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ABSTRACT 

"How to keep Information securely?" was, is and will be one of the main questions related 

to most types of information, this is the reason for all those efforts have been done in this 

filed, our ancient grandfathers had generated the first code to secure their information, 

which was simple but efficient that time; the more time is going, the more new inventions 

in communicating data are found, the more complex the security codes. 

Nowadays, many efforts have been done to secure data, keep privacy and to confidentiality 

in these global, wide, interfered networks either on the Internet or private network, 

"Cryptography" is the name which include all functions related to encryption and 

decryption, two types of cryptography are there; single key cryptography and public key 

cryptography. 

This thesis will overview both types of cryptography, but will concern on the single key 

cryptography, after providing the history, back ground, techniques, and most of related 

points to this topic, the thesis will view my work on developing an application to secure 

data over communications channel using the technology of Data Encryption Standard 

(DES). 
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INTRODUCTION 

As the Internet is growing, the community has changed from a small tight group of academic 

users to a loose gathering of people on a global network, then, the need to secure application, 

data, and identification has come to be one of the important topics all over the world of 

Information technology. 

After the very rapid growth of the internet technology and the internet literacy, many aspects 

have appeared, many problems have addressed, and of course many solutions have suggested. 

Who you are and-where you are, both are two important questions have to be answered before 

any transaction to be accepted. How much you trust the medium your data is passing on is 

third question that has helped in finding a new technology to be sure who is sending, where 

the sender is, and to trust the sent data. 

Fortunately, Application developers and security professionals has done their best to develop 

Cryptosystem Applications to be responsible for these security issues and to meet these risks 

by the encryption and decryption of data and authenticate and authorize users; it includes two 

types of cryptography, first is symmetric key cryptography which is the earlier cryptosystem, 

and second is asymmetric key cryptography (or public key). 

This thesis discusses both types of cryptosystem and many related topics, but concerns on the 

symmetric key cryptography mechanism, algorithms, techniques and application, it also 

concerns on the Data Standard Encryption (DES) algorithm and the related functions, finally 

this thesis discusses the presence of cryptography in web security, showing the famous 

security problems, how it is solved and the role of cryptography in the solution of these 

problems. 

This thesis also presents an application of symmetric key cryptography developed by me 

using the technology of Data Encryption Standard to secure data over network and the internet 

channels. 



The aim of this thesis is to analyze the Data Encryption Standard algorithm and to apply this 

algorithm over network communication channel to secure the transfer of data. 

This thesis includes four chapters covering the main topics related in the following structure: 

Chapter 1, Will discuss the cryptography as whole; applications of cryptography, definition 

and types of cryptography, mechanism of public key cryptography, techniques used in 

cryptography and the key management process. 

Chapter 2, Describes Data Encryption Standard; how it works, its basic components and some 

relevant topics. 

Chapter 3, Begins with a discussion of the general requirements for Web security and then 

focuses on two standardized schemes that are becoming increasingly important as part of Web 

commerce: SSL/TLS and SET. 

Chapter 4, Presents the developed application of symmetric cryptography based on the 

Simplified DES Algorithm. 

Finally in conclusion the obtained important results for the thesis are given. 

2 



CHAPTER ONE 

APPLICATION OF CRYPTOGRAPHY ALGORITHMS 

1.1. Overview 

Cryptography allows people to carry over the confidence found in the physical world to the 

electronic world, thus allowing people to do business electronically without worries of deceit 

and deception. Every day hundreds of thousands of people interact electronically, whether it is 

through e-mail, ecommerce (business conducted over the Internet), ATM machines, or cellular 

phones. The perpetual increase of information transmitted electronically has lead to an 

increased reliance on cryptography. 

This chapter will discuss the cryptography as whole; applications of cryptography, definition 

and types of cryptography, mechanism of public key cryptography, techniques used in 

cryptography and the key management process. 

1.2. Application of Cryptography 

Cryptography is widely used in many positions and many transactions, it is found where we 

need to secure our data, to securely authenticate and securely sign our electronic mail. This 

section will cover some of these applications. 

• Cryptography on the Internet the Internet, comprised of millions of interconnected 

computers, allows nearly instantaneous communication and transfer of information, around the 

world. People use e-mail to correspond with one another. The World Wide Web is used for 

online business, data distribution, marketing, research, learning, and a myriad of other 

activities. 

Cryptography makes secure web sites and electronic safe transmissions possible. For a web 

site to be secure all of the data transmitted between the computers where the data is kept and 

where it is received must be encrypted. This allows people to do online banking, online 

trading, and make on line purchases with their credit cards, without worrying that any of their 
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account information is being compromised. Cryptography is very important to the continued 

growth of the Internet and electronic commerce. 

• E-commerce is increasing at a very rapid rate. By the tum of the century, commercial 

transactions on the Internet are expected to total hundreds of billions of dollars a year. This 

level of activity could not be supported without cryptographic security. It has been said that 

one is safer using a credit card over the Internet than within a store or restaurant. It requires 

much more work to seize credit card numbers over computer networks than it does to simply 

walk by a table in a restaurant and lay hold of a credit card receipt. These levels of security, 

though not yet widely used, give the means to strengthen the foundation with which e­ 

commerce can grow. 

• E-mail People use e-mail to conduct personal and business matters on a daily basis. E-mail 

has no physical form and may exist electronically in more than one place at a time. This poses 

a potential problem as it increases the opportunity for an eavesdropper to get a hold of the 

transmission. Encryption protects e-mail by rendering it very difficult to read by any 

unintended party. Digital signatures can also be used to authenticate the origin and the content 

of an e-mail message. 

• Authentication In some cases cryptography allows you to have more confidence in your 

electronic transactions than you do in real life transactions. For example, signing documents in 

real life still leaves one vulnerable to the following scenario. After signing your will, agreeing 

to what is put forth in the document, someone can change that document and your signature is 

still attached. In the electronic world this type of falsification is much more difficult because 

digital signatures are built using the contents of the document being signed. 

• Access Control Cryptography is also used to regulate access to satellite and cable TV. 

Cable TV is set up so people can watch only the channels they pay for. Since there is a direct 

line from the cable company to each individual subscriber's home, the Cable Company will 

nly send those channels that are paid for. Many companies offer pay-per-view channels to 

eir subscribers. Pay-per-view cable allows cable subscribers to "rent" a movie directly 
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through the cable box. What the cable box does is decode the incoming movie, but not until 

the movie has been "rented." If a person wants to watch a pay-per-view movie, he/she calls 

the cable company and requests it. In return, the Cable Company sends out a signal to the 

subscriber's cable box, which unscrambles (decrypts) the requested movie. 

1.3. Basis of Cryptography 

Cryptography is the process where data are encrypted and decrypted to keep it secure. 

Encryption is the process of transforming information so it is unintelligible to anyone but the 

intended recipient. Decryption is the process of transforming encrypted information so that it 

is intelligible again. A cryptographic algorithm, also called a cipher, is a mathematical 

function used for encryption or decryption. In most cases, two related functions are employed, 

one for encryption and the other for decryption. 

With most modem cryptography, the ability to keep encrypted information secret is based not 

on the cryptographic algorithm, which is widely known, but on a number called a key that 

must be used with the algorithm to produce an encrypted result or to decrypt previously 

encrypted information. Decryption with the correct key is simple. Decryption without the 

correct key is very difficult, and in some cases impossible for all practical purposes [17]. 

1.3.1. Symmetric-key cryptography 

With symmetric-key encryption, the encryption key can be calculated from the decryption key 

and vice versa. With most symmetric algorithms, the same key is used for both encryption and 

decryption, as shown in Figure 1.1. 

Encryption Decryption 
I 

~ l 
Deo.rAli: 
I f. •. vc 
1c:•ii::n-=:J 
tlic n~w ... 

Symmetric Scrambled Symmetric Original 
ke_r data ke1 data 

DeuAli: 
I f,._...,, 

the oe'tY ... - 
Original 
data 

Figure 1.1 Symmetric-key cryptography 
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Implementations of symmetric-key encryption can be highly efficient, so that users do not 

experience any significant time delay as a result of the encryption and decryption. Symmetric­ 

key encryption also provides a degree of authentication, since information encrypted with one 

symmetric key cannot be decrypted with any other symmetric key. Thus, as long as the 

symmetric key is kept secret by the two parties using it to encrypt communications, each party 

can be sure that it is communicating with the other as long as the decrypted messages continue 

to make sense. 

Symmetric-key encryption is effective only if the symmetric key is kept secret by the two 

parties involved. If anyone else discovers the key, it affects both confidentiality and 

authentication. A person with an unauthorized symmetric key not only can decrypt messages 

sent with that key, but can encrypt new messages and send them as if they came from one of 

the two parties who were originally using the key. Symmetric-key encryption plays an 

important role in the SSL protocol, which is widely used for authentication, tamper detection, 

and encryption over TCP/IP networks. 

1.3.2. Public-key Cryptography 

Diffie and Martin Hellman introduced the concept of public-key cryptography in 1976. Public­ 

key cryptosystems have two primary uses, encryption and digital signatures. In their system, 

each person gets a pair of keys, one called the public key and the other called the private key. 

The public key is published, while the private key is kept secret. Figure 1.2. the need for the 

sender and receiver to share secret information is eliminated; all communications involve only 

public keys, and no private key is ever transmitted or shared. In this system, it is no longer 

necessary to trust the security of some means of communications. 

Encryption Decryption 

Origin al 
data 

Public Scrambled Prtvats 
key data key 

Original 
data 

Figure 1.2 Public-key Encryption 
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The only requirement is that public keys be associated with their users in a trusted 

(authenticated) manner (for instance, in a trusted directory). Anyone can send a confidential 

message by just using public information, but the message can only be decrypted with a 

private key, which is in the sole possession of the intended recipient. Furthermore, public-key 

cryptography can be used not only for privacy (encryption), but also for authentication (digital 

signatures) and other various techniques. 

In a public-key cryptosystem, the private key is always linked mathematically to the public 

key. Therefore, it is always possible to attack a public-key system by deriving the private key 

from the public key. Typically, the defense against this is to make the problem of deriving the 

private key from the public key as difficult as possible. For instance, some public-key 

cryptosystems are designed such that deriving the private key from the public key requires the 

attacker to factor a large number, it this case it is computationally infeasible to perform the 

derivation. This is the idea behind the RSA public-key cryptosystem. 

Encryption When Alice wishes to send a secret message to Bob, she looks up Bob's public key 

in a directory, uses it to encrypt the message and sends it off. Bob then uses his private key to 

decrypt the message and read it. No one listening in can decrypt the message. Anyone can 

send an encrypted message to Bob, but only Bob can read it (because only Bob knows Bob's 

private key). 

Digital Signatures to sign a message, Alice does a computation involving both her private key 

and the message itself. The output is called a digital signature and is attached to the message. 

To verify the signature, Bob does a computation involving the message, the purported 

signature, and Alice's public key. If the result is correct according to a simple, prescribed 

mathematical relation, the signature is verified to be genuine; otherwise, the signature is 

fraudulent, or the message may have been altered. 

1.3.3. Public-key Cryptography versus Symmetric-key Cryptography 

The primary advantage of public-key cryptography is increased security and convenience: 

private keys never need to be transmitted or revealed to anyone. In a symmetric-key system, 
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by contrast, the secret keys must be transmitted ( either manually or through a communication 

channel) since the same key is used for encryption and decryption. A serious concern is that 

there may be a chance that an enemy can discover the secret key during transmission. 

Another major advantage of public-key systems is that they can provide digital signatures that 

cannot be repudiated. Authentication via symmetric-key systems requires the sharing of some 

secret and sometimes requires trust of a third party as well. As a result, a sender can repudiate 

a previously authenticated message by claiming the shared secret was somehow compromised 

by one of the parties sharing the secret. For example, the Kerberos symmetric-key 

authentication system involves a central database that keeps copies of the secret keys of all 

users; an attack on the database would allow widespread forgery. Public-key authentication, 

on the other hand, prevents this type of repudiation; each user has sole responsibility for 

protecting his or her private key. This property of public-key authentication is often called 

non-repudiation. 

A disadvantage of using public-key cryptography for encryption is speed. There are many 

symmetric-key encryption methods that are significantly faster than any currently available 

public-key encryption method. Nevertheless, public-key cryptography can be used with 

symmetric-key cryptography to get the best of both worlds. For encryption, the best solution is 

to combine public- and symmetric-key systems in order to get both the security advantages of 

public-key systems and the speed advantages of symmetric-key systems. Such a protocol is 

called a digital envelope [10]. 

Public-key cryptography may be vulnerable to impersonation, even if users' private keys are 

not available. A successful attack on a certification authority will allow an adversary to 

impersonate whomever he or she chooses by using a public-key certificate from the 

compromised authority to bind a key of the adversary's choice to the name of another user. 

ln some situations, public-key cryptography is not necessary and symmetric-key cryptography 

alone is sufficient. These include environments where secure secret key distribution can take 

place, for example, by users meeting in private. It also includes environments where a single 
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authority knows and manages all the keys, for example, a closed banking system. Since the 

authority knows everyone's keys already, there is not much advantage for some to be "public" 

and others to be "private." Note, however, that such a system may become impractical if the 

number of users becomes large; there are not necessarily any such limitations in a public-key 

system. 

Public-key cryptography is usually not necessary in a single-user environment. For example, if 

you want to keep your personal files encrypted, you can do so with any secret key encryption 

algorithm using, say, your personal password as the secret key. In general, public-key 

cryptography is best suited for an open multi-user environment. 

Public-key cryptography is not meant to replace symmetric-key cryptography, but rather to 

supplement it, to make it more secure. The first use of public-key techniques was for secure 

key establishment in a symmetric-key system; this is still one of its primary functions. 

Symmetric-key cryptography remains extremely important and is the subject of much ongoing 

study and research. Some symmetric-key cryptosystems are discussed in the sections on block 

ciphers and stream ciphers. 

1.3.4. Key Size 

The key size that should be used in a particular application of cryptography depends on two 

things. First of all, the value of the key is an important consideration. Secondly, the key size 

depends on what cryptographic algorithm is being used. 

Due to the rapid development of new technology and cryptanalytic methods, the correct key 

size for a particular application is continuously changing. The table 1.1 contains key size 

limits and recommendations from different sources for block ciphers, the RSA system, the 

elliptic curve system, and DSA. Some comments: 

Export grade or nominal grade gives little real protection; the key sizes are the limits specified 

in the Wassenaar Arrangement. 
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Recommendations are normally based on the traditional approach of counting MIPS-years for 

the best available key breaking algorithms. There are several reasons to call this approach in 

question. For example, an algorithm with massive memory requirements is probably not 

equivalent to an algorithm with low memory requirements. 

The last rows in the table give lower bounds for commercial applications as suggested by 

Lenstra and Verheul. The first of these rows shows recommended key sizes of today, while the 

second row gives estimated lower bounds for 2010. The bounds are based on the assumption 

that DES was sufficiently secure until 1982 along with several hypotheses, which are all 

extrapolations in the spirit of Moore's Law (the computational power of a chip doubles every 

18 months). One questionable assumption they make is that computers and memory will be 

able for free. It seems that this assumption is not realistic for key breaking algorithms with 

large memory requirements. One such algorithm is the General Number Field Sieve used in 

RSA key breaking efforts. 

Block Cipher I RSA I Elliptic Curve I DSA 
I 

\ Export Grade II 56 l~I 112 II 512 I 112 I 
I Traditional II 80 \11024 II 160 II 1024 I 160 l 
I Recommendations 

11 

112 II 2048 II 224 
11 

2048 I 224 
I 

Lenstra/Verheul 2000, I 70 l~I 132 
II 

952 I 125 
I 

Lenstra/Verheul 2010 \ 78 l~l 146 I 160 
II 

1369 I 138 
I 

Table 1.1 Minimal key lengths in bits for different grades. 

Notes. The RSA key size refers to the size of the modulus. The Elliptic Curve key size refers 

to the minimum order of the base point on the elliptic curve; this order should be slightly 

smaller than the field size. The DSA key sizes refer to the size of the modulus and the 

minimum size of a large subgroup, respectively (the size of the subgroup is often considerably 

larger in applications). In the last row there are two values for elliptic curve cryptosystems; the 
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choice of key size should depend on whether any significant cryptanalytic progress in this 

field is expected or not. 

1.3.5. Key Life Cycle 

Keys have limited lifetimes for a number of reasons. The most important reason is protection 

against cryptanalysis. Each time the key is used, it generates a number of ciphertext. Using a 

key repetitively allows an attacker to build up a store of ciphertext (and possibly plaintexts) 

which may prove sufficient for a successful cryptanalysis of the key value. Thus keys should 

have a limited lifetime. If you suspect that an attacker may have obtained your key, the key 

should be considered compromised, and its use discontinued. 

Research in cryptanalysis can lead to possible attacks against either the key or the algorithm. 

For example, recommended RSA key lengths are increased every few years to ensure that the 

improved factoring algorithms do not compromise the security of messages encrypted with 

RSA. The recommended key length depends on the expected lifetime of the key. Temporary 

keys, which are valid for a day or less, may be as short as 512 bits. Keys used to sign long­ 

term contracts for example, should be longer, say, 1024 bits or more. 

Another reason for limiting the lifetime of a key is to minimize the damage from a 

compromised key. It is unlikely a user will discover an attacker has compromised his or her 

key if the attacker remains "passive." Relatively frequent key changes will limit any potential 

damage from compromised keys. The life cycle of any key as is: 

• Key generation and possibly registration (for a public key). 

• Key distribution. 

• Key activation/deactivation. 

• Key replacement or key update. 

• Key revocation. 

• Key termination, involving destruction or possibly archival. 
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1.3.6. Losing and Compromising of Private-Key 

If your private key is compromised or lost, that is, if you suspect an attacker may have 

obtained your private key, then you should assume the attacker can read any encrypted 

messages sent to you under the corresponding public key, and forge your signature on 

documents as long as others continue to accept that public key as yours. The seriousness of 

these consequences underscores the importance of protecting your private key with extremely 

strong mechanisms. 

You must immediately notify any certifying authorities for the public keys and have your 

public key placed on a certificate revocation list; this will inform people that the private key 

has been compromised or lost and the public key has been revoked. Then generate a new key 

pair and obtain a new certificate for the public key. You may wish to use the new private key 

to re-sign documents you had signed with the compromised or lost private key, though 

documents that had been time stamped as well as signed might still be valid. You should also 

change the way you store your private key to prevent a compromise of the new key. 

1.4. Confidentiality, Authentication, Integrity and Non-repudiation 

Public key cryptography schemes provide mechanisms supporting confidentiality, 

authenticity, integrity and non-repudiation for the network and will now be described. 

1.4.1. Confidentiality 

Confidentiality is sometimes called secrecy or privacy. It involves keeping a message or data 

private. Typically it is provided by encryption. 

1.4.2. Integrity 

It is a measure of the state of wholeness or goodness of the resource or the degree to which it 

is accurate, complete, genuine, and reliable. Typically it is provided by digital signatures in 

such a way that a massage or data is not alterable without detection 
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1.4.3. Authentication 

Authentication refers to mechanisms for confirming the identiy of people, systems or 

information. Mechanisms include passwords, access tokens, biometrics, watermarks, and in 

network environment digital signatures. They ensure that the quality or condition of 

information is authentic, trustworthy, and genuine and that users or senders of information are 

who they claim to be. Authenticity is typically provided by digital signatures. 

1.4.4. Non-repudiation 

Non-repudiation means that a person cannot deny having by requiring the sender to digitally 

sign the information. At a later time a judge or a third party can establish that the sender really 

did send a message. 

1.5. Digital Signatures 

A major benefit of public key cryptography is that it provides a method for employing digital 

signatures. Digital signatures enable the recipient of information to verify the authenticity of 

the information's origin, and also verify that the information is intact. Thus, public key digital 

signatures provide authentication and data integrity. A digital signature also provides non­ 

repudiation, which means that it prevents the sender from claiming that he or she did not 

actually send the information. These features are every bit as fundamental to cryptography as 

privacy, if not more. 

A digital signature serves the same purpose as a handwritten signature. However, a 

handwritten signature is easy to counterfeit. A digital signature is superior to a handwritten 

signature in that it is nearly impossible to counterfeit, plus it attests to the contents of the 

information as well as to the identity of the signer. 

Some people tend to use signatures more than they use encryption. For example, you may not 

care if anyone knows that you just deposited $1000 in your account, but you do want to be 

darn sure it was the bank teller you were dealing with. 
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Instead of encrypting information using someone else's public key, you encrypt it with your 

private key. If the information can be decrypted with your public key, then it must have 

originated with you. 

1.6. Some Techniques in Cryptography 

Cryptographic algorithms are the basic building blocks of cryptographic applications and 

protocols. This section presents most of the important encryption algorithms. 

1.6.1. RSA 

The RSA cryptosystem is a public-key cryptosystem that offers both encryption and digital 

signatures (authentication). Ronald Rivest, Adi Shamir, and Leonard Adleman developed the 

RSA system in 1977; RSA stands for the first letter in each of its inventors' last names. 

1.6.2. DES 

DES is an acronym for the Data Encryption Standard, is the name of the Federal Information 

Processing Standard (PIPS), which describes the data encryption algorithm (DEA). The DEA 

is also defined in the ANSI standard X3.92. 

1.6.3. AES 

The AES is the Advanced Encryption Standard. The AES was issued as PIPS PUB 197 by 

NIST (National Institute of Standards and Technology) standard is the successor to DES. In 

January 1997 the AES initiative was announced and in September 1997 the public was invited 

to propose suitable block ciphers as candidates for the AES. The AES algorithm was selected 

in October 2001 and the standard was published in November 2002. NIST's intent was to have 

a cipher that will remain secure well into the next century. AES supports key sizes of 128 bits, 

192 bits, and 256 bits, in contrast to the 56-bit keys offered by DES [10]. 

1.6.4. DSA and DSS 

The National Institute of Standards and Technology (NIST) published the Digital Signature 

Algorithm (DSA) in the Digital Signature Standard (DSS), which is a part of the U.S. 

government's Capstone project. DSS was selected by NIST, in cooperation with the NSA, to 
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be the digital authentication standard of the U.S. government. The standard was issued in May 

1994. 

DSA is based on the discrete logarithm problem and is related to signature schemes that were 

proposed by Schnorr and ElGamal. While the RSA system can be used for both encryption 

and digital signatures the DSA can only be used to provide digital signatures. 

1.6.5. Elliptic Curve Cryptosystems 

Elliptic curve cryptosystems were first proposed independently by Victor Miller and Neal 

Koblitz in the mid-1980s. At a high level, they are analogs of existing public-key 

cryptosystems in which modular arithmetic is replaced by operations defined over elliptic 

curves. The elliptic curve cryptosystems that have appeared in the literature can be classified 

into two categories according to whether they are analogs to the RSA system or to discrete 

logarithm based systems. 

1.6.6. Diffie-Hellman 

The Diffie-Hellman key agreement protocol (also called exponential key agreement) was 

developed by Diffie and Hellman in 1976 and published in the ground-breaking paper "New 

Directions in Cryptography." The protocol allows two users to exchange a secret key over an 

insecure medium without any prior secrets. 

1.6.7. RC2 and RC4 

RC2 is a variable key-size block cipher designed by Ronald Rivest for RSA Data Security 

(now RSA Security). "RC" stands for "Ron's Code" or ''Rivest's Cipher." It is faster than DES 

and is designed as a "drop-in" replacement for DES. Tt can be made more secure or less secure 

than DES against exhaustive key search by using appropriate key sizes. It has a block size of 

64 bits and is about two to three times faster than DES in software. 

RC4 is a stream cipher designed by Rivest for RSA Data Security (now RSA Security). Tt is a 

variable key-size stream cipher with byte-oriented operations. The algorithm is based on the 

use of a random permutation. Analysis shows that the period of the cipher is overwhelmingly 
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likely to be greater than 10100. Eight to sixteen machine operations are required per output 

byte, and the cipher can be expected to run very quickly in software. Independent analysts 

have scrutinized the algorithm and it is considered secure. 

1.6.8 RCS and RC6 

RCS is a fast block cipher designed by Ronald Rivest for RSA Data Security (now RSA 

Security) in 1994. It is a parameterized algorithm with a variable block size, a variable key 

size, and a variable number of rounds. Allowable choices for the block size are 32 bits (for 

experimentation and evaluation purposes only), 64 bits (for use a drop-in replacement for 

DES), and 128 bits. The number of rounds can range from Oto 255, while the key can range 

from O bits to 2040 bits in size. Such built-in variability provides flexibility at all levels of 

security and efficiency. 

RC6 is a block cipher based on RCS and designed by Rivest, Sidney, and Yin for RSA 

Security. Like RCS, RC6 is a parameterized algorithm where the block size, the key size, and 

the number ofrounds are variable; again, the upper limit on the key size is 2040 bits. The main 

goal for the inventors has been to meet the requirements of the AES. 

1.6.9. SHA and"8HA-1 "\ 
The Secure Hash Algorithm (SHA), the algorithm specified in the Secure Hash Standard 

(SHS, FIPS 180), was developed by NIST). SHA-1 is a revision to SHA that was published in 

1994; the revision corrected an unpublished flaw in SHA. Its design is very similar to the 

MD4 family of hash functions developed by Rivest. SHA-I is also described in the ANSI 

X9.30 standard. 

1.6.10. MD2, MD4, and MD5 

MD2, MD4, and MD5 are message-digest algorithms developed by Rivest. They are meant for 

digital signature applications where a large message has to be "compressed" in a secure 

manner before being signed with the private key. All three algorithms take a message of 

arbitrary length and produce a 128-bit message digest. While the structures of these algorithms 
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are somewhat similar, the design of MD2 is quite different from that of MD4 and MD5. MD2 

was optimized for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines. 

1.7. Key Management 

Key management deals with the secure generation, distribution, and storage of keys. Secure 

methods of key management are extremely important. Once a key is randomly generated, it 

must remain secret to avoid unfortunate mishaps (such as impersonation). In practice, most 

attacks on public-key systems will probably be aimed at the key management level, rather than 

at the cryptographic algorithm itself 

Users must be able to securely obtain a key pair suited to their efficiency and security needs. 

There must be a way to look up other people's public keys and to publicize one's own public 

key. Users must be able to legitimately obtain others' public keys; otherwise, an intruder can 

either change public keys listed in a directory, or impersonate another user. Certificates are 

used for this purpose. Certificates must be unforgeable. The issuance of certificates must 

proceed in a secure way, impervious to attack. In particular, the issuer must authenticate the 

identity and the public key of an individual before issuing a certificate to that individual. 

If someone's private key is lost or compromised, others must be made aware of this, so they 

will no longer encrypt messages under the invalid public key nor accept messages signed with 

the invalid private key. Users must be able to store their private keys securely, so no intruder 

can obtain them, yet the keys must be readily accessible for legitimate use. Keys need to be 

valid only until a specified expiration date but the expiration date must be chosen properly and 

publicized in an authenticated channel. 

1.7.1. Certificates 

Although Alice could have sent a private message to the bank, signed it and ensured the 

integrity of the message, she still needs to be sure that she is really communicating with the 

bank. This means that she needs to be sure that the public key she is using corresponds to the 

bank's private key. Similarly, the bank also needs to verify that the message signature really 

corresponds to Alice's signature. 
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If each party has a certificate which validates the other's identity, confirms the public key, and 

is signed by a trusted agency, then they both will be assured that they are communicating with 

whom they think they are. Such a trusted agency is called a Certificate Authority (CA), and 

certificates are used for authentication. 

1.7.2. Public Key Infrastructure (PKI) 

A PKI (public key infrastructure) enables users of a basically unsecured public network such 

as the Internet to securely and privately exchange data and money through the use of a public 

and a private cryptographic key pair that is obtained and shared through a trusted authority. 

The public key infrastructure provides for a digital certificate that can identify an individual or 

an organization and directory services that can store and, when necessary, revoke the 

certificates. Although the components of a PKI are generally understood, a number of 

different vendor approaches and services are emerging. Meanwhile, an Internet standard for 

PKI is being worked on [12]. 

The public key infrastructure assumes the use of public key cryptography, which is the most 

common method on the Internet for authenticating a message sender or encrypting a message. 

Traditional cryptography has usually involved the creation and sharing of a secret key for the 

encryption and decryption of messages. This symmetric or private key system has the 

significant flaw that if the key is discovered or intercepted by someone else, messages can 

easily be decrypted. For this reason, public key cryptography and the public key infrastructure 

is the preferred approach on the Internet. 

Public Key Infrastructure Consists of: 

1. A certificate authority (CA) that issues and verifies digital certificate. A certificate 

includes the public ke{or information about the public key. 

2. A registration authority (RA) that acts as the verifier for the certificate authority. 

3. Digital certificate is issued to a requestor. 

4. One or more directories where the certificates (with their public keys) are held. 

5. A certificate management system. 
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1.7.3 Certificate Authorities 

By first verifying the information in a certificate request before granting the certificate, the 

Certificate Authority assures the identity of the private key owner of a key-pair. For instance, 

if Alice requests a personal certificate, the Certificate Authority must first make sure that 

Alice really is the person the certificate request claims. 

1.7.3.1. Certificate Chains 

A Certificate Authority may also issue a certificate for another Certificate Authority. When 

examining a certificate, Alice may need to examine the certificate of the issuer, for each parent 

Certificate Authority, until reaching one which she has confidence in. She may decide to trust 

only certificates with a limited chain of issuers, to reduce her risk of a "bad" certificate in the 

chain. 

1.7.3.2. Certificate Management 

Establishing a Certificate Authority is a responsibility which requires a solid administrative, 

technical, and management framework. Certificate Authorities not only issue certificates, they 

also manage them - that is, they determine how long certificates are valid, they renew them, 

and they keep lists of certificates that have already been issued but are no longer valid 

(Certificate Revocation Lists, or CRLs). 

Say Alice is entitled to a certificate as an employee of a company. Say too, that the certificate 

needs to be revoked when Alice leaves the company. Since certificates are objects that get 

passed around, it is impossible to tell from the certificate alone that it has been revoked. When 

examining certificates for validity, therefore, it is necessary to contact the issuing Certificate 

Authority to check CRLs - this is not usually an automated part of the process. 

1.8. Summary 

Last pages covered many topics related to cryptography; the applications of cryptography and 

where it is used, the basics of the cryptography system and its types, and we got a comparison 

between the two types of cryptography, it covered specific topics like the size of the key, key 

life cycle and losing and compromising a key, confidentiality, authentication and digital 
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signature were covered too, techniques and algorithms used by any cryptography system were 

discussed in more details, and finally we talked about the key management and the certificate 

authorities. The next chapter will cover more details in the data standard encryption and how it 

is related to cryptography system. 
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CHAPTER TWO 

DATA ENCRYPTOIN STANDARD 

2.1. Overview 

This chapter describes about Data Encryption Standard; how it works, its basic components 

and some relevant topics. 

2.2. Block Cipher Principles 

Virtually all symmetric block encryption algorithms in current use are based on a structure 

referred to as a Feistel block cipher. We are going to discuss the stream cipher and block 

cipher and Feistel cipher [1]. 

2.2.1. Stream Cipher 

A stream cipher is a type of symmetric encryption algorithm. Stream ciphers can be 

designed to be exceptionally fast, much faster than any block. While block ciphers operate 

on large blocks of data, stream ciphers typically operate on smaller units of plaintext, it 

encrypts data one bit or one byte at a time usually bits. The encryption of any particular 

plaintext with a block cipher will result in the same ciphertext when the same key is used. 

With a stream cipher, the transformation of these smaller plaintext units will vary, 

depending on when they are encountered during the encryption process. 

2.2.2. Block Cipher 

A block cipher is a type of symmetric-key encryption algorithm that transforms a fixed­ 

length block of plaintext (unencrypted text) data into a block of ciphertext (encrypted text) 

data of the same length. This transformation takes place under the action of a user-provided 

secret key. Decryption is performed by applying the reverse transformation to the 

ciphertext block using the same secret key. The fixed length is called the block size, and for 

many block ciphers, the block size is 64 bits. In the coming years the block size will 

increase to 128 bits as processors become more sophisticated. 

/ 
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When we use a block cipher to encrypt a message of arbitrary length, we use techniques 

known as modes of operation for the block cipher. To be useful, a mode must be at least as 

secure and as efficient as the underlying cipher. Modes may have properties in addition to 

those inherent in the basic cipher. The standard DES modes have been published in FIPS 

and as ANSI X3.106. A more general version of the standard generalized the four modes of 

DES to be applicable to a block cipher of any block size. The standard modes are 

Electronic Code Book, Cipher Block Chaining, Cipher Feedback, and Output Feedback. 

2.2.3. Feistel Cipher 

In Feistel ciphers the ciphertext is calculated from the plaintext by repeated application of 

the same transformation or round function. Feistel ciphers are sometimes called DES-like 

ciphers. 

Figure 2.1 Feistel Cipher[lO]. 

In a Feistel cipher Figure 2.1 the text being encrypted is split into two halves. The round 

function/ is applied to one half using a sub key and the output of/is XO Red with the other 

half. The two halves are then swapped. Each round follows the same pattern except for the 

last round where there is no swap. A feature of a Feistel cipher is that encryption and 

decryption are structurally identical, though the subkeys used during encryption at each 

round are taken in reverse order during decryption. The exact realization of a feistel 

network depends on the choice of the following parameters and design features: 
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• Block size: larger block sizes mean greater security (all other things beingequals) 

but reduced encryption/decryption speed. A block size of 64 bits is a reasonable 

tradeoff and is nearly universal in block cipher design. 

• Key size: large key size means greater security but may decrease 

encryption/decryption speed. Key size of 64 bits or less are now widely considered 

to be inadequate, and 128 bits has become a common size. 

• Number of rounds: the essence of the feistel cipher is that a single round offers 

inadequate security but that multiple rounds offer increasing security. A typical size 

is 16 rounds. 

2.3. Data Encryption Standard 

Data Encryption Standard (DES) is an algorithm developed in the 1970s. by the National 

Bureau of Standards, now the National Institute of Standards and Technology(NIST), as 

Federal Information Processing Standard 46 (FIPS PUB 46). For DES, data are encrypted 

in 64-bit blocks using 56-key. The algorithm transforms 64-bit input in a series of steps into 

a 64-bit output. The same steps, with the same key, are used to reverse the encryption. 

2.3.1. DES Algorithm 

The algorithm of DES has been made publicly available and therefore it is widely studied. 

There are no known trapdoors but many weaknesses are verified. The principle of DES is 

illustrated in figure 2.2. 

23 



Plain text 

DES 

key k 64 bits 
Ciphertext 

(' --l 
D:ES 

keyk 

Figure 2.2 DES encryption and decryption principles. 

• DES Encryption 

The overall scheme for DES encryption is illustrated in Figure 2.3. As with any encryption 

scheme, there are two inputs to the encryption function: the plaintext to be encrypted and 

the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length. 

Looking at the left-hand side of the figure, we can see that the processing of the plaintext 

proceeds in three phases. First, the 64-bit plaintext passes through an 

\ 
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64-bit plaintext 56-bit key 
A (~___,. ----\ ••...................• 

li~i~l&,i:g1zf4f:~~1~il~ll~ K2 
I 
I 
I 
I 
I 
I 

\ ) y 

64-bit ciphertext 

Figure 2.3 General Depiction of DES Encryption Algorithm. 

Initial permutation (IP) that rearrange the bits to produce the permuted input. This is 

followed by a phase consisting of 16 rounds of the same function, which involves both 

nnutation arid substitution functions. The output of the last (sixteenth) round consists of 

bits that are a function of the input plaintext arid the key. The left and right halves of the 

tput are swapped to produce the preoutput. Finally, the preoutput is passed through a 

nnutation (IP -i ) that is the inverse of the initial permutation function, to produce the 

-bit ciphertext. With the exception of the initial and final permutations, DES has the 

exact structure of a Feistel cipher. 

The right-hand portion of Figure 2.3 shows the way in which the 56-bit key is used. 

Initially, the key is passed through a permutation function. Then, for each of the 16 rounds, 
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a subkey ( K) is produced by the combination of a left circular shift and a permutation. 

The permutation function is the same for each round, but a different subkey is produced 

because of the repeated iteration of the key bits [1]. 

Table 2.1 Permutation Table for DES. (a) Initial Permutation (JP) 

58 50 42 34 26 18 10 2 

60 52 44 36 28 20 12 4 

62 54 46 38 30 22 14 6 

64 56 48 40 32 24 16 8 

67 49 41 33 25 17 9 

59 51 43 35 27 19 11 3 

61 53 45 37 29 1 13 5 

63 55 47 39 31 23 15 7 

(b) Inverse Initial Permutation (IP_, ) 
40 8 48 16 56 24 64 32 

39 7 47 15 55 23 63 31 

38 6 46 14 54 22 62 30 

37 5 45 13 53 21 61 29 

36 4 44 12 52 20 60 28 

35 3 43 11 51 19 59 27 

34 2 42 10 50 18 58 26 

33 1 41 9 49 17 57 25 

( c) Expansion Permutation (E) 

32 1 - 2 3 4 5 

4 5 6 7 8 9 

8 9 10 11 12 13 

12 13 14/ 15 16 17 

16 17 18 19 20 21 

20 21 22 23 24 25 

24 25 26 27 28 29 

28 129 30 31 32 I 
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( d) Permutation Function (P) 
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• Initial Permutation 

The initial permutation and its inverse are defined by tables, as shown in Tables 2.1 (a) and 

2.1.(b ), respectively. To see that these two permutation functions are indeed the inverse of 

each other, consider the following 64-bit input M: 

Ml M2 M3 M4 MS M6 M7 M8 

M9 MIO Mll Ml2 Ml3 Ml4 Ml5 Ml6 

Ml7 Ml8 Ml9 M20 M21 M22 M23 M24 

M25 M26 M27 M28 M29 M30 M31 M32 

M33 M34 M35 M36 M37 M38 M39 M40 

M41 M42 M43 M44 M45 M46 M47 M48 

M49 M50 M51 M52 M53 M54 M55 M56 

M57 M58 M59 M60 M61 M62 M63 M64 

Where, M; is a binary digit. Then the permutation X = IP(M) is as follows: 

M58 M50 M42 M34 M26 Ml8 MIO M2 

M60 M52 M44 M36 M28 M20 Ml2 M4 

M62 M54 M46 M38 M30 M22 Ml4 M6 

M64 M56 M48 M40 M32 M24\ Ml6 M8 

M57 M49 M41 M33 M25 Ml7\ M9 Ml 

M59 M51 M43 M35 M27 Ml9 Mll M3 

M61 M53 M45 M37 M29 M21 M13 MS 

M63 M55 M47 M39 M31 M23 MIS M7 
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If we take the inverse permutation Y = IP-1 (X) = IP -i ( IP (M)), it can be seen that the 

original ordering of the bits restored. 

• Details of Single Round 

Figure 2.5 shows the internal structure of a single round. Again, begin by focusing on the 

left-hand side of the diagram. The left and right halves of each 64-bit intermediate value are 

treated as separate 32-bit quantities, labelled L (left) and R (right). As in any classic Feistel 

cipher, the overall processing at each round can be summarized in the following formulas: 

L;=R;_1 

I 
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32 bit - - 
L 1-1 

32 bit - - 
R,-1 

Expansion/permuta t 
1011 

F 

Substation 'Choice 
(S-Box) 

2 

Permutation 
(P) 

R 

28 bit - - c., 

Left shift( s) 

48 

Permutation/contraction 
(permuted choice 2) 

28 bit - - 
1)1-I 

Left shiftts) 

C 

Figure 2.5 Single Round of DES algorithms 

( 
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Figure 2.6 calculation F(R,K). 

The round key K; is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits 

by using a table that defines a permutation plus an expansion that involves duplication of 

16 of the R bits (Table 2 .1 c ). The resulting 48 bits are XO Red with Ki . This 48-bit result 

passes through a substitution function that produces a 32-bit output, which is permuted as 

defined by Table 2.1 d. 

The role of the S-boxes in the function F is illustrated in Figure 2.6. The substitution 

consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits 

as output. These- transformations are defined in Table 2.2, which is interpreted as follows: 

The first and last bits of the input to box S, form a 2-bit binary number to select one of four 

substitutions defined by the four rows in the table for Si. The middle 4 bits select a 

particular column. The decimal value in the cell selected by the row and column is then 

converted to its 4-bit representation to produce the output. For example---in S, for input 
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011001, the row is 01 (row 1) and the column is 1100 (column 12). The value in row 1, 

column 12 is 9, so the output is 1001 [l]. Each row of an S-box defines a general reversible 

substitution. 

Table 2.2 S-box in DES 

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 

s 1 I o 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

15 12 8 2 2 9 1 7 5 11 3 14 10 0 6 13 

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 

s 2 13 13 4 7 15 2 4 6 10 2 8 5 14 12 11 5 

0 4 7 11 10 4 13 1 5 8 12 6 9 3 2 15 

13 8 10 I 3 15 4 2 11 6 7 12 0 5 14 9 

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 

s 3 I 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 

10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 

s 4 I 13 8 11 5 6 15 0 3 4 7 2 12 I 10 14 9 

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 

s 5 I 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 

s 6 I 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 

4 3 2 12 9 5 15 10 11 14 I 7 6 0 8 13 
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4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 

s 7 113 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 

4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 

s 8 11 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 

The outer two bits of each group select one of four possible substitutions ( one row of an S­ 

box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four 

input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next 

round the output from each S-box immediately affects as many others as possible. 

• Key Generation 

Returning to Figures 2.3 and 2.4, we see that the 56-bit key used as input to the algorithm is 

first subjected to a permutation governed by a table labeled Per muted Choice One (Table 

2.3 a). The resulting 56-bit key is then treated as two 28-bit quantities, labeled CO and D 0 

At each round, CH and D ;-i . 1 are separately subjected to a circular left shift, or rotation, 

of 1 or 2 bits, as governed by Table 4.4c. These shifted values serve as input to the next 

round. They also serve as input to Permuted Choice Two (Table 2.3 b ), which produces a 

48-bit output that serves as input to the function f(R;_, ,K;) [l ]. 
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Table 2.3 Tables Used for DES Key Schedule Calculation 

(a) PermutedChoice One (PC-1) 

57 49 41 33 25 17 9 

58 50 42 34 26 18 

10 2 59 51 43 35 27 

19 11 3 60 52 44 36 

63 55 47 39 31 23 15 

7 62 54 46 38 30 22 

14 6 61 53 45 37 29 

21 13 5 28 20 12 4 

(b) Permuted Choice Two (PC-2) 

14 17 11 24 3 28 5 

15 6 21 10 23 19 12 4 

26 8 16 7 27 20 13 2 

41 52 31 37 47 55 30 40 

51 45 33 48 44 49 39 56 

34 53 46 42 50 36 29 32 

( c) Schedule of Left Shifts 

Round 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

number 

Bits 
I 1 2 2 2 2 2 2 1 2 2 2 2 2 2 

rotated 
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• DES Decryption 

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that 

the application of the subkeys is reversed. 

2.4. Triple-DES 

A variant of DES, triple-DES or 3DES, is based on using DES three times, normally in an 

encrypt-decrypt-encrypt sequence with three different, unrelated key. This is shown in 

figure 2.4. Since DES is not a group then the resulting ciphertext is harder to break using an 

exhaustive search. The only known attacks are brute-force attacks. Since 256 a combination 

is no longer out of reach to powerful computers, triple-DES, which extends the key length 

to 112 bits is generally considered strongly secure. 

Single DES is considered "exportable" by U.S. authorities, in other words breakable by the 

U.S. government. Earlier this year, I 000000 PCs were working together on the internet and 

they managed to break the DES in 22 hours 15 minutes. Yet, the rumor is that the national 

security agency of the U.S government can crack DES in 3 to 15 minutes, depending on 

how much preprocessing can be done. Breaking the 3DES is substantially harder, since 

there is need for 2112 attempts instead of 2 56 attempts [1]. 

Encipher 

r: 
. DES 
\, . .__ ,,,,. 

Decipher 

Figure 2.4 Triple-DES 
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2.5. Modes of Operation 

The DES algorithm is a basic building block for providing data security. To apply DES in a 

variety of applications, four modes are intended to cover virtually all the possible 

applications of encryption for which DES could be used, the modes are Electronic 

Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and Output 

Feedback (OFB). The modes are summarized in table 2.10. 

2.5.1. Electronic Codebook Mode 

In ECB mode Figure 2.5, each plaintext block is encrypted independently with the block 

cipher. 

m, m,+1 

c, = Ek(m;) mi= Dk(c;) 

Figure 2.5 Electronic Code Book mode 

ECB mode is as secure as the underlying block cipher. However, plaintext patterns are not 

concealed. Each identical block of plaintext gives an identical block of ciphertext. The 

plaintext can be easily manipulated by removing, repeating, or interchanging blocks. The 

speed of each encryption operation is identical to that of the block cipher. ECB allows easy 

parallelization to yield higher performance [ 1 O]. 

2.5.2. Cipher Block Chaining Mode 

Tn CBC mode Figure 2.6, each plaintext block is XORed with the previous ciphertext block 

and then encrypted. An initialization vector c0 is used as a "seed" for the process. 
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m, 

- 
c, = Ek(ci-I a:i m;) m, = c,-1 EB Dk(c;) 

Figure 2.6 Cipher Block Chaining mode. 

CBC mode is as secure as the underlying block cipher against standard attacks. In addition, 

any patterns in the plaintext are concealed by the XO Ring of the previous ciphertext block 

with the plaintext block. Note also that the plaintext cannot be directly manipulated except 

by removal of blocks from the beginning or the end of the ciphertext. The initialization 

vector should be different for any two messages encrypted with the same key and is 

preferably randomly chosen. It does not have to be encrypted and it can be transmitted with 

the ciphertext [1 O]. 

The speed of encryption is identical to that of the block cipher, but the encryption process 

cannot be easily parallelized, although the decryption process can be. PCBC mode is a 

variation on the CBC mode of operation and is designed to extend or propagate a single bit 

error in the ciphertext. This allows errors in transmission to be captured and the resultant 

plaintext to be rejected. The method of encryption is given by 

C; = Ek(C;-1 ffi mi: EB m;) 

and decryption is achieved by computing 

m, : Ci-1 a:i m;-1 ffi Dk(C;). 
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2.5.3. Cipher Feedback Mode 

In CFB mode Figure 2.7, the previous ciphertext block is encrypted and the output 

produced is combined with the plaintext block using XOR to produce the current ciphertext 

block. It is possible to define CFB mode so it uses feedback that is less than one full data 

block. An initialization vector c0 is used as a "seed" for the process. 

ni3 ..•••.•••••••••.•••• 

C3 ...•.•.••.•....••.•. 

c, = Ek(c;.1) EB m, m, = fa(c;.1) EB c; 
Figure 2.7 Cipher Feedback mode. 

CFB mode is as secure as the underlying cipher and plaintext patterns are concealed inthe 

ciphertext by the use of the XOR operation. Plain text cannot be manipulated directlyexcept 

by the removal of blocks from the beginning or the end of the ciphertext. 

2.5.4. Output Feedback Mode 

OFB mode Figure 2.8 is similar to CFB mode except that the quantity XORed with each 

plaintext block is generated independently of both the plaintext and ciphertext. An 

initialization vector so is used as a "seed" for a sequence of data blocks s., and each data 

blocks; is derived from the encryption of the previous data block s;-1. The encryption of a 

plaintext block is derived by taking the XOR of the plain text block with the relevant data 

block. 
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c, = mi EBsi mi= c, EBsi s, = Ek(si-1) 

Figure 2.8 Output Feedback mode 

Feedback widths less than a full block are not recommended for security. OFB mode has an 

advantage over CFB mode in that any bit errors that might occur during transmission are 

not propagated to affect the decryption of subsequent blocks. The security considerations 

for the initialization vector are the same as in CFB mode. 

A problem with OFB mode is that the plaintext is easily manipulated. Namely, an attacker 

who knows a plaintext block mi may replace it with a false plaintext block x by XO Ring mi 

EB x to the corresponding ciphertext block c; There are similar attacks on CBC and CFB 

modes, but in those attacks some plaintext block will be modified in a manner 

unpredictable by the attacker. Yet, the very first ciphertext block (that is, the initialization 

vector) in CBC mode and the very last ciphertext block in CFB mode are just as vulnerable 

to the attack as the blocks in OFB mode. Attacks of this kind can be prevented using for 

example a digital signature scheme or a MAC scheme [1 O]. 
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Table 2.10 DES modes operation [1] 

Mode Description Typical Application 

Electronic CodeBook(ECB) Each block of 64 plaintext bits • Secure transmission of 

is encoded independently using single values (eg., and 

the same key encryption value) 

Cipher Block Chaining(CBC) The input to the encryption • Generation-purpose 

algorithm is the XOR of the block-oriented 

next 64 bits ofplaintext and the transmission 

preceding 64 bits of cipher text • Authentication 

Cipher Feedback(CFB) Input is processed bits at a time. • General-purpose- 

Preceding ciphertext is used as stream-oriented 

input to the encryption transmission 

algorithm to produce • Authentication 

pseudorandom output, which is 

OXRed with plaintext to 

produce next unit of ciphertext. 

Output feedback(OFB) Similar to CFB, except that the • stream-oriented 

input to the encryption transmission over noisy 

algorithm is the preceding DES channel (e.g., satellite 

output. communication) 

2.6 Summary 

Last pages talked about data standard encryption as a one of the modern and effective 

techniques of cryptography systems, it talked about block cipher principles and Feistel 

block cipher, about the origins of data standard encryption, DES algorithm and 3DES, it 

also discussed the modes of operation. The next chapter will discuss how cryptography 

applications and techniques are applied in web security. 
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CHAPTER THREE 

CRYPTOGRAPHY IN WEB SECURITY 

3.1. Overview 

Virtually all businesses, most government agencies, and many individuals now have Web 

sites. The number of individuals and companies Internet access is expanding rapidly. As a 

result, businesses are enthusiastic about setting up facilities on the Web for electronic 

commerce. But the reality is that the Internet and the Web are extremely vulnerable to 

compromises of various sorts. As businesses wake up to this reality, the demand for secure 

Web services grows. 

This chapter starts with web security considerations, and then it describes about some 

famous web threats, how to protect it and finally the main standards of web security used in 

electronic business and commerce. 

3.2. Web security considerations 

The World Wide Web is fundamentally a client/server application running over the Internet 

and TCP/IP intranets. Web presents new challenges not generally appreciated in the context 

of computer and network security. The Internet is two way; unlike traditional publishing 

environments, even electronic publishing Systems involving teletext, voice response, or 

fax-back, the Web is vulnerable to attacks on the Web servers over the Internet. 

The Web is increasingly serving as a highly visible outlet for corporate and product 

information and as the platform for business transactions. Reputations can be damaged and 

money can be lost if the Web servers are subverted. Although Web browsers are very easy 

to use, Web servers are relatively easy to configure and manage, and Web content is 

increasingly easy to develop, the underlying software is extraordinarily complex. This 

complex software may hide many potential security flaws. The short history of the Web is 

filled with examples of new and upgraded systems, properly installed, that are vulnerable to 

a variety of security attacks [1 ]. 
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A Web server can be exploited as a launching pad into the corporation's or agency's entire 

computer complex. Once the Web server is subverted, an attacker may be able to gain 

access to data and systems not part of the Web itself but connected to the server at the local 

site. 

Casual and untrained (in security matters) users are common clients for Web-based 

services. Such users are not necessarily aware of the security risks that exist and do not 

have the tools or knowledge to take effective countermeasures. 

3.3. Web Security Threats 

Table 3.3 provides a summary of the types of security threats faced in using the Web. One 

way to group these threats is in terms of passive and active attacks. Passive attacks include 

eavesdropping on network traffic between browser and server and gaining access to 

information on a Web site that is supposed to be restricted. Active attacks include 

impersonating another user, altering messages in transit between client and server, and 

altering information on a Web site. 

Table 3.3 a comparison of threats on the web [1] 

Threats Consequences Countermeasures 

Integrity • Loss of information I • Cryptographic • Modification of user data 

• Trojan house browser 

• Modification of 

• Memory 

• modification of message 

traffic in transit 

• Compromise of 

machine 

• Vulnerability to all 

other threats 

• Checksums 

Confidentiality • Loss of information I • Encryption, web • Eavesdropping on the net. 

• Theft of info from sever 

• Theft of info from client 

• Info about network 

Configuration. 

• Info about which client 

• Loss of privacy proxies 
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Denial of service I• Killing of user threads • Disruptive. 
1 · 

Difficult to 

• Flooding machine with • Annoying. prevent 

bogus threats • prevent user from 

• Filling up disk or memory getting work done 

• Isolating machine by DNS 

attacks. 

Authentication I • Impersonation of legitimate • Misrepresentation • Cryptographic 

users of user techniques 

• data forgery 1· Belief that false 

information is valid 

3.4. Secure Sockets Layers (SSL) Protocol 

this section covers the main features and uses of secure socket layers (SSL) protocol in 

some details, it talks about the main protocols involved in, and also about the advantages 

and disadvantages of SSL. 

3.4.1. Features of SSL Protocol 

SSL protocol provides confidentiality and integrity of exchanged data, and authentication 

of peers. Authentication is accomplished by means of public key cryptography, which is 

also used to exchange keys. Confidentiality and integrity of the exchanged data is based on 

symmetric cryptography and cryptographic checksums. SSL can be used to secure basically 

any TCP connections. Since it is located between the Network layer and the Application 

layer, the application level protocols need not be changed. HTTPS, HTTP over SSL, is the 

most common example. Shown in figure 3.1. 
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Application (e.g., HTTP) 

TCP 

TP 

Subnet 

Figure 3.1 SSL runs above TCP/IP and below high-level application protocols. 

The SSL protocol runs above TCP/IP and below higher-level protocols such as HTTP. It 

uses TCP/IP on behalf of the higher-level protocols, and in the process allows an SSL­ 

enabled server to authenticate itself to an SSL-enabled client, allows the client to 

authenticate itself to the server, and allows both machines to establish an encrypted 

connection. 

These capabilities address fundamental concerns about communication over the Internet 

and other TCP/IP networks: 

• SSL server authentication allows a user to confirm a server's identity. SSL-enabled 

client software can use standard techniques of public-key cryptography to check that a 

server's certificate and public ID are valid and have been issued by a certificate authority 

(CA) listed in the client's list of trusted CAs. This confirmation might be important if the 

user, for example, is sending a credit card number over the network and wants to check the 

receiving server's identity. 

• SSL client authentication allows a server to confirm a user's identity. Using the same 

techniques as those used for server authentication, SSL-enabled server software can check 

that a client's certificate and public ID are valid and have been issued by a certificate 

authority (CA) listed in the server's list of trusted CAs. This confirmation might be 

important if the server, for example, is a bank sending confidential financial information to 

a customer and wants to check the recipient's identity. 
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• An encrypted SSL connection requires all information sent between a client and a 

server to be encrypted by the sending software and decrypted by the receiving software, 

thus providing a high degree of confidentiality. Confidentiality is important for both parties 

to any private transaction. In addition, all data sent over an encrypted SSL connection is 

protected with a mechanism for detecting tampering that is, for automatically determining 

whether the data has been altered in transit. 

3.4.2. SSL Architecture 

SSL designed to make use of TCP to provide a reliable end-to-end secure service. SSL is 

not a single protocol but rather two layers of protocols, is shown in figure 3.2. 

The SSL record protocol defines the format used to transmit data. The SSL handshake 

protocol involves using the SSL record protocol to exchange a series of messages between 

an SSL-enabled server and an SSL-enabled client when they first establish an SSL 

connection. [4]. 

Application layer 

Change 

Specification 

Protocol 

Cipher ' Alert Handshake 

protocol 

~-,.-- · wc·v ,., .. 

SSL record layer 

TCP layer 

IP layer 

Figure 3.2 SSL Protocol Stack 

3.4.2.1. Record Protocol 

The SSL Record Protocol is the lowest layer in the SSL protocol. It takes a sequence of 

data from a higher-level protocol, fragments it to fragments of maximum 214 bytes. Then it 

calculates a MAC, performs padding and then encrypts it with a block cipher or stream 
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cipher. The padding may optionally be of a random length, to make certain traffic analysis 

attacks more difficult to perform. 

The MAC (message authentication code) before the encryption ensures the authenticity and 

integrity of the data. Before encryption the fragmented data may optionally be compressed, 

although neither the SSL3.0 nor the TLS 1.0 specifications specifies any compression 

methods. 

3.4.2.2. Alert protocol 

Alert messages are used to indicate errors discovered in the received data. It is also used to 

indicate that one of the peers wants to end an connection. If a connection is ended before a 

close notifies alert is received, it could be an indication of a truncation attack or simply a 

network failure. There are several severity levels of the alert messages, some are sent just 

as warnings, and others indicate that the session must be closed immediately and not reused 

[22]. 

3.4.2.3. Handshake protocol 

The purpose of the handshake protocol is to set up a session and agree upon Cryptographic 

parameters. It is also optionally used to exchange certificates which authenticate the peers 

for each other. Public key encryption techniques are used to establish a shared secret 

between the peers that is used for cryptographic keys and Mac secrets. The server also 

authenticates itself by sending a chain of certificates to the client. Optionally the client 

could also authenticate itself. Throughout the handshake procedure both ends of the 

communication are in different phases, or states of the handshake procedure. When the 

handshake is finished and the normal communication can start, the state of the handshake is 

said to be in its finished state. 

3.5. Transport Layer Security (TLS) Protocol 

The TLS (Transport Layer Security) protocol is based upon the SSL3 .0 (Secure Sockets 

Layer) protocol. The differences are rather small. SSL was a protocol designed and 

originally implemented by Netscape, whereas TLS is an official IETF 1 standard. The most 

commonly used version today is SSL3.0 but newer applications are beginning to use TLS. 
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Older web browsers used the SSL2 protocol, for which support is now being phased out 

due to security flaws found in it. 

3.5.1. Purpose of the TLS Protocol 

TLS is a protocol designed to provide privacy and data integrity between two 

communicating applications. Some of the goals that the TLS protocol tries to satisfy are the 

following: 

• Privacy, the data sent over the channel should be kept secret for an eavesdropper. 

• Authentication, the applications should know that they are talking to the intended 

recipient and not an imposer. 

• Transparency, it could be used like a normal TCP connection after the setup is done. 

• Integrity, the integrity of the channel should be maintained. It should be infeasible 

to alter or counterfeit messages on the channel. In practice, for an user that wishes 

to make an online purchase on a web based store, TLS provides the following: 

1. The customer can be sure the pages he sees from the e-commerce site is 

delivered from the site that it says that it does, and isn't any sort of 

counterfeited from an imposer. 

2. The customer can be sure that the information that he sends is sent in 

privacy, no one can monitor the transfer and for example steal the 

customers' credit card number. 

3.6. IP Security (IPSec) 

IPSec provides the capability to secure communications across a LAN, across private and 

public wide area networks (YI ANs), and across the internet. 

3.6.1. IPSec Protocols 

Security protocols provide data and identity protection for each IP packet. IPSec uses the 

Authentication Header and Encapsulating Security Payload to provide these services. 
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• Authentication Header (AH) AH provides authentication, integrity, and anti-replay for 

the entire packet (both the 1P header and the data carried in the packet); AH signs the entire 

packet. It does not encrypt the data, so it does not provide confidentiality. The data is 

readable, but protected from modification. AH uses HMAC algorithms to sign the packet. 

For example, Alice on Computer A sends data to Bob on Computer B. The IP header, the 

AH header, and the data are protected from modification by the signature. This means Alice 

can be certain it was really Bob who sent the data and that the data was unmodified. [23] 

IP Auth TCP Application 
Header Header UDP Data 

Header 

Signed 

Figure 3.4 Authentication Header 

Integrity and authentication are provided by the placement of the AH header between the IP 

header and the transport protocol header (TCP or UDP).shown in figure 3 .4. 

• Encapsulating Security Payload (ESP) ESP provides confidentiality, in addition to 

authentication, integrity, and anti-replay. ESP does not normally sign the entire packet 

unless it is being tunneled. Ordinarily, only the data is protected, not the IP header. 

For example, Alice on Computer A sends data to Bob on Computer B. The data is 

encrypted because ESP provides confidentiality. Upon receipt, after the verification process 

is complete, the data portion of the packet is decrypted. Alice can be certain it was really 

Bob who sent the data, which data is unmodified, and that no one else was able to read it. 
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Figure 3.5 Encapsulating Security Payload 

Security is provided by the placement of the ESP header between the IP header and the 

transport protocol header (TCP or UDP). Expert users can select which protocol will be 

used for a communication by configuring security methods in the IPSec policy [23]. 

3.6.2. IPSec Mechanism 

For simplicity, this example illustrates TPSec from a domain computer to a domain 

computer. Alice, using an application on Computer A, sends a message to Bob. Shown 

figure 3.6. 

Host A 

Q 
HostB 

Q 
TCP/UDP Transport TCP/UDP Transport 

SA SA 

Figure 3.6 IPSec Mechanism 

48 



1. The IP Sec driver on Computer A checks the IP Filter List in the active policy for a 

match with the address or traffic type of the outbound packets. 

2. The IPSec driver notifies internet security association and key management protocol 

(ISAK.MP) to begin security negotiations with Computer B. 

3. The ISAK.MP service on Computer B receives a request for security negotiations. 

4. The two computers perform a key exchange, establish an ISAK.MP security 

association (SA) and a shared, secret key. 

5. The two computers negotiate the level of security for the data transmission, 

establishing a pair of IPSec SAs and keys for securing the IP packets. 

6. Using the outbound IPSec SA and key, the IPSec driver on Computer A signs the 

packets for integrity, and encrypts the packets if confidentiality has been negotiated. 

7. The IPSec driver on Computer A transfers the packets to the appropriate connection 

type for transmission to Computer B. 

8. Computer B receives the secured packets and transfers them to the IPSec driver. 

9. Using the inbound SA and key, the IPSec driver on Computer B checks the integrity 

signature and decrypts the packets, if necessary. 

10. The IPSec driver on Computer B transfers the decrypted packets to the TCP/IP driver, 

which transfers them to the receiving application. 

Alice and Bob never see any of the process. The standard routers or switches in the data 

path between the peers do not require IPSec. They will automatically forward the encrypted 

IP packets to the destination. However, if a router is functioning as a firewall, security 

gateway, or proxy server, you must enable special filtering to enable the secured IP packets 

to pass through. 

3.7. Kerberos Protocol 

Kerberos is a Trusted Third Party (TTP) protocol for authentication and key exchange. It is 

based on the Needham and Schroder authentication protocol [32]. In Kerberos, the TTP is 

called Key Distribution Center (KDC). KDC shares a secret key with every entity in the 

network and knowledge of that secret key equal's proof of identity. The Kerberos client 

acts on behalf of the user, which may be a person or a process. The user is also called a 
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principal. The principal authenticates to a verifier, which is a server; a K.DC, Ticket­ 

Granting Service (TGS), or a service. Kerberos is based on secret key cryptography. 

Kerberos provides single sign-on, key exchange, and a way to delegate user's credentials to 

back-end servers. 

3.8. Secure Electronic Transaction (SET) 

The SET Secure Electronic Transaction technology is an encryption technology that helps 

protection of the transfer of payment information over open networks, such as the Internet. 

SET uses advanced security technology, which allows cardholders to make secure 

payments to merchants on the Internet. SET technology protects payment information in 

four ways: 

• Authenticate that a merchant is authorized to accept payment cards. 

• Authenticate the payment card being used. 

• Protect personal payment information. 

• Payment information is read only by the intended recipient. 

Message data is encrypted using randomly generated key that is further encrypted using the 

recipient's public key. This is referred as the "digital envelope" of the message and is sent 

to the recipient with the encrypted message. The recipient decrypts the digital envelope 

using a private key and then uses the symmetric key to unlock the original message. This 

protocol neither depends on transport security mechanisms nor prevents their use. 

3.9. Secure Electronic Mail 
One of the services most often used in distributed computer systems is the email service. It 

is located in the application layer within the internet protocol family. The basic protocol for 

electronic mail is the Simple Mail Transfer Protocol SMTP. The MIME (Multipurpose 

Internet Mail Extension) standard is a set of specifications that provided the exchange of 

text between different character sets. It allows structuring the message body into certain 

body parts. MIME allows the 8 bit patterns created by multimedia applications to be 
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appended to emails says that "The MIME specification provides a general structure for the 

content of type of an e-mail message and allows extensions for new content types.". 

SMTP itself does not provide any security services such as confidentiality, integrity or non­ 

repudiation; we often require the following services when using email. 

• No message interception (confidentiality). 

• No message interception (blocked delivery). 

• No message interception and subsequent replay. 

• No message content modification. 

• No message origin modification. 

• No message content forgery by outsider. 

• No message origin forgery by outsider. 

• No message content forgery by recipient. 

• No message origin forgery by recipient. 

These services are derived from the general security goals of message confidentiality, 

message integrity, sender authenticity and non-repudiation of origin, as they where partly 

set out earlier. There are three primary schemes for email security. These are: 

• Privacy Enhanced Mail (PEM). 

• Secure Multipurpose Internet Mail Extension (S/MIME). 

• Pretty Good Privacy (PGP). 

3.9.1 Privacy Enhanced Mail (PEM) 

PEM was primarily designed to work with mail systems based on the SMTP protocol. 

PEM provide the following security features when using email services: 

• Data Origin Authentication. 

• Message Integrity. 

• Non-repudiation of origin 

• Confidentiality 
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• Key Management 

The first three are always automatically incorporated in PEM messages. Confidentiality is 

optional when sending PEM messages. To achieve these security goals a variety of existing 

algorithms can be used. For a achieving message integrity and digital signatures MD5 and 

MD2 could be used. For encryption DES in one valid algorithm. But PEM cannot provide 

access control and non-repudiation of the receipt. 

PEM can be seen as the pioneering project for application of public-key cryptography in 

the internet. It used both, symmetric and asymmetric encryption techniques. The 

specification of PEM was the model for hierarchical public-key system. 

3.9.2. Secure MIME (S/MIME) 

S/MIME was developed to extend the existing MIME standard with the required security 

mechanisms. Again it refers to a specification rather than to a software package. S/MIME is 

based on the Public Key Cryptography Standards (PCKSs) several computer security 

market leaders agreed on. The algorithms used for signing and encryption are identical with 

those used in PEM. S/MIME is accepted and implemented by many vendors of standard 

browsers such as Netscape and Microsoft. 

Using digital signatures and encryption, S/MIME provides 

• Message origin authentication 

• Non-repudiation of origin 

• Message integrity and confidentiality 

As in PEM many services are at the total discretion of the user. What makes S/MIME 

appealing to many developers is the fact that it is not limited to the SMTP protocol only. 

Any transport protocols such as HTTP, which support MIME objects can use these security 

features as well. 
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3.9.3. Pretty Good Privacy (PGP) 

Some consider PGP as a program and that's definitely true. But when talking about PGP 

we often refer to its certificate infrastructure or trust model which it is called "web of trust". 

Although a software, the concept of PGP is about to become an internet standard. 

PGP is a freeware program, only commercial users have to pay license fees. It makes use of 

encryption and /or digital signatures to provide 

• Data confidentiality, 

• Message authentication 

• Data integrity 

• Non-repudiation of origin 

It can be used to encrypt emails and any other kind of files. Furthermore it allows for the 

detachment and separate transmission of digital signatures or matters of archiving the 

signature. PGP uses compression (standard ZIP) that makes any cryptanalysis more 

difficult at the same time reducing the amount of data to be transmitted. 

3.10. Summary 

Last chapter has covered many topics related to the web and network security 

considerations, has viewed some of the famous web threats, how to protect it and finally the 

main standards of network security. 
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CHAPTER FOUR 
IMPLEMENTATION DES ENCRYPTION USING DELPHI 

4.1. Overview 

With the rapid growth of the Internet technology and its application especially in electronic 

commerce and electronic male systems, the need for more secure networks has become critical 

for surviving in this open world. As we have mentioned before cryptography systems is the 

solution for this problem of security and the DES encryption protocol has helped to fill that 

need by providing an easy to understand implementation of symmetric key encryption. 

This chapter is to introduce an application developed by author to secure transaction over 

networks and by using single key cryptography and the S-DES protocol. 

4.2. Program Explanation 

What we will introduce here is how to use my application to secure your data transfer over 

networks, this application was developed by using DELPHI programming language and the 

source code of this application is found in Appendix A, the reason for using DELPHI 

rogramming language is because it is capable to develop applications over networks and the 

sophisticated functions it offers . 

.3. Using the Program 

The usage of the application is very easy and the interface of the application that is shown in 

gure 4.1 and figure 4.4, by following direction stated below the user will be able to use 

fficiently. To complete the encryption, transfer and decryption and the program can be used 

r five tasks; Write message, Encryption, Send Data, Enter secret share key, and Decryption. 
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Figure 4.1 Client interface 

.3.1. Write Message 

First, the user should enter the pre-shared key used in the encryption process then the user 

should click on (write message) button. The 10-bit key shared between sender and receiver, 

m this key, two 8-bit subkeys are produced for use in particular stages of the encryption and 

ryption algorithm. 
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Figure 4.2 shown the stages followed to produce the subkeys. ln detail suppose we want to 

encrypt number 51 (plain text) to cipher text. we will convert 51 to 8-bit binary. We will get 

01010001. 

10-bit key 

PlO 

5 Y5 

K1 8 

5 

Figure 4.2 Key Generation for subkeys 

First, permute the key in the following fashion. Let the 10-bit key be designated 

(kkkkkkkkkk) . . as 1 2 3 4 s 6 7 s 9 10 • Then the permutation Pl O rs defined as 

Pl O (k1k2k3k4k5k6k7k8k9k10) = (k3k5k2k7k4k10kik9k8k6) 

PlO 
3 2 4 ! 10 1 9 8 6 5 7 

For example the key is (1010000010) is permuted to ( 1000001100) 
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Original Key 
8 9 JO 

0 

0 
Permutation 10 

After permutation (PIO) Left Shift Operation will occur. We will divide 10 - bit key from 

center in two 5 -Bits. 

PlO 
1 I O O O I O ] 0 1 I 1 I O 0 

I o I o I o I o I 1 I 1 1 0 0 0 

After this we will apply Permutation 8 according to the following scheme. 

PS 
6 I 3 I 7 I 4 I 8 5 10 9 

The result is subkey (K 1) 

So now Kl is: 

K1 
0 I 1 I 0 I 0 1 I 0 0 

Now we will apply LS-2 to the pair of 5-bit strings produced by the two LS-1 function. 

0 I o I o I o 1 I I 1 I 1 I o I o I o 
\. .) \.. ./ 

V V 

LS-2 ~; 57 I LS-2 



0 0 0 1 1 0 0 0 0 1 

After this we will again apply Permutation 8 to get 8-Bit key. So the subkey K2 will be. 

0 1 0 o I o 0 1 1 

.3.2. Encryption 

By clicking one the "Encrypt" button, the plain text will convert into cipher text; actually, the 

re-shared key entered before will be used to generate the two subkeys used in the encryption 

of the text have been entered by the user, the application uses S-DES algorithm to encrypt the 

data. 

Figure 4.3 shows the S-DES encryption algorithm in greater detail. As was mentioned, 

encryption involves the sequential application of five functions. We examine each of these. 
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Figure 4.3 Simplified DES Scheme Encryption Detail [1]. 

uppose that we have now: 

K1 
1 I 0 I 1 I 0 I 0 I 1 I 0 I 0 

K2 
0 I 1 I 0 I 0 I 0 I 0 1 I 1 

Plain Text 
0 I 1 I 0 I 1 I 0 0 I 0 

e input of the algorithm is an 8-bit block of plaintext, which we first permute using the IP 

nction: 
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IP 
2 1 I 4 5 7 6 8 3 

We will get, 

1 0 0 0 0 1 1 0 

L R 

Now we will consider R part. 

1 1 0 0 

On this we will apply Expansion Permutation, and the manner will be: 

Expansion Permutation E/P 
4 I 1 I 2 I 3 I 2 I 3 I 4 I 1 

We will get, 

After E/P 
0 I 1 I 1 I 0 I 1 0 I 0 1 

Now we will apply Exclusive-OR (XOR) operation with the input K1 

~ I! I~ ll B 1 1 § § 
Now we will feed this data in our Shift S-boxes (SO and S 1 ). For this we will divide 8 bit into 
two halves. 

1 1 j 0 0 1 1 1 0 
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so 0 1 2 3 
0 r 1 0 3 2 

- 
1 ,.., 2 1 0 :, ~ - 
2 I 0 2 1 ,.., :, ....--- 
3 '- 3 1 3 2 . 

Sl 0 1 2 3 
0 ,, 0 1 2 ., . :, 

f--- 

1 2 0 1 ,.., :, >- f-- 

2 
l ~ 

0 1 0 
f-- 

3 1 0 2 - 

To read SO matrix we will apply operation in following manner: 

The S-box operate as follows: the first and fourth input bits are treated as 

2bit numbers that specify a row of the s-box, and the second and third input bits specify a 

column of the s-box. 

For Column (Bit 2, Bit 3) = (10) = 2 

So now we have 1 which is in binary equal to 01 (2 bit). 

And for Sl, 

For Row (Bit 1, Bit 4) = (11) = 3 (in binary) and 
For Column (Bit 2, Bit 3) = (10) = 2 
So now we have O which is in binary equal to 00 (2 bit). 

LJ 1 I 0 I 0 

Now we will apply Permutation 4 (P4), 

P4 
2 I 4 I 3 I 1 

Result will be, 

I 1 I 0 I 0 I 0 

The output of P4 is the output of the function F 
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After this we have to apply Exclusive-OR operation with the left side. 

Now we will combine this with right part (R). 

0 0 0 0 1 1 0 0 

After applying the switch function 

The function i, only alters the leftmost 4 bits of the input. The switch function (SW) 

Interchanges the left and right 4 bits. In the second instance, the E/P, SO,Sl, and P4 functions 

are the same. The key input is K2. 

1 1 0 0 0 0 0 0 

L R 

Now on right part (R) we will again apply Expansion Permutation (E/P). We will get, 

After E/P 
0 0 0 o I o 0 0 0 

Now we will apply Exclusive-OR (XOR) operation using Key 2 (K2). 

I! I: I XOR I § § § § § 
o I 1 0 1 I o 1 0 0 
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After this we have to apply Exclusive-OR operation with the left side. 

Now we will combine this with right part (R). 

0 0 0 0 1 1 0 0 

After applying the switch function 

The function t. only alters the leftmost 4 bits of the input. The switch function (SW) 

Interchanges the left and right 4 bits. In the second instance, the E/P, SO,Sl, and P4 functions 

are the same. The key input is K2. 

1 1 0 0 0 0 0 0 

L R 

Now on right part (R) we will again apply Expansion Permutation (E/P). We will get, 

After E/P 
0 0 0 o I o 0 0 0 

Now we will apply Exclusive-OR (XOR) operation using Key 2 (K2). 

§ § § § § I: I: I XOR I 
0 1 j 0 0 0 o l 1 1 
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so 0 1 2 3 
0 r: 1 0 3 2 
1 ~ 3 2 1 0 
2 I 0 2 1 ,.., 

.) 

3 l__ 3 1 3 2 ~ 

Sl 0 1 2 3 
0 r ~ 1 2 3 - ,____ 
1 0 1 ,.., 

.) '> 
2 l ~ 0 1 0 

- 
3 1 0 2 - 

To read SO matrix we will apply operation in following manner: 

For Row (Bit 1, Bit 4) = (00) = 0 (in binary) and 

For Column (Bit 2, Bit 3) = (10) = 2 
So now we have 3 which is in binary equal to 11 (2 bit). 

And for Sl, 

For Row (Bit 1, Bit 4) = (01) = 1 (in binary) and 

For Column (Bit 2, Bit 3) = (00) = 1 
So now we have O which is in binary equal to 00 (2 bit). 

Now we will apply Permutation 4 (P4), 

P4 
2 4 I 3 1 

Result will be, 

1 0 1 0 

After this we have to apply Exclusive-OR operation with the left side. 

I ! I I I ! I 

1 
0 
1 
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Now we will combine this with right part (R). 

0 1 0 1 0 0 0 0 

After this we will apply Initial Permutation-1 (IP-1) 

4 3 5 j 7 2 8 6 

So we will get the cipher text, 

0 0 0 0 0 0 

4.3.3. Send Data 
The "send data" button is responsible for sending data from client to the server using CORBA 

technology; this technology using broadcast technique to send data to all networked computers 

and the server only will response to the message and be able to decrypt the sent data. At this 

point he decryption will be done in the sever side in the next step. 

4.3.4. Enter Secret Shared Key 
After receiving the cipher text from the client, the user should enter the 10-bit secrete sh key 

shown in Figure 4.4 used in the decryption process. The 10-bit key shared key between sender 

and receiver, from this key, two 8-bit subkeys are produced for use in particular stages of the 

encryption and decryption algorithm. 
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Figure 4.4 Server interface 

4.3.5. Decryption 

After entering the secrete key shared and by clicking on "decryption" button, the cipher text 

will be converted into the original text. The same operation happens as any encryption 

operation, where decryption uses the same algorithm as encryption, except changes in the 

subkeys position in the algorithm. 
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Figure 4.4 Server interface 

4.3.5. Decryption 
After entering the secrete key shared and by clicking on "decryption" button, the cipher text 

will be converted into the original text. The same operation happens as any encryption 

operation, where decryption uses the same algorithm as encryption, except changes in the 

subkeys position in the algorithm. 
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4.4. Summary 

This chapter has described the application developed by author, which is an implementation of 

the single key cryptography concepts using simplified DES algorithm, it also help using the 

application and describes the interfaces used in. 
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CONCLUSION 

In this thesis, it has given a detailed view on the single key cryptography and its 

application; it also has provided a sample program using DES protocol a practical 

implementation of the pervious theoretical background. 

Next paragraph the important result obtained from this thesis: 

• Cryptography and the applications of cryptography and where it is used, the 

basics of the cryptography system and its types, techniques and algorithms used 

by any cryptography system were discussed in more details, and finally we 

talked about the key management and the certificate authorities. 

• Data standard encryption as a one of the modem and effective techniques of 

cryptography systems, describe block cipher principles and Feistel block cipher, 

about the origins of data standard encryption, DES algorithm and 3DES, it also 

discussed the modes of operation, hash function and finally the message access 

authentication. 

• Web security considerations, and some of the famous web threats, how to 

protect it and finally the main standards of web security used in electronic 

business and commerce. 

• An application developed by the author to secure data transmission over 

communication channels using single key cryptography technology (Data 

Encryption Standard algorithm) implemented using Delphi language. 

But we have observed that: 

• The usage of this technology is going down by time to the interest of the public 

key cryptography due to the growing of client/server application. 

• To provide more security, the key length of DES should be increased. 
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GLOSSARY 

AES The Advanced Encryption Standard that will replace DES (The Data Encryption 

Standard) around the turn of the century. 

Algorithm A series of steps used to complete a task. 

Alice The name traditionally used for the first user of cryptography in a system; Bob's 

friend. 

ANSI American National Standards Institute. 

Attack Either a successful or unsuccessful attempt at breaking part or all of a 

cryptosystern. See algebraic attack, birthday attack, brute force attack, chosen 

ciphertext attack, chosen plaintext attack, differential cryptanalysis, known plaintext 

attack, linear cryptanalysis, rniddleperson attack. 

Authentication The action of verifying information such as identity, ownership or 

authorization. 

Bit A binary digit, either 1 or 0. 

Block Cipher A symmetric cipher which encrypts a message by breaking it down into 

blocks and encrypting each block. 

Bob The name traditionally used for the second user of cryptography in a system; 
Alice's friend. 

Certificate In cryptography, an electronic document binding some pieces of 

information together, such as a user's identity and public-key. Certifying Authorities 

(CA's) provide certificates. 
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Certifying Authority (CA) A person or organization that creates certificates. 

Checksum Used in error detection, a checksum is a computation done on the message 

and transmitted with the message; similar to using parity bits. 

Cipher An encryption-decryption algorithm. 

Ciphertext Encrypted data. 

Clipper Clipper is an encryption chip developed and sponsored by the U.S. 
government as part of the Capstone project. 

compromise The unintended disclosure or discovery of a cryptographic key or secret. 

CRL Certificate Revocation List. 

Cryptanalysis The art and science of breaking encryption or any form of 
cryptography. 

Cryptography The art and science of using mathematics to secure information and 

create a high degree of trust in the electronic realm. See also public key, secret kev. 
symmetric-key, and threshold cryptography. 

Cryptosystem An encryption-decryption algorithm (cipher), together n • 

plaintexts, ciphertexts and keys. 
le 

Decryption The inverse (reverse) of encryption. 

DES Data Encryption Standard, a block cipher · 

government in the 1970's as an official standard. ~~ ~·- 
IBM and the U.S. 



Diffie-Hellman Key Exchange A key exchange protocol allowing the participants to 

agree on a key over an insecure channel. 

Digital Signature The encryption of a message digest with a private key. 

Distributed Key A key that is split up into many parts and shared ( distributed) among 

different participants. 

DSA Digital Signature Algorithm. DSA is a public-key method based on the discrete 

logarithm problem. 

DSS Digital Signature Standard. DSA is the Digital Signature Standard. 

ECC Elliptic Curve Cryptosystem; A public-key cryptosystem based on the properties 

of elliptic curves. 

Electronic Commerce (e-commerce) Business transactions conducted over the 

Internet. 

Electronic Mail (e-mail) Messages sent electronically from one person to another via 

the I ntemet. 

Encryption The transformation of plaintext into an apparently less readable form 

(called ciphertext) through a mathematical process. The ciphertext may be read by 

anyone who has the key that decrypts (undoes the encryption) the ciphertext. 

Feistel Cipher A special class of iterated block ciphers where the ciphertext is 

calculated from the plaintext by repeated application of the same transformation caJled 

a round function. 

FIPS Federal Information Processing Standards. 



function A mathematical relationship between two values called the input and the 

output, such that for each input there is precisely one output. For example, f defined on 
the set of real numbers as f(x) = x2 is a function with input any real number x and with 

output the square ofx. 

Handshake A protocol two computers use to initiate a communication session. 

Identification A process through which one ascertains the identity of another person or 

entity. 

Internet The connection of computer networks from all over the world forming a 

worldwide network. 

Kerberos An authentication service developed by the Project Athena team at MIT. 

Key A string of bits used widely in cryptography, allowing people to encrypt and 

decrypt data; a key can be used to perform other mathematical operations as well. 

Given a cipher, a key determines the mapping of the plaintext to the ciphertext. See 

also distributed key, private key, public key, secret key, session key, shared key, sub 

key, symmetric key, weak key. 

Key Exchange A process used by two more parties to exchange keys m 

cryptosystems. 

Key Management The various processes that deal with the creation, distribution, 

authentication, and storage of keys. 

Key Pair The full key information in a public-key cryptosystern, consisting of the 

public key and private key. 

Key Recovery A special feature of a key management scheme that allows messages to 

be decrypted even if the original key is lost. 
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Key Schedule An algorithm that generates the subkeys in a block cipher. 

Life Cycle The length of time a key can be kept in use and still provide an appropriate 

level of security. 

Meet-In-The-Middle Attack A known plaintext attack against double encryption with 

two separate keys where the attacker encrypts a plaintext with a key and '' decrypts" the 

original ciphertext with another key and hopes to get the same value. 

Message Digest The result of applying a hash function to a message. 

MIME Multipurpose T nternet Mail Extensions. 

NIST National Institute of Standards and Technology, a United States agency that 

produces security and cryptography related standards (as well as others); these 

standards are published as FIPS documents. 

Non-Repudiation A property of a cryptosystem. Non-repudiation cryptosystems are 

those in which the users cannot deny actions they performed. 

NSA National Security Agency. A security-conscious U. S. government agency whose 

mission is to decipher and monitor foreign communications. 

PKI Public-key Infrastructure. PK.Is are designed to solve the key management 

problem. See also key management. 

Plain text The data to be encrypted. 

Private Key In public-key cryptography, this key is the secret key. It is primarily used 

for decryption but is also used for encryption with digital signatures. 
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Protocol A series of steps that two or more parties agree upon to complete a task. 

Public Key In public-key cryptography this key is made public to all, it is primarily 

used for encryption but can be used for verifying signatures. 

Public-Key Cryptography cryptography based on methods involving a public key and 

a private key. 

RSA Algorithm A public-key cryptosystem based on the factoring problem. RSA 

stands for Rivest, Shamir and Adleman, the developers of the RSA public-key 

cryptosystem and the founders of RSA Data Security (now RSA Security). 

S/MIME Secure Multipurpose Internet Mail Extensions. 

SSL Secure Socket Layer. A protocol used for secure Internet communications. 

Secret Key In secret-key cryptography, this is the key used both for encryption and 

decryption. 

Secret Sharing Splitting a secret (e.g. a private key) into many pieces such that any 

specified subset of k pieces may be combined to form the secret, but k-1 pieces are not 

enough. 

Session Key A key for symmetric-key cryptosystems which is used for the duration of 

one message or communication session 

SET Secure Electronic Transaction. MasterCard and Visa developed (with some help 

from industry) this standard jointly to insure secure electronic transactions. 

Shared Key The secret key two (or more) users share in a symmetric-key 

cryptosystem. 
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Stream Cipher A secret-key encryption algorithm that operates on a bit at a time. 

Sub key A value generated during the key scheduling of the key used during a round in 

a block cipher. 

Symmetric Cipher An encryption algorithm that uses the same key is used for 

encryption as decryption. 

XOR A binary bitwise operator yielding the result one if the two values are different 

and zero otherwise. XOR is an abbreviation for exclusive-OR. 
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APPENDIX A 

CLIENT PROGRAM CODE 

unit cilentx; 

interface 

uses 

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,rnath, 

Corba, cypher _i, cypher_ c, StdCtrls, CornCtrls, Buttons, ExtCtrls; 

type 

Tcilent = c1ass(TFonn) 
Labe16: TLabel; 

Label 10: TLabel; 

editl: TEdit; 

Labell4: TLabel; 

Labell6: TLabel; 

keyl: TEdit; 

key2: TEdit; 

BitBtn5: TBitBtn; 

Label 19: TLabe1; 

Labe120: TLabel; 

KeyGen: TEdit; 

BitBtn6: TBitBtn; 

Labe121: TLabel; 

Merno2: TMerno; 

BitBtn7: TBitBtn; 

Labe122: TLabel; 

Labe123: TLabel; 

Memo3: TMemo; 

Labe124: TLabel; 

BitBtn8: TBitBtn; 

Bevell: TBevel; 

Bevel2: TBevel; 

Beve13: TBevel; 
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Shape I: TShape; 

Shape2: TShape; 

Label 1: TLabel; 

procedure BitBtn 1 Click(Sender: TObject); 

procedure BitBtn2Click(Sender: TObject); 

procedure BitBtn3Click(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure BitBtn4Click(Sender: TObject); 

private 

{ private declarations } 

protected 

II declare your Corba interface variables like this 

ciph _ msg:cipheredmsg; 

procedure InitCorba; 

{ protected declarations } 

public 

{ public declarations } 

end; 

type array8=array[ 1 .. 8]of integer; 

var 

cilent: Tcilent; 

str,ch:string; 

temp: integer; 

PlO,plOtwo :array[l .. 1 O]of integer; 

k 1,k2,ml ,jP ,ip,result :array8; 

ConvTemp: array[l .. 4]of integer; 

procedure Tcilent. I nitCorba; 

begin 

CorbaT nitialize; 

II Bind to the Corba server like this 

ciph _ msg:= TcipheredmsgHelper. bind; 

end; 
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!/**** convert integer into byte***** 

function inttobyte(x :integer):array8; 

var 

count:integer; 

ar:array8; 

begin 

count.=S: 

while x<>O do 

begin 

if (x mod 2)<>0 then 

begin 

ar[count]:=1; 

x:=round((x-1 )/2); 

end 

else 

begin 

ar[count]:=O; 

x:=round(x/2); 

end; 

dec(count); 

end; 

while count>O do 

begin 

ar[count]:=O; 

dee( count); 

end; 

result:=ar; 

end; 

ll**************************** 

function bytetoint(ar:array8):integer; 

var 

i:integer; 

begin 
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result:=O; 

for i:=1 to 8 do 

begin 

result:=round(result+ power(2,i-1 )*ar[9-i]); 

end; 

end; 

function Fl (ip:array8;keyl :array8):array8; 

var 

i.r,c: integer; 

sO,sl :array[0 .. 3,0 .. 3]of integer; 

ep,xrl ,xr2:array8; 

p4,p4final :array[l . .4] of integer; 

begin 

s0[0,0]:=1; s0[0,1]:=0; s0[0,2]:=3; s0[0,3]:=2; 

sO[l,0]:=3; sO[l,1]:=2; sO[l,2]:=1; sO[l,3]:=0; 

s0[2,0]:=0; s0[2,1]:=2; s0[2,2]:=1; s0[2,3]:=3; 

s0[3,0]:=3; s0[3,1]:=1; s0[3,2]:=3; s0[3,3]:=2; 

s l [0,0]:=0; sl [O, 1 ]:=1; sl [0,2]:=2; sl [0,3]:=3; 

sl[l,0]:=2; sl[l,1]:=0; sl[l,2]:=1; sl[l,3]:=3; 

s l [2,0]:=3; sl [2, 1 ]:=O; sl [2,2]:=1; sl [2,3]:=0; 

s l [3,0]:=2; s l [3, 1 ]:=1; sl [3,2]:=0; s1 [3,3]:=3; 

ep[l] :=ip[8]; 

ep[2] :=ip[ 5]; 

ep[3] :=ip[ 6]; 

ep[4]:=ip[7]; 

ep[5]:=ip[6]; 

ep[6]:=ip[7]; 

ep[7] :=ip[8]; 

ep[8]:=ip[5]; 

//--make xor--// 
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for i:=1 to 8 do 

if ep[i]=keyl [i] then 

xrl[i]:=O 

else 

xrl [i]:=1; 

//-get p4 partl---// 

r:=xrl [1]*2+xrl [4]; 

c:=xrl [2]*2+xrl [3]; 

if sO[r,c] =O then 

begin p4[1] :=O;p4[2] :=O; end 

else if sO[r,c] =1 then 

begin p4[1]:=0;p4[2]:=1; end 

else if sO[r,c] =2 then 

begin p4[1 ]:=1 ;p4[2]:=0; end 

else ifsO[r,c] =3 then 

begin p4[1 ]:=1 ;p4[2]:=1; end; 

//----// 

//---get p4 part2 --// 

r:=xrl [5]*2+xrl [8]; 

c:=xrl [6]*2+xrl [7]; 

if sl[r,c] =O then 

beginp4[3]:=0;p4[4]:=0; end 

else if s l [r,c] =1 then 

begin p4[3]:=0;p4[4]:=1; end 

else if sl [r,c] =2 then 

begin p4[3]:=1 ;p4[4]:=0; end 

else if sl [r,c] =3 then 
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begin p4[3]:=1 ;p4[4]:=l; end; 

//--applay p4--// 

p4fina1[1 ]:=p4[2]; 

p4fina1[2]:=p4[ 4]; 

p4final[3]:=p4[3]; 

p4final[ 4] :=p4[1 ]; 

//--make xor--// 

for i:=1 to 4 do 

if p4final[i]=ip[i] then 

xr2[i]:=O 

else 

xr2[i]:=1; 

for i:=5 to 8 do 

xr2[i] :=ip[i]; 

fl:=xr2; 

end; 

//-------------end function----------------- 

procedure Tei lent. BitBtn 1 CHck(Sender: TObject ); 

var 

i.integer: 

begin 

str:=KeyGen. text; 

if length(str )<> 10 then 

begin 

showrnessage('Y ou have to enter 10 bit binary'); 

exit; 

end; 

for i:=1 to 10 do 

begin 

if (str[i]='l ') or (str[i]='O') then 

p 1 O[i] :=strtoint(str[i]) 

else 

begin 
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showmessage('The Key must be 10 bit binary'); 

exit; 

end; 

end: 

p10two[l] :=p10[3]; 

p10two[2] :=p10[5]; 

p10two[3] :=p10[2]; 

p10two[4] :=p10[7]; 

p10two[5] :=p10[4]; 

pl Otwo[6] :=pl 0[1 O]; 

p 1 Otwo[7] :=p 10[1 ]; 

pl Otwo[8] :=pl 0[9]; 

pl Otwo[9] :=pl 0[8]; 

pl Otwo[10]:=pl 0[6]; 

temp:=pl Otwo[l ]; 

for i:=1 to 4 do 

pl Otwo[i]:=p1 Otwo[i+ 1 ]; 

pl Otwo[5]:=temp; 

temp:=p1 Otwo[6]; 

for i:=6 to 9 do 

pl Otwo[i]:=p1 Otwo[i+ 1 ]; 

p 1 Otwo[l O]:=temp; 

//----------- generate Kl ------­ 

kl [1] :=pl Otwo[6]; 

kl [2]:=pl Otwo[3]; 

kl [3]:=p1 Otwo[7]; 

kl [4]:=p1 Otwo[4]; 

kl [5] :=p 1 Otwo[8]; 

kl [6]:=p1 Otwo[5]; 

kl [7] :=p 1 Otwo[l O]; 

kl [8] :=p 1 Otwo[9]; 

str:="; 
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for i:=1 to 8 do 

begin 

ch:=inttostr(kl [i]}; 

str:=str+ch; 

end; 

keyl .text:=str; 

l!-------------------------------- 

1/----------- generate K2 ------­ 

p 10[1] :=p10two[3]; 

pl 0[2] :=pl Otwo[4]; 

pl 0(3] :=pl Otwo[5]; 

p10[4] :=p10two[1]; 

pl 0(5] :=pl Otwo[2]; 

p10[6] :=p10two[8]; 

p10[7] :=p10two[9]; 

pl0[8] :=plOtwo[lO]; 

p10[9] :=p10two[6]; 

pl 0(1 O]:=pl Otwo[7]; 

k2[1 ]:=pl 0(6]; 

k2[2]:=p10(3]; 

k2[3]:=p 10[7]; 

k2[4]:=p10[4]; 

k2[5]:=p10[8]; 

k2[6]:=p10[5]; 

k2[7]:=p10[10]; 

k2[8]:=p10[9]; 

str.=": . ' 
for i:=1 to 8 do 

begin 

ch:=inttostr(k2[i]); 

str:=str+ch; 

end; 
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key2.text:=str; 

edit l .Text:= KeyGen.Text; 

Memo 2. Enabled:=true; 

Memo 2. Co lor:=clwindow; 

Memo2.SetFocus; 

end; 

procedure Tcilent.BitBtn2Click(Sender: TObject); 

begin 

II PageControll .SelectNextPage(true ); 

end; 

procedure Tcilent.BitBtn3Click(Sender: TObject); 

var 

chara:char; 

i,j, va:integer; 

text:string; 

begin 

str:="· ' 
text:=Memo2. Lines. Text;//msg. text; 

for j:=1 to length(text) do 

begin 

chara=textjj]; 

ml :=inttobyte(ord(chara)); 

//-- get IP-- 

ip[l] :=ml [2]; 

ip[2]:=ml [6]; 

ip[3]:=rnl [3]; 

ip[4]:=m1 [1 ]; 

ip[5]:=m1 [4]; 

ip[6]:=m1 [8]; 

ip[7]:=m1 [5]; 

ip[8]:=rnl [7]; 

II******************************************************** 

//******************************************************** 
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result:=fl (ip,kl ); 

for i:=1 to 4 do 

ConvTemp[i]:=result[i]; 

for i:=1 to 4 do 

result[i] :=result[i+4]; 

for i:=5 to 8 do 

result[i] :=ConvTemp[i-4]; 

result:=fl ( result,k2); 

jp[l] :=result[ 4]; 

jp[2]:=result[1 ]; 

jp[3] :=result[3]; 

jp[ 4] :=result[ 5]; 

jp[5] :=result[7]; 

jp[ 6] :=result[2]; 

jp[7] :=result[8]; 

jp[8] :=result[ 6]; 

va:= bytetoint(jp ); 

str:=str + chr(va); 

end; 

II Ciphertext.text:=str; 

Memo3.Lines.Text:=str; 

{ va:= bytetoint(jp ); 

str:="; 

str:=chr(va); 

Ciphertext.text:=str; 

} 
-". { str:- , 

for i:=1 to 8 do 

begin 

ch:=inttostr(jp[i]); 

str:=str+ch; 

end; 
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Ciphertext.text:=str;} 

II PageContro11.SelectNextPage(true); 

end; 

procedure Tcilent.FormCreate(Sender: TObject); 

begin 

InitCorba; 

end; 

procedure Tcilent.BitBtn4Click(Sender: TObject ); 

begin 
ciph _ rnsg.receivemsg(Merno3.Text, Keyl .Text, key2.Text); 

end; 

end. 

SERVER PROGRAM CODE 

unit serverx; 

interface 

uses 
Windows, Messages, Sysl.Itils, Classes, Graphics, Controls, Forms, Dialogs,Math, 

Corba, cypher _i, cypher_ c, cypher _s, cypher _imp 1, Std Ctr ls, Buttons, 

ComCtrls, ExtCtrls; 

type 

TServer = class(TForrn) 

Labell: TLabel; 

Merno3: TMerno; 

Labe12: TLabel; 

BitBtn2: TBitBtn; 

Memo l : TMerno; 

Labe13: TLabel; 

Label4: TLabel; 

Bevell: TBevel; 

Bevel2: TBevel; 
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Shape 1: TShape; 

Shape2: TShape; 

Label5: TLabel; 

KeyGen: TEdit; 

BitBtn6: TBitBtn; 

Label6: TLabel; 

Label7: TLabel; 

Buttonl: TButton; 

procedure BitBtn4Click(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure BitBtn 1 Click(Sender: TObject); 

procedure Memo 1 KeyDown(Sender: TObject; var Key: Word; 

Shift: TShiftState); 

procedure MemolKeyPress(Sender: TObject; var Key: Char); 

procedure KeyGenKeyPress(Sender: TObject; var Key: Char); 

procedure Button! Click(Sender: TObject ); 

private 

{ private declarations } 

protected 

{ protected declarations } 

II Add Corba interface variables here like this 

ciph _ msg :cipheredmsg; II skeleton object 

procedure InitCorba; 

public 

{ public declarations } 

strKeyl, StrKey2:string; 

end; 

type array8=array[l .. 8]of integer; 

var 

Server: TServer; 

str,ch:string; 



temp:integer; 

Pl O,p 1 Otwo :array[l .. 1 Ojof integer; 

kl ,k2,ml ,jP,ip,result :array8; 

ConvTemp: array[1 .. 4]of integer; 

implementation 

procedure TServer.InitCorba; 

begin 

Corbainitialize; 

II Add CORBA server code here like this 
ciph_msg:= TcipheredmsgSkeleton.Create('ready', tcipheredmsg.Create); 

BOA.ObjisReady(ciph_msg as _Object); 

end; 

function bytetoint( ar:array8):integer; 

var 

i.integer; 

begin 

result.=O; 

for i:=1 to 8 do 

begin 

result:=round(result+ power(2,i-1 )*ar[9-i]); 

end; 

end; 

function Fl (ip:array8;keyl :array8):array8; 

var 

i.r,c: integer; 

sO,sl :array[0 .. 3,0 .. 3]of integer; 

ep,xrl ,xr2:array8; 

p4,p4final :array[l . .4] of integer; 

begin 
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s0[0,0]:=1; s0[0,1]:=0; s0[0,2]:=3; s0[0,3]:=2; 

s0[1,0]:=3; s0[1,1]:=2; sO[l,2]:=1; sO[l,3]:=0; 

s0[2,0]:=0; s0[2, 1 ]:=2; s0[2,2]:=1; s0[2,3]:=3; 

s0[3,0]:=3; s0[3, 1 ]:=1; s0[3,2]:=3; s0[3,3]:=2; 

sl[O,O]:=O; sl[0,1]:=1; sl[0,2]:=2; sl[0,3]:=3; 

sl [1,0]:=2; sl [1,1]:=0; sl [1,2]:=1; sl [1,3]:=3; 

s1[2,0]:=3; s1[2,1]:=0; s1[2,2]:=1; s1[2,3]:=0; 

sl [3,0]:=2; sl [3, 1 ]:=1; sl [3,2]:=0; sl [3,3]:=3; 

ep[1]:=ip[8]; 

ep[2] .=ip] 5]; 

ep[3] :=ip[ 6]; 

ep[ 4] :=ip[7]; 

ep[5]:=ip[6]; 

ep[6]:=ip[7]; 

ep[7] :=ip[8]; 

ep[8]:=ip[5]; 

//--make xor--// 

for i:=1 to 8 do 

if ep[i]=keyl [i] then 

xrl [i] :=O 

else 

xrl[i]:=1; 

//-get p4 partl---// 

r:=xrl [1]*2+xr1 [4]; 

c:=xrl [2]*2+xr1 [3]; 

if sO[r,c] =O then 

begin p4[1]:=0;p4[2]:=0; end 

90 



else if sO[r,c] =1 then 

begin p4[1]:=0;p4[2]:=1; end 

else ifsO[r,c] =2 then 

beginp4[1]:=l;p4[2]:=0; end 

else if sO[r,c] =3 then 

begin p4[1 J:=1 ;p4[2]:=1; end; 

//----// 

//---get p4 part2 --// 

r:=xrl [5]*2+xr1 [8]; 

c:=xrl (6]*2+xr1 [7]; 

if sl[r,c] =O then 

begin p4[3]:=0;p4[4]:=0; end 

else if sl [r,c] =1 then 

begin p4[3]:=0;p4[4]:=1; end 

else if sl [r,c] =2 then 

begin p4[3]:=1 ;p4[4]:=0; end 

else ifsl[r,c] =3 then 

begin p4[3]:=l ;p4[4]:=l; end; 

//--applay p4--// 

p4final[1] :=p4[2]; 

p4final[2] :=p4[ 4]; 

p4final[3] :=p4[3]; 

p4final[ 4]:=p4[1 l; 

//--make xor--// 

for i:=1 to 4 do 
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ifp4final[i]=ip[i] then 

xr2[i]:=O 

else 

xr2[i]:=1; 

for i:=5 to 8 do 

xr2[i] :=ip[i]; 

fl:=xr2; 

end; 

//-------------end function----------------- 

!!**** convert integer into byte***** 

function inttobyte(x :integer):array8; 

var 

count:integer; 

ar:array8; 

begin 

count:=8; 

while x<>O do 

begin 

if (x mod 2)<>0 then 

begin 

ar[count]:=1; 

x:=round((x-1)/2); 

end 

else 

begin 

ar[count]:=O; 

x:=round(x/2); 

end; 

dec(count); 

end; 

while count>O do 
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begin 

ar[count]:=O; 

dee( count); 

end; 

result:=ar; 

end; 

procedure TServer.BitBtn4Click(Sender: TObject); 

var 

va: integer; 

i,j:integer; 

text:string; 

chara:char; 

str:string; 

begin 

BitBtnl Click(Sender); 
' '' 

{ for i:=1 to 8 do 

begin 

kl [i]:=strtoint(StrKeyl [i]); 

k2 [i] :=strtoint(StrKey2 [ i]); 

end; 

} 

text:=Memo3 .Lines. Text; 

for j:=1 to length(text) do 

begin 

chara:=text[j]; 

Jp :=intto byte( ord( chara) ); 

ip[l] :=jp[2]; 

ip[2] :=jp[6]; 

ip[3]:=jp[3]; 

ip[ 4] :=jp[l ]; 

ip[5]:=jp[4]; 
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ip[ 6] :=jp[8]; 

ip[7]:=jp[5]; 

ip[8] :=jp[7]; 

result:=fl (ip,k2); 

for i:=1 to 4 do 

ConvTernp[i]:=result[i]; 

for i:=1 to 4 do 

result[i] :=result[i+4]; 

for i:=5 to 8 do 

resultji] :=ConvTemp[i-4]; 

result:=fl ( result,k 1 ); 

ip[l] :=result[ 4]; 

ip[2] :=result[l]; 

ip[3] :=result[3]; 

ip[ 4] :=result[5]; 

ip[5] .=result]"]; 

ip[ 6] :=result[2]; 

ip[7] :=result[8]; 

ip(8] :=result[ 6]; 

va:= bytetoint(ip ); 

str:=str+chr(va); 

end; 

Memo 1.Lines.Text:=str; 

II PageControll .SelectNextPage(true ); 

end; 

proceaure TSen'er.FormCreate(Sender: TObject); 
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begin 

InitCorba; 

end; 

procedure TServer.BitBtnl Click(Sender: TObject); 

var 

i:integer; 

begin 

str:=KeyGen. text; 

iflength(str)<>l O then 

begin 

showmessage('The Key must be 10 bit binary'); 

exit; 

end; 

for i:=l to 10 do 

begin 

if (str[i]='l ') or (str[i]='O') then 

pl O[i]:=strtoint(str[i]) 

else 

begin 

showmessage('The Key must be 10 bit binary'); 

exit; 

end; 

end; 

pl Otwo[l] :=p10[3]; 

p10two[2] :=p10[5]; 

p10two[3] :=p10[2]; 

p10two[4] :=p10[7]; 

p10two[5] :=p10[4]; 
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10two[6] :=plO[lO]; 

10two[7] :=p10[1]; 

1 Ot\vo[8) :=p 10(9]; 

[9] :=pl 0(8]; 

1 Otwo[l O] :=p 10(6]; 

l Otwo] l]; 

fo 0 

emp:=p 1 Otwo] 6]: 

II generate Kl ------- 

n~ 6]; 

~10]; 

-~-!.!: 

II ----------- 
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//----------- generate K2 ------­ 

p 10[1] :=p10two[3]; 

pl 0[2] :=pl Otwo[4]; 

p10[3] :=p1 Otwo[5]; 

pl0[4] :=plOtwo[l]; 

pl0[5] :=pl0two[2]; 

pl0(6] :=pl0two[8]; 

pl0[7] :=pl0two[9]; 

p10(8] :=pl Otwo] l O]; 

pl 0[9] :=pl Otwo[6]; 

10[1 O]:=p1 Otwo[7]; 

k:2[1]:=p10[6]; 

k2[2]:=p10[3]; 

k:2[3]:=pl0[7]; 

k:2[4]:=pl0[4]; 

[5}:=p10[8]: 

--~6}:=pl 0[5]: 

k1~~:=p10~ 10]: 

--~8]~ 10[9]: 

=!' 

~.f""II· 

""'"'"'"''-• 
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II strKey2:=k2 

end; 

procedure TServer.Memo 1 KeyDown(Sender: TObject; var Key: Word; 

Shift: TShiftState ); 

begin 

{ if key in [13,38,40,37,39] then 

else 

key:=O; 

shovnnessage(inttostr(key));} 

end; 

procedure TServer.MemolKeyPress(Sender: TObject; var Key: Char); 

begin 

if key in [#13,#38,#40,#37,#39] then 

else 

key:=#0; 

end; 

procedure TServer.KeyGenKeyPress(Sender: TObject; var Key: Char); 

begin 

if (key <> 'l ') and (key <> 'O') then 

key:=#0; 

end; 

procedure TServer.Button1 Click(Sender: TObject); 

begin 

close; 

end; 

end. 
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