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ABSTRACT

The aim of'this project is to present the main characteristics of flows, its behavior and
the major effects that influencethe flow.

In the first chapter some fliridafri.erifalaspectsof fluid including its properties, fluid
kinematics, and the factors effecting will be discuses. The flow concepts,
classification and majorfactorsa:ffectin:gthe flow, including a briefabout dimensional
and dimensionless arialysis.

In the next chapter it will discuses the applications for additional important notions
such as bouridarylayer,trarisitiori from laminarto turbulent, turbulence modeling, and

flow separation are Intrcdirced as pipe flow .And in the chapter as an external flow.
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CHAPTERI

FLUID PROPERTIES

The engineering science offluid mechanics has been developed through an understanding offluid
properties, the application of the basic laws of mechanics and thermodynamics, and orderly

experimentation. The properties of density and viscosity play principal roles in open- and closed-

channel flow.

1.1  DEFINITION OF A FLUID

A fluid is a substance that deforms continuously when subjected fo a shear stress, no matter how
small that shear stress may be. A shear force is the force component tangent to a surface, and this
force divided by the area of the surface is the average shear stress over the area. Shear stress at a

point is the limiting value ofshear force to area as the area is reduced to the point.

‘The fluid in immediate contact with a solid boundary has the same velocity as the boundary: i.e.,
there is no slip at the boundary. This is an experimental fact which has been verified in countless
- tests with various kinds of fluids and boundary materials. The fluid in the area abed flows to the
new position oh - each fluid particle moving parallel to the plate and the velocity u varying
uniformly from zero at the stationary plate to U at the upper plate. In which g is the

proportionality factor and includes the effect ofthe particular fluid. If-t = F/A for the shear stress,

u
_r:“_

The ratio U/t is the angular velocity of line ab, or it is the rate of angular deformation of the fluid,
i.e., the rate of decrease ofanglehad. The angular velocity may also be written du/dy, as both U/t
_du/dy express the velocity change divided by the distance over which the change occurs.

However, du/dy is more general, as it holds for situations in which the angular velocity and shear

stress change with y.



The velocity gradient du/dy may also be visualized as the rate at which one layer moves relative

to an adjacent layer. In differential form

du
r=u dy

is the relation between shear stress and rate of angular deformation for one-dimensional flow ofa
fluid. The proportionality factor g is called the v/scanty of the fluid, and equation above is

Newtort's law ofviscosity.

Materials other than fluids cannot satisfy the definition ofa fluid. A plastic substance will deform
a certain amount proportional to the force, but not continuously when the stress applied is below
its yield shear stress. A complete vacuum between the plates would cause deformation at an ever-
increasing rate. If sandwete placed between the two plates, Coulomb friction would require a
finite force to cause a coutinuous motion. Hence, plastics and solids are excluded from the

classification of fluids.

Bhens stidn v

Figure.1.1. Rheological diagram

Fluids may be classified as Newtonian or non-Newtonian. In Newtonian fluid there is a linear
relation between the magnitudes of.appiied shear stress and the resulting rate of deformation (u
constant), as shown in Fig. 1.1. In non-Newtonian fluid there is a nonlinear relation between the
magnitude of applied shear stress and the rate of angular deformation. An ideal plastic has a

definite yield stress and a constant linear relation of'- to du/dy. A thixotropic substance, such as




printer's ink, hasa viscosity that is dependent upon the immediately prior angular deformation of
the substance and has a tendency to take a set when at rest. Gases and thin liquids tend to be

Newtonian fluids, while thick, long-chained hydrocarbons may be non-Newtonian.

For purposes of analysis, the assumption is frequently made that a fluid is non-viscous. With zero

viscosity the shear stress is always zero, regardless of the motion of the fluid, lithe fluid is also

.considered to be incompressible, it is then called an ideal fluid.

1.2 PROPERTIESOF FLUID

Density

The density p ofa fluid is de:fined as its mass per unit volume. To define density ata point, the

mass Am of fluid in a small volume AV surrounding the point is divided by AV and the limit is

taken as AV which can be expressed as follow;

Specific volume

The specific volume v is the reciprocal ofthe density psthat is, it is the volume occupied by unit

' ‘mass of fluid, where it can be expressed as follow;

Vs - D

Unit gravjty force
The unit gravity force, .y,is the, force of gravity per.unit .volume. Itchangeswith  Tocation,

-depending upon gravity.
Y= pg



Pressure

The normal force pushing against a plane area divided by the area is the average pressure. The
pressure at a point is the ratio of normal force to area as the area approaches a small value
“enclosing the point. If a fluid exerts a pressure against the walls ofa container, the container will
“exert a reaction on the fluid which will be compressive, Liquids can sustain very high
~compressive pressures, but unless they are extremely pure, they are very weak in tension. It is for
this reason that the absolute pressures used are never negative, since this would imply that fluid is
sustaining a tensile stress. Pressure p has the units force per area, which is Newton per square
meter, called Pascal (Pa). Pressure may also be expressed in terms ofan equivalent height h ofa
fluid column as it is indicated below;

p=yh.

. Absolute pressure is symbolized by P, while gage pressures are indicated by p.

. Viscosity

 The viscosity ofa fluid is a measure of its resistance to shear or angular deformation. For
example the motor oil has a high viscosity; on the other hand gasoline has a low one. Of all the

fluid properties, viscosity requires the greatestcoti.sideratiofi illtthatstiidy oOffliiid' flow.

The viscosity of a gas increases with temperature, but the viscosity of liquid decreases with
temperature: The variation in temperature trends can be explained by examining the causes of
viscosity. The resistance ofa fluid to shear depends upon itscohesion and upon its rate oftransfer
of molecular momentum. A liquid, with molecules much more closely spaced than a gas, has
cohesive forces much larger than a gas. Cohesion appears to be the predominant cause of
viscosity in a liquid; and since cohesion decreases with temperature the viscosity does likewise.
A gas, on the other hand, has very small cohesive forces. Most ofits resistatlcetoshea.fstress-is

ﬂihe result ofthe transfer ofinolecularrriomentum.

Molecular activity gives rise to an apparentshear stressin gases which is more important than the
ephesive forces, and since molecular activity increases with temperature, the viscosity ofa gas

_also increases with temperature. For ordinary pressures viscosity is independent of pressure and



depends upon temperature only. For very great pressures, gases and most liquids have shown

erratic variations of viscosity with pressure.

A fluid at rest or in motion so that no layer moves relative to an adjacent layer will not have
apparent shear forces set up, regardless of the viscosity, because du/dy is zero throughout the
fluid .Hence, in the study of fluid statics, no shear forces can be considered because they do not
occur in a static fluid, and the only stresses remaining are normal stresses, or pressures. This
greatly simplifies the study of fluid static, since any free body of fluid can have only gravity
forces and normal surface forces acting on it.

The dimensions of viscosity are determined from Newtort's law of viscosity. Solving for the

viscosity W,

"
w= du/dy

_The STunit of viscosity which is the Pascal second (symbol Pa) has no name.

Kinematics Viscosity

. The viscosity p is frequently referredto as the absolute viscosity or the dynamic viscosity to

_avoid confusing it with the kinematics viscosity.v, which-isttheratio ofviscosity to mass density:

\J

The kinematio viscosity occurs in many applications, e.g., in the dimensiorilessReynolds ri.imber'.
for motion of a body through a fluid, VI/v, in which V is the body velocity and | is a
representative linear measure of the body size. The dimensions of v are LZT_1 . The SI unit of
kinematics viscosity is | mz/s, and it has no name.

Viscosity is practically independent of pressure and depends upon temperature only. The

kinematic viscosity of liquids, and of gases at a given pressure, is substantially a function of



Continuum

In dealing with fluid-flow relations on a mathematical or analytical basis, it is necessary to
consider that the actual molecular structure is replaced by a hypothetical continuous medium,
called the continuum. For example, velocity at a point in space is indefinite in a molecular
medium, as it would be zero at all times except when a molecule occupied this exact point, and
then it would be the velocity of the molecule and notthe mean mass velocity of the particies in
the neighborhood. This dilemma is avoided if one considers velocity at a point to be the average
or mass velocity of all molecules surrounding the point, say, within a small sphere with radius
large compared with the mean distance between molecules. With n molecules per cubic
centimeter, the mean distance between molecules is of the order n-uz3 cm. Molecular theory,
however, must be used to calculate fluid properties (e.g., viscosity) which are associated with
molecular motions, hut continuum equations can be employed with the results of molecular
calculations.

The quantities density, specific volume, pressure, velocity, and acceleration are assumed to vary

continuously throughout a fluid (or be constant).

1.3 CONCLUSION
The discussion of this chapter is about fluid. At the beginning a brief about the fluid its
definition, then about the properties that affect the fluid like the viscosity, continuum, density,

specific volume, unit gravity force and the pressure.




CHAPTERII
FLUID-FLOW CONCEPTSANO

BASIC EQUATIONS

The statics of fluids is almost an exact science, unit gravity force (or density) being the only
quantity that must be determined experimentally. On the other hand, the nature of flow ofa real
fluid is very complex. Since the basic laws describing the complete motion ofa fluid are not

eagily formulated and handled mathematically, recourse to experimentation is required.

2.1 FLOW CHARACTERISTICS; DEFINITIONS

Flow may be classified in many ways such as turbulent, laminar; real, ideal;, reversible,
irreversible; steady, unsteady; uniform, non-uniform; rotational, irrotational. in this and the

following section various types of flow are distinguished.

Turbulent flow situations are most prevaletit-in engineering practice, in turbulent flow the fluid
particles move in very irregular baths; causing an excharrge ofemonientum from one portion of
the fluid to another in a manner somewhat'similanto the molecular.momentum transfer but ona
much larger scale. The fluid particles can range in size from very small to very large. in a
tnation in which the flow could be either turbulent or non-turbulent (laminar), the turbulence

sefS "tip greater shear stresses throughout the fluid and causesmore irreversibility or losses.

laminar flow, fluid particles move along smooth paths in laminas, or layers, with one layer
fiding smoothly over an adjacent layer. Laminar flow is governed by Newton's law of viscosity
r extensions of it to three-dimensional flow, which relates shear stress to rate of angular
eformation. in laminar flow, the action of viscosity damps out turbulent .tendencies, Laminar
ow is not stable in situations involving combinations of low viscosity, high velocity, or large

ow passages and breaks down into turbulent flow.




An equation similar in form to Newton's law of viscosityrrfay be written for turbulent flow as

follow:

du
t=1II dy

where the factor, Il, is called the eddy viscosity which depends upon the fluid motion and the

density.

An ideal fluid is frictionless and incompressible and should not be confused with a perfect gas.
The assumption of an ideal fluid is helpful in analyzing flow situations involving large expanses
of fluids, as in thernotion of an airplane ora submarine. A frictionless fl.uid is nonviscous,and its
fl.owprocesses are reversible. The layer of fluid in the immediate neighborhood of an actual flow
boundary that has had its velocity relative to the boundary affected by viscous shear is called the
boundary layer. Boundary layers may be laminar or turbulent, depending generally upon their

length, the viscosity, the velocity of'the flow near them, and the boundary roughness.

Adiabatic flow is that flow of a fluid\in whi.chno heat is transferred to. or from:.the fluid,
Reversible adiabatic flow is called isentropic/flow. To proceedin an orderly manner into the
-analysis of fluid flow requires a clear understanding of the terminology involved. Several of the
‘more important technical terms are defined and illustrated in this section. Steady flow occurs
,’g&hen conditions at any point in the fluid do not change with the time; This can be expressed as
zv/ 6t = 0, in which space (X, y, z coordinates of the point) is held constant. Likewise.in steady

_ flow there is no change in density p, pressure p or temperature T with time at any point.

i

Fig2.1 .velocity ata point inSteady<fii:rbulerftow
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In turbulent flow, owing to the erratic motion of the fluid particles, there are always small
fluctuations occurring at any point. The definition for steady flow must be generalized somewhat
to provide for these fluctuations. To illustratethis, a plot ofvelocity against time, at some point in
turbulent flow, is given in Fig. 2.1. When the temporal mean velocity

vi= ]vdt

0

“Indicated in the figure by the horizontal line, does not change with the time, tin flow is said to be
‘steady. The same generalizatiorta.pplies to density, pressure, temperature, ete., when they are

substituted for v in the abdve forinula.

The flow is unstea.cly whenbodfrditions at any point change with the time, @V /at™® O. Water being
pumped through"a fi:xedesysfomat a constant rate is an example of steady flow. Water being

pumped through afixeclsystem/atan increasingrate is an example ofunsteady flow.

Uniform flow 6cfoufs wheH, atevery point, the velocity vector is identically the same (in

magnitude and clireCtion)<fotafrygiven instant. In equation form, avlas = 0, in which time is
held constant and 6/1S a>fiisplacementin any direction. The equation states that there is no

change in the velocity vector in any direction throughout the fluid at any one instant. It says
nothing about the charig~Ul velocity at a point with time. in flow of a real fluid in an open or
closed conduit, the de-firtitibtbf uniform flow may also be extended in most cases even though

the Velocity vector 'at'tli~"b6fuidai:y§ always zero. When allparallel cross sections through the
conduit are identical a.rtdthe a.veragevelocity at each cross section is the same at any given

instant, the flow is said"tob~ttrtiform.

Flow such that the velocity vector varies from place to place at any instant (dV/as *O) is
nonuniform flow. A liquid beirigpumped through a long straight pipe has uniform flow. A liquid
flowing through a reducing section or through a curved pipe has nonuniform flow. Examples of
steady and unsteady flow and of uniform and nonuniform flow are liquid flow through a long
pipe ata constant rate is steady uniform flow; liquid flow through a long pipe ata decreasingrate

is unsteady uniform flow; flow through an expanding tube at a constant rate is steady nonuniform



flow; and flow thr~xpanding tube at an increasing rate is unsteady nonuniform flow.

Rotation ofa fluid partide about a given axis, say the z axis, is defined as the average angular
velocity of two infinitesimal line elements in the particle that are at right angles to each other and
to the given axis. If the fluid particles within a region have rotation about any axis, the flow is
called rotational flow, or vortex flow. If the fluid within a region has no rotation, the flow is
called irrotational flow. it. is shown in texts on hydrodynamics that if a fluid is at rest and is

frictionless, any later motion ofthis fluid will be irrotational.

One-dimensional flow negleots-variationsor changes in velocity, pressure, ete., transverse to the
main flow direction. Conditions at a cross section are expressed in terms of average values of
velocity, density, and. other properties. Flow through .a pipe, for example, may usually be
characterized as one dimensional. Many practical problems can be handled by this method of
analysis, which is mpchisimpler than two- and three-dimensional methods of analysis. In two-
\dimensional flow.allpa.tJ:iClearc assumed to flow in parallel planes along identical paths in each
of these planes; hence, t.li~re are no changes in flow normal to these planes. The flow net is the

most useful meth()<lifiif>a.rialysis of two-dimensional-flow situations. Three-dimensional flow is

the most generahfle>}M(ig which the velocity components u, v, w in mutually perpendicular
directions are function.sgfspace coordinates and time x, y, z, and t. Methods of analysis are
generally complex mathefiia.ticallyand only simple geometrical flow boundaries can be handled.
In steady flow, since Jli~re is no change in direction of the velocity vector any point, the
streamline hasa fixed iuclirtationat every point and is, therefore fixed in space. A particle always
moves .tangent to the-streainline; hence, in stead.flow the patli.Qf « particleis a streamline, I
unsteady flow, sincethedirection of the velocity vector at any point may change with time, a
streamline may shi:ft/is spade from instant to instant. A partide then follows one streamline one
_ irfta~* another one theirtextinstant, and so on, so that the patli of the particle may have no

resemblance to any given.itista.iitarteoustreamline.
A dye or smoke is frequentlyihjected into a fluid in order to trace its subsequent motion. The

resulting dye or smoke trails are balled streak lines. In steady flow a streak line is a streamline

and the patl1 ofa particle.
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Streamlines 1n two-dimensional flow can be obtained by inserting fine, bright particles
folmmmi--~~ dust) into the fluid, brilliantly lighting one plane, and taking a photograph of the
streaks made in a short time interval. Tracing on the picture continuous lines that have the
direction of the streaks at every pointportrays the streamlines for either steady or unsteady flow.

In illustration of an incompressible two-dimensional flow, the streamlines are drawn so that, per
unit time, the volume flowirigibetween adjacent streamlines is the same if unit depth is
considered normal to the planeidéfthe figure. Hence, when the streamlines are closer together, the
Vvelocity must be greater, and Viceversa. Ifv is the average velocity between two adjacent stream-

lines at some positionwhetethey are h apart, the flow rate Aq is

Sq=vh

' <At any other positidllortXfiie chart where the distance between streamlines is hi, the average
velocity is vi = Ag/mi.B§id.creasing the number of streamlines drawn, i.e., by decreasing Ag, in
the limiting case thevetddHy afa point is obtained.

A stream tube is th@tti.b~mui'cle by all the streamlines passing through a small, closed curve. In
steady flow it is fixecttri>space and can have no flow through its walls because the velocity vector

has no component nértlla.Fto the tube surface.

2.2 ' DIMENSIONAI.1.ANALYSIS AND DYNAMIC SIMILITUDE

Dimensionless paratiJ.~~~i~)-~igriifica,ntly. deepen our understanding. of fluid-flow phenomena in a
way which is analogoi.i,siJoJhe case of a hydraulic jack, where the ratio of piston diameters
determines the mecfi~~i?il/adyantage, a dimensionless number which is independent of the
overall size of the jack./They permit limited experimental results to be applied to situations
involving different physipfii <:limensions and often different fluid properties. The concepts of
dimensional analysis intrddgc::~djn this chapter plus an understanding of the mechanics of the
type of flow under study Itlitg~ ipossible this generalization of experimental <lata. The
consequence of such generali~ti9r1 js manifold, since one is now able to describe the
~ phenomenon in its entirety and is Jt()frestricted to discussing the specialized experiment that was

performed. Thus, it is possible to coriduct fewer, although highly selective, experiments to

1



“uncover the hidden facets of the problem and thereby achieve important savings in time and
money. The results of an investigation can also be presented to other engineers and scientists in a
more compact and meaningful way to facilitate their use. Equally important is the fact that,
_through such incisive and uncluttered presentations of information, researchers are able to
discover new features and missing areas of knowledge of the problem at hand. This directed
advancement of our understanding of a phenomenon would be impaired if the tools of
dimensional analysis were not available. in the following chapter, dealing primarily with viscous
effects, one parameter is highly significant, viz., the Reynolds number, dealing with compressible
.ﬂow, the Mach number is the most important dimensionless parameter, dealing with open

channels, and the Froude number has the greatest significance.

Many of the dimensionless parameters may be viewed as a ratio of a pair of fluid forces, the
relative magnitude jndicating the relative importance of one of the forces with respect to the
other. If some forces 1N @ particular flow situation are very much larger than a few others, it is
often possible to neglecf.fiie effect of the smaller forces and treat the phenomenon as though it
were completely dytyrpiined by the major forces. This means that simpler, although not

necessarily easy, rriathe:triaticaland experimental procedures can be used to solve the problem.
2.2.1 DIMENSIONALHOMOGENEITY AND DIMENSIONLESS RATIOS

Solving practical desigti problems in fluid mechanics usually requires both theoretical
—developments and experirtiental results. By grouping significant quantities into dimensionless
parameters, it is possibletd reduce the number of variables appearing and to make this compact

result (equations or data plots) applicable to all similar situations.

If one were to write the eqtiation 6f motion 1:F = ma for a fluid particle, including all types of
force terms that could act, stichas gravity, pressure, viscous, elastic, and surface-tension forces,
an equation ofthe sum of these forces equated to ma, the inertial force, would result. As with all
physical equations, each term :triusthave the same dimensions, in this case, force. The division of
each term of the equation by any O11€ of the terms would make the equation dimensionless. For

example, dividing through by the inertial force term would yield a sum of dimensionless

12



parameters equated to unity. The relative size of any one parameter, cornpared with unity, would
indicate its importance. If one were to divide the force equation through by a different term, say
the viscous force term, another set of dimensionless parameters would result. Without experience

in the flow case it is difficult to determine which parameters will be most useful.

2.3  DISCUSSION<OF DIMENSIONLESS PARAMETERS

The four dimensionless >parairietefs -Reynolds number, Froude number, Weber nurnber, and
Mach number- are bfirip6filince in correlating experimental data. They are discussed in this
section, with partic:tilaf erriphasis placed on the relation of pressure coefficient to the other
pararneters.

The Reynolds Number

The Reynolds numberVDp/p is the ratio ofinertial forces to viscous forces. A critical Reynolds
number distinguishes'am.Ong flow regirnes, SUCh as laminar Of turbulent flow in pipes, in the
boundary layer, or afoiind irnmersed objects. The particular value depends upon the situation. In

cornpressible flow, thel\l1:ach number is generally more significant than the Reynolds number,

The Froude Numben
The Froude number-V/t < when squared and then multiplied and divided by pA, is a ratio of

dynamic (of inertial)f6tC~toWeight. With free liquid-surface flow the natire of the flow (rapid
or tranquil) depends uport whether the Froude number is greater Of less than unity. it is useful in

calculations of hydta.iilitjii.mp in design of hydraulic structures, and in ship design.

TheWeber Number

The Weber number V21p/8-Visthe:ratio ofinertial forces to surface-tension forces (evident when
numerator and denomil lat()fa,:tdllUltiplied by 1). it is Important at gas-liquid Of liquid-liquid
interfaces and also whefetheseiriterfaces are in contact with a boundary. Surface tension causes
small (capillary) waves and dfopletformation and has an effect on discharge of orifices and weirs
-at very small heads. The effect of siirface tension on wave propagation is shown in Fig. 4.1. To

“the left of'the curve's minimum thewave speed is controlled by surface tension (the waves arc

13




called ripples), and to the right ofthe curve's minimum gravity effects are dominant.

The Mach Number
The speed of sound in a liquid is written JK /p if K is the bulk modulus of elasticity Of

c¢=.JKRT (k isthe specific heat ratio and T the absolute temperature for a perfect gas). ¥/cOf
v/ J K/p is the Mi~0h number. It is a measure ofthe ratio of inertia forces to elastic forces. By

“squaring V/c and multiplying by pA /2 in numerator and denominator, the numerator is the dyna-
mic force and the denominator is the dynamic force at sonic flow. It may also be shown to be a
measure of the ratio of kinetic energy of the flow to intemal energy of the fluid; it is the most

important correlating parameter when velocities are near Of above local sonic velocities.

24 CONCLUSION

In this chaptef.w"~introduced the flow oharacteristics, its definitions and its mean classifications.
We discussed thfg~h~falform of Newton's viscosity law. Anda brief explanation on how the
dimensionless pararnetets significantly deepen our understanding of fluid-flow phenomena.
Many of the dimefrsiqrtless parameters may be viewed as a ratio of a pair of fluid forces, the
relative magnitudeindicating  the relative importance of one of the forces with respect to the
other.

We showed thatsél~trigipractical design problems influid mechanics usually requires both theor-
etical developments< atid. experimental results. By grouping significant quantities into
dimensionless parameters,\and how it is possible to reduce the number ofvariables appearing and
to make this compactrestilt(equations  of data plots) applicable to all similar situations. Without
forgetting about the foi.irdimensionless parameters, Reynolds number, Froude number, Weber

number, and Mach nurnber,

14




CHAPTERIII

VISCOUS FLOW iN PIPES

In this chapter we will apply the basic principles 7o a specifrc, important topic-the flow of
viscous, incompressible fluids in pipes and ducts. The transport ofa fluid in a closed conduit
commonly called a pipe if it is of round cross section or a clue if it is not round, is extremely
important in our daily operations. A brief consideration of the world around us will indicate that
“there is a wide variety of applications of pipe low. Such applications range from the large, man-
made Alaskan pipeline that carries crude oil almost 800 miles across Alaska, to the more
complex natural systems of pipes that carry blood throughout our body and air into and out of our
lungs. Other ex'atnplesinclude the water pipes in our homes and the distribution system that
delivers the waterfrom the city well to the house. Numerous hoses and pipes carry hydraulic
fluid or other fluidsfo various components of vehicles and machines. The air quality within our
buildings is mainta.inedat comfortable levels by the distribution of conditioned air through a
‘maze of pipes and .ducts, Although all of these systems are different, the fluid-mechanics
principles governingtl:J.dluid motions are common. The purpose of this chapter is to understand

the basic procesSesitivolvedin such flows.

Some of the basic cofiiponents ofa typical pipe system are shown in Fig. 3.1. They include the
pipes themselves, the various fittings used to connect the individual pipes to form the desired
system, the flow rate control devices, and the pumps or turbines that add energy to or remove
energy from the flpid. Even the most simple pipe systems are actually -quite complex when they
are viewed in terms ()frigorous analytical considerations. We will use an exact analysis of the
simplest pipe flowtopics .spch as laminar flow in long, straight, constant diameter pipes and
dimensional analysis corisiderationscombined with experimental results for the other pipe flow
topics. Such an approach js not unusual in fluid mechanics investigations. When real world
effects are important such as viscous effects in pipe flows, it is often difficultor impossibleto use
only theoretical method to obtain the desired results. A judicious combination of experimental

<lata with theoretical considerationsand dimensional analysis often provides the desired results.

15



Figure 3.1. Typical pipe system component.

31 GENEAAIL.JCHARACTERISTICS OF PIPE FLOW

Not all conduits Used to transport fluid from one location fo another are round in cross section,
mest of the coitutidri.Ones are. These include typical water pipes, hydraulic hoses, and other
conduits that are c:e§igried to withstand a considerable pressure difference across their walls
without undue distortion of their shape. Typical conduits of noncircular cross section include
heating and a.if Conditioning ducts that are eften of rectangular cross section. Normally the
pressure differerice between the inside and outside of these ducts is relatively small. Mest of the
basic principlesy involved are independent ofthe cross-sectional shape, although the details of the
flow may be depe:fidéﬁt on it. Unless otherwise specified, we will assume that the conduit is

round, although wewiffshow how to account for other shapes.

We assume that the/pipeis completely filled with the fluid being transported. Thus, we will not
consider a concrete pipethrough which rainwater flows without completely filling the pipe. Such
flows called open-ch~1:1~eLflow. The difference between open-channel flow and the pipe flow of
this chapter is in the furida.lneritalmechanism that drives the flow. For open-channel flow, gravity

alone is the driving force .the water flows.
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3.1.1 LAMIN AR AND TURBULENT FLOW

The flow ofa fluid in a pipe may be laminar flow or it may be turbulent flow. Osbome Reynolds
(1842-1912). A British Scientist arid mathematician, was the 1Ist to distinguish the difference
between these two classifications of flow by using a sirriple apparatus. If water runs through a
\ pipe of diameter D with an average velocity V. the following characteristics are observed by
injecting neutrally buoyant dye as shown. For small enough flow rate the dye streak will remain
as a well-defined line as it flows along, with only slight blurring due to molecular diffusion of
the dye into the surrourlding water. Fora somewhat larger intermediate flow rate the dye streak
fluctuates in tlme and Space and intermittent bursts of irregular behavior appear along the streak.
On the other hand f01' large eriough flow rates the dye streak almost immediately becomes
blurred and spreads aCl”OSS ‘the entire pipe in a random fashion. These three characteristics,
- denoted as lamlnal‘ tran51t10nal and turbulent flow, respectively. The curves shown in Figure 3.2,
represent the x component of the velocity' as function of time, at a point A in the flow. The
_random ﬂuctuatlons ofthe turbulent flow are what disperse the dye throughout the pipe and cause
the blurred appearance For laminar flow in a pipe there is only one component of velocity, V =
. For turbulent ﬂOW the predommant component of velocity is also along the pipe. But it is
unsteady and accommmed by random components normal to the pipe axis, V= ui + uj + wk.
Such motion in a typlcal ﬂow occurs too last for our eyes to follow. Slow motion pictures of the

flowcan more clearly reveal the 1rregular, random, turbulent nature ofthe flow.

1
WWM\NWWV\ Turbsulent
!

i VAV ~Jb Transitional

| Laminar

~emm =

Figure 3.2. Time dependence of fluid velocity ata point
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We should not label dimensional quantities as being large or small, such as "small enough flow
rates' in the preceding paragraphs. Rather, the appropriate dimensionless quantity should be
identified and the small or large character attached to it. A quantity is large or small orly if
relative to a reference quantity. The ratio of those quantities results in a dimensionless quantity,
for pipe flow the most important dimensionless parameter is the Reynolds number, Re-the ratio

ofthe inertia to viscous effects in the flow. Reynolds number is shown as;

Re=pVD/g.

Where V is the average\velocity in the pipe, should replace the term flow rate. That is, the flow in
a pipe is laminar, )trarisitional, or turbulent provided the Reynolds number is small enough,
intermediate, or 'large eriough. it is not only the fluid velocity that determines the character ofthe
flow -its density, viscosity, and the pipe sizes are of equal importance. These parameters
combine to produce the Reynolds number. The distinction between laminar and turbulent pipe
how and its depe~~2~cton an appropriate dimensionless quantity was first pointed out by

Osborne Reynoldsin1~83.

The Reynolds numberra.niges for which laminar, transitional, or turbulent pipe flows are obtained
cannot be precisely giVen. The actual transition from laminar to turbulent flow may take place at
various Reynolds numbers, depending on how much the flow is disturbed by vibrations of the
pipe, ronghness ofth€. entrance .region, and .the, .like,-For general engineering .purposes.fi.e ..,
without undue precaufions to eliminate such disturbances), the following values are appropriate:
The flow in a round pipe is .laminar if the Reynolds number is less than approximately 2100. The
flow in a round pipe ismirbiilent ifthe Reynolds number is greater than approximately 4000. For
Reynolds numbers between these two limits, the flow may switch between laminar and turbulent

conditions in an apparently random fashion (transitional flow).
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312 ENTRANCE REGION AND FULL Y DEVELOPED FLOW

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near where
the fluid enters the pipe is termed the entrance region. It may be the first few feet of a pipe

connected to atank or the initial portion ofa long run ofa hot air duct corning form a fumace.

As is shown in Figure 3.3, the fluid typically enters the pipe with a nearly uniform velocity
profile at section (I). As the fluid moves through the pipe, viscous effects cause it to stick to the
pipe wall (the no-slipboundary condition). This is true whether the fluid is relatively in viscid
air or very viscous Oil. Thus, a boundary layer in which viscous effects are important is produced
along the pipe wall.s).19hJhat the initial velocity profile changes with distance along the pipe, x.

until the fluid fenich~.tj:ie end of the entrance length, section (2), beyond which the velocity

" profile does not varyy;ith .X. the boundary layer has grown in thickness.

Vi ffect aie k éf ;onsiderable importance within the boundary layer. For fluid outside the
iscous effects

bound 1 [within the in-viscid core surrounding the centerline from (1) to (2)], viscous
oundary layer

effects are negh gi‘j}&The shape of'the velocity profile in the pipe depends on whether the flow is

laminar or turbulent, as does the length ofthe entrance region Le. As with many other properties
amin g G

of pipe flow the WIS, WURE S5 entrance length Ls/D. correlates quite well with the Reynolds

number, typical rafanee fertgths are given by;

.Le ID,,;0.06 Refor larninarflow

and

Le ID=4.4 (Re) Iy for turbulent flow
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Figure3.3 Entrance region, developing flow and fully developed in the pipe.

For very low Rey:néldstitimbers flows the entrance length can be quite short (Le= 0.6D ifRe =
10), whereasforla.rgeRey:nolds number flows it may take a length equal to many pipe diameters

before the end ofth.eentrance region is reached (Le =120D for Re= 200). For many practical

engineering problertis, to<Re<l 0" so that 20D< Le <30D.

Calculation of th~\relC>cityprofile and pressure distribution within the entrance region is quite
complex. Howevet,()1:ice the fluid reaches the end ofthe entrance region, section (2) of figure
3.3, the flow is sim.plE:t.to describe because the velocity is a unetion of only the distance from the
pipe centerline, 1, aridiridependent ofx. This is true until the character ofthe pipe changes in
some way, such asa cfiirige in diameter, or the fluid flows through a bend, valve, or some other
-componerit at sectioff(:3). ThefroWbetweert  (2}and-(3)is-termedfully-developed; = Beyondthe in
interruption ofthe fullydeveloped flow [at section (4)], the flow gradually begins its retum to its
fully developed chara.ctei.[sedion (5)] and continues with this profile until the next pipe system
component is reached [section (6)]. In many cases the pipe is long enough so that there is a
considerable length of full)'developed flow compared with the developing flow length
[(x3-x2)>>le and (x6-xs)>>(xs.x4)]. In other cases the distances between one component ofthe

pipe system and the next comporietit is so short that fully developed flow is never achieved.
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3.1.3 PRESSURE AND SHEAR STRESS

Fully developed steady flow in a constant diameter pipe may be driven by gravity and/or pressure
forces. For horizontal pipe flow, gravity has no effect except fora hydrostatic pressure variation
across the pipe, yD that is usually negligible. It is the pressure difference, Ap=pt-pa, between one
section ofthe horizontal pipe and another which forces the fluid through the pipe. Viscous effects
provide the restraining force that exactly balances the pressure force, thereby allowing the fluid to
flow through the pipe with no acceleration. If viscous effects were absent in such flows, the

pressure would be constant throughout the pipe, except for the hydrostatic variation.

in non-fully developed flow regions, such as the entrance region ofa pipe, the fluid accelerates
or decelerates as it flows, the velocity profile changes from a uniform profile at the entrance of
the pipe to its fully developed profile at the end of the entrance region. Thus, in the entrance
region there is a balance between pressure, viscous, and inertia forces. The result is pressure
distribution alone the horizontal pipe as shown in Fig 3.4. The magnitude of the pressure

gradient, dp/dx, is larger in the entrance region than in the fully developed region.

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result of viscous

effects. If the viscosity were zero, the pressure would not vary with x. the need for the pressure

drop can be viewed from two different standpoints.

Ftl'v  dew+~ic,riec:
N ) d e P rtdl'.

Entrance
pressure
drop

oy L X \
G €27 e *

Figure 3.4 Pressure distributions along the horizontal pipe
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In terms of a force balance, the pressure force is needed to overcome the viscous forces
generated. In terms of an energy balance, the work done by the pressure force is needed to
overcome the viscous dissipation of energy throughout the fluid. If the pipe is not horizontal, the
pressure gradient along it is due in part to the component of weight in that direction. This

contribution due to the weight either enhances or retards the flow, depending on whether the flow

is downhill or uphill.

The nature of the pipe flow is strongly dependent on whether the flow is laminar or turbulent.
This is a direct consequence of the differences in the nature of the shear stress in laminar and
turbulent flows. The shear stress in laminar flow is a direct result of momentum transfer among
the randomly moving molecules. The shear stress in turbulent flow is largely a result of
momentum transfer among the randomly moving, finite-sized bundles of fluid particles. The net

-result is that the physical properties ofthe shear stress are quite different for laminar flow than for

turbulent flow.

3.2 FULLYDEVELOPED LAMINAR FLOW

«As is indicated iri the previous Sec:tion, the flow irilong, stfaight, constant diameter sections ofa
pipe becomes fully develdped.th'atis,tKevelocityipfo:fileis the same at any cross section ofthe
pipe. Although this is true whether the flow<is laminaf'6f ifiifiiulent, the details of the velocity
- profile are quite different for these two 1ypes of flow. Kiidbwledge ofthe velocity profile can lead
directly to other useful information such as pressure drop, head loss, flow-rate, and the like. Thus,
~ve begin by developing the equation for the velocity profile iri fully developed laminalflow.. If ..
the flow is not fully developed, a theoretical analysis becomes much more complex and is outside

the scope ofthis text. Ifthe flow is turbulent, a rigorous theoreticalanalysis is a.syettiotpdssible.

"Although most flows are turbulent rather than laminar, and many pipes are not long enough to
_allow the attainment of fully developed flow, a theoretical treatment a.nd full understanding of
fully developed laminar flow is of considetable irriporta.tice.< First/itreptesents one of the few
'~ theoretical viscous analyses that can be carried out exactly without using other ad hoc
%%sumptions or approximations. An understa.nding of the method of analysis and the results

obtained provides a foundation from which to carry out more complicated analyses. Second, there
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are many practical situations involving the use of fully developed laminar pipe flow.
There are numerous ways to derive important results pertaining to fully developed laminar flow.
Three altematives include: .(1) from F = ma applied directly to a fluid element.

(2)From the Navier-Stokes equations of motion.

(3).From dimensional analysis methods.

3.2.1 ENERGYGONS1IDERATIONS

In the previous three sections we derived the basic laminar flow results from application ofF =
ma of dimensionala.halysis Considerations. It is equally important to understand the implications
of energy considerations.ofsuch flows. To this end we consider the energy equation for

incompressible;rsteady flow between two locations as;

V.2 :
f1. tu, — + ==Jvdz+t12 +z1.+h,
r 2g 0

Recall that aiand&:i'.kinetic energy coefficient, and hi: head loss which accounts for any
energy loss associatec{Withthe flow. From the ideal inviscid cases, Ui=a,2 = 1, h. =0, and the
energy equatioliredtteedfothe familiar Bemoulli equation.

Even though the Veldcity profile in viscous pipe flow is not uniform, for fully developed flow it is

not change from sectlon 1to 2 so that w =a2 Then the energy equation becomes;

(&+Z1)’(‘l)—2+zz)=hL
4 Yoo

The energy dissipaiedbfthe viscous forces within the fluid is supplied by the excess work done

by the pressure and gravity.Then we can fi.nd out that the head loss can be written as follow;
_Arx

L yD

h

It is the shear stress at the wiillwhich is related to the viscosity and the shear tress throughout the

fluid that is responsible for theheadfoss.
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33 FULL Y DEVELOPED TURBULENT FLOW

Since the turbulent pipe flow is actually more likely to occur than laminar flow in practical
situations, it is necessary to obtain similar information for turbulent pipe flow. However,
turbulent flow is a very complex process. Numerous persons have devoted considerable effort in
attempting to understand the variety ofbaffling aspects ofturbulence. Although a considerable
amount of the knowledge about the topic has been developed, the field of turbulent flow still

remains the least understoodarea of fluid mechanics.

3.3.1 TRANSITIONFROM LAMINAR TO TURBULENT FLOW

For any flow geometry; there is one or more dimensionless parameter such that with this
parameter value b~lowCa\patticular value the flow is laminar, whereas with the parameter value
larger than a certaill!Y?.fii~ftheflow is turbulent. The important parameters involved as Reynolds
number, Mach nurribefgn<:idther dimensionless parameter, and their critical values depend on the
specific flow sitpa.fi>11.tilly6lved. For example, flow in a pipe and flow along a flat plate
(boundary layer, tlow) ¢gti/be laminar of turbulent, depending on the value of the Reynolds
number involy~q.:\1f6f/pipe  flow the value of the Reynolds number twist is less than
approximately 21QQforfiirri.inarflow and greater than approximately 4000 for turbulent flow. For
flow along a flat.plgt~ifli~)transition between laminar and turbulent flow occurs at a Reynolds
number of approximaf~ly(~))OOOO, where the length term in the Reynolds number is the distance

measured from thelea<:iip.g>edgeofthe plate.

Consider a long secfrondf pipe that is initially filled with fluid at rest. As the valve is operied to
start the flow, the flow.vvilliticrease its velocity and, hence, The Reynolds number increase from
zero to their maximurtist~@ly.state flow values. Assume this transient process is slow enough so
that unsteady effects are/ri~gligible. For an initial time period the Reynolds number is small
enough for laminar floW1:66t:cl.IrtAtsome time the Reynolds number reaches 2100, and the flow
begins its transiti on to turbulel 1t;¢onditions. Intermittent spots or bursts of turbulence appear. As
the Reynolds number is increas.ed.the entire flow field becomes turbulent. The flow remains

turbulent as long the Reynolds np.rriberexceeds approximately 4000.
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FigureJ.5Transitions from laminar to turbulent flow in a pipe

A typical trace oftheaM!ad comoonenr ofvelocity measured ata given location in the flow,

u=u (). Its 1rregular random mtmmfz is the distinguishing feature ofturbulent flow. The character
of many ofthe 1@&1&&&1 propertles ofthe flow depends strongly on the existence and nature of

the turbulent fluctuations or randomness indicated. The Reynolds number is infinite because the

viscosity is Zero, and the ﬂow most surely would be turbulent. However, reasonable results were

obtained by usmg the 1n-VISCIC1 Bemoulli equation as the governing equation. The reason that

such simplified indl,s"C'_l'd é.nalyses gave reasonable results is that viscous effects were not very
important and the Velocltyused in the calculations was actually the time-averaged velocity, u
_Calculation of the héaférak‘,héf;er, pressure drop, and many other parameters would not be possible
without inclusion §f:tih'eis;éémingly small, but very important, effects associated with the

randomness ofthe flow. |

Consider flow in @ pan of water placed on a stove. With the stove tumed off, the fluid is

stationary. The initial sloshlng has died out because ofviscous dissipation within the water. With

the stove tumed on, a temperature gradient in the vertical direction, ( , is produced. The
water temperature is gaRMRxi m?ar the pan bottom and decreases toward the top ofthe fluid layer.
if the temperature differenc‘:esr; ;’is very small the water will remain stationary, even though the
water density is smallest near the bottorn of the pan because of the decrease in density with an
increase in temperature. A fur,thef increase in the temperature gradient will cause buoyancy+-
driven instability that results in motion-the light, warm water rises to the top, and the

heavy cold water sinks to the bottorri. This slow, regular tuming over increases the heat transfer
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from the pan to the water and promotes mixing within the pan. As the temperature gradient
increases still further, the fluid motion becomes more vigorous and eventually tums into a
chaotic, random, turbulent flow with considerable mixing and greatly increased heat transfer rate.

The flow has progressed from a stationary fluid to laminar flow, and finally to turbulent flow.

Mixing processes and heat and mass transfer processes are considerably enhanced in turbulent
flow compared to laminar.flow. This is due to the macroscopic scale of the randomness in
“turbulent flow. We are all familiar with the rolling, vigorous eddy type motion of the water in a
pan being heated on the stove (even if it is not heated to boiling). Such finite sized random
mixing is very effective in transporting energy and mass throughout the flow field, thereby
increasing the various .rate processes involved. Laminar flow, on the other hand, can he thought
of as very small but finite sized fluid particles flowing smoothly in layers, one over another. The

only randomness and rnixingtake place on the molecular scale and result in relatively small heat,

mass, and momentum transfer rates.

~ Without turbulence it would be virtually impossible to carry out life as we now know it. In some
situations turbulent floW is desirable. To transfer the required heat between a solid and an
adjacent fluid (such as in the Cooling coils of an air conditioner or a boiler ofa power plant)
‘would require an enormously large heat exchanger if the flow were laminar. Similarly, the
“required mass transfer of -a liquid state to' a vapor state (such as is needed in the evaporated
cooling system associated with sweating) would require very large surfaces if the fluid flowing

past the surfacl3.wereJamiriar rather than turbulent, .

Turbulence is also of importance in tile mixing of fluids. Smoke from a stack would continue for
miles asa ribbort ofpollutanfwithout rapid dispersion within the surrounding air if the flow were
laminar rather than furbulen.t Under certain atmospheric conditions this is observed to occur.
Although there is mixin.g 6ri d molecular scale (laminar flow), it is several orders of magnitude
slower and less effective tb.afi i:l:ieiri:1ixing on a macroscopic scale (turbulent flow). It is
“considerably easier to mix creaminfd;a cupdf coffee (turbulent flow) than to thoroughly mix two

colors ofa viscous paint (laminar flow).

26



In other situations laminar (rather than turbulent) flow is desirable. The pressure drop in pipes
(hence, the power requirements for pumping) can be considerably lower if the flow is laminar
rather than turbulent. Fortunately, the blood flow-through a person's arteries is normally laminar,
except in the largest arteries with high blood flow rates. The aerodynamic drag On analrplane

wing can be considerably smaller with laminar.flow past it.than with turbulent flow.
3.3.2 TURBULENT SHEAR STRESS

The fundamental differenice between laminar and turbulent flow lies in the chaotic, mmenT™
behavior of the various fluid parameters. Such variations occur in the three components of
velocity, the pressure, the shear stress, the temperature, and any other variable that has a held
description. Turbulent flow is characterized by random, three dimensional vortices. Such flows
can be described in terms of their mean values which are denoted with an over bar on which are
superimposed the fluctuations which is denoted with a prime. Thus, ifu = u (x, y, z, t) is the x
component of instantaneous velocity, then its time mean or time average value, u, is expressed as

follow;

to+T

U= u. fu(x,y,z,t)dt
u

lo

where the time interval, T, is considerably longerthan. the period of the longest fluctuations.

considerably shorter than any unsteadiness ofthe average velocity. Since the square O a.

tunnels have typical values of f =0.0l. although with eXtrem¢:¢$¢,ivaiu% s low as ) 00002

have been obtained, On the other hand, values of ¢ =0.1 are fOundfOi‘fhe flow in theatmosphere
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and rivers. Another turbulence parameter that is different from one flow situation to another is the
period of the fluctuations-the time scale of the fluctuations in many flows, such as the flow of
water from a faucet, typical frequencies are on the order of 10, 100, or 1000 cycles per second
(cps ). For other flows, such. as. the Gulf Stream current in the Atlantic Ocean or flow of the
atmosphere of Jupiter, characteristic random oscillations may have a period on the order ofhours,

days, or more.

it is tempting to extend the concept of viscous shear stress for laminar flow (r = p .du/dy)to that
of turbulent flow by replacirig.u, .the instantaneous velocity, by u, the time averaged velocity.
However, numerous .an<:l/.theoreticabtudies have shown that such an approach leads to
completely incorrect results. That is,1- £ p du/dy. A physical explanation for this behavior can be

found in the concept of what produces a shear stress.

Laminar flow is modeled as fluid particles that flow smoothly along in layers, gliding past the
slightly slower or faster ones on either side. As is discussed in chapter 1, the fluid actually
consists of numerous moleculrs..darting about in an almost random fashion. the motion is not
entirely random -a syli'ght‘ bias in one direction produces the flowrate we associate with the motion
of fluid particles, u, As the molecules dart across a given plane (plane A-A. for example), the
ones moving upWa‘fd*"héVé‘cbme from an area of smaller average x component of velocity than

the ones moving downward, which have come from an area of larger velocity.

- The momentum flux in the x direction across.plane A - A, gives riseto adrag of the lower fluid_
on the upper fluid ‘e‘rid‘ah'equal but opposite effect of die tipper fluid on the lower fluid. The
sluggish molecules meVin'g“upWard across plane A-A must be accelerated by the fluid above this
 plane. The rate of Ghange of momentum in this process produces a shear force. Similarly, the
k more energetic molecules movmg down across plane A - A must be slowed down by the fluid
below that plane. This shear force is present only ifthere is a gradient in u = u(y), otherwise the
average x component of velocnty and m@meﬁnml of the upward and downward molecules is
exactly the same. In addition, there are attractive forces between molecules. By combing these
effects we obtain the well- knowrlNeﬁzﬁon v1sc051tv law: - = pdu/dy, where on a molecular basis

p in related to the mass and speed and temperature ofthe random motion ofthe molecules.
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Although the above random motion of the molecules is also present in turbulent flow, there is
another factor that is generally more important. A simplistic way of thinking about turbulent flow
is to consider it as consisting ofa series of random, three-dimensional eddy type motions as is
depicted (in one dimerision only), these eddies range in size from very small diameter (on the
order ofthe size ofa fluid partiele) to fairly large diameter (on the order ofthe size of the object
or flow geometry considered). They move about randomly, conveying mass with an average
velocity, u =u(y).This eddy structure greatly promotes mixing within the fluid. It also greatly
increases the transport of x momentum across plane A-A. That is, finite parcels of fluid (not
merely individual molecules as in laminar flow) are randomly transported across this plane,

resulting in a relatively large (when compared with laminar flow) shear force.

The random velocity components that account for this momentum transfer (hence, the shear
force) are u (for the x component of velocity) and u (for the rate of mass transfer crossing the
plane). A more detailed consideration ofthe processes involved will show that the apparent shear

stress on plane A-A is given by the following:

i= Mdll/dy - pu U = 'tlam+ 'tturb

Note that ifthe flow is laminar. u'=U =0.so that ir U= 0 and reduces to the customary random
- molecule-motion-induced laminar shear stress, tim.=== pdu/dy. For turbulent flow it is found that
the turbulent shear stress. 'turb= pir u, is positive. Hence the shear stress is greater in turbulent

flow than in laniinar flow. Note the units on ‘wturb, are (density) (velocity) > =N/m2, as expected.

Terms ofthe form - .ptr i>(or- pu w.et.) are called Reynolds stresses .in honor of Osborne

Reynolds who firstdiscussed them in 1895.

. Tt is seen that the shearstress m turbulent flow is not merely proportional to the gradient of the
time-averaged velocity, u(y). It also contalns a contribution due to the random ﬂuctuatlons of the
x and y components of veloclty The densny 1s mvolved because of the momentum transfer of the
fluid within the random eddies. Although the relatlve magmtude alde of ‘L‘lam compared 0 Turb IS 2
complex function dependent on the spg@;ﬁ@ ﬂow mvolved that the shear stress 1s proportlonal to
the distance from the centerline ofthe Pipe. In a Very narrow reglon near the wall (the viscous sub

Iayer) the laminar shear stress IS domlnant Awa.y frOm the Wall n the outer layer the turbulent
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portion of the shear stress is dominant. The transition between these two regions occurs in the
overlap layer. Typically the value of T is 100 to 1000 times greater than "am in the outer
region, white the. Converse is true in the viscous sub layer. A correct modeling of turbulent flow
| is strongly dependent on an accurate knowledge of T.urb. This, in tum requires an accurate know
ledge of the fluctuations and U or pu' U .As yet it is not possible to solve the goveming equations
for these details of the flow, although numerical techniques using the largest and fastest
computers available have produced important information, about some of the characters of
turbulence. Considerable effort has gone into the study of turbulence. Much remains to be
leamed. Perhaps studies in the new areas of chaos and fractal geometry will provide the tools for

a better understanding ofturbulence.

The viscous sub laver is usually a very thin layer adjacent to the wall. since the fluid motion
within this thin layer 1s crltlcal in terms tat the overall flow (the no-slip condition and the wall
shear stress Occur 1n thlS layer) it is not surprising to find that turbulent pipe flow properties can
kbe quite dependent ,on the roughness of the pipe wall, unlike laminar pipe low which is
‘independent”of roughness Small roughness elements can easily disturb this viscous sub layer,

thereby affecting k‘the’"‘ehtyikre‘ﬂow. An altemate form for the shear stress for turbulent flow is given

in terms of the eddy viscosity, 1.

This extension of laminar flow terminology was introduced by J. Boussinesq, a French scientist,

in 1877. A though the concept of an eddy viscosity is intriguing, in practice it is not an easy

parameter to use; unhke the absolute viscosity , p, which is a known value for agiven fluid, the

‘,eddy viscosity 1s a functl'o of both the fluid and the flow conditions. That is, the eddy viscosity
“of water cannot be lookedupm ‘handbooks-its value changes from one turbulent flow condition

to another and from one point in a turbulent flow to another.

jThe inability to accurately determme the Reynolds stress, piru, is equivalent to not knowing the
eddy viscosity. Several semi empirical theories have been proposed (Ref3) to determine
approximate value of n. L. Prandlt 'k'k(‘l~k875- 1953), a German physicist and aerodynamicist,
‘proposed that the turbulent prom could be viewed as the random transport of bundles of fluid

‘particles over a certain distance, €Ml the , mixing length. From a region of one velocity to another
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region ofa different velocity. By the use of some adhoc assumptions and physicalreasoning, it

was concluded that the eddy viscosity was given by;

Il =p ¢ medu/dy
Thus, the turbulent shear stress is

T b= p F me (dl:/dy)2
The problem is thus shifted to that of (determining the mixing length, €/l Further considerations

indicate that 6 m is nota constant throughout the flow held. Near a solid surface the turbulence is
dependent on the distance from the surface. Thus, additional assumptions are made regarding

how the mixing length varies throughout the flow.

All-encompassing, useful model that can accurately predict the shear stress throughout a general
incompressible, viscous turbulent flow. Without such information it is impossible to integrate the
force balance equation to obtain the turbulent velocity profile and other useful information, as

was done for laminar flow.
333 TURBULENT VELOCITY PROFILE

Considerable information concerning turbulent velocity profiles has been obtained through the
use of dimensional analysis, experimentation, and semi empirical .theoretical efforts. Fully
.developed turbulent flow in a pipe can.be broken into three regions which are characterized by
their distances fromthe wall: the viscous sub layer very near the pipe wall, the overlap region,
and the outer turbulent layer throughout the center portion of the flow. Within the viscous sub
layer the viscous shear stress is dominant compared with the turbulent (or Reynolds) stress, and
the random, .eddying nature of the flow is essentially absent. In the outer turbulent layer the

Reynolds stress is dominant, and there is considerable mixing and randomness to the flow.

The character of the flow within these two regions is entirely different. For example, within-the
viscous sub layer the fluid viscosity is an important parameter; the density is unimportant. JTIL.the
outer layer the opposite is true. By a careful use of dimensional analysis arguments for the flow

each layer and by matching of'the results in the common overlap layer, it has been pdssibleto
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obtain the following conclusions about the turbulent velocity profile in a smooth pipe.

In the viscous sub layer the velocity profile can be written in dimensionless from as;
ulu*= yu*/v

Where y = R - r is the distance measured from the Wall, . is the time-average-d .x component of
velocity, and u* is termed the friction velocity. Notethat u* is not all actual velocity of the fluid,
it is newly a quantity that has dimensions ofvelocity.

Dimensional analysis arguments indicate that in the overlap region the velocity should vary as the

logarithmic of'y, thus, the following expression has been proposed;
*
Lrs 5.0
u* v

Where the constants 2.5 and 5.0 have been determined experimentally. For regions not too close
to the smooth wall, but not all the way out to the pipe center, equation above gives a reasonable
correlation with the experimental <lata. Note that the horizontal scale is a logarithmic scale. This
tends to exaggerate the sizeof.the viscous sub layer relative to the remainder ofthe flow shown.
The turbulent profiles are much flatter .than .the .laminar profile and that this flatness increases
with Reynolds number (i.e., with n). Reasonable approximate results are often obtained by using
the inviscid Bemoulli equation and by assuming a fictitious uniform velocity profile. Since most
.flows are turbulent and turbulent flow tends to have nearly uniform -velocity .p.r?ples, the
usefulness of the Bemoulli equation and the uniform profile assumption is not uniexpectieq.Qf

course, many properties ofthe flow cannot be accounted for with out.includingyisc91.1sy:{f'ect.
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Turbpuleny

1.

Figure 3.6 Typical lamina flow and turbulent flow velocity profiles

34  CONCLUSION

In this chapter we héVe,dis&u&s&dlthe very important topics that are related to the pipe flow. A:fter
explaining ceﬁaiﬁ"kéﬁys liffatanes between laminar and turbulent flow by reviewing Reynolds's
classic experiment. Weused for laminar flow the Newton viscosity law which is valid only for

parallel flow. In more general flows, one must use a more general viscosity law for which the

Newtonw-iscosity;léfw.is;a,;special case. We can prove rigorously the assumptionmade for parallel
flow concemning pressure at a sectional pipe. Thus, for laminar pipe flow we were able to

velocity profile to be a paraboloidal surface ofrevolution and we were

analytically formulate ¢

able to drive a head loss formula: Next we considered turbulent pipe flow. We explained how

turbulence gives rise to a so-called apparent stressjust as the transport of molecules gives rise a
viscous stress. We pointed out that near a boundary the viscous stress dominate and further out
from the boundary the appafe‘rit*s‘lﬁ‘és's‘ dominate with a region of overlap in between where both

discus effects and turbulence effects significant
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CHAPTERIV
FLOW OVER IMMERSED BODIES

In this chapter we consider various aspects of the flow over bodies that are immersed in a fluid.
Examples include the flow of air around airplanes, automobiles, and falling snow flakes, Of the
flow of water around Subma;‘ines and fish. in these situations the object is cornpletely surrounded

by the fluid and the flows are wmex... extemal flows.

Extemal flows mvolving air are often termed aerodynamics in response to the important extemal
flows produced when an ob_]ect such as an airplane flies through the atmosphere, Although this
field of external ﬂowé 18 extf@miy important, there are many other examples that are of equal
importance. The ﬂmd*fcrc‘eihft and drag on surface vehicles has become a very important topic.
By correctly designing cars and trucks, it has become possible to greatly decrease the fuel
consumption and impro‘\"fé"‘?t}’fékhandling characteristics ofthe vehicle. Similar efforts have resulted
in improved ships, whether they are surfe.. vessels surrounded by two fluids, air and water Of

submersible vessels, surrounded completely by water.

Other applications of extefnal ‘ﬂﬁvVé‘inVOlve objects that are not completely surrounded by fluid,
- although they are placed in‘soméf’extemal-type flow. For example, the pro per design ofa

building must include <a=g*4=-ation of the various wind effects involved.
g

As with othef areas of fluid mechanics, two approaches theoretical and experimental are used to
obtain information on the fluid forces developed by extemal flows. Theoretical techniques can
provide much ofthe needed information about such flows. However, because ofthe complexities
of the goveming equations and the complexities of the geometry of the objects involved, the
amount of information obtained from pufely theoretical methods is limited. With current and
anticipated advancements in the a:fea of computational fluid mechanics, it is likely that computer

prediction of forces and comp licated :flow pattems will become more readily availab le.

Much ofthe information about extern.a.Ffl.owsic6:rriefrom experiments carried out, for the most
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part, on scale models ofthe actual objects. Such testing includes the

of model airplanes, buildings, and even entire cities. In some instances
model, is tested in wind tunnels. Better performance of cars, bikes, skiers,
objects has resulted from testing in wind tunnels. The use of water tunnels and

provides useful information about the flow around ships and other objects.

In this chapter we consider characteristics of external flow past a variety of objects. We
investigate the qualitative aspects of such flows and leam how to determine the various forces on

“objects surrounded by a moving liquid.

4.1 GENERAL EXTERNAL FLOW CHARACTERISTICS

A body inmiersedtina 'moving fluid experience a resultant force due to the interaction betweeh
the body and the fluid surrounding it. In some instances such as an airplane flying through still air
the fluid far from the body is stationary and the body moves through the fluid with velocity U, In
other instances the body is stationary and the fluid flows past the body with velocity U. In any
case, we can fix the coordinate system in the body and treat the situation as fluid flowing
stationary body with velocity U, the 'upstream velocity. For the purposes of this project,

assume that the upstream velocity is constant in both time and location. That is, there

constant velocity fluid flowing past the object. In actual situations this is often

example, the wind blowing past a smokestack is nearly always turbulent and gusty . ly

not of uniformvelocity fromthe top to the bottom ofthe stack. Usuallythe d ,‘n‘o“n-'w‘

uniformity are of niinor importance.

Even with a flow, the flow in the V1c1n1ty of an @bject may he unsteady :

Examples of this that is som imes found i m the flow past

airfoils, the regular that smg ina wmd, an ihe 1rregu1ar turbulent

fluctuations in the wake

The structure ofan external flow - o and analyzed
often depend on the nature of the body can be no truly two-

dimensional bodies-nothing extends to are sufficiently long so
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that the end effects are negligibly small. Another classification of body shape can be made
depending on whether the body is streamlined or blunt. The flow characteristics depend strongly
on the amount of streamlining present. In general streamlined bodies (i.e.., airfoils. racing cars.
ete.) have little effect on-the surrounding fluid, compared with the effect that blunt bodies (i.e.,
parachutes, buildingss-etcothave on the fluid. Usually, but not always, it is easier to force a
streamlined body throiigh a fluid than it is to force a similar-sized blunt body at the same

velocity. There are important exceptions to this basic rule.

4.1.1 LiFT ANDDRAG CONCEPTS

When any hotlyrti6\Testhrough a fluid, an interaction between the body and the fluid occurs; this
effect can be desci-ibedfoterms ofthe forces at the fluid-body interface. This can be described in
terms of the stress.es.--wallshear stresses, -tw, due to viscous effects and normal stresses due to the
pressure, p, typical)sheafstress and pressure distributions are shown in figs below. Both shear

stress and pressureva.ryin magnitude and direction along the surface.

Pressure ...
du:!itributiort

/l?ear st1B-ss
rstribution

it

Figure 4.1 Forces from the surrounding fluid on a 2-dimensional object.

36



It is often useful to know the detailed distribution ofshear stress and pressure over the surface of
the body, although such information is difficult to obtain. Many times, however, only the
integrated of resultant effects of these distributionsrer» rieeded. The resultant force in the
direction of the upstream velocity is termed th~ dta.g; P, and the resultant force normal to the
upstream velocity is termed the lift, L, as is indicated in Fig. for some three-dimensional bodies

there may also be aside force that is perpendiculaftotheplane containing D and L.

| 4.1.2 CHARACTERISTICS:OF 'FLOW PAST AN‘-OBJECT

phenomena. Clearly the character of the ﬂow field is a functlon of the shape of the body Flows
past relatively Tmms geometnc shapes are expected to have less “complex flow flelds than flows

past a coriipleX: sha.pesiich as a.i airplane Of a tree. HOWGVGT even the 51mplest-shaped objects

produce rather complex flows.

For a given-shaped object, the characteristics of tile flow depend very strongly on various
parameters such as size, orientation, speed, and fluid properties. According to dimensional
analysis afguritents, the chafa.ctefof the flow should depend on the various dimensionless
parameters involved. For typical external flows the most important of these parameters are the

Reynolds number, Re = pUl/u=Ul/v, the Mach number, Ma=U/c. and for flows with a free

surface, the Froude number, Fr.

For the pf~s~rit,-we 66nsidef how the external flow arid its associated lift and cfrag vary as a ...
function of Reynolds number. Recall that the Reynolds number represents the ratio ofinertial
effect s to viscous effects: In the absence of all viscous effects (n =0). The R.eyndldsfilirnberis
infinite. On.the other ha.rid,/inthe absence of all inertial effects (negligibleluass o6r p=0). The
Reynolds number is zero. Glea.tly,a.riyactualflow will haveaR.eyh.6ldsféimbe:rbetween (but not

including) these two extremes, Theiia.tti:re6fthefloWpa.stabodydeperids — strongly on whether

Re>>1 or Re<<l.

Most extemal flow's with which we are fariiiliafa.re)a.s.socia.tedrith moderately sized objects

with a characteristic length on the order of 0.01mn< U< 10 m. In addition, typical upstream
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velocities are on the order of 0.0 m/s < U< 100 m Is and the fluids involved are typic:a.lly water
~ or air. The resulting Reynolds number range for such flows is approximately 10<R.e<i0s. Asa
rule of thumb, flows with Re>100 are dominated by inertial effects, whereas flows witiriRe-<lI

are dominated by viscous effects. Hence, most familiar external flows are dominated by ineftia.

On the other hand, there are many extemal flows in which the Reynolds number is considerably
less than 1, indicating in some sense that viscous forces are more important than inertial forces.
‘The gradual settling of small particles of dirt in a lake or stream is govemed by low Reynolds
number flow principles because of the small.diameter ofthe particles and their small settling
speed. Similarly the Reynolds number for objects movirig through large viscosity oils is small
because p. is large. The general differences between small and large Reynolds number flow past
streamlined and blunt objects can be illustrated by considering flows past two objects-one a flat

plate parallel to the upstream velocity and the other a circular cylinder.

tine of the great advancements in fluid mechanics occurred in 1904 as a result of the insight of
Ludwig Prandlt (1875-1953), a Germanphysicistand aerodynamicist. He conceived ofthe idea
of the boundary la.y~r--a. thin n~gi¢non the surface of a body in which viscous effects are

important and the outside Ofwhich the fluid behaves essentially as if it were inviscid. Clearly the
actual fluid viscosity is the same tliroughont; only the relative importance of the ViscoUs eff‘ects
due to the velocity gradients is different within .oroutside ofthe boundary layer. By using SUCh 4
hypothesis it is possible to simplify the analysis of large Reynolds number flows, thereby

- allowing solutionto extemal flowproblems that are-otherwise.unsolved. e
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Figure 4.2 Chatactefofthe\steady, viscous flow pasta flat plate parallel to the upstream.

~ As with the flow past the flat pla.te descrided abdve, the flow past a blunt object (suchasUa.

circular cylinder) also varies with Reynolds number. In general, the larger the Reynolds I

_ the smaller the region ofthe flow field in which viscotiSe:ffects are important. For object sth

not sufficiently streamlined, however, an additiona] ctiifacteristic ofthe flow is 8Bs‘erv¢d

termed flow separation and is illustrated in Fig. below.
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Figure 4.3 character of steady, viscous flow past a circular cvlinder

Low Reynolds number flow where Re = UDi v < | pasta cireular cylinder is characterizedby the
fact that the presence of the cylinder and the accompanying viscous effects are felt throughouta
relatively large portion ofthe flow field. For Re= UD/v = 0.1, the viscous effects are important
several diameters in any direction from the cylinder. A somewhat surprising characteristic of this
flow is that the streamnlines:are essentially symmetric about the center of the cylinder-the

streamline pattem is the saineitifront ofthe cylinderas it is behind the cylinder.

As the Reynolds number is increa.sed,iheregion ahead of'the cylihdefirtwhich viscous effects
are important becomes smaller, with the visddus region exteridirig0n|y a. short distance ahead of
the cylinder. The viscous effects are cortvicted d<n..vnstream and the flow loses its symmetry.

Another characteristic of extemal flows becoiriesimpoitant-----th€low separates from the body at
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the separation location. With the increase in l}eynolds number, the fluid inertia becomes more
important and at some Jocation on the body, denoted the separation location, the fluid's inertia is
such that it canr.ot follow the curved path arourtd 'to the rear of the body. The .result is a
separation bubble behind the cylinder illwhichsbriieiof the fluid is actually flowing upstream,

against the direction ofthe upstream flow.

At still larger Reynolds numbers, the area affecfodby the viscoilis forces is forced farther
downstream until it involves only a thin (60 < D)bburidaiy laye'f()r1. the front portion of the
cylinder and an irregular, unsteady (perhaps turbuleri.t)wake fegibri. thafexteri.d fardowistream

of the cylinder. The fluid in the region outside of the boundary la.yer arid wa.ke region flows as if
it were in-viscid. Of course the fluid viscosity is the same thréughdufthe entire flow field.
Whether viscous effects are impottartt or not deperids or. which -tegionn Oftne' flow<fiefoWe

considered. The velocity gradients within the boundary layer and wake regions a.reifuuchla.rget
than those in the remainder of the flow field. Since the shear stress is the product of the fluid
viscosity and the velocity gradient, it follows that viscous effects are confined to the boundary

layer and wake tegiori.s.

The characteristics for flow past a flat plate and a cylinder are typical of flows past streamlined
and blunt bodies, respectively. The nature ofthe flow depends strongly on the Reynolds number.
Most familiar flows are similar to the large Reynolds number flows, rather than the low Reynolds

number situations.
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4.2 BOUNDARY LA.YER CHARACTERISTICS

As was discussed in the previous section, it is often possible to treat flow p~$i‘lan object as a
combination of viscous flow in the boundary layer and in-viscid flow elsewhere.]30 q"n‘da

is described as a very thin layer of fluid adjacent to a surface, in which viscosity is:

while outside this layer the fluid can be considered as frictionless or ideal. The boundakry ayer

may be entirely laminar or it may be primarily turbulent with a viscous sub-layer. The thfokness 6

of the boundary layer is usually defined as the distance from the boundary to the poinfwh e;rei}f-

velocity is 99% of the undisturbed velocity. This thick:ri.ess increases with the distance fronfthe

leading edge ofa surface.

There is an important differenbe between flow around' immersed bodies and pipe flow. In pipe
flow the bounder layers from the opposite walls of the pipe merged together after a certain
distance and the flow becomes all boundary layers, while with immersed bodies, the bounder
layers may reach a thickness of several inches, still small compared with the dimensions of the

ideal fluid outside the boundary layers.

If the Reyl106lds riumberis large eiidugh;viscous effects are important only in the "~~"~-

regions near the object alld il 1the wake region behind the object. The boundary layer is neeaen

flow fields to allow for the no-slip boulldafyconditionthaf requires the fluid to cling to

surface that it flows past. Outside ofthe bottnda.ry la.yer the velocity gradients normal t0 th
are relatively small, and the fluid acts as if it were .in-viscid, even though the viscosity 1

A necessary condition'for this structure ofthe flow isthatthe Reynolds numbefoeila. g

42.1 BOUNDARY LAYER STRUCTURE AND THICKNE SS O
FLATPLATE

There can be a wide variety in the size ofa boundary layer and the StI'HCtu of
Part of this variation is due to the shape of the object on which the bou
section we consider the simplest situation, one in which the bgu'gga
infinitely long flat plate along which flows a viscous, incompressi blé‘}kﬁii

Ifthe surface were curved, the boundary layer structure wouldbe mcr comple
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If the Reynolds number is sufficiently large, only the fluid in a relatively thinl)o\.tr1. dary Iayer on

VGlOClty will be> essentia.lly V=Ui, the upstream velocity. [ or the infinitel- y'lo

is no chara.ctefisticlength.The plate has no thickness and is not of finite length.

ML Chmingr betingary:
igyer

.’.

Le:ding
FihF

vl

Figure 4.4 Distortion ofa fliiid partide as it flows within the boundary layer.

Fora finite lengthpla.te, it is clearthat the plate length 1, can be used as the characteristic length.
For aninfil litelylo11.g plate We \ise X, the coordinate distance along the plate from the leading
edge, as the chara.ctenSl:iclength :indtiefinethe Reyndlds number as Re; = Ux/v. Thus,i:f6i!'a.ry

fluid or upstream velocity the ReYnoldStiurriber will be sufficiently large for boundary laYertYP€

flow if the plate is long enough. Physically, this means that the flow situations could he_’thbu:ght&'

far from the plate that we can not make out these details. On thlS SC3~§3 the plate has ,’egh"ible

effect on the fluid a.head of the plate. The presence 3?1315:‘i5 elt only ﬁie’ reiatlvely thm i

boundary layer and wake regions. , ‘d PrandIt mn 19{34 Was the ﬁl'St 1o

hypothesize such a concept. It major; turning p’omts in fluid mechanics

analysis.
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A better appreciation of the structure of the boundary layer flow can he obtained by cortsidering
what happens to a fluid partide that flows into the boundary layer. A small rectangular'partide

retains its original shape as it flows in the uniform flow outside of t he boundary layer. {ince it
enters the boundary layer, the partide begins to distort because of the velocity gradient within the
boundary layer-the top of the particle has a larger speed than its bottom. The fluid particles do
not rotate as they flow along outside the boundary layer, but they begin to rotate once they pass
through the fictitious boundary layer surface and enter the world ofviscous flow. The flow is said

to be irrotational outside the boundary layer and rotational within the boundary layer.

At some distance downstream from the leading edge, the boundary layer flow becomes turbulent
and the fluid particles become greatly distorted because of the random, irregular nature of the
turbulence. One of the distinguishing features of turbulent flow is the occurrence of irregular
mixing fluid parcels that range in size from the smallest fluid particles up to those comparable in
size with the object of interest. For laminar flow, mixing occurs only on the molecularscale. This
molecular scale is orders of magnitude smaller in size than typical size scales for turbulent flow
mixing. The trartsitionifrom laminar to turbulent flow occurs at a critical value of the Reynolds
number Re On the order of2 *107 to 3* 10°. depending on the roughness of the surface and the

amount of turbulence in the upstream flow.

The purpose of the boundary layer on the plate is to allow the fluid to change its velocity from
the upstrea.m.\ralueof U to zero on the plate. Thus, V=0 at y = 0 and V::: Ui-a.ty=6, with the
velocity profile U = u(x,y) bridging the boundary layer thickness. In actua.lify (both
mathemafically a.ndphysically), there is no sharp edge to the boundary layer. Tha.fis, u - U as
we get fartheffrorri the plate; it is not preciselyu = U aty = 0. We define the boundary layer
thickness, . as that distaiice froritthe plate at which the fliiid' vefocify is within some arbitrary

value of the upstream velocify.typica.lly, as indicated in Fig. -4.s,
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FIG4.5. Boundary layer thickness

8 = y where u = 0.99U

To remove this' arbitra.ri.ness(i.e ... what is so special about 99%; why not 98 %?), the following

definitions are inttoduced Shown in Fig. 9.8b, are two velocity profiles for flow past a flat

plate-one if there were no viscosity (a uniform profile) and the other if there is viscosity an.d

zero slip at the wall (the boundary layer profile ). Because ofthe velocity deficit, U - u, within

the boundary layer, the flow rate across section b-b is less than that across section a-a. Howevet;

if we displace the pla.te at section a-a by an operate amount 8%, the boundary layer displacemen.t

thickness, the +i8W ral:e1&t6~s ~ach section will be identical this true if}

o* = J (I-u!U)dy.

0
The displacement thickness represents the amount that the thickness Of the bOdyi*muS
increased so that the fi.ctitious uniform in-viscid flow has the same mass flow .ratfpﬁl“OP'
the actual viscous flow. It represents the outward displacement of the streamlines caus
viscous effects on the plate. This idea allows us simulate the presence that the boun
on the flow outside of the boundary layer by adding the displacement thickn.eSS® the
and treating- the flow over the thickened body as an in-viscid flow, .An.oﬂi’?"

thickness definition, the boundary layer momentum thickness, €, 1S 6ftefr;1.i§d when

the drag on an object. Again because of the velocity defi.cit, 1J ..uf!itzyrl‘the"
momentum flux across section b-b in Fig. 4.5 is less than that acroSS$ SeCﬁO

momentum flux forthe actual boundary layer flow is given-by;

J pu(U - u)dA = phJ u(U £,u)dv
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Which by definition is the momentum flux inala yer of uniform speed U artdtlii cknes
three boundary layerthickness definitions, o, o* and 8, are of use in boundary>laye! ¢
The boundary layer concept is based on the fact that the boundary layer is thirt.Fo r
flow this-means-tharetany location x along theplate, o<<x. Similarly, o* <<x ar1d8-<i-<i"
this is 'tnie iLwe do not get too close to the leading edge of the plate (i.e., not clos® .
Rex=Ux/v= 1000 or so). The structure and properties of the boundary layer flow depénd on

whether the flow is laminar or turbulent.

422 MOMENTUM .INTEGRAL.BOUNDARY LAYER EQUATION FOIlt
AFLATPLATE

iine ofthe inipottanf aspects of boundary layer theory is the determination ofthe drag caused by
shear forces on a body. As was discussed in the previous section, such results can be obta.iried
from the goveming differential equations for laminar boundary layer flow. Since these solutidris
are extremely difficult to obtain; itis of interest to have an altemative approximate methdd.>'the
momentum integral niethod desCtibed in this section provides such an altemative. We consider
the uniform flow past a flat plate and the :fixed control volume as shown in Figure 4.6--)lr1.

agreement with advanced theofy>and' experiment; - we assume that the pressure iS<conS tant

throughout the flow field. The floWeriteringtheCdntrol

[section (1)] is uniform, while the velocity ofthe flow exiting the control volurn.e[Se ction (2)]

varies from the upstream velocity at the edge ofthe boundary layer to zero velocity'§n -

Strearnng .
>

Figure 4.6. Control volume used in the derivation ofthefrimmenmm

boundary layer flow.
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The increase in drag perJength of the plate di /dx, occurs at the expense of~fli n
momentum boundaryfayer thickness which represents a decrease in the momentu. fu

The usefulness 6fJhisrelationship lies in the ability to obtain approximate boundaryla:

easily by usirigra,the(cru.de assumptions. For example, ifwe knew the detailed VGIOCItypf

the boundary layer.

4.2.3 TRANSI'fI)N\FROM LAMINAR TO.TURBULENT FLOW

Some analyticafresuffsa.refesfricted  to laminar boundary Iayer flows along a flat plate with zero

pressure gradients. They agree quite well with experimental results up to the point where the
boundary layer flow becornes turbulent, which will occur for any free stream velocity and any
fluid provided the plate 'is long enough. This is true because the param eter that govems the
transition.to ~rb~I~1fi~0'l"iisith!V~r~o0.lds number-

in this case the Reynolds number basedon
the distance fromtheleading edge ofthe plate, Re- = Ux /v.

The value of the Reyriolds rwriibet a.tthe transition location is a rather complex functid “;Of

various parameters involved, includingthe roughness of'the surface, the Curvature ofthesu :

Re-«. These spots grow rapidly as they are convicted downstre
plate is covered with turbulent flow. The complex process§fotr
flow involves the instability ofthe flow field. Small distur6

flow will either grow or decay , depending on where theldl >tur
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If these disturbances occur at a location with Rex< Rexcr they will die out and the boundary layer
will retum to lamiriar flow at that location. Disturbances imposed at a location-with Rex> Rexcr
will grow and transform the boundary layer from downstream ofthis location into turbulerice.

Transition from laminar to turbulent flow al.so involves a noticeable change in the share~f+the
boundary layer velocity profile. Typical profiles obtained in the neighborhood of the transition
location are indicated in the figure below. The turbulent profiles are flatter, have a larger veldcify;
the complex process of transition from laminarto turbulent flow involves the instability of the
flow field. Small disturbances imposed on the boundary layer flow will either grow or decay,
depending on where the disturbance is introduced into the flow. If these disturbancesoccur at a
location with Rex<Rexcr they will die out and the boundary layer will return to laminar flow at
that location. Disturbances imposed at a location with Rex>Rese- will grow and transform the
boundary layer from .downstream of this location into turbulence. Transition from laminar to
turbulent flow also involves a noticeable change in the shape of the boundary layer velocity
profile. Typical profiles obtained in the neighborhood of the transition location are indicated in
the figure below. The turbulent profiles.are flatter, have a larger velocity gradient at the wall, and

produce a large boundary layer thickness than do the laminar profiles.

Figure 4.7 Typical boundaryylkay‘éf"pro ﬂeg onaﬂatpla for laminar, transitional, and turbulent
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4.2.4 TURBULENT BOUNDARYLAYER FLOW

The structure of turbulent boundary layer how is very comnplex, randorn, and lrregular It shares
many of the characteristics described for turbulent pipe flow. In particular, the Velocmy at any
given location in the tlow Is unsteady In a random fashion. The flow can be thought of as a
jumbled mix of intertwined eddies of differerit sizes. The various fluid quantities involved like
mass, momentum, energy are confected downstream in the free-stream direction as in a laminar
boundary layer. For turbulent flow they are also corifected across the boundary layer in the
direction perpendicular to the plate by the random transport of finite-sized fluid particles
associated with the turbulent eddies. There is considerable mixing involved with these finite-
sized eddies considerably more than is associated with the mixing found in laminar flow where it
is confined to the molecular scale. Although there is considerable random motion of fluid par-
ticles perpendicular to the plate, there is very little net transfer of mass across the boundary layer,

the largest flow-rate by far is parallel to the plate.

There is; however, a ’con‘siderable‘ net transfer of x component of mom‘e’ntum perpendi(:ular 1to
the plate because of the random motlon of the partlcles Fluxd pamcles movmg toward the p]ate
in the negative y direction have some of their excess momentum because they come from areas of
higher velocity removed by the plate;v.Conversely, particles: ~*movmg'aWay~ from the plate in 1 the
positive y direction gain momentum from: the fh:id beca.use thef/conie :fforn areas Of.fowef .
velocity. The net result is that the plate acts as a mometitum sink, continually extracting
momentum from the fluid. For laminar flows, such cross-stream transfer ofthese properties takes
place solely on the niolecular scale. For turbuletit flow the randomness is associated with fluid
particle mixing. Consequently, the shear force for turbulent boundary layer flow is considerably

greater than it is for laminar boundary layer flow.

There are no exact solutions or turbulent boundary layer flow. Since there 1s no precise
expression for the shear stress in turbulent flow, solutions are not available for turbulent flow.
However, considerable headway has beenmade in obtaining numerical computer) sothwtinane for
turbulent flow by using approximate shear stress relationships. Also, progress is being made in

the area of direct, full numerical integration ofthe basic goveming equations; the Navier-Stokes
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equations. Approximate turbulent boundary layer results can also be obtairrecirlb’ﬁil,s}eif _Of( the

momentum integral equation, which is valid for either laminar or turbulentflo.w.CXM hat
or the use of'this equation are reasonable approximations to the velocity profile u#<l?J'k'g(f,‘ , Whe
Y = y/ ¥ and u is the time-averaged velocity (the over bar notation, u, has been dfépp)edfOT

convenience) anda functional relationship describing the wall shear stress. For lami11a1+.ﬂd\k?‘:{!fheff ~ -
wall shear stress was used as -tw=u (du/dy)y. Intheory, such a technique should workforhfrb ulent
boundary layers also. However, the details of-the velocity gradient at the wall are notw-ell
understood for turbulent flow. Thus, it is necessary. to use some empirical relationship féf.the~f~::‘z

wall shear stress.

4.2.5 EFFECTS OF PRESSURE GRADIENT

The boundary layer discussed in previous sections has dealt with flow along a flat plate in which
the pressure is constant throughout the fluid. In general, when a fluid flows pastan object other
than a flat plate, the pressure field is not uniform, ifthe Reynolds number is large, relatively thin
boundary layers will develop along the surfaces. Within these layers the component of the
pressure gradient in the streamwise direction is not zero, although the pressure gradient normal to
the surface is negligibly small. Thatis, if we were to measure the pressure while moving across .

the boundary layer from the body to the boundary layer edge, we would find that the pressur~is

essentially constant. However, the pressure does vary in the direction along the body surfa.ce If .
the body is curved. The variation in the free stream velocity, Us, the fluid velocity at theiekdggeipkf,
the boundary layer, is the cause ofthe pressure gradient in the boundary layer. The chara.ct’efﬁéﬁik
ofthe entire flow both within andoutside. Ofthe boundarylayer are.often highly dep~rtd~k=ilitt‘

pressure gradient effects on the fluid within the boundary layer.

Fora flat plate parallel to the upstream flow, the upstream velocity and thefree"'f‘stf
are equal U=Urs. This is a consequence of the negligible thickness of thefp iate

nonzero thickness, these two velocities are different. This can be -Seeniri the ﬂ

cylinder of diameter D. The upstream velocity and pressure are Ua.ncJnpo, respe

were completely inviscid (u = O), the Reynolds number: wc:ufoth SIHﬁ

streamlines would be symmetrical.. The fluid velocity alorigthesu I’faceW

at the very front and rear of the cylinder to a maximumofUi~Z.: U , th >
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cylinder (point. C'). The pressure on the surface of the cylinder

vertical mid-plari.edfthecylinder, reaching a maximum value po+pU2/2 the n pressum at

both the front and back ofthe cylinder, anda minimum of po- 3pU2/2 at the top ’ﬁom Ofthe’" .

cylinder.

Due -to the abseri.ce of viscosity and the symmetry of the pressure distribution for invisci d ﬂow

pasta circular cylinder, it is clear that the drag onthe cylinder is zero. Although it is not obV

it can be shown that the drag is zero for any object thatdoes not produce a lift in an inviscid.-fl:1.1i d
Based on experimental evidence, however, we knowthatthere must be a net drag. Clearly,.isirice
there is no purely .inviscid fluid, the reason for the observed drag must lie on the shoulders ofthe

viscous effects.

finite drag, essentially independent of the value of p. th.is 133&5 ‘tO,What 1ds been rmed
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D'Alembert paradox, the dragon an object in an inviscid fluid is zero, but the drag.on an.objectin

a fluid with vanishing .small but nonzero, viscosity is not zero.

The reason for.rheabove paradox can be desetibedin-terms ofthe effect ofthe pressure gradient
on boundary .layer flow. Consider large Reyrtolds number flow of a real viscous fluid past a
circular cylinder. e expect the viscous effectstoibe confined to thin boundary layers near the
surface. This allows the fluid to stick (V=0) .to the sUrface-a necessary condition for any fluid,
provided n;: 0. The basic idea of boundary layer theory is that the boundary layer is thin enough
so that it does not greatly disturb the flow outside .the béunda.rylayer. Based on this reasoning,
for large Reynolds numbers the flow throughout mostoftheiflowfieldwould be expected to be

the inviscid.flowifield asis indicated in figure 4.8a.

The pressure distribution is imposed on the boundary layer  flow along. the surface Of the
cylinder. In fact, there is negligible pressure variation across the thin boundary layer so tha.tthe
pressure within the boundary layer is that given by the inviscid flow field. This pressure
distribution along\Jhe cylinderis suchthat the stationary fluid at the nose of'the cylinder (Ufs =0
at 8§ ==0()}is accelera.ted.to itsimaxitnum velocity (Ue =2Uat 8- 90°) and then is decelerated
back to zero velocityattheieatbfthe cylinder (Ue=O at 8=180°). This is accomplished by a
balance between pressure andiriertia effects; Viscous effects are absent for the inviscid flow

outside the boundary layer.

Physically, in the absence of viscous effects, a fluid partide traveling from the front.to the back
of the cylinder coasts down the 'pressure hill" from 8 = 0° to § = 90° (from point A to Cin Fig.
4.8b) and then back up the hill 8§ = 180° (from point C to F) without any loss of energy. There is
an exchange between kinetic and pressure energy, but there are no energy losses. The same
pressure distribution is imposed on the viscous fluid within the boundary layer. The decrease in
pressure in the direction of flow along the front half of the cylinder is termed a favorable pressure
gradient. The increase in pressure in the direction of flow along the rear half of the cylinder is

termed an adverse pressure gradient.

Consider a fluid partide within the boundary layer, in its attempt to flow from A to F it
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experiences the same pressure distribution as the particles in the free stream inmni.~q.a.tely eutside
the boundary layer-the in-viscid flow field pressure. However, because of th~i~iscouse.rfects
involved, the particle in the boundary layer experiences a loss of energy as it flows along,This
loss means that the partiele does not have enoiigh 'energy to coast all of the way Up the pressure
hill (from C to F) and to reach point F at the rear of the cylinder. This kinetic energy deficitis
seen in the velocity profile detail at point C shown in Fig. 4.9a. Because of friction, the boundars'

layer fluid cannot travel from the front to the rea:r ofthe cylinder.

The situation is similar to .a bicyclist coastirig'down a hill and up the other side of the valley. If
there were no friction the rider starting with zero speed could reach the same height from which
he or she started. Clearly frictien .(rollingresistance, a.erodynamicdrag. ete.) causes a loss of
energy (and momerttuni),niakirigifjmpossible fortheTider to reach the height from which he or
she started without supp}yingadditional energy (i.e., peddling). The fluid within the boundary
layer does not have such an energy .supply.Thus, the fluid flows against the increasing pressure
as far as it can, at which point the .boundary layer separates from (lifts off) the surface. This
boundary layer separatiortis/indicatedin Fig. 4.9a. Typical velocity' profiles at representative
locations alone the sutface are showri in Fig. 4.9). At the separation location (profile D), the
velocity gradientarthe wa.lkaridthe\Vall shear stress are zero. Beyond that location (fr()m,l)to:E)

there is reverse flow in the boundaryJayer.
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Figure.4.9. Boundary layer characteri‘s"t"i' ,

As is indicated in Fig. 4.9 because of the bmudarylayer

y tha t do 'n{)t appear in the time

associated with tile swirling, random components of the vel |
Thus, as is mdlcated in ‘FIU ,19 17c the turbulent boundary

averaged x component of velocity.
layer can flow farther around the cylinder (farther hp the pr%sure hﬂl) before it separates than

can the laminar boundary layer.
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The structure ofthe flow field past a circular cylinder is completely different for a zero viscosity
fluid than it is fora viscous fluid; no matter how srnaffthe viscosity is, provided it is not zero.
This is due to boundary layer separation. Similar concepts(p.'.oldfor other shaped bodies as well.
The boundary layer velocity profiles at representative locationsare similar to those for flow past
a circular cylinder, If the adverse pressure gradient is 1Ot too great (because the body is not too
thick .in some sense), the boundary layer fluid can flow into the slightly meressing pressure
region without separating from the surface. However, if the pressure gradient is too adverse the
boundary layer will separate from the surface. Such situations Can lead to the catastrophic loss of
lift called staU. Streamlined bodies are generally those designed to eliminate (or at least to
reduce) the effects of separation, whereas non-streamlined bodies generally have relatively large
drag due to the low pressure in the separated regions (the ~~Wake)-eA1th0ugh,¢he boundary layer
may be quite thin, it can appreciably alter the entire flow ﬁeld‘becausé of boundary layer

separation.
4.3 CLOSURE

In this chapter we Consfoer varidtis a.specfsbfthe flow OVer bodies that are immersed in a fluid.
Then we analyzed the exterralflow chata.cteristics/The stfticture of an extemal flow and the ease
with which the flow can be described arida.:rialyiedoftendeperid on the nature ofthe body in the
flow. We Coil.sidered the interaction between the bodf and the fluid which we described .its
effects in ternis 6ftheforces at the fluid-body intefface. Alsa how viscous effects ate irnporta.fii
only in the boundary layerregions near the object and in the wake region beh.ind the 6oject The
Navier-Stokes equations was sirnplified for boundary layer flow analysis, a:ridhdwthe bouiidafy
layer equations can be wtitten in tetrtis of similarity variables. As the nidn:etittin:iiritegi-al method
provides an approximate technique to analyze boundary elayef flow; Fwliere-We USe the
approximate velocity profiles in it so we can obtain the approxirna.te Béundary layer results.

We discussed about the boundary layer on a flat plate which becon:i.e ttirbulerit if the plate is long
enough. Alsa random transport of finite sized fluid particles Occurs withiti turbulent boundary
layers. and from the study we found out that there ate 116 e*actSolutions available for turbulent

boundary layer flows.
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CONCLUSION

Our aim of this research was to discuss the lamtii.affiifl:fiileiitflowas a viscous pipe flow and as
an external flow.
We began with the basic fundamentals of>fltiids mech.afiics by defining the fluid, its

characteristics same as for the flow. With a brief on the factors affecting the flow; as we saw in

and pressure, ete.

As for the second chapter we found out that the dimensions of mechanics are, force, length and
time. As it proceed in Newton's second law of motion. With a discussion of dimensionless
parameters (Reynolds number, Froude number, Weber number and the Mach number) which
affect the flow. -

In the next chapter we explained main characteristics of the pipe flow, when lt 15 laininar and
when it is turbulent. As we found out there are numerous ways to drive important pertaining to
fully developed laminar pipe flow. Three altematives were discussed: 1. the F=ma, 2. the Navier-
Stokes equations of motion, and 3. dimensional analysis methods. Also the transition from
laminar to turbulent flow, then a brief on the turbulent flow and its shear stress where the
fundamental differences between laminarand turbulent flow lies in the chaotic, mmavm ~ behavior
of the various fluid parameters. Where the turbulent parameters can be described in terms of
mean and fluctuating portions. The relationship between fluid motion and shear stress 1s very
complex for turbulent flow where this flow involves the random motions of finite sized fluid
particles. From this we find out that the shear stress is the sum of @ laminar portion and a
turbulent portion where various ad hoc assumptions have been used to approximate turbulent
shear stresses. Also a power law velocity profile approximates the actual velocity profile.

in the fourth chapter the subject was flow over immersed bodies (external flow). A body
immersed in a moving fluid experience a resultant force due to the'iriferaction between the body
and the fluid surrounding it, where the shape of the body affectsthe flow characteristics. For
extemal flows it is usually easiest to use a coordinate. Also the body interacts with the
surrounding fluid through pressure and shear stresses. Next we explained how the character of

flow past an object is dependent on the value of Reynolds number, where thin boundary layers
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may develop in large Reynolds number flows. Large Reynolds number flow fields may be
divided into viscous and inviscid regions, i:flie fluid particles within the boundary layer
experience viscous effects where we defined the'boundary layer displacement thickness in terms
ofvolumetric flowrate and the boundary layettrid:rnenru.mthickness in terms ofmomentum flux.
We simplified the Navier-Stokes equations for bouridary layer flow analysis.

Also we discussed the transiti on offlow from-lamiriaritutbulent where the boundary layer ona
flat plate will become turbulent ifthe plate islon.g'endi.igh:As we explained in chapter three that
there are no exact solutions available for turbulerit>b6i.inday layer flows, the same situation in

extemal flows.
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