

THE ILLUMINATION OF CANBULAT STADIUM (GRADUATION PROJECT)

PREPARED BY : ERHAN BOLKAN 86205

PREPARED TO : ELECTRICAL & ELECTRONIC ENGINEERING DEPARTMENT

SUPERVISED BY : PROF. HALDUN GURMEN

EASTERN MEDITERRANEAN UNIVERSITY T.R.N.C.

1992 JULY

ACKNOWLEDGEMENTS

I would like to thank my teachers, friends and those who have helped me to design this project.

My sincere thanks are due to my supervisor , Prof. HALDUN GURMEN at the department Electrical Engineering in Famagusta who encouraged me in the early stages of this project and provided me the required documents, books, read and commented on the final version of the manuscript.

. I would also like to thank, to close friends of mine, Mr. M. TASEL BABAGIL, who permitted to use his computer for typing the final version of this manuscript and to print it out. He also helped me to write the computer program for point by point illumination.

My grateful thanks are also due to Miss. SEBLA KAYA for her contributions to give the final form to the report.

r.

PART I

TANK THE

TABLE OF CONTENT

ABSTI	RACT	• • • •	• • • • •	• • •	• • • •				• • •	• • •		••	••	•••		.2
PART	Α															
	I- 3	INTRO	DUCT	ION	• • • •	• • • •	• • • •	• • •	• • • •	• • •	• • •	•••	••	• •		.4
	1-1	THE	SUBJI	ECT	OF	ILLU	UMIN	IATI	ON.			•••	• • •		• •	. 4
	1-2	THE	AIM (OF .	ILLU	MIN.	ATIC	DN		•••		•••	••	• • •		.5
	1-3	THE	TYPE	OF	ILI	LUMII	NATI	ON.								. 6

PART B

II-	STADIUM ILLUMINATION9
2-1	BASIC DATA9
2-2	EQUIPMENT
2-3	MAST ARRANGEMENTS32
2-4	MOUNTING HEIGHTS AND GLARE32

PART C

III	- CALCULATIONS AND COMPUTATIONS
3-1	FORMULAS
3-2	ILLUMINATION UNIFORMITY
3-3	PROCEDURE OF CALCULATION OF NUMBER OF
	PROJECTORS
3-4	SOME BASIC CONCEPTS.

PART D

IV-	COMPUTER PROGRAM AND DATA OBTAINED43
4-1	THE RELATED COMPUTER PROGRAM43
4-2	DATA OBTAINED FOR EACH PROJECTOR45
4-3	ONE-QUARTER ILLUMINATION OF CANBULAT
	STADIUM
4-4	THE POINT BY POINT ILLUMINATION TABLE61

PART E

THE	COST	OF THE	PROJECT	····		• • • • •	63	3
THE	WAY O	F FEEDI	[NG	• • • • •	• • • • • •	• • • • •	64	ł
REFERENCE	Ξ	•••••					65	5

-1-

ABSTRACT

The aim of this project is to illuminate CANBULAT Stadium in Famagusta by using up-to-date illumination technology. Even if the illuminance level on the play ground is not equal at each point, it should be distributed according to their approximate equality because illumination of stadium must be made in order to let the players and spectators view the play without any difficulty. Also it is an important event that the motions of ball should be observed by the eye.

I obtain some documents about up-to-date stadium illumination by correspondence and with help of my course tutor.

The average illuminance was decided as 500 lux. We also decided on the number of projectors needed. Adding to them I realized to use four corner arrangement with 4 masts. 2000W HPI-T lumps are used. By the aid of computer program the point by point illumination is calculated

PART A

and a second second of a second s

and the second s

I INTRODUCTION

All the duties that the human being has to perform is in some way affected or governed by light. Human beings for many centuries depended on natural lighting such as the moon, sun and the stars but as the need for better and more efficient lighting grew. We started to depend on artificial lighting.

Up-to the beginning of the later years of the 19th century people were dependent on artificial lighting such as candles, oil lamps and the wood. However the invention of the incandescent lamp by H.GOBEL and A.EDISON opened a new pave wave in illumination technique.

During those years there was nor enough power to feed all the electrical suppleness until W.SIEMENCE invented the dynamo. After making great improvement in the incandescent lamp we arrived to the up-to-date lighting technique, the fluorescent lamp.

1-1 THE SUBJECT OF ILLUMINATION

The basic concept of illumination consist of the production, distribution, economics and measurements of light. Illumination has a very important role in the industries of all developed countries. Lighting any place no matter how small is a complex task. The solution of illumination problem can only be solved by the help of an electrical engineer who has technical ability and by an architect who has an artistic ability in illumination.

-4-

Nowadays lighting has become one of the most important needs of societies across the world.

As a summary, the following advantages are gained by a sufficient illumination:

(a) Seeing ability of eye.

(b) The health of eye is protected.

(c) The accidents are decreased.

(d) The performance of work is increased.

(e) The capacity of work in commerce is enlarged.

(f) The economical potential is increased.

(g) Security is provided (A street lamp is equivalent to a policemen)

(h) The esthetic feelings and the necessity of comfort are an answer.

1-2 THE AIM OF ILLUMINATION

The aim of illumination is to meet the priority of course this is not the only necessity to be met. According to it's purpose the three major necessities of (illumination can be listed below.

(a) Physiological illumination : The main aim of physiological illumination is to help us distinguish shapes details and colours. In the installation of this sort of illumination special care should be taken to minimize the danger of physical damage which could generate as a result of faulty installation.

(b) Decorative illumination : In the decoration of homes, work place ...etc. decorative illumination plays a great role. In this type of illumination both the architect and the illumination engineer are very important.

- 5-

(c) Attractive illumination : The aim of this type of illumination is to draw attention for such things as advertisements or for decorations. In order to accomplish this various lights and techniques are used.

1-3 THE TYPE OF ILLUMINATION

The types of illumination are divided into two groups; natural and artificial. Artificial illumination is also dividend into two groups as OUTDOOR and INDOOR.

(a) Natural illumination: It deals with thedistribution of the natural light in a most suitableway. It is generally preferred as it is free and easilyavailable

(b) Artificial illumination: It is obtained through electrical devices. The use of artificial illumination is divided into groups with incandescent, discharge and fluorescent lamps.

b-i) INDOOR ILLUMINATION:

Places like houses, schools, hospitals, factories, cinemas and the like are all subject to indoor illumination. Illumination in these places is accomplished through the reflection of the light from the walls and ceilings of the room. Indoor illumination can be divided into groups as direct, semi direct and indirect. For instance if 90-100 % of the light flux of the source is going to escape. This is called direct illumination system. 60-90 %, 40 %, 60 %, 10 %,

-6-

40 % and 0-10 % of the lights flux is called semi direct mix, semi indirect and indirect illumination system.

b-ii) OUTDOOR ILLUMINATION:

Outdoor illumination is used to light-up such places as football pitches or any place which has no wall surroundings. Such places need direct light.

A second se

1/2011 117

the part of second states to be the second states of the test of

PART B

II STADIUM ILLUMINATION

2-1 BASIC DATA

(a) FOOTBALL: Football and various other games are outdoor games. As it is played in open air and very often at nights outdoor illumination is very important.

(b) MEASUREMENTS: The size of a football pitch accepted by the FIFA (shown in fig. 1) has a width between 45m-90m and a length of 90m-120m . the width and length of the penalty area is 40.32m and 16.5m consequently. The length of the goal post area is 18.32m with a width of 5.5m. The diameter of pitch center is 9.15m.

(c) SPORTS CENTERS: It is usually arranged according to the number of spectators. Therefore the maximum vision distances for illumination must be taken into consideration. Different illumination techniques are required depending on the type of playground and it's capacity. The material used in these playgrounds varies from sand, gravel or grass. Those playgrounds which has great spectators are called "stadium".

(d) THE IMPORTANCE OF ILLUMINATION: Illumination is very important for both the players and spectators. The most important function of illumination is to follow the motions of the ball which is the smallest item in the playground. Researchers show that in order to perceive and identify a thing in motion illumination level, environment and the degree of illumination play an important role. So the difference of illumination level between ball and playground should be as high as possible. A playground which has Av. reflection degrees are 0.1 - 0.3, for instance. It is 0.1 - 0.15 at gravel playground and it is 0.15 - 0.25 at lawn playground according to its cut and humidity. According to the material and illumination used with a light colour ball (reflection degree $\rho > 0.5$) the intensity of illumination level between ball and playground varies between 2/1 and 5/1.

In this system as the spectators distance from the ball increased the view of the ball decreased. So equal illumination level and high illumination power are accepted. As in graph 1 the visibility angle of a ball of 25cm in diameter can decrease from 4 sec to 8 sec depending on the stadium figure.

For a good solution it is necessary to see and follow a ball which is in motion and to keep a certain perceiving duration. Therefore, when we apply practically those data obtained scientifically, the close relationship can be used between the perceiving duration of view angle, illumination level of surrounding and contrast.

(e) THE SEEING NECESSITY OF PLAYERS: From a scientific point of view the view of a player is limited to 100m. At graph 2, we can see the perceiving duration according to the illumination level. Therefore, the illumination level of a playground should be at least 10 abs (1 candela = 3.4 abs) and the proportion of reflection is between 0.25 and 0.125.

(f) SEEING NECESSITY OF SPECTATORS: In order for the spectators to see the motions of the ball it is necessary

to relate the position stated in graph 4. While the illumination level of a pitch is determined by horizontal illumination power, the distance of spectators from the ball depend on vertical illumination the power of vertical illumination varies in accordance to its place.

Certain measurements would charge the power of vertical, illumination situated at certain places in the middle and edges of playground. The contrast between playground and illumination level can only be at the top part of ball which the contrast of this is only be determined by horizontal illumination.

At the first approach, the illumination level of top part of ball up to 45 degree angle is determined by horizontal illumination. It is shown at fig. 2. In this position, the diameter of top point be 0.7 Of the whole diameter (d).

(g) EFFECT OF SHADOW: There should be no shadows on the stadium. This is achieved by multi-directional illumination. Because of the difference in vertical illumination a plastic appearance on human body is given.

(h) MIXTURE OF LIGHT: The mixture of light is different for spectators and the players. Ideally no light should fall onto the spectators. However this is very hard to do as they are under high vertical illumination. There are physical effects of this;

(i) COLOUR: It is important both spectators as well as players that lights are not spoiled. Specially skin colour should be kept by adding red colour to illumination.

- 11 -

(j) APPROPRIATENESS FOR CAMERA AND TV BROADCASTS: TV and cameras have different sensitivity then the human face. When choosing a light source for television and cameras the vertical illumination should be the average of more than 250 lux as the quality of film is spoiled at less illumination. The average illumination for tv broadcasts should be about 800-1000 lux.

-15 -

ŝ

2-2 EQUIPMENT

(a) LIGHT SOURCES: At stadium illumination usually as a light source, metal halide lamps or high-pressure metal halide lamps are used.

(b) DEFINITION OF METAL HALIDE LAMPS: High-pressure metal halide gas discharge lamps have a very luminous efficacy and excellent colour rendering properties with an internal diffusion coating on the hard glass outer bulb and a stable lumen output through their long life, HPI lamps are very suitable for;

- * Industrial and commercial.
- * Indoor lighting.
- * Public lighting.
- * Flood lighting.
- * Plant irradiation.

(c) DESCRIPTION OF METAL HALIDE LAMPS: Basically HPI-T lamps operate on the same principle as all gas-discharge lamps. In view of the need for a light source rendering combined with high efficiency, the discharge tube contains metal halide compounds which have the effect if increasing the intensity in the three spectral bands blue, green, yellow and red.

The spectrum of the metal halide lamps meets the requirements for colour film and colour tv. The lamps are therefore highly suitable for the lighting of colour television broadcasts.

(d) THE LAMPS CHARACTERISTIC OF METAL HALIDE LAMPS -High luminous efficiency.

-Excellent colour rendering.

-Reliable, long life.

-Stable lumen maintenance.

-17-

(a) APPLICATIONS OF METAL HALIDE LAMPS:
-Lighting for colour tv. broadcasting.
-Lighting for colour films.
-Public lighting.
-Sports ground lighting.
-Flood lighting.
-Industrial and commercial indoor lighting.

-Plant irradiation.

(f) BALLASTS AND IGNITORS: Metal halide lamps require high quality ballast for optimum operation, as well as ignitors to ensure reliable ignition for ballast and ignitors.

ON

for use with one 200 W high-pressure amp or one HPI/T retal halide lamp.

FLOODLIGHTING

CRIPTION

and rear-cover: rug-all-cast aluminium conction

gs of low-copper-confor excellent corrosionstance, even in coastal industrial areas

e beam-versions, as differreflectors are available:

	HPI/T	SON/T
	2000 W	1000 W
- beam	2×9°	2×9°
- sam	2×23°	2×27°

-grade aluminium reflecfor accurate beam con-

- Lamp replacement is effected by removing the rear-cover, thus facilitating servicing
 Easy-to-operate stainless-
- steel clips on the rear-cover; to be closed by hand and opened with a simple tool. The floodlight cannot be easi-ly opened by unauthorized
- persons. Cast-on beam-aiming sight and protractor scale for quick daylight adjustment
- Ozone-resistant ethylene-propylene rubber gasket for jetproof and dustproof sealing of front glass; 4 extra safety clamps.

APPLICATIONS

- Sports grounds
 Floodlighting of buildings
 Marshalling yards
 Car parks

- Skating rinks High-mast lighting
- Sports halls
- Shipyards

ORDERING DATA Ordering number*) Weight Wide-beam type Designation For lamps Narrow-beam type kg 23,5 1 - HPI/T 2000 W 9112718503 9112718502 HNF 002 23,5 9112718 504 9112718505 1 × SON/T 1000 W

*) Complete floodkaht

FLOODLIGHT FOR HIGH-PRESSURE SODIUM LAMPS OR METAL HALIDE LAMPS

Dec. Code "Light": 58.3

-19-

DETAILED DRAWING

- 1 Housing
- 2. Safety clamp (4 >)
- 3. Front glass
- 4 Reflector
- 5. Lampholder
- 6 Lampholder insulating plate
- 7. Lampholder bracket
- 8. Terminal block
- 9. Glands for dust-filters
- 10. Bracket
- 11. Closing clip top ($2 \times$)
- 12. Rear-cover
- 13. Lamp support
- 14. Reflector rear-cover
- 15. Gasket
- Closing clip bottom (2 ·)
- 17. Additional lamp support
- 18. Side reflector

FECIAL TOOL

e front glass is provided with special type of gasket. To rece the glass, a special gasinsertion tool can be used, sisting of a handle with e removable clips to suit different floodlights. Ordernumber for complete set 9 260 005...

ADJUSTMENT POSSIBILITIES

DIMENSIONS

30

0

30'

60

30

15

60

40

20

0

20

40

1×SON/T 1000 W

narrow beam

630cd 1000cd 1250cd

600

63cd 100cd 160cd

250cd 400cd 567cd

60

63 cd 100 cd 160 cd

20°

40°

-21-

PHILIPS

ILIPS

Metal halide gas-discharge lamps

-22-

,

HPI-T 250 W HPI-T 400 W

HPI 250 W

HPI 400 W

Why metal halide lamps?

he quick answer to this question is:

- Improved colour appearance
- Improved colour rendering
- High luminous efficacy
- Reliable long life
- Well balanced spectrum

The careful development of the mixture of metal alides has made these features possible. Inside be gas-discharge tube of an HPI lamp there is a precisely measured 'cocktail' of sodium, thallium and indium, all chemically compounded in iodide trm.

This particular combination has been found to be very effective in terms of colour characteristics (see pages 8-9) and also in the eliability and stability of the light source.

The range at a glance

HPI 250W BU - An ovoid coated lamp; can be used with a standard 250W mercury lamp ballast; burning position is vertical base-up.

HPI-T 250W - Tubular in shape, this clear lamp is designed for use with a 250W mercury lamp ballast and external ignitor; burning position is horizontal.

HPI 400W - An ovoid coated lamp for use on a 400W mercury lamp ballast plus external ignitor; burning position is horizontal.

HPI 400W BU, HPI 400W BUS - Both types are ovoid coated lamps;

the 400W BU lamp can be applied in existing HPI installations equipped with ignitors and can also replace 400W dysprosium lamps;

the 400W BUS lamp is self-starting and therefore needs no ignitor; can directly replace a 400W mercury vapour lamp since it is designed to run on a standard 400W mercury lamp ballast; burning position of both lamp types is vertical base-up.

HPI-T 400W - A clear tubular lamp designed for use in optical systems for floodlighting and indoor applications; needs a 400W mercury lamp ballast plus an ignitor; burning position is horizontal.

HPI-T 1000W - Also tubular and clear, this lamp operates on a 1000W mercury lamp ballast with an ignitor; specially designed for floodlighting and illuminating sports arenas; burning position is horizontal.

HPI-T 2000W - Two versions, both tubular and

clear, are available: 220V and 380V; the 220V type may be operated in almost any burning position, with minimal colour shift even at steeply tilted angles; ideal for floodlighting large sports stadiums, particularly 4-mast installations; the 380V type is limited to the horizontal burning position; a reliable light source for training fields and floodlighting of large stadiums; both lamp types require an external ignitor; the 220V version needs two parallel 1000W mercury lamp ballasts whilst for the 380V version, a special ballast has been designed.

-24-

nucleus of a metal halide lamp is the
harge tube, manufactured from quartz. Into
h end of the tube are sealed lead-in wires
porting electrodes in the form of tungsten
als. Also contained within the tube is a
h ure of two gases - neon and argon - and
h emetals in iodide form - indium, thallium and
h m - plus metallic mercury.

2

3

her, the discharge tube is housed in a clear
ar hard glass outer bulb (HPI-T) or in an
d envelope having a diffusing fluorescent
ng (HPI). The whole structure is firmly held
ace by support wires and by springs to
non any effects of vibration on the lamp.

Ing the space between the discharge tube the outer envelope is a mixture of neon and

nítrogen. The former serves to nullify the emission of neon from the discharge tube itself whilst the latter prevents any likelihood of 'flashover', where a discharge can take place outside the confines of the discharge tube.

Also located within the outer bulb is a getter whose function is to absorb any impurities in the gases which could otherwise adversely affect the correct running of the lamp; in the case of the metal halide lamps, hydrogen represents the greatest potential danger.

As an additional measure, a sleeve is slid over the support wire to reduce the possibility of 'photoemission', whereby the sodium deserts the discharge and causes blackening of the outer bulb.

Finally, an E40 lamp base is mechanically

25-

stached to the glass envelope, giving a sturdy overall construction.

operation, metal halide lamps work on a
milar principle to all gas-discharge lamps - that
light is obtained from an electric discharge
ccurring between two electrodes inside a
scharge tube.

with the aid of the two starting gases, ignition akes place and causes a rise in temperature, collowed by evaporation of the mercury and the pree iodides. After dissociation of the metal calides, the metals alone are excited and croduce specific radiation mainly in the visible cart of the spectrum.

The feature of such a discharge is that the three primary colours - red, blue and green - are very ell represented in the spectrum. This is not only important for colour quality as perceived by the human eye, but also for the colour sensitivity of colour films and CTV cameras

With the internal fluorescent coating converting UV radiation into visible radiation - and hence improving the colour impression - the ovoidshaped HPI lamps are especially suited to indoor applications.

Cut-away view

- 1. Mechanically fitted E40 screw base
- 2. Lead-in wire / support
- 3. Sleeve protecting the support
- 4. Quartz discharge tube
- 5. Internal phosphor coating
- 6. Tubular or elliptical hard glass outer bulb, impervious to atmospheric conditions
- 7. Getter ring for maintaining a clean gas atmosphere, thus ensuring maximum lamp efficacy

-26-

mons of use

For performance of this type of lamp can only be different the ballast on which it is operated complies with cations laid down by the lamp manufacturer. Moreover, the supply voltage may not fluctuate more than \pm 5% from the ballast.

ed the possibility of personal injury or damage to property og from shattering, the BUS (Base Up Self-starting) lamp daways be incorporated in an enclosed luminaire.

ng positions

= 1400 W lamp may only burn in a horizontal position \pm 20°. But and BUS lamps may only burn in a vertical position \pm 15°.

250 W BU 400 W BU and BUS

HPI 400 W

conical data

stion	Base	Min. supply voltage for ignition ¹) V		Average lamp	Average lamp	Lamp	Minimum permissible	Average	Maximum permissible	Average		
250 14/ 011		+20°C	-18°C	voltage ²) ⁴) V	Current ²) ⁴)	current A(max.)	wattage ²) W	wattage ²)4) W	lamp wattage²) W	luminous flux ²) ⁴)	Average luminance ²) ⁴)	Run-up time ³) ⁴)
NW BU NO W BU NO W BUS	E40 E40 E40 E40	200 200 200 200	200 200 200 200	125 125 125 125	2,2 3,4 3,4 3,4	3,2 6,0 6,0	210 330 340	250 390 400	290 450 460	17 500 27 600 30 600	3,7 3,5 3,8	min. 3 3
 hours. umber of min colour render sured at nomin 	²) After nutes all ring pro- nal sup	100 burning ter which the perties will l ply voltage a	hours. e lamp has be reached nd referen	reached 80 d after 10-15 ce ballast fo	% of its final minutes. r a free burn	luminous	flux.	400	460	30 600	3,8	3

ering and packing data

50 W BU 50 W BU 00 W BU 00 W BUS	Ordering	Nett weight g	Packing u			
	number		Qty	Weight ka	Dimensions	Volume
	9280 767 098 9280 731 098 9280 743 098 9280 747 098	200 260 260 260	12 6 6 6	3,90 3,10 3,10	47 x 37,5 x 27,5 51 x 36 x 37 51 x 36 x 37	m ³ 0,048 0,068
				3,10	51 x 36 x 37	0,068

Lamp

Dimensions

designation	A	B	C
	max.	max.	max.
HPI 250 W BU HPI 400 W HPI 400 W BU HPI 400 W BUS	227 292 292 292 292	53 58 58 58 58	92 122 122 122

THE ILLUMINATION OF CANBULAT STADIUM (GRADUATION PROJECT)

PREPARED BY : ERHAN BOLKAN 86205

PREPARED TO : ELECTRICAL & ELECTRONIC ENGINEERING DEPARTMENT

SUPERVISED BY : PROF. HALDUN GURMEN

EASTERN MEDITERRANEAN UNIVERSITY T.R.N.C.

1992 JULY

ACKNOWLEDGEMENTS

I would like to thank my teachers, friends and those who have helped me to design this project.

My sincere thanks are due to my supervisor , Prof. HALDUN GURMEN at the department Electrical Engineering in Famagusta who encouraged me in the early stages of this project and provided me the required documents, books, read and commented on the final version of the manuscript.

. I would also like to thank, to close friends of mine, Mr. M. TASEL BABAGIL, who permitted to use his computer for typing the final version of this manuscript and to print it out. He also helped me to write the computer program for point by point illumination.

My grateful thanks are also due to Miss. SEBLA KAYA for her contributions to give the final form to the report.

r.

PART I

TANK THE

TABLE OF CONTENT

ABSTI	RACT	• • • •	• • • • •	• • •	• • • •				• • •	• • •		••	••	•••		.2
PART	Α															
	I- 3	INTRO	DUCT	ION	• • • •	• • • •	• • • •	• • •	• • • •	• • •	• • •	•••	••	• •		.4
	1-1	THE	SUBJI	ECT	OF	ILLU	UMIN	IATI	ON.			•••	• • •		• •	. 4
	1-2	THE	AIM (OF .	ILLU	MIN.	ATIC	DN		•••		•••	••	• • •		.5
	1-3	THE	TYPE	OF	ILI	LUMII	NATI	ON.								. 6

PART B

II-	STADIUM ILLUMINATION9
2-1	BASIC DATA9
2-2	EQUIPMENT
2-3	MAST ARRANGEMENTS32
2-4	MOUNTING HEIGHTS AND GLARE32

PART C

III	- CALCULATIONS AND COMPUTATIONS
3-1	FORMULAS
3-2	ILLUMINATION UNIFORMITY
3-3	PROCEDURE OF CALCULATION OF NUMBER OF
	PROJECTORS
3-4	SOME BASIC CONCEPTS.

PART D

IV-	COMPUTER PROGRAM AND DATA OBTAINED43
4-1	THE RELATED COMPUTER PROGRAM43
4-2	DATA OBTAINED FOR EACH PROJECTOR45
4-3	ONE-QUARTER ILLUMINATION OF CANBULAT
	STADIUM
4-4	THE POINT BY POINT ILLUMINATION TABLE61

PART E

THE	COST	OF THE	PROJECT	г		• • • • • •	63
THE	WAY O	F FEEDI	[NG	• • • • • •	• • • • • •	• • • • • •	64
REFERENCI	E	• • • • • • • •				• • • • • •	65

-1-

ABSTRACT

The aim of this project is to illuminate CANBULAT Stadium in Famagusta by using up-to-date illumination technology. Even if the illuminance level on the play ground is not equal at each point, it should be distributed according to their approximate equality because illumination of stadium must be made in order to let the players and spectators view the play without any difficulty. Also it is an important event that the motions of ball should be observed by the eye.

I obtain some documents about up-to-date stadium illumination by correspondence and with help of my course tutor.

The average illuminance was decided as 500 lux. We also decided on the number of projectors needed. Adding to them I realized to use four corner arrangement with 4 masts. 2000W HPI-T lumps are used. By the aid of computer program the point by point illumination is calculated

PART A

and a second second of a second s

and the second s

I INTRODUCTION

All the duties that the human being has to perform is in some way affected or governed by light. Human beings for many centuries depended on natural lighting such as the moon, sun and the stars but as the need for better and more efficient lighting grew. We started to depend on artificial lighting.

Up-to the beginning of the later years of the 19th century people were dependent on artificial lighting such as candles, oil lamps and the wood. However the invention of the incandescent lamp by H.GOBEL and A.EDISON opened a new pave wave in illumination technique.

During those years there was nor enough power to feed all the electrical suppleness until W.SIEMENCE invented the dynamo. After making great improvement in the incandescent lamp we arrived to the up-to-date lighting technique, the fluorescent lamp.

1-1 THE SUBJECT OF ILLUMINATION

The basic concept of illumination consist of the production, distribution, economics and measurements of light. Illumination has a very important role in the industries of all developed countries. Lighting any place no matter how small is a complex task. The solution of illumination problem can only be solved by the help of an electrical engineer who has technical ability and by an architect who has an artistic ability in illumination.

-4-

Nowadays lighting has become one of the most important needs of societies across the world.

As a summary, the following advantages are gained by a sufficient illumination:

(a) Seeing ability of eye.

(b) The health of eye is protected.

(c) The accidents are decreased.

(d) The performance of work is increased.

(e) The capacity of work in commerce is enlarged.

(f) The economical potential is increased.

(g) Security is provided (A street lamp is equivalent to a policemen)

(h) The esthetic feelings and the necessity of comfort are an answer.

1-2 THE AIM OF ILLUMINATION

The aim of illumination is to meet the priority of course this is not the only necessity to be met. According to it's purpose the three major necessities of (illumination can be listed below.

(a) Physiological illumination : The main aim of physiological illumination is to help us distinguish shapes details and colours. In the installation of this sort of illumination special care should be taken to minimize the danger of physical damage which could generate as a result of faulty installation.

(b) Decorative illumination : In the decoration of homes, work place ...etc. decorative illumination plays a great role. In this type of illumination both the architect and the illumination engineer are very important.

- 5-
(c) Attractive illumination : The aim of this type of illumination is to draw attention for such things as advertisements or for decorations. In order to accomplish this various lights and techniques are used.

1-3 THE TYPE OF ILLUMINATION

The types of illumination are divided into two groups; natural and artificial. Artificial illumination is also dividend into two groups as OUTDOOR and INDOOR.

(a) Natural illumination: It deals with thedistribution of the natural light in a most suitableway. It is generally preferred as it is free and easilyavailable

(b) Artificial illumination: It is obtained through electrical devices. The use of artificial illumination is divided into groups with incandescent, discharge and fluorescent lamps.

b-i) INDOOR ILLUMINATION:

Places like houses, schools, hospitals, factories, cinemas and the like are all subject to indoor illumination. Illumination in these places is accomplished through the reflection of the light from the walls and ceilings of the room. Indoor illumination can be divided into groups as direct, semi direct and indirect. For instance if 90-100 % of the light flux of the source is going to escape. This is called direct illumination system. 60-90 %, 40 %, 60 %, 10 %,

-6-

40 % and 0-10 % of the lights flux is called semi direct mix, semi indirect and indirect illumination system.

b-ii) OUTDOOR ILLUMINATION:

Outdoor illumination is used to light-up such places as football pitches or any place which has no wall surroundings. Such places need direct light.

A second se

1/2011 117

the part of second states to be the second states of the test of

PART B

II STADIUM ILLUMINATION

2-1 BASIC DATA

(a) FOOTBALL: Football and various other games are outdoor games. As it is played in open air and very often at nights outdoor illumination is very important.

(b) MEASUREMENTS: The size of a football pitch accepted by the FIFA (shown in fig. 1) has a width between 45m-90m and a length of 90m-120m . the width and length of the penalty area is 40.32m and 16.5m consequently. The length of the goal post area is 18.32m with a width of 5.5m. The diameter of pitch center is 9.15m.

(c) SPORTS CENTERS: It is usually arranged according to the number of spectators. Therefore the maximum vision distances for illumination must be taken into consideration. Different illumination techniques are required depending on the type of playground and it's capacity. The material used in these playgrounds varies from sand, gravel or grass. Those playgrounds which has great spectators are called "stadium".

(d) THE IMPORTANCE OF ILLUMINATION: Illumination is very important for both the players and spectators. The most important function of illumination is to follow the motions of the ball which is the smallest item in the playground. Researchers show that in order to perceive and identify a thing in motion illumination level, environment and the degree of illumination play an important role. So the difference of illumination level between ball and playground should be as high as possible. A playground which has Av. reflection degrees are 0.1 - 0.3, for instance. It is 0.1 - 0.15 at gravel playground and it is 0.15 - 0.25 at lawn playground according to its cut and humidity. According to the material and illumination used with a light colour ball (reflection degree $\rho > 0.5$) the intensity of illumination level between ball and playground varies between 2/1 and 5/1.

In this system as the spectators distance from the ball increased the view of the ball decreased. So equal illumination level and high illumination power are accepted. As in graph 1 the visibility angle of a ball of 25cm in diameter can decrease from 4 sec to 8 sec depending on the stadium figure.

For a good solution it is necessary to see and follow a ball which is in motion and to keep a certain perceiving duration. Therefore, when we apply practically those data obtained scientifically, the close relationship can be used between the perceiving duration of view angle, illumination level of surrounding and contrast.

(e) THE SEEING NECESSITY OF PLAYERS: From a scientific point of view the view of a player is limited to 100m. At graph 2, we can see the perceiving duration according to the illumination level. Therefore, the illumination level of a playground should be at least 10 abs (1 candela = 3.4 abs) and the proportion of reflection is between 0.25 and 0.125.

(f) SEEING NECESSITY OF SPECTATORS: In order for the spectators to see the motions of the ball it is necessary

to relate the position stated in graph 4. While the illumination level of a pitch is determined by horizontal illumination power, the distance of spectators from the ball depend on vertical illumination the power of vertical illumination varies in accordance to its place.

Certain measurements would charge the power of vertical, illumination situated at certain places in the middle and edges of playground. The contrast between playground and illumination level can only be at the top part of ball which the contrast of this is only be determined by horizontal illumination.

At the first approach, the illumination level of top part of ball up to 45 degree angle is determined by horizontal illumination. It is shown at fig. 2. In this position, the diameter of top point be 0.7 Of the whole diameter (d).

(g) EFFECT OF SHADOW: There should be no shadows on the stadium. This is achieved by multi-directional illumination. Because of the difference in vertical illumination a plastic appearance on human body is given.

(h) MIXTURE OF LIGHT: The mixture of light is different for spectators and the players. Ideally no light should fall onto the spectators. However this is very hard to do as they are under high vertical illumination. There are physical effects of this;

(i) COLOUR: It is important both spectators as well as players that lights are not spoiled. Specially skin colour should be kept by adding red colour to illumination.

- 11 -

(j) APPROPRIATENESS FOR CAMERA AND TV BROADCASTS: TV and cameras have different sensitivity then the human face. When choosing a light source for television and cameras the vertical illumination should be the average of more than 250 lux as the quality of film is spoiled at less illumination. The average illumination for tv broadcasts should be about 800-1000 lux.

-15 -

ŝ

2-2 EQUIPMENT

(a) LIGHT SOURCES: At stadium illumination usually as a light source, metal halide lamps or high-pressure metal halide lamps are used.

(b) DEFINITION OF METAL HALIDE LAMPS: High-pressure metal halide gas discharge lamps have a very luminous efficacy and excellent colour rendering properties with an internal diffusion coating on the hard glass outer bulb and a stable lumen output through their long life, HPI lamps are very suitable for;

- * Industrial and commercial.
- * Indoor lighting.
- * Public lighting.
- * Flood lighting.
- * Plant irradiation.

(c) DESCRIPTION OF METAL HALIDE LAMPS: Basically HPI-T lamps operate on the same principle as all gas-discharge lamps. In view of the need for a light source rendering combined with high efficiency, the discharge tube contains metal halide compounds which have the effect if increasing the intensity in the three spectral bands blue, green, yellow and red.

The spectrum of the metal halide lamps meets the requirements for colour film and colour tv. The lamps are therefore highly suitable for the lighting of colour television broadcasts.

(d) THE LAMPS CHARACTERISTIC OF METAL HALIDE LAMPS -High luminous efficiency.

-Excellent colour rendering.

-Reliable, long life.

-Stable lumen maintenance.

-17-

(a) APPLICATIONS OF METAL HALIDE LAMPS:
-Lighting for colour tv. broadcasting.
-Lighting for colour films.
-Public lighting.
-Sports ground lighting.
-Flood lighting.
-Industrial and commercial indoor lighting.

-Plant irradiation.

(f) BALLASTS AND IGNITORS: Metal halide lamps require high quality ballast for optimum operation, as well as ignitors to ensure reliable ignition for ballast and ignitors.

ON

for use with one 200 W high-pressure amp or one HPI/T retal halide lamp.

FLOODLIGHTING

CRIPTION

and rear-cover: rug-all-cast aluminium conction

gs of low-copper-confor excellent corrosionstance, even in coastal industrial areas

e beam-versions, as differreflectors are available:

	HPI/T	SON/T
	2000 W	1000 W
- beam	2×9°	2×9°
- eam	2×23°	2×27°

-grade aluminium reflecfor accurate beam con-

- Lamp replacement is effected by removing the rear-cover, thus facilitating servicing
 Easy-to-operate stainless-
- steel clips on the rear-cover; to be closed by hand and opened with a simple tool. The floodlight cannot be easi-ly opened by unauthorized
- persons. Cast-on beam-aiming sight and protractor scale for quick daylight adjustment
- Ozone-resistant ethylene-propylene rubber gasket for jetproof and dustproof sealing of front glass; 4 extra safety clamps.

APPLICATIONS

- Sports grounds
 Floodlighting of buildings
 Marshalling yards
 Car parks

- Skating rinks High-mast lighting
- Sports halls
- Shipyards

ORDERING DATA Ordering number*) Weight Wide-beam type Designation For lamps Narrow-beam type kg 23,5 1 - HPI/T 2000 W 9112718503 9112718502 HNF 002 23,5 9112718 504 9112718505 1 × SON/T 1000 W

*) Complete floodkaht

FLOODLIGHT FOR HIGH-PRESSURE SODIUM LAMPS OR METAL HALIDE LAMPS

Dec. Code "Light": 58.3

-19-

DETAILED DRAWING

- 1 Housing
- 2. Safety clamp (4 >)
- 3. Front glass
- 4 Reflector
- 5. Lampholder
- 6 Lampholder insulating plate
- 7. Lampholder bracket
- 8. Terminal block
- 9. Glands for dust-filters
- 10. Bracket
- 11. Closing clip top ($2 \times$)
- 12. Rear-cover
- 13. Lamp support
- 14. Reflector rear-cover
- 15. Gasket
- Closing clip bottom (2 ·)
- 17. Additional lamp support
- 18. Side reflector

FECIAL TOOL

e front glass is provided with special type of gasket. To rece the glass, a special gasinsertion tool can be used, sisting of a handle with e removable clips to suit different floodlights. Ordernumber for complete set 9 260 005...

ADJUSTMENT POSSIBILITIES

DIMENSIONS

30

0

30'

60

30

15

60

40

20

0

20

40

1×SON/T 1000 W

narrow beam

630cd 1000cd 1250cd

600

63cd 100cd 160cd

250cd 400cd 567cd

60

63 cd 100 cd 160 cd

20°

40°

-21-

PHILIPS

ILIPS

Metal halide gas-discharge lamps

-22-

,

HPI-T 250 W HPI-T 400 W

HPI 250 W

HPI 400 W

Why metal halide lamps?

he quick answer to this question is:

- Improved colour appearance
- Improved colour rendering
- High luminous efficacy
- Reliable long life
- Well balanced spectrum

The careful development of the mixture of metal alides has made these features possible. Inside be gas-discharge tube of an HPI lamp there is a precisely measured 'cocktail' of sodium, thallium and indium, all chemically compounded in iodide term.

This particular combination has been found to be very effective in terms of colour characteristics (see pages 8-9) and also in the eliability and stability of the light source.

The range at a glance

HPI 250W BU - An ovoid coated lamp; can be used with a standard 250W mercury lamp ballast; burning position is vertical base-up.

HPI-T 250W - Tubular in shape, this clear lamp is designed for use with a 250W mercury lamp ballast and external ignitor; burning position is horizontal.

HPI 400W - An ovoid coated lamp for use on a 400W mercury lamp ballast plus external ignitor; burning position is horizontal.

HPI 400W BU, HPI 400W BUS - Both types are ovoid coated lamps;

the 400W BU lamp can be applied in existing HPI installations equipped with ignitors and can also replace 400W dysprosium lamps;

the 400W BUS lamp is self-starting and therefore needs no ignitor; can directly replace a 400W mercury vapour lamp since it is designed to run on a standard 400W mercury lamp ballast; burning position of both lamp types is vertical base-up.

HPI-T 400W - A clear tubular lamp designed for use in optical systems for floodlighting and indoor applications; needs a 400W mercury lamp ballast plus an ignitor; burning position is horizontal.

HPI-T 1000W - Also tubular and clear, this lamp operates on a 1000W mercury lamp ballast with an ignitor; specially designed for floodlighting and illuminating sports arenas; burning position is horizontal.

HPI-T 2000W - Two versions, both tubular and

clear, are available: 220V and 380V; the 220V type may be operated in almost any burning position, with minimal colour shift even at steeply tilted angles; ideal for floodlighting large sports stadiums, particularly 4-mast installations; the 380V type is limited to the horizontal burning position; a reliable light source for training fields and floodlighting of large stadiums; both lamp types require an external ignitor; the 220V version needs two parallel 1000W mercury lamp ballasts whilst for the 380V version, a special ballast has been designed.

-24-

nucleus of a metal halide lamp is the
harge tube, manufactured from quartz. Into
h end of the tube are sealed lead-in wires
porting electrodes in the form of tungsten
als. Also contained within the tube is a
h ure of two gases - neon and argon - and
h emetals in iodide form - indium, thallium and
h m - plus metallic mercury.

2

3

her, the discharge tube is housed in a clear
ar hard glass outer bulb (HPI-T) or in an
d envelope having a diffusing fluorescent
ng (HPI). The whole structure is firmly held
ace by support wires and by springs to
non any effects of vibration on the lamp.

Ing the space between the discharge tube the outer envelope is a mixture of neon and

nítrogen. The former serves to nullify the emission of neon from the discharge tube itself whilst the latter prevents any likelihood of 'flashover', where a discharge can take place outside the confines of the discharge tube.

Also located within the outer bulb is a getter whose function is to absorb any impurities in the gases which could otherwise adversely affect the correct running of the lamp; in the case of the metal halide lamps, hydrogen represents the greatest potential danger.

As an additional measure, a sleeve is slid over the support wire to reduce the possibility of 'photoemission', whereby the sodium deserts the discharge and causes blackening of the outer bulb.

Finally, an E40 lamp base is mechanically

25-

stached to the glass envelope, giving a sturdy overall construction.

operation, metal halide lamps work on a
milar principle to all gas-discharge lamps - that
light is obtained from an electric discharge
ccurring between two electrodes inside a
scharge tube.

with the aid of the two starting gases, ignition akes place and causes a rise in temperature, collowed by evaporation of the mercury and the pree iodides. After dissociation of the metal calides, the metals alone are excited and croduce specific radiation mainly in the visible cart of the spectrum.

The feature of such a discharge is that the three primary colours - red, blue and green - are very ell represented in the spectrum. This is not only important for colour quality as perceived by the human eye, but also for the colour sensitivity of colour films and CTV cameras

With the internal fluorescent coating converting UV radiation into visible radiation - and hence improving the colour impression - the ovoidshaped HPI lamps are especially suited to indoor applications.

Cut-away view

- 1. Mechanically fitted E40 screw base
- 2. Lead-in wire / support
- 3. Sleeve protecting the support
- 4. Quartz discharge tube
- 5. Internal phosphor coating
- 6. Tubular or elliptical hard glass outer bulb, impervious to atmospheric conditions
- 7. Getter ring for maintaining a clean gas atmosphere, thus ensuring maximum lamp efficacy

-26-

mons of use

For performance of this type of lamp can only be different the ballast on which it is operated complies with cations laid down by the lamp manufacturer. Moreover, the supply voltage may not fluctuate more than \pm 5% from the ballast.

ed the possibility of personal injury or damage to property og from shattering, the BUS (Base Up Self-starting) lamp daways be incorporated in an enclosed luminaire.

ng positions

= 1400 W lamp may only burn in a horizontal position \pm 20°. But and BUS lamps may only burn in a vertical position \pm 15°.

250 W BU 400 W BU and BUS

HPI 400 W

conical data

	Base	Min. supply voltage for ignition') ase V		Average lamp	Average lamp	Lamp starting	Minimum permissible	Average	Maximum permissible	Average		
		+20°C	-18°C	voltage ²) ⁴) V	Current ²) ⁴) A	current A(max.)	wattage ²) W	wattage ²) ⁴) W	lamp wattage²) W	luminous flux ²) ⁴)	Average luminance ²) ⁴)	Run-up time ³) ⁴)
NW BU NO W BU NO W BUS	E40 E40 E40 E40	200 200 200 200	200 200 200 200	125 125 125 125	2,2 3,4 3,4 3,4	3,2 6,0 6,0	210 330 340	250 390 400	290 450 460	17 500 27 600 30 600	3,7 3,5 3,8	min. 3 3
 hours. umber of min colour render sured at nomin 	²) After jutes all ring pro- nal supp	100 burning ter which the perties will l ply voltage a	hours. e lamp has be reached nd referen	reached 80 d after 10-15 ce ballast fo	% of its final minutes. r a free burn	luminous	flux.	400	460	30 600	3,8	3

ering and packing data

alion	Ordering	Nett	Packing u			
	number	weight g	Qty	Weight ka	Dimensions	Volume
00 W BU 00 W BU 00 W BUS	9280 767 098 9280 731 098 9280 743 098 9280 747 098	200 260 260 260	12 6 6 6	3,90 3,10 3,10	47 x 37,5 x 27,5 51 x 36 x 37 51 x 36 x 37	m ³ 0,048 0,068 0,068
				3,10	51 x 36 x 37	0,068

Lamp

Dimensions

designation	A	B	C
	max.	max.	max.
HPI 250 W BU HPI 400 W HPI 400 W BU HPI 400 W BUS	227 292 292 292 292	53 58 58 58 58	92 122 122 122

COMPANY AND ADDRESS OF

Typical curves

Effects of mains voltage variations

Normalised spectral power distribution

45

HPI-T lamps

Sefinition

h-pressure metal halide gas-discharge lamps, for indoor and door use, with iodide additives indium, thallium and sodium in mercury discharge. The discharge tube is enclosed in a r, tubular hard glass outer bulb.

Description

- Basically, HPI-T lamps operate om the same principe as all gas-discharge lamps.
- In view of the need for a light source with excellent colour rendering combined with high efficacy, the discharge tube contains metal halide compounds which have the effect of increasing the intensity of the radiation in the three spectral appearance and colour rendering are improved and the luminous efficacy is considerably increased. When used together with the appropriate optical systems, this
- combination provides a highly efficient source of accurately controlled, powerful beams of light.
- The spectrum of the metal halide lamp meets the requirements for colour film and colour television. The lamps are therefore highly suitable for the lighting of colour television broadcasts.

Lamp characteristics:

- Very high luminous efficacy
- Excellent colour rendering
- Applications
- Lighting for colour TV broadcasting
 Lighting for colour filming
- Public lighting
- Sports ground lighting
- Floodlighting
- Industrial and commercial indoor lighting
- Plant irradiation

Ballasts and ignitors

Metal halide lamps require high quality ballasts for optimum operation, as well as ignitors to ensure reliable ignition. For ballasts and ignitors see relevant leaflets.

Temperatures

Max. permissible base temperatures: 250°C for 400W 300°C for 1000 W 300°C for 2000 W 600°C

Reliable, long life

Stable lumen maintenance

Max. permissible bulb termperature:

-29-

Burning positions

HPI-T 250 W, HPI-T 400 W, HPI-T 1000 W and HPI-T 2000 W,
 V lamps may burn in a horizontal position ± 20° only, while
 burning angle of the HPI-T 2000 W, 220 V lamp may be varied approximately 75° from the horizontal. This means that the
 W, 220 V lamp can be used in rotation-symmetrical
 codlights in a declined position without the colour rendering
 coperties being affected.

75°

PI-T 2000 W/220 V

HPI-T 250 W HPI-T 400 W HPI-T 1000 W HPI-T 2000 W/380 V

echnical data

esignation		Bas		Min.supj for igniti V	oly voltage on1)	Average lamp	Average lamp	Lamp starting	Minimum permissible lamp	Nominal lamp	Maximum permissible lamp	Ave	rage	Average	Run-up	
				+20°C	-18°C	Voltage*)*) V	Current ²) ⁴)	Current A(max.)	wattage ²) W	wattage ²) ⁴) W	wattage ²) W	flux Im	2)4)	luminance ²) ⁴) cd/cm ²	time ³) ⁴) min.	1
PI-T	250	W	E40	200	200	125	2.1	5	210	245	285	17	000	700	3	V
PI-T	400	W	E40	200	200	125	3,4	6	330	390	450	31	500	770	3	
1PI-T	1000	W	E40	200	200	130	8,25	14	800	965	1100	81	000	950	3	
IPI-T	2000	W/220	E40	200	200	135	16,5	24	1650	1960	2200	189	000	1100	3	
IPI-T	2000	W/380	E40	330	340	240	8,6	14	1650	1900	2200	183	000	870	3	

A 0 hours. a) After 100 burning hours. The number of minutes after which the lamp has reached 80% of its final luminous flux. Final colour rendering properties will be reached after 10-15 minutes. Measured at nominal supply voltage and reference ballast for a free burning lamp.

ardering and packing data

amp signation	Ordering	Not	Packing unit									
	number	weight	Qty	Weight kg	Dimensions cm	Volume m ³						
P-T 250 W	9280 761 092	180	12	4,46	36 x 29 x 39	0.041						
-T 400 W	9280 734 092	180	12	4,46	36 x 29 x 39	0.041						
-T 1000 W	9280 740 092	400	4	4.65	32 x 32 x 51	0.052						
-T 2000 W/220	9280 736 092	650	4	5.00	35 x 35 x 60	0.074						
-T 2000 W/380	9280 718 092	670	4	5,00	35 x 35 x 60	0.074						

- 30 -

Dimensions

Lamp designation	A max.	B nom.	C max.	D nom.
HPI-T 250 W	257	158	47	30
HPI-T 400 W	283	175	47	41
HPI-T 1000 W	382	240	67	80
HPI-T 2000 W/220	430	290	102	85
HPI-T 2000 W/380	430	260	102	135

2

HPI-T 250 W base E40/45 HPI-T 400 W base E40/45

HPI-T 2000 W/220 V base E40/80 x 50 HPI-T 2000 W/380 V base E40/80 x 50

Typical curves

Lamp performance during starting period

Effects of mains voltage variations

Normalised spectral power distribution

-31-

2-3 MAST ARRANGEMENTS

There are basically two important alternative lighting arrangements suitable for football stadiums.

1- FOUR CORNER ARRANGEMENTS: For the first class grounds the system using for towers, one at each corner has now become accepted practice. This system gives minimum glare to spectators and also to the players because there is no source of glare within the area bounded by the two goal line.

2- SIDE ARRANGEMENTS: With this arrangement the light sources are mounted either on columns or in rows parallel to the pitch. This system is popular for the smaller grounds. If there is no roof for spectators area which surrounds the playing field the four corner arrangement is the best one.

We preferred the four-corner arrangements. According to this kind of arrangement the mounting masts creates 10 degrees and 25 degrees from the goal-post towards back. Masts are mounted to field in lines between 25 and 10 degrees which starts from the middle of the playing field and it should not be nearer from the line which makes 5 degrees to the edge of the field.(shown in the related figures)

2-4 MOUNTING HEIGHTS AND GLARE

As the mounting height decreases so the danger of glare and the length of the shadow cast by the players increases. Advantages of using high columns are that they restrict glare and shorter shadows.

The type of floodlight used, it is desirable that the angles subtended at the center of pitch between the horizontal and the lowest point of each flood light battery, be at least 25 degrees. (shown at fig.)

1. 19

FOUR-CORNER ARRANGEMENT OF STADIUM LIGHTING SHOWING THE POSITION OF THE COLUMNS

Ø

VIEWING DISTANCE FROM FARTHEST SPECTATOR TO PITCH CENTER

- 35 -

PART C

1

7-1 Proto Lat. Chinteen - one palae

III CALCULATIONS AND COMPUTATIONS

3-1 FORMULAS: Illuminance at any point (X , Y) can be found from

 $E = I(\Theta) (\cos \Theta)^3 / h^2$

.Where Θ is angle between the mast and the light intensity I(Θ)

 $(\cos \Theta)^3 = 1 / (1+x'^2+y'^2)^(3/2)....Where x'=x/h$ y'=y/h

То	find	I(⊖)	we	must	find	r	&	С	;						
γ =	arcco	os(A/	SQR	г в)											
A=	(1+x)	'+xo'	+y'-	+yo')			• •	• • •	• • •	• • • •	• • •	Whe	re	xo'=x	o/h
B=	(1+x'	^2+y'	^2)	(1+xo	'^2+y	o' '	^2)							yo'=y	o/h

- 38 -

 $C = \arctan ((\tan \alpha SQRT(1+(\tan A)^2))/(\tan A))$

Where;

```
A = \arctan(y' SQRT(1+x'^{2}) / (1+xo'x') - \arctan(yo'/SQRT(1+xo'^{2}))
\alpha = \arccos((1+x'xo'+y'^{2}.P) / SQRT((1+x'^{2}+y'^{2})(Q)))
```

 $P=((1+xo'^2)/(1+x'xo'))$

 $Q = (1 + xo'^{2} + yo'^{2} ((1 + xo') / (1 + xo'x'))^{2})$

After find C and γ , we can find easily I(Θ) from C- γ matrix.

3-2 ILLUMINATION UNIFORMITY

The uniformity coefficient must also be estimated. It is shown by or and expresses the uniformity according to the place. They are defined as;

p1=Emin/Eav
p2=Emin/Emax

- xo=It is the x-coordinate on the surface which the projector axis intercept the plane that will be illuminated.
- yo=It is the y-coordinate on the surface of the point at which the projector axis intercept the plane that will be illuminated.
- x,y=The coordinates of the point at which we want to calculate the illuminance.

-39-

3-3 PROCEDURE OF CALCULATION OF NUMBER OF PROJECTORS

-At the first of all Eav choosing for stadium illumination.

-Each mast will illuminate one quarter of the playground so quarter of stadium area must known.

-Useful flux must be calculated from; ϕ (USEFUL) = Eav * Area

-Then total flux must be find from; ϕ (TOTAL) = ϕ (USEFUL) / Efficiency

-Lamps must be choosing for use in stadium illumination.

-Finally the number of projectors calculated from; # of lamps= ϕ (TOTAL) / ϕ (LAMP)

1

(The number of lamps after calculating can be decimal but as it is impossible usually we take the nearest number.)

- 40 -

3-4 SOME BASIC CONCEPTS

COLOUR RENDERING: The effect of light source on the colour appearance under a reference light source.

GLARE: A condition of vision which a discomfort and/or a reduction in the ability to see significant object, due to the unsuitable distribution or range of brightness, or to extreme contrasts simultaneous or successive in the field of view.

DIFFUSED LIGHTING: Lighting in which the light on the working plane or an object is not predominantly incident from any particular direction.

MAINTENANCE FACTOR: It is a factor used in illumination calculation to allow the reduction of light output from a source of fitting of dust and foreign matter being deposited on it.

OBJECTIVE BRIGHTNESS: This is the luminous intensity of the light source. It is the light output divided by the projected area of the light source in the particular direction measured in candles per unit area.
PART D

1

COMPUTER PROGRAM OF POINT BY POINT ILLUMINATION

10

DIMENSION A(181,351) ,E(28,121),M(117) REAL E, ALFA, ALFA1, X1, Y1, X01, Y01, C1, C, GAMA, C3, A1, X0, Y0 INTEGER M5 REAL AL, FA, X, Y, G3, C4, TOT, REG OPEN(1,FILE='MATRIX') OPEN(2,FILE='OUTPUT.TXT',STATUS='NEW') DO 10 I=1,181,3 DO 10 J=1,351,5 READ(1, *)A(I, J)Sect CONTINUE CLOSE(1)DO 100 I1=1,15 12=0WRITE(5,*)'I/P XO & YO' READ(5, *)XOREAD(5,*)YO WRITE(5,9)XO,YO WRITE(2,9)XO,YOFORMAT(2X, 'FOR:', ' XO=', F4.1, 3X, 'YO=', F4.1) WRITE(5,*) E WRITE(5,*)' X T Y GAMA C WRITE(2, *) £.... WRITE(2,*)' X Y 0 GANA 1 DO 100 X=8,40,8 DO 100 Y=5,61,14 12 = 12 + 1X1 = X / 40Y1 = Y/40X01=X0/40 Y01=Y0740 C3=1/(((1+X1*X1+Y1*Y1))**(1.5)) AL=1+X1*XO1+Y1*Y1*((1+XO1*XO1)/(1+X1*XO1)) F1=(1+X1**2+Y1**2)*(1+X01**2+(Y1**2)*((1+X01**2)/(1+X01*X1))**2) FA=SQRT(F1) ALFA1=ACOS(AL/FA) ALFA=((ALFA1*180.0)/3.1415926) S = SQRT(1 + XO1 * * 2)A1=ATAN((Y1*SQRT(1+X01*X01))/(1+X01*X1))-ATAN(Y01/5) A2=((A1*180)/3.1415926) C1=ATAN(TAN(ALFA1*SURT(1+TAN(A1)*TAN(A1)))/TAN(A1+.01)) C=((C1*180)/3.1415926) GAMA1=ATAN(SORT((TAN(ALFA1))**2*(1+(TAN(A1))**2)+(TAN(A1))**2)) GAMA=((GAMA1*180)/3.1415926) IF ((A2.LT.O).AND.(X.GT.XO)) C=C+180 IF ((A2.LT.0).AND.(X.LT.X0)) C=180-C IF ((A2.GT.O).AND.(X.LT.X0)) C=360-C IF ((A2.GT.O).AND.(X.GT.XO)) C=C IF ((A2.EQ.O).OR.(X.EQ.XO)) C=0 C = NINT(C)C4 = MOD(C, 5, 0)

- 43 -

THE ILLUMINATION OF CANBULAT STADIUM (GRADUATION PROJECT)

PREPARED BY : ERHAN BOLKAN 86205

PREPARED TO : ELECTRICAL & ELECTRONIC ENGINEERING DEPARTMENT

SUPERVISED BY : PROF. HALDUN GURMEN

EASTERN MEDITERRANEAN UNIVERSITY T.R.N.C.

1992 JULY

ACKNOWLEDGEMENTS

I would like to thank my teachers, friends and those who have helped me to design this project.

My sincere thanks are due to my supervisor , Prof. HALDUN GURMEN at the department Electrical Engineering in Famagusta who encouraged me in the early stages of this project and provided me the required documents, books, read and commented on the final version of the manuscript.

. I would also like to thank, to close friends of mine, Mr. M. TASEL BABAGIL, who permitted to use his computer for typing the final version of this manuscript and to print it out. He also helped me to write the computer program for point by point illumination.

My grateful thanks are also due to Miss. SEBLA KAYA for her contributions to give the final form to the report.

r.

PART I

TANK THE

TABLE OF CONTENT

ABSTI	RACT	• • • •	• • • • •	• • •	• • • •				• • •	• • •		••	••	•••		.2
PART	Α															
	I- 3	INTRO	DUCT	ION	• • • •	• • • •	• • • •	• • •	• • •	• • •	• • •	•••	••	• •		.4
	1-1	THE	SUBJI	ECT	OF	ILLU	UMIN	IATI	ON.			•••	• • •		• •	. 4
	1-2	THE	AIM (OF .	ILLU	MIN.	ATIC	DN		•••		•••	••	• • •		.5
	1-3	THE	TYPE	OF	ILI	LUMII	NATI	ON.								. 6

PART B

II-	STADIUM ILLUMINATION9
2-1	BASIC DATA9
2-2	EQUIPMENT
2-3	MAST ARRANGEMENTS32
2-4	MOUNTING HEIGHTS AND GLARE32

PART C

III	- CALCULATIONS AND COMPUTATIONS
3-1	FORMULAS
3-2	ILLUMINATION UNIFORMITY
3-3	PROCEDURE OF CALCULATION OF NUMBER OF
	PROJECTORS
3-4	SOME BASIC CONCEPTS.

PART D

IV-	COMPUTER PROGRAM AND DATA OBTAINED43
4-1	THE RELATED COMPUTER PROGRAM43
4-2	DATA OBTAINED FOR EACH PROJECTOR45
4-3	ONE-QUARTER ILLUMINATION OF CANBULAT
	STADIUM
4-4	THE POINT BY POINT ILLUMINATION TABLE61

PART E

THE	COST	OF THE	PROJECT	····		• • • • •	63	3
THE	WAY O	F FEEDI	[NG	• • • • •	• • • • • •	• • • • •	64	ł
REFERENCE	Ξ	•••••					65	5

-1-

ABSTRACT

The aim of this project is to illuminate CANBULAT Stadium in Famagusta by using up-to-date illumination technology. Even if the illuminance level on the play ground is not equal at each point, it should be distributed according to their approximate equality because illumination of stadium must be made in order to let the players and spectators view the play without any difficulty. Also it is an important event that the motions of ball should be observed by the eye.

I obtain some documents about up-to-date stadium illumination by correspondence and with help of my course tutor.

The average illuminance was decided as 500 lux. We also decided on the number of projectors needed. Adding to them I realized to use four corner arrangement with 4 masts. 2000W HPI-T lumps are used. By the aid of computer program the point by point illumination is calculated

PART A

and a second second of a second s

and the second size development report the lightent of the

I INTRODUCTION

All the duties that the human being has to perform is in some way affected or governed by light. Human beings for many centuries depended on natural lighting such as the moon, sun and the stars but as the need for better and more efficient lighting grew. We started to depend on artificial lighting.

Up-to the beginning of the later years of the 19th century people were dependent on artificial lighting such as candles, oil lamps and the wood. However the invention of the incandescent lamp by H.GOBEL and A.EDISON opened a new pave wave in illumination technique.

During those years there was nor enough power to feed all the electrical suppleness until W.SIEMENCE invented the dynamo. After making great improvement in the incandescent lamp we arrived to the up-to-date lighting technique, the fluorescent lamp.

1-1 THE SUBJECT OF ILLUMINATION

The basic concept of illumination consist of the production, distribution, economics and measurements of light. Illumination has a very important role in the industries of all developed countries. Lighting any place no matter how small is a complex task. The solution of illumination problem can only be solved by the help of an electrical engineer who has technical ability and by an architect who has an artistic ability in illumination.

-4-

Nowadays lighting has become one of the most important needs of societies across the world.

As a summary, the following advantages are gained by a sufficient illumination:

(a) Seeing ability of eye.

(b) The health of eye is protected.

(c) The accidents are decreased.

(d) The performance of work is increased.

(e) The capacity of work in commerce is enlarged.

(f) The economical potential is increased.

(g) Security is provided (A street lamp is equivalent to a policemen)

(h) The esthetic feelings and the necessity of comfort are an answer.

1-2 THE AIM OF ILLUMINATION

The aim of illumination is to meet the priority of course this is not the only necessity to be met. According to it's purpose the three major necessities of (illumination can be listed below.

(a) Physiological illumination : The main aim of physiological illumination is to help us distinguish shapes details and colours. In the installation of this sort of illumination special care should be taken to minimize the danger of physical damage which could generate as a result of faulty installation.

(b) Decorative illumination : In the decoration of homes, work place ...etc. decorative illumination plays a great role. In this type of illumination both the architect and the illumination engineer are very important.

- 5-

(c) Attractive illumination : The aim of this type of illumination is to draw attention for such things as advertisements or for decorations. In order to accomplish this various lights and techniques are used.

1-3 THE TYPE OF ILLUMINATION

The types of illumination are divided into two groups; natural and artificial. Artificial illumination is also dividend into two groups as OUTDOOR and INDOOR.

(a) Natural illumination: It deals with thedistribution of the natural light in a most suitableway. It is generally preferred as it is free and easilyavailable

(b) Artificial illumination: It is obtained through electrical devices. The use of artificial illumination is divided into groups with incandescent, discharge and fluorescent lamps.

b-i) INDOOR ILLUMINATION:

Places like houses, schools, hospitals, factories, cinemas and the like are all subject to indoor illumination. Illumination in these places is accomplished through the reflection of the light from the walls and ceilings of the room. Indoor illumination can be divided into groups as direct, semi direct and indirect. For instance if 90-100 % of the light flux of the source is going to escape. This is called direct illumination system. 60-90 %, 40 %, 60 %, 10 %,

-6-

40 % and 0-10 % of the lights flux is called semi direct mix, semi indirect and indirect illumination system.

b-ii) OUTDOOR ILLUMINATION:

Outdoor illumination is used to light-up such places as football pitches or any place which has no wall surroundings. Such places need direct light.

A second se

1/2011 117

the part of second states to be the second states of the test of

PART B

II STADIUM ILLUMINATION

2-1 BASIC DATA

(a) FOOTBALL: Football and various other games are outdoor games. As it is played in open air and very often at nights outdoor illumination is very important.

(b) MEASUREMENTS: The size of a football pitch accepted by the FIFA (shown in fig. 1) has a width between 45m-90m and a length of 90m-120m . the width and length of the penalty area is 40.32m and 16.5m consequently. The length of the goal post area is 18.32m with a width of 5.5m. The diameter of pitch center is 9.15m.

(c) SPORTS CENTERS: It is usually arranged according to the number of spectators. Therefore the maximum vision distances for illumination must be taken into consideration. Different illumination techniques are required depending on the type of playground and it's capacity. The material used in these playgrounds varies from sand, gravel or grass. Those playgrounds which has great spectators are called "stadium".

(d) THE IMPORTANCE OF ILLUMINATION: Illumination is very important for both the players and spectators. The most important function of illumination is to follow the motions of the ball which is the smallest item in the playground. Researchers show that in order to perceive and identify a thing in motion illumination level, environment and the degree of illumination play an important role. So the difference of illumination level between ball and playground should be as high as possible. A playground which has Av. reflection degrees are 0.1 - 0.3, for instance. It is 0.1 - 0.15 at gravel playground and it is 0.15 - 0.25 at lawn playground according to its cut and humidity. According to the material and illumination used with a light colour ball (reflection degree $\rho > 0.5$) the intensity of illumination level between ball and playground varies between 2/1 and 5/1.

In this system as the spectators distance from the ball increased the view of the ball decreased. So equal illumination level and high illumination power are accepted. As in graph 1 the visibility angle of a ball of 25cm in diameter can decrease from 4 sec to 8 sec depending on the stadium figure.

For a good solution it is necessary to see and follow a ball which is in motion and to keep a certain perceiving duration. Therefore, when we apply practically those data obtained scientifically, the close relationship can be used between the perceiving duration of view angle, illumination level of surrounding and contrast.

(e) THE SEEING NECESSITY OF PLAYERS: From a scientific point of view the view of a player is limited to 100m. At graph 2, we can see the perceiving duration according to the illumination level. Therefore, the illumination level of a playground should be at least 10 abs (1 candela = 3.4 abs) and the proportion of reflection is between 0.25 and 0.125.

(f) SEEING NECESSITY OF SPECTATORS: In order for the spectators to see the motions of the ball it is necessary

to relate the position stated in graph 4. While the illumination level of a pitch is determined by horizontal illumination power, the distance of spectators from the ball depend on vertical illumination the power of vertical illumination varies in accordance to its place.

Certain measurements would charge the power of vertical, illumination situated at certain places in the middle and edges of playground. The contrast between playground and illumination level can only be at the top part of ball which the contrast of this is only be determined by horizontal illumination.

At the first approach, the illumination level of top part of ball up to 45 degree angle is determined by horizontal illumination. It is shown at fig. 2. In this position, the diameter of top point be 0.7 Of the whole diameter (d).

(g) EFFECT OF SHADOW: There should be no shadows on the stadium. This is achieved by multi-directional illumination. Because of the difference in vertical illumination a plastic appearance on human body is given.

(h) MIXTURE OF LIGHT: The mixture of light is different for spectators and the players. Ideally no light should fall onto the spectators. However this is very hard to do as they are under high vertical illumination. There are physical effects of this;

(i) COLOUR: It is important both spectators as well as players that lights are not spoiled. Specially skin colour should be kept by adding red colour to illumination.

- 11 -

(j) APPROPRIATENESS FOR CAMERA AND TV BROADCASTS: TV and cameras have different sensitivity then the human face. When choosing a light source for television and cameras the vertical illumination should be the average of more than 250 lux as the quality of film is spoiled at less illumination. The average illumination for tv broadcasts should be about 800-1000 lux.

-15 -

ŝ

2-2 EQUIPMENT

(a) LIGHT SOURCES: At stadium illumination usually as a light source, metal halide lamps or high-pressure metal halide lamps are used.

(b) DEFINITION OF METAL HALIDE LAMPS: High-pressure metal halide gas discharge lamps have a very luminous efficacy and excellent colour rendering properties with an internal diffusion coating on the hard glass outer bulb and a stable lumen output through their long life, HPI lamps are very suitable for;

- * Industrial and commercial.
- * Indoor lighting.
- * Public lighting.
- * Flood lighting.
- * Plant irradiation.

(c) DESCRIPTION OF METAL HALIDE LAMPS: Basically HPI-T lamps operate on the same principle as all gas-discharge lamps. In view of the need for a light source rendering combined with high efficiency, the discharge tube contains metal halide compounds which have the effect if increasing the intensity in the three spectral bands blue, green, yellow and red.

The spectrum of the metal halide lamps meets the requirements for colour film and colour tv. The lamps are therefore highly suitable for the lighting of colour television broadcasts.

(d) THE LAMPS CHARACTERISTIC OF METAL HALIDE LAMPS -High luminous efficiency.

-Excellent colour rendering.

-Reliable, long life.

-Stable lumen maintenance.

-17-

(a) APPLICATIONS OF METAL HALIDE LAMPS:
-Lighting for colour tv. broadcasting.
-Lighting for colour films.
-Public lighting.
-Sports ground lighting.
-Flood lighting.
-Industrial and commercial indoor lighting.

-Plant irradiation.

(f) BALLASTS AND IGNITORS: Metal halide lamps require high quality ballast for optimum operation, as well as ignitors to ensure reliable ignition for ballast and ignitors.

ON

for use with one 200 W high-pressure amp or one HPI/T retal halide lamp.

FLOODLIGHTING

CRIPTION

and rear-cover: rug-all-cast aluminium conction

gs of low-copper-confor excellent corrosionstance, even in coastal industrial areas

e beam-versions, as differreflectors are available:

	HPI/T	SON/T
	2000 W	1000 W
- beam	2×9°	2×9°
- sam	2×23°	2×27°

-grade aluminium reflecfor accurate beam con-

- Lamp replacement is effected by removing the rear-cover, thus facilitating servicing
 Easy-to-operate stainless-
- steel clips on the rear-cover; to be closed by hand and opened with a simple tool. The floodlight cannot be easi-ly opened by unauthorized
- persons. Cast-on beam-aiming sight and protractor scale for quick daylight adjustment
- Ozone-resistant ethylene-propylene rubber gasket for jetproof and dustproof sealing of front glass; 4 extra safety clamps.

APPLICATIONS

- Sports grounds
 Floodlighting of buildings
 Marshalling yards
 Car parks

- Skating rinks High-mast lighting
- Sports halls
- Shipyards

ORDERING DATA Ordering number*) Weight Wide-beam type Designation For lamps Narrow-beam type kg 23,5 1 - HPI/T 2000 W 9112718503 9112718502 HNF 002 23,5 9112718 504 9112718505 1 × SON/T 1000 W

*) Complete floodkaht

FLOODLIGHT FOR HIGH-PRESSURE SODIUM LAMPS OR METAL HALIDE LAMPS

Dec. Code "Light": 58.3

-19-

DETAILED DRAWING

- 1 Housing
- 2. Safety clamp (4 >)
- 3. Front glass
- 4 Reflector
- 5. Lampholder
- 6 Lampholder insulating plate
- 7. Lampholder bracket
- 8. Terminal block
- 9. Glands for dust-filters
- 10. Bracket
- 11. Closing clip top ($2 \times$)
- 12. Rear-cover
- 13. Lamp support
- 14. Reflector rear-cover
- 15. Gasket
- Closing clip bottom (2 ·)
- 17. Additional lamp support
- 18. Side reflector

FECIAL TOOL

e front glass is provided with special type of gasket. To rece the glass, a special gasinsertion tool can be used, sisting of a handle with e removable clips to suit different floodlights. Ordernumber for complete set 9 260 005...

ADJUSTMENT POSSIBILITIES

DIMENSIONS

30

0

30'

60

30

15

60

40

20

0

20

40

1×SON/T 1000 W

narrow beam

630cd 1000cd 1250cd

600

63cd 100cd 160cd

250cd 400cd 567cd

60

63 cd 100 cd 160 cd

20°

40°

-21-

PHILIPS

ILIPS

Metal halide gas-discharge lamps

-22-

,

HPI-T 250 W HPI-T 400 W

HPI 250 W

HPI 400 W

Why metal halide lamps?

he quick answer to this question is:

- Improved colour appearance
- Improved colour rendering
- High luminous efficacy
- Reliable long life
- Well balanced spectrum

The careful development of the mixture of metal alides has made these features possible. Inside be gas-discharge tube of an HPI lamp there is a precisely measured 'cocktail' of sodium, thallium and indium, all chemically compounded in iodide term.

This particular combination has been found to be very effective in terms of colour characteristics (see pages 8-9) and also in the eliability and stability of the light source.

The range at a glance

HPI 250W BU - An ovoid coated lamp; can be used with a standard 250W mercury lamp ballast; burning position is vertical base-up.

HPI-T 250W - Tubular in shape, this clear lamp is designed for use with a 250W mercury lamp ballast and external ignitor; burning position is horizontal.

HPI 400W - An ovoid coated lamp for use on a 400W mercury lamp ballast plus external ignitor; burning position is horizontal.

HPI 400W BU, HPI 400W BUS - Both types are ovoid coated lamps;

the 400W BU lamp can be applied in existing HPI installations equipped with ignitors and can also replace 400W dysprosium lamps;

the 400W BUS lamp is self-starting and therefore needs no ignitor; can directly replace a 400W mercury vapour lamp since it is designed to run on a standard 400W mercury lamp ballast; burning position of both lamp types is vertical base-up.

HPI-T 400W - A clear tubular lamp designed for use in optical systems for floodlighting and indoor applications; needs a 400W mercury lamp ballast plus an ignitor; burning position is horizontal.

HPI-T 1000W - Also tubular and clear, this lamp operates on a 1000W mercury lamp ballast with an ignitor; specially designed for floodlighting and illuminating sports arenas; burning position is horizontal.

HPI-T 2000W - Two versions, both tubular and

clear, are available: 220V and 380V; the 220V type may be operated in almost any burning position, with minimal colour shift even at steeply tilted angles; ideal for floodlighting large sports stadiums, particularly 4-mast installations; the 380V type is limited to the horizontal burning position; a reliable light source for training fields and floodlighting of large stadiums; both lamp types require an external ignitor; the 220V version needs two parallel 1000W mercury lamp ballasts whilst for the 380V version, a special ballast has been designed.

-24-

nucleus of a metal halide lamp is the
harge tube, manufactured from quartz. Into
h end of the tube are sealed lead-in wires
porting electrodes in the form of tungsten
als. Also contained within the tube is a
h ure of two gases - neon and argon - and
h emetals in iodide form - indium, thallium and
h m - plus metallic mercury.

2

3

her, the discharge tube is housed in a clear
ar hard glass outer bulb (HPI-T) or in an
d envelope having a diffusing fluorescent
ng (HPI). The whole structure is firmly held
ace by support wires and by springs to
non any effects of vibration on the lamp.

Ing the space between the discharge tube the outer envelope is a mixture of neon and

nítrogen. The former serves to nullify the emission of neon from the discharge tube itself whilst the latter prevents any likelihood of 'flashover', where a discharge can take place outside the confines of the discharge tube.

Also located within the outer bulb is a getter whose function is to absorb any impurities in the gases which could otherwise adversely affect the correct running of the lamp; in the case of the metal halide lamps, hydrogen represents the greatest potential danger.

As an additional measure, a sleeve is slid over the support wire to reduce the possibility of 'photoemission', whereby the sodium deserts the discharge and causes blackening of the outer bulb.

Finally, an E40 lamp base is mechanically

25-

stached to the glass envelope, giving a sturdy overall construction.

operation, metal halide lamps work on a
milar principle to all gas-discharge lamps - that
light is obtained from an electric discharge
ccurring between two electrodes inside a
scharge tube.

with the aid of the two starting gases, ignition akes place and causes a rise in temperature, collowed by evaporation of the mercury and the pree iodides. After dissociation of the metal calides, the metals alone are excited and croduce specific radiation mainly in the visible cart of the spectrum.

The feature of such a discharge is that the three primary colours - red, blue and green - are very ell represented in the spectrum. This is not only important for colour quality as perceived by the human eye, but also for the colour sensitivity of colour films and CTV cameras

With the internal fluorescent coating converting UV radiation into visible radiation - and hence improving the colour impression - the ovoidshaped HPI lamps are especially suited to indoor applications.

Cut-away view

- 1. Mechanically fitted E40 screw base
- 2. Lead-in wire / support
- 3. Sleeve protecting the support
- 4. Quartz discharge tube
- 5. Internal phosphor coating
- 6. Tubular or elliptical hard glass outer bulb, impervious to atmospheric conditions
- 7. Getter ring for maintaining a clean gas atmosphere, thus ensuring maximum lamp efficacy

-26-

mons of use

For performance of this type of lamp can only be different the ballast on which it is operated complies with cations laid down by the lamp manufacturer. Moreover, the supply voltage may not fluctuate more than \pm 5% from the ballast.

ed the possibility of personal injury or damage to property og from shattering, the BUS (Base Up Self-starting) lamp daways be incorporated in an enclosed luminaire.

ng positions

= 1400 W lamp may only burn in a horizontal position \pm 20°. But and BUS lamps may only burn in a vertical position \pm 15°.

250 W BU 400 W BU and BUS

HPI 400 W

conical data

stion	Base	Min. suppl for ignition V	ly voltage	Average lamp	Average lamp	Lamp	Minimum permissible	Average	Maximum permissible	Average		
		+20°C	-18°C	voltage ²) ⁴) V	current ²) ⁴) A	current A(max.)	wattage ²) W	wattage ²) ⁴) W	lamp wattage²) W	luminous flux ²) ⁴)	Average luminance ²) ⁴)	Run-up
NW BU NO W BU NO W BUS	E40 E40 E40 E40	200 200 200 200	200 200 200 200	125 125 125 125	2,2 3,4 3,4 3,4	3,2 6,0 6,0	210 330 340	250 390 400	290 450 460	17 500 27 600 30 600	3,7 3,5 3,8	min. 3 3
 hours. umber of min colour render sured at nomin 	²) After nutes all ring pro- nal sup	100 burning ter which the perties will l ply voltage a	hours. e lamp has be reached nd referen	reached 80 d after 10-15 ce ballast fo	% of its final minutes. r a free burn	luminous	flux.	400	460	30 600	3,8	3

ering and packing data

nation	Ordering	Nett	Packing u					
	number	weight g	Qty	Weight ka	Dimensions	Volume		
00 W BU 00 W BU 00 W BUS	9280 767 098 9280 731 098 9280 743 098 9280 747 098	200 260 260 260	12 6 6 6	3,90 3,10 3,10	47 x 37,5 x 27,5 51 x 36 x 37 51 x 36 x 37	m ³ 0,048 0,068 0,068		
				3,10	51 x 36 x 37	0,068		

Lamp

Dimensions

designation	A	B	C
	max.	max.	max.
HPI 250 W BU HPI 400 W HPI 400 W BU HPI 400 W BUS	227 292 292 292 292	53 58 58 58 58	92 122 122 122

COMPANY AND ADDRESS OF

Typical curves

Effects of mains voltage variations

Normalised spectral power distribution

45

HPI-T lamps

Sefinition

h-pressure metal halide gas-discharge lamps, for indoor and door use, with iodide additives indium, thallium and sodium in mercury discharge. The discharge tube is enclosed in a r, tubular hard glass outer bulb.

Description

- Basically, HPI-T lamps operate om the same principe as all gas-discharge lamps.
- In view of the need for a light source with excellent colour rendering combined with high efficacy, the discharge tube contains metal halide compounds which have the effect of increasing the intensity of the radiation in the three spectral appearance and colour rendering are improved and the luminous efficacy is considerably increased. When used together with the appropriate optical systems, this
- combination provides a highly efficient source of accurately controlled, powerful beams of light.
- The spectrum of the metal halide lamp meets the requirements for colour film and colour television. The lamps are therefore highly suitable for the lighting of colour television broadcasts.

Lamp characteristics:

- Very high luminous efficacy
- Excellent colour rendering
- Applications
- Lighting for colour TV broadcasting
 Lighting for colour filming
- Public lighting
- Sports ground lighting
- Floodlighting
- Industrial and commercial indoor lighting
- Plant irradiation

Ballasts and ignitors

Metal halide lamps require high quality ballasts for optimum operation, as well as ignitors to ensure reliable ignition. For ballasts and ignitors see relevant leaflets.

Temperatures

Max. permissible base temperatures: 250°C for 400W 300°C for 1000 W 300°C for 2000 W 600°C

Reliable, long life

Stable lumen maintenance

Max. permissible bulb termperature:

-29-

Burning positions

HPI-T 250 W, HPI-T 400 W, HPI-T 1000 W and HPI-T 2000 W,
 V lamps may burn in a horizontal position ± 20° only, while
 burning angle of the HPI-T 2000 W, 220 V lamp may be varied approximately 75° from the horizontal. This means that the
 W, 220 V lamp can be used in rotation-symmetrical
 codlights in a declined position without the colour rendering
 coperties being affected.

75°

PI-T 2000 W/220 V

HPI-T 250 W HPI-T 400 W HPI-T 1000 W HPI-T 2000 W/380 V

echnical data

amp	ation		Base	Min. supp for Ignition V	olyvoltage on1)	Average lamp	Average lamp	Lamp starting	Minimum permissible lamp	Nominal lamp	Maximum permissible lamp	Ave	rage	Average	Run-up	
esignation	_	+20°C	-18°C	Voltage ²)*) V	Current ²) ⁴)	current A(max.)	wattage ²) W	wattage ²) ⁴) W	wattage ²) W	flux²)4) Im		luminance ²) ⁴) cd/cm ²	time ³) ⁴) min.	1		
PI-T	250	W	E40	200	200	125	2,1	5	210	245	285	17	000	700	3	
IPI-T	400	W	E40	200	200	125	3,4	6	330	390	450	31	500	770	3	
1PI-T	1000	W	E40	200	200	130	8,25	14	800	965	1100	81	000	950	3	
IPI-T	2000	W/220	E40	200	200	135	16,5	24	1650	1960	2200	189	000	1100	3	
PI-T	2000	W/380	E40	330	340	240	8,6	14	1650	1900	2200	183	000	870	3	

A 0 hours. The number of minutes after which the lamp has reached 80% of its final luminous flux. Final colour rendering properties will be reached after 10-15 minutes. Measured at nominal supply voltage and reference ballast for a free burning lamp.

ardering and packing data

mo	Ordering	Not	it			
esignation	number	weight	Qty	Weight kg	Dimensions cm	Volume m ³
-T 250 W	9280 761 092	180	12	4,46	36 x 29 x 39	0.041
-T 400 W	9280 734 092	180	12	4,46	36 x 29 x 39	0.041
-T 1000 W	9280 740 092	400	4	4.65	32 x 32 x 51	0.052
-T 2000 W/220	9280 736 092	650	4	5.00	35 x 35 x 60	0.074
-T 2000 W/380	9280 718 092	670	4	5,00	35 x 35 x 60	0.074

- 30 -

Dimensions

Lamp designation	A max.	B nom.	C max.	D nom.
HPI-T 250 W	257	158	47	30
HPI-T 400 W	283	175	47	41
HPI-T 1000 W	382	240	67	80
HPI-T 2000 W/220	430	290	102	85
HPI-T 2000 W/380	430	260	102	135

2

HPI-T 250 W base E40/45 HPI-T 400 W base E40/45

HPI-T 2000 W/220 V base E40/80 x 50 HPI-T 2000 W/380 V base E40/80 x 50

Typical curves

Lamp performance during starting period

Effects of mains voltage variations

Normalised spectral power distribution

-31-

2-3 MAST ARRANGEMENTS

There are basically two important alternative lighting arrangements suitable for football stadiums.

1- FOUR CORNER ARRANGEMENTS: For the first class grounds the system using for towers, one at each corner has now become accepted practice. This system gives minimum glare to spectators and also to the players because there is no source of glare within the area bounded by the two goal line.

2- SIDE ARRANGEMENTS: With this arrangement the light sources are mounted either on columns or in rows parallel to the pitch. This system is popular for the smaller grounds. If there is no roof for spectators area which surrounds the playing field the four corner arrangement is the best one.

We preferred the four-corner arrangements. According to this kind of arrangement the mounting masts creates 10 degrees and 25 degrees from the goal-post towards back. Masts are mounted to field in lines between 25 and 10 degrees which starts from the middle of the playing field and it should not be nearer from the line which makes 5 degrees to the edge of the field.(shown in the related figures)

2-4 MOUNTING HEIGHTS AND GLARE

As the mounting height decreases so the danger of glare and the length of the shadow cast by the players increases. Advantages of using high columns are that they restrict glare and shorter shadows.

The type of floodlight used, it is desirable that the angles subtended at the center of pitch between the horizontal and the lowest point of each flood light battery, be at least 25 degrees. (shown at fig.)

1. 19

FOUR-CORNER ARRANGEMENT OF STADIUM LIGHTING SHOWING THE POSITION OF THE COLUMNS

Ø

VIEWING DISTANCE FROM FARTHEST SPECTATOR TO PITCH CENTER

- 35 -

PART C

1

7-1 Proto Lat. Chinteen - one palae

III CALCULATIONS AND COMPUTATIONS

3-1 FORMULAS: Illuminance at any point (X , Y) can be found from

 $E = I(\Theta) (\cos \Theta)^3 / h^2$

.Where Θ is angle between the mast and the light intensity I(Θ)

 $(\cos \Theta)^3 = 1 / (1+x'^2+y'^2)^(3/2)....Where x'=x/h$ y'=y/h

То	find	I(⊖)	we	must	find	r	&	С	;						
γ =	arcco	os(A/	SQR	г в)											
A=	(1+x)	'+xo'	+y'-	+yo')			• •	• • •	• • •	• • • •	• • •	Whe	re	xo'=x	o/h
B=	(1+x'	^2+y'	^2)	(1+xo	'^2+y	o' '	^2)							yo'=y	o/h

- 38 -

 $C = \arctan ((\tan \alpha SQRT(1+(\tan A)^2))/(\tan A))$

Where;

```
A = \arctan(y' SQRT(1+x'^{2}) / (1+xo'x') - \arctan(yo'/SQRT(1+xo'^{2}))
\alpha = \arccos((1+x'xo'+y'^{2}.P) / SQRT((1+x'^{2}+y'^{2})(Q)))
```

 $P=((1+xo'^2)/(1+x'xo'))$

 $Q = (1 + xo'^{2} + yo'^{2} ((1 + xo') / (1 + xo'x'))^{2})$

After find C and γ , we can find easily I(Θ) from C- γ matrix.

3-2 ILLUMINATION UNIFORMITY

The uniformity coefficient must also be estimated. It is shown by or and expresses the uniformity according to the place. They are defined as;

> ρ1=Emin/Eav ρ2=Emin/Emax

- xo=It is the x-coordinate on the surface which the projector axis intercept the plane that will be illuminated.
- yo=It is the y-coordinate on the surface of the point at which the projector axis intercept the plane that will be illuminated.
- x,y=The coordinates of the point at which we want to calculate the illuminance.

-39-

3-3 PROCEDURE OF CALCULATION OF NUMBER OF PROJECTORS

-At the first of all Eav choosing for stadium illumination.

-Each mast will illuminate one quarter of the playground so quarter of stadium area must known.

-Useful flux must be calculated from; ϕ (USEFUL) = Eav * Area

-Then total flux must be find from; ϕ (TOTAL) = ϕ (USEFUL) / Efficiency

-Lamps must be choosing for use in stadium illumination.

-Finally the number of projectors calculated from; # of lamps= ϕ (TOTAL) / ϕ (LAMP)

1

(The number of lamps after calculating can be decimal but as it is impossible usually we take the nearest number.)

- 40 -

3-4 SOME BASIC CONCEPTS

COLOUR RENDERING: The effect of light source on the colour appearance under a reference light source.

GLARE: A condition of vision which a discomfort and/or a reduction in the ability to see significant object, due to the unsuitable distribution or range of brightness, or to extreme contrasts simultaneous or successive in the field of view.

DIFFUSED LIGHTING: Lighting in which the light on the working plane or an object is not predominantly incident from any particular direction.

MAINTENANCE FACTOR: It is a factor used in illumination calculation to allow the reduction of light output from a source of fitting of dust and foreign matter being deposited on it.

OBJECTIVE BRIGHTNESS: This is the luminous intensity of the light source. It is the light output divided by the projected area of the light source in the particular direction measured in candles per unit area.

PART D

1

COMPUTER PROGRAM OF POINT BY POINT ILLUMINATION

10

DIMENSION A(181,351) ,E(28,121),M(117) REAL E, ALFA, ALFA1, X1, Y1, X01, Y01, C1, C, GAMA, C3, A1, X0, Y0 INTEGER M5 REAL AL, FA, X, Y, G3, C4, TOT, REG OPEN(1,FILE='MATRIX') OPEN(2,FILE='OUTPUT.TXT',STATUS='NEW') DO 10 I=1,181,3 DO 10 J=1,351,5 READ(1, *)A(I, J)Sect CONTINUE CLOSE(1)DO 100 I1=1,15 12=0WRITE(5,*)'I/P XO & YO' READ(5, *)XOREAD(5,*)YO WRITE(5,9)XO,YO WRITE(2,9)XO,YOFORMAT(2X, 'FOR:', ' XO=', F4.1, 3X, 'YO=', F4.1) WRITE(5,*) E WRITE(5,*)' X T Y GAMA C WRITE(2, *) £.... WRITE(2,*)' X Y 0 GANA 1 DO 100 X=8,40,8 DO 100 Y=5,61,14 12 = 12 + 1X1 = X / 40Y1 = Y/40X01=X0/40 Y01=Y0/40 C3=1/(((1+X1*X1+Y1*Y1))**(1.5)) AL=1+X1*XO1+Y1*Y1*((1+XO1*XO1)/(1+X1*XO1)) F1=(1+X1**2+Y1**2)*(1+X01**2+(Y1**2)*((1+X01**2)/(1+X01*X1))**2) FA=SQRT(F1) ALFA1=ACOS(AL/FA) ALFA=((ALFA1*180.0)/3.1415926) S = SQRT(1 + XO1 * * 2)A1=ATAN((Y1*SQRT(1+X01*X01))/(1+X01*X1))-ATAN(Y01/5) A2=((A1*180)/3.1415926) C1=ATAN(TAN(ALFA1*SURT(1+TAN(A1)*TAN(A1)))/TAN(A1+.01)) C=((C1*180)/3.1415926) GAMA1=ATAN(SORT((TAN(ALFA1))**2*(1+(TAN(A1))**2)+(TAN(A1))**2)) GAMA=((GAMA1*180)/3.1415926) IF ((A2.LT.O).AND.(X.GT.XO)) C=C+180 IF ((A2.LT.0).AND.(X.LT.X0)) C=180-C IF ((A2.GT.O).AND.(X.LT.X0)) C=360-C IF ((A2.GT.O).AND.(X.GT.XO)) C=C IF ((A2.EQ.O).OR.(X.EQ.XO)) C=0 C = NINT(C)C4 = MOD(C, 5, 0)

- 43 -

```
IF (C4.EQ.0) CO=C+1
 IF (C4.EQ.1) CO=C
 IF (C4.EQ.2) CO=C-1
 IF (C4.EQ.3) CO=C-2
 IF (C4.EQ.4) C0=C+2
 L=CO
 IF (L.EQ.356) L=351
 GAMA=NINT(GAMA)
G3=MOD(GAMA,3.0)
IF (G3.EQ.O) GAMA=GAMA+1
IF (G3.EQ.1) GAMA=GAMA
IF (G3.EQ.2) GAMA=GAMA-1
K=GAMA
E(I1,I2)=A(K,L)*183*C3/1600
WRITE(5,60)X,Y,C,GAMA,A(K,L),E(I1,I2)
FORMAT(F4.1,2X,F4.1,3X,F6.1,2X,F7.3,2X,F10.3,2X,F9.3,2X)
WRITE(2,60)X,Y,C,GAMA,A(K,L),E(I1,I2)
CONTINUE
DO 200 12=1,25
M1 = E(1, I2) + E(2, I2) + E(3, I2) + E(4, I2) + E(5, I2) + E(6, I2)
M2=E(7,12)+E(8,12)+E(9,12)+E(10,12)+E(11,12)
M3=E(12,I2)+E(13,I2)+E(14,I2)+E(15,I2)
M(I2)=M1+M2+M3
WRITE(5, *)M(12)
WRITE(2,*)M(12)
CONTINUE
CLOSE(2)
STOP
END
```

- 44 -

đ

FOR: X0= 8.0 Y0=33.0

			1.2		
X	Y	С	GAMA	I	E
8.0	0.0	O "O	S1 "OQO	862.000	90.902
8 ° O	19.0	Ο.Ο	13.000	1020.000	81.936
8.0	33.0	Ο.Ο	1.000	1044.000	52.906
8.0	47.0	Ο . Ο	10.000	990.OO	30.066
8.0	61.0	⊂ 0 . O	16.000	990.OOO	18.339
.6 <u>n</u> O	5 . O	161.0	34 "OOO	20.000	1.795
.6.0	-19.0	145.0	19.000	200.000	14.025
6.0	33.0	93.0	7.000	210.000	9.618
6.0	47 "O	37.0	10.000	446.000	12.597
6.0	61.0	20.0	16.000	450.000	7.909
24 <u>.</u> O	5 " O	146.0	37.000	2.000	0.142
24 <u>,</u> O	19.0	128.0	25.000	ó " OOO	0.344
24.0	33.0	95.0	16.000	90.000	3.531
24 " ()	47.0	59.0	16.000	140.000	3.529
24.0	61.0	37.0	19.000	110,000	1.778
S2.0	5.0	135.0	43,000	0,000	0.000
52.0	19.0	119.0	31.000	1.000	0.045
0.21	33.0	96.0	22.000	3,000	0.097
12.0	47.0	70.0	22,000	4.000	0.087
2.0	61.0	50.0	22.000	L1.000	0.159
0.0	5.0	127.0	44.000	O = O O O	0.000
0.0	19.0	114.0	37.000	0.000	0.000
0.0	33.0	96.0	28.000	0.000	0.000
0.0	47.0	74 0	25 000	n nno	
0.0	61.0	59.0	25 000	1 000	C 01*
	1	···· 4 ···	alter had at his his his	Also at New York Star	and a har also said

-45-

0 1th

J.

.

.

•

4

1

1. sp.

Х	Y	C	GAMA	Par	1
~~~~	៴ᡧᡐᡐᡐᠥ᠕ᡧ	N N N N N N N N N N N	An An Charles An An An An An An An An		AL ALANA ALANA ALAN
8.0	5 a O	$O_{n}(O)$	49.000	188,000	19.824
8 . O	19.0	$(\bigcirc \ _{n} \ (\bigcirc \ )$	31.000	862.000	49 24A
8.0	33.0	0.O	16.000	990.000	50 140
8 " O	47 " O	$O \circ O$	7.000	1030.000	31 221
8.0	61.0	Ο., Ο	1.000	1044.000	10 XX0
16.0	63 _# ()	166.0	49.000	3.000	A 220
16.0	19.O	162.0	34.000	20.000	$\frac{1}{1} = A (N^{\prime})$
16.0	33  a O	154.0	19,000	350.000	1 A. 671 78.1
16.0	47.0	135.0	10.000	354.000	
16.0	61.0	270.0	7.000	500.000	9 700 8 700
24.0	5 " ()	153.0	52.000	0.000	: 0 000
24.0	19.O	148.0	37.000	2.000	
24.0	33.0	138.0	25.000	10.000	0 800
24.0	47 "O	121.0	16,000	1.30.000	n se
24.0	61.0	95.0	13.000	159.000	<ul> <li>(3) 63, 27 (3)</li> </ul>
32.0	5 a O	142.O	55 a 000	0.000	6 0.000
32.0	19.0	1.37.0	40.000	0.000	
32 r O	33.0	128.0	31.000	1 000	
32.0	47.0	114.0	22.000	5 000	Ora Orabati Ora-Ariston
32.0	61.O	96.0	16.000	90 000	
40 . O	5.0	132.0	58.000	0.000	at a C U C A - A - A -
40.0	19.0	130.0	4A 66.0	Chine Add Add Add Chine Charles	$O_{\bullet}OOO$
40 "O	33.0	122.0	34.000	0.000	0.000
40.0	47.0	111.0	28.000		0.000
40.0	61.0	97.0	22 000		O = O O O
		1 2 U 12	Andre a Sector V.C.	and a fat at a	0.038

0 1th

£

N

FOR: X0= 8.0 Y0=60.0

FOR: X0=16.0 Y0=33.0

X	Y	С	GAMA	I	E
NNNNN	www.www.www	N N N N N N N N N N	NA		en ensi interatis d
8.0	5.0	200.0	31.000	496.000	02.300
8-0	19.0	220.0	16.000	550.000	4) 44 n 1. C3 1.
a o	33.0	287.0	7.000	500 "OOO	20.000
a n	47.0	331.0	13.000	720.000	21.866
0.0	61.0	343.0	19.000	700.000	12.96/
14 0	S.O	0.0	31.000	895.000	77.346
10×9	10 0	0.0	13,000	1050"000	71.526
1.G+V 4/ 0	17.0	0.0	1,000	1044.000	47.817
10.0	A 77 (1)	0.0	10.000	990 .OOO	27.961
10 = 0	4/ u Q	0.0	16.000	990.000	17.400
10.0	COL a V G D	1.62 0	31.000	76.000	5.388
24.0		140 0	16.000	320.000	18.331
24 = O	17 a Q	00 0	7.000	220.000	8.632
24 . O		7 7 4 5-7	10 000	446.000	11.243
24.0	4/.0		14 000	450,000	7.274
24.0	61.0	1.7.0	34 000	4,000	0.215
32.0	5.0	J. A. Y. a. C.	00 000	21.000	0.943
32.0	19.0	1.54.0	4. 6. CYCYC 1. 6. CYCYC	100.000	3.235
32.0	33.0	TOTEO	10.000	200.000	4,357
32.0	47 _n O	61.0	10.000	200,000	4.200
32.0	61.0	37.0	10.000		0.040
40.0	5 a O	140 "Q	40.000	1. 000	0.103
40 . O	19.0	125.0	28.000 28.000	000 A	1.564
40.0	33.0	102.0	14.000	00°000 45 000	0.828
40, O	47.0	74.0	19.000	70 (100)	0.890
40.0	61.0	52.0	19,000	1 N. 1 11 N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Test a beef of test

C non

. 1h

a sin

1

-

A

- 47 -

FOR:	XO=16	_n O	Y0≕60.0
~~~~~~	~~~~~	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	www.www.www.www.

Х	Y	C	GAMA	ſ	1
~~~~~~	~~~~~~	NNNNN	v w co co co co co co	NAVAVA ANA ANA ANA ANA	NAME AND AN AN AN AN AN
8.0	5.0	195.0	49.000	260.000	27.418
8 . O	19.0	200.0	31.000	496.000	39.843
8.0	33. "O	210.0	16.000	600.000	30.406
8.0	47.0	239.0	7.000	560,000	17.007
8.0	61.0	297.0	7 " 000	520.000	9.632
16.0	5.0	$\bigcirc u \bigcirc$	49.000	188.000	16.869
16.0	19.0	$O_{a}O$	31.000	862.000	60.446
16.0	33.0	O . O	16.000	990,000	45.344
16.0	47.0	O . O	7.000	1030.000	29.091
16.0	61.0	O = O	1.000	1044.000	18.349
24.0	5.0	167.0	49.000	3.000	O.213
24.0	19.0	164.0	34.000	60.000	3.437
24.0	33.0	157 a O	19.000	350.000	13.733
24.0	47 "O	141.0	10.000	398.000	10.033
24.0	61.0	98.0	7.000	215.000	3.475
32.0	5.0	157.0	52.000	O O O O	0.000
32.0	19.0	152.0	37.000	3.000	0.135
32.0	33.0	143 a O	25.000	20,000	O.647
32.0	47 "O	128.0	16.000	160.000	3.486
32.0	61.0	103.0	10.000	170.000	2.462
40.O	5 . O	148.0	52.000	0000	0.000
40.0	19.0	143°.O.	40.000	1.000	0.034
40.0	33.0	135.0	28.000	7.000	0.182
40.0	47.0	1.22.0	22.000	7.000	O.129
40 " O	61.0	105.0	16.0QO	100.000	1.271

8

she

- X ......

İ

X

- 48 -

FOR: X0=24.0 Y0= 5.0

		a at			
Х	Y	С	GAMA	I	1
~~~~~	~~~~~	<mark>ww</mark> ww.ee.ee.ee.ee.ee.ee.ee.ee	u nu nu nu nu nu nu nu nu nu	Ay Ay Ay Ay Ay Ay Ay Ay <b>Ay Ay Ay Ay A</b> y Ay	ununununununununu.
8.0	5.0	275.0	19.000	360.000	37.964
8.0	19.0	318.0	28.000	404 "OOO	32.453 *
8.0	33.0	335.0	37.000	310.000	15.710
8.0	47.0	342.0	46.000	244.000	7.410
8.0	61.0	346.0	52.000	260.000	4.816
16.0	5.0	277.0	000 = 01	496.OOO	44.505
16.0	19.0	335.0	19.000	550.000	38.568
16.0	33.0	347.0	31.000	555.000	25.420
16.0	47.0	351.0	43.000	500.000	14.122
16.0	61.0	353.0	49.000	OOO "EZZ	5.853
24.0	5.0	O " O	1000	1044.000	74.008
24.0	19.0	O " O	16.000	990.000	56.711
24.0	33.0	Ο.Ο	28.000	900.000	35.313
24.0	47.0	- O . O	40.000	480.000	12.100
24.0	61.0	O . O	46.000	298.000	4.817
32.0	5.0	269.0	7.000	OOO = OOO	26.845
32.0	19.0	26.0	16.000	400.000	17.954
32.0	33.0	14.O	28.000	-200000	6.471
32.0	47.0	9 " O	37.000	150.000	3.268.
32.0	61.0	7 " O	43.000	150.000	2.172
40.0	5.0	91. O	13.000	145.000	5.795
40 . O	19.0	45 . O	19.000	70.000	2.411
40.0	33.0	26.0	38.000	90.000	2.345
40.0	47.0	18.O	37.000	35.000	0.644
40.0	61.0	14.O	43.000	LO . OOO	0.127

1

1

#Pe

11

-49-

FOR: X0=24.0 Y0=33.0

MANNA ANA A	NAME AND

х	Y	Ċ	GAMA	Т	12.
NANNA	~~~~~~~~~~	v Na Na Na Na Na Na Na Na	no na no no no na na na na haite	www.cow.com.com.com.com.com.com.com.com.com.com	a Ala Ala Ala Ala Ala Ala Ala Ala
8.0	5.0	218.0	34.000	350.000	36.909
8.0	19.0	246 . 0	19.000	360.000	28.919
8.0	33.0	291.0	16.000	445.000	22.551
8.0	47.0	321.0	19.000	520 .OOO	15.792
8.0	61.0	334.0	25.000	500.000	9.262
16.0	5 . O	199.0	S1.OOO	496.000	44.505
16.0	19.0	219.0	13.000	520.000	36.464
16.0	33.0	293.0	$7 \circ OOO$	OOO "OOO	23.359
16.0	47.0	335.0	13.000	800.000	22.595
16.0	61.0	345.0	$(OO)_{*} \otimes (OO)_{*}$	800.000	14.060
24.0	5.0	\circ . \circ	58 °000	900,000	63.800
24.0	19.0	O "O	13.000	1020.000	58.429
24.0	33.0	() " ()	1.000	3044.000	40.963
24.0	47.0	Ο " Ο	jo"OO	990.º000	24.957
24.0	61.0	O . O	16.000	990 "OOO	16.003
32.0	5.0	164.0	31.000	170.000	9.127
32.0	19.0	153.0	16.000	320.000	14.363
32.0	33.0	104 · O	7.000	250.000	8.088
32.0	47.0	35.O	10.000	446.000	9.717
32.0	61.0	18.0	16.000	600.000	8.690
40.0	5.0	153.0	34.000	4 + 000	0.160
40.0	19.0	139.0	22.000	38.000	1.309
40.0	33.0	107.0	13.000	175.000	4.561
40.0	47.0	62.0	13.000	200.000	3.680
40.0	61.0	36.0	16.000	290.000	3.687

1

-50-

FOR: X0=24.0 Y0=47.0

Х	Y	- C)	GAMA	Ĩ	E
MAMA	No No No No No No	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.comence.com	n nu	\sim
8.0	5.0	211.0	43.000	250 "000	23.200
8.0	19.0	226.0	25.000	400.000	32.132
8.0	33.0	256.0	16.000	420.000	21,284
8.0	47.0	295.0	13.000	510.000	15.489
8.0	61.0	320.0	16.000	520.000	9.632
16.0	5.0	195 "O	40.000	303:000	27.188
16.0	19.0	203.0	22.000	624.000	43.757
16.0	33.0	227.0	10.000	627.000	28.718
16.0	47.0	297.0	7.000	520.000	14.687
16.0	61.0	333.0	10.000	284.000	13.779
24.0	5.0	0.0	40.000	480.000	34.027
24.0	19.0	O " O	22.000	- 957.000	54.820
24.0	33.0	O " O	10.000	990,000	38.844
24.0	47.0	• • O	1 "COO	1044.000	26.318
24.0	61.0	Ο.Ο	7 . OOO	1030.000	16.650
32.0	5.0	168.0	40.000	13.000	0.698
32.0	19.0	163.0	25.000	150.000	6.733
32.0	33.0	151.O	13.000	460.000	14.883
32.0	47.0	1.08.0	7.000	250.000	5.447
32.0	61.0	42.O	7.000	470.000	6.807
40.0	5 " O	158,0	43.000	2.000	0.080
40 . O	-19.0	151.0	28.000	1.5 . OOO	0.517
40.0	33.0	138.0	19.000	150.000	3.909
40.0	47.0	110.0	13.000	200.000	3.680
40.0	61.0	71.0	10.000	200.000	2.543

2

1

1

.....

, etc

4 1 1

-51-

X	Y	· C	GAMA	I	F
0 0		$\nabla \nabla	~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~	www.www.www.www.www.ww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0	5.0	208.0	49.OOO	170.000	17.925
8.0	19.0	217.0	31.000	425.000	34.140
8.0	33.0	235.0	19.000	386.000	19.561
8.0	47.0	266.0	13.000	420,000	4 (2) - 77 HL E
8.0	61.0	300.0	13,000	520.000	C) <u>2.161</u>
16.0	5 . O	193.0	46.000	368.000	artanta y v Nevro 1972
16.0	19.0	198.0	28.000	600.000	Ara arra
16.0	33.0	508*0	16.000	700.000	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
16.0	47.0	239.0	7.000	540.000	16 017
16.0	61.0	304.0	7.000	570.000	10 010
24.0	5.0	Ο,Ο	46.000	298.000	2010 a V.0.0
24.0	19.0	O " O	31.000	862 000	Constration Constration
24.0	33.0	Ο " Ο	16.000	990.000	77×370 30 044
24.0	47.0	Ο.Ο	7.000	1030 000	
24.0	61.0	Ο.Ο	1.000	1044 000	20.760
32.0	5.0	169.0	46.000	24 000	10.8/8
52.0	19.0	166.0	31.000	170 000	1.207
32.0	33.O	160.0	19.000	420 000	12 000
32.0	47.0	1.47.0	10.000	451 0000	10.089
52.O	61.0	105.0	4.000		7.869
10.O	5.0	1.60.0	49.000	CACANA IN CALLER IN	5.142
40.O	19.0	156.0	34.000	C = C + C + C + C + C + C + C + C + C +	0.040
10.0	33.0	148.0	25.000		0.276
10.0	47.0	135.0	16 000	40. UU() 100 000	1.042
0.0	61.0	110.0	10.000 /	100.000	3.312
			on the a the first first first	TACTOOO	2.416

5

1

#Pic

4 1 1

1

FOR: X0=24.0 Y0=60.0

- 52 -

1	UR	n	Χ(,) ===	.5	2	-	0	V () and	63	(h
vnv	1.00	NA.	n						1 1.1	272 11	S., P.

X	Y	iC.	GAMA	r	
	~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.www.ww	L VAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	E
8.0	5.0	276.0	28.000	CO GE ESTI AN ANTA	$\cdots$ $\sim$
8.0	19.0	310.0	34.000		26.891
8.0	33.0	327,0	43.000	A CONTRACTOR OF A	25.705
8.0	47.0	336.0	49 000		9.122
8 <b>.</b> 0	61.0	341.0	55 000	1.44.5	4.343
-16.0	5.O	276.0	14 000	174.000	3.594
16.0	19.0	321.0	25 OCO	435.000	39.032
16.0	33.0	337.0		405.000	28.400
16.0	47.0	344 0		380.000	17.405
16.0	61.0	348 0		400.000	11.297
24.0	5.0	279 0		540°000	4.570
24.0	19.0	337 0	10 000	500.000	35.445
24.0	33.0	34.9 0		550.QOO	31.506
24.0	47.0	XED O		555.000	21.776
24.0	61.0		ALC DOO	SOQ "OOO	12.605
32.0	5.0		46 . OOO	440 "OOO	6.627
32.0	19 0	0.0	1.000	1044.000	56.052
32.0	33.0	U _a ()	16.000	990.000	44 435
32.0	47 0		28.000	900.000	29.110
32 0	41 O	O ()	37.000	500,000	10 897
40 0		O . O	43.000	360,000	
40 0	10.0	269.0	7.000	500.000	10 004
40 O	TANG O	24.0	13.000	570.000	10 Z 12 m
10 O	22.O	13.0	25.000	500.000	
40.0	,4/.Q	8.0	34.000	424.000	2 0 0 U U U U U U U U U U U U U U U U U
AC + C	61.O	6.0	43.000	150.000	/ • 8022
				100 101 101 10 104 104 104 104	1. 4 707



4 11

X	Y	C	GAMA	ľ	1
		$\nabla \Delta	$\sim \sim $	A MANA ANA ANA ANA ANA ANA ANA ANA ANA A	NAME AND
8.0	5.0	232.0	37.000	220.000	23,200
8 * O	19.0	260.0	25.000	310.000	24.902
8 . O	33.0	295.0	22.000	356,000	18.041
8 . O	47.0	317.0	25.000	390.000	11.844
8.0	61.0	330.0	31.000	423.000	7.836
16.0	5.O	215.0	31.000	425.000	38.134
16.0	19.0	245.0	16.000	420.000	29.452
16.0	33.O	295.0	16.000	455.000	20.840
16.0	47.0	325.0	19.000	520,000	14.687
16.0	61.0	337.0	25.000	500.000	8.788
24.0	5.0	197.0	28.000	600.000	42.534
24.0	19.0	216.0	13,000	670,000	38.380
24.0	33 a O	298.0	7.000	520,000	20.403
24.0	47.0	338.0	13.000	800.000	20.167
24.0	61.0	347.0	22.000	730.000	11 800
32.0	5.0	Ο.Ο	28.000	900.000	48 320
32.0	19.0	0.0	13,000	1020.000	45 792
32.0	33.0	O " O	1.000	1044.000	
32.0	47.0	0.0	10.000	990.000	21 540
32.0	61.0	0.0	16.000	990-000	
40.0	5.0	166.0	-28.000	100 000	a marana (C)
40.0	19.0	156.0	16.000	400 000	1 22 22 22 22
40.0	33.0	108.0	7.000	250 000	× / / ≥ a €
40.0	,47.0	33.0	10.000	514 000	CLU: CLU: CLU:
40.0	61.0	16.0	16.000	600.000	7.628

Į

4 \$

1

FOR: X0=32.0 Y0=33.0

-54-

FOR:	X0=32.0	Y0≕47.0
AV AV AV AV AV AV	www.www.www.www	www.www.www.ww

Х	Y	C	GAMA	I	E
~~~~~	$\nabla \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$	<mark>∿ ∿ ∿ ∿</mark> ∧ ∧ ∧ ∧ ∧	a na na na na na na na na	an	NO NO NO NON
8 ª O	5.0	224.0	43.000	140,000	14.764
8 ª O	19.0	242.0	28.000	290.000	23.295
8.0	33.O	91.0	22.000	3.000	0.152
8.0	47.0	300.0	19.000	450,000	13.666
8.0	61.0	318.0	22.000	393.000	7 280
16.0	5 a O	208.0	40.000	239.000	21 445
16.0	19.0	223.0	22.000	413.000	28.961
16.0	33.O	256.0	13.000	400.000	18.321
16.0	47.0	301.0	13.000	320,000	14 697
16.0	61.0	325.0	16.000	560.000	9 842
24.0	5.0	193.0	37.000	420,000	29.774
24.0	19.0	200.0	22.000	624.000	35.745
24.0	33.0	224.0	10.000	627,000	24.601
24.0	47.0	303.0	7.000	540.000	13.613
24.0	61.0	337.0	10.000	854.000	13.805
32.0	5.0	O " O	37.000	500,000	26 845
32.0	19.0	0.0	22.000	957.000	AD 054
32.0	33.0	Ο.Ο	10.000	990.000	32 030
32.0	47.0	Ο.Ο	1.000	1044.000	22 745
32 . O	61.0	O " O	7.000	1030.000	
40 " O	5 " O	169.0	37.000	110.000	21 TECPT7
40.O	19.0 .	165.0	25.000	280.000	7 O/512
40.O	33.0	154.0	13.000	525.000	13.492
40 " O	47.0	113.0	7.000	260.000	4. 784
40 " O	61.0	39.0	7.000	470.000	5 075
					Sar a / / Sal

X

.

.

÷.,

•

44

۰.

.

· / 31

1.0

.

FOR:	X0=32.0	O YO=60.0
NAMANA	A A A A A A A A	was a a a a a a a a a a a

X	Y	C	GAMA	T	E
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NANAAA	<b>~~~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10102010101010101010	waana waxaa ahaa ahaa	00000000000000000000000000000000000000
0.8	5.O	220.0	49.000	114.000	12.022
8.0	19.0	232.0	31.000	360.000	28.919
8.0	33.0	253.0	22.000	360.000	18.243
8.0	47.0	281.0	19.000	360.000	10.933
8.0	61.0	304.0	19.000	SOO "OOO	9.262
16.0	5 . O	205.0	46.000	202.000	18.125
16.0	19.0	214.0	28.000	430 .OOO	30.153
16.0	33.0	233.0	16.000	480 .000	21.985
16.0	47.0	269.0	10.000	492.000	13.896
16.0	61.0	306.0	13.000	560.000	9.842
24.0	5 . O	191.0	43.000	370.000	26.229
24.0	19.0	196.0	28.000	600.000	34.370
24.0	33.0	205.0	16.000	700.000	27.465
24.0	47.0	238.0	7.000	595.000	14,999
24.Q	61.0	310.0	7.000	380.000	9.375
32.0	5 . O	$\bigcirc$ , $\bigcirc$	43,000	360.000	19.328
32.0	19.0	$\bigcirc$ , $\bigcirc$	28.000	900.000	40.396
32.0	33.0	O " O	16.000	990 . OOO	32.030
32.0	47.0	0.0	7.000	1030.000	22.440
32.0	61.0	O . O	1.000	1.044.000	15.120
40.0	5.0	171.0	46.000	24.000	0.959
40 "O	19.0	168.0	31.000	170.000	5.856
40 " O	33.0	163.0	19.000	420.000	10,945
40,0	47 "O	151.0	10.000	525.000	9.660
40 . O	61.0	110.0	4.000	360.000	4.577

1

- 56 -

FOR :	XO=40.0	Y C	() ===	5 . O
NAMA	NONNA	www.www.	na na ha	No the the the the

X	Y	(	GAMA	Ĺ	<u></u>
un non	uninininin	NAMA NAMA NAMA	MARY MARY MANA	a na br>T	ou na ca na na na na na
8 0	5.0	276.0	34.000	510.000	22.146
8.0	19.0	305.0	37.000	210.000	16.869
8 0	33.0	322.0	46.000	143.000	7.247
8 0	47.0	332.0	52.000	130,000	3.948
0.0 0 0	41.0	337.0	58.000	143.000	2.649
16.0	5.0	276.0	22.000	358.000	32.123
14 0	19.0	313.0	28.000	390.000	27.348
1.6 0	XX.O	330.0	40.000	237.000	10.855
1.4 0	47_Ő	339.0	46.000	244.000	6.891
1.6 0	A1.0	343.0	52,000	210°000	3.691
20 0 24 0	5.0	277.0	13.000	460.000	32.609
24 0	19.0	324.0	22.000	421.000	24.116
24.0	33.0	339.0	34.000	390.000	15.302
24 0	A.7 O	345.0	43.000	400.000	10.084
24 0	A1 0	349.0	49,000	333.000	5.383
27 82	ц n	280.0	7.000	500.000	26.845
1020 A	100 (1	339.0	16.000	700,000	31.419
narian Ar	37 B C	349.0	28.000	800.000	25.883
national Maria	A7 ()	353.0	37,000	650.000	14.161
naren en	~ ~ 1 ()	354.0	46.000	410.000	5.938
and a Co	COLLa M LE 71	0.0	1.000	1044.000	41.727
40.0	10 0	0.0	13.000	1020.000	35.136
40.0	LTZ a CZ -	0.0	25.000	900.000	23.454
40.0	477 6	0.0	34.000	734.000	13.506
40.0	44 Z = Q	0.0	43.000	360.000	4.577
44. ( ) ( )	C. L. + V	Aut in Aut	a first of the first test		

.

1

Į.

1

6

<u>.</u> -

- 57 -

X	Y	С	GAMA	I	(real
	www.www.ww	NAVA AVA AVA	ANA ANA ANA ANA ANA	when a new reaction of the reaction of the	NAMA NAMAN
8.0	5.0	242.0	40.000	153 000	1.7. 4.127.62
8 ª O	19.0	269.0	31.000	211 000	
8.0	33.0	298.0	28.000	205 666	1. C) 6 7 4 7
8 . O	47.0	317.0	31.000		法仲立仲仲的
0.8	61.0	328.0	34 000		11.8/5
16.0	5.0	228.0	31 000	400.000	6.483
16.0	19.0	260.0	22.000		36.071
16.0	33.0	298.0	10 000		25.385
16.0	47.0	321 0		4.20 . OQO	19.237
16.0	61.0		atta da concerta. 1814 — Concerta	405,000	11.439
24.0	5.0	212 0		423.000	7.434
24.0	19.0			450.000	31.900
24.0	33.0			470.000	26.923
24.0	4.7 O		13.000	520.000	20.403
24 0	4 1 (S		19.000	520.000	13.109
1987 19 10 10 10 10 10 10 10 10 10 10 10 10 10	O.J. a Q		25.000	580.00Q	9.375
TECH IN	U.C.	195.0	25.000	624.000	33.502
tern in	TA"O	213.0	10 * 000	770.000	34.561
OLL U	.3.3 . O	301 " O	7.000	540.000	17.471
Siz a O	47.0	340.0	13.000	880.000	10 170
32.0	61. O	349.0	19.000	950.000	de Vielde Vielde de Weiter
40 " O	5.0	$O_{n} O$	25.000	900.000	and the second s
40.0	19.0	O " O	13.000	1020 000	subsubarny∕a£ nationalariez
40 . O	333 " O	Ο " Ο	1.000	1044 000	00.100 07 00-
40.O	47 . O	O . O	10.000	000 000	10 01
40.O	61.0	0.0	16.000	000 AAA	18.21/
			the set if the set of set	7 7 X.2 a X.2X.2X.2	12.586

.

1

5

# FOR: X0=40.0 Y0=33.0

-58-

FOR:	X0=40.0-	Y0==60 . 0
A A A A A A A	non non non non non	NA NA NA NA NA NA NA NA NA

X	Y	С	GAMA	T	E
NAMAN	VAAAAAA	A A A A A A A A A A A A A	na na na na na na na na na	NY NE NY	
8.0	5.0	230.0	49.000	117.000	12.338
	19.0	244.0	34.000	160.000	12.853
9 A	33.0	266.0	25.000	310.000	15.710
a n	47.0	290.0	22.000	356.000	10.812
9 0	61.0	308.0	22.000	365.000	6.761
1.4. ()	5.0	215.0	46.000	$(OO)_{a} (OC)_{c}$	13.459
1.4 (1)	19.0	228.0	28.000	400.000	28.049
1.4. ()		252.0	19.000	360.000	16.489
14 0	4.7.0	283.0	16.000	440.000	12,427
1.0 . 0	A1 ()	309.0	16.000	516.000	8.964
DA O	5 0	202.0	43.000	245.000	17.368
104 G	10 0	210.0	28.000	450.000	25.778
CA O	333 O	229.0	16.000	480.000	18.833
10 /1 /0	47 O	270.0	10.000	492.000	12.403
24 · · · ·	41 Ö	311 O	10.000	590 . OOO	9.537
304 4 O	G.L. 10 6 ()	190.0	40,000	387.000	20.778
22. × 0 700 - 0	10 0	194.0	28.000	600.000	26.931
and a Marian Mariana Mariana da Mariana	and a second	202.0	16.000	800.000	25.883
04. • O	A "Z ()	234 0	7.000	595.000	12.963
02. O	41 O	245 0	4.000	956.000	13.759
32.Q	CL IN E A	n n	43.000	360,000	14.389
40.0	4 C) C)	0.0	28.000	900.000	31.002
40.0	CANTUR.	0.0	16.000	990.000	25.800
40.0	472 Å	0.0	7.000	1030.000	18.953
4U.U	(1 ()	0.0	1:000	1044.000	13.273
40 . O	C) L . O	Not a Not	18 Tel 19 Tel		

ţ.

.

1

- 59 -



## ONE QUARTER ILLUMINATION OF CANBULAT STADIUM PROJECT

(mast) 0,0 m

.

* : The points which the projectors are turned.

- 60 -

4331x	413	413	268	250	268	413	443	433
5111x	505	457	313	302	313	457	505	511
3201x	352	323	242	264	242	323	352	320
2171x	231	213	159	186	159	213	231	217
2721x	296	268	224	244	224	268	296	272
2171x	231	213	159	186	159	213	231	217
3201x	352	323	242	264	242	323	352	320
511lx	505	457	313	302	313	457	505	511
4331x	443	413	268	250	268	413	443	433

THE ILLUMINANCES POINT-BY-POINT WITH ALL DIMENSIONS.

1

#### THE LOSS TO THE PROTECT

the product

## PART E

## THE COST OF THE PROJECT

The cost of the equipment and installation used in the project;

(1)	STEP UP-DOWN TRANSFORMER	200,000,000 T	L
(2)	FOUR MASTS	40,000 <mark>,000 T</mark>	L
(3)	FLOODLIGHTS	80,000,000 T	L
(4)	CABLES	80,000,000 T	L
(5)	DIESEL GENERATOR	200,000,000	TL
(6)	CONDUCTORS AND FUSSES	80,000,000 T	L
(7)	OTHER	50,000,000 T	L
	-down seafait while as been theory, in	0.0.0	
	TOTAL COST	730,000,000 T	L
(8)	INSTALLATION (80 % )	584,000,000 T	L
	waiting a to producing at its	power of cont	
	NET COCT	1 214 000 000 m	T
	NET COST	1,314,000,000 1	
	NET COST	190,000 \$	

### THE WAY OF FEEDING

The electrical power for stadium illumination is going to be provided by normal LINK and when the electricity is cut off from an equivalent generator.

LINK: It is going to be feed by 11 kv underground cables with oil circuit-breaker at power unit and a step-down transformer. Its power will be 500 kVA. Voltages of the transformer for the link part will be 11 kv for input and 415/240 for the output

GENERATOR: A diesel generator with same power as step-down transformer is been though, in order to feed the whole system urgently from generator. It is also thought that, the diesel generator must get switched on automatically while producing electrical power, in order to prevent loss of time.

FUSE: We can calculate the value of necessary fuse for each projector as;

P=V I COS 0

P= 2000 W V= 240 V COS  $\theta$ = 0.9 SO; I=2000/(240*0.9)=9.3

Then it can be taken of around 10 A.

### REFERENCES

1- LECTURE NOTES.....Prof. Haldun GURMEN

2- LAMPS AND LIGHTING.....Edward ARNOLD

3- DOCUMENTS AND CATALOGUES.....PHILIPS

