
NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED
AND SOCIAL SCIENCES

OBJECT DATA MODELING AS STRUCTURING
APPROACH IN DATABASE DESIGN

Anwar Mahmoud Dawoud

MASTER THESIS

Department of Computer Engineering

Nicosia - 2006

/

\
........... Liiiiiiiiiiiiiiiiiiiliiii -

Anwar M M Dawoud :
Object Data Modeling As Structuring Approch In Database Design

Approval of the Graduate School of Applied and
Social Sciences

eT ,
«,I"""~r"' •ff ro.ı, ,, *

Prof. Dr. ,~k~_raldl-?~a'.'medov
, Dırector \ ,, _

Y, •) t

~;_
. I .,,..J .,

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

o~ ,,_e_r
Prof. Dr. Doğan Ibrahim, Chairman, Chairman of

fi
1.

/ Computer Engineering Department, NEUo/·ıı~.
Assist. Prof. Dr. Firudin Muradov, Member, Computer Engineering

Department, NEU

Assist. Prof. Dr. Murat Tezer, Member, Computer & Education

f I .,,,.i/ Department, NEUAı~A. Adil Amirjanov, Supervisor, Computer Engineering
Department, NEU

\

ACKNOWLEDGEMENTS

I could not have prepared this thesis without the generous help of my
supervisor, friends, and family.

I would like to express my gratitude to Assist. Prof. Dr. Adil Amirjanov

for providing invigorating environment in which I could write this thesis.

My deepest thanks are to Assoc. Prof. Dr. Rahib Abiyev for his help and
answering any question I asked him.

Finally, I could never have prepared this thesis without the encouragement

and support of my father, mother, and brother Khaled Dawoud (Mechanical
Engineer-MSc.).

ABSTRACT

Object-Oriented Data Modeling is a modem approach for structuring any problem

by using object-oriented programming languages. For solving the problem that

involves the database design this approach as well can be useful for reduction of

abstractions during the mapping of real life problem. It can be said that Object­

Oriented Database System is a hybrid of database and object-oriented technique.

This thesis describes the steps of transforming and implementation of object­

oriented techniques to the database software that is now implemented as Object­

Relational Database System with extensions in SQL (Structured Query

Language). In this thesis the Object Data Modeling is used as structuring approach

for database design which shows that this approach improve readability and

maintainability of software. Also, it reduces the design time by reduction of the
steps of abstractions and the time for executing an application.

_-'.

~

11

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT ii

CONTENTS iii
INTRODUCTION 1

CHAPTER ONE OBJECT ORIENTED DATA MODELING 4
I. I Overview 4

I .2 What is Object-Oriented Programming (OOP)? 4

I .3 What's an Object? 4

I .4 What is A Database system? 5

I .5 Object-Oriented Databases 6

I .6 Basic Object-Oriented Modeling 7

I .6. I Complex Objects 7

I .6.2 Object Identity 8

I .6.3 Classes and Types 9

I .6.4 Attributes 1 1

I .6.5 Behaviors I I

I .6.6 Encapsulation I I

1.6.7 Overriding Behaviors and Late Binding 13

1.6.8 Inheritance 13

I .6.9 Naming I 5

1.7 Summary 16

CHAPTER TWO OBJECT ORIENTED DATABASE CONCEPTS 17
2.1 Overview 17

2.2 OODB SYSTEMS Perspectives I 7

lll

2.3 Architecture

2.3.1 Client-server

2.3.2 Storing and executing methods

2.4 Integrity

2.4.1 Relationships Integrity

2.4.2 Nulls Integrity

2.4.3 Referential Integrity

2.4.4 Entity integrity

2.5 Concurrency Control

2.6 Recovery

2. 7 Transactions

2.8 Persistence

2.9 Security

2.10 Summary

21

21

22

24

24

24

25

26

26

27

28

29

29

30

CHAPTER THREE OBJECT-RELATIONAL DB SYSTEMS
3.1 Overview

3.2 Introduction to Object-Relational Database System
3.3 SQL3

3.3.1 Object identity

3.3.2 Row types

3.3.3 User-Defined Types (UDTs)

3.3.4 User-Defined Routines

3.3.5 Relations and inheritance

3.3.6 Polymorphism

3.3.7 Subtypes and supertypes

3.3.8 Persistent stored modules

3.3.9 Large Objects

31

31

31

33

34

34

34

35

36

36

37

37

37

IV

3.4 Comparison of ORDBMS and OODBMS
3.5 Summary

39

40

CHAPTER FOUR OBJECT RELATIONAL ALGEBRA
41

41

41

43

43

44

44

45

47

48

50

53

55

55

4.1 Overview

4.2 Introduction to the Original Algebra

4.3 Semantics

4.3.1 Union

4.3.2 Intersect

4.3.3 Difference

4.3.4 Product

4.3.5 Restrict

4.3.6 Project

4.3.7 Join

4.3.8 Divide

4.4 Associativity and Commutativity

4.4 Summary

CHAPTER FIVE OBJECT RELATIONAL SQL
5.1 Overview

5.2 The Object Definition Language (ODL)

5.2.1 Tables

5.2.2 Views

5.2.3 Types

5.2.4 Procedures

5.2.5 Functions

5.2.6 Triggers

5.3 The Object Query Language (OQL)

56

56

56

57

60

61

61

63

64

65

r

V

5.3.1 Select statement 65

5.3.2 Insert statement 67

5.3.3 Update statement 67

5.3.4 Delete statement 68

5.4 Summary 68

CHAPTER SIX DATABASE DESIGN WITH OBJECT DATA MODELING 69

6.1 Overview 69

6.2 Object Relational DB Application 69

6.3 The Object Definition Language 76

6.3.1 Create objects in the database 76

6.3.2 Create tables in the database 77

6.3.3 Create views in the database 81

6.3.4 Create procedures in the database 82
6.3.5 Create functions in the database 84

6.3.6 Create triggers in the database 85

6.4 Object Query Language 85

6.4.1 Insert a row into the table 85

6.4.2 Update a row into the table 86

6.4.3 Delete a row into the table 86

6.4.4 Select rows from the table 87

6.5 Summary 90

CONCLUSION 91

REFERENCES 92

APPENDIX A 1-1

APPENDIX B 11-1

VI

INTRODUCTION

The database management system (DBMS) is now the underlying frame-work of

the information system and has fundamentally changed the way many

organizations operate. The database system remains a very active research area

and many significant problems have still to be satisfactorily resolved. The

database approach emerged to resolve the problems with the file-based approach.

A database is a shared collection of logically related data, designed to meet the
information needs of an organization.

As applications become large even the usual approach for solving problem needs

to be modified for simplification of the database design. One of the approach for

simplification of the database design is to use object-oriented modeling of data

that was implemented before the object-oriented programming languages.

Object-oriented database technology is a marriage of object-oriented modeling

and database technologies. Perhaps the most significant characteristic of object­

oriented database technology is that it combines object-oriented modeling with

database technology to provide an integrated application development system.

Until recently, the choice of DB System seemed to be between the relational DB

System and the object-oriented DB System. However, it would be useful to share

the same basic relational structure of Relational DB System (RDBS), and
incorporates some concept of 'object' in data modeling.

The concept of the Object Relational DB System (ORDBS) as a hybrid of the

RDBS and Object-Oriented DB System (OODBS) is very appealing, preserving

the wealth of knowledge and experience that has been acquired with the RDBS.

1

The ORDBMS (Object Relational DBMS) provide Object Definition

Language(ODL), which allows users to define the database, and a Object Query

Language(OQL), which allows users to insert, update, delete, and retrieve data

from the database.

The ORDBMS has promising potential advantages such as increased productivity,

improved data integrity and improved security.

The first chapter shows some basic concepts related with this thesis such as

Object-oriented programming, objects, database system, and object-oriented

database. Also it explains the basic object-oriented modeling such as complex

objects, object identity, classes, attributes, behaviors, encapsulation, inheritance,

overriding behaviors and late binding, and naming.

The second chapter explains OODB SYSTEMS perspectives; also it explains the

two architectures of OODBMS, client-server architecture, and the storage of

methods. Also it explains some concepts such as Integrity, Concurrency Control,

Recovery, Transactions, Persistence, and Security.

The third chapter discusses some concepts related to Object-Relational Database

System such as Object identity, Row types, User-Defined Types (UDTs), User­

Defined Routines, Polymorphism, subtypes and supertypes, persistent stored

modules, and Large Objects, also the end of this chapter we will make

Comparison between ORDBMS and OODBMS.

~

The fourth chapter shows some information about Relational Algebra operators

such as Restrict, Project, Product, Union, Intersect, Difference, Join, Divide.

2

-·------ ---·----- ~ ---------

The fifth chapter shows the main syntax of the Object Structured Query Language

that includes Object Definition Language to create objects, tables, views,

procedures, functions, and triggers, and also Object Query Language to implement

the statements: select, update, insert, and delete.

The last chapter applies the syntax shown in chapter (5), At the same time

comparison is made to show the main differences between using object modeling
approaches, and without using it.

,.

3

Object Oriented Data Modeling

CHAPTER ONE

OBJECT ORIENTED DATA MODELING

1.1 Overview

This chapter shows some basic concepts such as Object-oriented programming,

objects, database system, and object-oriented database. Also there is some

explanations of the basic object-oriented modeling such as complex objects,

object identity, classes, attributes, behaviors, encapsulation, inheritance,
overriding behaviors, late binding, and naming.

1.2 What is Object-Oriented Programming (OOP)?
Object-oriented programming (OOP) is a method of creating a software

application from a group of software components called objects. The application

itself is made up of messages that are passed between these objects. OOP contrasts

with procedural programming. In procedural programming data and the functions

that manipulate the data are separate from one another, because much of the data

is available to multiple functions, this can make debugging difficult. Particularly

as applications become large, the procedural model begins to break down. By

contrast, because data and functions (called methods in 00-speak) are contained

within objects, the data is more protected and the application can grow with fewer

problems. Objects also model real-world objects more accurately, so conceptually

even complex problems can be simpler to address through software.

~

1.3 What's an Object?

Objects are at the heart of OOP, Objects are self-contained software components

that are used to build object oriented applications, also objects contain data

(usually referred to as attributes) and ways of working with the data (methods).

4

Object Oriented Data Modeling

Another term associated with this is class, which could be thought as a generic
version of the object.

1.4 What is A Database System?

A Database system is basically just a computerized record keeping system. The

database itself can be regarded as a kind of electronic filling cabinet, i.e., it is a

repository or container for collection of computerized data files [5]. Users of the

system can perform a variety of operations on such files for example:

• Add new, empty files to the database.

• Inserting data into existing files.

• Retrieving data from existing files.

• Changing data in existing files.

• Deleting data from existing files.

• Removing existing files from the database.

So the definition for a database system is basically a computerized record keeping

system. i.e., it is a computerized system whose overall purpose is to store

information and to allow users to retrieve and update that information on demand.

The information in question can be anything that is of significance to the

individual or organization concerned. In order words, that is needed to assist in the

general process of running the business of that individual or organization.

·"

Figure I. I is a simplified picture of a database system. It is meant to show that a

database system involves three major components: data, hardware, and users.
There are three components briefly considered as below [5].

5

Object Oriented Data Modeling

Database Management System (DBMS)- -----I k -,
'

I =1.--
1 J-

Database

' -,
--

Application
programs

End Users

Figure 1.1 Simplified picture of a database system

1.5 Object-Oriented Databases

Object-oriented database technology is a marriage of object-oriented modeling

and database technologies. Figure 1.2 illustrates how these programming and

database concepts have come together to provide what we now call object­
oriented databases

Behaviors Naming
Attributes

Object identity
Complex objects

An Object Oriented Database is the marriage of Object Oriented modeling and Database Technology

Persistence

Transactions
Concurrency

Recovery

Figure 1.2 Makeup of an Object-Oriented Database

6

;t

Object Oriented Data Modeling

Perhaps the most significant characteristic of object-oriented database technology

is that it combines object-oriented modeling with database technology to provide
an integrated application development system.

1.6 Basic Object-Oriented Modeling

An object-oriented database system must satisfy two criteria: it should be a

DBMS, and it should be an object-oriented system, i.e., to the extent possible, it

should be consistent with the current crop of object-oriented programming
languages. The first one translates into ten features:

1- Complex Objects.

2- Object Identity.

3- Classes and Types.

4- Attributes.

5- Behaviors.

6- Encapsulation.

7- Overriding Behaviors and Late Binding.
8- Inheritance.

9- Naming

The second criterion translates into some features: integrity, concurrency control,

recovery, transactions, persistence, and security. In this chapter the first criteria
will be discussed.

,;,

1.6.1 Complex Objects

Object oriented systems and applications are unique in that the information being

maintained is organized in terms of the real-world entities being modeled. This

differs from relational database applications that require a translation from the

real-world information structure to the table formats used to store data in a

7

Object Oriented Data Modeling

relational database. Normalizations upon the relational database tables result in

further perturbation of the data from the user's perceptual viewpoint. Object

oriented systems provide the concept of complex objects to enable modeling of

real-world entities. A complex object contains an arbitrary number of fields, each

storing atomic data values or references to other objects (of arbitrary types). A

complex object exactly models the user perception of some real-world entity.

Complex objects are built from simpler ones by applying constructors to them.

The simple objects are objects such as integers, characters, byte strings of any

length, booleans and floats (one might add other atomic types). There are various

complex object constructors such as tuples, sets, bags, lists, and arrays. The

minimal set of constructors that the system should have is set, list and tuple. Sets

are critical because they are a natural way of representing collections from the real

world. Tuples are critical because they are a natural way of representing properties

of an entity. Of course, both sets and tuples are important because they gained

wide acceptance as object constructors through the relational model. Lists or

arrays are important because they capture order, which occurs in the real world,

and they also arise in many scientific applications, where people need matrices or
time series data [l, 6].

1.6.2 Object Identity

Object oriented databases (and programming languages) provide the concept of an

object identifier (OID) as a means of uniquely identifying a particular object.

OIDs are system generated. A database application does not have direct access to

the OID. The OID of an object never changes, even across application executions.

The OID is not based on the value stored within the object. This differs from

relational databases, which use the concept of primary keys to identify a particular

table row (i.e., tuple). Primary keys are based upon data stored in the identified

row. The concept of OIDs makes it easier to control the storage of objects (e.g.,

not based on value) and to build links between objects (e.g., they are based on the

~

8

Object Oriented Data Modeling

never changing OID). Complex objects often include references to other objects,
directly or indirectly stored as OIDs.

The size of an OID can substantially affect the overall database size due to the

large number of inter-object references typically found within an 00 application.

When an object is deleted, its OID may or may not be reused. Reuse of OIDs

reduces the chance of running out of unique OIDs but introduces the potential for

invalid object access due to dangling references. A dangling reference occurs if an

object is deleted, and some other object retains the deleted object's OID, typically

as an inter-object reference. This second object may later use the OID of the

deleted object with unpredictable results. The OID may be marked as invalid or

may have been re-assigned. Typically, an OODBMS will provide mechanisms to
ensure dangling references between objects are avoided [1,6].

1.6.3 Classes and Types

00 modeling is based on the concept of a class. A class defines the data values

stored by, and the functionality associated with, an object of that class. One of the

primary advantages of 00 data modeling is this tight integration of data and

behavior through the class mechanism. Each object belongs to one, and only one,

class. An object is often referred to as an instance of a class. A class specification
provides the external view of the instances of that class.

ı;.
A class has an extent (sometimes called an extension), which is the set of all

instances of the class. Implementation of the extent may be transparent to an

application, but minimally provides the ability to visit every instance of the class.

Within an OODBMS, the class construct is normally used to define the database

schema. Some OODBMS use the term type instead of class. A type, in an object­

oriented system, summarizes the common features of a set of objects with the

same characteristics. It corresponds to the notion of an abstract data type. It has

two parts: the interface and the implementation (or implementations). Only the

interface part is visible to the users of the type, the implementation of the object is

9

Object Oriented Data Modeling

seen only by the type designer. The interface consists of a list of operations

together with their signatures (i.e., the type of the input parameters and the type of

the result). The type implementation consists of a data part and an operation part.

In the data part, one describes the internal structure of the object's data. Depending

on the power of the system, the structure of this data part can be more or less

complex. The operation part consists of procedures which implement the
operations of the interface part.

In programming languages, types are tools to increase programmer productivity,

by insuring program correctness. By forcing the user to declare the types of the

variables and expressions he/she manipulates, the system reasons about the

correctness of programs based on this typing information. If the type system is

designed carefully, the system can do the type checking at compile-time,

otherwise some of it might have to be deferred at compile time. Thus types are

mainly used at compile time to check the correctness of the programs. In general,

in type-based systems, a type is not a first class citizen and has a special status and
cannot be modified at run-time.

The notion of class is different from that of type. Its specification is the same as

that of a type, but it is more of a run-time notion. It contains two aspects: an object

factory and an object warehouse. The object factory can be used to create new

objects, by performing the operation new on the class, or by cloning some

prototype object representative of the class. The object warehouse means that

attached to the class is its extension, i.e., the set of objects that are instances of the

class. The user can manipulate the warehouse by applying operations on all

elements of the class. Of course, there are strong similarities between classes and

types, the names have been used with both meanings and the differences can be

subtle in some systems. It do not feel that can be should choose one of these two

approaches and it can be consider the choice between the two should be left to the

designer of the system. It can be require, however, that the system should offer

,;;.

10

Object Oriented Data Modeling

some form of data structuring mechanism, be it classes or types. Thus the classical

notion of database schema will be replaced by that of a set of classes or a set of
types [1,2,6].

1.6.4 Attributes

Attributes represent data components that make up the content of a class.

Attributes are called data members in the C++ programming language. Instance

attributes are data components that are stored by each instance of the class. Class

attributes (static data members in C++) are data values stored once for all

instances of the class. Attributes may or may not be visible to external users of the

class. Attribute types are typically a subset of the basic data types supported by

the programming language that interfaces to the OODBMS. Typically this

includes enumeration types such as characters and booleans, numeric types such

as integers and floats, and fixed length arrays of these types such.as strings. The

OODBMS may allow variable length arrays, structures (i.e. records) and classes
as attribute types [I, 2, 6].

1.6.5 Behaviors

Behaviors represent the functional component of a class. A behavior describes

how an object operates upon its attributes and how it interacts with other related

. objects. Behaviors are called member functions in the C++ programming

language. Behaviors hide their implementation details from users of a class [1].

w

1.6.6 Encapsulation

The idea of encapsulation comes from (i) the need to cleanly distinguish between

the specification and the implementation of an operation and (ii) the need for

modularity. Modularity is necessary to structure complex applications designed

and implemented by a team of programmers. It is also necessary as a tool for

protection and authorization. There are two views of encapsulation: the

11

Object Oriented Data Modeling

programming language view (which is the original view since the concept
originated there) and the database adaptation of that view.

The idea of encapsulation in programming languages comes from abstract data

types. In this view, an object has an interface part and an implementation part. The

interface part is the specification of the set of operations that can be performed on

the object. It is the only visible part of the object. The implementation part has a

data part and a procedural part. The data part is the representation or state of the

object and the procedure part describes, in some programming language, the
implementation of each operation.

The database translation of the principle is that an object encapsulates both

program and data. In the database world, it is not clear whether the structural part

of the type is or is not part of the interface (this depends on the system), while in

the programming language world, the data structure is clearly part of the
implementation and not of the interface.

Consider, for instance, an Employee. In a relational system, an employee is

represented by some tuple. It is queried using a relational language and, later, an

application programmer writes programs to update this record such as to raise an

Employee's salary or to fire an Employee. These are generally either written in a

imperative programming language with embedded DML statements or in a fourth

generation language and are stored in a traditional file system and not in the

database. Thus, in this approach, there is a sharp distinction between program and

data, and between the query language (for ad hoe queries) and the programming
language (for application programs).

,,

In an object-oriented system, the employee can be defined as an object that has a

data part and an operation part, which consists of the raise and fire operations and

other operations to access the Employee data. When storing a set of Employees,

12

Object Oriented Data Modeling

both the data and the operations are stored in the database. Thus, there is a single

model for data and operations, and information can be hidden. No operations,

outside those specified in the interface, can be performed. This restriction holds
for both update and retrieval operations [6, I O].

1.6.7 Overriding Behaviors and Late Binding

00 applications are typically structured to perform work on generic classes (e.g.,

a vehicle) and at runtime invoke behaviors appropriate for the specific vehicle

being executed upon. Applications constructed in such a manner are more easily

maintained and extended since additional vehicle classes may be added without

requiring modification of application code. Overriding behaviors is the ability for

each class to define the functionality unique to itself for a given behavior. Late

binding is the ability for behavior invocation to be selected at runtime based on
the class of an object (instead of at compile time) [I, 12].

1.6.8 Inheritance

Inheritance in the object model is a means of defining one class in terms of

another. This is common usage for most of us. For example, a conifer is a type of

tree. There are certain characteristics that are true for all trees, yet there are
specific characteristics for conifers [I].

Note that in an object model, there is no distinction in usage between system

predefined types and user-defined types. This is known as extensibility. So it is

possible to define a type as a sub-type of a system type or as a sub-type of a user­

define type. So the inheritance is a way to construct new classes from existing

classes. It defines what attributes and methods are available in the new class.

Classes may inherit from one or more classes. As seen in figure 1.3. A class that

inherits from exactly one class is said to use single inheritance (sometimes called
simple inheritance).

'#

13

~··- -- - ----~-- -- ------------==

Object Oriented Data Modeling

First name
Last name

Birth of date

- - - - &.J.O. ~ •••

Employee id Student id
Department <~-- ~__> Class

Position Address

PERSON

Figure 1.3 Simple Inheritance Process

In this example, a Student is a type of Person. Likewise, an employee is a type of

Person. Both Student and Employee inherit all the attributes and methods from

Person. Student has a locally defined student ID attribute. Employee has a locally

defined employee ID attribute. So, if you would look at a Student object, you
would see attributes of name, date of birth, and student ID.

PERSON EMPLOYEE

Multiple inheritance means that inheriting from more than one class. Shown in
figure 1.4.

First name Employee id
Last name Salary

Birth of date Email

- '--

~

TEACHER

Data of Birth
Place Of Birth

Address

Figure 1.4 Multiple Inheritance Process

14

Object Oriented Data Modeling

In this example, a Teacher is a type of Person. Also a teacher is a type of

employee. So Teacher inherits all the attributes and methods of Person and

Employee. Inheritance is a powerful object oriented modeling concept that

supports reuse and extensibility of existing classes. The inheritance relationships

between a group of classes define a class hierarchy. Class hierarchies improve the

ability of users to understanding software systems by allowing knowledge of one

class (a superclass) to be applicable to other classes (its subclasses) [6].

1.6.9 Naming

00 applications are characterized as being composed of a network of inter­

connected objects. An application begins by accessing a few known objects and

then traverses to additional objects via relationships from the known objects. As

objects are created they are linked (i.e. related) to other existing objects. Given

this scenario, the database must provide some mechanism for identifying one or

more objects at application start-up without using relations from existing objects.

This is typically accomplished by allowing objects to be named and providing a

retrieval mechanism based upon name. An application begins by loading one or

two 'high-level' objects that it knows by name and then traverses to other
reachable objects.

Object names apply within some name scope. Within a given scope, names must

be unique (i.e. the same name can not refer to two objects). The simplest scope

model is for the entire database to act as a single name scope. An alternative scope

model is for the application to identify name scopes. Using multiple name scopes
will reduce the chance for name conflicts [1,6,10].

•..

15

Object Oriented Data Modeling

1.7 Summary

Object-oriented programming (OOP) is a method of creating a software

application from a group of software components called objects. Objects are at the

heart of OOP. Objects are self-contained software components that are used to

build object oriented applications, also objects contain data (usually referred to as
attributes) and ways of working with the data (methods).

The basic Object-Oriented modelings are Complex Objects, Object Identity,

classes, attributes, behaviors, encapsulation, inheritance, overriding behaviors and
late binding, naming, classes or type hierarchies.

16

Object Oriented Database Concepts

CHAPTER TWO

OBJECT ORIENTED DATABASE CONCEPTS

2.1 Overview

This chapter explains OODB SYSTEMS perspectives; also it explains the two

architecture of OODBMS, client-server architecture, and the storage of methods.

Also it explains some concepts such that integrity, concurrency control, Recovery,
transactions, persistence, and security.

2.2 OODB SYSTEMS Perspectives
Database systems are primaries concerned with the creation and maintenance of

large, long-lived collections of data. Modem database systems are characterized

by their support of the following features:

• A data model: A particular way of describing data, relationships between

data, and constraints on the data.

• Data persistence: the ability for data to outlive the execution of a

program, and possibly the lifetime of the program itself.

• Data sharing: The ability for multiple applications (or instances of the

same one) to access common data, possibly at the same time.

• Reliability: The assurance that the data in the database is protected from

hardware and software failures.

• Scalability: The ability to operate on large amount of data in simple ways.

• Security and integrity: The protection of the data against unauthorized

access, and the assurance that the data conforms to specified correctness

and consistency rules.

• Distribution: The ability to physically distribute a logically interrelated

collection of shared data over a computer network, preferably making the

distribution transparent to the user.

17

Object Oriented Database Concepts

In contrast, traditional programming languages provide constructs for procedural

control and for data and functional abstraction, but lack built-in support for many

of the above database features. While each are useful in their respective domains,

there exist an increasing number of applications that require functionality from

both database system and programming languages. Such applications are

characterized by their need to store and retrieve large amounts of shared,
structured data.

In the last two decades, there has been considerable effort invested in developing

systems that integrate the concepts from these two domains. However, the two

domains have slightly different perspectives that have to be considered and the
differences addressed [8].

Perhaps two of the most important concerns from the programmers perspective

are performance and ease-of-use, both achieved by having a more seamless

integration between the programming language and the DBMS than that provided

with traditional database systems. With a traditional DBMS:

• It is the programmer's responsibility to decide when to read and update
objects (records)

• The programmer has to write code to translate between the application's

object model and the data model of the DBMS (for example, relations)

which might be quite different. With an object-oriented programming

language, where an object may be composed of many sub-objects

represented by pointers, the translation may be particularly complex. In

fact, it has been claimed that a significant amount of programming effort

and code space is devoted to this type of mapping, possibly as much as

30% as noted above. if this mapping process can be eliminated or at least

reduced, the programmer would be freed from this responsibility, the

"

18

~-

Object Oriented Database Concepts

resulting code would be easier to understand and maintain, and
performance may increase as a result.

• It is the programmer's responsibility to perform additional type-checking

when an object is read back from the database. For example, the

programmer may create an object in the strongly-typed object-oriented

language java and store it in a traditional DBMS. However, another

application written in a different language may modify the object, with no

guarantee that the object will conform to its original type.

These difficulties stem from the fact that conventional DBMS have a two-level

storage model: the application storage model in main or virtual memory, and the

database storage model on disk, as illustrated in figure (2. 1). In contrast, an

OODBMS tries to give the illusion of a single-level storage model, with a similar

representation in both memory and in the database stored on disk, as illustrated in
figure (2.2).

Main or Virtual
Memory

1

Transformation and
Type Checking

-- -----------------------------------1 SQL

Secondary Storage

Data Base Storage On Disk

Figure 2.1 Tow Level Storage Model

19

,,

Object Oriented Database Concepts

~

Main or Virtual
Memory

- -----------------•-------------------------------

Secondary Storage

Figure 2.2 Single-Level Storage Model

Although the single-level memory model looks intuitively simple, to achieve this

illusion the OODBMS has to cleverly manage the representations of objects in

memory and on disk objects, and relationships between objects, are identified by

object identifiers (OIDs). There are tow types of OIDS: logical OIDs that are

independent of the physical location of the object on disk, and physical OIDs that

encode the location. In the former case, a level of indirection is required to look

up the physical address of the object on disk. In both cases, however, an OID

different in size from a standard in-memory pointer that need only be large

enough to address all virtual memory. Thus, to achieve the required performance,

an OODBMS must be able to convert OIDs to end from in memory pointers. This

conversion technique has become known as 'pointer swizzling' or 'object faulting',

and the approaches used to implement it have become varied, ranging from

software-based residency checks to page faulting schemes used by the underlying
hardware [7,8].

.•.

20

Object Oriented Database Concepts

2.3 Architecture

There are two architecture issues: how best to apply the client-server architecture

to the OODBMS environınent, and the storage of methods.

2.3.1 Client-server

Many commercial OODBMSs are based on the client-server architecture to

provide data to users, applications, and tools in distributed environınent. However,

not all systems use the same client-server model. There are three basic

architectures for a client-server DBMS that vary in the functionality assigned to
each component, as depicted in figure (2.3).

• Object server: this approach attempts to distribute the processing between

the two components. Typically, the server process is responsible for

managıng storage, locks, commits to secondary storage, logging and

recovery, enforcing security and integrity, query optimization, and

executing stored procedures. The client is responsible for transaction

management, and interfacing to the programming language. This is the

best architecture for cooperative, object-to-object processing in an open,
distributed environınent.

• Page server: in this approach, most of the database processing ıs

performed by the client. The server is responsible for secondary storage

and providing pages at the client's request.
"

• Database server; in this approach, most of the database processing is

performed by the server. The client simply passes requests to the server,

receives result, and passes them on to the application. This is the approach
taken by many relational DBMSs.

In each case, the server resides on the same machine as the physical database. The

client may reside on the same or different machine. If the client needs access to

21

Object Oriented Database Concepts

database distributed a cross multiple machines, then the client communicates

either a server on each machine. There may also be a number of clients

communicating with one server: for example, one client for each user or
application [3, 8].

a) Requests u
Application Object Manage Object Server

ı+---­
Objects

Objects
Store

Figure 2.3 Client-server architectures:
(a) object server (b) page server (c) database server.

Objects
Store

Application f DB Manager ~ •ı Object Scrve, 1. •UAddresses
b)

Pages
Objects
Store

c) SQL uI Application I Comms j,. •• , Object Server I ıı,,

Tables

2.3.2 Storing and executing methods

There are two approaches to handling methods: (1) to store the methods in

external files, as shown in figure 2.4 (a); and (2) to store the methods in the

database, as shown in figure 2.4 (b). The first approach is similar to function

libraries or application programming interfaces(APis) found in traditional

DBMSs, in which an application program interface with a DBMS by linking in

functions supplied by the DBMS vendor. With the second approach, methods are

stored in the database and are dynamically bound to the application at runtime.
The second approach offers several benefits:

22

Object Oriented Database Concepts

It eliminates redundant code Instead of placing a copy of a method that

accesses a data element in every program that deals with that data, the

method is stored only once in the database.

It simplifies the modifications of methods which require to be changed

into one place only. All the programs automatically use the updated

method-Depending on the natural of the change, rebuilding, testing, and

redistribution of programs may be eliminated.

Methods are more secure Storing the methods in the database gives them

all the benefits of a security provided automatically by the OODBMS.

Methods can be shared concurrently Again concurrent access is
provided automatically by the OODBMS. This also prevents multiple

users making different changes to a method simultaneously.

Improved integrity Storing the methods in the database means that

integrity constraints can be enforced consistently by the OODBMS across
all applications [3, 8].

a)

Object Server I LJRequests
Application I Object Manager------------Objects

Objects Store

File 1 File 2 File 3

..

b)

Object Server I ~LJRequest
Application I Object Manager ___.

Objects
Objects Store

Figure 2.4 Strategies for handling method:
(a) Storing method outside database; (b) Storing method in database.

23

Object Oriented Database Concepts

2.4 Integrity

2.4.1 Relationships Integrity

Relationships are presented in an object data model using reference attributes.

There are three types of the relationships: one-to-one (1:1), one-to-many (1: M),
and many-to-many (M: M).

• 1:1 relationships: A 1: 1 relationship between objects A and B is

presented by adding a reference attribute to object A and, to maintain
referential integrity, a reference attribute to object B.

• 1:M relationships: A 1 :M relationship between objects A and B is

presented by adding a reference attribute to object B and an attribute
containing a set of references to A.

• M:N relationships: A M:N relationship between objects A and B is

presented by adding an attribute containing a set of references to each
object.

The relational database design decomposes the M:N relationship into two 1 :M
relationships linked by an intermediate entity [8].

w

2.4.2 Nulls Integrity

Represent a value for an attribute that is currently unknown or is not applicable for

this tuple. A null can be taken to mean the logical value 'unknown'. It can mean

that a value is not applicable to a particular tuple, or it could merely mean that no

value has yet been supplied. Nulls are a way to deal with incomplete or

exceptional data. However, a null is not the same as a zero numeric value or a text

string filled with spaces; zeros and spaces are values, but a null represents the

absence of a value. Therefore, nulls should be treated differently from other

24

Object Oriented Database Concepts

values. Some authors use the term 'null value'. In fact, a null is not a value but

represents the absence of a value and so the term 'null value' is deprecated.

Without nulls, it becomes necessary to introduce false data to represent this state

or to add additional attributes that may not be meaningful to the user.

Null can cause implementation problem. The difficulty arises because the

relational model is based on first-order predicate calculus, which is a tow-valued

or Boolean logic- the only values allowed are true or false. Allowing nulls means

that we have to work with a higher-valued logic, such as three- or four-valued
logic.

2.4.3 Referential Integrity

The existence of relationships gives rise to the need for referential integrity.

There are several techniques that can be used to handle referential integrity:

• Do not allow the user to explicitly delete objects. In this case, the

system is responsible for 'garbage collection'; in other word, the system

automatically deletes objects when they are no longer accessible by the
user.

• Allow the user to delete objects when they are no longer required. In

this case, the system may detect invalid references automatically and

set the reference to NULL (the null pointer) or disallow the deletion.

The versant OODBMS uses this approach to enforce referential
integrity.

• Allow the user to modify and delete objects and relationships when

they are no longer required. In this case, the system automatically

maintains the integrity of objects. Inverse attributes can be used to

maintain referential integrity [3, 8].

••

25

Object Oriented Database Concepts

2.4.4 Entity integrity

The first integrity rule applies to the primary keys of base relation. Thus,

nowadays, it could be defined as a base relation which is the relation that
corresponds to an entity in the conceptual schema.

Entity integrity in a base relation, no attribute of a primary key can be null. By

definition, a primary key is a minimal identifier that is used to identify tuples

uniquely. This means that no subset of the primary key is sufficient to provide

unique identification of tuples. If it allows a null for any part of a primary key, we

are implying that not all the attributes are needed to distinguish between tuples,
which contradicts the definition of the primary key [8].

2.5 Concurrency Control

ODBMS provide concurrency control mechanisms to ensure that concurrent

access to data does not yield inconsistencies in the database or in applications due

to invalid assumptions made by seeing partially updated data. The problems of

lost updates and uncommitted dependencies are well documented in the database

literature. Relational databases solve this problem by providing a transaction

mechanism that ensures atomicity and serializability. Atomicity ensures that

within a given logical update to the database, either all physical updates are made

or none are made. This ensures the database is always in a logically consistent

state, with the DB being moved from one consistent state to the next via a

transaction. Serializability ensures that running transactions concurrently yield the

same result as if they had been run in some serial order. Relational databases

typically provide a pessimistic concurrency control mechanism. The pessimistic

model allows multiple processes to read data as long as none update it. Updates

must be made in isolation, with no other processes reading or updating the data.

This concurrency model is sufficient for applications that have short transactions,

so that applications are not delayed for long periods due to access conflicts [5, 6].

il

26

Object Oriented Database Concepts

For applications being targeted by OODBMS (e.g. multi-person design

applications), the assumption of short transactions is no longer valid. Optimistic

concurrency control mechanisms are based on the assumptions that access

conflicts will rarely occur. Under this scenario, all accesses are allowed to proceed

and, at transaction commit time, conflicts are resolved. OODBMS have

incorporated the idea of optimistic concurrency control mechanisms for building

applications that will have long transaction times. Handling of conflicts at commit

time cannot simply abort a transaction, however, since one designer may be losing

days or weeks of work. OODBMS must provide techniques to allow multiple

concurrent updates to the same data and support for merging these intermediate
results at an appropriate time (under application control).

An alternative policy is to allow reading and a single update to occur in parallel.

Readers are made aware that the data they are reading may be in the midst of an

update. Thus readers may be viewing slightly outdated information.

Implementation of this approach fits well in the client-server architecture typical

of an OODBMS. Each client application gets its own local copy of the data. If an

update is made to the data, the server does not permanently store it until all

concurrent read transactions are completed. Thus, all read transactions execute

seeing a consistent data set, albeit one that is in the process of being updated.

Once all readers have completed, the write transaction is allowed to complete

modifying the permanent copy of the data. Some OODBMS may, at transaction

commit, inform reading clients that the data they just read is in the process of
being updated [3, 5, 6].

2.6 Recovery

Recovery is the ability for a database to return to a consistent state after a software

or hardware failure. Similar to concurrency, the transaction concept is used to

implement recovery and to define the boundaries of recovery activity. One or

more forms of database journaling, backup, checkpointing, logging, shadowing,

27

"'

Object Oriented Database Concepts

and/or replication are used to identify what needs to be recovered and how to

perform a recovery. Databases must typically respond to application failures,

system failures, and media failures. Application failures are typically trapped by

the transaction mechanism and recovery is implemented by rolling back the

transaction. System failures, such as loss of power, may require log and/or

checkpoint supported rollback of uncommitted transactions and roll forward of

transactions that were committed but not completely flushed to disk. Media

failures, such as a disk head crash, require restoration of the database from a

backup version, and replaying of transactions that have been committed since the

backup.

The ability of a database to recover from failures results in a heavy processing and

storage overhead. In the process of evaluating an OODBMS, its ability to recover

from faults, and the overhead incurred to provide that recovery capability, must be

carefully considered Applications envisioned for OODBMS often do not have the

same strict recovery requirements as do relational database applications (e.g.

banking systems). In addition, the amount of data stored in such systems may

result in unacceptable storage overheads for many forms of recovery. For these

reasons, an OODBMS evaluation effort must carefully select the recovery

capabilities needed based on both the functional and performance requirements of

the application [3, 5, 6]. ;,

2. 7 Transactions

Transactions are the mechanism used to implement concurrency and recovery.

Different transaction policies have been described in Section 2.5, Concurrency,

under the topics of pessimistic, optimistic, and multiple readers/single write

concurrency control policies. Within a transaction, data from anywhere in the

(distributed) database must be accessible. A feature found in many OODBMS

products is to commit a transaction but to allow the objects to remain in the client

cache under the expectation that they will soon be referenced again.

28

Object Oriented Database Concepts

Some OODBMS have incorporated the concept of long and/or nested transactions.

A long transaction allows transactions to last for hours or days without the

possibility of system generated aborts (due to lock conflicts for example). System

generated aborts must be avoided for applications targeting OODBMS since a few

hours or days of work cannot be simply discarded. Long transactions may be
composed of nested transactions for purposes ofrecovery [5, 6].

2.8 Persistence

Persistence is the characteristic that makes data available across executions. The

objective of an OODBMS is to make objects persistent. Persistence may be based

on an object's class, meaning that all objects of a given class are persistent. Each

object of a persistent class is automatically made persistent. An alternative model

is that persistence is a unique characteristic of each object (i.e., it is orthogonal to

class). Under this model, an object's persistence is normally specified when it is

created. A third persistence model is that any object reachable from a persistent

object is also persistent. Such systems require some way of explicitly stating that a

given object is persistent (as a means of starting the network of inter-connected
persistent objects) [2, 3, 5].

2.9 Security

Secure OODBMSs protect their data from malicious misuse. Security

requirements are similar to data integrity requirements that protect data from

accidental misuse. Secure databases typically provide a multi-level security model

where users and data are categorized with a specific security level. Mandatory

security controls ensure that users can access data only at their level and below.

Discretionary security controls provide access control based on explicit

authorization of a user's access to data. Applications targeted.by OODBMS often

do not require strict security controls, although discretionary access controls seem

desirable for work-group design type applications [3, 5].

29

/

Object Oriented Database Concepts

2.10 Summary

There are two architecture of OODBMS environment, the client-server
architecture, and the storage ofmethods.

Relationships are presented in an object data model using reference attributes.

There exist several kinds of integrity such as relationships integrity, nulls

integrity, referential integrity, and entity integrity. ODBMS provide some

mechanisms, such as integrity, concurrency control, recovery, transactions,
persistence, and security.

30

Object-Relational DBMS

CHAPTER THREE

OBJECT-RELATIONAL DBMS

3.1 Overview

This chapter discusses some concepts related to the object-relational database

system such as object identity, row types, user-defined types (UDTs), user-defined

routines, polymorphism, subtypes and supertypes, persistent stored modules, and

large objects, also the end of this chapter there exist comparison between
ORDBMS and OODBMS.

3.2 Introduction to Object-Relational Database System

Until recently, the choice of DBMS seemed to be between the relational DBMS

and the object-oriented DBMS. However, vendors of RDBMS products are still

conscious of the threat and promise of the OODBMS. They agree that their

systems are not currently suited to the advanced applications, and that added

functionality is required. However, they reject the claim that extended RDMSs

will not provide sufficient functionality or will be too slow to cope adequately
with the new complexity.

The examining of the advanced database applications that are emerging, due to

find extensive use of many object-oriented features such as a user-extensible type

system, encapsulation, inheritance, polymorphism, dynamic binding of method,

complex objects including non-first normal form objects, and object identity. The

most obvious way to remedy the shortcomings of the relational model is to extend

the model with these types of features. This is the approach that has been taken by

many prototype extended relational systems, although each has implemented

different combinations of features. Thus, there is no single extended relational

model; rather, there are a variety of these models. However all the models do

share the same basic relational tables and query language, all incorporate some

31

Object-Relational DBMS

concept of 'object', and some have the ability to store methods (or procedures or
triggers) as well as data in the database.

Various terms have been used for systems that have extended the relational data

model. The original term that was used to describe such systems was the extended

relational DBMS (ERDBMS). However, in recent years the more descriptive term

Object-Relational DBMS has been used to indicate that the system incorporates

some notion of 'object', and more recently the term Universal Server or Universal

DBMS (UDBMS) has been used. It stands for Object-Relational DBMS

(ORDBMS). Three of the leading RDBMS vendors (Oracle, Informix, and IBM)

have all extended their systems to become ORDBMSs, although the functionality

provided by each is slightly different. The concept of the ORDBMS, as a hybrid

of the RDBMS and OODBMS, is very appealing, preserving the wealth of

knowledge and experience that has been acquired with the RDBMS. Some

analysts predict the ORDBMS will have a 50% larger share of the market than the
RDBMS [8,15].

The main advantages of extending the relational data model come from reuse and

sharing. Reuse comes from the ability to extend the DBMS server to perform

standard functionality centrally, rather than have it coded in each application. For

example, applications may require spatial data type that represent points, lines,

and polygons, with associated functions that calculate the distance between two

points, the distance between a point and a line, whether a point is contained within

a polygon, and whether two polygonal regions overlap, among others. If it is

possible to embed this functionality in the server, it saves having to define them in

each application that needs them, and consequently allows the functionality to be

shared by all applications. These advantages also give rise to increased
productivity both for the developer and for the end-user.

-.;J

32

Object-Relational DBMS

Relational
DBMS

Object-Relational
DBMS

Search Capabilities
multi-user Support @~

File Systems

Data Complexity Extensibility

Figure 3.1 Classification of DBMSs

Another obvious advantage is that the extended relational approach for each

serves. The significant bodies of knowledge and experience have been gone into

developing relational applications. This is a significant advantage, as many

organizations would find it prohibitively expensive to change. If the new

functionality is designed appropriately, this approach should allow organizations

to take advantage of the new extensions in an evolutionary way without losing the

benefits of current database features and functions. Thus, an ORDBMS could be

introduced in an integrative fashion, as proof-of-concept projects. The

forthcoming SQL standard is designed to be upwardly compatible with the current

SQL standard, and so any ORDBMS that complies with SQL3 should provide this
capability [8, 15].

3.3 SQL3

The object-oriented features proposed in the next SQL standard, SQL3, covering:

• Type constructors for row types and reference type.

• User-defined types (distinct types and structured types) that can participate
in supertype/subtype relationships.

33

Object-Relational DBMS

• User-defined procedure, functions and operators.

• Type constructors for collection types (arrays, sets, and lists).

• Support for large objects Binary Large Objects (BLOBs) and Character
Large Objects (CLOBs).

3.3.1 Object identity

Each relation has an implicitly defined attribute named OID that contains the

tuple's unique identifier, where each OID value is created and maintained by

postgres. The OID attributes can be accessed but not updated by user queries.

Among other users, the OID can be used as a mechanism to simulate attribute

types that reference tuples in other relation. The relation name can be used for the

type name because relations, types, and procedures have separate name spaces [8].

3.3.2 Row types

A row type is a sequence of field name/date type pair that provides a data type that

can represent the types of rows in tables, so that complete rows can be stored in

variables, passed as arguments to routines and returned as return values from

function calls. A row type can also be used to allow a column of a table to contain
row values [1, 8].

3.3.3 User-Defined Types (UDTs)

It refers to user-defined types as Abstract Data Types (ADTs), that may be used in

the same way as the built-in types (for example CHAR ,INT,FLOAT). UDTs are

subdivided into two categories: distinct types and structured types. The simplest

type of VDT in SQL3 is the distinct type, which allows differentiation between

the same underlying base types In its more general case, a VDT definition

consists of one or more attribute definitions. It has also been proposed that a VDT

definition consist additionally of routine declarations. If this proposal is not

accepted, these declarations from part of the schema. In what follows, it can be

assumed that VDT definition may contain routine declarations. It stands to

(JI

34

Object-Relational DBMS

routines and operators generically as routines. In addition, within the VDT

definition it can be also define the equality and ordering relationships for the
VDT.

There is still some discussion in the SQL3 drafting teams whether attributes and

routines should be further protected using the tags public, private, or protected, as
in C++, with the following interpretations:

• Only public components are visible to authorized users of the VDT.

• Private components are visible only within the definition of the VDT that
contains them.

• Protected components are partially encapsulated, begin visible both within

their own VDT and within the definitions of all subtypes of that VDT.

If no tag is specified, the last specified tag is assumed. The default for the first tag

is public.The value of an attribute can be accessed using a modified dot notation
[1, 8].

3.3.4 User-Defined Routines

User-defined routines (UDRs) define methods for each manipulating data and are

an important adjunct to UDTs. An ORDBMS should provide significant flexibility

in this area, such as allowing UDRs to return complex values that can be further

manipulated (such as tables), and support for overloading of function names to

simplify application development. In SQL3, UDRs may be defined as a part of a

VDT or separately as part of a schema. An SQL-invoked routine may be a

procedure, function, or iterative routine. It may be externally provided in a

standard programming language such as C/C++, or defined completely in SQL

using extensions that make the language computationally complete. An SQL­

invoked procedure is invoked from an sql CALL statement. It may have zero or

more parameters, each of which may be an input parameter(IN), an output

35

Object-Relational DBMS

parameter (OUT),or both an input and output parameter (INOUT), and it has a

body if it is defined fully within SQL. An SQL-invoked function returns a value;
any specified parameter [1, 2, 8].

3.3.5 Relations and inheritance

A relation inherits all attributes from its parents unless an attribute is overridden in

the definition. Multiple inheritance is supported, however, if the same attribute

can be inherited from more than one parent and the types of the attributes are

different, the declaration is disallowed. Key specifications are also inherited [2, 8].

3.3.6 Polymorphism

Different routines may have the same name, that is routine names may be over­

loaded, for example to allow aUDT subtype to redefine a method inherited from a

supertype, subject to the following constraints:

• No two function in the same schema are allowed to have the same

signature, that is, the same number of arguments, the same data types for

each argument, and the same return datatype.

• No two procedure in the same schema are allowed to have the same name

and the same number of parameters.

The current draft SQL3 proposal uses a generalized object model, so that the types

of all arguments to a routine are taken into consideration when determining which

routine to invoke, in order from left to right. Where there is not an exact match

between the data type of the argument and the data type of the parameter

specified, type precedence list are used to determine the closest match. the exact

rules for routine determination for a given invocation are relatively complex [8].

36

Object-Relational DBMS

3.3.7 Subtypes and supertypes

SQL3 allows UDTs to participate in a subtype/supertype hierarchy. A type can

have more than one supertype (that is, multiple inheritance is supported), and

more than one subtype. A subtype inherits all the attributes and behavior of its

supertypes and it can define additional attributes and functions like any other UDT
and it can override inherited function [8].

3.3.8 Persistent stored modules

A number of new statement types have been added in SQL3 to make the language

computationally complete, so that object behavior (methods) can be stored and

executed from within the database as SQL statements. Statements can be grouped

together into a compound statement (block), with is own local variables. Some of
the additional statements provided in SQL3 are:

• An assignment statement that allows the result of an SQL value expression

to be assigned to a local variable, a column, or an attribute of a UDT.

• An IF... THEN... ELSE... END IF statement that allows conditional
processing.

• A CASE statement that allows the selection of an execution path based on
a set of alternatives.

• A set of statements that allows repeated execution of a block of SQL

statements. The iterative statements are FOR,WHILE,and REPEAT.

• A CALL statement that allows procedures to be invoked and RETURN

statement that allows an SQL value expression to be used as the return
value from an SQL function [15].

"'

3.3.9 Large Objects

A Large Object is a table field that holds a large a mount of data as a long text file

or a graphics file. There are three different types of large object data types defined
in SQL3:

37

Object-Relational DBMS

• Binary Large Object (BLOB), a binary string that does not have a
character set or collation association.

• Character Large Object (CLOB) and National Character Large Object
(NCLOB), both character strings.

The SQL large object is slightly different from the original type of DLOB that

appears in many current database systems. In such systems, the BLOB is non­

interpreted byte stream, and the DBMS does not have any knowledge concerning

the content of the BLOB or its internal structure. This prevents the DBMS from

performing queries and operations on inherently rich and structured data types,

such as images, video, word processing documents, or web pages. Generally, this

requires that the entire BLOB be transferred across the network from the DBMS

server to the client before any processing can be performed. In contrast, the SQL3

large object does allow some operations to be carried out in the DBMS server.

The standard string operators, which operate on characters strings and return
character strings, also operate on character large object string, such as:

• The concatenation operator, (stringl] string2), which returns the character

string formed by joining the character string operands in the specified
order. 'iti\"

• The character substring function, SUBSTRING (string FROM startops

FOR length), which returns a string extracted from a specified string from
a start position for a given length.

• The fold function, UPPER (string) and LOWER (string), which convert all
characters in a string to upper/lower case.

• The length function, CHAR+LENGTH (string), which return the length of
the specified string.

38

Object-Relational DBMS

• The position function, POSITION(stringl IN string2), which returns the

start position of string I within string2.

However, CLOB strings are not allowed to participate ın most comparison

operations, although they can participate in a LIKE predicate, and a comparison or

quantified comparison predicate that uses the equal (=) or not equal(<>)operators.

3.4 Comparison of ORDBMS and OODBMS

It can be conclude the treatment of Object-Relational DBMS and Object-Oriented

DBMS with a brief comparison of the two types of system. it can be assumed that

future ORDBMSs will be compliant with SQL3 [8].

Table 3.1 Comparison Between ORDBMS and OODBMS.

Feature ORDBMS OODBMS

Supported and brokenEncapsulation Supported through UDTs
for queries

Inheritance Supported (separate hierarchies
Supportedfor UDTs and tables)

Supported (UDF invocation
Supported as in an object

Polymorphism oriented programmıngbased on the generic function)
model language.

Relationships Strong support with user-defined Supported (for example,
referential integrity constraints using class libraries)

Integrity
Strong support No supportconstraints

39

Object-Relational DBMS

Supported but degree of
Recovery Strong support support differs between

products

Advanced Supported but degree of

transaction models
No support support differs between

products

Security, integrity,
Strong support Limited supportand views

3.5 Summary

The concept of the ORDBMS is as a hybrid of the RDBMS and OODBMS. The

object-oriented features proposed in SQL3 support type constructors for row types

and reference types, user-defined types, user-defined procedures, functions and

operators, and support for large objects Binary Large Objects (BLOBs) and
Character Large Objects (CLOBs).

40

Object Relational Algebra

CHAPTER FOUR

OBJECT RELATIONAL ALGEBRA

4.1 Overview

Object relational algebra is a set of operators that take relations as their operands

and return a relation as their result. There are eight operators restrict, project,

product, union, intersection, difference, join, and divide. In this chapter these
operators will be explain in detail.

4.2 Introduction to the Original Algebra

The traditional set operators union, intersection, difference, and Cartesian product

(all of them modified somewhat to take account of the fact that their operands are,

specifically, relations instead of arbitrary sets). The special relational operators

restrict (also know as select), project, join, and divide.

Here are simplified definitions of these eight operators (refer to fig 4. 1):

Restrict : Returns a relation containing all tuples from a specified relation that

satisfy a specified condition.

Project: Returns a relation containing all (sub) tuples that remain in a

specified relation after specified attributes have been removed.
Product: Returns a relation containing all possible tuples that are a

combination of two tuples, one from each of tows specified
relations.

Union: Returns a relation containing all tuples that appear in either or both
of tow specified relations.

Intersect: Returns a relation containing all tuples that appear in both of two
specified relations.

Difference: Returns a relation containing all tuples that appear in the first and

not the second of two specified relations.

Join: Returns a relation containing all possible tuples that are

,)'

41

~\~~~~~~~~~~~

combinations of two tuples, one from each of tow specified

relations, such that the two tuples contributing to any gıven

combination have a common value for the common attributes of the

tow relations (and that common value appears just once, not twice,

in the result tuple).

Divide: takes two unary relations and one binary relation and returns a

relation containing all tuples from one unary relation that appear in

the binary relation matched with all tuples in the other unary

relation [5].

Restrict Project Product~

~

a X:
a y
b X:
b y
C X:
C y

a
b
C

Union Intersection Difference

,if

(Normal) Join~ Divide~

a a~~b a y z
C a z

b X:
C y

al bl al
a2 bl a2
a3 b2 a3

al bl
a2 b l
a3 b2

al bl
a2 bl
a3 b2

Figure 4.1 Original Eight Operators (Overview)

42

Object Relational Algebra

4.3 Semantics

In this section there is an explanation of the previous eight operators, with fully

explained examples. Where it considers the operators in the sequence unıon,

intersection, difference, product, restrict, project, join, and divide.

4.3.1 Union

In mathematics, the union of two sets in the set of all elements belonging to either

or both of the original sets. Since a relation is a set, namely a set of tuples, it is

obviously possible to construct the union of two such sets; the result will be a set

consisting of tuples appearing in either or both of the original relation. For

example, the union of the set of supplier tuples currently appearing in relvar S and

the set of part tuples currently appearing in relvar P is certainly a set. Where it

could not contain a mixture of different kinds of tuples, they must be "tuple­

homogeneous." And, of course, the result is wanted to be a relation, in spite of

being the result as a set. Therefore, the union in the relational algebra is not the

usual mathematical union; rather, it is a special kind of union, in which required

the two input relations to be of the same type- meaning, for example, that they

both contain supplier tuples, or both part tuples, but not a mixture of the two. If

the two relations are of the same (relation) type, then it could be taken as union,

and the result will also be a relation of the same (relation) type; in other words, the

closure property will be preserved.

Here then is a definition of the relational union operator: Given two relations A

and B of the same type, the union of those tow relations, A UNION B, is a relation

of the same type, with body consisting of all tuples t such that t appears in A or in

Bor in both.

Example:

Let relation A and B be as shown in Figure 4.2 (both are derived from the

suppliers relvar S; A is the suppliers in London, and B is the suppliers who supply

43

Object Relational Algebra

part P1, intuitively speaking). Then A UNION B- see part a. of the Figure- is the

suppliers who either are located in London or supply part P 1 (or both).

cr.S#, sname,status,city(A) U cr.S#, sname,status,city(B)

Notice that the result has three tuples, not four; duplicate tuples are eliminated, by

definition. It can be remarked in passing that the only other operation for which

this question of duplicate elimation arises is in projection [5].

4.3.2 Intersect

Like union and for essentially the same reason, the relational intersection operator

requires its operands to be of the same type. Given two relations A and B of the

same type, then, the intersection of those two relations, A INTERSECT B, is a

relation of the same type, with body consisting of all tuples t such that t appears in
both A and B.

Example: Again, let A and B be as shown in figure 4.2. Then A INTERSECT B -

see part b of the figure- is the suppliers who are located in London and supply part
Pl [5].

cr.S#, sname,status,city(A) n cr.S#, sname,status,city(B)
t!

Notice that the result has one tuple; this tuple is repeated in both sets A and B.

4.3.3 Difference

Like union and intersection, the relational difference operator also requires its

operands to be of the same type. Given two relation A and B of the same type,

then, the difference between those two relations, A MINUS B (in that order),is a

relation of the same type, with body consisting of all tuples t such that t appears in
A and not in B.

44

Object Relational Algebra

Example: Let A and B again be as shown in figure 4.2. Then A MINUS B- see

part c. of the figure - is the suppliers who are located in London and do not supply
part Pl.

cr.S#, sname,status,city(A) - cr.S#, sname,status,city(B)

Also B MINUS A -see part d . of the figure- is the suppliers who supply part P 1

and are not located in London. Observe that MINUS has a directionality to it, just
as subtraction does in ordinary arithmetic [5].

cr.S#, sname,status,city(B) - cr.S#, sname,status,city(A)

A B
S# SNAME STATUS CITY
SI Smith 20 London
S4 Clark 20 London

S# SNAME STATUS CITY
SI Smith 20 London
S2 Jones 10 Paris

a. Union
(A UNIONB)

S# SNAME STATUS CITY
SI Smith 20 London
S4 Clark 20 London
S2 Jones 10 Paris

b. Intersection
(A INTERSECT B)

S# SNAME STATUS CITY
SI Smith 20 London

d. Difference
(B MINUS A)
S# I SNAME I STATUS 'CITY
S3 ParisJones 10

c. Difference
(A MINUS B}
S# I SNAME STATUS I CITY
S4 I Clark 20 I London

Figure 4.2 Union, Intersection and Difference Examples

4.3.4 Product

In mathematics, the Cartesian product (product for short) of two sets in the set of

all ordered pairs such that, in each pair, the first element comes from the first set

and the second element comes from the second set. Thus, the Cartesian product of

two relations would be a set of ordered pairs of tuples, loosely speaking. But again

45

Object Relational Algebra

be want to preserve the closure property; in other words, the result wanted

ıain tuples per se, not ordered pairs of tuples. Therefore, the relational

Cartesian product is an extended torm of the operation, in which each

les is replaced by the single tuple that is the union of the two

using "union" in its normal set theory sense, not its special

That is, given the tuples {Al :al, A2:a2, , Am:am} and

•••..• "Bn.·.\)\\3 fül<s \1\\\\)\\ \)"\.\\\~ \v,.ıcı \'S \\\~ 'S\\\ı\~\\l'Ç)\~-s _1\. \·.a\,

-~ \\ \.·~\."'\\ı..:~1.."' ''''' ''"'\\~~~\ ~~~~~'- ~~~\.~~~~\. ~~~~'-~

~~~ı;:,.'\.'\.\::ı'\\.~~ '--,'ô.."t\~i'\.'ô..'\\. ""v'-\::ı~'0.."""-'::ı ~'&. \ ~\_ "~'0.."\'::ı~~~ \.~~~\. "\~'ô..\.\..~'\\.\.~~"\i\..\.~~

to have a well-formed heading (ı.e., to be of a proper relation type).Now, clearly

the heaciingof the result consists of a\\ of the attributes from both of the two input

relations. A problem will therefore arise if those two headings have any attribute

names in common; if the operation were permitted, the result heading would have

two attributes with the same name and would thus not be "well-frormed." If

construct the Cartesian product needed for two relation that do have any such

common attribute names, therefore it must use the RENAME operator first to

rename attributes appropriately. It can be defined that the (relational) Cartesian

product of tow relations A and B, A TIMES B, where A and B have no common

attribute names, to be a relation with a heading that is the (set theory) union of the

headings of A and Band with a body consisting of the set of all tuples t such that t

is the (set theory) union of a tuple appearing in A and a tuple appearing in B. Note

that the cardinality of the result is the product of the cardinalities of A and B, and

the degree of the result is the sum of their degrees.

Example: Let relations A and B be as shown in figure 4.3 (A is all current supplier

numbers and B is all current part numbers, intuitively speaking ) . Then A TIMES

B -see the lower part of the figure- is all current supplier-number/part-number
pairs [5].

For example R = S# X p#

46



Object Relational Algebra

A IS#
sı
S2
S3
S4
SS

B IP#
Pl
P2
P3
P4
PS 

S# P#
sı Pl
sı P2
sı P3
sı P4
sı PS 
... . ..

Cartesian product (A TIMES B)
... . ..
S2 Pl
S2 P2
S2 P3
S2 P4
S2 PS 
. .. . ..

. .. . ..
S3 Pl
S3 P2
S3 P3
S3 P4
S3 PS 
. .. . ..

. .. . ..
S4 Pl
S4 P2
S4 P3
S4 P4
S4 PS 
. .. . ..

. .. . ..
SS Pl
SS P2
SS P3
SS P4
SS PS 
. .. . ..

Figure 4.3 Cartesian Product Examples

4.3.5 Restrict 

Let relation A have attributes X and Y (and possibly others), and let E) be an

operator typically"=",">", etc. Such that the condition X E) Y is well defined and,

given particular values for X and Y, evaluates to a truth value (true or false). Then
the 0-restriction ofrelation A on attributes X and Y (in that order).

S WHERE CITY='London'

Is a relation with the same heading as A and with body consisting of all tuples t of

A such that the condition X 0 Y evaluates to true for that tuple t. Restriction

permits only a single condition in the WHERE clause. By virtue of the closure

property, however, it is possible to extend it unambiguously to a form in which the

expression in the WHERE clause consist of an arbitrary boolean combination of
such conditions, thanks to the following equivalences :

47



Object Relational Algebra

A WHERE Cl AND C2 = (A WHERE cl) INTERSECT (A WHERE C2)

A WHERE Cl OR C2 = (A WHERE cl) UNION (A WHERE C2)

A WHERE NOT C = A MINUS (A WHERE C)

Henceforth, therefore, it will be assumed that the <boolean expression>in the

WHERE clause of restriction consists of such an arbitrary combination of

conditions (with parentheses if necessary in order to indicate a desired order of

evaluation). Where each condition in turn involves only attributes of the pertinent

relation or selector invocations or both. Note that such a <boolean expression>

can be established as true or false for a given tuple by examining just that tuple in

isolation. Such a <boolean expression> is said to be a restriction condition. The

restriction operator effectively yields a "horizontal" subset of a given relation that

is, that subset of the tuples of the given relation for which some specified

restriction condition is satisfied. Some examples are given in figure 4.4 [5].

0.S#, sname,status,city(A) where city='London'

S WHERE CITY='London' S# SNAME STATUS CITY
SI Smith 20 London
S4 Clark 20 London

P WHERE WEIGHT< P# PNAME COLOR WEIGHT CITY
WEIGHT(l4.0) PI Nut Red 12.0 London

PS Cam Blue 12.0 Paris

I SP WHERE S#=S#('S6') OR P#=P#('P7') I S# P# QTY
I

Figure 4.4 Restriction Examples

4.3.6 Project

Let relation A have attributes X,Y,.....z (and possibly others). Then the projection
of relation A on X,Y,..... z.

48



Object Relational Algebra

A{X,Y, ,Z} is a relation with:

• A heading derived from the heading of A by removing all attributes not

mentioned in the set{X,Y, Z}and

• A body consisting of all tuples {X:x,Y:y,..... ,Z:z}such that a tuple appears in

A with X value x, Y value y, ,and Z value z

The projection operator thus effectively yields a "vertical" subset of a given

relation- that is , that subset obtained by removing all attributes not mentioned in

the specified commalist of attribute names and then eliminating duplicate

(sub)tuples from what is left. A projection of the form A{}-i.e., one in which the

attributes name commalist is empty- is legal. it represents a nullary projection.

Some examples of projection are given in figure 4.5. Notice in the first examples

(the projection of suppliers over CITY) that, although relvar S currently contains

five tuples and hence five cities, there are only three cities in the result- duplicates

(duplicates tuples, that is) are eliminated. Analogous remarks apply to the other

examples also,of course . For example: 1t color,city (P)

CITY

S{ CITY} London
Paris

Athens

CO LOR CITY
Red London

P{ COLOR,CITY} Green Paris
Blue Rome
Blue Paris

( S WHERE CITY='Paris') { S#}
S#
S2
S3

Figure 4.5 Projection Examples

49



50

Object Relational Algebra

In practice, it is often convenient to be able to specify, not the attributes over

which the projection is to be taken, but rather the ones that are to be "projected

away" (i.e., removed). Instead of saying "project relation P over the P#, PNAME,

COLOR, and CITY attributes, "for example, it might be say" project the

WEIGHT attribute away from relation P," as here:

P{ ALL BUT WEIGHT}

4.3.7 Join
Join comes in several different varieties. Easily the most important, however, is

the so-called natural join specifically. here then is the definition (it is a little

abstract, but you should already be familiar with natural join at an intuitive level.

Let relations A and B have headings {Xl,X2, Xm,Yl,Y2, Yn}

and{Yl,Y2, Yn,Zl,Z2, Zp}respectively; i.e.,the Y attributes

Yl,Y2 Yn (only) are common to the tow relations. The X attributes

Xl,X2, Xm are the other attribute of A, and the Z attributes Zl,Z2, Zp are the

other attributes of B.Now consider {Xl,X2, ,Xm}, {Yl,Y2, Yn}, and

{Zl,Z2, Zp}as three composite attributes X,Y, and Z, respectively. Then the

natural join of A and B is the following.

AJOINB

Is a relation with heading {X,Y,Z}and body consisting of the set of all tuples

{X:x,Y:y,Z:z}such that a tuple appears in A with X value x and Y value yanda

tuple appears in B with Y value y and Z value z. An example of a natural join (the

natural join S JOIN P, over the common attribute CITY) is given in figure 4.6.

It is still worth starting explicitly that joins are not always between a foreign key

and a matching primary key, even though such joins are a very common and

important special case. -



Object Relational Algebra

S# SNAME STATUS CITY P# PNAME COLOR WEIGHT
sı Smith 20 London Pl Nut Red 12.0
sı Smith 20 London P4 Screw Red 14.0
SI Smith 20 London P6 Cog Red 19.0
S2 Jones 10 Paris P2 Bolt Green 17.0
S2 Jones 10 Paris PS Cam Blue 12.0
S3 Blake 30 Paris P2 Bolt Green 17.0
S3 Blake 30 Paris PS Cam Blue 12.0
S4 Clark 20 London PI Nut Red 12.0
S4 Clark 20 London P4 Screw Red 14.0
S4 Clark 20 London P6 Cog Red 19.0

Figure 4.6 The Natural Join S JOIN P

Now, in the view point of the 8-join operation. This operation is intended for

those occasions (comparatively rare, but by no means unknown) where it need to

join two relations to-together on the basis of some comparison operator other than

equality. Let relations A and B satisfy the requirements for Cartesian product(i.e.,

they have no attribute names in common);let A have an attribute X and let B have

an attribute Y,and let X,Y, and 8 satisfy the requirements for restriction. Then the

8 of relation A on attribute X with relation B on attribute Y is defined to be the

result of evaluating the expression (A TIMES B) WHERE X 8Y. In other

words, it is a relation with the same heading as the Cartesian product of A and B,

and with a body consisting of the set of all tuples t such that t appears in that

Cartesian product and the condition "X 8Y" evaluates to true for that tuple t. By

way of example, suppose we wish to compute the greater-than join of relation S

on CITY with relation p on CITY (so 8 here is ">"; it can be assume that ">"

makes sense for cities, and interpret it to mean simply "greater in alphabetic

ordering"). An appropriate relational expression is as follows:

( ( S RENAME CITY AS SCITY ) TIMES (P RENAME CITY AS PCITY ) )

WHERE SCITY > PCITY

51



Object Relational Algebra

Note the attribute renaming in this example.(Of course, it would be sufficient to

rename just one of the tow CITY attributes; the only reason for renaming both is

symmetry.) The result of the overall expression is shown in figure 4.7.

cr.S#, sname,status,scity(S) [><J cr.S#, pname,status,pcity(B)
SCITY > PCITY

If 8 is"=", the 8-join is called an equijoin. It follows from the definition that the

result of an equijoin must include tow attributes with the property that the values

of those tow attributes are equal in every tuple in the relation. If one of those tow

attributes is projected a way and the other renamed appropriately (if necessary),

the result is the natural join! For example, the expression representing the natural
join of suppliers and parts (over cities) is as the following:

S JOIN P

Is equivalent to the following more complex expression:

((S TIMES(P RENAME CITY AS PCITY))
WHERE CITY=PCITY)

{ALLBUT PCITY}

S# SNAME STATUS SCITY P# PNAME COLOR WEIGHT PCITY
S2 Jones 10 Paris PI Nut Red 12.0 London
S2 Jones 10 Paris P4 Screw Red 14.0 London
S2 Jones 10 Paris P6 Cog Red 19.0 London
S3 Blake 30 Paris PI Nut Red 12.0 London
S3 Blake 30 Paris P4 Screw Red 14.0 London
S3 Blake 30 Paris P6 Cog Red 19.0 London

Figure 4.7 Greater-than Join of suppliers and parts on cities

52

.____..



Object Relational Algebra

4.3.8 Divide

Reference l.71 defıne two distinct "divide" operators that small divide and the great

Divide, respectively. a<divide>in which the <per>consists of just one<relational

expression>s is a Small Divide, a<divide>in which it consists of a parenthesized

commalist of tow <relational expression>s is a Great Divide. The description that

follows applied to the small Divide only, and only to a particular limited form of

the Small Divide at that. See reference [7] for a discussion of the Great Divide and

for further details regarding the Small Divide as well.

It should be said that the version of the Small Divide as discussed here is not the

same as original operator-in fact, it is an improved version that overcomes certain

difficulties that arose with that original operator in connection with empty

relations.

Here then is the definition. Let relations A and B have headings

{Xl ,X2, ,Xm} and {Yl, Y2, ,Yn}

respectively (i.e., A and B have disjoint headings), and let relation C have heading

{ Xl,X2, ,Xm,Yl,Y2, ,Yn}

(i.e., C has a heading that is the union of the headings of A and B).Let us now

regard {Xl,X2, ,Xm}and{Yl,Y2, ,Yn} as composite attributes X and

Y, respectively. Then the division of A by B per C (where A is the dividend, Bis

the divisor,and C is the "mediator")as the following.

A DIVIDE BY B PER C

Is a relation with heading{X }and body consisting of the tuples{X:x}such that a

tuple {X:x,Y:y} appears in C for all tuples {Y:y}appearing in B . In other words,

the result consists of those X values from A whose corresponding Y values in C

include all Y values from B, loosely speaking. Figure 4.8 shows some simple

examples of division. The dividend (DEND) in each case is the projection of the

current value of relvar S over S#; the mediator (MED) in each case is the

projection of the current value of relvar SP over S# and P#; the three divisors

53



Object Relational Algebra

(DOR) are as indicated in the figure. Notice the last example in particular, in

which the divisor is a relation containing part numbers for all currently know

parts; the result (obviously) shows supplier numbers for suppliers who supply all

of those parts. As this example suggests, the DIVIDEBY operator is intended for

queries of this same general nature; in fact, whenever the natural language version

of the query contains the word "all" ("Get suppliers who supply all parts"), it is a

strong possibility that division will be involved. However, it is worth pointing out

that such queries are often more readily expressed in terms of the relational
comparisons anyway [5].

DEND S#

SI

S2

S3

S4

S5

MED S# P#

SI PI

sı P2

SI P3

sı P4

sı P5

sı P61

... . ..

DOR r=.
~

~

2

4

DENO DIVIDEBY DOR PERMED

~

I

2
~

1

2

Figure 4.8 Division Examples

54

... . ..

S2 Pl

S2 P2

S3 P2

S4 P2

S4 P4

S4 P5

... . ..

DOR P#

Pl

P2

P3

P4

P5

P6

r=.
~



Object Relational Algebra

4.4 Associativity and Commutativity

It is easy to verify that UNION is associative, that is, if A, B, and C are arbitrary

relational expressions yielding relations of the same type, then the expressions

(A UNION B) UNION C and A UNION (B UNION C)

Are logically equivalent. For convenience, therefore, it could be a sequence of

UNIONs to be written without any embedded parentheses; i.e., each of the
foregoing expressions can be unambiguously simplified to just

A UNION B UNION C

Analogous remarks apply to INTERSECT, TIMES, and JOIN (but not to
MINUS).

It should be mentioned that UNION, INTERSECT, TIMES and JOIN (but not

MINUS) are commutative - that is, the expressions as well.

A UNION B and B UNION A

Are also logically equivalent, and similarly for INTERSECT, TIMES and JION.

Finally, We remark that if A and B have no attribute names in common, then A

JOIN B is equivalent to A TIMES B, i.e., natural join degenerates to Cartesian
product in this case [5, 7].

4.5 Summary

There are eight operators that take relations as their operands. These operators are:

Restrict, Project, Product, Union, Intersection, Difference, Join, and Divide.

55



Object Relational SQL

CHAPTER FIVE

OBJECT RELATIONAL SQL

5.1 Overview
Structured Query Language (SQL) was introduced by IBM as the language to

interface with its prototype object relational database management system. The

first commercially available SQL object relational database management system

was introduced in 1979 by Oracle Corporation. Today, SQL has become an

industry standard, and Oracle Corporation clearly leads the world in relational

database management system technology.

Because SQL is a non-procedural language, sets of records can be manipulated

instead of one record at a time. The syntax is free-flowing, enabling you to

concentrate on the data presentation. Oracle has two optimizers (cost- and rule­

based) that will parse the syntax and format it into an efficient statement before

the database engine receives it for processing. The database administrator (DBA)

determines which optimizer is in effect for each database instance.

5.2 The Object Definition Language (ODL)
The Object Definition Language (ODL) is a specification language for defining

the specifications of object types for ODMG-compliant systems. Its main

objective is to facilitate portability of schemas between compliant systems while

helping to provide interoperability between OODBMSs. ODL is equivalent to the

data definition language(DDL) of traditional DBMSs. It defines the attributes and

relationships of types and specifies the signature of the operations. It does not

address the implementation of signatures. The syntax of ODL extends the

interface Definition Language(IDL) of the common Object Request Broker

Architecture(CORBA). The ODMG hope that the ODL will be the basis for

integrating schemas from multiple sources and applications[8].

56



Object Relational SQL

DDL (Data Definition Language). These SQL statements define the structure of a

database, including rows, columns, tables, and database specifics such as file

locations. DDL SQL statements are more part of the DBMS and have large

differences between the SQL variations. CREATE; ALTER, DROP are called

DDL COMMANDS [16).

• CREATE - to create objects in the database.

• ALTER - alters the structure of the database.

• DROP - delete objects from the database.

5.2.1 Tables 

1) Create table statement 

Create tables to store data by executing the SQL CREATE TABLE statement.

This statement is one of the data definition language (DDL) statements, that are

covered in subsequent lessons. DDL statements are a subset of SQL statements

used to create, modify, or remove Oracle9i database structures. These statements

have an immediate effect on the database, and they also record information in the

data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage

area in which to create objects. The database administrator uses data control

language (DCL) statements, which-are covered in a later lesson, to grant privileges

to users [ 16).

Syntax:

Create Table [Schema.) table

(Column Datatype [Default Expr][, ]);

57



Object Relational SQL

In the syntax:

Schema: is the same as the owner's name.
table: is the name of the table.
Default Expr: specifies a default value if a value is omitted.
Column: is the name of the column.
Datatype: is the column's data type and length.

2) Alter table statement 

It is possible to add, modify, and drop columns in a table by using the ALTER
TABLE statement.

Syntax:

Alter Table table

ADD ( Column Datatype [Default Expr] [,

Column Datatype] );

Alter Table table

'MODIFY( Column Datatype [Default Expr] [,

Column Datatype] );

Drop Table table

DROP (Column);

In the syntax:

ADDIMODIFYIDROP: I is the type of modification

58 



Object Relational SQL

3) Drop table statement 

The DROP TABLE statement removes the definition of an Oracle table. When the

dropping of table occurs the database loses all the data in the table, and any views

remain but are invalid. Only the creator of the table or a user with the DROP ANY
TABLE privilege can remove a table.

Syntax:

Drop Table table

4) Truncate table statement 

Another DDL statement is the TRUNCATE TABLE statement, which is used to

remove all rows from a table and to release the storage space used by that table.

When using the TRUNCATE TABLE statement, it is not possible to roll back row
removal.

Syntax:

Truncate Table table;

It must be the owner of the table or have DELETE TABLE system privileges to

truncate a table. The DELETE statement can also remove all rows from a table,

but it does not release storage space. The TRUNCATE command is faster.

Removing rows with the TRUNCATE statement is faster than removing them

with the DELETE statement for the following reasons:

• The TRUNCATE statement is a data definition language (DDL) statement

and generates no rollback information.

59



60 

Object Relational SQL

• Truncating a table does not fire the delete triggers of the table.

• If the table is the parent of a referential integrity constraint, you cannot

truncate the table.

5.2.2 Views 

It is possible to present logical subsets or combinations of data by creating views

of tables. A view is a logical table based on a table or another view. A view

contains no data of its own but is like a window through which data from tables

can be viewed or changed. The tables on which a view is based are called base

tables. The view is stored as a SELECT statement in the data dictionary, also it

used to restrict data access, and to make complex queries easy [9].

Syntax:

Create [Or Replace] View view

[(Alias[, Alias]...)]

As Subquery;

In the syntax:

Or Replace: re-creates the view if it already exists

vıew: is the name of the view

Alias: specifies names for the expressions selected by the view's

query(The number of aliases must match the number of

expressions selected by the view.)

Subquery: is a complete SELECT statement (You can use aliases for

the columns in the SELECT list.)

Alter view and drop view are similar to alter table and drop table



Object Relational SQL

5.2.3 Types 

Create types is executing by using the SQL CREATE TYPET statements. This

statements are object definition language (ODL) statements. To create a type, a

user must have the privileges and a storage area in which to create objects. The

database administrator uses data control language (DCL) statements, to grant

privileges to users. An object type has attributes of various types, analogous to

columns of a table. After making the SQL statement "create type" it can be use

these new defined type as an attributes type.

Syntax:

Create Type [Schema.] type As Object

(Column Datatype [Default Expr][, ]);

In the syntax:

Schema: is the same as the owner's name.

type: is the name of the type.

Default Expr: specifies a default value if a value is omitted in the INSERT

statement.

Column: is the name of the column.

Datatype: is the column's data type and length

Alter type and drop type are similar to alter table and drop table.

5.2.4 Procedures 

CREATE PROCEDURE statement can be used to create a new procedure, which

may declare a list of parameters and must define the action to be performed by the

standard PL/SQL block. The CREATE clause enables you to create stand-alone

procedures, which are.stored in an oracle database.

61



Object Relational SQL

• PL/SQL blocks start with either BEGIN or the declaration of local

variables and end with either END or END PROCEDURE NAME. You

cannot reference host or bind variables in the PL/SQL block of a stored

procedure.

• The REPLACE option indicates that if the procedure exists, it will be

dropped and replaced with the new version created by the statement.

• You can not restrict the size of the data type in the parameter .

Syntax:

Create [Or Replace] Procedure Procedure_Name [(

Parameter1 [Mode1] Datatype1,

Parameter2[Mode2] Datatype2 , )]

isiAs

Pl/Sql Block;

In the syntax:

Procedure Name: Name of the procedure

Parameter: Name of a PL/SQL variable whose value is passed to or

populated by the calling environment, or both, depending

on the mode begin used.

Mode: Type of argument: IN(default), OUT, and IN OUT.

Datatype: Data type of the argument can be any SQL/PLSQL data

type. Can be of %TYPE, %ROWTYPE, or any scalar or

composite data type.

Pl/Sql Block: procedural body that defines the action performed by the

procedure.

62 



63

Object Relational SQL

5.2.5 Functions 

A function returns a value. You create new functions with the CREATE

FUNCTION statement, which may declare a list of parameters, must return one

value, and must define the actions to be performed by the standard PL/SQL block.

• The REPLACE option indicates that if the function exist, it will be

dropped and replaced with the new version created by the statement.

• The RETURN data type must not include a size specification of local

variables and end with either END or END function name. There must be

at least one RETURN (expression) statement. You cannot reference host
' "'or bind variables in the PL/SQL block of a stored function.

Syntax:

Create [Or Replace] Function Function_Name [(

Parameter 1 [Mode 1] Datatype 1,

Parameter2[Mode2] Datatype2 , )]

Return Datatype

Is I As

Pl/Sql Block;

In the syntax:

Function Name: Name of the function

Parameter: Name of a PL/SQL variable whose value is passed into the

function.

Mode: The type of the parameter; only IN parameter should be

declared

Return Datatype: Data type of the RETURN value that must be output by the

function



Object Relational SQL

5.2.6 Triggers 

The trigger body represents a complete PL/SQL block. It can create triggers for

these events on DATABASE or SCHEMA. Also it can be specified BEFORE or

AFTER the timing of the trigger.

Syntax:

Create

Timing

[ Ddl_Eventl [Or Ddl_Event2 Or ]]

[Or Replace] Trigger Trigger_Name

On {Database/Schema}

Trigger_Body

In the syntax:

Ddl Event: Possible Values

Create: Causes the oracle server to fire the trigger whenever a

CREATE statement adds a new database object to the

dictionary.

Alter: Causes the oracle server to fire the trigger whenever a

ALTER statement modifies a database object in the data

dictionary.

Drop: Causes the oracle server to fire the trigger whenever a

DROP statement removes a database object in the data

dictionary.

DDL triggers fire only if the object begins created is a cluster, function, index,

package, procedure, role, sequence, table, tablespace, trigger, type, view, or user

[9].

64



Object Relational SQL

5.3 The Object Query Language (OQL) 

The Object Query Language (OQL) provide declarative access to the object

database using an SQL-like syntax. It does not provide explicit update operators,

but leaves this to the operations defined on object types. As with SQL,OQL can be

used as a standalone language and as a language embedded in another language,

for which an ODMG binding is defined. The currently supported languages are

smaltalk C++, and Java, OQL can also invoke operations programmed in these

langages. An OQL query is a function that delivers an object whose type may be

inferred from the operator contributing to the query expression. Before defining an

OQL query, it can be understand the composition of expressions[8].

DML (Data Manipulation Language). These SQL statements are used to retrieve
-~

and manipulate data. This category encompasses the most fundamental commands

including DELETE, INSERT, SELECT, and UPDATE. DML SQL statements

have only minor differences between SQL variations. DML SQL commands

include the following:

• INSERT to add a row.

• UPDATE to change data in specified columns.

• DELETE to remove rows.

• SELECT to retrieve row.

DML commands can't be rollback when a DDL command is executed

immediately after a DML. DDL after DML means "auto commit". The changes

will return on disk not on the buffer. If the changes return on the buffer it is

possible to rollback not from the disk [9].

5.3.1 Select statement 

A SELECT statement retrieves information from the database. Using a SELECT

statement, you can do the following:

65



Object Relational SQL

• Projection: It could be used as the projection capability in SQL to choose

the columns in a table that returns by the query. Also it can be chosen as

few or as many columns of the table as you require.

• Selection: It could be used as the selection capability in SQL to choose the

rows in a table that returns by the query. Also it can be used as various

criteria to restrict the rows that have been seen.

• Joining: it could be used as the join capability in SQL to bring together

data that is stored in different tables by creating a link between them.

In its simplest form, a SELECT statement must include the following:

• A SELECT clause, which specifies the columns to be displayed

• A FROM clause, which specifies the table containing the columns listed in
the SELECT clause

Syntax:

Select

From
* I {[Distinct] Columnllixpression [Alias],... }

table;

In the syntax:

Select: is a list of one or more columns

*· selects all columns

Distinct: suppresses duplicates

Columnllixpression: selects the named column or the expression
Alias: gives selected columns different headings
From: table specifies the table containing the columns

66 



67 

Object Relational SQL

5.3.2 Insert statement 

New rows can be added to a table by issuing the INSERT statement.

Syntax:

Insert Into table [(Column [, Column...])]

Values (Value[, Value... ]);

In the syntax: .

table: is the name of the table

Column: is the name of the column in the table to populate
Value: is the corresponding value for the column

5.3.3 Update statement 

It could be modified as the existing rows by using the UPDATE statement.

Syntax:

Update table

Set Column= Value[, Column= Value, ... ]

[Where Condition];

In the syntax:

table: is the name of the table

Column: is the name of the column in the table to populate

Value: is the corresponding value or subquery for the column

Condition: identifies the rows to be updated and is composed of
r column constants, subqueries, andnames expressıons,

comparison operators



68 

Object Relational SQL

5.3.4 Delete statement 

It can be remove existing rows from a table by using the DELETE statement [9].

Syntax:

Delete [From] table
[Where Condition];

5.4 Summary 

The Object Definition Language (ODL) is equivalent to the data definition

language (DDL) of traditional DBMSs. It defines the attributes and relationships

of types and specifies the signature of the operations. DDL (Data Definition

Language). These SQL statements define the structure of a database, including

rows, columns, tables, and database specifics such as file locations. DDL SQL

statements are more part of the DBMS and have large differences between the

SQL variations.

The Object Query Language (OQL) can be used as a standalone language and as a

language embedded in another language, for which an ODMG binding is defined.

The currently supported languages are smaltalk C++, and Java, OQL can also

invoke operations programmed in these langages. DML (Data Manipulation

Language). These SQL statements are used to retrieve and manipulate data. This

category encompasses the most fundamental commands including DELETE,

INSERT, SELECT, and UPDATE.



Database Design With Object Data Modeling 

CHAPTER SIX 

DATABASE DESIGN WITH OBJECT DATA MODELING 

6.1 Overview 
This chapter applies the syntaxes shown in chapter (5) in the trading company

application, which contains employees' and customers' data. At the same time

there is a comparison to show the main differences between using object modeling

approaches, and without using it,.

6.2 Object Relational DB Application 
The applications have focused on accessing and modifying corporate data that is

stored in tables composed of native SQL data types such as INTEGER,

NUMBER, DATE, and CHAR. Oracle is not supported only for these native

types, but also for new 'object' data types [5].

EMPLOYEE NATIONALITY
Emp no

PK Nationality id

Emp rıame Nationality_name

Emp_birth
r-, FK 

Nationality_id /
POSITION

Empjd
"" FK PK Position id

Position id / Position name
"'FK -

Department_id /

Emp_sex
DEPARTMENT

Emp_marital_status
Department idPK 

Emp__phone Department_name

Emp Email

Emp_address

Figure 6.1 The Employee Entity Relationship Diagram

69 



Database Design With Object Data Modeling

CUSTOMER

PK Cus no

Cus name

Cus no ~FK Cus birth
V

Good serial Cus id
Good name

Good ___price
Cus sex

Good sale date Cus___phone

Cus Email

Cus_address

Figure 6.2 The Customer Entity Relationship Diagram

Figure 6. 1 and figure 6.2 explain the entitys relationship diagram (ER diagram) of

trading company application.

The new objects in this application are name_ty, birth_ty, address_ty, and

phone_ty as shown in figure 6.3 .

Phone_ty
(Object)

ı
Birth_ty NEW DATA Name_ty
(Object) - TYPES

~
(Object)~ ~

ı
Address_ty

(Object)

Figure 6.3 New DataTypes( Objects) that used in this Application

70



Database Design With Object Data Modeling

As explained in chapter 5 an object type has attributes of various types, analogous
to columns of a table.

The goal of using these objects is structure tables, to be more readable, usable, and

understandable, also to reduce the size of the code that reduces the time for design
and the time for executing the application.

EMPLOYEE TABLE BEFORE USfNG OBJECTS

Em11 no
r----------, 
I Fname I
I I
I I
I I . I I
I I Emp_nameI Mname ·rıI I
I I
I I
I Lname I
I
L--------- I
r----------, 
I DOB I
I I . I I
I Emp_birthI I ıI I
I POB I
I ----------1

Nationality_id

Emp_id

Position id

Department_id

Emp_sex

Emp_martial_status
r----------, 
I Phone I
I I . I I
I I Emp_phoneI I .. ,
I I
I Home I
I__________ ,

Cus Email
r----------, 
I City I
I I I Emp_address II I
I I •. II I
I Street I
I----------1

EMPLOYEE TABLE AFTER
USfNG OBJECTS

Em11 no

I Emp name 1
I - --- I

:__ Emp_birth_ :

Nationality_id

Emp_id

Position id

Department_id

Emp_sex

Emp_martial_status

/_ Emp_phone /

Emp_Email

/_ Emp_~d;s~ -/

Figure 6.4 The Employee Table Before And After Using Objects

71



Cus sex

Database Design With Object Data Modeling

CUSTOMER TABLE BEFORE USfNG OBJECTS

Cus no
,----------i 
1 Fname ,
I I
: I

: Mname : Cus- nameI I
I I
I I

, Lname :
~---------­ ,.----------, 
: DOB : Cus_birth
I I
I I

: POB :
t_ - - - - - - - - -

Cus_id

Cus_sex
,-----------, 
: Phone : Cus_phone
I I

: I, Home 1
ı_ - - - - - - - - - I

Cus_Email
.-----------, 
: City : Cus address
: L_~~-~~~~~ : Street ,
I_ - - - - - - - - - I

CUSTOMER TABLE AFTER
USING OBJECTS

Cus no

I Cus name 1
I - I

:__ ~u~~~~- :

Cus id

:_ Cus_phone_ :

Cus Email

:_ Cus_address ]

Figure 6.5 The Customer Table Before And After Using Objects

Figure 6.4 and 6.5 shows the differences between the same table before and after

using objects.

The following tables explain description, data type, and constraints for each

attribute in types that used in this application.

Name_ ty Type 

Field Description Data Type Constraints 

Fname First name Varchar2(25) --

Mname Middle name Varchar2(25) --
Lname Last name Varchar2(25) --

72



73

Database Design With Object Data Modeling

Birth_ ty Type 
Field Description Data Type Constraints 
DOB Data of birth date --
POB Place of birth Varchar2(25) --

Address_ ty Type 
Field Description Data Type Constraints 
City Name of city Varchar2(25) --
Street Name of the street Varchar2(25) --

Phone_ ty Type 
Field Description Data Type Constraints 
Mobile Employee mobile Varchar2( 13) --
Home Employee home phone Varchar2( 13) --

This application consists of the tables: nationality, position, department, goods,

employee, and customer. Also the following tables explain description, data type,

and constraints for each attribute in these tables:

Nationality Table 
Field Description Data Type Constraints 
Nationality _id Nationality id Number(2) PK
Nationality name Nationality name Varchar2(25)

Position Table 
Field Description Data Type Constraints 
Position id Position id Number(2) PK
Position name Position name Varchar2(25)



Database Design With Object Data Modeling

Department Table 
Field Description Data Type Constraints 
Department _id Department id Number(2) PK

Department _name I Department name Varchar2(25)

Goods Table 
Field Description Data Type I Constraints 
Cus no Customer number Number(9) IFK
Good serial Serial number Number(15) IPK
Good name Good name Varchar2(25)

Good_price Good price Number(8)

Good sale date Date of sale Date- -

Employee Table . 
Field Description Data Type Constraints 
Emp_no Employee number Number(9) PK
Emp_name Employee name Name_ty

Emp _:birth Employee DOB & POB Birth_ty

Nationality _id Nationality id Number(2) FK
Emp_id Employee id Number(9)

Position id Position id Number(2) FK

Department_ id Employee Department Number(2) FK
Emp_sex Employee sex Number(l)

Emp_marital_ status Employee marital status Number(l)

Emp_phone Employee phones Phone_ty

Emp_Email Employee Email address Varchar2(25)

Emp _address Employee address Address_ty

74 



Database Design With Object Data Modeling

Customer Table 

Field Description Data Type Constraints 
Cus no Customer number Number(9) PK

Cus name Customer name Name_ty

Cus birth Customer DOB & POB Birth_ty

Nationality _id Nationality id Number(2) FK

Cus id Customer id Number(9)

Cus sex Customer sex Number(l)-

Cus _phone Customer phones Phone_ty

Cus Email Customer Email address Varchar2(25)

Cus address Customer address Address_ty

The following figure shows the new data type that is used in employee and

customer table.

f;mp no

-------------~ : Emp_name :
:_-_ :::.::.::..::::: :-_~
: Emp_birth : .

I
~------------- Cus no

r, Name_ty Nationality_id-------------~ 
: Cus _name :

I

Emp_id
Q)

I -
~------------- 

l "fü
Q) ,- - -c;s- birth--:

I Birth_ty ı Position_id f-<

I - I

f-
Q)

~ ~------------- 

Q)

Cus_id

Department_id ;>-

f-<
I

hl o
I -

ı-..

I\- I
o.

Q)s Cus_sex

I Address_ ty-
Emp_sex s

o

ı:ı:ı

.•...
[/J -----------~ ~ ,- - Cus_phone ,

I

Emp_martial_statu:

u I I

I~------------- 

I --------------; 
Cus_Email

J ,
Phone_ty 1 Emp_phone ,

I I
-------------~ 

~------------- ' Cus address ,

Emp_Email
I - I~------------- 

-------------~ 
: Emp_address :
~------------- 

Figure 6.6 New DataType used in Employee & Customer Tables

75



Create Type Name_Ty As Object (

Fname

Mname

Lname

Varchar2(25),

Varchar2(25),

Varchar2(25));

Database Design With Object Data Modeling

6.3 The Object Definition Language 

Now it is possible to apply the Object Definition Language (ODL) in this

Application.

6.3.1 Create objects in the database. 

The following SQL statements create Address_ty, Birth_ty, Name_ty, and

Phone_ty as objects or as new defined type. After that, it is possible to use these

new defined types as an attribute datatype.

Create Type Address_Ty As Object (

City

Street

Varchar2(25),

Varchar2(25));

Create Type Birth_Ty As Object (

DOB

POB

Date,

Varchar2(25));

Create Type Phone_ Ty As Object (

Mobile

Home

Varchar2(13),

Varchar2(13));

76



Create Table Goods (

Cus No

Good Serial

Good Name

Good Price

Number(9),

Number(15) Primary Key,

Varchar2(25),

Number(8),

Database Design With Object Data Modeling

6.3.2 Create tables in the database. 

The application consists of nationality, position, department, and goods tables that

created by the normal way (without new defined type).

Create Table Nationality (

Nationality _Id

Nationality_Name

Number(2)Primary Key,

Varchar2(25));

Create Table Position (

Position Id Number(2)Primary Key,

Position Name Varchar2(25));

Create Table Department (

Department_ Id

Department_ Name

Number(2)Primary Key,

Varchar2(25));

Good_ Sale_ Date Date,

Constraint Good_ Cus_Fk Foreign Key(Cus_No)

References Customer( Cus_No));

Also, the application consists of employee and customer tables that involve new

defined types as an attributes datatypes.

77



Database Design With Object Data Modeling

As shown in creation of employee table, using of objects address_ty, birth_ty,

name_ty, and phone_ty reduce the number of the SQL statements, structure tables,

and make it more readable and understadable.

Create Table Employee (

Emp_No Number(9)Primary Key,
-----------------------------------------------------------------------------

Emp_Name Name_Ty,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Emp_Birth Birth_Ty,

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Emp_Id Number(9),

Emp_Sex Number(l),

Emp_Marital_Status Number(l),

Emp_Phone Phone_Ty,

Emp_Email Varchar2(25),

Emp_Address Address_Ty,

Nationality_Id Number(2),

Position Id Number(2),

Department_Id Number(2),

Constraint Emp_Nat_Fk Foreign Key(Nationality_Id)

References Nationality(Nationality_Id),

Constraint Emp_Pos_Fk Foreign Key(Position_ld)

References Position(Position_Id),

Constraint Emp_Dep_Fk Foreign Key(Department_Id)

References Department(Department_Id));

Now if employee table does not contain new defined types as attributes datatypes

(objects), the SQL Statements will be unreadable, ununderstadable, and the

number of it will be more, as the following:

78



Database Design With Object Data Modeling

~\.~ô.\.~"\.~'\.~ ~Th~~'l~~ \

Emp_No Number(9)Primary Key,

Fname Varchar2(25),

Varchar2(25),

Varchar2(25),
Mname

Lname

DOB Date,

POB Varchar2(25),
*---------------------------------------------------------------------------- 
Emp_Id Number(9),

Emp_Sex Number(l),

Emp_Marital_Status Number(l),

Mobile Varchar2(13),

Home Varchar2(13),

Emp_Email Varchar2(25),

City Varchar2(25),

Street Varchar2(25),

Nationality_Id Number(2),

Position Id Number(2),

Department_Id Number(2),

Constraint Emp_Nat_Fk Foreign Key(Nationality_Id)

References Nationality(Nationality_Id),

Constraint Emp_Pos_Fk Foreign Key(Position_Id)

References Position(Position_Id),

Constraint Emp_Dep_Fk Foreign Key(Department_Id)

References Department(Department_Id));

Also as seen in creation of customer table, use of objects address_ty, birth_ty,

name_ty, and phone_ty reduce the number of SQL statements, structure tables,

and make it more readable and understadable.

79



Database Design With Object Data Modeling 

Create Table Customer (

Cus No Number(9)Primary Key,

Cus Name Name_Ty,

Cus Birth Birth_Ty,

Cus Id Number(9),

Cus Sex Number(l),

Cus Phone Phone_Ty,

Cus Email Varchar2(25),

Cus Address Address_Ty);

If customer table does not contain new defined types as attributes datatypes

(objects), the SQL statements will be unreadable, ununderstadable, the number of

it will be more, and the run time will be more as the following:

Create Table Customer (

Cus No Number(9)Primary Key,

Fname Varchar2(25),

Varchar2(25),

Varchar2(25),

Mname

Lname

DOB Date,

POB Varchar2(25),
----------------------------------------------------------------------------- 
Cus Id Number(9),

Cus Sex Number(l),

Mobile Varchar2(13 ),

Home Varchar2( 13 ),

Cus Email Varchar2(25),

City Varchar2(25),

Street Varchar2(25));

80



Database Design With Object Data Modeling

6.3.3 Create views in the database. 

It is possible to present logical subsets or combinations of data by creating views

from tables. This application contains some veiws, the following view is one of it.

As seen in creation of employee_ vw view, using of objects name_ty, and birth_ty

reduce the number of the SQL statements, structure view, and make it more

readable and understadable.

Create Or Replace View Employee_ Vw As

Select E.Emp_No,
----------------------------------------------- E.Emp_Name,

----------------------------------------------------------1 
E.Emp Birth, i

- I
---------------------------------------------------------- 
N.Nationality_Name,

P.Position_Name,

D.Department_ Name

From Employee E, Nationality N, Position P, Department D

Where N .Nationality_ Id = E.N ationality _Id

P.Position Id = E.Position Id- -

And

And

D.Department_Id = E.Department_Id;

When using the normal way (the employee table without new defined type) the

view will be more unreadable, ununderstandable, and the number for its SQL

statements will be more, as in the following example:

Create Or Replace View Employee_ Vw As

Select E.Emp_No,
--- --------------------------------------------- E.Fname,

E.Mname,

E.Lname,
--------------------------------------------- 

81



Database Design With Object Data Modeling

E.DOB

E.POB

From

Where

N .Nationality_ Name,

P .Position_ Name,

D.Department_ Name

Employee E , Nationality N , Position P , Department D

N.Nationality~Id = E.Nationality_Id And

P.Position Id = E.Position Id- - And

D.Department_Id = E.Department_Id;

6.3.4 Create procedures in the database. 

Procedures are defined by a routine name and the parameters to be passed in and

out of the routine. The parameters may be native SQL data types like

employee_ no or new defined type like employee_ name and employee_ birth. As

seen ın reation of new_employee procedure, using of objects name_ty, and

birth_ ty reduce the size of the code, structure procedure, and make it more

readable and understandable.

Create Or Replace Procedure New_Employee

( Employee_ No In Number,

Employee_Name In Name_Ty,

Employee_ Birth In Birth_Ty )
As

Begin

Insert Into Employee(Emp_No,Emp_Name,Emp_Birth)

Values(Employee_No,Employee_Name,Employee_Birth);

End;

82



will be more, as in the following example:

Create Or Replace Procedure New_Employee

( Employee_No In Number,

Employee_Fname In Varchar2,

Employee_Mname In Varchar2,

Employee_Lname In Varchar2,

Employee_Dob In Date,

Employee_Pob In Varchar2 )

As

Begin

Database Design With Object Data Modeling 

To execute the last procedure it must be written in a SQL statement like the

following.

Execute New_Employee( 20060009,

Name_Ty('Ahmed','R','Dawoud'),

Birth_Ty('11-Nov-1997','Palestine'));

When using the normal way (the employee table without new defined type) the

procedure will be more unreadable, ununderstandable, and the size for its code

Insert Into Employee(Emp_No,Fname,Mname, Lname, Dob, Pob)

Values( Employee_No,Employee_Fname,Employee_Mname,

Employee_Lname, Employee_Dob ,Employee_Pob);

End;

To execute the last procedure it must be written in a SQL statement like the

following.

Execute New_Employee( 20060009, 'Ahmed','R','Dawoud', '11-Nov-1997',

'Palestine');

83



84

Database Design With Object Data Modeling

6.3.5 Create functions in the database. 
A function may declare a list of parameters, and it must return one value. The

following function uses the birth date as input, and it returns the age of employee

as output. As seen in creation of age_employee_no function, use of object birth_ty

structure function, and makes the SQL statements more readable and

understadable.

Create Or Replace Function Age_Employee_No (X Number) Return Number

Is

I Date;

Begin
Select E.Emp_Birth.Dob Into I

From Employee E

Where Emp_No=X;

Return (Sysdate-I)/365;

End;

When using the normal way (the employee table without new defined type) the

function will be more unreadable, and ununderstandable, as in the following

example:

Create Or Replace Function Age_Employee_No (X Number) Return Number

Is

I

Begin

Select

From

Where

Return

Date;

Dob Into I

Employee

Emp_No=X;

(Sysdate-I)/365;

End;



Database Design With Object Data Modeling 

6.3.6 Create triggers in the database. 
A trigger is a message or something that accomplishes the user's a tension.

Create Or Replace Trigger Emp_Trigger

Before Insert Or Update Or Delete On Employee

Begin

If Deleting Then
Raise_Application_Error(-20502,'Again');

End If;
End;.

As seen when the deletion process occurs this message will be appear.

6.4 Object Query Language 
After finishing of ODL, it is possible to apply the Object Query Language (OQL)

in application.

6.4.1 Insert a row in the table 
To insert a row into the employee table there exists two cases. The first case is

when there are some attributes with new defined data type, this makes the insert

process more readable and understandable as in the following example.

Insert Into Employee( Emp_No, Emp_Name, Emp_Birth )

Values ( 20043315,
Name_Ty('Anwar','M','Dawoud'),

Birth_Ty('12-Nov-82','Palistine') );

85



Database Design With Object Data Modeling 

The second case is when using the normal way (the employee table without new

defined type) the insert statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Insert Into Employee ( Emp_No, Fname, Mname, Lname, Dob, Pob )
Values ( 20043315 'Anwar' 'M' 'Dawoud' '12-Nov-82' 'Palistine' )·' ' ' ' ' '

6.4.2 Update a row in the table 

To update a row into the employee table there are two cases. The first case is

when there are some attribute with new defined data type, this makes the update

process more readable and understandable as in the following example.

Update Employee

Set Emp_Name=Name_Ty('Ahmed','A','Dalo')

Where Emp_No=20043815;

The second case is when using the normal way (the employee table without new

defined type) the update statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Update Employee

Set Fname='Ahmed', Mname='A', Lname='Dalo'

Where Emp_No=20043815;

6.4.3 Delete a row in the table 

To delete a row from the employee table there exist two cases. The first case is

when there are some attribute with new defined data type, this makes the delete

process more readable and understandable as in the following example.

86 



Database Design With Object Data Modeling 

Delete

Where

From Employee

Emp_Name=Name_Ty('Ahmed', 'R', 'Dawoud');

The second case is when using the normal way (the employee table without new

defined type) the delete statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Delete

Where

From Employee

Fname='Ahmed' And

AndMname='R'

Lname='Dawoud';

6.4.4 Select rows from the table 

To select some rows from the employee table there exist two cases. The first case

is when there are some attribute with new defined data type. This makes the select

process more readable and understandable as in the following example.

Select

From

Emp_No,Emp_Name

Employee;

The second case is when using the normal way (the employee table without new

defined type) the select statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Select

From

E.Emp_No, E.Fname, E.Mname, E.Lname

Employee E;

87



Database Design With Object Data Modeling 

In this application there are some graphical user interfaces. Figures 6.7 and 6.8

show graphical user interfaces for emplyee and customer tables.

!.}IIF8'r' fi(;I l:c_Tf- J.!PPATI: lNSiE"Hl

f\~n'le fa~---·--~· fiuJt;;;11dd Jfft••ıi·,m,y--- .. -. ·-.---.

rıntı"' nr ı::ıirrh

3

Pl(lı)r, !).f 13,rlh,,r ,
f'.'larital· t.tatus 1""""""--·+-·+-,....,..~e).:

Efılp!uy,m ID N:~ıl.iütı;ıfity

UepartmeJı,:t

Mob;JL, ,i\iQ. PlmımNO,J

L;ity Btreet 

E.mail,Ad.dre'.!is

l~i_._.........t ... " ! ·~~
£wt ·~ J ')' j ıoowı

'FilJ.l:'+ Mı\lN• SCR:l:D4

Figure 6. 7 Graphical user Interface for Employee Table

,YUl::liY Ql::U:ft ]JPOATI:.

CustıtHTtef ;,"'lo.,

.Nam,. fi.,ırd ft'scn .Ffüfoır
D"'t'f" Of !]iirth, ".~8i00/EH8 1'1,,,.,.,. fff llı,th [1oruıstln.;:r , ~·~~~~~~-..;..........,.
tıııstQ:Oif('~'r:,rf. pa.sıs..ı~tsıı Se8 ~ıMale ,d

Mobil~ No. r.:;:)~Ü,.ı it:~51 

Qty f"'"'"~"
Eınai .Add.essi fdid kl ıtl«ir,:'.J>lmtı.,,.,ı_._.,.,,

liorrv:~ ~. fo!,k!iyr:..ı
,-..~~..,...~~----~ 

St.t~t!t roin~d to¥

Figure 6.8 Graphical user Interface for Customer Table

88



200tlODD:t ~\.hmeil Dalor.
2;1175514

Database Design With Object Data Modeling

Throughout the last graphical user interfaces it could be generated as a new

number of every employee and customer. After that it could be added some

information a bout them such as name, birth of date, and place of birth.

The following report show employee number, name, phone, and email.

Et!FLCiı:EE PHONES+EMAIL ADDl!IB/Ji:S

10060001 ~.ııwar UawoHd

Figure 6.9 Report Showing Employee Name, Phone, and Email

Comparison of SQL statements for trading company database design has been

listed for with objects and without objects respectively as following :

Number of DDL Statements DML Statements

SQL Statements Tables Procedures Functions Select Insert Update delete

With Objects 24 8 8 4 8 5 4

Without Objects 34 11 10 6 14 8 6

Improvement 30% 27% 20% 33% 43% 38% 34%

89 



Database Design With Object Data Modeling 

6.5 Summary 
The main differences between using Object approaches and without have been

declared using the application of trading company.

As seen in this chapter using the ORDBMS concepts make the application more

usable, readable, and reduce the size of the code.

90 



CONCLUSION 

In the thesis the Object-oriented database technology is discussed as a symbiosis

of object-oriented modeling and database technologies. The object-oriented data

modeling provides the technique to encapsulate the attributes and the methods for

processing the attributes.

It is shown how database storage mechanism incorporates object-oriented data and

establishes the Object-Oriented Database Systems. Object-Oriented Database

Systems are based on Object-Oriented Programming Language and Database

storage mechanisms that depend on the data model established.

The Relational Database System (RDBS) as most popular one is discussed but

with disadvantage not to use an object data modeling. The implementation of the

object data modeling to RDBS significantly improves and simplifies the database

design. This combination is named as Object Relational Database System

(ORDBS) and allows a designer to use convenient structured query language

(SQL) with object features.

The thesis analyzes declared the features of Object Structured Query Language

(OSQL) that includes Object Data Definition Language and Object Query

Language. This analysis with discussion of the advantages of OSQL was made by

structuring the problem with object data modeling in Trading Company Database

Design. The comparisons of the SQL statements made with and without object

features showed that the implementing object data modeling approach in database

design gives the following advantages:

• simplify the design by reduction of the steps of abstractions for mapping

the real life problem to the database structure design;

• simplify the structuring of problem by using object data modeling

• reduce the number of SQL statements in query descriptions;

• speed up the query processing;

.,,

91



REFERENCES 

[1] Object-Oriented Database Management Systems Revisited, An Updated

DACS State-of-the-Art Report. Prepared by: Gregory McFarland, Andres

Rudmik, and David Lange Modus Operandi, Inc, 1999.

[2] Cattell, R.G.G., Object Data Management: Object-Oriented and Extended

Relational Database Systems. Massachusetts: Addison-Wesley, 1997.

[3] Atkinson, Malcolm, et al., "The Object-Oriented Database System

Manifesto." Building An Object-Oriented Database System, California:

Morgan Kaufmann, 1999.

[4] Lecluse, C., et al., "02, an Object-Oriented Data Model." Building An

Object-Oriented Database System, California: Morgan Kaufmann, 1995.

[5] C. J DATE An Introduction to Database System - ih ed, Addison

Wesley, 2005.

[6] The Object-Oriented Database System Manifesto "Malcolm Atkinson"

http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto/

Manifesto.html

[7] Hugh Darwen and CJ.Date: "Into the Great Divide," in CJ.Date and hugh

Drawen, Relational Database Writings 1989-1991. Reading,, mass.:

Addison-Wesley 1992.

[8] Thomas Connolly and Carolyn Begg, Database systems of particular

approach to Design, Implementation and management. Addison Welley

2001.

92



93

[9] Introduction to Oracle9i_SQL-Instructor Guide Volume 2.

[10] Elisa Bertino and Lorenzo: Object Database Systems: Concepts and

Architectures. Reading, Mass.: Addison-wesley (1993).

[11] Versant Object Technology. How to Evaluate Object Database

Management Systems, 1992.

[12] Wirfs-Brock, Rebecca, et al., Designing Object-Oriented Software. New

Jersey: Prentice-Hall, 1998.

[13] Zdonik, Stanley B. and Peter Wegner, "Language and Methodology for

Object-Oriented Database Environments." Proceedings of the Nineteenth

Annual Hawaii International Conference on System Sciences, (1996).

[14] Arkinson M. ed. (1995). Proc. Of Workshop on Persistent Object

System. Springer-Verlag.

[15] Embley D. (2003). Object Database Development: concepts and

principles. Harlow. Addison Wesley Longman.

[16] Stonebraker M. (2005). Object-Relational DBMS: The Next Great

Wave. San Francisco, CA: Morgan Kaufmann Publishers Inc.

[17] E. F. Codd: "Relational Completeness of Data Base Sublanguages," in

Randall J. Rustin (ed.), Data Base System, Courant Computer Science

Symposia Series 6. Englewood Cliffs, N.J.: Prentice-Hall (1988).



[18] Elmasri R. and Navathe S. Fundamentals of Database Systems 3rd ed.

New York, NY: Benjamin/Cummings, 2001.

[19] S. Abiteboul and P. Kanellakis, "Object identity as a query language

primitive", Proceedings of the 1989 ACM SIGMOD, Portland, Oregon,

June 89.

[20] Optimizing Dynamically-Typed Object-Oriented Languages With

Polymorphic Inline Caches 2002

[21] Optimization of object-oriented programs using static class hierarchy

analysis. In Proceedings of the European Conference on Object-Oriented

Programming ( Aarhus, Denmark, Aug.). Lecture Notes in Computer

Science, vol. 952. Springer-Verlag. 2004

[22] Profile-Guided receiver class prediction. In Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and

Applications (Austin, Texas, Oct.) 2005

[23] Atkinson, Malcolm et al. The Object-Oriented Database Manifesto. In

Proceedings of the First International Conference on Deductive and

Object-Oriented Databases, pages 223-40, Kyoto, Japan, December 1999

http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto

/Manifesto.html

[24] R. J. Peters and M. T. ·· Ozsu. An Axiomatic Model of Dynamic Schema

Evolution in Objectbase Systems. ACM Transactions on Database

Systems, 22(1):75{114, March 1997.

94



Database Design With Object Data Modeling 

6.3.6 Create triggers in the database. 
A trigger is a message or something that accomplishes the user's a tension.

Create Or Replace Trigger Emp_Trigger

Before Insert Or Update Or Delete On Employee

Begin

If Deleting Then
Raise_Application_Error(-20502,'Again');

End If;
End;.

As seen when the deletion process occurs this message will be appear.

6.4 Object Query Language 
After finishing of ODL, it is possible to apply the Object Query Language (OQL)

in application.

6.4.1 Insert a row in the table 
To insert a row into the employee table there exists two cases. The first case is

when there are some attributes with new defined data type, this makes the insert

process more readable and understandable as in the following example.

Insert Into Employee( Emp_No, Emp_Name, Emp_Birth )

Values ( 20043315,
Name_Ty('Anwar','M','Dawoud'),

Birth_Ty('12-Nov-82','Palistine') );

85



Database Design With Object Data Modeling 

The second case is when using the normal way (the employee table without new

defined type) the insert statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Insert Into Employee ( Emp_No, Fname, Mname, Lname, Dob, Pob )
Values ( 20043315 'Anwar' 'M' 'Dawoud' '12-Nov-82' 'Palistine' )·' ' ' ' ' '

6.4.2 Update a row in the table 

To update a row into the employee table there are two cases. The first case is

when there are some attribute with new defined data type, this makes the update

process more readable and understandable as in the following example.

Update Employee

Set Emp_Name=Name_Ty('Ahmed','A','Dalo')

Where Emp_No=20043815;

The second case is when using the normal way (the employee table without new

defined type) the update statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Update Employee

Set Fname='Ahmed', Mname='A', Lname='Dalo'

Where Emp_No=20043815;

6.4.3 Delete a row in the table 

To delete a row from the employee table there exist two cases. The first case is

when there are some attribute with new defined data type, this makes the delete

process more readable and understandable as in the following example.

86 



Database Design With Object Data Modeling 

Delete

Where

From Employee

Emp_Name=Name_Ty('Ahmed', 'R', 'Dawoud');

The second case is when using the normal way (the employee table without new

defined type) the delete statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Delete

Where

From Employee

Fname='Ahmed' And

AndMname='R'

Lname='Dawoud';

6.4.4 Select rows from the table 

To select some rows from the employee table there exist two cases. The first case

is when there are some attribute with new defined data type. This makes the select

process more readable and understandable as in the following example.

Select

From

Emp_No,Emp_Name

Employee;

The second case is when using the normal way (the employee table without new

defined type) the select statement will be more ambiguous, unreadable, and

ununderstandable, as in the following example:

Select

From

E.Emp_No, E.Fname, E.Mname, E.Lname

Employee E;

87



Database Design With Object Data Modeling 

In this application there are some graphical user interfaces. Figures 6.7 and 6.8

show graphical user interfaces for emplyee and customer tables.

!.}IIF8'r' fi(;I l:c_Tf- J.!PPATI: lNSiE"Hl

f\~n'le fa~---·--~· fiuJt;;;11dd Jfft••ıi·,m,y--- .. -. ·-.---.

rıntı"' nr ı::ıirrh

3

Pl(lı)r, !).f 13,rlh,,r ,
f'.'larital· t.tatus 1""""""--·+-·+-,....,..~e).:

Efılp!uy,m ID N:~ıl.iütı;ıfity

UepartmeJı,:t

Mob;JL, ,i\iQ. PlmımNO,J

L;ity Btreet 

E.mail,Ad.dre'.!is

l~i_._.........t ... " ! ·~~
£wt ·~ J ')' j ıoowı

'FilJ.l:'+ Mı\lN• SCR:l:D4

Figure 6. 7 Graphical user Interface for Employee Table

,YUl::liY Ql::U:ft ]JPOATI:.

CustıtHTtef ;,"'lo.,

.Nam,. fi.,ırd ft'scn .Ffüfoır
D"'t'f" Of !]iirth, ".~8i00/EH8 1'1,,,.,.,. fff llı,th [1oruıstln.;:r , ~·~~~~~~-..;..........,.
tıııstQ:Oif('~'r:,rf. pa.sıs..ı~tsıı Se8 ~ıMale ,d

Mobil~ No. r.:;:)~Ü,.ı it:~51 

Qty f"'"'"~"
Eınai .Add.essi fdid kl ıtl«ir,:'.J>lmtı.,,.,ı_._.,.,,

liorrv:~ ~. fo!,k!iyr:..ı
,-..~~..,...~~----~ 

St.t~t!t roin~d to¥

Figure 6.8 Graphical user Interface for Customer Table

88



200tlODD:t ~\.hmeil Dalor.
2;1175514

Database Design With Object Data Modeling

Throughout the last graphical user interfaces it could be generated as a new

number of every employee and customer. After that it could be added some

information a bout them such as name, birth of date, and place of birth.

The following report show employee number, name, phone, and email.

Et!FLCiı:EE PHONES+EMAIL ADDl!IB/Ji:S

10060001 ~.ııwar UawoHd

Figure 6.9 Report Showing Employee Name, Phone, and Email

Comparison of SQL statements for trading company database design has been

listed for with objects and without objects respectively as following :

Number of DDL Statements DML Statements

SQL Statements Tables Procedures Functions Select Insert Update delete

With Objects 24 8 8 4 8 5 4

Without Objects 34 11 10 6 14 8 6

Improvement 30% 27% 20% 33% 43% 38% 34%

89 



Database Design With Object Data Modeling 

6.5 Summary 
The main differences between using Object approaches and without have been

declared using the application of trading company.

As seen in this chapter using the ORDBMS concepts make the application more

usable, readable, and reduce the size of the code.

90 



CONCLUSION 

In the thesis the Object-oriented database technology is discussed as a symbiosis

of object-oriented modeling and database technologies. The object-oriented data

modeling provides the technique to encapsulate the attributes and the methods for

processing the attributes.

It is shown how database storage mechanism incorporates object-oriented data and

establishes the Object-Oriented Database Systems. Object-Oriented Database

Systems are based on Object-Oriented Programming Language and Database

storage mechanisms that depend on the data model established.

The Relational Database System (RDBS) as most popular one is discussed but

with disadvantage not to use an object data modeling. The implementation of the

object data modeling to RDBS significantly improves and simplifies the database

design. This combination is named as Object Relational Database System

(ORDBS) and allows a designer to use convenient structured query language

(SQL) with object features.

The thesis analyzes declared the features of Object Structured Query Language

(OSQL) that includes Object Data Definition Language and Object Query

Language. This analysis with discussion of the advantages of OSQL was made by

structuring the problem with object data modeling in Trading Company Database

Design. The comparisons of the SQL statements made with and without object

features showed that the implementing object data modeling approach in database

design gives the following advantages:

• simplify the design by reduction of the steps of abstractions for mapping

the real life problem to the database structure design;

• simplify the structuring of problem by using object data modeling

• reduce the number of SQL statements in query descriptions;

• speed up the query processing;

.,,

91



REFERENCES 

[1] Object-Oriented Database Management Systems Revisited, An Updated

DACS State-of-the-Art Report. Prepared by: Gregory McFarland, Andres

Rudmik, and David Lange Modus Operandi, Inc, 1999.

[2] Cattell, R.G.G., Object Data Management: Object-Oriented and Extended

Relational Database Systems. Massachusetts: Addison-Wesley, 1997.

[3] Atkinson, Malcolm, et al., "The Object-Oriented Database System

Manifesto." Building An Object-Oriented Database System, California:

Morgan Kaufmann, 1999.

[4] Lecluse, C., et al., "02, an Object-Oriented Data Model." Building An

Object-Oriented Database System, California: Morgan Kaufmann, 1995.

[5] C. J DATE An Introduction to Database System - ih ed, Addison

Wesley, 2005.

[6] The Object-Oriented Database System Manifesto "Malcolm Atkinson"

http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto/

Manifesto.html

[7] Hugh Darwen and CJ.Date: "Into the Great Divide," in CJ.Date and hugh

Drawen, Relational Database Writings 1989-1991. Reading,, mass.:

Addison-Wesley 1992.

[8] Thomas Connolly and Carolyn Begg, Database systems of particular

approach to Design, Implementation and management. Addison Welley

2001.

92



93

[9] Introduction to Oracle9i_SQL-Instructor Guide Volume 2.

[10] Elisa Bertino and Lorenzo: Object Database Systems: Concepts and

Architectures. Reading, Mass.: Addison-wesley (1993).

[11] Versant Object Technology. How to Evaluate Object Database

Management Systems, 1992.

[12] Wirfs-Brock, Rebecca, et al., Designing Object-Oriented Software. New

Jersey: Prentice-Hall, 1998.

[13] Zdonik, Stanley B. and Peter Wegner, "Language and Methodology for

Object-Oriented Database Environments." Proceedings of the Nineteenth

Annual Hawaii International Conference on System Sciences, (1996).

[14] Arkinson M. ed. (1995). Proc. Of Workshop on Persistent Object

System. Springer-Verlag.

[15] Embley D. (2003). Object Database Development: concepts and

principles. Harlow. Addison Wesley Longman.

[16] Stonebraker M. (2005). Object-Relational DBMS: The Next Great

Wave. San Francisco, CA: Morgan Kaufmann Publishers Inc.

[17] E. F. Codd: "Relational Completeness of Data Base Sublanguages," in

Randall J. Rustin (ed.), Data Base System, Courant Computer Science

Symposia Series 6. Englewood Cliffs, N.J.: Prentice-Hall (1988).



[18] Elmasri R. and Navathe S. Fundamentals of Database Systems 3rd ed.

New York, NY: Benjamin/Cummings, 2001.

[19] S. Abiteboul and P. Kanellakis, "Object identity as a query language

primitive", Proceedings of the 1989 ACM SIGMOD, Portland, Oregon,

June 89.

[20] Optimizing Dynamically-Typed Object-Oriented Languages With

Polymorphic Inline Caches 2002

[21] Optimization of object-oriented programs using static class hierarchy

analysis. In Proceedings of the European Conference on Object-Oriented

Programming ( Aarhus, Denmark, Aug.). Lecture Notes in Computer

Science, vol. 952. Springer-Verlag. 2004

[22] Profile-Guided receiver class prediction. In Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and

Applications (Austin, Texas, Oct.) 2005

[23] Atkinson, Malcolm et al. The Object-Oriented Database Manifesto. In

Proceedings of the First International Conference on Deductive and

Object-Oriented Databases, pages 223-40, Kyoto, Japan, December 1999

http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto

/Manifesto.html

[24] R. J. Peters and M. T. ·· Ozsu. An Axiomatic Model of Dynamic Schema

Evolution in Objectbase Systems. ACM Transactions on Database

Systems, 22(1):75{114, March 1997.

94



(25] Rob, Peter and C. Coronel, Database Systems Design Implementation

and Management, Thompson Pub., 2001.

(26] Mapping Objects to Tables: A Pattern Language, in "Proceedings of the

2000 European Pattern Languages of Programming Conference," Irrsee,

Germany, Siemens Technical Report 120/SWl/FB 2000.

(27] Object Oriented Software Engineering, Jacobson, I., christerson, M.,

Josson, P. & Overgaard, G., Addison-Wesley, Wockingham, England,

2005.

(28] Object Oriented Modelling and Design, Rumbaugh, J., Blaha, M.,

Premerlani, W:, Eddy, F. &Lorensen, W., Prentice Hall, 1991.

(29] The Common Object Request Broker: Architecture and Specification,

Revision 2.0, OMG, July 2004.

95



Appendix A 

APPENDIX A 

SQL STATEMENTS 

The SQL and PL/SQL statements for the trading company program are shown

below.

• SQL statements that create the new data types (objects)

Create Type Address_Ty As Object (

City

Street

Varchar2(25),

Varchar2(25));

Create Type Birth_Ty As Object (

DOB

POB

Date,

Varchar2(25));

Create Type Name_Ty As Object (

Fname

Mname

Lname

Varchar2(25),

Varchar2(25),

Varchar2(25));

Create Type Phone_Ty As Object (

Mobile

Home

Varchar2(13),

Varchar2(13));

I-1



Appendix A 

• SQL statements that create the main tables of the program

Create Table Nationality (

Nationality_Id

Nationality_Name

Number(2)Primary Key,

Varchar2(25));

Create Table Position (

Position Id Number(2)Primary Key,

Position Name Varchar2(25));

Create Table Department (

Department_Id

Department_Name

Number(2)Primary Key,

Varchar2(25));

Create Table Employee (

Emp_No

Emp_Name

Emp_Birth

Emp_Id

Emp_Sex

Emp_Marital_Status

Phone

Emp_Email

Emp_Address

Nationality_Id

Position Id

Number(9)Primary Key,

Name_Ty,

Birth_Ty,

Number(9),

Number(l),

Number(l),

Phone_Ty,

Varchar2(25),

Address_Ty,

Number(2),

Number(2),

I-2



Appendix A 

Department_Id Number(2),

Constraint Emp _Nat_ Fk Foreign Key(N ationality _Id)

References Nationality(N ationality _Id),

Constraint Emp_Pos_Fk Foreign Key(Position_Id)

References Position(Position _Id),

Constraint Emp _Dep_Fk Foreign Key(Department_ Id)

References Department(Department_ Id));

Date,

Create Table Customer (

Cus No

Cus Name

Cus Birth

Cus Id

Cus Sex

Cus Phone

Cus Email

Cus Address

Number(9)Primary Key,

Name_Ty,

Birth_Ty,

Number(9),

Number(l),

Phone_Ty,

Varchar2(25),

Address_Ty);

Create Table Goods (

Cus No

Good_ Serial

Good Name

Good Price

Good Sale Date

Number(9),

Number(l 5) Primary Key,

Varchar2(25),

Number(8),

Constraint Good_ Cus_Fk Foreign Key( Cus_No)

References Customer( Cus_No));

I-3



Appendix A 

• SQL statements that create the main views of the program

Select

Create Or Replace View Employee_ Vw As

E.Emp_No,

E.Emp_Name,

E.Emp _Birth,

N.Nationality _Name,

P.Position_ Name,

D.Department_Name

From Employee E, Nationality N, Position P, Department D

Where N.Nationality _Id = E.Nationality _Id

P.Position Id = E.Position Id- -

And

And

D.Department_Id = E.Department_Id;

Select

Create Or Replace View Emp As

From

Where

Employee.Emp _No,

Employee.Emp _Name,

Employee.Emp _Birth,

Employee.Emp _Id,

Employee.Emp _Sex,

Employee.Emp _Marital_ Status,

Employee.Emp _Email,

Employee.Emp _Address,

N.Nationality _Name,

P.Position_Name,

D.Department_ Name

Employee, Department D, Nationality N, Position P 

((Employee.Department_Id = D.Department_Id) And

(Employee.Nationality_ Id = N .Nationality_ Id) And

1-4



Appendix A 

(Employee.Position_ld = P.Position_ld))

• SQL and PL/SQL statements that create the main functions of the program.

Create Or Replace Function Empid

Return Number

Max Id For This Year- - Number;

Number;

Number;

Is

This Year

Max Year In- -

Begin

Select To_Char(Sysdate,'Yyyy')lnto This_ Year From Dual;

Select Max(Employee.Emp_No) Into Max_ld_For_This_ Year

From Employee

Where Substr(Employee.Emp_No,1,4)=This_ Year;

Select Max(Substr(Employee.Emp _No, 1 ,4)) Into Max_ Year_In

From Employee;

If Max Year In Is Null Then- -

1-5

Max_Id_For_This_ Year:=To_Number(This_ Yearll'OOOO');

Max_Id_For_This_ Year:=Max_Id_For_This_ Year+ 1;

Return(To _Number(Max _Id_ For_ This_ Year));

End If;

If Max Id For This Year Is Null Then- -

Max_Id_ For_This_ Year:=To_Number(This_ Yearll'OOOO');

If This Year= Max Year In Then- - -

Max_Id_For _This_ Year:=Max_Id_For_This_ Year+ 1;

Return(To _Number(Max _Id_For_ This_ Year));

End If;

End If;

lf(This Year>=Max Year In And- - -

To~Number(Substr(Max _Id_For_ This_ Year,5,4))<('9999'))Then



Appendix A 

Max_Id_For_ This_ Year:=Max_Id_For_This_ Year+ 1;

Return(T o_Number(Max _Id_ For_ This_ Year));

Else

Return Null;

End If;

End;

Create Or Replace Function Cusid

Return Number

Is

Max Id For This Year- -
Number;

Number;

Number;

This Year

Max Year In- -

Begin

Select To_ Char(Sysdate,'Yyyy')Into This_ Year From Dual;

Select Max( Customer. Cus_No )Into Max _Id_ For_ This_ Year

From Customer

Where Substr(Customer.Cus_No,2,4)=This_ Year;

Select Max(Substr(Customer.Cus_No,2,4))Into Max_ Year_In From

Customer;

If Max Year In Is Null Then- -

Max_Id_For_This_ Year:=To_Number('l 'IIThis_Yearll'OOOO');

Max_Id_For_This_ Year:=Max_Id_For_This_ Year+ 1;

Return(To _Number(Max _Id_For_ This_ Year));

End If;

If Max Id For This Year Is Null Then- -

Max_Id_For_This_ Year:=To_Number('l 'IIThis_Yearll'OOOO');

If This Year=Max Year In Then- - -

Max_Id_For_This_ Year:=Max_Id_For_This_ Year+ 1;

I-6



Appendix A 

Return(To _Number(Max _Id_For_ This_ Year));

End If;

End If;

If(This _Year>= Max_ Year_ In And

To_Number(Substr(Max _Id_For_ This_ Year,6,4))<('9999'))Then

Max_Id_For_This_ Year:=Max_Id_For_This_ Year+ 1;

Return(To _Number(Max _Id_ For_ This_ Year));

Else

Return Null;

End If;

End;

Create Or Replace Procedure New_Employee (

Employee_No

Employee_Name

Employee_ Birth

In Number,

InName_Ty,

In Birth_Ty )

Create Or Replace Function Age_Employee_No (X Number)

Return Number

Is

I Date;

Begin

Select Dob Into I From Employee

Where Emp_No=X;

Return (Sysdate-I)/365;

End;

• SQL and PL/SQL statements that create the main Procedures of the program.

I-7



Appendix A 

As

Begin

Insert Into Employee(Emp _No,Emp _Name,Emp _Birth)

Values(Employee _No,Employee _Name,Employee _Birth);

End;

Execute New_Employee( 20060009,

Name_ Ty('Ahmed','R','Dawoud'),

Birth_ Ty('l 1-Nov-1997','Palestine'));

The PL/SQL statements that used in the trading company program are shown

below.

• When-new-form-instance

Set_ Window_Property(Forms_Mdi_ Window, Window_State, Maximize);

Set_ Window_Property('Windowl ', Window_State,Maximize);

Set_ Window _Property('Windowl ',Title,'Anwar M Dawoud');

Set_ Window_Property(Forms_Mdi_ Window, Title,'Personal Departement');

Go Block('Main');

Go_ Item('Main. T');

Hide_ View('Nationality');

Hide_ View('Position');

Hide_ View('Department');

Declare

Group_Id

List Idl

List Id2

List Id3

Recordgroup;

Item:= Find_ Item('Employee.N ationality _Id') ;

Item:= Find_ Item('Employee.Position _Id') ;

Item:= Find_ Item('Employee.Department_ Id') ;

I-8



X

Timer Id

Appendix A 

Number;

Timer;

Begin

Timer _Id:=Create_ Timer('Clock', 1000,Repeat);

Group_ Id:= Find_ Group('Rg_ Nationality');

X:=Populate_Group(Group_ld);

X:=Populate _Group(Group _Id);

ClearList (List_Idl);

Populate_ List(List_ Idl ,Group _Id);

Group _Id:=Find_ Group('Rg_Position');

X:=Populate _Group(Group _Id);

X:=Populate _Group(Group _Id);

Clear_List (List_Id2);

Populate _List(List_ Id2,Group _Id);

Group_ Id:= Find_ Group('Rg_ Department');

X:=Populate _Group(Group _Id);

X:=Populate _Group(Group _Id);

Clear_List (List_ld3);

Populate_ List(List_ Id3, Group_ Id);

End;

• On-error

Declare

Erm um

Errtxt

Errtyp

Yy

Begin

Number

Varchar2(80)

Varchar2(3)

Number

:= Error_ Code;

:= Error_Text;

:= Error Type;

I-9



Appendix A 

If Errnum = 41051 Then

Null;

End If;

End;

• When-timer-expired

Select To_ Char(Sysdate,'Day' ,'Nls_Date_ Language=English')

Into :Time_Date_Day.Dayl From Dual;

Select To_Char(Sysdate,'Yyyy/Mm/Dd') Into :Time_Date_Day.Datel From Dual;

Select To_Char(Sysdate,'Hh:Mi:Ss') Into :Time_Date_Day.Timel From Dual;

• Employee form ( Insert Button)

I-10

Clear_Form(No _Commit);

Show_ View('Employee');

Set_Item _Property('Time _Date_ Day.Ins _Pro',Visible, Property_ True);

Set_Item_Property('Time_Date_Day.Que_Pro',Visible, Property_False);

Set_ Item_ Property('Time _Date_ Day .Del_ Pro', Visible, Property_ False);

Set_Item _Property('Time _Date_ Day.Upd _Pro',Visible, Property _False);

Set_Item _Property('Employee.Emp _No' ,Visual_ Attribute,'Vl ');

Set_Item_Property('Employee.Emp_No' ,Enabled, Property _False);

Set_ Item_ Property('Employee.Delete' ,Enabled, Property _False);

Set_Item_ Property('Employee.Insert' ,Enabled, Property_ True);

Set_Item _Property('Employee.Save' ,Enabled, Property_ True);

Set_Block_Property('Employee',Delete _Allowed, Property _False);

Set_Block_Property('Employee',Update_Allowed, Property_False);

Set_Block_ Property('Employee' ,Insert_ Allowed, Property_ True);

Last_ Record;



Appendix A 

Next_ Record;

Go_ Item('Employee.Emp _Name_ Fname');

• Customer form ( Insert Button)

Clear _Form(No _Commit);

Show_ View('Customer');

Set_Item_Property('Time_Date_Day.Tns_Prol',Visible,Property_True);

Set_Item_Property('Time_Date_Day.Que_Prol',Visible,Property_False);

Set_Item _Property('Time _Date_ Day.Del_Pro 1 ',Visible,Property _False);

Set_Item_Property('Time_Date_Day.Upd_Prol',Visible,Property_False);

Set_Item_Property('Customer.Cus_No' ,Visual_Attribute,'Vl');

Set_Item_Property('Customer.Cus_No' ,Enabled,Property_False);

Set_ Item_ Property('Customer.Delete' ,Enabled,Property _False);

Set_ Item_ Property('Customer.Insert' ,Enabled,Property _True);

Set_ Item_ Property('Customer. Save' ,Enabled,Property _True);

Set_ Block_ Property('Customer' ,Delete_ Allowed,Property _False);

Set_Block_ Property('Customer', Update_ Allowed,Property _False);

Set_Block_ Property('Customer',Insert _Allowed,Property _True);

Last_ Record;

Next_ Record;

Go_ Item('Customer. Cus_Name_ Fname');

• Employee form ( Update Button)

Clear_ Block(No _Commit);

Show_ View('Employee');

1-11



Appendix A 

Set_ltem _Property('Time _Date_ Day.Ins _Pro',Visible, Property _False);

Set_Item _Property('Time _Date_ Day.Que _Pro',Visible, Property _False);

Set_Item_Property('Time_Date_Day.Del_Pro',Visible, Property_False);

Set_ltem _Property('Time _Date _Day.Upd _Pro',Visible, Property_ True);

Set_ltem_Property('Employee.Emp_No' ,Visual_Attribute, 'V2');

Set_ Item_ Property('Employee.Emp _No' ,Enabled, Property_ True);

Set_ltem _Pröperty('Employee.Delete' ,Enabled, Property _False);

Set_Item _Property('Employee.Insert' ,Enabled, Property _False);

Set_ltem _Property('Employee.Save' ,Enabled, Property_ True);

Set_ Block_ Property('Employee' ,Delete_ Allowed,Property _False);

Set_ Block_ Property('Employee', Update_ Allowed,Property _True);

Set_Block_Property('Employee',Insert_Allowed,Property_False);

Last_ Record;

Next_Record;

Go_Block('Employee');

Go_ltem('Employee.Emp_No');

I-12

• Customer form ( Update Button)

Clear_Block(No _Commit);

Show View('Customer');

Set_I~em_Property('Time _Date_ Day.Ins _Pro 1 ',Visible,Property _False);

Set_ltem_Property('Time_Date_Day.Que_Prol',Visible,Property_False);

Set_Item_Property('Time_Date_Day.Del_Prol',Visible,Property_False);

Set_ltem_Property('Time_Date_Day".Upd_Prol',Visible,Property_True);

Set_Item_Property('Customer.Cus_No' ,Visual_Attribute,'V2');

Set_Item _Property('Customer.Cus _No' ,Enabled,Property _True);

Set_Item _Property('Customer.Delete' ,Enabled,Property _False);

Set_ Item_ Property(' Customer.Insert' ,Enabled,Property _False);



Appendix A 

Set_ Item_ Property('Customer. Save' ,Enabled,Property _True);

Set_Block_ Property/'Customer' ,Delete_ Allowed,Property _False);

Set_Block_ Property('Customer',Update _Allowed,Property _True);

Set_Block_ Property('Customer' ,Insert_ Allowed,Property _False);

Last_ Record;

Next_ Record;

Go_Block('Customer');

Go_ Item('Customer. Cus_No');

• Employee form ( Delete Button)

I-13

Clear_ Block(No _Commit);

Show_ View('Employee');

Set_Item_Property('Time_Date_Day.Ins_Pro',Visible,Property_False);

Set_Item_Property('Time_Date_Day.Que_Pro',Visible,Property_False);

Set_Item _Property('Time _Date_ Day.Del_Pro',Visible,Property _True);

Set_Item_Property('Time_Date_Day.Upd_Pro',Visible,Property_False);

Set_Item:_Property('Employee.Emp_No' ,Visual_Attribute,'V2');

Set_Item _Property('Employee.Emp _No' ,Enabled,Property _True);

Set_Item _Property('Employee.Delete' ,Enabled,Property _True);

Set_Item _Property('Employee.Insert' ,Enabled,Property _False);

Set_Item _Property('Employee.Save' ,Enabled,Property _True);

Set_Block_ Property('Employee' ,Delete_ Allowed,Property _True);

Set_Block _Property('Employee',Update _Allowed,Property _False);

Set_Block_Property('Employee',Insert_Allowed,Property_False);

Last_ Record;

Next_ Record;



Appendix A 

• Customer form ( Delete Button)

clear_ block(no _commit);

show_ view('CUSTOMER');

Set_ITEM _Property('TIME _DATE_ DAY.INS _PROl ',VISIBLE,property _false);

Set_ITEM _Property('TIME _DATE_ DAY.que _PRO 1 ',VISIBLE,property _false);

Set_ITEM_Property('TIME_DATE_DAY.DEL_PROl',VISIBLE,property_true);

Set_ITEM_Property('TIME_DATE_DA Y.upd_PROl ',VISIBLE,property _false);

Set_ Item_ Property(' CUSTOMER. CUS_no' ,visual_ attribute,'v2 ');

Set_Item_Property('CUSTOMER.CUS_no' ,Enabled,property_true);

Set_Item _Property('CUSTOMER.delete' ,Enabled,property _true);

Set_Item _Property('CUSTOMER.insert' ,Enabled,property _false);

Set_Item_Property('CUSTOMER.save' ,Enabled,property_true);

Set_ Block _Property('CUSTOMER',DELETE _ALLOWED,PROPERTY _TRUE);

Set_Block_Property('CUSTOMER',UPDATE_ALLOWED,PROPERTY_FALSE);

Set_Block_Property('CUSTOMER',INSERT_ALLOWED,PROPERTY_FALSE);

LAST_ RECORD;

NEXT_RECORD;

go_item('CUSTOMER.CUS _no');

• Call Report

Declare

X Paramlist

Begin

X:=Create _Parameter_ List('Order _List');

Add_Parameter(X,'Q_l ',Text_Parameter,':P _l ');

Run_ Product(Reports,'\M _Thesis\Application \Report\Reportl ',

Asynchronous,Runtime,Filesystem,X);

1-14



Appendix A 

Destroy_ Parameter_ List(X);

End;

• The main form (General Constant Button)

Show_ View('Constant');

Show_ View('Constant');

Go_ Block('Constant');

Go_ ltem('Constant. W');

Show_ View('Department');

Go_ ltem('Department.Department_ Id');

1-15



Appendix B 

APPENDIXB 
THE ABBREVIATIONS AND ACRONYMS 

The Abbreviations and Acronyms that are used in this thesis are shown below.

ADT

API

BLOB

CLOB

CORBA

DB

DBA

DBMS

DCL

DDBMS

DDL

DML

ERDBMS

IDL

ODBMS

ODL

OID

OMG

00

OODB

OOP

OQL

ORDBMS

OSQL

Abstract Data Type

Application Programming Interface

Binary Large Object

Character Large Object

Common Object Request Broker Architecture(

Database

Database Administrator

Database Management System

Data Control Language

Distributed Database

Data Definition Language

Data Manipulation Language

Extended Relational Database Management System

Interface Definision Language

Object Database Management System

Object Definition Language

Object Identifier

Object Management Group

Object-Oriented

Object-Oriented Database

Object-Oriented Programming

Object Query Language

Object Relational Database Management System

Object Structured Query Language

II-1



Appendix B 

RDBMS

SQL

UDR

UDT

Relational Database Management System

Structured Query Language

User Defined Routine

User Defined Type

11-2


	Page 1
	Titles
	NEAR EAST UNIVERSITY 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	~;_ 
	o~ ,,_e_r 
	o/·ıı~. 
	\ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 3
	Titles
	ACKNOWLEDGEMENTS 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 4
	Titles
	ABSTRACT 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	CONTENTS 

	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 8
	Images
	Image 1


	Page 9
	Titles
	INTRODUCTION 

	Images
	Image 1
	Image 2


	Page 10
	Titles
	2 


	Page 11
	Titles
	,. 

	Images
	Image 1


	Page 12
	Titles
	CHAPTER ONE 
	OBJECT ORIENTED DATA MODELING 
	1.1 Overview 
	1.2 What is Object-Oriented Programming (OOP)? 
	1.3 What's an Object? 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 13
	Titles
	1.4 What is A Database System? 
	5 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	- ----- 
	' 
	-- 
	I k 
	-, 
	I =1.-- 
	1 J- 
	1.5 Object-Oriented Databases 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 15
	Titles
	1.6 Basic Object-Oriented Modeling 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1
	Image 2
	Image 3


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 20
	Titles
	12 
	,, 


	Page 21
	Images
	Image 1
	Image 2
	Image 3


	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2


	Page 23
	Titles
	•.. 

	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Titles
	1.7 Summary 

	Images
	Image 1
	Image 2


	Page 25
	Titles
	CHAPTER TWO 
	OBJECT ORIENTED DATABASE CONCEPTS 
	2.1 Overview 
	2.2 OODB SYSTEMS Perspectives 

	Images
	Image 1
	Image 2
	Image 3


	Page 26
	Titles
	" 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 27
	Titles
	1 
	-------------------------------------- 
	-- ----------------------------------- 
	,, 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 28
	Titles
	.•. 
	- -----------------•------------------------------- 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 29
	Titles
	2.3 Architecture 
	" 

	Images
	Image 1
	Image 2
	Image 3


	Page 30
	Images
	Image 1
	Image 2
	Image 3


	Page 31
	Titles
	.. 
	------------ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 32
	Titles
	2.4 Integrity 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 33
	Titles
	•• 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 34
	Titles
	2.5 Concurrency Control 

	Images
	Image 1
	Image 2
	Image 3


	Page 35
	Titles
	2.6 Recovery 
	"' 

	Images
	Image 1
	Image 2


	Page 36
	Titles
	2. 7 Transactions 

	Images
	Image 1
	Image 2


	Page 37
	Titles
	2.8 Persistence 
	2.9 Security 

	Images
	Image 1
	Image 2
	Image 3


	Page 38
	Titles
	2.10 Summary 

	Images
	Image 1


	Page 39
	Titles
	CHAPTER THREE 
	3.1 Overview 
	3.2 Introduction to Object-Relational Database System 

	Images
	Image 1
	Image 2
	Image 3


	Page 40
	Images
	Image 1


	Page 41
	Titles
	@~ 
	3.3 SQL3 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 42
	Images
	Image 1
	Image 2
	Image 3


	Page 43
	Images
	Image 1
	Image 2


	Page 44
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 45
	Titles
	"' 

	Images
	Image 1


	Page 46
	Images
	Image 1


	Page 47
	Titles
	3.4 Comparison of ORDBMS and OODBMS 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 48
	Titles
	3.5 Summary 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 49
	Titles
	CHAPTER FOUR 
	4.1 Overview 
	4.2 Introduction to the Original Algebra 

	Images
	Image 1

	Tables
	Table 1


	Page 50
	Titles
	b 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1
	Table 2
	Table 3


	Page 51
	Titles
	4.3 Semantics 

	Images
	Image 1
	Image 2


	Page 52
	Images
	Image 1


	Page 53
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3
	Table 4


	Page 54
	Titles
	46 

	Images
	Image 1
	Image 2
	Image 3


	Page 55
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5


	Page 56
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3


	Page 57
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 58
	Images
	Image 1
	Image 2
	Image 3


	Page 59
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 60
	Images
	Image 1

	Tables
	Table 1


	Page 61
	Images
	Image 1


	Page 62
	Titles
	r=. 
	r=. 

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3
	Table 4


	Page 63
	Titles
	4.4 Associativity and Commutativity 
	4.5 Summary 

	Images
	Image 1
	Image 2


	Page 64
	Titles
	CHAPTER FIVE 
	5.1 Overview 
	5.2 The Object Definition Language (ODL) 

	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1

	Tables
	Table 1


	Page 5
	Images
	Image 1

	Tables
	Table 1


	Page 6
	Images
	Image 1

	Tables
	Table 1


	Page 7
	Images
	Image 1

	Tables
	Table 1


	Page 8
	Tables
	Table 1


	Page 9
	Titles
	5.3 The Object Query Language (OQL) 

	Images
	Image 1


	Page 10
	Images
	Image 1

	Tables
	Table 1


	Page 11
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 12
	Titles
	5.4 Summary 

	Images
	Image 1


	Page 13
	Titles
	6.1 Overview 
	CHAPTER SIX 
	DATABASE DESIGN WITH OBJECT DATA MODELING 
	6.2 Object Relational DB Application 

	Images
	Image 1

	Tables
	Table 1


	Page 14
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 15
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 17
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5


	Page 18
	Tables
	Table 1
	Table 2


	Page 19
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 20
	Titles
	6.3 The Object Definition Language 

	Images
	Image 1


	Page 21
	Images
	Image 1


	Page 22
	Images
	Image 1

	Tables
	Table 1


	Page 23
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 24
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 25
	Titles
	Database Design With Object Data Modeling 
	----------------------------------------------- 
	- - 
	---------------------------------------------------------- 
	--------------------------------------------- 
	--- --------------------------------------------- 
	6.3.3 Create views in the database. 

	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1

	Tables
	Table 1


	Page 27
	Images
	Image 1

	Tables
	Table 1


	Page 28
	Images
	Image 1


	Page 1
	Titles
	6.4 Object Query Language 

	Images
	Image 1


	Page 2
	Titles
	' ' ' ' ' ' 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Titles
	3 
	r , ~·~~~~~~-..;..........,. 
	_._.........t ... " ! ·~~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 5
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 6
	Titles
	6.5 Summary 

	Images
	Image 1


	Page 7
	Titles
	CONCLUSION 

	Images
	Image 1


	Page 8
	Titles
	REFERENCES 

	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 1
	Titles
	6.4 Object Query Language 

	Images
	Image 1


	Page 2
	Titles
	' ' ' ' ' ' 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Titles
	3 
	r , ~·~~~~~~-..;..........,. 
	_._.........t ... " ! ·~~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10


	Page 5
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 6
	Titles
	6.5 Summary 

	Images
	Image 1


	Page 7
	Titles
	CONCLUSION 

	Images
	Image 1


	Page 8
	Titles
	REFERENCES 

	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Titles
	APPENDIX A 

	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1
	Image 2


	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1


	Page 20
	Titles
	X 

	Images
	Image 1
	Image 2


	Page 21
	Images
	Image 1


	Page 22
	Titles
	1-11 

	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1


	Page 25
	Images
	Image 1


	Page 26
	Images
	Image 1


	Page 27
	Titles
	APPENDIXB 

	Images
	Image 1


	Page 28
	Images
	Image 1
	Image 2



