, decrypt, send, and receive files using this application must follow below steps.

79

4.4.2. Encrypt File Menu

When user press encryption button the below Figure 4.7 will be appear that is interface

for key schedule.

Encryption Menu

File to Encrypt

Private Key

Encrypyion
Times 0

Figure 4.7 Key Schedule For Encryption

First, you must type the private key (PRKE) it must be sixteen characters (128-bits) to

make key schedule to convert that key to 1408-bits that uses in encryption operation.

After that type the second private key, which determine the number of encryptions

times for each block. Then press accept button to complete the encryption operation.

Now if the length of private key is not corrects the following massage will be appear.

Key length Error press Ok Button To Return To Main Menu

I 1..... ()~ .··· . .1:1

Figure 4.8 key Length Error

The Figure 4.8 indicates that when you press ok button the program return to main

menu.

80

But before that you must choose file from browse button, after you press the below

Figure 4.9 below will be appears to choose file to encrypt it.

Look in: I,..,;. Local tamer (CJ ~ .,. ~ ~ •liml""
rr:;;----·-------------· . ----·--·--·--------·--
1leD0cuments and Settings leQURAN
leflowdigram le thesis
lu:»gs a WINDOWS I~ hosaa m i] test
lild My Music
lu:»Program 1
1©IDProgram Files
1aprograming

l.,

Filename: ftesttxtf I Qpen

Files o/Jype: jtext files iJ Cancel
~

Figure 4.9 Encryption Selecting File Menu

When you select file to be encrypt press open button and press accept encryption

operation for RC6 will be apply and the file will be encrypt and the fowling massage

will be appear.

!nE!XB!it9,-,.,~~li',"1'=cre,iF<{:«\-Ww'. ,,tM/,;c'),..~ .: • -~'>h·'>~, -"<i\'"'''','d •VY•-":,. '"'"~~

Encryption operation End SuGessefiJllyNow press OkButton To Return To
Main Menu

lf .. _ ?K J

Figure 4.10 Successfully Encryption

The Figure 4.10 indicates that the encryption operation end successfully and the

program will return to main menu. Note when the file encrypted, the extension of file

will be converting to anther extension, which is (Cryl).

81

4.4.3. Decrypt File Menu

When user press decryption button the below Figure 4. 7 will be appear that is interface

for decryption file .

Decryption Menu
~-.,..-,,o,--,_.,., __ ~-~-

File To Decrypt

Private Key

Encryption Times

Figure 4.11 Key Schedule For Decryption

First, you must type the private key (PRKE) it must be sixteen characters (128-bits) to

make key schedule to convert that key to 1408-bits that uses in decryption operation.

After that type the second private key, which determine the number of Decryptions

times for each block. Then press accept button to complete the decryption operation.

Now if the length of private key is not corrects the following massage will be appear

Key lengtn Error press Ok Button To RetJ.Jrn TB Main Menu

[OK ~~~

Figure 4.12 key Length Error

The Figure 4.12 indicates that when you press ok button the program return to main

menu. But before that you must choose file from browse button, after you press the

below Figure 4.9 will be appears to choose file to decrypt it. All the file appear with

extension (Cryl)

82

Look [n: I"'"" Local tamer (C:)

l~Document:s and Settings leQURAN
/leflowdigram le thesis
'~gs le WINDOWS
ilehosaam ~test.Cryl
jleMy Music
l~Programl
!~Program Files
Jieprograming

~~--~~--·~~~~~-
Filename: ftest.Cry1 Qpen

Files of Jype fEn""cryption files Cancel

Figure 4.13 Decryption Select File Menu

When you selected file to be encrypt press open button the decryption algorithm for

RC6 will be apply and the file will be decrypt and the fowling massage will be appear

Decryption operation End Sucessefully Now press Ok Button To Return To
Main Menu

Figure 4.14 Successfully Decryption

The Figure 4.14 indicates that the decryption operation end successfully and the

program will return to main menu.

Note: when the file decrypted, the extension of file will be converting from extension

(Cryl) to original extension, which is (text).

83

4.4.4. Sending File Menu

When user press Send button from main menu the below Figure 4.15 will be appear to
user and describe how to send file.

SENDING FILE

File To Send

Figure 4.15 Sending File Menu

The Figure 4.15 indicate that the user must type the file name in edit box or select it

from selecting menu as describe above. After that you can press send file to complete

the sending operation and below massage will be appear which denote by Figure 4.16.

sending File operation End Successfully Now press Ok Button To Retirn To
Sending File Menu

/J __ oK [I

Figure 4.16 Sending Successfully

To satisfy successfully sending the receiver must connected at the same time with
sender and accept the sending file.

84

But if you press the send file without type the name of the file or without selecting it.

The below massage will be appear, which denoted by Figure 4.17.

Sending File Operation Failed Type The Name OfFile First Then Presss Ok
Button To Try Again

i OK
·--·-·····-···· .. ·····-·-·---·-···--···

Figure 4.17 Sending Operation Failed

4.4.5. Receiving File Menu

When user press Receive button from main menu the below Figure 4.18 will be appear

to user and describe how to receive file.

Figure 4.18 Receiving File Menu

The Figure 4.18 indicates that the user must type the IP address of sender and

destination location for receiving file in edit box. After that.you can press receive file to

85

complete the sending operation and below massage will be appear which denote by

Figure 4.19.

Receiying File Operation End Successfully Now press Ok Button To Return
To Receiving File Menu

OK

Figure 4.19 Sending Successfully

To satisfy successfully receiving, the sender must connect at the same time with

receiver, and sender sent the file.

But if The IP address is wrong or destinations location didn't type in edit box the

receiving operation is failed and appear the following massage

Receiving Operation Failed.Maybe The IP Address Is Wrong Or Destinations
Location Didn't Type In Edit Box Please Press Ok Button To Try Again

Jr _?K ·- _ JI -

Figure 4.20 Sending Operation Failed

4.5. Summary

This chapter described how application works using RC6™, and how user deal with this

application through flow charts and how they can encrypt, decrypt, send, receive files

through networks.

86

CONCLUSION

In this thesis, it has given a detailed view on the security, cryptography algorithms

especially analysis of the five candidates algorithms for AES, make analysis and

modifications on RC6™ algorithm, and developed program using RC6™ through secure

channel.

Next paragraph the important result obtained from this thesis:

• Information is becoming the most important resource of the economy and the

society at large. One essential aspect for secure information and communications is

the cryptography.

• There are several ways of classifying cryptographic algorithms. But best

categorized based on key. There are two type of key-based algorithm: single key

(symmetric key), asymmetric key.

• RijndeaL It is a fast, flexible and elegant cipher. Rijndael is somewhat similar to

SQUARE, and the lessons from SQUARE are incorporated in its design. The main

worry about Rijndael is that it may not be conservative enough.

• Serpent. The main drawback of Serpent is that it is slower than the other finalists

in software. On the other hand, it is very fast in hardware. The main selling point of

Serpent is its very conservative number of rounds. Serpent does not have "fail­

stop" mechanisms as in MARS, so in principle it is possible that a single major

advance in cryptanalysis would yield a damaging attack. However, the large

number of rounds makes such a possibility extremely remote.

• Twofish. This cipher was designed for flexibility, and indeed it offers a wide

variety of implementation tradeoffs. It is also a very fast cipher. However, the same

design for flexibility also resulted in a cipher, which is very hard to analyze. To

obtain flexibility, the designers used many "tricks", whose security implications are

not clear. The result is that among the five finalists.

87

• RC6. The main advantage of RC6 is its simplicity and speed. Its author, Ron

Rivest, enjoys a well-deserved reputation in the cryptographic community, based

on carefully crafted ciphers such as RSA, RC2, RC4, and RCS, which may serve as

an indication for the suitability of the current design as well. The main argument

against RC6 is "single point of failure" design.

• MARS. The main strength of MARS is its robustness. This was the main design

goal, and MARS contains more "fail stop" mechanisms than any of the other

:finalists. Due to the heterogeneous structure and the large variety of "strong

operations" in MARS, even a major advance in the cryptanalysis of any one of its

components is very unlikely to lead to a significant attack against the overall

cipher. MARS is also a very fast cipher in common use environments. The large

number of fail-stop mechanisms in MARS makes its hardware implementation

more involved than the other :finalists, but it is still very small and cheap to

implement in hardware, and is suitable to any real-life environment.

• Implementation of RC6™ using visual C++ 6, and apply it over network to protect

data from attacker.

But we have observed that:

• It is fair to say that all five of the finalist algorithms very strong cipher algorithms.

They are all symmetric ciphers, similar to AES in terms of block size and key

lengths. It is my opinion that simplicity and speed are the most important selection

criterion of the AES. From this perspective, author believe that RC6™ appears to

be the best choice for the AES-FIPS because it has maximum points of its proven

security, simplicity implementation, speed, its scaleable performance characteristics

make it more flexible for the different demanding environments.

88

REFERENCES

[1] Willim Stallings. Cryptography and Network Security principles and practice.

Third Edition. Prentice-Hall, Upper Saddle River, 2002.

[2] Wade Trappe, and Lawrence C. Washingtone. Cryptography Coding Theory.

Prentice-Hall, Upper Saddle River, 2002.

[3] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[4] SSH Communications Security. "Introduction to cryptography". Retrieved

January 3 , 2004 from the Word Wide Web:

"http://www.ssh.fi/support/cryptography/introduction/cryptanalysis.html".

[5] Xinmiao Zhang, and Kesham K. Parhi. Implementation Approaches for the

Advanced Encryption Standared Algorithms. IEEE Circuits and Systems

Magazine, Volume 2, Number 4, Fourth Quarter 2002.

[6] Senol Bektax, Fakhraddin Mamedov, and Adnan Khashman. Graduate Studies:

A Complete Reference. Near East University, Nicosia- 2001.

[7] George Coulouris, Jean Dollimore, and Time Kindberg, Distributed System

concepts and Design. Third edition 2001.

[8] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and

Niels Ferguson. "Two fish: A 128-Bit Block Cipher", 15 June 1998.

[9] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. "The RC6™Block

Cipher". M.I.T. Laboratory for Computer Science, 545 Technology Square,

Cambridge, RSA Laboratories, Version 1.1, August 20, 1998.

89

[10] Joan Daemen, and Vincent Rijmen. "A Specification for Rijndael, the AES

Algorithm". version 3.2, 4th July 2001.

[11] Carolynn Burwick, Don Coppersmith, and Edward D' Avignon. "MARS -A

Candidate cipher for AES". IBM Corporation, Revised, 22-September 1999.

[12] Ross Anderson', Eli Biham2, and Lars Knudsen3• "Serpent: A Proposal for the

Advanced Encryption Standard". 1 Cambridge University, England, 2 Technion,

Haifa, Israel, 3 University of Bergen, Norway.

[13] DG Abraham, GM Dolan, GP Double, and JV Stevens. "Transaction Security

System", IBM Systems Journal, v 30, no 2, 1991.

[14] Dhiren R. Pate. "The AES Winner". S V Regional Engineering College, Surat

Gujarat, INDIA - 395 007.

[15] Kris Gaj, and Pawel Chodowiec. "Comparison of the hardware performance of

the AES candidates using reconfigurable hardware". George Mason university.

[16] Ramesh Karri 1, Kaijie Wu, Piyush Mishral, and Yongkook Kim. "Concurrent

Error Detection of Fault-Based Side-Channel Cryptanalysis of 128-Bit

symmetric Block Ciphers". ECE Department, Polytechnic University.

[17] Security Technology Group Information Technology Laboratory

NIST. "NIST's Efficiency Testing for Roundl AES Candidates".

[18] Ronald L. Rivest, and Yiqun Lisa Yin. "The Security of the RC6TM Block

Cipher". RSA Laboratories, Version 1.0 - August 20, 1998.

[19] Sophia Antipolis. "Algorithm Selection for MAP Security". Ericsson, 28th-

30th November, 2000.

90

[20] Reto Galli. "MARS encryption algorithm". ECE 575 Project - Winter 2000.

Retrieved August 5, 2003 from the Word Wide Web:

"http://www.islab.oregonstate.edu".

[21] Ross Anderson, and Eli Biham. "A Candidate Block Cipher for the Advanced

Encryption Standard". Retrieved December 28, 2003 from the Word Wide

Web: "http://www.nist.gov/aes".

[22] John Kelsey, Doug Whiting, and David Wagner. "Twofish - Performance vs.

Other Block Ciphers", Counterpane Internet security, Inc., 2003. Retrieved

October 6, 2003 from the Word Wide Web: "http://www.counterpane.com".

[23] Olli Cooper, "Cryptography", last updated 22nd February 200. Retrieved

October 18, 2003 from the Word Wide Web:

"http://www.cs.bris.ac. ulc-cooper/Cryptography''.

[24] Symeon Xenitellis. "guide to PKis and Open-source Implementations". the

Bikers-Home. Retrieved Decmber 22, 2003 from the Word Wide Web:

"http://www.bikershome.com".

[25] Alan SH Lam. "Overview of Cryptographic Algorithms". Last Updated:

Tuesday, 23-Nov-1999. Retrieved October 1, 2003 from the Word Wide

Web: http://itec.erg.cuhk.edu.hk/archive/research/crypt l .htm.

[26] Simson Garfinkel, and Gene Spafford. Practical UNIX and Internet

SecuritySecond Edition, April 1996.

[27] Mihir Bellare, and Phillip Rogaway. "Introduction to Modem Cryptography".

Retrieved October 19, 2003 from the Word Wide Web:

"http://www.cs.ucsd.edu/users/mihir/cse 107 /".

91

[28] Thomas Holenstein, Michele Wigger, Renato Renner, and Robert Konig.

"Information Security and cryptography Research Group". Institute of

therotical Computer Science. Retrieved January 7, 2004 from the Word Wide

"Web: http://www.crypto.ethz.ch/".

[29] Gary Kessler. "An Overview of Cryptography". Retrieved September 6, 2003

from the Word Wide Web: "http://www.garykessler.net/library".

[30] "Overview cryptography algorithm". Retrieved Augusts 22, 2003 from the

Word Wide Web: "http://com2mac.postech.ac.kr/openschool".

[31] Carolyn Burwick', Don Coppersmith'; Edward Avignon 1, and Mohammed

Peyraviarr'. "The MARS Encryption Algorithm". 1IBM Corporation,

Poughkeepsie, NY 12601, USA, 2IBM T. J. Watson Research, Yorktown

Heights, NY 10598, USA, 3IBM Corporation, Research Triangle Park, NC

27709, USA, August 27,1999.

[32] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson.

"Twofish: A 128-bit Block Cipher". AES submission, June 1998, Retrieved

November 23, 2003 from the Word Wide Web:

"http://www.counterpane.corn/twofish.html"

[33] Invor Horton, and Allan Stokes. "Beginning Visual C++ 6", First Edition,

August 1998.

[34] PBS website. "The Playfair Cipher". Retrieved December 12, 2003 from the

Word Wide web:"http://www.math.temple.edu/-renault/cryptology.html".

[35] softpedia™.com. "ActiveSkin4.3". Retrieved October 25, 2003 from the Word

wide Web: "http://www.softpedia.com/public/scripts/downloadhero".

92

[36] John J. G. Savard. "A Cryptographic Compendium: The Hill Cipher".

Retrieved November 23, 2003 from the Word Wide Web:

"http://home.ecn.ab.ca/-j savard/crypto/ro020103 .htm"

[37] Peter Meyer." An Introduction to the Use of Encryption". Originally written

January 994, Raised July 1997. Retrieved October 6, 2003 from the Word

Wide Web: "http://www.hermetic.ch/index.html".

[38] William Stallings. Network Security Essentials: Applications And Standards.

2000 by Prentice-hall, Inc, Upper Saddle River, New Jersey 07458.

93

APPENDIX A

II RC6Dlg.cpp: implementation file

#include "stdafx.h"

#include "RC6.h"

#include "RC6Dlg.h"

#include "DlgRecever.h"

#include "DlgSending.h"

#include "math.h"

#include "KeyDlg.h"

#include "DecDlg.h"

#include <string.h>

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS _FILE

static char THIS_FILE[] = _FILE_;
#endif

#define R 20

#define W 32

CString Filename,encryfile;
I I I I I I I I I I II I I I I I I I I I I I I I I II I I I I I II I I I I I II II I I I I I I I II I I II I I I I I I II I I II I I I I I I /I

II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

CAboutDlg();

II Dialog Data
II{ {AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };

II} }AFX_DATA
I I Class Wizard generated virtual function overrides

II{ {AFX_ VIRTUAL(CAboutDlg)

94

protected:

virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support

//} }AFX_ VIRTUAL

II Implementation

protected:

//{ {AFX_MSG(CAboutDlg)

//} }AFX_MSG

DECLARE MESSAGE MAP() - -
} ;

CAboutDlg::CAboutDlg(): CDialog(CAboutDlg::IDD)

{

//{ {AFX_DATA-'-_INIT(CAboutDlg)

//} }AFX_DATA_INIT

}

void CAboutDlg: :DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);

//{ {AFX_DATA_MAP(CAboutDlg)

//} }AFX_D~TA_MAP

}

BEGIN_ MESSAGE_ MAP(CAboutDlg, CDialog)

//{ {AFX_MSG_MAP(CAboutDlg)

II No message handlers

//} }AFX_MSG_MAP

END MESSAGE MAP() - -

/II I I/ I I II II I/ I I I/////// I//////////// I////// I I/ I I I I I I I I I I I II I///// I I I I/ II I I II I////// I I II I I I I I I I/////////// I I II I I/ I I I I I I I I I I

II CRC6Dlg dialog
CRC6Dlg::CRC6Dlg(CWnd* pParent /*=NULL*/)

: CDialog(CRC6Dlg::IDD, pParent)

{

95

II{ {AFX_DATA_INIT(CRC6Dlg)

m Radl = -1 · - '
II} }AFX_DATA_INIT
II Note that Loadlcon does not require a subsequent Destroylcon in Win32

m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

}

void CRC6Dlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);

II{ {AFX_DATA_MAP(CRC6Dlg)

DDX_Radio(pDX, IDC_RADIOl, m_Radl);

II} }AFX_DATA_MAP

}

BEGIN _MESSAGE_ MAP(CRC6Dlg, CDialog)

II{ {AFX_MSG_MAP(CRC6Dlg)

ON_ WM_SYSCOMMAND()

ON_WM_PAINT()

ON_ WM_QUERYDRAGICON()

ON _BN _ CLICKED(IDC _ BUTTON 1, OnEnc)

ON _BN _ CLICKED(IDC _ BUTTON2, OnDEC)

ON_BN_CLICKED(IDC_BUTTON4, OnReceive)

ON_BN_ CLICKED(IDC_BUTTON5, OnSending)

ON_BN_CLICKED(IDC_RADIOl, OnRadiol)

ON_ BN _ CLICKED(IDC _ RADI02, OnRadio2)

ON_BN_ CLICKED(IDC_BUTTON3, OnButton3)

II} }AFX_MSG_MAP

END _MESSAGE_MAP()
I II

II CRC6Dlg message handlers

BOOL CRC6Dlg: :OninitDialog()

{

CDialog: :OninitDialog();

96

I I Add "About ... " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(F ALSE);

if (pSysMenu != NULL)

{
CString strAboutMenu;

strAboutMenu.LoadString(IDS _ ABOUTBOX);

if (! strAboutMenu.IsEmpty())

{
pSysMenu-> AppendMenu(MF _ SEP ARA TOR);

pSysMenu-> AppendMenu(MF _ STRING,IDM _ABOUTBOX,

trAboutMenu);

}

}
II Set the icon for this dialog. The framework does this automatically

II when the application's main window is not a dialog

Setlcon(m_hlcon, TRUE); II Set big icon

Setlcon(m _ hlcon, FALSE); I I Set small icon

II TODO: Add extra initialization hereO

m_Radl=l;

GetDlgltem (IDC_BUTTONS) -> EnableWindow (FALSE);

UpdateData(F ALSE);

CComQIPtr<ISkin> pSkin = GetDl.gltem(IDC _ SKIN22)-

>GetControlUnknown();

pSkin-> ApplySkin((long)m _h Wnd);

return TRUE; II return TRUE unless you set the focus to a control

}

void CRC6Dlg::OnSysCommand(UINT nID, LPARAM lParam)

{
if ((nID & OxFFFO) == IDM_ABOUTBOX)

97

{

CAboutDlg dlgAbout;

dlgAbout.DoModal();

}

else

{
CDialog: :OnSysCommand(nID, lParam);

}

}

II lfyou add a minimize button to your dialog; you will need the code below

II to draw the icon. For MFC applications using the document/view model,

II this is automatically done for you by the framework.

void CRC6Dlg::OnPaint()

{

if (Islconic())

{
CPaintDC dc(this); II device context for painting

SendMessage(WM _ICONERASEBKGND, (WP ARAM)

dc.GetSafeHdc(), O);

II Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);

int cylcon = GetSystemMetrics(SM_CYICON);

CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxlcon + 1) I 2;
int y = (rect.Height() - cylcon + 1) I 2;
II Draw the icon

dc.Drawlcon(x, y, m_hlcon);

}

else

{

98

CDialog: :OnPaint();

}

}

II The system calls this to obtain the cursor to display while the user drags

II the minimized window.

HCURSOR CRC6Dlg: :OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;

}

void CRC6Dlg::OnEnc()

{
II TODO: Add your control notification handler code here

UpdateData(TRUE);

CKeyDlg dlg;

int Key _leng;

char getkey[16];

CProgressCtrl * p=(CProgressCtrl *) GetD lgltem(IDC _PR OGRESS 1);

p->SetRange(O, 1000);

p->SetPos(O);

if(dlg.DoModal() !=IDCANCEL)

{
Key _leng=dlg.m _Key.GetLength();

if (Key_leng==16)lllenght of key is 128 or 16 bayte

{
strcpy(getkey,dlg.m _Key);

KeyGen(getkey);

UpdateData(TRUE);

Filename= dlg.m _ encfile;

encryfile= dlg.decfile;

int time=dlg.m _iteration;

Encryption(time);

99

for(int j= 1 ;j<l OOO;j++)

p->SetPosG);

MessageBox("Encryption operation

Sucessefully" ,"Encryption" ,MB_ OK);

p->SetPos(O);

}else

MessageBox("Encryption Operation Failed Enter Correct Private

Key", "Encryption" ,MB_ OK);

}

}

void CRC6Dlg::OnDEC()

{
II TODO: Add your control notification handler code here

UpdateData(TRUE);

CDecDlg dlg;

int Key _leng;

char getkey[l 6];

CProgressCtrl * p=(CProgressCtrl *) GetD lgltem(IDC _ PROGRESS 1);

p->SetRange(O, 1000);

p->SetPos(O);

if(dlg.DoModal() !=IDCANCEL)

{
Key _leng=dlg.m _pkey. GetLength();

if (Key _Ieng== 16)1 llenght of key is 128 or 16 bayte

{
strcpy(getkey ,dlg.m _pkey);

KeyGen(getkey);

UpdateData(TRUE);

encryfile= dlg.m _ encfile;

Filename= dlg.decfile;

int time=dlg.m_iteration;

100

Decryption(time);

for(int j= 1 ;j<l OOO;j++)

p->SetPos(i);

MessageBox("Decryption Sucessefully", "Decryption" ,MB_ OK);

p->SetPos(O);

}else MessageBox("Decryption Operation Failed Enter

Correct Private Key","Decryption",MB_OK);

}

}

DWORD CRC6Dlg::RightRotate(DWORD dwVar, DWORD dwOffset)

{

DWORD templ, temp2;

templ = dwVar << (W - dwOffset);

temp2 = dwVar >> dwOffset;

temp2 = temp2 I temp 1;

return temp2;

}

DWORD CRC6Dlg::OffsetAmount(DWORD dwVar)

{
int nLgw = (int)(log((double)W)/log(2.0));

dwVar = dwVar << (W - nLgw);

dwVar = dwVar >> (W - nLgw);

return dwVar;

}

DWORD CRC6Dlg::LeftRotate(DWORD dwVar, DWORD dwOffset)

{
DWORD templ, temp2;

templ = dwVar >> (W - dwOffset);

temp2 = dwVar << dwOffset;

temp2 = temp2 I temp 1 ;

101

return temp2;

}

void CRC6Dlg::KeyGen(char dwKeyl [16])

{

DWORD P32 = OxB7E15163;

DWORD Q32 = Ox9E3779B9;

DWORD i, A, B,k,j,t;

DWORD dwKey[4];

for(k= O; k <4; ++k)

dwKey[k] = ((DWORD *)dwKeyl)[k];

m_dwS[O] = P32;

for(i = 1; i < 2 * R + 4; i++){

m~dwS[i] = m_dwS[i - 1] + Q32;

i =A= B =j= O;

t=3;

int v = 3 * max(l, 2 * R + 4);

for(int s = 1; s <= v; s++)

{

A= m_dwS[i] = LeftRotate(m_dwS[i] +A+ B, OffsetAmount(3));

B = dwKey[j] = LeftRotate(dwKey[j] +A+ B, OffsetAmount(A + B));

i = (i + 1) % (2 * R + 4);
j = (j == t ? 0 : j + 1);

}

}

void CRC6Dlg::Encryption(int timel)

{

CFile MyFile,MyFile 1;

DWORD pdwTemp[4];

My File. Open(Filename, CFile: :modeReadWrite);

My File I .Open(encryfile,CFile: :modeCreate I CFile: :mode Write);

102

DWORDLen;

Len=MyFile.GetLength();

DWORD DwLen=Len/16;

DWORD DwRem=Len%16;

for(int i=O;i<DwLen;i++) {

MyFile.Read(pdwTemp,16);llthe second parameter is the No of the

for(int i=O;i<time 1 ;i++){

pdwTemp[O] = (pdwTemp[O] - m_dwS[2 * R + 2]);
pdwTemp[2] = (pdwTemp[2] - m_dwS[2 * R + 3]);
for(int j = R; j >= 1 ; j--)

{

DWORD temp= pdwTemp[3];

pdwTemp[3] = pdwTemp[2];

pdwTemp[2] = pdwTemp[l];

pdwTemp[l] = pdwTemp[O];

pdwTemp[O] = temp;

DWORD t = LeftRotate((pdwTemp[l] * (2 * pdwTemp[l] + 1)),

OffsetArnount((DWORD)(log((double)W)/log(2.0))));

DWORD u = LeftRotate((pdwTemp[3] * (2 * pdwTemp[3] + 1)),

OffsetArnount((DWORD)(log((double)W)llog(2.0))));

pdwTemp[O] = (RightRotate((pdwTemp[O] - m_dwS[2 * j]),
OffsetArnount(u))) /\ t;

pdwTemp[2] = (RightRotate((pdwTemp[2] - m_dwS[2 * j + l]),
OffsetArnount(t))) /\ u;

}
pdwTemp[l] = (pdwTemp[l] - m_dwS[O]);

pdwTemp[3] = (pdwTemp[3] - m_dwS[l]);

}
My File 1. Write(pdwTemp, 16);

}

Ill for reminder begin

if (DwRem!=O){

103

pdwTemp[O]=OxOOOOOOOO;

pdwTemp[l]=OxOOOOOOOO;

pdwTemp[2]=0xOOOOOOOO;

pdwTemp[3]=OxOOOOOOOO;

MyFile.Read(pdwTemp,16);//the second parameter is the No of key

for(int i=O;i<timel;i++){

pdwTemp[O] = (pdwTemp[O] - m_dwS[2 * R + 2]);
pdwTemp[2] = (pdwTemp[2] - m_dwS[2 * R + 3]);
for(int j = R; j >= 1; j--)

{

DWORD temp= pdwTemp[3];

pdwTemp[3] = pdwTemp[2];

pdwTemp[2] = pdwTemp[l];

pdwTemp[l] = pdwTemp[O];

pdwTemp[O] = temp;

DWORD t = LeftRotate((pdwTemp[l] * (2 * pdwTemp[l] + 1)),

OffsetAmount((DWORD)(log((double)W)/log(2.0))));

DWORD u = LeftRotate((pdwTemp[3] * (2 * pdwTemp[3] + 1)),

OffsetAmount((DWORD)(log((double)W)/log(2.0))));

pdwTemp[O] = (RightRotate((pdwTemp[O] - m_dwS[2 * j]),
OffsetAmount(u))) I\ t;

pdwTemp[2] = (RightRotate((pdwTemp[2] - m_dwS[2 * j + 1]),
Off setAmount(t))) I\ u;

}

pdwTemp[l] = (pdwTemp[l] - m_dwS[O]);

pdwTemp[3] = (pdwTemp[3] - m_dwS[l]);

}

MyFile 1. Write(pdwTemp, 16);

}//end

MyFilel.Close();

MyFile.Close();

MyFile.Remove(Filename);

}

104

void CRC6D lg: :Decryption(int time 1)

{

CFile MyFile,MyFile2;

DWORD pdwTemp[4];

MyFile.Open(Filename, CFile::modeCreate I CFile::modeWrite);

MyFile2.0pen(encryfile, CFile: :modeRead);

DWORD Len=MyFile2.GetLength();

DWORD DwLen=Len/16;

DWORD DwRem=Len%16;

for (int i=O;i<DwLen;i++){

MyFile2.Read(pdwTemp, 16);//the second p

for(int i=O;i<time 1 ;i++) {

pdwTemp[l] = (pdwTemp[l] + m_dwS[O]);

pdwTemp[3] = (pdwTemp[3] + m_dwS[l]);

for(int j = 1; j <= R; j++)

{
DWORD t = LeftRotate((pdwTemp[l] * (2 * pdwTemp[l] + 1)),

OffsetAmount((DWORD)(log((double)W)/log(2.0))));

DWORD u = LeftRotate((pdwTemp[3] * (2 * pdwTemp[3] + 1)),

OffsetAmount((DWORD)(log((double)W)/log(2.0))));

pdwTemp[O] = (LeftRotate(pdwTemp[O] I\ t, OffsetAmount(u)) +

m_dwS[2 * j]);
pdwTemp[2] = (LeftRotate(pdwTemp[2] I\ u, OffsetAmount(t)) +

m_dwS[2 * j + 1]);
DWORD temp= pdwTemp[O];

pdwTemp[O] = pdwTemp[l];

pdwTemp[l] = pdwTemp[2];

pdwTemp[2] = pdwTemp[3];

pdwTemp[3] = temp;}

pdwTemp[O] = (pdwTemp[O] + m_dwS[2 * R + 2]);
pdwTemp[2] = (pdwTemp[2] + m_dwS[2 * R + 3]);

}
My File. Write(pdwTemp, 16);

105

}

I I I for reminder begin

if (DwRem!=O){

pdwTemp[O]=OxOOOOOOOO;

pdwTemp[1]=OxOOOOOOOO;

pdwTemp[2]=0xOOOOOOOO;

pdwTemp[3]=OxOOOOOOOO;

MyFile2.Read(pdwTemp, 16);

for(int i=O;i<time 1 ;i++) {

pdwTemp[l] = (pdwTemp[l] + m_dwS[O]);

pdwTemp[3] = (pdwTemp[3] + m_dwS[l]);

for(int j = 1 ; j <= R; j++)

{
DWORD t = LeftRotate((pdwTemp[l] * (2 * pdwTemp[l] + 1)),

OffsetAmount((DWORD)(log((double)W)llog(2.0))));

DWORD u = LeftRotate((pdwTemp[3] * (2 * pdwTemp[3] + 1)),

OffsetAmount((DWORD)(log((double)W)/log(2.0))));

pdwTemp[O] = (LeftRotate(pdwTemp[O] I\ t, OffsetAmount(u)) +

m_dwS[2 * j]);
pdwTemp[2] = (LeftRotate(pdwTemp[2] I\ u, OffsetAmount(t)) +

m_dwS[2 * j + 1]);
DWORD temp= pdwTemp[O];

pdwTemp[O] = pdwTemp[l];

pdwTemp[l] = pdwTemp[2];

pdwTemp[2] = pdwTemp[3];

pdwTemp[3] = temp;

}

pdwTemp[O] = (pdwTemp[O] + m_dwS[2 * R + 2]);
pdwTemp[2] = (pdwTemp[2] + m_dwS[2 * R + 3]);

}

My File. Write(pdwTemp, 16);

106

}

MyFile.Close();

MyFile2.Close();

MyFile2.Remove(encryfile);

///end

}

void CRC6D1g: :OnReceive()

{

II TODO: Add your control notification handler code here

CDlgRecever dlgl;

dlgl .DoModal();

}

void CRC6D1g::0nSending()

{

CDlgSending dlg;

dlg.DoModal();

}

void CRC6D1g::OnRadio1()

{

II TODO: Add your control notification handler code here

UpdateData (TRUE);

if(m _ Radl ==O)

{

GetDlgltem (IDC_BUTTON5)-> EnableWindow (TRUE);

GetDlgitem (IDC_BUTTON4) -> Enable Window (FALSE);

}

else{

GetDlgitem (IDC_BUTTON5) -> Enable Window (FALSE);

GetDlgitem (IDC_BUTTON4) -> Enable Window (TRUE);

}

107

}

void CRC6D1g::OnRadio2()

{

II TODO: Add your control notification handler code here

UpdateData (TRUE) ;

if(rn _Rad 1 == 1) {
GetDlgltern (IDC_BUTTON4) -> Enable Window (TRUE);

GetDlgltern (IDC_BUTTON5) -> Enable Window (FALSE);

}

else{

GetDlgltern (IDC_BUTTON5) -> Enable Window (FALSE);

GetDlgltern (IDC_BUTTON4) -> Enable Window (TRUE);

}

}

void CRC6D1g::OnButton3()

{

CDialog: :OnCancel();

}

I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I /I II II II

II RC6D1g.h: header file

#if

!defined(AFX_RC6DLG_H_OF7B45E7 _E761_11D7 _9DDC_8BC8A 7F56F3F_INC

LUDED_)

#define

AFX RC6DLG H OF7B45E7 E761 11D7 9DDC 8BC8A7F56F3F INCLUDED - - - -

#if MSC VER > 1000 - -

#pragrna once

#endif // MSC VER > 1000 - -

#define R 20

#import "actskn43.ocx" no_irnplernentation raw_interfaces_only raw_native_types

108

using namespace ACTIVESKINLib;

#include "atlbase.h"

I I I I I I I I I I II I I I I I I I I I II I/ I I I I II I I I I II I/ I I I I I I I

II CRC6Dlg dialog

class CRC6Dlg : public CDialog

{

I I Construction

public:

CRC6Dlg(CWnd* pParent = NULL);
I I Dialog Data

II{ {AFX_DATA(CRC6Dlg)

enum { IDD = IDD_RC6_DIALOG };

int m_Radl;

II} }AFX_DATA

II ClassWizard generated virtual function overrides

I I standard constructor

II{ {AFX_ VIRTUAL(CRC6Dlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); IIDDXIDDV

support

II} }AFX_ VIRTUAL

II Implementation

protected:

DWORD m_dwS[2*R+4];

HICON m_hlcon;

II Generated message map functions

II{ {AFX_MSG(CRC6Dlg)

virtual BOOL OnlnitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

afx _ msg void OnPaint();

afx_msg HCURSOR OnQueryDragicon();

afx_msg void OnEnc();

afx_msg void OnDEC();

afx_msg void OnReceive();

109

afx_msg void OnSending();

afx_msg void OnRadiol();

afx msg void OnRadio2();

afx_msg void OnButton3();

//} }AFX_MSG

DECLARE MESSAGE MAP() - -

private:
void Encryption(int time 1);

void Decryption(int time 1);

void KeyGen(char dwKeyl [16]);

DWORD LeftRotate(DWORD dwVar, DWORD dwOffset);

DWORD OffsetAmount(DWORD dwVar);

DWORD RightRotate(DWORD dwVar, DWORD dwOffset);

} ;

//{ {AFX_INSERT_LOCATION}}

II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif //
!defined(AFX_RC6DLG_H_OF7B45E7 _E761_11D7 _9DDC_8BC8A 7F56F3F_INC

LUDED_)
//I/I/I/I/ I//////I ///I/I//////// I/ I/ I/// I//// I I/ I I/ I/////// I I/////////////// I/ I I////// I// I/ I////////////////////// I///// I I/

II RC6.cpp : Defines the class behaviors for the application.

#include "stdafx.h"

#include "RC6.h"

#include "RC6Dlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS_ FILE[] = _FILE_;

#endif
//II/I/ I I////////// I I//////// I// I/ I//// I/ I/ I/ I///////// I/ I/ I///////// I// I// I I//////// I// I I///////////// I////// II////// I////

110

II CRC6App

BEGIN_ MESSAGE _MAP(CRC6App, CWinApp)

II{ {AFX_MSG_MAP(CRC6App)

II NOTE - the Class Wizard will add and remove mapping macros here.

II DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG

ON_ COMMAND(ID _HELP, CWinApp: :OnHelp)

END MESSAGE MAP() - -
I I I I I I I I I I II II I/ I I I I I I I I I I I II

II CRC6App construction

CRC6App: :CRC6App()

{
II TODO: add construction code here,

II Place all significant initialization in Initlnstance

}
I I I I I II I I I I II II II I I I I I I I I I I I

II The one and only CRC6App object

CRC6App theApp;

II CRC6App initialization

BOOL CRC6App: :Initlnstance()

{
if (!AfxSocketlnit())

{
AfxMessageBox(IDP _SOCKETS_ INIT _FAILED);

return FALSE;

}

AfxEnableControlContainer();

II Standard initialization
I I If you are not using these features and wish to reduce the size

II of your final executable, you should remove from the following

II the specific initialization routines you do not need.

111

#ifdef AFXDLL

Enable3dControls(); II Call this when using MFC in a shared

DLL

#else
Enable3dControlsStatic(); II Call this when linking to MFC statically

#endif

CRC6Dlg dlg;

m__pMainWnd = &dlg;

int nResponse = dlg.DoModal();

if (nResponse == IDOK)

{
II TODO: Place code here to handle when the dialog is

II dismissed with OK

}
else if (nResponse = IDCANCEL)

{
II TODO: Place code here to handle when the dialog is

I I dismissed with Cancel

}
II Since the dialog has been closed, return FALSE so that we exit the

II application, rather than start the application's message pump.

return FALSE;

}
I II I I I I I I I I II I I I I I I I I I

II RC6.h: main header file for the RC6 application

#if
!defined(AFX_RC6_H_OF7B45E5 _E761_11D7 _9DDC_8BC8A 7F56F3F_INCLUD

ED_)

#define
AFX RC6 H OF7B45E5 E761 11D7 9DDC 8BC8A7F56F3F INCLUDED - - - - - -
#if MSC VER > 1000 - -

#pragma once

112

#endif II MSC VER> 1000 - -
#ifndef AFXWIN H

#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" I I main symbols

I

II CRC6App:

II See RC6.cpp for the implementation of this class

II

class CRC6App : public CWinApp

{

public:

CRC6App();

II Overrides
II Class Wizard generated virtual function overrides

II{ {AFX_ VIRTUAL(CRC6App)

public:

virtual BOOL Initlnstance();

II} }AFX_ VIRTUAL

I I Implementation

II{ {AFX_MSG(CRC6App)

II NOTE - the Class Wizard will add and remove member functions here.

II DO NOT EDIT what you see in these blocks of generated code !

II} }AFX_MSG

DECLARE _MESSAGE _MAP()

} ;
I II II II

II{ {AFX_INSERT_LOCATION}}

II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

113

#endif //

!defined(AFX_ RC6 _ H_OF7B45E5 _ E761_ 11D7 _9DDC _ 8BC8A 7F56F3F_INCLUD

ED_)

/II I I I I/ I I II I/ II I I/ I I I I I I I I I I/ I I I/ I I I/ I I I I I I I I I I I I I/ I I I I I I I I I I I I I I/ I I I I I I I I I/ I I I I I/ I I I I I I I I I I I I I I/ I

II KeyDlg.cpp: implementation file

#include "stdafx.h"

#include "RC6.h"

#include "KeyDlg.h"

#include "RC6Dlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS FILE[] = FILE ; - - -

#endif
I I I I I I I I I /I I I I/ I I I I I I I I I I/ I I I I I I I I I I I I I I I I/ I I I I I I I/ I I I/ I I I I I I I/ I I I I I I I I I I/ I I I I I I/ I I I I I I I I I I I I I I/ I I I I I I I I I I/ I I I I I I I I I I I I I I I I

II CKeyDlg dialog
CKeyDlg: :CKeyDlg(CWnd* pParent /*=NULL * I)

: CDialog(CKeyDlg::IDD, pParent)

{
//{ {AFX_DATA_INIT(CKeyDlg)

m_Key = _T('"');

m _iteration = O;

m encfile = T('"'); - -
//} }AFX_DATA_INIT

}

void CKeyDlg: :DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);

//{ {AFX_DATA_MAP(CKeyDlg)

DDX_Text(pDX, IDC_EDITl,m_Key);

DDX _ Text(pDX, IDC _ ED1T2,m _iteration);

114

DDX_Text(pDX, IDC_EDIT3, m_encfile);

II} }AFX_DATA_MAP

}

BEGIN _MESSAGE_ MAP(CKeyDlg, CDialog)

II{ {AFX_MSG_MAP(CKeyDlg)

ON_BN_CLICKED(IDC_BUTTONl, OnButtonl)

II} }AFX_MSG_MAP

END _MESSAGE_MAP()
I

II CKeyDlg message handlers

void CKeyDlg: :OnOK()

{
II TODO: Add extra validation here

CDialog: :OnOK();

}

void CKeyDlg::OnCancel()

{

II TODO: Add extra cleanup here

CDialog: :On Cancel();

}

BOOL CKeyDlg: :OnlnitDialog()

{
CDialog: :OnlnitDialog();

II TODO: Add extra initialization here
CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SK1N22)­

GetContro1Unknown();

pSkin-> ApplySkin((long)m _ h Wnd);

return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

}

115

void CKeyDlg::OnButtonl()

{

II TODO: Add your control notification handler code here

IICString encfile;

CFileDialog m_IdFile (TRUE,NULL, NULL, OFN_HIDEREADONLY,"text

iles/* .txt");

m_IdFile.m_ofn.lpstrlnitialDir = "c:\\";

if (m.:._IdFile.DoModal() != IDCANCEL){

m_encfile = m_IdFile.GetPathName();

decfile=(m_IdFile.GetFileTitle() + ".Cryl ");
UpdateData(F ALSE);

}else MessageBox("Please Select File To Complet

ncryption","Encryption",MB_OK);

}

I II II II II I I I I I

if

!defined(AFX_KEYDLG_H_OF7B45EF _E761_11D7 _9DDC_8BC8A 7F56F3F_INC

LUDED_)

#define

AFX KEYDLG H OF7B45EF E761 11D7 9DDC 8BC8A7F56F3F INCLUDED - - - - - -
#if MSC VER > 1000 - -
#pragma once

#endif II MSC VER> 1000 - -
II KeyDlg.h: header file

II
I II II II I I I I I II I I I I I I II I I I I I I I I I I II

II CKeyDlg dialog

class CKeyDlg : public CDialog

{

II Construction

public:

CString decfile;
CKeyDlg(CWnd* pParent = NULL); II standard constructor

116

II Dialog Data

II{ {AFX_DATA(CKeyDlg)

enum { IDD = IDD_KEY_DIALOG };

CString

int

m_Key;

m_iteration;

CString m _ encfile;

II} }AFX_DATA

I I Overrides
II Class Wizard generated virtual function overrides

II{ {AFX_ VIRTUAL(CKeyDlg)

protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support

II} }AFX_ VIRTUAL

I I Implementation

protected:

II Generated message map functions

II{ {AFX_MSG(CKeyDlg)

virtual void OnOK();

virtual void OnCancel();

virtual BOOL OnlnitDialog();

afx_msg void OnButtonl();

II} }AFX_MSG

DECLARE_ MESSAGE _MAP()

};

II{ {AFX_INSERT_LOCATION}}
II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif II
!defined(AFX_KEYDLG_H_OF7B45EF _E761_11D7 _9DDC_8BC8A7F56F3F_INC

LUDED_).
I II I I I I I I I I I I I I I I II II I I I I I I I I I I I II

117

II stdafx.h : include file for standard system include files,

II or project specific include files that are used frequently, but

I I are changed infrequently

II

#if
!defined(AFX STDAFX H OF7B45E9 E761 11D7 9DDC 8BC8A7F56F3F INC - -- - - - - -
LUDED_)

#define
AFX_STDAFX_H_OF7B45E9 _E761_11D7 _9DDC_8BC8A 7F56F3F_INCLUDED

#if MSC VER > 1000 - -

#pragma once

#endif II MSC VER> 1000 - -

#define VC_EXTRALEAN II Exclude rarely-used stuff from Windows headers

#include <afxwin.h>

#include <afxext.h>

#include <afxdisp.h>

II MFC core and standard components

I I MFC extensions

II MFC Automation classes

#include <afxdtctl.h> II MFC support for Internet Explorer 4 Common Controls

#ifndef _AFX_NO_AFXCMN_SUPPORT

#include <afxcmn.h> II MFC support for Windows Common Controls

#endif II AFX NO AFXCMN SUPPORT - - - -

#include <afxsock.h> II MFC socket extensions

II{ {AFX_INSERT_LOCATION}}
II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif II
!defined(AFX_STDAFX_H_OF7B45E9 _E761_11D7 _9DDC_8BC8A 7F56F3F_INC

LUDED_)

118

II DlgSending.cpp : implementation file

#include "stdafx.h"

#include "RC6.h"

#include "DlgSending.h"

#include "RC6Dlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS_FILE[] = _. FILE_;

#endif
I I I I I I I I I I II II II I I I I I I I I I I I I I I II I I I I I I I I I I I I I II I I I I

II CDlgSending dialog
CDlgSending: :CDlgSending(CWnd * pParent I*= NULL*/)

: CDialog(CDlgSending::IDD, pParent)

{
II{ {AFX_DATA_INIT(CDlgSending)

m_SeFile = _T(''");
II} }AFX_DATA_INIT

}

void CDlgSending: :DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);

II{ {AFX_DATA_MAP(CDlgSending)

DDX_Text(pDX, IDC_EDITI, m_SeFile);

II} }AFX_DATA_MAP

}

BEGIN_ MESSAGE_ MAP(CDlgSending, CDialog)

II{ {AFX_MSG_MAP(CDlgSending)

ON_BN_CLICKED(IDC_BUTTONI, OnSelect_File)

ON_ BN _ CLICKED(IDOK, OnSendFile)

II} }AFX_MSG_MAP

119

END_MESSAGE_MAP()

I II II I I I I Ill I

II CDlgSending message handlers

void CDlgSending::OnSelect_File()

{

II TODO: Add your control notification handler code here

CString ResveFile;

CFileDialog m_IdFile (TRUE,NULL, NULL, OFN_HIDEREADONLY,"text

files]" .txtlencrypt file]" .cryl ");

m_IdFile.m_ofn.lpstrinitialDir = "c:\\";

if (m_IdFile.DoModal() != IDCANCEL){

ResveFile = m_IdFile.GetPathName();

m _ SeFile=ResveFile;

UpdateData(F ALSE);

}else MessageBox("Please Select File To Complete Sending

Operation","Sending",MB_OK);

}

void CDlgSending::OnSendFile()

{
II TODO: Add your control notification handler code here

UpdateData(TRUE);

if (m_SeFile !=""){

#define port 34000

CProgressCtrl *p=(CProgressCtrl *) GetDlgltem(IDC _ PROGRESS 1);

p->SetRange(O, 1000);

p->SetPos(O);

AfxSocketinit(NULL);

CSocket socketSrvr;

socketSrvr.Create (port);

socketSrvr.Listen();

CSocket socketRecv;

socketSrvr.Accept(socketRecv);

120

CFile myfile;

myfile.Open (m _ SeFile,CFile: :modeReadjCFile: :typeBinary);

int myfileLength = myfile.GetLength ();

socketRecv.Send(&myfileLength,4);

byte* data= new byte[myfileLength];

myfile.Read (data, myfileLength);

socketRecv.Send (data, myfileLength);

myfile.Close();

delete data;

socketRecv.Close();

for(int j=l ;j<l OOO;j++)

p->SetPosG);

MessageBox("Sending Operation Sucessefully", "Sending operation" ,MB_ OK);

p->SetPos(O);

}else MessageBox("Sending Operation Faliled Write file name and try

again","Sending operation",MB_OK);

}

BOOL CDlgSending: :OnlnitDialog()

{

CDialog: :OnlnitDialog();

II TODO: Add extra initialization here
CComQIPtr<ISkin> pSkin = GetD1gltem(IDC _ SKIN21)-

>GetControlUnknown();

pSkin-> ApplySkin((long)m _ h Wnd);
return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

}
I II II II

#if
!defined(AFX_DLGSENDING_H_CB88E9AA_EE18_ 4264_B416_EF4ED41812F4 _

_ INCLUDED_)

121

#define
AFX_DLGSENDING_H_CB88E9AA_EE18_ 4264_B416_EF4ED41812F4 INCLU

DED

#if MSC VER> 1000 - -
#pragma once

#endif // MSC VER> 1000 - -
II DlgSending.h : header file
//II/I/ I I/ I I/ I I/ I/// I I/ I// I I/ I/ I/ I/ I// I/ I I// I/ I I/ I I// I/ I// I// I I// I/ I I/ I I// I I//// I I//// I I/ I I/ I// I I/ I/// I/ I/ I I// I//// I I/ I/ I//

II CDlgSending dialog

class CDlgSending : public CDialog

{

II Construction

public:
CDlgSending(CWnd* pParent = NULL); // standard constructor

II Dialog Data
// { { AFX _ DAT A(CDlgSending)

enum { IDD = IDD_Sending };

CString m_SeFile;

//} }AFX_DATA

// Overrides
II Class Wizard generated virtual function overrides

//{ {AFX_ VIRTUAL(CDlgSending)

protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support

//} }AFX_ VIRTUAL

II Implementation

protected:
II Generated message map functions

//{ {AFX_MSG(CDlgSending)

afx_msg void OnSelect_File();

afx_msg void OnSendFile();

virtual BOOL OnlnitDialog();

//} }AFX_MSG

122

DECLARE_MESSAGE_MAP()

};

//{ {AFX_INSERT_LOCATION}}

II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif II
!defined(AFX_DLGSENDING_H_CB88E9AA_EE18_ 4264_B416_EF4ED41812F4 _

_ INCLUDED_)
//II I I I II/ I I I/ I I II/ I I/ I I I/ I I I/ I I I/ I I I I/ I II/ I I I/ I I I/ I I I I I/ I I I I I I I I I/ I I I/ I I I/ I I I I I I I/ I I I I/ I I I/ I I I I I I I I I I I I I I I I I I/ I I I/ I I I I I I I I

II DlgRecever.cpp : implementation file

#include "stdafx.h"

#include "RC6.h"

#include "DlgRecever.h"

#include "RC6Dlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS _FILE[] = _FILE_;

#endif
/III/ I I I/ I I I/ I I I I/ I I/ I I I I/ I I I/ I I I/ I I I/ I I I I/ I I/ I I I I I I I I I/ I I I I I I I I I I I I I/ I I I II/ I I/ I I I/ I I I I I I I I I I II I/ I I I I I/ I I I I I I/ I I I I I I I/ I I I I I

II CDlgRecever dialog
CDlgRecever: :CDlgRecever(CWnd* pParent /*=NULL * I)

: CDialog(CDlgRecever::IDD, pParent)

{
//{ {AFX_DATA_INIT(CDlgRecever)

m_Jp = _T("");

m_RFile = _T('"');

//} }AFX_DATA_INIT

}

void CDlgRecever: :DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange(pDX);

II{ {AFX_DATA_MAP(CDlgRecever)

DDX_Text(pDX, IDC_EDITl, m_Ip);

DDX_Text(pDX, IDC_EDIT2, m_RFile);

II} }AFX_DATA_MAP

}

BEGIN_ MESSAGE_ MAP(CDlgRecever, CDialog)

II{ {AFX_MSG_MAP(CDlgRecever)

ON_ BN _ CLICKED(IDOK, OnReceveFile)

ON_BN_CLICKED(IDC_BUTTONl, OnReturnBack)

II} }AFX_MSG_MAP

END MESSAGE MAP() - -
I II II

II CDlgRecever message handlers

void CDlgRecever: :OnReceveFile()

{
II TODO: Add your control notification handler code here

UpdateData(TRUE);

if ((m_Ip !="") && (m_RFile!=""))

{

#define port 34000

CProgressCtrl *p=(CProgressCtrl *) GetDlgltem(IDC _PROGRESS 1);

p->SetRange(O, 1000);

p->SetPos(O);

AfxSocketlnit(NULL);

CSocket sockClient;

sockClient. Create();

sockClient.Connect(m_Ip, port);

int dataLength;

sockClient.Receive(&dataLength,4);

byte* data= new byte[dataLength];

sockClient.Receive (data, dataLength);

124

CFile desFile(m_RFile,

CFile::modeCreate\CFile::modeWrite\CFile::typeBinary);

desFile. Write(data, dataLength);

desFile. Close();

delete data;

sockClient.Close();

for(int j=l ;j<lOOO;j++)

p->SetPos(j);

MessageBox("Receving Operation Sucessefully", "Receving

operation" ,MB_ OK);

p->SetPos(O);
}else MessageBox("Receiving Operation Failed Enter correct IP Address

Destinations Location Try again ","Receiving File",MB_ OK);

}

void CDlgRecever::OnCancel()

{
II TODO: Add extra cleanup here

CDialog: :OnCancel();

}

BOOL CDlgRecever: :OninitDialog()

{
CDialog: :OnlnitDialog();

II TODO: Add extra initialization here
CComQIPtr<ISkin> pSkin = GetD1gltem(IDC_SKIN21)-

>GetContro1Unknown();

pSkin-> ApplySkin((long)m _ h Wnd);
return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

}

125

void CDlgRecever: :OnReturnBack()

{
II TODO: Add your control notification handler code here

CDialog: :OnCancel();

}
I I I I I II II II

#if
!defined(AFX _ DLGRECEVER _ H_DED35EOD _ 6D79 _ 4CA9 _9F25 _ E63AF95CD6A

9_INCLUDED _)

#define
AFX~DLGRECEVER_H_DED35EOD_6D79_ 4CA9_9F25_E63AF95CD6A9 INCL

UDED

#if MSC VER > 1000 - -
#pragma once

#endif II MSC VER> 1000 - -

II DlgRecever.h: header file

II

I II I I I I I I I I I I I I I I II

II CDlgRecever dialog

class CDlgRecever : public CDialog

{

II Construction

public:
CDlgRecever(CWnd* pParent = NULL); II standard constructor

II Dialog Data
II{ {AFX_DATA(CDlgRecever)

enum { IDD = IDD_Recever };

CString m_Ip;

126

CString m_RFile;

II} }AFX_DATA

II Overrides
I I Class Wizard generated virtual function overrides

II{ {AFX_ VIRTUAL(CDlgRecever)

protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXIDDV support

II} }AFX_ VIRTUAL

II Implementation

protected:

II Generated message map functions

II{ {AFX_MSG(CDlgRecever)

afx_msg void OnReceveFile();

virtual void OnCancel();

virtual BOOL OnlnitDialog();

afx_msg void OnReturnBack();

II} }AFX_MSG
DECLARE_MESSAGE_ MAP()

};

II{ {AFX_INSERT_LOCATION}}
II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif II

!defined(AFX_DLGRECEVER_H_DED35EOD_6D79_4CA9_9F25_E63AF95CD6A

9_INCLUDED _J
I I I I I I I I II

II DecDlg.cpp: implementation file

#include "stdafx.h"

#include "RC6.h"

#include "DecDlg.h"

127

#include "RC6Dlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS_ FILE[] = _FILE_;

#endif

/////I/// I/// I///////////////// I////////// I///// I///// I////// I I//// I//// I////// I///

II CDecDlg dialog
CDecDlg: :CDecDlg(CWnd * pParent /*=NULL*/)

: CDialog(CDecDlg::IDD, pParent)

{
//{ {AFX_DATA_INIT(CDecDlg)

m_pkey = _T("");

m_iteration = O;

m_encfile = _T("");

//} }AFX_DATA_INIT

}

void CDecDlg: :DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);

//{ {AFX_DATA_MAP(CDecDlg)

DDX_Text(pDX, IDC_EDIT2, m_pkey);

DDX_Text(pDX, IDC_EDIT3, m_iteration);

DDX_Text(pDX, IDC_EDITl, m_encfile);

//} }AFX_DATA_MAP

}

BEGIN_ MESSAGE _MAP(CDecDlg, CDialog)

)/{ {AFX_MSG_MAP(CDecDlg)

ON BN CLICKED(IDC BUTTONl, OnBrowse) - - -

//} }AFX_MSG_MAP

END MESSAGE MAP() - -

128

II CDecDlg message handlers

void CDecDlg::OnOK()

{
II TODO: Add extra validation here

CDialog: :OnOK();

}

void CDecDlg: :OnCancel()

{
II TODO: Add extra cleanup here

CDialog: :On Cancel();

}

void CDecDlg::OnBrowse()

{
II TODO: Add your control notification handler code here

CFileDialog m _IdFile (TRUE,NULL, NULL,

OFN_HIDEREADONL Y,"Encryption files]" .Cryl ");

m_IdFile.m_ofn.lpstrlnit-ialDir = "c:\\";

if (m_IdFile.DoModal() != IDCANCEL){

m_encfile = m_IdFile.GetPathName();

decfile=(m_IdFile.GetFileTitle() + ".txt");
UpdateData(F ALSE);

}else MessageBox("Please Select File To Complet

Decryption", "Decryption" ,MB_ OK);

}

BOOL CDecDlg: :OnlnitDialog()

{

, CDialog::OnlnitDialog();

II TODO: Add extra initialization here
CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SKIN21)­

>GetControlUnknown();

129

pSkin-> ApplySkin((long)m _ h Wnd);

return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

}
I II II I I I I I

II CDecDlg dialog
class CDecDlg : public CDialog

{

II Construction

public:
CString decfile;
CDecDlg(CWnd* pParent = NULL); II standard constructor

II Dialog Data
II{ {AFX_DATA(CDecDlg)

enum { IDD = IDD_Dec };

CString

int

m pkey;

m_iteration;

CString m _ encfile;

II} }AFX_DAT-A

I I Overrides
II Class Wizard generated virtual function overrides

II{ {AFX_ VIRTUAL(CDecDlg)

protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX!DDV support

II} }AFX_ VIRTUAL

II Implementation

protected:

II Generated message map functions

II{ {AFX_MSG(CDecDlg)

virtual void OnOK();

130

virtual void OnCancel();

afx _msg void OnBrowse();

virtual BOOL OnlnitDialog();

II} }AFX_MSG

DECLARE_ MESSAGE_MAP()

} ;

II{ {AFX_INSERT_LOCATION}}
II Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif II

!defined(AFX_DECDLG_H_C134F94A_OB00_ 48A4_B656_F67029B015A1_INCL

UDED_)
II I I I I I I I II II I/ I I I/ I I I I/ I I// I/ I/ I I I I// I/ I I/ I I/ I/ I/ I

BOOL CRC6Dlg: :OnlnitDialog()

{

CDialog: :OnlnitDialog();

II Add "About ... " menu item to system menu.

II IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(F ALSE);

if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS _ ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{

pSysMenu-> AppendMenu(MF _ SEP ARA TOR);

pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX,

strAboutMenu);

}

}

131

II Set the icon for this dialog. The framework does this automatically

II when the application's main window is not a dialog

Setlcon(m_hlcon, TRUE); II Set big icon

Setlcon(m_hlcon, FALSE); II Set small icon

II TODO: Add extra initialization hereO

m_Radl=O;

GetDlgltem (IDC_BUTTON4)-> EnableWindow (FALSE);

UpdateData(F ALSE);

CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SKIN22)­

>GetControlUnknown();

pSkin->ApplySkin((long)m_hWnd);

return TRUE; II return TRUE unless you set the focus to a control

}

void CRC6Dlg: :OnSysCommand(UINT nID, LP ARAM lParam)

{

if ((nID & OxFFFO) == IDM_ABOUTBOX)

{
CAboutDlg dlgAbout;

dlgAbout.DoModal();

}

else

{

CDialog::OnSysCommand(nID, lParam);

}

}

I I If you add a minimize button to your dialog, you will need the code below

II to draw the icon. For MFC applications using the document/view model,

II this is automatically done for you by the framework.

132

void CRC6D1g: :OnPaint()

{

if (Islconic())

{
CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)

dc.GetSafeHdc(), O);

II Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);

int cylcon = GetSystemMetrics(SM _ CYICON);

CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxlcon + 1) I 2;
int y = (rect.Height() - cylcon + 1) I 2;
I I Draw the icon
dc.Drawlcon(x, y, m_hlcon);

}

else-

{
CDialog: :OnPaint();

}

}

II The system calls this to obtain the cursor to display while the user drags

II the minimized window.
HCURSOR CRC6D1g: :OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;

}

133

