
. NEAR EAST UN·IVERSITY

GRADUATE SCHOOL OF APPLIED
AND SOCIAL SCIENCES

Client Server Application For Hospital Management
System Using Centralized Database

VOLKAN BABAOGLU

Master Thesis

Department Of Computer Engineering

Nicosia - 2004

NEU JURY REPORT

DEPARTMENT OF Academic Year: 2003-2004
COMPUTER ENGINEERING

STUDENT INFORMATION
Full Name Volkan Babaoglu
Undergraduate degree BSc. Date Received Spring

1999-2000

University Cumhuriyet University CGPA 2.58

THESIS
Title Client\Server Application for Hospital Management System using

Centralized Database

Description
The aim of this thesis is to develop a client\server based software for
implementation of Hospital activities

Supervisor Assist.ProfDr. Firudin Muradov Department Computer Engineering

DECISION OF EXAMINING COMMITTEE

The jury has decided to accept I reject the student's thesis.
The decision was taken unanimously I by majority.

COMMITTEE MEMBERS

Number Attending I 3 Date 01/04/2004

Name
Assist. Prof Dr. Dogan Haktarur, Chairman of the jury

Assoc. Prof Dr. Rahib Abiyev, Member

Assoc. Prof Dr. Ilham Huseynov, Member

APPROVALS
Date
01/04/2004

Chairman of Department
Assoc. Prof Dr. Dogan ibrahim

u'P"- ,J-:

DEPARTMENT OF COMPUTER ENGINEERING
DEPARTMENTAL DECISION

Date:01/04/2004

Subiect: Completion of M.Sc. Thesis

Participants: Assist. Prof Dr. Dogan Haktamr, Assoc. Prof Dr. Rahib Abiyev,
Assoc.Prof Dr. Ilham Huseynov, Assist. Prof Dr. Firudin Muradov.

DECISION

We certify that the student whose number and name are given below, has fulfilled all
the requirements for a M .S. degree in Computer Engineering.

CGPA

20002041 Volkan Babaoglu 3.5

~'j;:;;t iii (~0 .
Assist. Prof. Dr. Dogan Hilktai{i;, Committee Chairman, Electrical and Electronic

Engineering .I}e11artment, NEU
--;;?;~
. ~· ..---

Assoc. Prof. Dr. Rahib Abiyev, {_f[mmittet'Member, Computer Engineering
C epartment, 'u .,-

-11 /
Assoc. Prof. Dr. Ilham Huseynov, Committe/Member, Computer Information System

Department, NEU

Assist. Prof. Dr. Firu~~ MUritdov, Supervisor, Computer Engineering
Department, NEU

/

0 f'f->..- vJl-r
Chairma'n of Department

Assoc. Prof Dr. Dogan Ibrahim

V olkan Babaoglu : Client\Server Application for Hospital Management System
using Centralized Database

Approval of the Graduate School of Applied and
Social Sciences

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

·" .· ";;:::/1· , J /)i-;J-1· ;;_,._/.. f~y·
Assist. Prof. Dr. D6gan Hakfanrr, Chairman, Electrical and

Electronic. En~.· · · ering Department, NEU ~~----//
?---

Assoc. Prof. Dr. R~ Abi{ev, Member , Computer Engineering
DepartmentJEt ..

ff 4-_:'
Assoc. Prof. Dr. Ilham Huseft{ov, Member, Computer

Information Systeip Department, NEU

Assist. Prof. Dr. Fin1ctm 1'vfudfaov, Supervisor, Computer Engineering
Department, NEU

ACKNOWLEDGEMENTS

First of all, I would like to extend my sincere and humble gratitude to Almighty

Allah who endowed me potential and ability to make solid contribution to the already

existing ocean of knowledge.

I wish to express my gratitude and sincere appreciation to my supervisor Assist. Prof.

Dr. Firudin Muradov, Near East University for his kind patronage, guidance and

concern not only during this thesis but always. I am really thankful to him for being

there whenever I needed his advice. Also I wish to thank Assist. Prof. Dr. Dogan

Haktarur, Assoc. Prof. Dr. Rahib Abiyev and Assoc. Prof. Dr. Ilham Huseynov.

With great respect and gratitude, I wish to thank Dr. Fakhruddin Mamedov, Dean of

Engineering faculty, Near East University for providing me necessary atmosphere in

the completion of MSc Computer Engineering.

My special note of thanks to all my friends, who made my stay in Near East

University possible. I am really thankful to them for bearing with me and my moods

during my studies.

No words could express the love and understanding my parents have extended to me

during the whole period of my education and throughout my life. The same goes for

the rest of my family who always had a word of appreciation and always stood

beside me.

1

ABSTRACT

• - a) ~\anaoement System is l)Owerful, flexible and easy to use and has designed I o

~~~~~\)~~ \.~ ~~\.'!~"\ "\~~ ~~\.~'!~\.~ ~~'\\.~'-\.\.~ ,~ \.\~~~\\.'&.~~'\\.~~\.Th."-~-'"\_~~~~~~ 

electronic patient information system, Hospital Management System ensures 

optimum use of the medical records of patients. Being patient-centric, the system 

makes it possible for all disparate files on a patient to be housed in a centrally located 

master file, ensuring retrieval and management of files effortless. Plus, easy 

integration ensures a faster start up. 

Hospital Management System has been so designed as to make its usage intuitive, 

which makes adoption of Hospital Management System by the hospital personnel 

quick and easy. Its high level of scalability ensures quick upgrades when change in 

the hospital's business practices so demands. The developed system can make 

searching not only by standard, typical queries of user and non typical queries of 

user. 

Hospital Management System is designed for multi-specialty hospitals, to cover a 

wide range of Hospital administration and management processes. It is an integrated 

client server application uses Delphi as the front-end for Graphical User Interface 

and MS SQL as the database. The main focus of this system is, how to use client­ 

server computing concept with centralized database. 

/ 

11 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

CONTENTS 

INTRODUCTION 

ii 

iii 

vii 

INFORMATION FOR CLIENT SERVER SYSTEM 
1 OVERVIEW 

1.1 Origin of Term Client/Server 
1.2 What is a Client process? 
1.3 What is a Server process? 
1.4 What is Client/Server System? 
1.5 Design Structures for Client/Server 
1.6 Two-Tier Design Structure 
1. 7 Three-Tier or N-Tier Design Structure 
1.8 Distributed Design Structure 
1.9 Summary 

CLIENT SERVER COMPUTING 
2 OVERVIEW 
2.1 Overview of Client Server 
2.2 Introduction to Client Server Systems 
2.3 Definition of Client and Server 
2.4 The Evolution of Clients and Servers 
2.5 Client/Server Examples 
2.6 Putting It All Together 
2. 7 Client Server Architecture 
2.7.1 Two-tier Architecture 
2. 7 .2 Three tier or N-tier Architecture 

2.8 Advantages of Client Server Computing 
2.9 Summary 
DATABASE SYSTEM 
3 OVERVIEW 
3.1 Data Modeling Overview 

3 .1.1 Methodology 
3.1.2 Data Modeling in the Context of Database Design 
3 .1. 3 Components of a Data Model 
3. 1. 4 Why is Data Modeling Important? 
3 .1. 5 The Entity-Relationship Model 

1 
1 

1 
1 
1 
2 
2 
3 
3 
3 
4 

5 

5 
5 
6 
7 
7 
8 
8 
9 
9 
12 
15 
15 
16 
16 
16 
17 
17 
17 
18 
18 

111 



3.1.6 Basic Constructs ofE-R Modeling 
3.2 Data Modeling As Part of Database Design 

3.2.1 Requirements Analysis 
3 .2.2 Steps in Building the Data Model 
3.2.3 Normalization 

3.3 Architectures of Database System 

18 
23 
23 
25 
33 
42 

3.3.1 Centralized Database System 42 
3 .3 .2 Distributed Database System 43 

3.4 Summary 44 
HOSPITAL MANAGEMENT SYSTEM AND DATABASE STRUCTURE OF 
HOSPITAL 45 
4 OVERVIEW 45 

4.1 Hospital Management System Solution for Hospitals 
4.2 Hospital Management System - Registration 
4.3 Hospital Management System - Doctor 
4.4 Hospital Management System - Wards 
4.5 Hospital Management System - Rooms 
4.6 Hospital Management System - Pharmacy 

· 4.7 Hospital Management System - User Manager 
4.8 Benefit of Hospital Network 
4.9 Database Design for Hospital Management System 

Table 4.1 Patient Table Structure 
Table 4.2 Outpatient Table Structure 
Table 4.3 Inpatient Table Structure 
Table 4.4 Room Table Structure 
Table 4.5 Ward Table Structure 
Table 4.6 Bed Availability Table Structure 
Table 4.7 Doctor Table Structure 
Table 4.8 Department Table Structure 
Table 4.9 Inpatient Table Structure 
Table 4.10 Pharmacy Table Structure 

4.10 Adding Patient Algorithm 
4.11 Adding Outpatient Algorithm 

45 
45 
45 
46 
46 
46 
47 
47 
48 
49 
49 
49 
50 
50 
50 
50 
51 
51 
51 
52 
53 

4.12 Adding Inpatient Algorithm 54 
4.13 Adding Inpatient Disease Detail Algorithm 55 
4.14 Relationship of Tables (MS SQL I hosdatal) 56 
4.15 Summary 57 
IMPLEMENTATION OF HOSPITAL MANAGEMENT SYSTEM IN DELPHI 
AND USER INTERFACE 58 

5 OVERVIEW 58 
58 5.1 Administrator Application 

lV 



5.1.1 Administrator Application Main Form 58 
5 .1.2 Administrator Application\ Patient Menu 59 
5.1.3 Administrator Application\ Outpatient Menu 59 
5 .1.4 Administrator Application \ Inpatient Menu 60 
5 .1. 5 Administrator Application \ Room Menu 60 
5.1.6 Administrator Application\ Ward Menu 61 
5 .1. 7 Administrator Application \ Doctor Menu 61 
5 .1. 8 Administrator Application \ Department Menu 62 
5.1.9 Administrator Application\ Inpatient Disease Detail Menu 63 
5 .1.10 Administrator Application \ Pharmacy Menu 63 

5.2 Reception Application 64 
5 .2.1 Reception Application Main Menu 64 
5.2.2 Reception Application\ Add Menu 64 
5.2.3 Reception Application\ Search Record 65 
5.2.4 Reception Application\ Modify Record 65 
5.2.5 Reception Application\ Show All Patient 66 

5.3 Doctor Application 66 
5.3.1 Doctor Application main form 66 
5.3.2 Doctor Application\ Patient\ Search Record 67 
5.3.3 Doctor Application\ Outpatient Menu 68 
5.3.4 Doctor Application\ Outpatient Menu\ Add Record 68 
5.3.5 Doctor Application\ Outpatient Menu\ Search Record 69 
5.3.6 Doctor Application\ Outpatient Menu\ Modify Record 69 
5.3.7 Doctor Application\ Inpatient Menu 70 
5. 3. 8 Doctor Application \ Inpatient Menu \ Inpatient \ Search Record 70 
5.3.9 Doctor Application\ Inpatient Menu\ Inpatient Disease Detail\ Search 
Record71 
5.3.10 Doctor Application\ Inpatient Menu\ Advanced Search 72 

5.4 Room Application 72 
5.4.1 Room Application main form 72 
5.4.2 Room Application\ Inpatient Menu 73 
5.4.3 Room Application\ Inpatient Menu\ Add Record 73 
5.4.4 Room Application\ Inpatient Menu\ Search Record 74 
5.4.5 Room Application\ Inpatient Menu\ Modify Record 74 
5.4.6 Room Application\ Inpatient Disease Detail Menu 75 
5.4.7 Room Application\ Inpatient Disease Detail Menu\ Add Record 75 
5.4.8 Room Application\ Inpatient Disease Detail Menu\ Search Record 76 
5.4.9 Room Application\ Inpatient Disease Detail Menu\ Modify Record 76 

5.5 Ward Application 77 
5.5.1 Ward Application main form 77 
5.5.2 Ward Application\ Inpatient Menu 77 
5.5.3 Ward Application\ Inpatient Menu\ Add Record 78 
5.5.4 Ward Application\ Inpatient Menu\ Search Record 78 
5.5.5 Ward Application\ Inpatient Menu\ Modify Record 79 
5.5.6 Ward Application\ Inpatient Disease Detail Menu 79 
5.5.7 Ward Application\ Inpatient Disease Detail Menu\ Add Record 80 

V 



5.5.8 Ward Application\ Inpatient Disease Detail Menu\ Search Record 80 
5.5.9 Ward Application\ Inpatient Disease Detail Menu\ Modify Record 81 

5.6 Pharmacy Application 81 
5.6.1 Pharmacy Application main form 81 
5.6.2 Pharmacy Application\ Add Menu 82 
5.6.3 Pharmacy Application\ Stock In Menu 82 
5.6.4 Pharmacy Application\ Stock Out Menu 83 
5.6.5 Pharmacy Application\ Search Menu 83 
5.6.6 Pharmacy Application\ Modify Record 84 

5. 7 Definition of Terms and Connection 84 
5.7.1 Microsoft Data Access Components (MDAC) 84 
5.7.2 How to Create Open Database Connectivity (ODBC) 85 
5.7.3 How to Create ADO Connection for Delphi 7 91 

CONCLUSION 94 
REFERENCES 95 

APPENDIX A 96 
APPENDIX B 143 

VI 



INTRODUCTION 

Hospital Management System is designed to be used with a wide range of Hospital 

administration and management processes. It is a client server application which is 

build in Delphi as the front-end for Graphical User Interface, using MS SQL as the 

database. The main focus of this system is, how to use client-server computing 

concept with centralized database. This project investigates the concept of 

Client/Server system, the database and shows how is can be applied to solve the real 

world problems. 

Many varieties of modem software use a client\server architecture, in which by one 

process (the client) are sent to another process (the server) for execution. Database 

systems are no exception, and it has become increasingly common to divide the work 

of a DBMS into a server process and one or more client processes. 

In the simplest client\server architecture, the entire DBMS is a server, except for the 

query interfaces that interact with the user and send queries or other commands 

across to the server. For example, relational systems generally use the SQL language 

for representing requests from the client to the server. The DB server then sends the 

answer, in the form of a table or relation back to the client. The first important 

applications of DBMS' s were Airline Reservations Systems, Banking Systems and 

Corporate Records. 

In Airline Reservations Systems the items of data include : 

Reservations by a single customer on a single flight 

Information about flights 

Information about ticket prices 

In banking systems data items include names and addresses of customers, accounts, 

loans and their balances and the connection between customers and their accounts 

and loans. Many early applications concerned corporate records, such as a record of 

each sale, information about accounts payable and receivable or information about 

employees. Recently in NEU developed DB system that covers many activities of the 

Vll 



university, such as enrollment of students in courses, payment of fees, automatic 

calculation of GP A, etc. 

Comparison and the details of Hospital Management System Solutions are inside of 

AppendixB. 

The aim of my thesis is to develop the easiest and most friendly user interface 

program for a hospital management system. This program contains all the gathered 

and required information to form a highly effective program. 

This thesis includes five chapters; 

In chapter 1 we focus our attention on Client/Server process. Most of the operative 

applications and information systems are nowadays built using Client/Server 

architecture. The applications are meant to support the main functions of 

organizations such as insurance, banking, manufacturing, administration, etc. Also 

this chapter includes definition of Design Structure for Client/Server. 

In chapter 2 includes the Client/Server Computing and Client/Server architecture. 

There are 2 main Client/Server architectures; Two-tier and N-tier architecture. 

Chapter 3 describes the Database System; Data Modeling, Database Design and 

Architecture of Database System. 

Chapter 4 gives information about Hospital Management System (HMS) and D 

Database Design for Hospital Management System. It is integrated Client/Server 

application, which uses Delphi as the front-end for Graphical User Interface and MS 

SQL as the database. This chapter also describes the structure of tables and 

relationship between tables. 

All applications of this thesis (Administrator, Reception, Doctor, Room, Ward, 

Pharmacy) interface and detail of Microsoft Data Access Components (MDAC), 

ActiveX Data Objects (ADO), Object Linking and Embedding (OLE), Component 

Object Model (COM), Using Data Sources (ODBC) and ADO Connection for Delphi 

7 are described in Chapter 5. 

Vlll 



CHAPTER 1 

INFORMATION FOR CLIENT SERVER SYSTEM 

1 Overview 
Firstchapter refers to the definition of client/server system and design structure of 

client/server system. There are 3 main client/server design structures. This chapter 

also includes all approach for design structure. 

1.1 Origin of Term Client/Server 

The term client/server was first used in the 1980s in reference to personal computers 

(PCs) on a network. The actual client/server model started gaining acceptance in the 

late 1980s. The client/server software architecture is a multipurpose, message-based 

and modular infrastructure that is intended to improve usability, flexibility, 

interoperability and scalability as compared to centralized, mainframe, time sharing 

computing. 

1.2 What is a Client process? 

The client is a process (program) that sends a message to a server process (program), 

requesting that the server perform a task (service). Client programs usually manage 

the user-interface portion of the application, validate data entered by the user, 

dispatch requests to server programs, and sometimes execute business logic. The 

client-based process is the front- end of the application that the user sees and 

interacts with. The client process contains solution specific logic and provides the 

interface between the user and the rest of the application system. The client process 

also manages the local resources that the user interacts with such as the monitor, 

keyboard, workstation CPU and peripherals. One of the key elements of a client 

workstation is the graphical user interface (GUI). Normally a part of operating 

system i.e. the window manager detects user actions, manages the windows on the 

display and displays the data in the windows. 

1.3 What is a Server process? 

A server process (program) fulfills the client request by performing the task 

requested. Server programs generally receive requests from client programs, execute 

1 



database retrieval and updates, manage data integrity and dispatch responses to client 

requests. Sometimes server programs execute common or complex business logic. 

The server-based process "may" run on another machine on the network. This server 

could be the host operating system or network file server; the server is then provided 

both file system services and application services. Or in some cases, another desktop 

machine provides the application services. The server process acts as a software 

engine that manages shared resources such as databases, printers, communication 

links, or high powered-processors. The server process performs the back-end tasks 

that are common to similar applications. 

1.4 What is Client/Server System? 

Client/server is a distributed computing model in which client applications request 

services from server processes. Clients and servers typically run on different 

computers interconnected by a computer network. A client application is a process or 

program that sends messages to a server via the network. Those messages request the 

server to perform a specific task, such as looking up a customer record in a database 

or returning a portion of a file on the server's hard disk. The client manages local 

resources such as a display, keyboard, local disks and other peripherals. The server 

process or program listens for client requests that are transmitted via the network. 

Servers receive those requests and perform actions such as database queries and 

reading files. Server processes typically run on powerful PCs, workstations or on 

mainframe computers. 

1.5 Design Structures for Client/Server 

In a client-server information collection and retrieval environment, the client 

program usually accepts user requests and provides screen displays. Server programs 

generally reside on more powerful machines and are used to process information 

generally stored in databases. When client-server programs are on different 

machines, the client and server machines are linked together by networks. Thus, 

client-server applications are naturally modularized into client, server and 

networking components. 

The design structures for client server are as follow: 

2 



• Two-tier 

• Three-tier 

• Distributed 

Other client-server design structures can be developed using a combination or 

variation of three. In choosing any design structure, application developers are 

advised to consider the trade-offs among development time, development effort, 

application complexity and software distribution efforts. 

1.6 Two-Tier Design Structure 

A two-tier client-server application design structure consists of a client program 

residing on a client machine communicating through a network with a database 

server program that resides on a server machine. In this case, the server program is 

usually a database server program that performs the read/write operations to the 

actual database itself. The database server program usually resides on the same 

server machine as the database itself, and is written and provided by the client-server 

tool provider. The tool provider also offers for inclusion in the client program an 

application program interface (API) that communicates with the database server 

program on the server machine. 

1. 7 Three- Tier or N-Tier Design Structure 

Three-tier refers to the client program, the server program and the database server 

program on the server machine. 

For this design structure, application developers must develop the client program and 

the server program. After that, it is necessary also to include the database server 

program as part of the server program in order to manage access and retrieval of 

database information. 

1.8 Distributed Design Structure 

The distributed client-server design structure differs from the three-tier structure in 

the location of the database server program and of the database itself. When the 

database server program used by the application system resides on the same machine 

as the server program, the structure becomes a three-tier structure. When the 

3 



database server program and the actual database used by the application reside on 

different machines, the design structure becomes a distributed client-server structure. 

In the distributed structure, the server program and the database server program are 

logically linked by the network. 

This design approach requires about the same development time and effort as the 

three-tier structure, in which the server program and the database server program 

reside on the same server. It offers the developer a design structure of distributed 

database application systems, providing more flexibility for server location 

management and data accessibility than all designs mentioned here. 

In most cases in which a developer chooses to prototype an application, it is 

advantageous to choose a client-server design structure that provides for fast 

development and requires only a small amount of effort to develop the application 

system. When the application system is reviewed and accepted by users, the design 

structure can then be modified to achieve other goals, such as enhanced capabilities 

and increased performance. When this methodology is used, the two-tier design 

structure is the best candidate. I chose the two-tier design structure for my theses 

because this architecture is fitted with the application which I choose for this thesis. 

1.9 Summary 

In conclusion, in choosing a structure, developers must view the choice as a business 

decision by considering priorities and trade-offs. The design structure for each 

application must be evaluated individually to take advantage of differences in 

capability, development effort, development time, degree of flexibility, and 

performance. 

4 



CHAPTER2 

CLIENT SERVER COMPUTING 

2 Overview 
Chapter two includes an introduction to client/server systems and client/server 

architectures. This chapter focuses on the most popular forms of implementation of 

two-tier and three-tier ( or n-tier) client/server computing systems. 

2.1 Overview of Client Server 

CLIENT/SERVER concepts have roots in early computer systems, so it is useful to 

briefly review the history of modem computing. Early computers (mainframes) were 

typically in a "glass room," with special power and air conditioning, and attended to 

by a priesthood of system programmers. 

Users typically shared a pool of "dumb" terminals and had to rely on centralized 

printing and storage resources. In this environment, the mainframe did all the 

processing, and users had no local computing horsepower. 

In the late 1970s and early 1980s, smaller systems (minicomputers) were developed 

that required less power and air conditioning. Individual business unit owners wanted 

their own systems, more suited to their needs. Once a substantial number of 

applications were developed on these computers, inevitably other departments 

wanted access to them. 

Somewhat concurrently, Apple, IBM and others developed the personal computer. 

Initially it seemed to have little application beyond that of the hobbyist. However, as 

powerful, shrink-wrapped applications were developed, and arcane operating 

systems such as MS-DOS were replaced by more user-friendly systems (e.g., 

Macintosh, Windows), users began to want to use PCs in the corporate computing 

environment. 

5 



This allowed for a new army of computer users who cared little and understood even 

less about computer "systems." All they wanted was the latest software applications 

at their fingertips, but they needed the backup and redundant architecture that 

previously resided only in the glass room. 

Concurrently, systems that were more scalable were introduced using common chip 

sets and operating systems, with features such as redundant power and multiple 

processors. They were far more powerful than "personal" computers although they 

were based largely on the same architecture but they were considerably smaller and 

less costly than mainframes or even minicomputers. 

One last piece of technology was needed to make client/server architecture a reality. 

In the late 1970s, Xerox developed the standards and technology that we know today 

as Ethernet. This provided a standard means of linking together computers from 

different manufacturers and formed the basis for modern local area networks (LANs) 

and wide area networks (W ANs). 

At this point, all the pieces were in place to develop client/server systems: 

• A strpng business need for decentralized computing horsepower 

• Standard, powerful computers with user-friendly interfaces 

• Mature, shrink-wrapped user applications with widespread acceptance 

• Inexpensive, modular systems designed with enterprise-class 

2.2 Introduction to Client Server Systems 

Most of the initial client/server success stories involve small-scale applications that 

provide direct or indirect access to transactional data in legacy systems. The business 

need to provide data access to decision makers, the relative immaturity of 

client/server tools and technology, the evolving use of wide area networks and the 

lack of client/server expertise make these attractive yet low risk pilot ventures. As 

organizations move up the learning curve from these small-scale projects towards 

mission-critical applications, there is a corresponding increase in performance 

expectations, uptime requirements and in the need to remain both flexible and 

scalable. In such a demanding scenario, the choice and implementation of 

6 



appropriate architecture becomes critical. In fact one of the fundamental questions 

that practitioners have to contend with at the start of every client/server project is 

Which architecture is more suitable for this project Two Tier or Three Tier 

architecture. 

Architecture affects all aspects of software design and engineering. The architect 

considers the complexity of the application, the level of integration and interfacing 

required the number of users, their geographical dispersion, the nature of networks 

and the overall transactional needs of the application before deciding on the type of 

architecture. An inappropriate architectural design or a flawed implementation could 

result in horrendous response times. The choice of architecture also affects the 

development time and the future flexibility and maintenance of the application. This 

report defines the basic concepts of client/server architecture, describes the two tier 

and three tier or N-tier architectures. 

2.3 Definition of Client and Server 

In the simplest sense, the client and server can be defined as follows: 

A client is an individual user's computer or a user application that does a certain 

amount of processing on its own. It also sends and receives requests to and from one 

or more servers for other processing and/or data. 

A server consists of one or more computers that receive and process requests from 

one or more client machines. A server is typically designed with some redundancy in 

power, network, and computing and file storage. However, a machine with dual 

processors is not necessarily a server. An individual workstation can function as a 

server. 

Sometimes the term "server" or "client" may refer to the software rather than the 

computer. Thus, a "mail client" may refer to the mail software that resides on a client 

machine, rather than the machine itself. 

2.4 The Evolution of Clients and Servers 

The earliest versions of client/server were merely shared files; when a user needed a 

file, it was copied from the server to the local machine. When finished, it was 

7 



returned to the server. It was necessary to develop certain rules to handle conflict and 

synchronization issues. So as client/server systems evolved, they contained built-in 

synchronization and sharing engines. Client/server also embodies the concepts of 

user accounts and sharing of resources the system must separate and keep track of 

different users files and applications during a user session, then free up those 

resources for another user session. As client/server applications evolved, the 

functionality of the application was separated logically into two parts: the processes 

requiring the majority of the computing horsepower were put on the server, and the 

user interface and less processor intensive processes were put on the client. 

2.5 Client/Server Examples 

A common client/server example is a print server. Most people have probably 

noticed a temporary lockup or slowdown when a document is printed on a stand 

alone PC, especially if the document is complex. One can attach a printer to a PC and 

then share it with other users across the network. However, if everyone on the 

network simultaneously prints to that shared printer, it would likely lock up or even 

crash. Therefore, many times a machine is dedicated solely to handle printing a print 

server. It "serves" print requests to all users, and off-loads this task from local . 
machines. Another example is a mail server which functions much like a post office, 

receiving mail centrally and delivering individual messages to individual clients. 

2.6 Putting It All Together 

In a small organization, a single server machine may serve more than one function, if 

the functions are simple enough. One or more applications may reside on a single 

server machine, with the server being divided into different "logical" partitions. In a 

large corporate environment, there may be many servers for separate tasks. 

There is typically a primary domain controller (PDC), which authenticates users and 

controls access and log in to the computer system itself There may be a mail server, 

which processes e-mail. There may also be a file server typically containing large 

disk drives and individual user directories to store user files in a uniform way. And 

there may be separate application servers for accounting, billing, customer care, 

8 



Web, e-commerce, database, transaction, manufacturing, inventory, etc. They are 

typically linked together using integration software (frequently called middleware) so 

that one can access many server applications from a single (client) machine, through 

a common interface, typically a browser. 

Although client/server in its simplest form is two-tier (server and client), there are 

newer, more powerful architectures that are three-tier (where application logic lives 

in the middle-tier and it is separated from the data and user interface) or even n-tier 

(where there are several middle-tier components within a single business transaction) 

in nature. Sometimes client/server is referred to as distributed computing; they have 

the same basic concepts. 

2. 7 Client Server Architecture 

When considering a move to client/server computing, whether it is to replace existing 

systems or introduce entirely new systems, practitioners must determine which type 

of architecture they intend to use. The vast majority of end user applications consist 

of three components: presentation, processing, and data. The client/server 

architectures can be defined by how these components are split up among software 

entities and distributed on a network. There are a variety of ways for dividing these . 
resources and implementing client/server architectures. This paper will focus on the 

most popular forms of implementation of two-tier and three-tier client/server 

computing systems. 

2. 7.1 Two-tier Architecture 

Although there are several ways to architect a two-tier client/server system, we will 

focus on examining what is overwhelmingly the most common implementation. In 

this implementation, the three components of an application (presentation, 

processmg, and data) are divided among two software entities (tiers): client 

application code and database server (Figure 2.1 ). A robust client application 

development language and a versatile mechanism for transmitting client requests to 

the server are essential for a two-tier implementation. Presentation is handled 

exclusively by the client, processing is split between client and server, and data is 

stored on and accessed via the server. The PC client assumes the bulk of 

responsibility for application (functionality) logic with respect to the processing 

9 



component, while the database engine with its attendant integrity checks, query 

capabilities and central repository functions handles data intensive tasks. In a data 

access topology, a data engine would process requests sent from the clients. 

Currently, the language used in these requests is most typically a form of SQL. 

Sending SQL from client to server requires a tight linkage between the two layers. 

To send the SQL the client must know the syntax of the server or have this translated 

via an API (Application Program Interface). It must also know the location of the 

server, how the data is organized, and how the data is named. The request may take 

advantage of logic stored and processed on the server which would centralize global 

tasks such as validation, data integrity, and security. Data returned to the client can 

be manipulated at the client level for further sub selection, business modeling, "what 

if'' analysis, reporting, etc. 

D 
= 

Request (usually SQL) 
CJ D CJ 0 

.. 
a a a c 

Result (data) - 
~ 

Client Server 

Figure 2.1 Data Access Topology for two-tier architecture. Majority of functional 

logic exists at the client level 

The most compelling advantage of a two-tier environment is application 

development speed. In most cases a two-tier system can be developed in a small 

fraction of the time it would take to code a comparable but less flexible legacy 

system. Using any one of a growing number of PC-based tools, a single developer 

can model data and populate a database on a remote server, paint a user interface, 

create a client with application logic, and include data access routines. Most two-tier 

tools are also extremely robust. These environments support a variety of data 

structures, including a number of built in procedures and functions, and insulate 

developers from many of the more mundane aspects of programming such as 

10 



memory management. Finally these tools also lend themselves well to iterative 

prototyping and rapid application development (RAD) techniques, which can be used 

to ensure that the requirements of the users are accurately and completely met. 

Two-tier architectures work well in relatively homogeneous environments with fairly 

static business rules. This architecture is less suited for dispersed, heterogeneous 

environments with rapidly changing rules. 

Since the bulk of application logic exists on the PC client, the two-tier architecture 

faces a number of potential version control and application re-distribution problems. 

A change in business rules would require a change to the client logic in each 

application in a corporation's portfolio which is affected by the change. Modified 

clients would have to be re-distributed through the network a potentially difficult 

task given the current lack of robust PC version control software and problems 

associated with upgrading PCs that are turned off or not "docked" to the network. 

System security in the two-tier environment can be complicated since a user may 

require a separate password for each SQL server accessed. The proliferation of end­ 

user query tools can also compromise database server security. The overwhelming 

majority of client/server applications developed today is designed without 

sophisticated middleware technologies which offer increased security. Instead, end­ 

users are provided a password which gives them access to a database. In many cases 

this same password can be used to access the database with data-access tools 

available in most commercial PC spreadsheet and database packages. Using such a 

tool, a user may be able to access otherwise hidden fields or tables and possibly 

corrupt data. 

Client tools and the SQL middleware used in two-tier environments are also highly 

proprietary and the PC tools market is extremely volatile. The client/server tools 

market seems to be changing at an increasingly unstable rate. In 1994, the leading 

client/server tool developer was purchased by a large database firm, raising concern 

about the manufacturer's ability to continue to work cooperatively with RDBMS 

vendors which compete with the parent company's products. The number two 

11 



toolmaker lost millions and has been labeled as a takeover target. The tool which has 

received some of the brightest accolades in early 1995 is supplied by a firm also in 

the midst of severe financial difficulties and management transition. This kind of 

volatility raises questions about the long term viability of any proprietary tool an 

organization may commit to. All of this complicates implementation of two-tier 

systems migration from one proprietary technology to another would require a firm 

to scrap much of its investment in application code since none of this code is portable 

from one tool to the next. 

2.7.2 Three tier or N-tier Architecture 

The tree tier architecture (Figure 2.2) attempts to overcome some of the limitations 

of the two-tier scheme by separating presentation, processing, and data into separate, 

distinct software entities (tiers). The same types of tools can be used for presentation 

as were used in a two-tier environment; however these tools are now dedicated to 

handling just the presentation. When calculations or data access is required by the 

presentation client, a call is made to a middle tier functionality server. This tier can 

perform calculations or can make requests as a client to additional servers. The 

middle tier servers are typically coded in a highly portable, non-proprietary language . 
such as C. Middle-tier functionality servers may be multi-threaded and can be 

accessed by multiple clients, even those from separate applications. 

Although three-tier systems can be implemented using a variety of technologies, the 

calling mechanism from client to server in such as system is most typically the 

(remote procedure call or) RPC. Since the bulk of two-tier implementations involve 

SQL messaging and most three-tier systems utilize RPCs, it is reasonable to examine 

the merits of these respective request/response mechanisms in a discussion of 

architectures. RPC calls from presentation client to middle-tier server provide greater 

overall system flexibility than the SQL calls made by clients in the two-tier 

architecture. This is because in an RPC, the requesting client simply passes 

parameters needed for the request and specifies a data structure to accept returned 

values (if any). Unlike most two-tier implementations, the three-tier presentation 

client is not required to "speak" SQL. As such, the organization, names, or even the 

overall structure of the back-end data can be changed without requiring changes to 

PC-based presentation clients. Since SQL is no longer required, data can be 

12 



organized hierarchically, relationally, or in object format. This added flexibility can 

allow a firm to access legacy data and simplifies the introduction of new database 

technologies. 

Presentation Processing 

n n 
LB 0 0 RPC LB . . db Call 

Functinality Server 
( code returning 

data structure for a 
report) 

Functionality Server 
( data access) 

Database 

RPC 

Client 

db Call 
~ Ld 

Functionality Server 
( data access) 

Database 

Client 

Functionality Server 
( code for complex 

calculations) 

Figure 2.2 Three Tier Architecture. Most of the logic processing is handled by 

functionality servers. Middle-tier code can be accessed and utilized by multiple 

clients 

13 



In addition to the openness stated above, several other advantages are presented by 

this architecture. Having separate software entities can allow for the parallel 

development of individual tiers by application specialists. It should be noted that the 

skill sets required to develop c/s applications differ significantly from those needed 

to develop mainframe-based character systems. As examples, user interface creation 

requires an appreciation for platform and corporate UI standards and database design 

requires a commitment to and understanding of the enterprise's data model. Having 

experts focus on each of these three layers can increase the overall quality of the final 

application. 

The three-tier architecture also provides for more flexible resource allocation. 

Middle-tier functionality servers are highly portable and can be dynamically 

allocated and shifted as the needs of the organization change. Network traffic can 

potentially be reduced by having functionality servers strip data to the precise 

structure required before distributing it to individual clients at the LAN level. 

Multiple server requests and complex data access can emanate from the middle tier 

instead of the client, further decreasing traffic. Also, since PC clients are now 

dedicated to just presentation, memory and disk storage requirements for PCs will 

potentially be reduced. 

Modularly designed middle tier code modules can be re-used by several applications. 

Reusable logic can reduce subsequent development efforts, minimize the 

maintenance workload, and decrease migration costs when switching client 

applications. In addition, implementation platforms for three tier systems such as 

OSF/DCE offer a variety of additional features to support distributed application 

development. These include integrated security, directory and naming services, 

server monitoring and boot capabilities for supporting dynamic fault-tolerance, and 

distributed time management for synchronizing systems across networks and 

separate time zones. 

There are of course drawbacks associated with three-tier architecture. More code in 

more places also increases the likelihood that a system failure will effect an 

14 



application so detailed planning with an emphasis on the reduction/elimination of 

critical paths is essential. Three tier brings with it an increased need for network 

traffic management, server load balancing, and fault tolerance. 

2.8 Advantages of Client Server Computing 

There are many advantages to client/server architecture including that subsystems 

can be optimized for a particular set of applications. Systems can grow modularly, as 

different applications grow. Then more powerful subsystems can be installed without 

wasting resources on other applications. "Forklift upgrades," where an entire system 

is replaced, are theoretically kept to a minimum. 

With most of the crucial applications and data residing on centralized machines, or 

clusters of machines, systems can be engineered to high standards of reliability and 

availability. 

2.9 Summary 

In conclusion, client/server architecture has become the dominant structure for 

corporate computing in both small and large organizations. It combines the best 

concepts of' centralized, robust infrastructure with decentralized capability and 

control in other words, it gives both IT managers and end users what they want and 

need. If implemented properly, client/server architecture achieves the best balance 

between complexity, cost and ease of use, with excellent scalability and reliability. 



CHAPTER3 

DATABASE SYSTEM 

3 Overview 

This chapter is an informal introduction to data modeling using the Entity­ 

Relationship (ER) approach. The basic techniques described are applicable to the 

development of relational database applications as well as those who use relational 

database servers such as MS SQL Server or Oracle. There are two main architectures 

of database, Distributed Database System and Centralized Database System. For 

implementation of these concepts, database should be normalized. I choose the 

Centralized Database architectures for my application. The detail for these 

techniques is mentioned in the coming section of this chapter. Normalization is a 

design technique to design a database but for this we must perform the analysis of 

database. Data Modeling is the way we can perform the analysis for a given problem. 

3.1 Data Modeling Overview 

A data model is a conceptual representation of the data structures that are required by 

a database. The data structures include the data objects, the associations between data 

objects and the rules which govern operations on the objects. As the name implies, 

the data model focuses on what data is required and how it should be organized 

rather than what operations will be performed on the data. 

A data model is independent of hardware or software constraints. Rather than try to 

represent the data as a database would see it, the data model focuses on representing 

the data as the user sees it in the "real world". It serves as a bridge between the 

concepts that make up real-world events and processes and the physical 

representation of those concepts in a database. 

16 



3.1.1 Methodology 

There are two major methodologies used to create a data model: the Entity­ 

Relationship (ER) approach and the Object Model. I used the Entity-Relationship 

approach. 

3.1.2 Data Modeling in the Context of Database Design 

Database design is defined as: "design the logical and physical structure of one or 

more databases to accommodate the information needs of the users in an 

organization for a defined set of applications". The design process roughly follows 

five steps: 

• Planning and analysis 

• Conceptual design 

• Logical design 

• Physical design 

• Implementation 

The data model is one part of the conceptual design process. The other, typically is 

the functional model. The data model focuses on what data should be stored in the . 
database while the functional model deals with how the data is processed. To put this 

in the context of the relational database, the data model is used to design the 

relational tables. The functional model is used to design the queries which will 

access and perform operations on those tables. 

3.1.3 Components of a Data Model 

The data model gets its inputs from the planning and analysis stage. Here the 

modeler, along with analysts, collects information about the requirements of the 

database by reviewing existing documentation and interviewing end-users. 

The data model has two outputs. The first is an entity-relationship diagram which 

represents the data structures in a pictorial form. Because the diagram is easily 

learned, it is valuable tool to communicate the model to the end-user. The second 

component is a data document. This document that describes in details the data 

17 



objects, relationships, and rules required by the database. The dictionary provides the 

detail required by the database developer to construct the physical database. 

3.1.4 Why is Data Modeling Important? 

The goal of the data model is to make sure that the all data objects required by the 

database are completely and accurately represented. Because the data model uses 

easily understood notations and natural language, it can be reviewed and verified as 

correct by the end-users. A data model is a plan for building a database. To be 

effective, it must be simple enough to communicate to the end user the data structure 

required by the database yet detailed enough for the database design to use to create 

the physical structure. The Entity-Relation Model (ER) is the most common method 

used to build data models for relational databases. 

3.1.5 The Entity-Relationship Model 

The Entity-Relationship (ER) model was originally proposed by Peter in 1976 as a 

way to unify the network and relational database views. Simply stated the ER model 

is a conceptual data model that views the real world as entities and relationships. A 

basic component of the model is the Entity-Relationship diagram which is used to 

visually represent data objects. The process of designing a database begins with an 

analysis of what information the database must hold and what are the relationships 

among components of that information. Often, the structure of the database, called 

the database schema, is specified in one of several languages or notations suitable for 

expressing designs. After due consideration, the design is committed to a form in 

which it can be input to a DBMS, and the database takes on physical existence. 

3.1.6 Basic Constructs of E-R Modeling 

The ER model views the real world as a construct of entities and association between 

entities. 

3.1.6.1 Entities 

Entities are the principal data object about which information is to be collected. 

Entities are usually recognizable concepts, either concrete or abstract, such as person, 

18 



places, things, or events which have relevance to the database. Some specific 

examples of entities are EMPLOYEES, PROJECTS, and INVOICES. An entity is 

analogous to a table in the relational model. Entities are classified as independent or 

dependent (in some methodologies, the terms used are strong and weak, 

respectively). An independent entity is one that does not rely on another for 

identification. A dependent entity is one that relies on another for identification. An 

entity occurrence (also called an instance) is an individual occurrence of an entity. 

An occurrence is analogous to a row in the relational table. 

3.1.6.2 Special Entity Types 

Associative entities (also known as intersection entities) are entities used to associate 

two or more entities in order to reconcile a many-to-many relationship. Subtypes 

entities are used in generalization hierarchies to represent a subset of instances of 

their parent entity, called the super type, but which have attributes or relationships 

that apply only to the subset. Associative entities and generalization hierarchies are 

discussed in more detail below. 

3.1.6.3 Relationships 

A Relationship represents an association between two or more entities. An example 

of a relationship would be: 

• Employees are assigned to projects 

• Projects have subtasks 

• Departments manage one or more projects 

Relationships are classified in terms of degree, connectivity, cardinality, and 

existence. These concepts will be discussed below. 

3.1.6.4 Attributes 

Attributes describe the entity of which they are associated. A particular instance of 

an attribute is a value. For example, "Jane R. Hathaway" is one value of the attribute 

Name. The domain of an attribute is the collection of all possible values an attribute 

can have. The domain of Name is a character string. Attributes can be classified as 

19 



identifiers or descriptors. Identifiers, more commonly called keys, uniquely identify 

an instance of an entity. A descriptor describes a non-unique characteristic of an 

entity instance. 

3.1.6.5 Classifying Relationships 

Relationships are classified by their degree, connectivity, cardinality, direction, type, 

and existence. Not all modeling methodologies use all these classifications. 

3.1.6.6 Degree of a Relationship 

The degree of a relationship is the number of entities associated with the relationship. 

Then relationship is the general form for degree n. Special cases are the binary, and 

ternary, where the degree is 2 and 3 respectively. A binary relationship, the 

association between two entities is the most common type in the real world. A 

recursive binary relationship occurs when an entity is related to itself. An example 

might be "some employees are married to other employees". A ternary relationship 

involves three entities and is used when a binary relationship is inadequate. Many 

modeling approaches recognize only binary relationships. Ternary or n relationships 

are decomposed into two or more binary relationships. 

3.1.6.7 Connectivity and Cardinality 

The connectivity of a relationship describes the mapping of associated entity 

instances in the relationship. The values of connectivity are "one" or "many". The 

cardinality of a relationship is the actual number of related occurrences for each of 

the two entities. The basic types of connectivity for relations are: one-to-one, one-to­ 

many and many-to-many. 

A one-to-one ( 1: I) relationship is when at most one instance of an entity A is 

associated with one instance of entity B. For example, "employees in the company 

are each assigned their own office. For each employee there exists a unique office 

and for each office there exists a unique employee. 

A one-to-many (1:N) relationships is when for one instance of entity A, there are 

zero, one or many instances of entity B, but for one instance of entity B, there is only 

one instance of entity A. An example of a 1 :N relationships is 

• A department has many employees 

20 



• Each employee is assigned to one department 

A many-to-many (M:N) relationship, sometimes called non-specific, is when for one 

instance of entity A, there are zero, one or many instances of entity B and for one 

instance of entity B there are zero, one or many instances of entity A. An example is: 

• Employees can be assigned to no more than two projects at the same time; 

• Projects must have assigned at least three employees 

A single employee can be assigned too many projects; conversely, a single project 

can have assigned to it many employees. Here the cardinality for the relationship 

between employees and projects is two and the cardinality between project and 

employee is three. Many-to-many relationships cannot be directly translated to 

relational tables but instead must be transformed into two or more one-to-many 

relationships using associative entities. 

3.1.6.8 Direction 

The direction of a relationship indicates the originating entity of a binary 

relationship. The entity from which a relationship originates is the parent entity; the . 
entity where the relationship terminates is the child entity. 
The direction of a relationship is determined by its connectivity. In a one-to-one 

relationship the direction is from the independent entity to a dependent entity. If both 

entities are independent, the direction is arbitrary. With one-to-many relationships, 

the entity occurring once is the parent. The direction of many-to-many relationships 

is arbitrary. 

3.1.6.9 Type 

An identifying relationship is one in which one of the child entities is also a 

dependent entity. A non-identifying relationship is one in which both entities are 

independent. 

3.1.6.10 Existence 

Existence denotes whether the existence of an entity instance is dependent upon the 

existence of another related entity instance. The existence of an entity in a 

21 



relationship is defined as either mandatory or optional. If an instance of an entity 

must always occur for an entity to be included in a relationship, then it is mandatory. 

An example of mandatory existence is the statement "every project must be managed 

by a single department". If the instance of the entity is not required, it is optional. An 

example of optional existence is the statement, "employees may be assigned to work 

on projects". 
Examples of these symbols (Rectangular) are shown in Figure 3.1 below: 

Entity Entity Name 
Relationship 

Name 

One l Department Project 
Many 

Dep Id Manages Project Id 

Relationship 

Existence 

Optional 
Existence 

Attribute 
Name Mandotary 

Figure 3.1 ER Notation 

The Entity-Relationship Model is a conceptual data model that views the real world 

as consisting of entities and relationships. The model visually represents these 

concepts by the Entity-Relationship diagram. The basic constructs of the ER model 

are entities, relationships, and attributes. Entities are concepts, real or abstract about 

which information is collected. Relationships are associations between the entities. 

Attributes are properties which describe the entities. Next, we will look at the role of 

data modeling in the overall database design process and a method for building the 

data model. 

22 



3.2 Data Modeling As Part of Database Design 

The data model is one part of the conceptual design process. The other is the function 

model. The data model focuses on what data should be stored in the database while 

the function model deals with how the data is processed. To put this in the context of 

the relational database, the data model is used to design the relational tables. The 

functional model is used to design the queries that will access and perform operations 

on those tables. 

Data modeling is preceded by planning and analysis. The effort devoted to this stage 

is proportional to the scope of the database. The planning and analysis of a database 

intended to serve the needs of an enterprise will require more effort than one 

intended to serve a small workgroup. 

The information needed to build a data model is gathered during the requirements 

analysis. Although not formally considered part of the data modeling stage by some 

methodologies, in reality the requirements analysis and the ER diagramming part of 

the data model are done at the same time. 

3.2.1 Requirements Analysis 

The goals of the requirements analysis are: 

• To determine the data requirements of the database in terms of primitive 

objects 

• To classify and describe the information about these objects 

• To identify and classify the relationships among the objects 

• To determine the types of transactions that will be executed on the database 

and the interactions between the data and the transactions 

• To identify rules governing the integrity of the data 

The modeler or modelers, works with the end users of an organization to determine 

the data requirements of the database. Information needed for the requirements 

analysis can be gathered in several ways: 

23 



Review of existing documents such documents include existing forms and reports, 

written guidelines, job descriptions, personal narratives and memoranda. Paper 

documentation is a good way to become familiar with the organization or activity 

you need to model. 

Interviews with end users these can be a combination of individual or group 

meetings. Try to keep group sessions to under five or six people. If possible, try to 

have everyone with the same function in one meeting. Use a blackboard, flip charts 

or overhead transparencies to record information gathered from the interviews. 

Review of existing automated systems if the organization already has an automated 

system, review the system design specifications and documentation. 

The requirements analysis is usually done at the same time as the data modeling. As 

information is collected, data objects are identified and classified as entities, 

attributes or relationship; assigned names; and defined using terms familiar to the 

end-users. The objects are then modeled and analyzed using an ER diagram. The 

diagram can be reviewed by the modeler and the end-users to determine its 

completeness and accuracy. If the model is not correct, it is modified, which 

sometimes requires additional information to be collected. The review and edit cycle 

continues until the model is certified as correct. 

Three points to keep in mind during the requirements analysis are: 

Talk to the end users about their data in "real-world" terms. Users do not think in 

terms of entities, attributes and relationships but about the actual people, things and 

activities they deal with daily. 

Take the time to. learn the basics about the organization and its activities that you 

want to model. Having an understanding about the processes will make it easier to 

build the model. 

24 



End-users typically think about and view data in different ways according to their 

function within an organization. Therefore, it is important to interview the largest 

number of people that time permits. 

3.2.2 Steps in Building the Data Model 

While ER model lists and defines the constructs required to build a data model, there 

is no standard process for doing so. Some methodologies specify a bottom-up 

development process were the model is built in stages. Typically, the entities and 

relationships are modeled first, followed by key attributes and then the model is 

finished by adding non-key attributes. Other experts argue that in practice, using a 

phased approach is impractical because it requires too many meetings with the end­ 

users. The sequence used for this document is: 

• Identification of data objects and relationships 

• Drafting the initial ER diagram with entities and relationships 

• Refining the ER diagram 

• Add key attributes to the diagram 

• Adding non-key attributes 

• Diagramming Generalization Hierarchies 

• Validating the model through normalization 

• Adding business and integrity rules to the Model 

In practice, model building is not a strict linear process. As noted above, the 

equirements analysis and the draft of the initial ER diagram often occur 

simultaneously. Refining and validating the diagram may uncover problems or 

missing information which require more information gathering and analysis Data 

modeling must be preceded by planning and analysis. Planning defines the goals of 

the database, explains why the goals are important and sets out the path by which the 

goals will be reached. Analysis involves determining the requirements of the 

25 



database. This is typically done by examining existing documentation and 

interviewing users. 

An effective data model completely and accurately represents the data requirements 

of the end users. It is simple enough to be understood by the end user yet detailed 

enough to be used by a database designer to build the database. The model eliminates 

redundant data, it is independent of any hardware and software constraints and can 

e adapted to changing requirements with a minimum of effort. 

Data modeling is a bottom up process. A basic model, representing entities and 

relationships, is developed first. Then detail ,is added to the model by including 

information about attributes and business rules. 

3.2.2.1 Identifying Data Objects and Relationships 

In order to begin constructing the basic model, the modeler must analyze the 

information gathered during the requirements analysis for the purpose of: 

• Classifying data objects as either entities or attributes 

• Identifying and defining relationships between entities 

• Naming and defining identified entities, attributes and relationships 

Documenting this information' in the data document to accomplish these goals the 

modeler must analyze narratives from users, notes from meeting, policy and 

procedure documents and design documents from the current information system. 

While the definitions of the constructs in the ER Model are simple, the model does 

not address the fundamental issue of how to identify them. Some commonly given 

guidelines are: 

• Entities contain descriptive information 

• Attributes either identify or describe entities 

• Relationships are associations between entities 

26 



These guidelines are discussed below. 

• Entities 

• Attributes 

o Validating Attributes 

o Derived Attributes and Code Values 

• Relationships 

• Naming Data Objects 

3.2.2.1.1 Entities 

There are various definitions of an entity: 

"Any distinguishable person, place, thing, event or concept about which information 

is kept" 

"A thing which can be distinctly identified" 

"Any distinguishable object that is to be represented in a database" 

" ... anything about which we store information (e.g. supplier, machine tool, employee, 

utility pole, airline seat, etc.). For each entity type, certain attributes are stored" . . 
3.2.2.1.2 Attributes 

Attributes are data objects that either identify or describe entities. Attributes that 

identify entities are called k.ey attributes. Attributes that describe an entity are called 

non-key attributes. Key attributes will be discussed in detail in a latter section. 

The process for identifying attributes is similar except now you want to look for and 

extract those names that appear to be descriptive noun phrases. Validating Attributes 

values should be atomic, that is, present a single fact. Having disaggregated data 

allows simpler programming, greater reusability of data, and easier implementation 

of changes. Normalization also depends upon the "single fact" rule being followed. 

3.2.2.1.3 Relationships 

Relationships are associations between entities. Typically, a relationship is indicated 

by a verb connecting two or more entities. 

27 



3.2.2.1.4 Naming Data Objects 

The names should have the following properties: 

• Unique 

• Have meaning to the end-user 

• Contain the minimum number of words needed to uniquely and accurately 

describe the object 

For entities and attributes, names are singular nouns while relationship names are 

typically verbs. Some authors advise against using abbreviations or acronyms 

because they might lead to confusion about what they mean. Other believes using 

abbreviations or acronyms are acceptable provided that they are universally used and 

understood within the organization. The first step in creating the data model is to 

analyze the information gathered during the requirements analysis with the goal of 

identifying and classifying data objects and relationships. The next step is developing 

the Basic Schema. 

3.2.2.2 Developing the Basic Schema 

Once entities and relationships have been identified and defined, the first draft of the 

entity relationship diagram can be created. This section introduces the ER diagram 

by demonstrating how to diagram binary relationships. Recursive relationships are 

also shown. 

Binary Relationships 

Figure 3 .2 shows examples of how to diagram one-to-one, one-to-many and many­ 

to-many relationships. 

28 



A. ONE - TO - ONE 

EMPLOYEE WORKSTATION 
is assigned 

-0 I 
I 

Every employee is assigned one workstation ; not all 
workstations are assigned to employes. 

B. ONE - TO - MANY 

DEP AR T:rvfENT 
is responsible 

I I 

I I 

A department may be responsible for many projects out 
each project is the responsibility of one department. 

C. MANY - TO - MANY 

EMPLOYEE 
is assigned 

I I 
~ I I 

has ass 

Employees may be asigned to many projects; every 
project has assigned at least one employee. 

Figure 3.2 Example of Binary Relationships 

3.2.2.2.1 One-To-One 

Figure 3 .2.A shows an example of a one-to-one diagram. Reading the diagram from 

left to right represents the relationship every employee is assigned a workstation. 

Because every employee must have a workstation, the symbol for mandatory 

existence in this case the crossbar is placed next to the WORKSTATION entity. 

29 



Reading from right to left, the diagram shows that not all workstation are assigned to 

employees. This condition may reflect that some workstations are kept for spares or 

for loans. Therefore, we use the symbol for optional existence, the circle, next to 

EMPLOYEE. The cardinality and existence of a relationship must be derived from 

the "business rules" of the organization. For example, if all workstations owned by 

an organization were assigned to employees, then the circle would be replaced by a 

crossbar to indicate mandatory existence. One-to-one relationships are rarely seen in 

"real-world" data models. Some parishioners advise that most one-to-one 

relationships should be collapsed into a single entity or converted to a generalization 

hierarchy. 

3.2.2.2.2 One-To-Many 

Figure 3.2.B shows an example of a one-to-many relationship between 

DEPARTMENT and PROJECT. In this diagram, DEPARTMENT is considered the 

parent entity while PROJECT is the child. Reading from left to right, the diagram 

represents departments may be responsible for many projects. The optionally of the 

relationship reflects the "business rule" that not all departments in the organization . 
will be responsible for managing projects. Reading from right to left, the diagram 

tells us that every project must be the responsibility of exactly one department. 

3.2.2.2.3 Many-To-Many 

Figure 3.2.C shows a many-to-many relationship between EMPLOYEE and 

PROJECT. An employee may be assigned to many projects; each project must have 

many employee Note that the association between EMPLOYEE and PROJECT is 

optional because, at a given time, an employee may not be assigned to a project. 

However, the relationship between PROJECT and EMPLOYEE is mandatory 

because a project must have at least two employees assigned. Many-To-Many 

relationships can be used in the initial drafting of the model but eventually must be 

transformed into two one-to-many relationships. The transformation is required 

because many-to-many relationships cannot be represented by the relational model. 

30 



The process for resolving many-to-many relationships is discussed in the next 

section. 

3.2.2.3 Define Keys 

3.2.2.3.1 Primary and Foreign Keys 

Primary and foreign keys are the most basic components on which relational theory 

based. Primary keys enforce entity integrity by uniquely identifying entity 

instances. Foreign keys enforce referential integrity by completing an association 

etween two entities. The next step in building the basic data model to . 

• Identify and define the primary key attributes for each entity 

• Validate primary keys and relationships 

• Migrate the primary keys to establish foreign keys 

3.2.2.3.2 Define Primary Key Attributes 

A/tributes are data items that describe an entity. An attribute instance is a single 

·alue of an attribute for an instance of an entity. For example, Name and hire date 

are attributes-of the entity EMPLOYEE. "Jane Hathaway" and "3 March 1989" are 

instances of the attributes name and hire date. The primary key is an attribute or a set 

of attributes that uniquely identify a specific instance of an entity. Every entity in the 

data model must have a primary key whose values uniquely identify instances of the 

entity. 

To qualify as a primary key for an entity, an attribute must have the following 

properties: 

• it must have a non-null value for each instance of the entity 

• the value must be unique for each instance of an entity 

• the values must not change or become null during the life of each entity 

instance 

In some instances, an entity will have more than one attribute that can serve as a 

rimary key. Any key or minimum set of keys that could be a primary key is called a 

candidate key. Once candidate keys are identified, choose one and only one primary 

·ey for each entity. Choose the identifier most commonly used by the user as long as 

31 



it conforms to the properties listed above. Candidate keys which are not chosen as 

the primary key are known as alternate keys. An example of an entity that could have 

several possible primary keys is Employee. Let's assume that for each employee in 
..I 

an organization there are three candidate keys: Employee ID, Social Security 

Number, and Name. 

Name is the least desirable candidate. While it might work for a small department 

where it would be unlikely that two people would have exactly the same name, it 

would not work for a large organization that had hundreds or thousands of 

employees. Moreover, there is the possibility that an employee's name could change 

ecause of marriage. Employee ID would be a good candidate as long as each 

employee was assigned a unique identifier at the time of hire. Social Security would 

vork best since every employee is required to have one before being hired. 

3.2.2.3.3 Composite Keys 

Sometimes it requires more than one attribute to uniquely identify an entity. A 

rimary key that made up of more than one attribute is known as a composite key. 

Figure 3. 3 shows an example of a composite key Each instance of the entity Work . 
can be uniquely identified only by a composite key composed of Employee ID and 

Project ID. 

WORK 

01 02 

02 01 

02 03 

03 03 

03 
... ·············· 

04 200 

Figure 3.3 Example of Composite Key 

32 



Next step is normalization which simply stated, normalization is the process of 

removing redundant data from relational tables by decomposing (splitting) a 

relational table into smaller tables by projection. 

3.2.3 Normalization 

3.2.3.1 Overview 

Normalization is a design technique that is widely used as a guide in designing 

relational databases. Normalization is essentially a two step process that puts data 

into tabular form by removing repeating groups and then removes duplicated data 

from the relational tables. Normalization theory is based on the concepts of normal 

forms. A relational table is said to be a particular normal form if it satisfied a certain 

set of constraints. There are currently five normal forms that have been defined. In 

this section, I will cover the first three normal forms that were defined by E. F. Codd. 

Normalization which simply stated the process of removing redundant data from 

relational tables by decomposing (splitting) a relational table into smaller tables by 

projection. The goal is to have only primary keys on the left hand side of a functional 

dependency. In order to be correct, decomposition must be loss less. That is, the new 

ables can be recombined by a natural join to recreate the original table without 

reating any spurious or redundant data. 

3.2.3.2 Basic Concepts 

The goal of normalization is to create a set of relational tables that are free of 

redundant data and that can be consistently and correctly modified. This means that 

all tables in a relational database should be in the third normal form (3NF). A 

relational table is in 3NF if and only if all non-key columns are (a) mutually 

independent and (b) fully dependent upon the primary key. Mutual independence 

means that no non-key column is dependent upon any combination of the other 

columns. The first two normal forms are intermediate steps to achieve the goal of 

ving all tables in 3NF. In order to better understand the 2NF and higher forms, it is 

ecessary to understand the concepts of functional dependencies and loss less 

ecomposition. 

33 



3.2.3.3 Sample Data 

Data taken from Date [Date90] is used to illustrate the process of normalization. A 

company obtains parts from a number of suppliers. Each supplier is located in one 

city. A city can have more than one supplier located there and each city has a status 

code associated with it. Each supplier may provide many parts. The company creates 

a simple relational table to store this information that can be expressed in relational 

notation as: 

FIRST (s#, status, city, p#, qty) where 

s# supplier identification number (this is the primary key) 

status status code assigned to city 

city name of city where supplier is located 

p# part number of part supplied 

qty> quantity of parts supplied to date 

In order to uniquely associate quantity supplied (qty) with part (p#) and supplier (s#), 

a composite primary key composed of s# and p# is used. 

3.2.3.4 Functional Dependencies 

The concept of functional dependencies is the basis for the first three normal forms. 

A column, Y, of the relational table R is said to be functionally dependent upon 

column X of R if and only if each value of X in R is associated with precisely one 

-alue of Y at any given time. X and Y may be composite. Saying that column Y is 

- nctionally dependent upon Xis the same as saying the values of column X identify 

e values of column Y. If column X is a primary key, then all columns in the 

relational table R must be functionally dependent upon X. 

A shorthand notation for describing a functional dependency is: 

x->; Ry 

34 



which can be read as in the relational table named R column x functionally 

determines (identifies) column y. 

Full functional dependence applies to tables with composite keys. Column Y in 

relational table R is fully functional on X of R if it is functionally dependent on X 

and not functionally dependent upon any subset of X. Full functional dependence 

means that when a primary key is composite, made of two or more columns, then the 

other columns must be identified by the entire key and not just some of the columns 

that make up the key. 

3.2.3.5 First Normal Form 

A relational table, by definition, is in first normal form. All values of the columns are 

atomic. That is, they contain no repeating values. Figure 3 .4 shows the table FIRST 

in INF. 

FIRST 

s# status city q# utv 
sl 20 London pl 300 
sl 20 London p2 200 
sl 20 London p3 400 
sl 20 London p4 200 
sl 20 London p5 100 
sl 20 London p6 100 
s2 10 Paris pl 300 
s2 10 Paris p2 400 
s3 10 Paris p2 200 
s4 20 London p2 200 
s4 20 London p4 300 
s4 20 London p5 400 

Figure 3.4 Table in lNF 

Although the table FIRST is in INF it contains redundant data. For example, 

· formation about the supplier's location and the location's status have to be repeated 

or every part supplied. Redundancy causes what are called update anomalies. 

Update anomalies are problems that arise when information is inserted, deleted or 

pdated. For example, the following anomalies could occur in FIRST: 

DJ"SERT. The fact that a certain supplier (s5) is located in a particular city (Athens) 

cannot be added until they supplied a part. 

35 



DELETE. If a row is deleted, then not only is the information about quantity and part 

lost but also information about the supplier. 

UPDATE. If supplier s l moved from London to New York, then six rows would 

have to be updated with this new information. 

3.2.3.6 Second Normal Form 

The definition of second normal form states that only tables with composite primary 

ceys can be in INF but not in 2NF . 

. .\ relational table is in second normal form 2NF if it is in I NF and every non-key 

column is fully dependent upon the primary key. 

That is, every non-key column must be dependent upon the entire primary key 

FIRST is in INF but not in 2NF because status and city are functionally dependent 

pon only on the columns# of the composite key (s#, p#). This can be illustrated by 

· ing the functional dependencies in the table: 

s# 

city 

(s#,p#) 

-> city, status 

-> status 

->qty 

e process for transforming a INF table to 2NF is: 

entify any determinants other than the composite key, and the columns they 

ermme. 

eate and name a new table for each determinant and the unique columns it 

ermmes. 

ove the determined columns from the original table to the new table. The 

erminate becomes the primary key of the new table. 

lete the columns you just moved from the original table except for the determinate 

· ch will serve as a foreign key. 

original table may be renamed to maintain semantic meaning. 

transform FIRST into 2NF we move the columns s#, status, and city to a new 

le called SECOND. The columns# becomes the primary key of this new table. 

results are shown below in Figure 3. 5. 

36 



SECOND PARTS 

I s# status city 
I sl 20 London 
I s2 10 Paris 
I s3 10 Paris 
I s4 20 London 

' s5 30 Athens 

s# p# qty 
sl Pl 300 
sl P2 200 
sl P3 400 
sl P4 200 
sl PS 100 
sl P6 100 
s2 Pl 300 
s2 P2 400 
s3 P2 200 
s4 P2 200 
s4 P4 300 
s4 PS 400 

Figure 3.5 Tables in 2NF 

Tables in 2NF but not in 3NF still contain modification anomalies. In the example of 

SECOND, they are: 

INSERT. The fact that a particular city has a certain status (Rome has a status of 50) 

cannot be inserted until there is a supplier in the city. 

DELETE. Deleting any row in SUPPLIER destroys the status information about the 

city as well as the association between supplier and city. 

3.2.3.7 Third Normal Form 

The third normal form requires that all columns in a relational table are dependent 

only upon the primary key. A more formal definition is: 

A. relational table is in third normal form (3NF) if it is already in 2NF and every non­ 

key column is none transitively dependent upon its primary key. In other words, all 

non key attributes are functionally dependent only upon the primary key. 

Table PARTS is already in 3NF. The non-key column, qty, is fully dependent upon 

the primary key (s#, p#). SUPPLIER is in 2NF but not in 3NF because it contains a 

Transitive dependency. A transitive dependency is occurs when a non-key column 

hat is a determinant of the primary key is the determinate of other columns. The 

oncept of a transitive dependency can be illustrated by showing the functional 

dependencies in SUPPLIER: 

37 



SUPPLIER.s# 

SUPPLIER.s# 

-> SUPPLIER. status 

SUPPLIER. city 

-> SUPPLIER.city 

-> SUPPLIER. status 

Note that SUPPLIER. status is determined both by the primary key s# and the non­ 

key column city. The process of transforming a table into 3NF is: 

Identify any determinants, other the primary key, and the columns they determine. 

Create and name a new table for each determinant and the unique columns it 

determines. 

Move the determined columns from the original table to the new table. The 

determinate becomes the primary key of the new table. 

Delete the columns you just moved from the original table except for the determinate 

which will serve as a foreign key. 

The original table may be renamed to maintain semantic meaning. 

To transform SUPPLIER into 3NF, we create a new table called CITY_STATUS and 

move the columns city and status into it. Status is deleted from the original table, city 

is left behind to serve as a foreign key to CITY_STATUS, and the original table is 

renamed to ~UPPLIER _ CITY to reflect its semantic meaning. The results are shown 

in Figure 3.6 below. 

SUPPLIER CITY CITY STATUS 

s# city 
sl London 
s2 Paris 
s3 Paris 
s4 London 
s5 Athens 

city status 
London 20 
Paris 10 
Athens 30 
Rome 50 

Figure 3.6 Tables in 3NF 

The results of putting the original table into 3NF have created three tables. These can 

e represented in SQL as: 

PARTS (#s, p#, qty) 

Primary Key (s#,#p) 

38 



Foreign Key (s#) references SUPPLIER_CITY.s# 

SUPPLIER_ CITY ( s#, city) 

Primary Key (s#) 

Foreign Key (city) references CITY_STATUS.city 

CITY_STATUS (city, status) 

Primary Key (city) 

The advantage of having relational tables in 3NF is that it eliminates redundant data 

which in turn saves space and reduces manipulation anomalies. For example, the 

improvements to our sample database are: 

After 3NF, all normalization problems involve only tables which have three or more 

columns and all the columns are keys. Many practitioners argue that placing entities 

in 3NF is generally sufficient because it is rare that entities that are in 3NF are not 

also in 4NF and 5NF. They further argue that the benefits gained from transforming 

entities into 4NF and 5NF are so slight that it is not worth the effort. However, 

advanced normal forms are presented because there are cases where they are 

required. 

3.2.3.8 Boyce-Codd Normal Form 

Boyce-Codd normal form (BCNF) is a more rigorous version of the 3NF deal with 

relational tables that had (a) multiple candidate keys, (b) composite candidate keys, 

and (c) candidate keys that overlapped. 

BCNF is based on the concept of determinants. A determinant column is one on 

which some of the columns are fully functionally dependent. 

A relational table is in BCNF if and only if every determinant is a candidate key. 

3.2.3.9 Fourth Normal Form 

A relational table is in the fourth normal form ( 4NF) if it is in BCNF and all multi 

valued dependencies are also functional dependencies. 

Fourth normal form ( 4NF) is based on the concept of multi valued dependencies 

.\1VD). A Multi valued dependency occurs when in a relational table containing at 

least three columns, one column has multiple rows whose values match a value of a 

single row of one of the other columns. A more formal definition given by Date is: 

39 



Given a relational table R with columns A, B, and C then 

R.A ->> R.B ( column A multi determines column B) is true if and only if the set of 

B-values matching a given pair of A-values and C-values in R depends only on the 

A-value and is independent of the C-value. 

MVD always occur in pairs. That is R.A ->> R.B holds if and only if R.A ->> 

R.C also holds. 

Suppose that employees can be assigned to multiple projects. Also suppose that 

employees can have multiple job skills. If we record this information in a single 

table, all three attributes must be used as the key since no single attribute can 

uniquely identify an instance. 

The relationship between emp# and prj# is a multi valued dependency because for 

each pair of emp#/skill values in the table, the associated set of prj# values is 

determined only by emp# and is independent of skill. The relationship between emp# 

and skill is also a multi valued dependency, since the set of Skill values for an 

emp#/prj# pair is always dependent upon emp# only. 

To transform a table with multi valued dependencies into the 4NF move each MVD 

pair to a new table. The result is shown in Figure 3. 7 . 

. 
EMPLOYEE PROJECT EMPLOYEE SKILL 

1211 5 

emp# skill 
1211 Analvsis 
1211 Design 
1211 Program 

Figure 3. 7 Tables in 4NF 

3.2.3.10 Fifth Normal Form 

A table is in the fifth normal form ( 5NF) if it cannot have a loss less decomposition 

into any number of smaller tables. 

While the first four normal forms are based on the concept of functional dependence, 

the fifth normal form is based on the concept of join dependence. Join dependency 

means that an table, after it has been decomposed into three or more smaller tables, 

must be capable of being joined again on common keys to form the original table. 

Stated another way, 5NF indicates when an entity cannot be further decomposed. 

40 



5NF is complex and not intuitive. Most experts agree that tables that are in the 4NF 

are also in 5NF except for "pathological" cases. Theory suggests that true many-to­ 

many-to-many ternary relations are one such case. 

Adding an instance to a table that is not in 5NF creates spurious results when the 

tables are decomposed and then rejoined. For example, let's suppose that we have an 

employee who uses design skills on one project and programming skills on another. 

This information is shown below. 

emp# 

1211 

1211 

prj# 

11 

28 

skill 

Design 

Program 

Next we add an employee (1544) who uses programming skills on Project 11. 

emp# 

1211 

1211 

1544 

prj# 

11 

28 

11 

skill 

Design 

Program 

Program 

Next, we project this information into three tables as we did above. However, when 

we rejoin the tables, the recombined table contains spurious results. 

emp# prj# skill 

1211 11 Design 

1211 11 Program 

1211 28 Program 

1544 11 Design 

1544 11 Program 

<<-spurious data 

<<-spurious data 

By adding one new instance to a table not in 5NF, two false assertions were stated: 

41 



Assertion 1 

Employee 1211 has been assigned to Project 11. 

Project 11 requires programming skills. 

Therefore, Employee 1211 must use programming skills while assigned to Project 

11. 

Assertion 2 
Employee 1544 has been assigned to project 11. 

Project 11 needs Design skills. 

Therefore, Employee 1544 must use Design skills in Project 11. 

3.3 Architectures of Database System 

There are two main architecture of database system 

• Centralized Database System 

• Distributed Database System 

3.3.1 Centralized Database System 

A centralized database system is a system that keeps the data in one single database 

at one single location. In a centralized database system, a single machine called a 

database server hosts the DBMS and the database. 

Multiple users or client workstations can work simultaneously on a centralized 

database system using the Client/Server configuration, or the Intranet configuration if 

• An underlying LAN (Local Area Network) is available (LANs can span one 

or few adjacent buildings) 

• An underlying WAN (Wide Area Network) is available (WANs can span all 

Lebanon) 

The client/server architecture is a very successful and popular one as it balances the 

processing load between the client machine and the server machine. 

42 



The ongoing growth oflntemet and intranet applications has refocused attention on 

centralized databases. In such configuration, the bulk of the processing does not lie 

on the client machine, but rather on the machine hosting the Application Server and 

the database server machine. 

The main disadvantage of centralized database systems is that of single point of 

failure. When the database fails, work of all users is interrupted. Also in the case 

where WAN s are used, failure of part of the network means the interruption of work 

at the remote location. 

Therefore, centralized databases are easier to manage, maintain and control for 

security purposes. They should be the selection of choice if there is no need for a 

more complex architecture. 

3.3.2 Distributed Database System 

The main difference between centralized and distributed database systems is that, in 

the former, the data resides in one single location, whereas in the latter, the data . 
resides in several locations or on multiple servers at the same location. 

The distribution of the data across locations should be transparent to the user who 

continues to use the software application interface from his/her computer. 

Distributed database systems involve many complex issues such as transparency, 

transaction management, optimization, data fragmentation and replication. Their 

design requires a high level of sophistication and competence from the supplier and 

their management requires an experienced Database Administrator. 

The issues summarized below must be assessed during the selection process. 

It is recommended that distributed architectures be used strictly on a per need basis 

because of the complexity of their design and maintenance. 

43 



3.4 Summary 

In conclusion, data model is a conceptual representation of the data structure that are 

required by a database. There are two major methodologies used to create a data 

model: the Entity-Relationship(ER) approach and the Object Model. I used the 

Entity-Relationship approach. There are also two main architectures of database 

system: Centralized Database System and Distributed Database System. I used the 

Centralized Database System. 

44 



CHAPTER4 

HOSPITAL MANAGEMENT SYSTEM AND DATABASE 

STRUCTURE OF HOSPITAL 

4 Overview 

Hospital Management System (HMS) is powerful, flexible and easy to use and has 

designed and developed to deliver real conceivable benefits to hospitals and clinics. 

And more importantly it is backed by reliable and dependable support. 

4.1 Hospital Management System Solution for Hospitals 

Hl\.1S designed for multi specialty hospitals, to cover a wide range of Hospital 

administration and management processes. It is an integrated client server application 

uses Delphi as the front-end for Graphical User Interface and MS SQL as the 

database. 

. 
4.2 Hospital Management System - Registration 

The Registration module is an integrated patient management system, which captures 

complete and relevant patient information. The system automates the patient 

administration functions to have better and efficient patient care process. 

• Register Patient (Inpatient and Outpatient) Detail 

It provides for all enquiries about the patient. 

4.3 Hospital Management System - Doctor 

This module supports doctors to take better and timely consultation decisions by 

providing instant access to comprehensive patient information. 

• Medical Details 

45 



• Diagnosis Details 

• Doctor's Diagnosis Details 

Further more, Confidentiality of Doctors Observation, Previous History of Patients, 

Request for Investigations and so on, are the special features in Doctors Observation 

screen. 

4.4 Hospital Management System - Wards 

Wards module deals with the automation for inpatient in wards in hospital. It 

includes the following things: 

• Manage the patient in wards 

• Organization for beds 

• Organization for patients according to their disease 

4.5 Hospital Management System - Rooms 

Rooms module deals with the automation for inpatient in rooms in hospital. It 

includes the following things: 

• Manage the patient in rooms 

• Organizing rooms 

• Organizing for patients according to their disease 

4.6 Hospital Management System - Pharmacy 

Pharmacy module deals with the automation of general workflow and administration 

management process of a pharmacy. The pharmacy module is equipped with bar 

oding facility, which makes the delivery of medical items to the patient more 

efficient. This module deals with the activities such as: 

• Stock management 

• Medicine Details 

46 



4.7 Hospital Management System - User Manager 

The User Manager module basically deals with administrative controlling the access 

to the information available in the application. It also deals with the System Related 

Activity like modifying, creating, deleting and other management stuff It includes 

the all information about registration, doctor, wards, rooms and pharmacy modules. 

4.8 Benefit of Hospital Network 

In hospital, new patient should register own information to the reception. Then 

patient can visit to doctors. In doctors room patient illness become perceptible. That 

time patient becomes inpatient or outpatient. If patient is outpatient then patient can 

go after examine. If patient is inpatient then patient should visit related department. 

In hospital, inpatient place is consisting of patient's illness. If patient is reside in 

room then first patient visit rooms receptionist. If patient is reside in ward then first 

patient visit wards receptionist. Doctor visit patients with some period. It is depend 

upon patient diseases kind. When doctor finish examine then all inpatient 

information register to the inpatient record by rooms or wards receptionist. Rooms 

and Wards receptionist duty is just organize place for inpatient and register doctor . 
report to the inpatient record. 

The below figure 4.1 describe the general structure of Hospital Network 

47 



Pharmacy 

B 
Reception 

B 
s~ 

Server in Main 
Administrator Office 

Central 

Ward Reception 

Room Reception 

Figure 4.1 The general structure of Hospital Network 

4.9 Database Design for Hospital Management System 

For Hospital Management System Database, I used MS SQL. Database contain 

following tables: Patient, Outpatient, Inpatient, Room, Ward, Bed Availability, 

Doctor, Department, Inpatient Disease Detail and Pharmacy. All tables reside on 

server machine. The structures of the database are given in tables 4.1 + 4.10. 

48 



Table 4.1 Patient Table Structure 

··:;:;;;111::::::::::::m:::t::::;::i11:::::::::::@:r:i::m::::rn'11111;1s:1;: :i;11t1:11.i11nm1111m:11~::11::11::iir.;m:1i1rJ:Jr!f~iii~~::if;jf~l1!;:::mmm1::1:: 
SSN varchar - Patient's social security number. 

1 name varchar - Patient's last name. 

f name var char - Patient's first name. 

Phone var char - Patient's phone number. 

Sex char - Patient's sex. 

d of birth datetime - Patient's date of birth. 

address var char - Patient's address. 

Table 4.2 Outpatient Table Structure 

var char Patient's social security number. 

varchar Patient's disease. 

var char Patient's medicine. 

Doctor's identity number. varchar 

datetime Patient's checking date. 

Table 4.3 Inpatient Table Structure 

var char Patient's social security number. 

numenc I - I Patient's registration number. 

datetime - Patient's admission date. 

datetime - Patent's discharge date. 
-- 

var char - Patient's ward id. 

Bed no I integer - Patient's bed number. 

room no var char - Patient's room number. 

Dep_id varchar - Patient's department id. 

49 



Table 4.4 Room Table Structure 

room no varchar Room number. 

Dep_id var char Department id. 

status char Status of room. 

Table 4.5 Ward Table Structure 

ward id varchar Ward id. 

Dep_id varchar Department id. 

ward name var char Ward name. 

total bed var char Total bed. 

Table 4.6 Bed Availability Table Structure 

ward id var char Ward id. 

Bed no integer Bed number. 

Dep_id var char Department id. 

status char Status of bed. 

Table 4. 7 Doctor Table Structure 

~~tf;,,:,w:::,,,£;; ;;:;:;:;:;:;;;:;;;,;;;;;;;raiajij::mype::,;,:,;1;,,JjifauttL,;, 
varchar Doctor id. 

var char - Doctor's last name. 

name var char - Doctor's first name - 

phone var char - Doctor's phone. 

Sex char - Doctor's sex. 

Dep_id varchar - Doctor's department id. 

50 



Table 4.8 Department Table Structure 

~~~¥~~1~F~~4::::;:z7 
dep _ id varchar - Department id.
dep_name varchar Department name.
dep_des var char Department description.

Table 4.9 Inpatient Table Structure

var char I - ' Inpatient's social security number.
no I numeric - Inpatient's number.

datetime - Inpatient's date of check.
varchar - Inpatient's time of check.
var char - Doctor id.
var char - Inpatient's disease.
var char - Inpatient's medicine.
var char - Inpatient's response.

Table 4.10 Pharmacy Table Structure

varchar Medicine id.
var char Medicine name.
var char Medicine price.
numenc Medicine quantity.

51

' ,,
r
t
' f
!
r

4.10 Adding Patient Algorithm

The below diagram show in Figure 4.2 show the operation or step of Adding Patient.

f42

Adding Patient

Menu

No
f42

button press?

Yes

Warning

Message

No Is patient
detail

correct?

Yes

Warning

Message

Yes
Is patient

record exist in
patient
table?

No

Adding Processes

Success

Figure 4.2 Adding Patient flow diagram

52

4.11 Adding Outpatient Algorithm

The below diagram show in Figure 4.3 show the operation or step of Adding
Outpatient.

f43

Adding Outpatient

Menu

f43

Warning No Is outpatient
detail

Message

Warning 1 .• No

Message

Warning Yes Is outpatient
record exist in
outpatient
table?

Message

No

Adding Processes

Success

Figure 4.3 Adding Outpatient flow diagram

53

4.12 Adding Inpatient Algorithm

The below diagram show in Figure 4.4 show the operation or step of Adding
Inpatient.

f44

Adding Inpatient
Menu

No
f44

Warning I~ No
Message

Warning

Message

No

Warning Yes

Message

Adding Processes

Success

Figure 4.4 Adding Inpatient flow diagram

54

4.13 Adding Inpatient Disease Detail Algorithm

The below diagram show in Figure 4.5 show the operation or step of Adding
Inpatient Disease Detail.

f45

Adding Inpatient

Disease Menu

No Is save

f45 button

Warning No Is inpatient
disease detail

correct? Message

Yes

Warning
No Is inpatient

disease record
exist in inpatient

table?
Message

Yes

Adding Processes

Success

Figure 4.5 Adding Inpatient Disease Detail flow diagram

55

4.14 Relationship of Tables (MS SQL I hosdatal)

The below diagram show in Figure 4.6 show the relationship of tables.

~ ~
1,, _ _I. ~
0 -a

I -a
-a ro I

I ~~:J --- ~------ 1- -----·-

-----!
!
!
'

"' .a
~
"'

w j
Figure 4.6 Relationship of Tables

56

The Relationship of Tables are given below;

• Outpatient and Patient tables relationship is one to one.

• Inpatient and Patient tables relationship is one to one.

• Disease detail and Patient tables relationship is one to one.

• Inpatient and Disease detail tables relationship is one to many.

• Outpatient and Doctor tables relationship is one to many.

• Inpatient and Department tables relationship is one to many.

• Doctor and Department tables relationship is one to many.

• Room and Department tables relationship is one to many.

• Bed availability and Department tables relationship is one to many.

• · Ward and Bed availability tables relationship is one to many.

• Disease detail and Doctor tables relationship is one to many.

4.15 Summary

This chapter describes all Hospital Management System which is a very simple

system used in a variety of ways that can help in the many different departments

available at a hospital. I have created ten tables representing all departments linked

with each other according to their relations. Creating the tables with Microsoft's SQL

server made it more reliable and accurate.

57

CHAPTERS

IMPLEMENTATION OF HOSPITAL MANAGEMENT

SYSTEM IN DELPHI AND USER INTERFACE

5 Overview

This chapter focus on client applications and server application. The chapter

describes how to connect client and server via network. This chapter would also be

called the user manual where it describes thoroughly how to use all applications

within the user interface.

5.1 Administrator Application

The Administrator application runs on the server machine. This application has the

ability to manage everything related to the Hospital Management Database.

Administrators can delete, modify and search any record related to any application in

the Hospital Management Database. The administrator has the rights and authority to

make changes whenever and wherever needed.

5.1.1 Administrator Application Main Form

As we can see in the main form interface the list of links lined. up with labels

representing each task to their form when pressed. If no choice could be reached

there would always be the exit button to leave or exit the application. The below

figure show in Figure 5.1 show the Administrator Application Main Form.

Figure 5.1 Administrator Application Main Form

- 58

5.1.2 Administrator Application \ Patient Menu

From here we can add and modify and delete all patients records, and even if we

were to search for a record that would be possible by using the search button. The

only difference between the administrator's interface and the rest is that this includes

all transactions while other menus differ according to their users. For example in the

doctor's menu you can find the search button. The below figure show in Figure 5.2

show the Administrator Application \ Patient Menu.

Figure 5.2 Administrator Application \ Patient Menu

5.1.3 Administrator Application\ Outpatient Menu .
From here we can add and modify and delete all outpatients records, and even if we

were to search for a record that would be possible by using the search button. Since

they are all related and linked with each other under the administrator's authorization

they therefore look alike in their user interface. The below figure show in Figure 5.3 .
show the Administrator Application\ Outpatient Menu.

Figure 5.3 Administrator Application \ Outpatient Menu

59

5.1.4 Administrator Application \ Inpatient Menu

From here we can add and modify and delete all inpatients records, and even If we

were to search for a record that would be possible by using the search button. Like

mentioned in the previous definitions of interface, again the administrator has all the

rights to make his changes in all user interfaces. The below figure show in Figure 5.4

show the Administrator Application \ Inpatient Menu.

5.1.5 Administrator Application\ Room Menu .
In the room menu interface as you can see below we can add, modify, search, delete

and show all rooms. It is vital for the administrator to control room from this point of

view for security reasons, in other words not even the doctor can delete or make any

changes in the room menu. The below figure show in Figure 5.5 show the

Administrator Application \ Room Menu.

Figure 5.5 Administrator Application \ Room Menu

60

5.1.6 Administrator Application\ Ward Menu

In the ward menu interface as you can see below we can add, modify, search, delete

and show all rooms. There is a major difference between the room menu and the

ward menu and that is the number of beds present in each ward, therefore this will

automatically lead to an addition in the ward menu, which is the bed availability.

This makes it a lot easier for us to understand the previous recorded data from the

add menu which will pin point which bed is vacant and which is not after the list of

beds have been displayed. The below figure show in Figure 5.6 show the

Administrator Application\ Ward Menu.

Figure 5.6 Administrator Application\ Ward Menu

5.1. 7 Administrator Application \ Doctor Menu

As for the doctor it is generally the same interface as the above and since the

administrator has full access to all records he · therefore has the ability to add and

modify and delete in the doctor's records. Very basic and brief information can be

:ound on this menu, which is linked to the definition of his department, which is

represented by a numeric value. In the department menu we will get to understand

.hat field the doctor specializes in. The below figure show in Figure 5. 7 show the

Administrator Application \ Doctor Menu.

61

Figure 5. 7 Administrator Application\ Doctor Menu

5.1.8 Administrator Application\ Department Menu

As mentioned above the department interface is also modifiable in others we can

add, modify, search and delete records from it through the administrator application.

The basic purpose of this menu is that it shows the many different fields that are

related to the patients and at the same time we may also find out which doctor is .
responsible or is in charge of which department. The below figure show in Figure 5. 8

show the Administrator Application \ Department Menu.

Figure 5.8 Administrator Application \ Department Menu

62

5.1.9 Administrator Application \ Inpatient Disease Detail Menu

The same goes with Inpatient disease menu where modifications and changes can be

done under administrator authentication. There would obviously be a list of diseases

matching each inpatient with his or her details included making it easier to make

comments and give medical prescription. The below figure show in Figure 5.9 show

the Administrator Application \ Inpatient Disease Detail Menu.

Figure 5.9 Administrator Application \ Inpatient Disease Detail Menu

5.1.10 Administrator Application\ Pharmacy Menu

The pharmacy menu as shown below shows the ability to add, modify and delete

records. It also shows the availability of stock within the pharmacy. A display of all

medicines can also be accessed. The below figure show in Figure 5 .10 show the

Administrator Application \ Pharmacy Menu.

Figure 5.10 Administrator Application:', Pharmacy Menu

63

5.2 Reception Application

In the reception application menu the field of area work is very restricted because

this where the receptionist will be using to add patients. If mistakes occur the modify

button can help correct them.

5.2.1 Reception Application Main Menu

The below figure show in Figure 5.11 show the Reception Application\ Main Menu.

Figure 5.11 Reception Application\ Main Menu

5.2.2 Reception Application \ Add Menu

When adding a patient I am subjected to fill out all details regarding his status,

including his name, address, phone number, social security number and sex. This

makes it easier to track down and keep in touch with all our patients in times of

sickness. The below figure show in Figure 5.12 show the Reception Application \

Add Menu.

Figure 5.12 Reception Application \ Add Menu

64

5.2.3 Reception Application \ Search Record

The search record menu is a simple way of pin pointing a patient by using three

information fields where two of them are unique when searched for, leaving the date

of birth, which can be repeated or shared among some patients. That's why it would

be better to make your search by using SSN since it is unique. The below figure

show in Figure 5.13 show the Reception Application x Search Record.

5.2.4 Reception Application \ Modify Record

In the modify record interface we can make changes ONLY when a record is found

and when it's found a save button appears on the bottom of the interface incase of

any changes that have been made to the record. The below figure show in Figure

5.14 show the Reception Application\ Modify Record.

Figure 5.14 Reception Application\ Modify Record

65

5.2.5 Reception Application \ Show All Patient

In the show all patient interface the properties and information of all patients are

displayed. The display may be sorted out by right-clicking on any field where a pop­

up menu will appear requesting the user in which form would you want to list the

patients. This is done within the fields that are listed accordingly. For example you

may want to arrange the names of the patients via alphabetical order or according to

their phone numbers or social security numbers and so forth. The below figure show

in Figure 5 .15 show the Reception Application \ Show All Patient.

5353553647 - ····- -··-····-··
uzun 5423458964 M 12.11.1971 --·· ·····---· ··-------··· ····---··- ·--·----·--- ··-·---· ·---··-··-----·· ·--·-·------. - ··- ---· ····---------

23.01.1982
11.12.1978

-·-·--·-·-·-·· senay ···-·· -··--- akar 5557837678 __
hatice sanli 5323744758 F
tekin kori<maz 54:6758493 M 13.05.1975 mechs sok. no: 17/3 an ···------------------- ------ ·-----·- ·------------·--·-·------·------------------··-- ------ --·- ·--- ---·--·---·--------·----- .
arzu sahin -5437578585 F 12.10.1W9 hatli sok. no 213 adan,

. mu rat_ .. ·-- .. ··-··· osmanoglu -····-· _555838_3929• M _. _ ..
esra task in 5433484849 F

. ·- ---- ---·------· ·-·---------------- ---------- - ····----
5443782283 F

1~091980 •.. c~n s_o~: _n_o_~."nlak}'
1607 1976 kili~ sok. no_. 1012_toka
14.09.1976 kirlar sok. no 6 adana

esra arslan 5432889929 F ·16.12.1975 sanli sok. no 3 urfa
···-···-----·-··----------·-- ··---·--- ·-··-··-··· - -------·--. ···- ------ -----····-----.
sen 5463289293 M

5352787823 . F •
tas sok. no : 4f1 samsi. ..

15.04.1975 .. karli sok. _nazli apt._no ...
01 CE 1983 2163443433 F

Figure 5.15 Reception Application\ Show All Patient

5.3 Doctor Application

The doctor application which gives general information about patients and whether

or not they are inpatients or out patients to simplify records at great easy access.

5.3.1 Doctor Application main form

As we can see in the interface below the doctor application consists of a four menu

interface. The below figure show in Figure 5 .16 show the Doctor Application \ Main

Menu.

66

Figure 5.16 Doctor Application\ Main Menu

5.3.2 Doctor Application \ Patient \ Search Record

The first would be the doctor's need of knowledge for the patient's information for

example the name of the patient, address, sex and so forth. This is done by typing the

patient's social security number, which is considered the only unique method of

search. The below figure show in Figure 5.17 show the Doctor Application\ ·Patient\ .
Search Record.

Figure 5.17 Doctor Application\ Patient \ Search Record

67

5.3.3 Doctor Application \ Outpatient Menu

In the outpatient menu the doctor can add, search, modify, but not delete any of the

information displayed before him, because the records are created at the reservation

application and even the reception can not delete any records for security purposes so

this again leaves the administrator in charge of all deletions and major changes in

any record. The below figure show in Figure 5 .18 show the Doctor Application \
Outpatient Menu.

5.3.4 Doctor Application \ Outpatient Menu \ Add Record

When adding a patient in the outpatient menu we need to fill out some information

regarding this matter. The information could be the social security number or the

type of disease and medicine and the doctor ID, which represented by a numeric

value and the date of the patient's check in. Then and only then can we modify and

save the changes by clicking on the save button that appears below. The below figure

show in Figure 5 .19 show the Doctor Application \ Outpatient Menu \ Add Record.

Figure 5.19 Doctor Application \ Outpatient Menu \ Add Record

68

5.3.5 Doctor Application \ Outpatient Menu \ Search Record

The search record is for searching the outpatient records and to double check for any

mistakes or confirmation for the doctor's purposes. It will also include any late visits

that the outpatient has had, in other words more of a log file or history file for the

doctor's knowledge. The below figure show in Figure 5.20 show the Doctor

Application \ Outpatient Menu \ Search Record.

Figure 5.20 Doctor Application \ Outpatient Menu \ Search Record

5.3.6 Doct~r Application \ Outpatient Menu \ Modify Record

The outpatient record also like other records may need to be modified and corrected

that's why we need the modification interface incase of mistakes. It also shows the

history of the outpatient when social security number is entered. The below figure

show in Figure 5.21 show the Doctor Application\Outpatient Menu\Modify Record.

Figure 5.21 Doctor Application\ Outpatient Menu\ Modify Record

69

5.3. 7 Doctor Application \ Inpatient Menu

In the inpatient menu the aim is to search for records of inpatients that have

previously been to the hospital. And on the lower button you may very well search

for the inpatient disease details. The below figure show in Figure 5.22 show the

Doctor Application \ Inpatient Menu.

Figure 5.22 Doctor Application \ Inpatient Menu

5.3.8 Doct~r Application \ Inpatient Menu \ Inpatient\ Search Record

In this menu like the previous outpatient menu the only easy unique way of searching

is by the social security number. where it will ease the record and previous log files

like when the last time the inpatient came to the hospital and for what cause and in

which department he was sent to. The first would be the doctor's need of knowledge

for the inpatient's information. This is done by typing the inpatient's social security

number, which is considered the only unique method of search. In order to overcome

confusion I have managed to assign a command where an inpatient would be staying

in a room and the ward and bed number would automatically be nulled. The below

figure show in Figure 5.23 show the Doctor Application\ Inpatient Menu\ Inpatient \

Search Record.

70

Figure 5.23 Doctor Application \ Inpatient Menu \ Inpatient \ Search Record

5.3.9 Doctor Application \ Inpatient Menu \ Inpatient Disease Detail \ Search
Record

In the interface below the inpatient's search of diseases details along with the

inpatient's history. The below figure show in Figure 5.24 show the Doctor

Application ~ Inpatient Menu \ Inpatient Disease Detail \ Search Record.

nephritis
5:06.02.2003 __ 13:00 1 ·- -- nephritis ---·---- ---·--· .antibiotic ---------- - - __ ·_

Figure 5.24 Doctor Application \ Inpatient Menu \ Inpatient Disease Detail \ Search
Record

71

5.3.10 Doctor Application\ Inpatient Menu\ Advanced Search

One of the main charecteristic of system is that it can answer the query not only

typically and non typically questions. Example of this query searching for by the

type of disease, searching for by the type of used medicine or searching for by the

doctor id. Also for this screen report is available.

Figure 5.25 Doctor Application \ Inpatient Menu \ Advanced Search

5.4 Room Application

Room application is an application where the room receptionist has all records

concerning the rooms.

5.4.1 Room Application main form

The room application consists of two menus as shown in the interface below. The

below figure show in Figure 5.25 show the Room Application\ Main Menu.

Figure 5.26 Room Application\ Main Menu

72

5.4.2 Room Application \ Inpatient Menu

The first menu is the inpatient menu where the room receptionist can add, search and

modify the records. The below figure show in Figure 5.26 show the Room

Application\ Inpatient Menu.

Figure 5.27 Room Application\ Inpatient Menu

5.4.3 Room Application \ Inpatient Menu \ Add Record

When clicking on the add record the patient number is displayed automatically where

a fields regarding this matter are to be filled and saved for future usage. The fields

consist of Dept ID and Social security number, admission and discharge date and the

room number itself. After filling the details we may save our work by clicking on the

save button. The below figure show in Figure 5.27 show the Room Application\

Inpatient Menu\ Add Record.

Figure 5.28 Room Application\ Inpatient Menu \ Add Record

73

5.4.4 Room Application \ Inpatient Menu \ Search Record

Again the searching method is done by social security number since that could be

the easiest and most unique way of identification. The below figure show in Figure

5.28 show the Room Application.', Inpatient Menu\ Search Record.

Figure 5.29 Room Application \ Inpatient Menu \ Search Record

5.4.5 Room Application \ Inpatient Menu \ Modify Record

The same here when modifying a record the social security number is required as a

vital field. The below figure show in Figure 5.29 show the Room Application \

Inpatient Menu\ Modify Record.

Figure 5.30 Room Application\ Inpatient Menu\ Modify Record

74

5.4.6 Room Application \ Inpatient Disease Detail Menu

In the disease details menu the receptionist can make changes and save them for

future usage. The below figure show in Figure 5.30 show the Room Application\
Inpatient Disease Detail Menu.

Figure 5.31 Room Application \ Inpatient Disease Detail Menu

4. 7 Room Application \ Inpatient Disease Detail Menu \ Add Record

When adding the information the fields apply above just like they apply here. The

Ids are given and include the SSN, patient number, date of check, time of check

and doctor ID. And here again we may save our records by clicking on the save

on. The below figure show in Figure 5.31 show the Room Application\ Inpatient
· ease Detail Menu\ Add Record.

Figure 5.32 Room Application \ Inpatient Disease Detail Menu \ Add Record

75

5.4.8 Room Application \ Inpatient Disease Detail Menu \ Search Record

Search record menu again like mentioned above use the social security number as a

key search. The below figure show in Figure 5.32 show the Room Application\

Inpatient Disease Detail Menu \ Search Record.

Figure 5.33 Room Application \ Inpatient Disease Detail Menu \ Search Record

5.4.9 Room Application \ Inpatient Disease Detail Menu \ Modify Record

The room application also has a modification record where the social security

number is required for any modifications needed. The below figure show in Figure

5.33 show the Room Application\ Inpatient Disease Detail Menu\ Modify Record.

Figure 5.34 Room Application\ Inpatient Disease Detail Menu \ Modify Record

76

5.5 Ward Application

The ward application is very simple just like the previous room application where

would find easy ways ofrecording adding and modifying the records.

5.5.1 Ward Application main form

In the ward application main form as shown below we can take a look at the links to

the buttons and we will discuss them further below. The below figure show in Figure

5.34 show the Ward Application\ Main Menu.

Figure 5.35 Ward Application\ Main Menu

5.5.2 Ward Application\ Inpatient Menu

Like room application the ward inpatient menu has the add button and the search and

modify buttons. The below figure show in Figure 5.35 show the Ward Application \
Inpatient Menu.

Figure 5.36 Ward Application.', Inpatient Menu

77

5.5.3 Ward Application\ Inpatient Menu\ Add Record

The inpatient add record gives an automatic patient number and has pretty much the

same information under the room inpatient menu except for the ward id and the bed

no which are included in the actual building. We can also save our information by

licking on the save button. The below figure show in Figure 5.36 show the Ward
Application \ Inpatient Menu \ Add Record.

Figure 5.37 Ward Application\ Inpatient Menu\ Add Record

5.5.4 Ward Application \ Inpatient Menu\ Search Record

The inpatient menu also has a search record where again the social security number

· required for the fields. And this helps the ward receptionist pinpoint and locate an

inpatient. The below figure show in Figure 5.37 show the Ward Application \
Inpatient Menu\ Search Record.

Figure 5.38 Ward Application\ Inpatient Menu\ Search Record

78

5.5.5 Ward Application\ Inpatient Menu\ Modify Record

The inpatient modification record is also done via social security number, where we

can locate and make changes needed, and then save them. The below figure show in

Figure 5.38 show the Ward Application\ Inpatient Menu\ Modify Record.

Figure 5.39 Ward Application\ Inpatient Menu \ Modify Record

5.5.6 Ward Application \ Inpatient Disease Detail Menu

The inpatient disease detail menu also consists of a menu where we may add, search

and modify our records. The below figure show in Figure 5.39 show the Ward

Application \ Inpatient Disease Detail Menu.

Figure 5.40 Ward Application\ Inpatient Disease Detail Menu

79

5.5. 7 Ward Application \ Inpatient Disease Detail Menu \ Add Record

When adding a record all fields are specified by the doctor for the receptionist to

benefit from at times of the doctor's absence. The menu consists of patient no, social

security number, date of check and time of check, doctor id, disease, medicine and

response. The below figure show in Figure 5.40 show the Ward Application \

Inpatient Disease Detail Menu \ Add Record.

Figure 5Al Ward Application\ Inpatient Disease Detail Menu\ Add Record

5.5.8 Ward Application\ Inpatient Disease Detail Menu \ Search Record

The inpatient diseases are all the same since they are all using the social security

number as there key search. The below figure show in Figure 5.41 show the Ward

Application \ Inpatient Disease Detail Menu \ Search Record.

Figure 5.42 Ward Application\ Inpatient Disease Detail Menu \ Search Record

80

5.5.9 Ward Application\ Inpatient Disease Detail Menu\ Modify Record

Before making any modification in this field we need to search using the social

security number and at the same time locating our inpatient. The need for

modification in this field is very important since not all medicines heal or work from

the first time so the response may change from time to time according to the

inpatient's recovery. The below figure show in Figure 5.42 show the Ward

Application\ Inpatient Disease Detail Menu\ Modify Record.

Figure 5.43 Ward Application v Inpatient Disease Detail Menu\ Modify Record

6 Pharmacy Application

pharmacy application is another application simplified for the knowledge of

medicines available and more.

_..6.1 Pharmacy Application main form

ne main form consists a group of buttons with links each one leading to a different

ld. As shown on the interface below. The below figure show in Figure 5.43 show

Pharmacy Application \ Main Menu.

Figure 5.44 Pharmacy Application\ Main Menu

81

5.6.2 Pharmacy Application \ Add Menu

The add menu consists of the medicine id which is represented by a numeric value

which is the bar code id here again no confusion can be made since each id is unique.

The medicine name is to be added and so is the quantity in stock along with the price

tag, which represents the price per medicine. We may very well save all the

information by using the save button. The below figure show in Figure 5.44 show the

Pharmacy Application \ Add Menu.

Figure 5.45 Pharmacy Application\ Add Menu

S.6.3 Pharmacy Application \ Stock In Menu

The stock in menu can search all medicines by typing down their id, which will show

their amount added to the amount available in the stock. In other words an addition

the existing medicine we have in stock. The below figure show in Figure 5 .45

w the Pharmacy Application\ Stock In Menu.

Figure 5.46 Pharmacy Application \ Stock In Menu

82

5.6.4 Pharmacy Application \ Stock Out Menu

The stock out menu is the amount of medicine that is taken or used which will cause

the stock or quantity of that same medicine to decrease. The below figure show in

Figure 5.46 show the Pharmacy Application\ Stock Out Menu.

Figure 5.46 Pharmacy Application \ Stock Out Menu

5.6.5 Pharmacy Application \ Search Menu

The search menu can give us a summary of what we have in our stock and this

includes prices and quantity of that medicine we have in stock. The below figure

show in Figure 5.47 show the Pharmacy Application\ Search Menu.

Figure 5.47 Pharmacy Application\ Search Menu

83

5.6.6 Pharmacy Application \ Modify Record

We may very well modify our records in the records due to an increase of prices for

example or an expiry date and so forth, so this makes it important to make all these

changes through the modify record menu. The below figure show in Figure 5.48

show the Pharmacy Application \ Modify Record.

Figure 5.48 Pharmacy Application \ Modify Menu

5.7 Definition of Terms and Connection

5.7.1 Microsoft Data Access Components (MDAC)

MDAC is an umbrella for Microsoft's database technologies and includes ADO,

OLE DB, ODBC, and RDS (Remote Data Services).Often you will hear people use

the terms MDAC and ADO interchangeably (but incorrectly) because their version

numbers and releases are now aligned. As ADO is only distributed as part ofMDAC,

we talk in terms of MDAC releases. The major releases of MDAC have been

versions 1.5, 2.0, 2.1, 2.5 and 2.6. MDAC is also distributed with most Microsoft

products that have some kind of database content. This includes Windows 98,

Windows 2000, Windows Millennium Edition, Microsoft Office, Internet Explorer

and SQL Server.

84

5. 7.1.1 ActiveX Data Objects (ADO)

ADO is part of a bigger picture called Microsoft Data Access Components (MDAC).

ADO, which stands for ActiveX Data Objects, is Microsoft's high-level interface for

database access. ADO is implemented on Microsoft's data-access OLE DB

technology, which provides access to relational and non-relational databases as well

as e-mail and file systems and custom business objects.

5. 7.1.2 Object Linking and Embedding (OLE)

OLE DB is a Component Object Model (COM) based data access interface. It

supports applications written to use OLE DB or data object interfaces that use OLE

DB. OLE DB is designed to work with relational databases (such as those in SQL

Server).

OLE DB uses a provider to gain access to a particular data source. Providers for SQL

Server, Oracle, Jet (Microsoft Access databases), ODBC supplied with SQL Server.

Using the OLE DB provider for ODBC, OLE DB can be· used to gain access to any

ODBC data source.

5.7.1.3 Component Object Model (COM)

The programming model on which several SQL Server and database application

programming interfaces (APis), such as SQL-DMO, OLE DB, and ADO, are based.

5. 7.1.4 Using Data Sources (ODBC)

You can use Data Sources Open Database Connectivity (ODBC) to access data from

a variety of database management systems. For example, if you have a program that

accesses data in a SQL database. To do this, you must add software components

called drivers to your system. Data Sources (ODBC) helps you add and configure

these drivers. To open Data Sources (ODBC), click Start, point to Settings, and then

click Control Panel. Double-click Administrative Tools, and then double-click Data

Sources (ODBC).

85

5. 7.2 How to Create Open Database Connectivity (ODBC)

By following figures we can create Open Database Connectivity (ODBC). First of all
choose Data Sources (ODBC) component.

~;:,w
Administrative
Tools

•• ,. .

Data Sources Distributed File
(ODBC) System

Computer
Management

Configure
Your Server

Select an item to view its
description.

1:onf ig~~es ~dministr ativ~ settings
f9r your computer

Internet
Servic ...

licensing Local Security Performance
Policy

See also:
Mv Documents
My Network Places

• Routing and Server
··• Remote... Extensions ...

Services Telnet Server
Administration

..... .=J.

Start\ Settings\ Control Panel\ Administrative Tools
____ Figure 5.49 ~dministrative Tools
urce Administratori

~:'i) :::,· :-,:.:, ·.7.._.,: ~~:::.· ~

dBase Files· Word
Excel Files
F oxPro Files · Word
MS Access Database
Visual FoxPro Database
Visual FoxPro Tables

Microsoft dBase Driver (".dbi)
Microsoft dBase VFP Driver [".dbf)
Microsoft Excel Driver (".:~Is)
Microsoft F o>!Pro VFP Driver (" dbi)
Microsoft Access Driver (". mdb)
Microsoft Visual FoxPro Driver
Microsoft Visual F oxPro Driver

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator

Figure 5.50 ODBC Data Source Administrator

86

Microsoft FoxPro VFP Driver (".dbf]
Microsoft ODBC for Oracle
Microsoft Paradox Driver ('.db)
Microsoft Paradox-Treiber (".db J
Microsoft Text Driver (".txt; •.csv)
Microsoft Text-Treiber (".txt; •.csv)
Microsoft Visual FoxPro Driver
Microsoft Visual F oxPro- Treiber
NW4i41

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ Create New Data Source
Figure 5.51 Create New Data Source

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ Create New Data Source to SQL Server\ Pagel

Figure 5.52 Create a New Data Source to SQL Server

87

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ Create New Data Source to SQL Server\ Page2

Figure 5.53 Create a New Data Source to SQL Server

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ Create New Data Source to SQL Server\ Page3

Figure 5.54 Create a New Data Source to SQL Server

88

Start\ Settings\ Control Panel\ Administrative Tools.', ODBC Data Source
Administrator\ Create New Data Source to SQL Server\ Page4

Figure 5.55 Create a New Data Source to SQL Server

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ ODBC Microsoft SQL Server Setup·
Figure 5.56 ODBC Microsoft SQL Server Setup

89

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ SQL Server ODBC Data Source Test
Figure 5.57 SQL Server ODBC Data Source Test

Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source
Administrator\ Create New Data Source to SQL Server\ Page2

Figure 5.58 ODBC Data Source Administrator

90

At the result of these operation Open Database Connection (ODBC) is created.

5. 7.3 How to Create ADO Connection for Delphi 7
By following figures we can create ADO Connection for Delphi 7.

ADO Connection\ Connection String\ Build
Figure 5.59 ADO Connection String

:?,eitE'oa Prov~hl; ::,,, \qp0· :.:-s+J:!ef.> - ,. > :>0, .- · !'Hf
MediaCatalogDB OLE DB Provider
MediaCatalogMergedDB OLE DB Provider
MediaCatalogWebDB OLE DB Provider
Microsoft Jet 4.0 OLE DB Provider
Microsoft OLE DB Provider For Data Mining Services
Microsoft OLE DB Provider for DTS Packages
Microsoft OLE DB Provider for Indexing Service
Microsoft OLE DB Provider for Internet Publishing
Mrcro[,oft OLE DB Provider for ODBC Drivers
Microsoft OLE DB Provider for OU..P Services
Microsoft OLE DB Provider for OU..P Services 8.0
Microsoft OLE DB Provider for Oracle
Microsoft OLE DB Provider for SQL Server
Microsoft OLE DB Simple Provider
MSDataShape
OLE DB Provider for Microsoft Directory Services
SQL Server DTS Flat File OLE DB Provider

ADO Connection\ Connection String\ Data Link Properties\ Provider
Figure 5.60 Data Link Properties

91

ADO Connection\ Connection String\ Data Link Properties\ Connection
Figure 5.61 Data Link Properties

ADO Connection\ Connection String\ Data Link Properties\ Advanced
Figure 5.62 Data Link Properties

92

General Timeout
Initial Catalog
Locale Identifier
Location
Mode
Password
Persist S ecurity Info False
User ID

1055

ADO Connection\ Connection String\ Data Link Properties\ All
Figure 5.63 Data Link Properties

ADO Connection\ Connection String\ OK
Figure 5.64 Ado Connection String

At the result of these operation ADO Connection for Delphi 7 is created.

93

CONCLUSION

Networking of computers allows some tasks to be executed on a server system, and

some tasks to be executed on client systems. This division of work has led to the

development of client-server database systems.

The thesis includes detailed information about the design of client-server system,

client-server architecture, data modeling and architecture of database systems.

We develop the client-server application for Hospital Management System using

centralized database system in this master thesis starting creating necessary tables

such as patient, outpatient, inpatient, inpatient disease detail, doctor, department, bed

availability, pharmacy, room and ward in Microsoft SQL Server. Application
programs are in Delphi 7.

We have developed Administration, Reception, Doctor, Ward Reception, Room

Reception and Pharmacy applications in the thesis, that makes it easier for a user to

access and retrieve data for Hospital activities. These applications are working with

centralized database. The centralized database provides the security of the system.

The user can easily display and print out differents of forms concerning patient's
disease information.

The developed system can make searching not only by standard, typical queries of

user and non typical queries of user. By advanced search options, we can query data

by SSN(Social Security Number), type of Disease, Doctor id and type of Medicine.

94

REFERENCES

Books
1. Batini, Ceri, S. Kant, and B. Navathe; Conceptual Database Design; (1991). The

Benjamin/Cummings Publishing Company.

2. Date; An Introduction to Database Systems, 5th ed.; (1990). Addison-Wesley.

3. Fleming, Candace C. and· Barbara von Halle; Handbook of Relational Database

Design; (1989). Addison-Wesley.

4. Kroenke, David; Database Processing, 2nd ed.; (1983). Science Research

Associates.

5. Martin, James; Information Engineering; (1989). Prentice-Hall.

6. Reingruber, Michael C. and William W. Gregory; The Data Modeling Handbook:

A Best-Practice Approach to Building Quality Data Models; (1994). John Wiley &

Sons, Inc.

7. Simsion, Graeme; Data Modeling Essentials: Analysis, Design, and Innovation;

(1994). International Thompson Computer Press.

8. Toby J.; Database Modeling & Design: The Basic Principles, 2nd ed.; (1994).

Morgan Kaufmann Publishers, Inc.

9. R. Orfali, D. Harkey, and J. Edwards; Essential Client/Server Survival Guide;

(1994). John Wiley & Sons.; ISBN 0-471-13119-9.
'

10. Sean Nolan; Microsoft SQL Server 7.0 Database Implementation Training Kit \

Microsoft Corporation; (1999). Microsoft Press.; ISBN 1-57231-826-0

11. Marco Cantu; Mastering Delphi 7; (2002). SYBEX Inc.; ISBN: 0-7821-2874-2.

Online Articles

1. Hospital Management System (HMS): www.Hospital Management System.htm

2. The Basic Concepts of Client/server Architecture: www.Basic Concepts of Client­

server Architecture

3. What is Client I Server: www.Client-Server Informationl.htm

4. Understanding Client/Server Computing: www. Understanding Client-Server

Architecture.htm

5. Hospital Information System: www.Hospital Information System - HIS -

Medinous.htm

95

APPENDIX A

Client\Server Application for Hospital Management System Using Centralized
Database System - Program Listing

Administrator\ Patient \ Add Record

procedure TForm2.Button6Click(Sender: TObject);
type
patientngl=set of'0' .. '9';
patientcg 1 =set of 'a' .. 'z';
var
patientfor: integer;
patientvl :integer;
patientng: patientng 1 ;
patient cg: patientcg 1;
begin
patientng:=('O' .. '9'];
patientcg:=('a' .. 'z'];
adotable 1. Close;
adotable 1. Open;
if (adotable 1.Locate('S SN', edit 1. Text, (locaseinsensitive])=true) then
begin
application.messageboxr'This record already exist in Patient table. Please check

again.','Check Record',MB OK+48+MB SYSTEMMODAL); - -
edit 1. SetF ocus;
exit;

end;
patientv 1 :=edit 1. GetTextLen;
if patientv 1 =O then
begin
application.MessageBox('Please enter numeric value on SSN field'i'Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
editl.setfocus;
exit;

end
else
begin
if (patientvl <8) or (patientv1>8) then
begin
application.MessageBox('Please enter 8 character value on SSN field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit 1. setfocus;
exit;

end;
for patientfor:=O to patientvl do

96

begin
if (edit 1. T ext[patientfor] in patientcg) then
begin
application.messagebox('Please enter numeric value on SSN field','Check

Value',MB _ OK+48+MB _ SYSTEMMODAL);
edit 1 . setfocus;
exit;

end;
end;

end;
patientvl :=edit2.gettextlen;
if patientv 1 =O then
begin
application.MessageBox('Please enter character value on First Name field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
edit2. setfocus;
exit;

end
else
begin
for patientfor:=O to patientvl do
begin
if (edit2. text[patientfor] in patientng) then
begin
application.messagebox('Please enter character value on First Name

field','Check Value',MB OK+48+MB SYSTEMMODAL);
edit2.setfocus; - -
exit;

end;
end;

end;
patientv 1 :=edit3 .gettextlen;
if patientv 1 =O then
begin
application.MessageBox('Please enter character value on Surname field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit3 . setfocus;
exit;

end
else
begin
for patientfor:=O to patientvl do
begin
if (edit3. text[patientfor] in patientng) then
begin
application.messagebox('Please enter character value on Surname

field','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit3. setfocus;

97

exit;
end;

end;
end;

patientvl :=edit4.gettextlen;
if patientv 1 =O then
begin
application.MessageBox('Please enter numeric value on Phone field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit 4. setfocus;
exit;

end
else
begin
if(patientvl<lO) or (patientvl>12) then
begin
application.MessageBox('Please enter right value on Phone field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
edit4.setfocus;
exit;

end;
for patientfor:=O to patientvl do
begin
if (edit4.text[patientfor] in patientcg) then
begin
application.messageboxt'Please enter numeric value on Phone field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit 4. setfocus;
exit;

end;
end;

end;
if combo box 1.itemindex=-1 then
begin
application.MessageBox('Please choose Sex (Male\F emale)', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
combobox 1. setfocus;
exit;

end;
if (maskeditl.text[l] in patientng) and (maskeditl.text[2] in patientng) then
begin
maskedit 1. SelStart:=O;
maskedit 1. SelLength:=2;
if (masked it 1. seltext='OO') then
begin
application.messagebox('Please check day on Date of Birth field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
maskedit 1. setfocus;

98

exit;
end;

if (strtoint(mask edit 1. seltext)> 31) then
begin
application.messagebox('Please check day on Date of Birth field','Check

Value',MB _ OK +48+MB _ SYSTEl\11vfODAL);
maskedit 1. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check day on Date of Birth field','Check

V alue',MB _ OK +48+MB _ SYSTEl\11vfODAL);
maskedit 1. setfocus;
exit;

end;
if (maskedit 1. text[4] in patientng) and (maskedit 1. text[5] in patientng) then
begin
maskeditl. SelStart:=3;
maskedit 1. SelLength:=2;
if (maskeditl .seltext='OO') then
begin
application.messagebox('Please check month on Date of Birth field','Check

Value',MB_OK+48+MB_SYSTEl\11vfODAL);
maskedit 1. setfocus; .
exit;

end;
if (strtoint(maskedit l .seltext)> 12) then
begin
application.messagebox('Please check month on Date of Birth field','Check

Value',MB_OK+48+MB_SYSTEl\11vfODAL);
maskedit 1. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check month on Date of Birth field','Check

Value',MB_OK+48+MB_SYSTEl\11vfODAL);
maskedit 1. setfocus;
exit;

end;
if (maskeditl.text[7] in patientng) and (maskeditl.text[8] in patientng)
and (maskeditl.text[9] in patientng) and (maskeditl.text[lO] in patientng) then
begin
maskeditl .SelStart:=6;
maskedit 1 .Sell.engthr=l;

99

if (maskedit 1. seltext='OOOO') then
begin
application.messagebox('Please check year on Date of Birth field','Check

Value',MB _ OK +48+MB _SYSTEMJ\10DAL);
maskedit 1. setfocus;
exit;

end;
edit83. SelStart:=6;
edit83. SelLength:=4;
if (strtoint(mask edit 1. seltext)>strtoint(edi t8 3. seltext)) then
begin
application.MessageBox('Please check year on Date of Birth field','Check

Value',MB _ OK +48+ivIB _ SYS TEMJ\10D AL);
maskedit 1. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check year on Date of Birth field','Check

Value',MB_OK+48+MB_SYSTEMJ\10DAL);
maskedit 1. setfocus;
exit;

end;
patientvl :=edit8.GetTextLen;
if patientv 1 <2 then
begin •
application.MessageBox('Please check Address field','Check

Value',MB_OK+48+MB_SYSTEMJ\10DAL);
edit8. setfocus;
exit;

end;
adotable 1. append;
adotablel .FieldValues['SSN'] :=editl. Text;
adotable 1.FieldValues['f name'] :=edit2. Text;
adotable 1.FieldValues['l_ name'] :=edit3. Text;
adotable l .FieldValues['phone'] :=edit4. Text;
if comboboxl .itemindex=O then
begin
adotablel .FieldValues['sex'] :='M';

end;
if combo box 1.itemindex= 1 then
begin
adotablel .FieldValues['sex'] :='F';

end;
adotable 1.FieldValues['d _ of_ birth'] :=maskeditl. Text;
adotable 1.FieldValues['address'] :=edit 8. Text;
adotable I .Post;

100

editl .Text:=";
edit2.Text:=";
edit3. Text:=";
edit4.Text:=";
combo box litemindex=vl;
maskeditl .Text:=";
edit8.Text:=";
form2.Label 12. Visible:=false;
form2.label 13. Visible:=false;
form2.Label 14. Visible=false;
form2.label 15. Visible:=false;
form2. label 16. Visible: =false;
form2.label 17. Visible:=false;
form2.label 19. Visible:=false;
form2.edit 1. Visible:=false;
form2. edit2. Visible:=false;
form2. edit3. Visible=false;
form2. edit4. Visible=false;
form2. ComboBox 1. Visible: =false;
form2.MaskEdit 1. Visible:=false;
form2.Edit8. Visible:=false;
form2.Button6. Visible:=false;
form2.Button59. Visible:=false;
form2.Button84. Visible:=false;
if (application.MessageBox('This record saved successfully. Do you want add
another record ?','Add
Record',MB_YESN0+32+256+MB_SYSTEMMODAL)=IDNO) then
begin
formz.tabsheet l .tabvisible:=true;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible:=false;
form2. tabsheet4. tabvisible:=false;
forrn2. tabsheet5. tabvisible.=false,
form2. tabsheet6. tabvisible:=false;
form2. tabsheet7. tabvisible:=false;
form2. tabsheet8. tabvisible:=false;
form2. tabsheet9. tabvisible: =false;
form2. tab sheet 10. tabvisible: =false;
form2. tab sheet 11. tabvisible:=false;
form2. tabsheet 12. tabvisible:=false;
form2. tab sheet 13 .tabvisible:=false;
form2.tabsheet14.tabvisible:=false;
form2. tab sheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible :=false;
form2. tab sheet 17. tabvisible:=false;
form2.tabsheetl8.tabvisible:=false;
form2. tab sheet 19. tabvisible:=false;
form2. tabsheet20. tabvisible :=false;

101

form2.tabsheet2 l. tabvisible:=false;
form2.tabsheet22.tabvisible:=false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2. tabsheet25. tabvisible:=false;
form2. tabsheet26. tabvisible:=false;
form2. tabsheet2 7. tabvisible: =false;
form2. tabsheet28. tabvisible:=false;
form2.tabsheet29.tabvisible:=false;
form2. tabsheet30. tabvisible:=false;
form2.tabsheet3 l .tabvisible:=false;
form2. tabsheet3 2. tabvisible:=false;
form2. tabsheet33. tabvisible:=false;
form2.tabsheet34.tabvisible:=false;
form2. TabSheet3 5. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2.TabSheet37.TabVisible:=false;
form2. TabSheet38. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
form2. TabSheet40. Tab Visible:=false;

end
else
begin
form2.Labell2.Visible:=true;
form2.label 13. Visible:=true;
form2.Labell4.Visible:=true;
form2. lab~l 15. Visible: =true; ·
form2.labell6.Visible:=true;
form2.labell 7.Visible:=true;
form2.label 19. Visible:=true;
form2.editl. Visible:=true;
form2. edit2. Visible:=true;
form2. edit3. Visible:=true;
form2.edit4. Visible:=true;
form2. Combo Box 1. Visible:=true;
form2.MaskEdit 1. Visible:=true;
form2.Edit8. Visible:=true;
form2.Button6.Visible:=true;
form2 .Buttonf 9. Visible: =true;
form2.Button84.Visible:=true;
edit 1. setfocus;

end;
end;

Administrator x Outpatient \ Add Record

procedure TF orm2. B utton66Click(Sender: TObj ect);
type

102

outpatientngl=set of'0' .. '9';
var
outpatientng: outpatientng 1;
begin
outpatientng:=['O' .. '9'];
adotable 1. Close;
adotable 1. Open;
if (adotable l .Locate('S SN', edit20 '. Text, [locaseinsensitive])=false) then
begin
application.messagebox('This SSN not included in Patient Table. Please check

again.','Check Value',.MB_OK+48+.MB_SYSTEMMODAL);
edit20.text:=";
edit20. setfocus;
exit;

end;
if (edit2 l. gettextlen<3) then
begin
application.MessageBox('Less character value on Disease field.','Check

Value',.MB_OK+48+.MB_SYSTEMMODAL);
edit2 l. setfocus;
exit;

end;
if (edit22.gettextlen<3) then
begin
application.MessageBox('Less character value on Medicine field.', 'Check

Value',l\lIB_9K+48+.MB_SYSTEMMODAL);
edit22. setfocus;
exit;

end;
adotable7. Close;
adotable7.open;
if (adotable 7.Iocate('doctor _ id', edit23. Text, [locaseinsensitive])=false) then
begin
application.MessageBox('This Doctor id not included in Doctor Table. Please

check again','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit23. SetF ocus;
exit;

end;
if (maskeditl2.text[l] in outpatientng) and (maskeditl2.text[2] in outpatientng) then
begin
maskedit 12. SelStart:=O;
mask edit 12. SelLength: =2;
if (mask edit 12. seltext='OO') then
begin
application.messagebox('Please check day on Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit 12. setfocus;
exit;

103

end· ' if (strtoint(mask edit 12. seltext)> 3 1) then
begin
application.messagebox('Please check day on Date field','Check

Value',MB_OK+48+MB:_SYSTEMMODAL);
mask edit 12. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check day on Date field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
maskedit 12. setfocus;
exit;

end;
if (maskedit12.text[4] inoutpatientng) and (maskedit12.text[5] in outpatientng) then
begin
maskeditl2. Se!Start:=3;
mask edit 12. SelLength: =2;
if (maskedit 12. seltext='OO') then
begin
application.messagebox('Please check month on Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit 12. setfocus;
exit· ' .

end;
if (strtoint(maskedit 12.seltext)> 12) then
begin
application.messagebox('Please check month on Date field','Check

Value',MB OK+48+MB SYSTEMMODAL); - -
maskedit 12. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check month on Date field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
maskedit 12. setfocus;
exit;

end;
if (maskedit 12. text[7] in outpatientng) and (maskedit 12. text[8] in outpatientng)
and (maskeditl2.text[9] in outpatientng) and (maskeditl2.text[l0] in outpatientng)

then
begin
maskedit12.Se!Start:=6;
maskedit 12. Se!Length:=4;

104

if (mask edit 12. seltext='OOOO') then
begin
application.messagebox('Please check year on Date field','Check

Value',MB _ OK +48+MB _ SYSTE1\1MODAL);
mask edit 12. setfocus;
exit;

end;
edit83. Se!Start:=6;
edit83. Se!Length:=4;
if (strtoint(mask edit 12. seltext)>strtoint(edit8 3. seltext)) then
begin
application.MessageBox('Please check year on Date field','Check

Value',NIB_OK+48+MB_SYSTE1\1MODAL);
maskedit 12. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check year on Date field','Check

Value',MB_OK+48+MB_SYSTE1\1MODAL);
maskedit 12. setfocus;
exit;

end;
adotable2. Open;
ado tab le2. Append;
adotable2.FieldValues['SSN']:=edit20. Text;
adotable2.FieldValues['disease'] :=edit2 l. Text;
adotable2.FieldV alues['medicine'] :=edit22. Text;
adotable2 .FieldValues['doctor _id'] :=edit23. Text;
adotable2.FieldV alues['date'] :=maskedit 12. Text;
adotable2.Post;
edit20.Text:=";
edit2 l. Text:=";
edit22. Text:=";
edit23. Text:=";
mask edit 12. Text:=";
form2.label31.Visible:=false;
form2.label32. Visible:=false;
form2.Label33. Visible:=false;
form2.label34.Visible:=false;
form2.label 114. visible:=false;
form2.edit20.Visible:=false;
form2.edit21.Visible:=false;
form2.Edit22. Visible:=false;
form2.Edit23. Visible:=false;
form2.MaskEdit 12. Visible:=false;
form2.Button66. Visible:=false;

105

form2.Button68. visible:=false;
form2.Button67. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want add another
record ?','Add Record',MB YESN0+32+MB SYSTEMMODAL)=IDNO) then - -
begin
forrn2. tab sheet 1. tabvisible:=false;
form2.tabsheet2.tabvisible:=true;
forrn2. tabsheet3. tabvisible:=false;
forrn2. tabsheet4. tabvisible:=false;
forrn2. tabsheet5. tabvisible:=false;
form2. tabsheet6. tabvisible: =false;
forrn2. tabsheet7. tabvisible:=false;
form2. tabsheet8. tabvisible:=false;
forrn2. tabsheet9. tabvisib le :=false;
forrn2. tab sheet 10. tabvisible:=false;
forrn2. tab sheet 11. tabvisib le: =false;
form2. tabsheet 12. tabvisible:=false;
form2. tabsheet 13. tabvisible:=false;
forrn2.tabsheet 14. tabvisible:=false;
forrn2. tab sheet 15. tabvisible: =false;
forrn2.tabsheet 16.tabvisible:=false;
forrn2. tab sheet 17. tabvisible:=false;
forrn2.tabsheet 18.tabvisible:=false;
forrn2.tabsheet 19.tabvisible:=false;
form2. tabsheet20. tabvisible:=false;
form2. tabsheet21. tabvisible=false; . .

forrn2. tabsheet22. tabvisible=false;
forrn2. tabsheet23. tabvisible:=false;
form2.tabsheet24.tabvisible:=false;
form2. tabsheet25. tabvisible=false;
forrn2. tabsheet26. tabvisible:=false;
forrn2. tabsheet27. tabvisible:=false;
forrn2. tabsheet28. tabvisible:=false;
forrn2. tabsheet29 .tabvisible:=false;
forrn2. tabsheet3 0. tabvisible:=false;
forrn2. tabsheet3 1. tabvisible: =false;
forrn2. tabsheet3 2. tabvisible:=false;
forrn2. tabsheet33. tabvisible:=false;
forrn2. tabsheet34. tabvisible :=false;
form2.TabSheet35.TabVisible:=false;
forrn2. TabSheet36. Tab Visible:=false;
forrn2. TabSheet3 7. Tab Visible=false;
forrn2. TabSheet38. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
forrn2. TabSheet40. Tab Visible:=false;

end
else
begin

106

form2.label3 l .Visible:=true;
form2.label32.Visible:=true;
form2.Label3 3. Visible:=true;
form2.label34. Visible:=true;
form2.labell 14.Visible:=true;
form2.edit20.Visible:=true;
form2.edit21. Visible:=true;
form2.Edit22. Visible:=true;
form2.Edit23. Visible:=true;
form2.MaskEdit 12. Visible:=true;
form2.Button66. Visible:=true;
form2.Button68. visible:=true;
form2.Button67. Visible:=true;
edit20. SetF ocus;

end;
end;

Administrator\ Inpatient \ Add Record

procedure TForm2.Button75Click(Sender: TObject);
type
inpatientng 1 =set of 'O' .. '9';
var
inpatientng:inpatientng 1;
inpatientfor:integer;
inpatientfor l)nteger;
inpatientfor2: integer;
inpatientv 1 : integer;
inpatientno3 :integer;
begin
inpatientng:=['O' .. '9'];
adotable 1. close;
adotable 1. Open;
if(adotable 1.Locate('SSN', edit3 0. Text, [locaseinsensitive])=false) then
begin
application.MessageBox('This SSN not included in Patient Table. Please check

again.','Check V~lue',MB_OK+48+MB_SYSTEMMODAL);
edit30.text:=";
edit3 0. setfocus;
exit;

end;
if (maskedit4.text[l] in inpatientng) and (maskedit4.text[2] in inpatientng) then
begin
maskedit4. SeIStart:=O;
maskedit4. SelLength:=2;
if (maskedit4.seltext='OO') then
begin

107

application.messagebox('Please check day on Admission Date field','Check
Value',MB_OK+48+MB_SYSTE1\1MODAL);

maskedit4. setfocus;
exit;

end;
if (strtoint(mask edit 4. seltext)> 3 1) then
begin
application.messagebox('Please check day on Admission Date field','Check

Value',MB _ OK +48+MB _SYSTEMMODAL);
maskedit4. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check day on Admission Date field','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
masked it 4. setfocus;
exit;

end;
if (maskedit4.text[4] in inpatientng) and (maskedit4.text[5] in inpatientng) then
begin
maskedit4. SelStart:=3;
maskedit4. Se!Length:=2;
if (maskedit4.seltext='OO') then
begin •
application.messagebox('Please check month on Admission Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit4. setfocus;
exit;

end;
if (strtoint(maskedit4.seltext)> 12) then
begin
application.messagebox('Please check month on Admission Date field','Check

Value',MB OK+48+MB SYSTEMMODAL); - -
maskedit4. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check month on Admission Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit4. setfocus;
exit;

end· ' if (maskedit4.text[7] in inpatientng) and (maskedit4.text[8] in inpatientng)
and (maskedit4.text[9] in inpatientng) and (maskedit4.text[l0] in inpatientng) then

108

begin
maskedit4.Se1Start:=6;
maskedit4. SelLength:=4;
if (maskedit4. seltext='OOOO') then
begin
application.messagebox('Please check year on Admission Date field','Check

Value',MB _ OK +48+MB _SYSTEMMODAL);
maskedit4. setfocus;
exit;

end;
edit83. Se!Start:=6;
edit83 .SelLength:=4;
if (strtoint(mask edit 4. seltext)>strtoint(edit8 3 . seltext)) then
begin
application.MessageBox('Please check year on Admission Date field','Check

Value',MB_OK+48+MB_SYSTEMMOOAL);
mask edit 4. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check year on Admission Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
mask edit 4. setfocus;
exit;

end;
if (maskedit5.text[l] in inpatientng) and (maskedit5.text[2] in inpatientng) then
begin
maskedit5. Se!Start:=O;
maskedit5. SelLength:=2;
if (maskedit5. seltext='OO') then
begin
application.messagebox('Please check day on Discharge Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
if (strtoint(maskedit5. seltext)> 3 1) then
begin
application.messagebox('Please check day on Discharge Date field','Check

Value',MB_OK+48+MB~SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
end

else
begin

109

application.MessageBox('Please check day on Discharge Date field','Check
V alue',MB _ OK +48+MB _ SYSTEMMODAL);

maskedit5. setfocus;
exit;

end;
if (maskedit5.text[4] in inpatientng) and (maskedit5.text[5] in inpatientng) then
begin
maskedit5. SelStart:=3;
maskedit5. SelLength:=2;
if (maskedit5.seltext='OO') then
begin
application.messagebox('Please check month on Discharge Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
if (strtoint(maskedit5. seltext)> 12) then
begin
application.messagebox('Please check month on Discharge Date field','Check

Value',.MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
end

else
begin
application.Messagelsoxr'Please check month on Discharge Date field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
if (maskedit5. text[7] in inpatientng) and (maskedit5. text[8] in inpatientng)
and (maskedit5.text[9] in inpatientng) and (maskedit5.text[10] in inpatientng) then
begin
maskedit5. SelStart:=6;
maskedit5. SelLength: =4;
if (maskedit5. seltext='OOOO') then
begin
application.messagebox('Please check year on Discharge Date field','Check

Value',MB OK+48+MB SYSTEMMODAL); - -
maskedit5. setfocus;
exit;

end; ,
edit83. Se!Start:=6;
edit83. SelLength:=4;
if (strtoint(maskedit5. seltext)>strtoint(edit83. seltext)) then
begin

110

application.MessageBox('Please check year on Discharge Date field','Check
Value',MB _ OK +48+MB _SYSTE.MMODAL);

maskedit5. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check year on Discharge Date field','Check

Value',MB_ OK +48+.tvlB _ SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
maskedit4. SelStart:=6;
maskedit4.sellength:=4;
maskedit5. selstart:=6;
maskedit5. sell ength: =4;
if (maskedit5. seltext<maskedit4. seltext) then
begin
application.MessageBox('Please check Discharge year field','Warning for

Discharge field',MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
if (maskedit5. seltext=maskedit4. seltext) then
begin
maskedit 4. sel start:= 3;
maskedit4. Se!Length:=2;
maskedit5. selstart: =3;
maskedit5. sellength:=2;
if (maskedit5. seltext<maskedit4. seltext) then
begin
application.MessageBox('Please check Discharge month field','Warning for

Discharge field',MB _ OK +48+MB _ SYSTEMMODAL);
maskedit5. setfocus;
exit;

end;
if (maskedit5. seltext=maskedit4. seltext) then
begin
maskedit 4. selstart: =O;
mask edit 4. sellength: =2;
maskedit5. Se!Start:=O;
maskedit5. sellength: =2;
if (maskedit5 .seltext<maskedit4. Se!Text) then
begin
application.MessageBox('Please check Discharge day field','Warning for.

Discharge',MB_OK+48+MB_SYSTEMMODAL);
maskedit5. setfocus;

111

exit;
end;

end;
end;

if (edit3 3. gettextlen=O) then
begin
application.MessageBox('Please check value on Department id field','Check

Value',MB OK+48+MB SYSTEMMODAL); - -
edit3 3. setfocus;
exit;

end;
adotable8. close;
adotable8. Open;
if (adotable8 .Locate('dep _ id', edit3 3. Text, [locaseinsensitive])=false) then
begin
application.MessageBox('This Department id not included in Department Table.

Please check again.','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit3 3. SetF ocus;
exit;

end;
if (radiobutton4. checked=true) then
begin
if (edit34.gettextlen=O) then
begin
application.MessageBox('Please check value on Ward id field','Check

Value',MB OK+48+MB SYSTEMMODAL);
edit34~~etFocus; -
exit;

end
else
begin
adotable5. close;
adotable5. Open;
if (adotable5 .Locate('ward _id', edit34. Text, [locaseinsensitive])=false) then
begin
application.MessageBox('This Ward id not included in Ward Table. Please

check again.','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit3 4. setfocus;
exit;

end
else
begin
if (strtoint(edit3 3. text)<>adotable5 .FieldValues['dep _ id']) then
begin
application.MessageBox('This Ward id not belong to that Department.

Please check again','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit34. SetF ocus;
exit;

112

end;
end;

end;
if (edit3 5 .gettextlen=O) then
begin
application.MessageBox('Please check value on Bed No field','Check

Value',MB_OK+48+MB_SYSTEM1v10DAL);
edit3 5. SetF ocus;
exit;

end
else
begin
adotable6. close;
adotable6. Open;
if (adotable6 .Locate('bed no', edit3 5. Text, [locaseinsensitive])=false) then
begin
application.MessageBox('This Bed No not included in Bed Availability

Table. Please check again.','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit3 5. setfocus;
exit;

end
else
begin
inpatientv 1 :=adotable6.RecordCount;
adotable6.First;
for inpatientfor=O to inpatientv 1 do
begin
if ((adotable6 .FieldValues['dep _id']=edit3 3. text) and

(adotable6 .FieldValues['ward _id']=edit34. Text) and
(adotable6.FieldValues['bed _ no']=edit3 5. Text) and
(adotable6.FieldValues['status']='E')) then
begin
adotable6.RecNo:=inpatientfor+ 1;
adotable6 .Edit;
adotable6.FieldValues['status'] :='F';
adotable6.Post;
adotable3. Open;
adotable3 .Append;
adotable3. edit;
adotable3 .FieldValues['patient_ no'] :=edit29. Text;
adotable3 .FieldValues['S SN'] :=edit3 0. Text;
adotable3 .FieldV alues['adrnission _ date'] :=maskedit4. Text;
adotable3 .FieldValues['discharge _ date'] :=maskedit5. Text;
adotable3 .FieldValues['ward _id'] :=edit34. Text;
adotable3 .FieldValues['bed _ no'] :=edit3 5. Text;
adotable3 .FieldValues['room _ no'] :=null;
adotable3 .FieldValues['dep _id']: =edit3 3. Text;
adotable3 .Post;

113

form2.Edit29.text:=";
form2.Edit30.text:=";
form2.MaskEdit4.text:=";
form2.MaskEdit5. text:=";
form2.Edit33.text:=";
form2.Edit34.text:=";
form2.Edit35 .text:=";
form2. Edit3 6. text:=";
form2.Label40. Visible:=false;
form2.Label4 l. Visible:=false;
form2.Label42.Visible:=false;
form2.Label43. Visible:=false;
form2.Panel 1. visible:=false;
form2.Label4 7. Visible:=false;
form2.Edit29. Visible:=false;
form2 .Edit3 0. Visible:=false;
form2.MaskEdit4. Visible:=false;
form2 .MaskEdit5. Visible: =false;
form2.Edit3 3. Visible:=false;
form2.Edit34.Visible:=false;
form2.Edit35. Visible:=false;
form2.Edit3 6. Visible: =false;
form2.Button75. Visible:=false;
form2.Button77. Visible:=false;
form2.Button76. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want

add another record ?','Add
Record',MB _ YESN0+32+MB _SYSTE1\11MODAL)=IDNO) then

begin
form2. tab sheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible: =false;
form2. tabsheet3. tabvisible:=true;
form2. tab sheet 4. tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2.tabsheet6.tabvisible:=false;
form2. tabsheet7. tabvisible:=false;
form2. tabsheet8. tabvisible:=false;
form2. tabsheet9. tabvisible: =false;
form2. tabsheet 10. tabvisible:=false;
form2. tabsheet 11. tabvisible:=false;
form2.tabsheetl2.tabvisible:=false;
form2. tab sheet 13. tabvisible:=false;
form2. tab sheet 14. tabvisible:=false;
form2. tabsheet 15. tabvisible:=false;
form2.tabsheet 16. tabvisible:=false;
form2. tabsheet 17. tabvisible:=false;
form2. tab sheet 18. tabvisible:=false;
form2. tab sheet 19. tabvisible:=false;

114

form2.tabsheet20.tabvisible:=false;
form2. tabsheet21.tabvisible:=false;
form2. tabsheet22. tabvisible: =false;
form2.tabsheet23.tabvisible:=false;
form2.tabsheet24.tabvisible:=false;
form2. tabsheet25. tabvisible=false;
form2. tabsheet26. tabvisible: =false;
form2. tabsheet27. tabvisible:=false;
form2. tabsheet28. tabvisible: =false;
formz. tabsheet29. tabvisible:=false;
form2. tabsheet3 0. tabvisible: =faise;
form2. tabsheet31. tabvisible:=false;
form2.tabsheet32.tabvisible:=false;
form2. tabsheet33. tabvisible:=false;
form2. tabsheet34. tabvisible:=false;
form.2. TabSheet3 5. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2. TabSheet3 7.Tab Visible=false;
form2. TabSheet3 8. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
form2. TabSheet40. Tab Visible:=false;
exit;

end
else
begin
form2 .Label40. Visible:=true;
form2.Label41. Visible:=true;
form2.Label42.Visible:=true;
form2.Label43. Visible:=true;
form.2.Panel 1. visible=true;
form2.Label4 7. Visible:=true;
form2.Edit29. Visible:=true;
form2.Edit3 0. Visible=true;
form2.MaskEdit4. Visible=true;
form2.MaskEdit5. Visible:=true;
form2.Edit3 3. Visible:=true;
form2.Edit34. Visible=true;
form2.Edit3 5. Visible:=true;
form2.Edit36. Visible:=true;
inpatientno3 :=O;
inpatientv 1 :=adotable3 .RecordCount;
adotable3 .First;
for inpatientfor 1 : =O to inpatientv 1 do
begin
if (inpatientno3<adotable3 .FieldValues['patient_ no']) then
begin
inpatientno3 :=adotable3 .FieldValues['patient_ no'];
adotable3.Next;

115

end;
if (inpatientno3>adotable3 .FieldV alues['patient_ no']) then
begin
adotable3 .Next;

end;
end;

edit29. Text:=inttostr(inpatientno3+ 1);
form2.Button75. Visible:=true;
form2.Button77. Visible:=true;
form2.Button76.Visible:=true;
edit30.SetFocus;
exit;

end;
end;

adotable6.Next;
end;

inpatientv 1 :=adotable6.RecordCount;
adotableo.first;
for inpatientfor2:=0 to inpatientvl do
begin
if ((adotable6.FieldValues['dep _id']=edit33 .text) and
(adotable6 .FieldValues['ward _ id']=edit34. Text) and
(adotable6.FieldValues['bed _ no']=edit35. Text) and
(adotable6.FieldValues['status']='F')) then
begin
.application.messagebox('This bed is full. Please choose another

one.','Check Value',MB OK+48+.MB SYSTEMMODAL); - -
edit35. SetFocus;
exit;

end;
adotable6.Next;

end;
end;

end;
end;

if (radiobutton5. checked=true) then
begin
if (edit36.gettextlen=O) then
begin
application.MessageBox('Please fill room number field', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit3 6. SetF ocus;
exit;

end;
adotable4.close;
adotable4. Open;
if (adotable4 .Locate('room _no', edit3 6. Text, [locaseinsensitive])=false) then
begin

116

application.MessageBox('This room number not included in Hospital table I
Please check again','Check Value',MB_OK+48+MB_SYSTEMMODAL);

edit3 6. setfocus;
exit;

end
else
begin
if (edit3 3. text<>adotable4 .FieldValues['dep _id']) then
begin
application.MessageBox('This Room number not belong to that

Department', 'Check Value',MB _ OK +48+1\1B _ SYSTEMMODAL);
edit3 3 . setfocus;
exit;

end;
if (adotable4.FieldValues['status']='F') then
begin
application.MessageBox('This Room is full, please choose another

one','Check Value',N1B_OK+48+MB_SYSTEMMODAL);
edit36.SetFocus;
exit;

end;
if (adotable4 .FieldValues['status']='E') then
begin
adotable4. edit;
adotable4 .FieldValues['status'] :='F';
adotable4.Post;
adot~ble3. Open;
adotable3. Append;
adotable3. edit;
adotable3 .FieldV alues['patient_ no'] :=edit29. Text;
adotable3 .FieldValues['SSN'] :=edit30. Text;
adotable3 .FieldValues['admission _ date'] :=maskedit4. Text;
adotable3 .FieldValues['discharge _ date'] :=maskedit5. Text;
adotable3 .FieldValues['ward _id'] :=null;
adotable3 .FieldValues['bed _ no'] :=null;
adotable3 .FieldValues['room _ no'] :=edit36. Text;
adotable3 .FieldValues['dep _id'] :=edit33. Text;
adotable3 .Post;
form2.Edit29.text:=";
form2.Edit30.text:=";
form2.MaskEdit4.text:=";
form2.MaskEdit5. text:=";
form2.Edit33, text:=";
form2.Edit34. text:=";
form2.Edit3 5. text:=";
form2.Edit36. text:=";
form2.Label40. Visible:=false;
form2.Label4 l. Visible:=false;

117

form2.Label42.Visible:=false;
form2.Label43. Visible:=false;
form2.Panel 1. visible:=false;
form2.Label4 7. Visible:=false;
form2.Edit29. Visible:=false;
form2.Edit30.Visible:=false;
form2.MaskEdit4. Visible:=false;
form2. MaskEdit5. Visible: =false;
form2.Edit33. Visible:=false;
form2.Edit34. Visible=false;
form2.Edit3 5. Visible:=false;
form2.Edit36.Visible:=false;
form2.Button75. Visible:=false;
form2.Button77. Visible:=false;
form2.Button76. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want add

another record ?','Add Record',MB_YESN0+32+MB_SYSTEMw10DAL)=IDNO)
then

begin
form2. tabsheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible:=true;
form2. tabsheet4. tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2. tab sheet 6. tabvisible:=false;
form2.tabsheet7.tabvisible:=false;
formz. tab sheet 8. tabvisible:=false;
form2. tabsheet9. tabvisible:=false;
form2. tab sheet 10. tabvisible:=false;
form2. tab sheet 11. tabvisible:=false;
form2. tabsheet 12. tabvisible:=false;
form2. tab sheet 13. tabvisible: =false;
form2. tabsheet 14 .tabvisible:=false;
form2. tab sheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible: =false;
form2. tabsheet 17. tabvisible:=false;
form2. tabsheet 18. tabvisible:=false;
form2. tab sheet 19. tabvisible:=false;
form2. tabsheet20. tabvisible:=false;
form2.tabsheet2 l .tabvisible:=false;
form2. tabsheet22. tabvisible:=false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2. tabsheet25. tabvisible:=false;
form2. tabsheet26. tabvisible:=false;
form2. tabsheet27. tabvisible:=false;
form2. tabsheet28. tabvisible:=false;
form2. tabsheet29: tabvisible:=false;

118

form2. tabsheet30. tabvisible:=false;
form2. tabsheet31. tabvisible:=false;
form2. tabsheet3 2. tabvisible:=false;
form2. tabsheet3 3. tabvisible: =false;
form2. tabsheet34. tabvisible:=false;
form2. TabSheet3 5. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2. TabSheet3 7. Tab Visible:=false;
form2. TabSheet3 8. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
form2.TabSheet40. Tab Visible:=false;
exit;

end
else
begin
form2.Label40. Visible:=true;
form2.Label41. Visible:=true;
form2.Label42. Visible:=true;
form2.Label43. Visible:=true;
form2.Panel 1. visible.=true;
form2.Label4 7. Visible:=true;
form2.Edit29. Visible:=true;
form2.Edit30. Visible:=true;
form2.MaskEdit4. Visible:=true;
form2.MaskEdit5. Visible.=true;
form2.Edit33. Visible:=true;
fo~2.Edit34. Visible:=true;
form2.Edit3 5. Visible:=true;
form2.Edit36. Visible:=true;
inpatientno3 :=O;
inpatientv I :=adotable3 .RecordCount;
adotable3 .First;
for inpatientfor 1 :=O to inpatientv 1 do
begin
if (inpatientno3 <adotable3 .FieldValues['patient _ no']) then
begin
inpatientno3 :=adotable3 .FieldV alues['patient_ no'];
adotable3 .Next;

end;
if (inpatientno3>adotable3 .FieldValues['patient_ no']) then
begin
adotable3.Next;

end;
end;

edit29.Text:=inttostr(inpatientno3+ 1);
form2.Button75. Visible:=true;
form2.Button77. Visible:=true;
form2.Button76. Visible:=true; r

119

edit3 0. SetF ocus;
exit;

end;
end;

end;
end;

end;

Administrator\ Room \ Add Record

procedure TForm2.Button88Click(Sender: TObject);
var
roomvl :integer;
roomfor:integer;
roomno l :integer;
begin
if edit6.gettextlen=O then
begin
application. messagebox('Please fill Department id field', 'Check

Value',Iv1B_OK+48+MB_SYSTEMNIODAL);
edit6. setfocus;
exit;

end;
adotable8. close;
adotable8.0pen;
if (adotable8,Locate('dep _ id', edit6. Text, [locaseinsensitive])=false) then
begin
application.messagebox('This Department id not included in Department Table.

Please check again.','Check Value',Iv1B_OK+48+Iv1B_SYSTEMNIODAL);
edit6. SetF ocus;
exit;

end;
adotable4. close;
adotable4. Open;
adotable4. append;
adotable4.fieldvalues['room no']:=edit5.Text;
adotable4 .FieldValues['dep _id'] :=edit6. Text;
adotable4 .FieldValues['status'] :='E';
adotable4.Post;
edit5.Text:=";
edit6.Text:=";
label 18. Visible:=false;
label20. Visible:=false;
label21. Visible:=false;
edit5. Visible:=false;
edit6. Visible:=false;
combobox3. Visible:=false;
button88. Visible:=false;

120

button89. Visible:=false;
button90. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want add another
record ?','Add Record',MB_YESN0+32+MB_SYSTEMMODAL)=IDNO) then
begin
form2.tabsheetl .tabvisible:=false;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible:=false;
form2.tabsheet4.tabvisible:=true;
forrn2. tabsheet5. tabvisible: =false;
form2. tabsheet6. tabvisible: =false;
form2. tabsheet7. tabvisible:=false;
forrn2. tabsheet8. tabvisible:=false;
form2. tabsheet9. tabvisible: =false;
form2. tab sheet 10. tabvisible: =false;
form2.tabsheet 11.tabvisible:=false;
forrn2.tabsheet 12.tabvisible:=false;
forrn2. tabsheet 13. tabvisible:=false;
form2. tab sheet 14. tabvisible:=false;
fonn2. tab sheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible: =false;
form2. tab sheet 17. tabvisible:=false;
fo rm2. tab sheet 18. tabvisib le: =false;
form2. tabsheet 19. tabvisible=false;
form2.tabsheet20.tabvisible:=false;
form2. tabsheetz l.tabvisible=false;
form2. tabsheet22. tabvisible: =false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2. tabsheet25. tabvisible:=false;
form2.tabsheet26.tabvisible:=false;
form2. tabsheet27. tabvisible:=false;
form2.tabsheet28.tabvisible:=false;
form2. tabsheet29. tabvisible:=false;
form2.tabsheet30.tabvisible:=false;
form2. tabsheet31. tabvisible:=false;
form2. tabsheet3 2. tabvisible:=false;
form2. tabsheet3 3. tabvisible:=false;
form2. tabsheet34. tabvisible:=false;
form2. TabSheet3 5. Tab Visible:=false;
form2.TabSheet36.TabVisible:=false;
form2. TabSheet37. Tab Visible:=false;
form2. TabSheet3 8. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
forrn2. TabSheet40. Tab Visible:=false;

end
else
begin

121

form2.Labell 8.Visible:=true;
form2.Label20. Visible:=true;
form2.label2 l. Visible:=true;
form2. edit5. Visible: =true;
form2 .Edit6. Visible: =true;
form2. ComboBox3. Visible:=true;
form2.Button88. Visible:=true;
form2.Button89. Visible:=true;
form2.button90.Visible:=true;
adotable4. close;
adotable4.0pen;
roomnol :=O;
roomvl :=adotable4.RecordCount;
adotable4 .First;
for roomfor:=O to roomvl do
begin
if (roomno 1 <adotable4.FieldValues['room _ no']) then
begin
roomno 1 :=adotable4.fieldvalues['room_ no'];
adotable-l, Next;

end;
if (roomno 1 >adotable4.FieldValues['room _ no']) then
begin
adotable4 .Next;

end;
end;

edit5. Texi=inttostnroornno I+ 1);
form2.Edit6. SetF ocus;

end;
end;

Administrator \ Ward \ Add Record

procedure TForm2.Button98Click(Sender: TObject);
type
wardcgl =set of 'a' .. 'z';
var
wardcg:wardcg 1;
wardfor.integer;
wardvl :integer;
wardno 1 : integer;
begin
wardcg: =['a' .. 'z'];
adotable8. close;
adotable8. Open;
if (adotable8 .Locate('dep _id', edit 17. Text, [locaseinsensitive])=false) then
begin

122

application.messagebox('This Department id not included in Department Table.
Please check again','Check Value',Nffi_OK+48+Nffi_SYSTEMMODAL);

editl 7.SetFocus;
exit;

end;
if (editl 9.gettextlen=O) then
begin
application.messagebox('Please fill Ward Name field.','Check

Value',Nffi_OK+48+1\1B_SYSTEMMODAL);
edit 19. SetF ocus;
exit;

end;
if (edit31.gettextlen=O) then
begin
application.messagebox('Please fill Total Bed field.','Check

Value',MB_OK+48+1\1B_SYSTE1VIMODAL);
edit3 1. SetF ocus;
exit;

end;
wardv l :=edit3 l. GetTextLen;
for wardfor:=O to wardvl do
begin
if (edit3 1. Text[wardfor] in ward cg) then
begin
application.messagebox('Please enter numeric value on Total Bed field.','Check

Value',MB_OK+48+1\1B_SYSTE1Vllv10DAL);
edit3 1. SetF ocus;
exit;

end;
end;

if (strtoint(edit3 1. Text)>= l O) then
begin
application.messagebox('Please enter value, less than 10 on Total Bed

field.','Check Value',MB_OK+48+Nffi_SYSTEMMODAL);
edit3 l. SetF ocus;
exit;

end;
adotable5 .close;
adotable5. Open;
adotable5. Append;
adotable5 .FieldValues['ward _id'] :=edit 16. Text;
adotable5 .FieldV alues['dep _id'J:=editl 7. Text;
adotable5 .FieldValues['ward _ name'] :=edit 19. Text;
adotable5.FieldValues['total_bed'] :=edit3 l. Text;
adotable5. post;
wardv 1 :=strtoint(edit31. text);
adotable6. close;
for wardfor:=1 to wardvl do

123

begin
adotable6. open;
adotable6.Append;
adotable6.FieldValues['ward _id'] :=edit 16. Text;
adotable6.FieldValues['bed _ no'] :=wardfor;
adotable6.FieldV alues['dep _id'] :=edit 17. Text;
adotable6.FieldValues['status'] :='E';
adotable6. post;

end;
editl6.Text:=";
editl 7.Text:=";
editl 9. Text==";
edit3 l. Text:=";
label59. Visible:=false;
label60. Visible:=false;
label6 l. Visible:=false;
label62. Visible=false;
edit 16. Visible:=false;
edit 17. Visible:=false;
edit 19. Visible:=false;
edit3 l. Visible=false;
button98. Visible:=false;
button99. Visible:=false;
button 100. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want add another
record ?','Add Record',l\lIB YESN0+32+MB SYSTElVIMODAL)=IDNO) then
b~~ • - -
form2. tabsheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible:=false;
form2. tab sheet 4. tabvisible:=false;
form2. tabsheet5. tabvisible:=true;
form2. tabsheet6. tabvisible:=false;
form2. tabsheet7. tabvisible:=false;
form2.tabsheet8.tabvisible:=false;
form2. tabsheet9. tabvisible: =false;
form2. tabsheet 10. tabvisible:=false;
form2. tab sheet 11. tabvisible:=false;
form2. tabsheet 12. tabvisible:=false;
form2. tab sheet 13. tabvisible:=false;
form2.tabsheetl4.tabvisible:=false;
form2. tabsheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible: =false;
form2. tab sheet 17. tabvisible:=false;
form2. tabsheet 18.tabvisible:=false;
form2. tab sheet 19. tabvisible:=false;
form2.tabsheet20.tabvisible:=false;
form2. tabsheet2 l. tabvisible:=false;

124

form2. tabsheet22. tabvisible: =false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2. tabsheet25. tabvisible:=false;
form2.tabsheet26.tabvisible:=false;
form2.tabsheet27.tabvisible:=false;
form2.tabsheet28.tabvisible:=false;
form2.tabsheet29.tabvisible:=false;
form2. tabsheet3 0. tabvisible:=false;
form2.tabsheet3 l. tabvisible:=false;
form2. tabsheet3 2. tabvisible:=false;
form2. tabsheet3 3. tabvisible:=false;
form2. tabsheet3 4. tabvisible: =false;
form2. TabSheet35. Tab Visible:=false;
form2. TabSheet36. Tab Visible=false;
form2. TabSheet3 7. Tab Visible:=false;
form2. TabSheet3 8. Tab Visible=false;
form2.TabSheet39.TabVisible:=false;
form2. TabSheet40. Tab Visible:=false;

end
else
begin
form2.Label59. Visible:=true;
form2.Label60. Visible:=true;
form2.Label6 l. Visible:=true;
form2.Label62. Visible.=true; .
formz.Edit 16. Visible:=true;
form2.Edit 17. Visible:=true;
form2.Edit 19. Visible:=true;
form2.Edit3 l. Visible:=true;
form2.Button98. Visible:=true;
form2.Button99. Visible:=true;
form2.Button 100. Visible.=true;
adotable5. close;
adotable5. Open;
wardno 1:=0;
wardv 1 :=adotable5 .Record Count;
adotable5 .First;
for wardfor:=O to wardv 1 do
begin
if (wardno 1 <adotable5 .FieldValues['ward _id']) then
begin
wardno 1 :=adotable5. fieldvalues['ward _id'];
adotable5.Next;

end;
if (ward no 1 >adotable5 .FieldValues['ward _id']) then
begin
adotable5 .Next;

125

end;
end;

edit 16. Text: =inttostr(wardno 1 + 1);
editl 7.SetFocus;

end;
end·
'

Administrator\ Doctor\ Add Record

procedure TForm2.Buttonl 10Click(Sender: TObject);
type
doctorng 1 =set of 'O' .. '9';
doctorcgl =set of 'a' .. 'z';
var
doctorng: doctorng 1;
doctorcg: doctorcg 1;
doctorfor:integer;
doctorv 1 :integer;
doctorno 1 :integer;
begin
doctorng:=['O' .. '9'];
doctorcg:=['a' .. 'z'];
doctorvl :=edit50.GetTextLen;
if (doctorv 1 =O) then
begin
application.messagebox('Please enter value on First Name field. ','Check .

Value',MB_OK+48+MB_SYSTEMMODAL);
edit50.SetFocus;
exit;

end;
for doctorfor=O to doctorvl do
begin
if (edit50.Text[doctorfor] in doctorng) then
begin
application.messagebox('Please enter character value on First Name

field.','Check Value',MB OK+48+MB SYSTEMMODAL); - -
edit5 0. SetFocus;
exit;

end;
end;

doctorvl :=edit5 l. GetTextLen;
if (doctorv 1 =O) then
begin
application.messagebox('Please enter value on Surname field.','Check

Value',l\.1B _ OK +48+MB _SYSTEMMODAL);
edit51. SetF ocus;
exit;

end;

126

for doctorfor:=O to doctorvl do
begin
if (edit51. Text[doctorfor] in doctorng) then
begin
application.messagebox('Please enter character value on Surname field.','Check

Value',MB _ OK +48+MB _ SYSTEM1\10DAL);
edit51. SetF ocus;
exit;

end;
end;

doctorvl :=edit52.GetTextLen;
if (doctorv 1 =O) then
begin
application.messagebox('Please enter value on Phone field.','Check

Value',MB_OK+48+i\1B_SYSTEM1\10DAL);
edit5 2. SetF ocus;
exit;

end;
for doctorfor:=0 to doctorvl do
begin
if (edit 52. Text[doctorfor] in doctorcg) then
begin
application.messagebox('Please enter numeric value on Phone field. ','Check

Value',MB_OK+48+i\1B_SYSTEM1\10DAL);
edit5 2. SetF ocus;
exit;

end;
end;

if (combobox5. itemindex=-1) then
begin
application. messagebox('Please choose Sex(Male\F emale)', 'Check

Value',MB_OK+48+i\1B_SYSTEM1\10DAL);
combobox5. SetF ocus;
exit;

end;
adotable8. close;
adotable8.0pen;
if (adotable8 .Locate('dep _id', edit5 3. Text, (locaseinsensitive])=false) then
begin.
application.messagebox('This Department id not included in Department Table.

Please check again','Check Value',MB _ OK +48+MB _ SYSTEM1\10DAL);
edit53. SetF ocus;
exit;

end;
adotable7. close;
adotable7. Open;
adotable 7. append;
adotable 7 .FieldValues['doctor _id'] :=edit49. Text;

127

adotable7.FieldValues['I_name']:=edit51.Text;
adotable7.FieldValues['f_name']:=edit50.Text;
adotable 7. fieldvalues['phone'] :=edit52. Text;
if (combobox5 .itemindex=O) then
begin
adotable7.FieldValues['sex']:='M';

end
else
begin
adotable7.FieldValues['sex'] :='F';

end;
adotable7.FieldValues['dep _id'] :=edit53. Text;
adotable7.Post;
edit49.Text:=";
edit50. Text:=";
edit5 l. Text:=";
edit52. Text:=";
combobox5 .itemindex:=-1;
edit53.Text:=";
label68. Visible:=false;
label 69. Visible:=false;
label 70. Visible:=false;
label 71. Visible:=false;
label 72. Visible:=false;
label73. Visible:=false;
edit49. Visible:=false;
edit50. Visible=false;
edit5 l. Visible:=false;
edit52. Visible:=false;
combobox5. Visible:=false;
edit53. Visible:=false;
buttonl 10. Visible:=false;
button 111. Visible:=false;
button 112. Visible:=false;
if (application. messagebox('This record saved successfully. Do you want add another
record ?','Add Record',l\1B _ YESN0+32+1\1B_SYSTEMMODAL)=IDNO) then
begin
form2. tabsheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible: =false;
form2. tabsheet3. tabvisible:=false;
form2. tabsheet4. tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2. tabsheet6. tabvisib le: =false;
form2. tabsheet7. tabvisible:=true;
form2. tabsheet8. tabvisible:=false;
form2. tabsheet9. tabvisible:=false;
form2. tab sheet 10. tabvisible:=false;
form2. tab sheet 11. tabvisible:=false;

128

form2. tabsheet 12. tabvisible:=false;
form2. tab sheet 13. tabvisible:=false;
form2. tab sheet 14. tabvisible:=false;
form2. tabsheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible:=false;
form2. tab sheet 1 7. tabvisible: =false;
form2. tabsheet 18. tabvisible:=false;
form2. tab sheet 19. tabvisible:=false;
form2. tabsheet20. tabvisible:=false;
form2.tabsheet21.tabvisible:=false;
form2. tabsheet22. tabvisible: =false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2.tabsheet25.tabvisible:=false;
form2. tabsheet26. tabvisible:=false;
form2.tabsheet27.tabvisible:=false;
form2. tabsheet28. tabvisible:=false;
form2.tabsheet29.tabvisible:=false;
form2. tabsheet30. tabvisible:=false;
form2. tabsheet3 l. tabvisible:=false;
form2. tabsheet32. tabvisible:=false;
form2. tabsheet33. tabvisible:=false;
form2. tabsheet34. tabvisible:=false;
form2. TabSheet35. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2. TabSheet3 7. Tab Visible:=false;
form2. TabSheet38. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
form2. TabSheet40. Tab Visible:=false;

end
else
begin
label 68. Visible:=true;
label69. Visible:=true;
label 70. Visible:=true;
label 71. Visible:=true;
label 72. Visible:=true;
label73. Visible:=true;
edit49. Visible:=true;
edit50. Visible:=true;
edit5 l. Visible:=true;
edit52. Visible:=true;
combobox5. Visible:=true;
edit53. Visible:=true;
button I 10. Visible:=true;
buttonl 11.Visible:=true;
buttonl 12.Visible:=true;
adotable7.close;

129

adotable 7. Open;
doctorno 1 :=O;
doctorvl :=adotable7.RecordCount;
adotable7 .First;
for doctorfor:=O to doctorvl do
begin
if (doctorno 1 <adotable7 .FieldValues['doctor _id']) then
begin
doctorno 1 :=adotable7 .fieldvalues['doctor _id'];
adotable7.Next;

end;
if (doctorno 1 >adotable 7.FieldValues['doctor _id']) then
begin
adotable7.Next;

end;
end;

edit 49. Text:=inttostr(doctorno 1 + 1);
edit50.setfocus;

end;
end;

Administrator \ Department \ Add Record

procedure TForrn2.Buttonl20Click(Sender: TObject);
var
depvl .integqr;
depno 1 :integer;
depfor: integer;
begin
if (edit6 l .gettextlen=O) then
begin
application. messagebox('Please enter value on Department Name field.', 'Check

Value',l\1B _ OK +48+1\1B _SYSTE1VIMODAL);
edit6 l. SetF ocus;
exit;

end;
if (edit62.gettextlen=O) then
begin
application.messagebox('Please enter value on Department Description

field.','Check Value',l\1B_OK+48+1\1B_SYSTE1VIMODAL);
edit62. SetFocus;
exit;

end;
adotable8. close;
adotable8. Open;
adotable8. Append;
adotable8.FieldValues['dep _id'] :=edit60. Text;
adotable8.FieldValues['dep name'] :=edit6 l. Text;

130

adotable8.FieldV alues['dep _ des'] :=edit62. Text;
adotable8 .Post;
form2.edit60. Text:=";
form2.Edit6 l. Text.=";
form2.edit62. Text:=";
form2.label8 l. Visible:=false;
form2.Label82. Visible:=false;
form2.Label83. Visible:=false;
form2.Edit60. Visible:=false;
form2. edit 61. Visible:=false;
form2.edit62. Visible:=false;
button 120. Visible:=false;
button 121. Visible:=false;
button 122. Visible:=false;
if (application.messagebox('This record saved successfully. Do you want add another
record ?','Add Record',MB_YESN0+32+MB_SYSTEMMODAL)=IDNO) then
begin
form2. tab sheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible=faise;
form2. tab sheet 4. tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2. tabsheet6. tabvisible:=false;
form2. tabsheet7. tabvisible:=false;
form2. tabsheet8. tabvisible:=true;
form2. tabsheet9. tabvisible:=false;
form2. tab sheet 10. tabvisib le: =false;
form2. tab sheet 11. tabvisible:=false;
form2. tab sheet 12. tabvisible:=false;
form2. tab sheet 13 .tabvisible:=false;
form2. tabsheet 14. tabvisible:=false;
form2. tab sheet 15. tabvisible:=false;
form2. tabsheet 16. tabvisible:=false;
form2. tab sheet 1 7. tabvisible: =false;
form2. tab sheet 18. tabvisible: =false;
form2. tab sheet 19. tabvisible:=false;
form2.tabsheet20.tabvisible:=false;
form2. tabsheet21. tabvisible:=false;
form2. tabsheet22. tabvisible:=false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible: =false;
form2. tabsheet25. tabvisible:=false;
form2. tabsheet26. tabvisible:=false;
form2. tabsheet27. tabvisible:=false;
form2.tabsheet28.tabvisible:=false;
form2. tabsheet29. tabvisible:=false;
form2. tabsheet30. tabvisible:=false;
form2. tabsheet31.tabvisible:=false;

131

fonn2. tabsheet3 2. tabvisible: =false;
fonn2. tabsheet33. tabvisible:=false;
fonn2. tabsheet34. tabvisible:=false;
fonn2. TabSheet3 5. Tab Visible:=false;
fonn2. TabSheet36. Tab Visible:=false;
fonn2. Tab Sheet3 7. Tab Visible: =false;
fonn2. TabSheet38. Tab Visible:=false;
fonn2. TabSheet3 9. Tab Visible:=false;
fonn2. TabSheet40.Tab Visible:=false;

end
else
begin
form2.label8 l. Visible:=true;
fonn2.Label82. Visible:=true;
fonn2.Label83.Visible:=true;
fonn2.Edit60. Visible:=true;
form2. edit6 l. Visible:=true;
form2.edit62. Visible:=true;
button 120. Visible:=true;
button 121. Visible:=true;
button 122. Visible:=true;
adotable8. Close;
adotable8.0pen;
depnol:=O;
depv 1 :=adotable8 .Record Count;
adotable8 .First;
for depfor=O to depvl do
begin
if (depno l <adotable8 .FieldValues['dep _id']) then
begin
depno l: =adotable8. fieldvalues['dep _id'];
adotable8.Next;

end;
if (depno l >adotable8.FieldValues['dep _id']) then
begin
adotable8.Next;

end;
end;

edit60.Text:=inttostr(depno l + l);
edit 61. setfocus;

end;
end;

Administrator\ Inpatient Disease Detail \ Add Record

procedure TFonn2.Buttonl 36Click(Sender: TObject);
type
detailngl=set of'0' .. '9';

132

var
detailng: detailng I;
detailvl :integer;
detailfor: integer;
find:boolean;
begin
detailng: =['O' .. '9'];
if (edit6 7. gettextlen=O) then
begin
application.MessageBox('Please fill SSN field.','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit67. setfocus;
exit;

end;
if (edit68.gettextlen=O) then
begin
application.MessageBox('Please fill Patient No field. ','Check

Value',MB _ OK +48+!\/IB _ SYSTEMMODAL);
edit68. setfocus;
exit;

end;
find:=false;
adotable3. Close;
adotable3. Open;
detailv I :=adotable3 .RecordCount;
adotable3 .first;
for detailfor:=O to detailv 1 do
begin
if (adotable3 .fieldvalues['SSN']=edit67. Text) and

(adotable3. fieldvalues['patient _ no']=edit68. Text) then
begin
find:=true;

end;
adotable3 .Next;

end;
if (find =false) then
begin
application.MessageBox('Please check SSN and Patient No.','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit67. setfocus;
exit;

end;
if (maskedit8. text[I] in detailng) and (maskedit8. text[2] in detailng) then
begin
maskedit8. SelStart:=O;
maskedit8. SelLength: =2;

· if (maskedit8. seltext='OO') then
begin

133

application.messagebox('Please check day on Date of Check field','Check
Value',.MB_OK+48+MB_SYSTEMMODAL);

· maskedit8.setfocus;
exit;

end;
if (strtoint(maskedit8. seltext)> 3 1) then
begin
application.messagebox('Please check day on Date of Check field','Check

Value',.MB _ OK +48+MB _ SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check day on Date of Check field', 'Check

Value',NlB _ OK +48+MB _ SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
if (maskedit8.text[4] in detailng) and (maskedit8.text[5] in detailng) then
begin
maskedit8. SelStart:=3;
maskedit8. SelLength:=2;
if (maskedit8. seltext='OO') then
begin
application.rnessageboxr'Please check month on Date of Check field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
i:f (strtoint(maskedit8. seltext)> 12) then
begin
application.messagebox('Please check month on Date of Check field', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check month on Date of Check field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
if (maskedit8.text[7] in detailng) and (maskedit8.text[8] in detailng)
and (maskedit8.text[9] in detailng) and (tnaskedit8.text[l0] in detailng) then

134

begin
maskedit8. SelStart:=6;
maskedit8. SelLength:=4;
if (maskedit8.seltext='OOOO') then
begin
application.messagebox('Please check year on Date of Check field', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit8. setfocus;
exit;

end;
edit83. SelStart:=6;
edit83. SelLength:=4;
if (strtoint(maskedit8. seltext)>strtoint(edit83. seltext)) then
begin
application.MessageBox('Please check year on Date of Check field', 'Check

Value',MB _ OK +48+MB _SYSTEMMODAL);
maskedit8. setfocus;
exit;'

end;
end

else
begin
application.MessageBox('Please check year on Date of Check field', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit 8. setfocus;
exit;

end;
if (maskedit9. text[1] in detailng) and (maskedit9. text[2] in detailng) then
begin
maskedit9. SelStart:=O;
maskedit9. SelLength: =2;
if (strtoint(maskedit9. seltext)>23) then
begin
application. messagebox('Please check hour on Time of Check field', 'Check

Value',MB OK+48+MB SYSTEMMODAL); - -
maskedit9. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check hour on Time of Check field', 'Check

Value',MB_OK+48+MB_SYSTEMMODAL);
maskedit9. setfocus;
exit;

end;
if (maskedit9.text[4] in detailng) and (maskedit9.text[5] in detailng) then
begin

135

maskedit9. SelStart:=3;
maskedit9. SelLength:=2;
if (strtoint(maskedit9. seltext)>5 9) then
begin
application.messagebox('Please check minute on Time of Check field','Check

V alue',MB _ OK +48+MB _ SYSTEMMODAL);
maskedit9. setfocus;
exit;

end;
end

else
begin
application.MessageBox('Please check minute on Time of Check field','Check

Value',MB OK+48+MB SYSTEMMODAL); - -
maskedit9. setfocus;
exit;

end;
adotable9. close;
adotable9.0pen;
detailvl :=adotable9.RecordCount;
adotable9.first;
for detailfor:=O to detailvl do
begin
if (adotable9.fieldvalues['SSN']=edit67. Text) and

(adotabie9 .fieldvalues['patient _ no']=edit68. Text) and
(adotable9 .fieldvalues['date of check']=maskedit8. text) and
(adotabiev. fieldvalues['time - of- check']=maskedit9. text)· then
begin
application.messagebox('This record already exist in Inpatient Disease Detail

Table. Please check again.','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit6 7. setfocus; ·
exit;

end;
adotable9.Next;

end;
adotable 7. close;
adotable7.0pen;
if (adotable7.locate('doctor _id', edit69. Text, [iocaseinsensitive])=false) then
begin
application.MessageBox('This Doctor id not included in Doctor Table. Please

check again. ','Check Vaiue',MB _ OK +48+MB _ SYSTEMMODAL);
edit69. setfocus; ·
exit;

end;
if (memo l .gettextlen=O) then
begin
application.MessageBox('Please fill Disease field.', 'Check

Value',MB _ OK +48+MB _SYSTEMMODAL);

136

memo 1. setfocus;
exit;

end;
adotable9. close;
adotable9. Open;
adotable9 .Append;
adotable9.FieldValues['SSN']:=edit67.Text;
adotable9 .FieldValues['patient_ no'] :=edit68. Text;
adotable9 .FieldValues['date _of_ check'] :=maskedit8. Text;
adotable9 .FieldValues['time _of_ check'] :=maskedit9. Text;
adotable9 .FieldValues['doctor _id'] :=edit69. Text;
adotable9 .FieldValues['disease'] :=memo 1. Text;
adotable9 .FieldV alues['medicine'] :=memo2. Text;
adotable9 .FieldV alues['response'] :=memo3. Text;
adotable9. post;
form2.edit67. Text:=";
form2.edit68. Text:=";
form2.maskedit8.text:=";
form2. maskedit9. Text:=";
form2.Edit69.text:=";
form2.Memo 1. Text:=";
form2.memo2. Text:=";
form2.Memo3. Text:=";
form2.Label88. Visible:=false;
form2.Labe189. visible:=fa:lse;
form2.label90. Visible:=false;
formz.labelvI. visible:=false;
form2.label92. Visible:=false;
form2.label93. Visible:=false;
form2.label94. visible:=false;
form2.label95. Visible:=false;
form2.edit67. Visible:=false;
form2. edit68. Visible:=false;
form2.MaskEdit8. Visible:=false;
form2.MaskEdit9.Visible:=false;
form2. edit69. visible:=false;
form2.memo 1. Visible=false;
form2.Memo2. visible=false;
form2.memo3. Visible:=false;
button 13 6. Visible: =false;
button 13 7. Visible:=false;
button 138. Visible=false;
if (application. messagebox('This record saved successfully. Do you want add another
record ?','Add Record',l\1B _ YESN0+32+1\1B _SYSTEMMODAL)=IDNO) then
begin
form2. tab sheet 1. tabvisible:=false;
form2. tabsheet2. tabvisib le: =false;
form2. tabsheet3. tabvisible:=false;

137

form2. tab sheet 4. tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2. tabsheet6. tabvisible:=false;
form2. tabsheet7. tabvisible: =false;
form2. tabsheet8. tabvisible:=false;
form2. tabsheet9. tabvisible:=true;
form2. tab sheet 10. tabvisible:=false;
form2. tab sheet 11. tabvisible:=false;
form2.tabsheet 12. tabvisible:=false;
form2. tab sheet 13. tabvisible: =false;
form2.tabsheet 14. tabvisible:=false;
form2. tab sheet 15. tabvisible:=false;
form2. tab sheet 16. tabvisible:=false;
form2. tab sheet 1 7. tab visible: =false;
form2. tab sheet 18. tabvisible:=false;
form2.tabsheet 19.tabvisible:=false;
form2. tabsheet20. tabvisible:=false;
form2. tabsheet2 I. tabvisible:=false;
form2. tabsheet22. tabvisible:=false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible:=false;
form2. tabsheet25. tabvisible:=false;
form2.tabsheet26.tabvisible:=false;
form2. tabsheet27. tabvisible:=false;
form2. tabsheet28. tabvisible:=false;
form2.tabsheet29.tabvisible:=false;
form2. tabsheet.lo. tabvisible:=false;
form2. tabsheet3 l. tabvisible:=false;
form2.tabsheet32.tabvisible:=false;
form2. tabsheet33 .tabvisible:=false;
form2. tabsheet34. tabvisible=false;
form2. TabSheet3 5. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2. TabSheet3 7. Tab Visible:=false;
form2. TabSheet38. Tab Visible:=false;
form2. TabSheet39. Tab Visible=false;
form2.TabSheet40.TabVisible:=false;

end
else
begin
form2.Label88.Visible:=true;
form2.Label89.visible:=true;
form2.label90.Visible:=true;
form2. label91. visible: =true;
form2.label92.Visible:=true;
form2.label93. Visible:=true;
form2. label94. visible:=true;
form2.label95. Visible:=true;

138

form2.edit67. Visible:=true;
form2. edit68. Visible:=true;
form2. MaskEdit8. Visible: =true;
form2.MaskEdit9. Visible:=true;
form2. edit69. visible:=true;
form2.memo 1. Visible:=true;
form2.Memo2.visible:=true;
form2.memo3. Visible:=true;
button I 36. Visible:=true;
button I 37. Visible:=true;
button 13 8. Visible: =true;
edit6 7. SetF ocus;

end;
end;

Administrator \ Pharmacy \ Add Record

procedure TForm2.Button148Click(Sender: TObject);
type
pharmacycgl =set of 'a' .. 'z';
var
pharmacycg: pharmacycg 1;
pharmacyfor:integer;
pharmacyvl :integer;
begin
pharmacycg:=['a' .. 'z'];
if (edit78.gehextlen=O) then
begin
application.MessageBox('Please fill Medicine id field','Check

Value',MB_OK+48+l\t1B_SYSTEMMODAL);
edit78. setfocus;
exit;

end;
if (edit78.gettextlen<13) or (edit78.gettextlen>13) then
begin
application.MessageBox('Please enter 13 character on Medicine id field.','Check

Value',MB _ OK +48+MB _SYSTEMMODAL);
edit78. setfocus;
exit;

end;
pharmacyvl :=edit78.GetTextLen;
for pharmacyfor:=O to pharmacyvl do
begin
if (edit78. Text[pharmacyfor] in pharmacycg) then
begin .
application.messagebox('Please enter numeric value on Medicine id

field','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit78. setfocus;

139

exit;
end;

end;
adotable 10. close;
adotable 10. Open;
if (adotable 1 O.Locate('medicine _id',edit78. Text,[locaseinsensitive])=true) then
begin
application.messagebox('This record already exist in Pharmacy Table. Please

check again.','Check Value',MB_OK+48+MB_SYSTEMMODAL);
edit78.setfocus;
exit;

end;
if (edit79 .gettextlen<=3) then
begin
application.MessageBox('Please fill Medicine Name field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit79. setfocus;
exit;

end;
if (edit80.gettextlen=O) then
begin
application.MessageBox('Please fill Quantity field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit80. setfocus;
exit;

end·
pha~acyv 1 ~=edit80. GetTextLen;
for pharmacyfor:=O to pharmacyvl do
begin
if (edit80. Text[pharmacyfor] in pharmacycg) then
begin
application.messagebox('Please enter numeric value on Quantity field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit80. setfocus;
exit;

end;
end;

if (edit81.gettextlen=O) then
begin 1
application.MessageBox('Please fill Price fi.eld','Check

Value',MB _ OK +48+MB _ SYSTEMMODAL);
edit81. setfocus;
exit;

end;
pharmacyv 1 :=edit81. GetTextLen;
for pharmacyfor:=O to pharmacyvl do
begin
if (edit8 l. Text[pharmacyfor] in pharmacycg) then

140

begin
application.messagebox('Please enter numeric value on Price field','Check

Value',MB_OK+48+MB_SYSTEMMODAL);
edit81. setfocus;
exit;

end;
end;

adotable 10. close;
adotable 10. Open;
adotable 10. append;
adotable 10 .FieldValues['medicine _id'] :=edit78. Text;
adotable 10. fieldvalues['medicine _ name'] :=edit79. Text;
adotable 1 O.fieldvalues['quantity'] :=edit80. Text;
adotable 10 .FieldValues['price'] :=edit81. Text;
adotable 1 O.Post;
form2.edit78. Text:=";
form2.edit79. Text:=";
form2.edit80.Text:=";
form2.edit81. Text:=";
form2.label 109. visible:=false;
form2.labell 1 O.visible:=false;
form2.labell l 1. visible:=false;
form2.labell 12.visible:=false;
form2.edit78. Visible:=false;
form2. edit79. Visible:=false;
form2. edit 80. Visible:=false; .
form2.edit81. Visible:=false;
form2. button 148. visible:=false;
form2. button I 49. visible:=false;
form2.buttonl 50.visible:=false;
if (application.messagebox('This record saved successfully. Do you want add another
record ?','Add Record',ivIB YESN0+32+iv1B SYSTEMMODAL)=IDNO) then - -
begin
form2. tabsheet 1. tabvisible:=false;
form2. tabsheet2. tabvisible:=false;
form2. tabsheet3. tabvisible:=false;
form2.tabsheet4.tabvisible:=false;
form2. tabsheet5. tabvisible:=false;
form2. tabsheet6. tabvisible:=false;
form2. tabsheet7. tabvisible: =false;
form2. tabsheet8. tabvisible: =false;
form2. tabsheet9. tabvisible:=false; ·
form2. tab sheet 10. tabvisible:=true;
form2. tabsheet 11. tabvisible:=false;
form2. tabsheet 12. tabvisible:=false;
form2. tabsheet 13. tabvisible:=false;
form2. tab sheet 14. tabvisible:=false;
form2. tabsheet 15. tabvisible:=false;

141

form2. tabsheetl 6. tabvisible:=false;
form2.tabsheetl 7.tabvisible:=false;
form2. tab sheet 18. tabvisible=false;
form2. tab sheet 19. tabvisible:=false;

. form2. tabsheet20. tabvisible:=false;
form2.tabsheet2 l. tabvisible:=false;
form2. tabsheet22. tabvisible: =false;
form2. tabsheet23. tabvisible:=false;
form2. tabsheet24. tabvisible: =false;
form2. tabsheet25. tabvisible:=false;
form2.tabsheet26.tabvisible:=false;
form2.tabsheet27.tabvisible:=false;
form2.tabsheet28.tabvisible:=false;
form2.tabsheet29.tabvisible:=false;
form2.tabsheet30.tabvisible:=false;
form2. tabsheet3 l. tabvisible:=false;
form2. tabsheet3 2. tabvisible:=false;
form2. tabsheet33. tabvisible:=false;
form2. tabsheet34. tabvisible:=false;
form2. TabSheet3 5. Tab Visible:=false;
form2. TabSheet36. Tab Visible:=false;
form2.TabSheet37.TabVisible:=false;
form2. TabSheet3 8. Tab Visible:=false;
form2. TabSheet39. Tab Visible:=false;
form2. TabSheet40. Tab Visible:=false;

end
else
begin
form2. label 109. visible: =true;
form2.label 110. visible:=true;
form2.labell l l.visible:=true;
form2.labell l 2. visible:=true;
form2. edit 78. Visible:=true;
form2. edit 79. Visible:=true;
form2.edit80.Visible:=true;
form2. edit8 l. Visible:=true;
form2.buttonl 48. visible:=true;
form2. button 149. visible:=true;
form2.buttonl 50.visible:=true;
edit78. setfocus;

end;
end;

142

APPENDIXB

Hospital Management System Solutions Comparision

Many varieties of modem software use a client\server architecture, in which by one

process (the client) are sent to another process (the server) for execution. Database

systems are no exception, and it has become increasingly common to divide the work

of a DBMS into a server process and one or more client processes.

In the simplest client\server architecture, the entire DBMS is a server, except for the

query interfaces that interact with the user and send queries or other commands

across to the server. For example, relational systems generally use the SQL language

for representing requests from the client to the server. The DB server then sends the

answer, in the form of a table or relation back to the client.

The first important applications of DBMS's were Airline Reservations Systems,

Banking Systems and Corporate Records.

In Airline Reservations Systems the items of data include :

Reservations by a single customer on a single flight

Information about flights

Information about ticket prices

In banking systems data items include names and addresses of customers, accounts,

loans and their balances and the connection between customers and their accounts

and loans.

Many early applications concerned corporate records, such as a record of each sale,

information about accounts payable and receivable or information about employees.

Recently in NEU developed DB system that covers many activities of the university,

such as enrollment of students in courses, payment of fees, automatic calculation of

GPA, etc.

1. Comparision with local market solutions :

• Dos base

• Less reporting features

143

• Not scalable

• Difficult to learn

2. Comparision with international market :
(Medinous Hospital Management System, The Medical Office Suite for Hospital

Management System and Nestech Hospital Management System)

• Can handle accounts perfectly

• Can do billing

• Advanced graphical user interface, Difficult to learn

• Extensive reporting features

• Efficient web uploading features for information

• Very expensive

• Needs high configuration system

• Advance search options

3. My solution :

• Simple and easy to use graphical user interface

• Less expensive

• Customized reporting features

• Replaces excel, word and DOS based solutions

• Specific features for different level of operations (e.g. Reception, Doctor,

Pharmacy, ..)

• Easy to change for different Hospital requirements

• Scalable on any level

• Data is meeting the standards ofRDMS

• ODBC (Open Database Connectivity) used

144

_, - -, _,

Medino us Nestech My Local Property of Soft Aid Market products Solution Solution Solution Solution Solution

For large Healthcare
-I -I -I X X organization

Specific features for

different level of X X X --J X
operations

Advanced search
--J --J --J --J X options

Reporting features --J --J --J --J X

MS SQL Server used --J X X --J X

Complex Graphical
--J --J --J User Interface --J X

Easy to change for

different Hospital --J --I --I --I X
requirements

Easy to learn and use X X X '1 X

Expensive --J --I --I X X

Data is meeting the
,j --I standards RDMS --I --I X

DOS based X X X X --J

ODBC (Open

Database --I ,j --I ,j X
Connectivity) used

Input data control ,j --I ,j --I X

Hosoital M s Solution C by Tabl

145

	Page 1
	Titles
	. NEAR EAST UN·IVERSITY
	VOLKAN BABAOGLU
	Master Thesis

	Images
	Image 1

	Page 2
	Titles
	u'P"- ,J-:
	NEU JURY REPORT

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 3
	Titles
	~'j;:;;t iii (~0 .
	--;;?;~
	. ~· ..---
	-11 /
	0 f'f->..- vJl-r

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Titles
	·" .· ";;:::/1· , J /
)i-;J-1· ;;_,._/.. f~y·
	~~----//
	?---
	ff 4-_:'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 6
	Titles
	ABSTRACT

	Images
	Image 1
	Image 2

	Page 7
	Titles
	TABLE OF CONTENTS

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	CHAPTER 1
	INFORMATION FOR CLIENT SERVER SYSTEM

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1

	Page 17
	Titles
	CHAPTER2
	CLIENT SERVER COMPUTING

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	.

	Images
	Image 1

	Page 21
	Titles
	.

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	D

	Images
	Image 1

	Tables
	Table 1

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	.

	Images
	Image 1

	Page 3
	Titles
	n
	LB
	.
	.
	n
	LB
	~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	CHAPTER3
	DATABASE SYSTEM

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	.

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1

	Page 11
	Titles
	.

	Images
	Image 1

	Page 12
	Titles
	l

	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	.

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 5
	Titles
	.

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	.
	03

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Tables
	Table 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 13
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 14
	Images
	Image 1

	Page 15
	Titles
	.

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 16
	Images
	Image 1

	Tables
	Table 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	.

	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	CHAPTER4
	HOSPITAL MANAGEMENT SYSTEM AND DATABASE
	.

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	.

	Images
	Image 1
	Image 2

	Page 3
	Titles
	B
	B

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 4
	Titles
	··:;:;;;111::::::::::::m:::t::::;::i11:::::::::::@:r:i::m::::rn'11111;1s:1;: :i;11t1:11.i11nm1111m:11~::11::11::iir.;m:1i1rJ:Jr!f~iii~~::if;jf~l1!;:::mmm1::1::

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 5
	Titles
	~~tf;,,:,w:::,,,£;; ;;:;:;:;:;:;;;:;;;,;;;;;;;raiajij::mype::,;,:,;1;,,JjifauttL,;,

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 6
	Titles
	~~~¥~~1~F~~4::::;:z7 
	' 
	t 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Titles
	"' 
	.a 
	"' 
	w j 
	I ~~:J 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Titles
	CHAPTERS 
	IMPLEMENTATION OF HOSPITAL MANAGEMENT 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	. 
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Titles
	. 

	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2


	Page 17
	Titles
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 3
	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 7
	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2
	Image 3


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1


	Page 1
	Titles
	Ł 
	ŁŁ 
	,. . 
	..... .=J. 
	Start\ Settings\ Control Panel\ Administrative Tools 
	urce Administratori 
	~;:,w 
	Administrative 
	5. 7.2 How to Create Open Database Connectivity (ODBC) 
	By following figures we can create Open Database Connectivity (ODBC). First of all 
	Start\ Settings\ Control Panel\ Administrative Tools\ ODBC Data Source 
	Figure 5.50 ODBC Data Source Administrator 
	86 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	NW4i41 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Titles
	At the result of these operation Open Database Connection (ODBC) is created. 
	5. 7.3 How to Create ADO Connection for Delphi 7 
	By following figures we can create ADO Connection for Delphi 7. 
	ADO Connection\ Connection String\ Build 
	ADO Connection\ Connection String\ Data Link Properties\ Provider 
	91 

	Images
	Image 1
	Image 2


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 9
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1
	Image 2


	Page 11
	Titles
	APPENDIX A 

	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1


	Page 14
	Titles
	. 

	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1


	Page 19
	Titles
	' 

	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 1
	Titles
	. . 

	Images
	Image 1


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Titles
	' 

	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1
	Image 2


	Page 7
	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1


	Page 4
	Titles
	b~~ Ł - - 

	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Titles
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Titles
	' 
	. 

	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Images
	Image 1
	Image 2
	Image 3


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2


	Page 16
	Images
	Image 1
	Image 2


	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1
	Image 2
	Image 3


	Page 21
	Titles
	. 
	- - 

	Images
	Image 1
	Image 2


	Page 22
	Images
	Image 1
	Image 2


	Page 23
	Titles
	APPENDIXB 

	Images
	Image 1
	Image 2


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Titles
	s 

	Images
	Image 1
	Image 2

	Tables
	Table 1



