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ABSTRACT

The condition under which the signal is exactly recoverable from the samples is
embodied in the sampling theorem. For exact reconstruction, this theorem requires that
the signal to be sampled be band limited and that the sampling frequency be greater than
the twice the highest frequency in signal to be sampled. Under these conditions exact

reconstruction of the original signal is carried out by means of ideal filtéring.

However in practice we face the problem to recover the original signal from its ’
limited number of samples located at his large intervals than sampling intervals defined
by Shannon theorem. In this case, it is impossible to exact recover the original signal

from its samples.

. To increase precision of reconstruction we propose inserting extra interpolated
samples between the original samples and then orthogonal filtering the combination of

original and extra samples.

—ta
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INTRODUCTION

The theory of conventional single rate digital signal processing of the contmuous
time signal is based on the Shannon Sampling Theorem. In accordance to this theorem any
continuous time signal can be represented from its samples taken at least twice the max1mal
frequency of the content signal.

On process of control it is necessary to reconstruct CTS from limited numbers of

discrete samples .the problem is carried in control of parameter that difficult to access (egk.
Special system, petrol and chemistry industries).
In this cases application only Lagrange orthogonal polynomial for reconstruction yieldyys‘
unacceptable errors between nodes of interpolation to increase precision and enhancing
process of interpolation in this we use combination of above measured two types method of
interpolation, o

In chapter 1, the theoretical discrete time signals and systems are presented. The{
problems of prefiltering to avoid aliasing, analysis of quantizing error, decimation’ and
interpolation and up sampling methods are described.

Chapter 2 introduces basic Sampling and Sampling Rate Conversion, The impulse

and frequency responses, properties of Linear-phase filters with symmetrical and
antisymmetrical impulse responses are analyzed.
The Matrix and polyphase representation condition of perfect reconstruction by(Quadrature
error Filter) QMF filters, bank filter with equal and unequal pass band are analyzed |
Conclusion states therefore results obtained by author in investigation multirate signal
' processing system.

Chapter 3 gives basic of the digital bank filter and its application for multirate
signal processing. Uniform(Discrete Fourier Transform ) DFT filters having different
- central frequencies, full and half (Number of Band) Lth band filter are presented. Design
~ and error analysis of the 2-channel QMF bank filters are given.

i Chapter 4 introduces many different sets of orthogonal function may be chosen to
‘represent a given signal, and finally the expansion of the signals in special orthogonal

functions.



Finally in chapter 5 introduces extra samples between measured original samples
using lagrange interpolation and orthogonal function practical and simulation of systems

are described by using MATLAB program.




Discrete-Time Signals and Systems

1. DISCRETE-TIME SIGNALS AND SYSTEMS

1.1 Overview

" The world around us is analog, that is, continuous in time and amplitude.
However, because of progresses in digital technology, it is common to take samples of
signals and perform all kind of processing (including storage and transmission) in
digital domain, i.e., discrete in time and amplitude. -

In this chapter, we introduce discrete-time signals as sampled versions of
continuous-time  signals. We also introduce different equations as discrete-time
equivalent of differential equations. The concept of convolution in discrete-time will

also be introduced.

Analog Analog
Input | Continuous to > Discrete-time > Discrete to OUtP“.t

Discrete C/D System Continuous D/C

Tigure 1.1 Operation of Obtaining Analog Output Signal from Analog Input after

Converting to Discrete Signal.

1.2 Sampling Theorem

Shannon (sampling) theorem states that if a continuous time signal f (t) is band-
limited to B Hz, ie., [F(o)| = 0 for jw| > 2nB, then the samples of f (t), taken at a
frequencies Fy > 2B, are sufficient for reconstruction of f(f). That is, there will be no
loss of information in using the sampled signal in place of its continuous time version.

The frequency F, = 2B is called Nyquist ﬂéquency of £(t).
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To prove the sampling theorem, we define the sampled version of f(¢) as
FO)= f©)8,(t) = f(nT)é(t —nT) (L1)
where T = 1/F; and

S, (1)=Y. 8(t—nT) (1.2)

since &1(t) is a periodic signal, it has a Fourier series. Moreover, recalling that 31(t) is

symmetric with respect to origin, its Fourier series is of the form

Op(f)=a,+a,coswt+a,cos2Zwi+....

where
w, =% = 2aF, (13)
T
Le ]
dy = ?—j‘f/zé} (f)df = ?
and
T/2
a,=2 [6,()ycosw,idt=2; n=1,2, (1.4)
n T T $ T
-T/2
Thus,
o= %[1+Zcos wit+2cos2w, it +......] (L.5)
Hence,
)= —;-[ FO+2f (@) coswt+2f(t)cos2w it +.....] (1.6)

The above results are depicted in figure 1.2.
Notes:
1. Sampling results in repetition of the spectrum at the intervals
2. WhenF,> 2B for s > 2B the original spectrum and the Fourier transform

pairs F(w) can be extracted from F(w) through a lowpass filtering.
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Figure 1.2 Sampling Results in Repetition of the Spectrum at the Intervals

(a) Function of time signal

(b) Function of frequency signal
(c) Impulse train signal

(d) Sampling frequncy intervals
(e) After sampling for time signal
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Discrete-Time Signals and Systems
1.3 Practical Issues

1.3.1 Interpolation/Filtering

In practice, the realization of the ideal lowpass filter mentioned above is not
possible, as it is non-causal. It is thus replaced by a filter which is realizable. Such a
filter requires a non-zero transition band. This means that signals have to be sampled at
a rate above Nyquist, to introduce a guard band such that transition bands could be
accommodated.

We shall also note that a practical filter can never cancel the replicas of signal spectrum,
completely. Thus, interpolation error is inevitable in practice. However, this error will
be reduced by using a higher order filter or by choosing a larger sampling frequency

such that a sufficient guard band will be present.
1.3.2 Aliasing

Strictly speaking, the assumption that a signal is band-limited is not satisfied in
most of the practical applications. Most of the signals have a spectrum which stretches
over a relatively wide band. However, there is usually negligible energy above a certain
band. ‘

When a signal is sampled at a rate which is less than Nyquist rate, higher frequency
components will fold over and mix with the lower frequency components, as ‘shown in
figure 1.3. The phenomenon of folding the higher frequencies to the lower frequencies

is called aliasing. .
S ca Sing A L Higher frequency

components are mixed
with lower frequency
components

|
- \J
W,

¥3/2 w2

v

Wy

Figure 1.3 Definition of Aliasing
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1.3.3 The Treachery of Aliasing

When a signal is sampled below Nyquist rate, there are two consequences to the
aliasing: (i) the components above ®y2 are cancelled in the process of signal
reconstruction; (ii) the aliased (folded) components distorts the signal components

below wy/2. Therefore the damage done to the signal is two-fold.

To resolve the two-fold problem just mentioned, analog antialiasing filters are
used to cancel any signal components beyond @, /2. In this way, the loss of information
in the sampled signal is only due to cancellation of components above ®y/2. The signal

components below w42 remain untouched.

1.4 An Important Class of Linear Time-Invariant Discrete-Time

(LTID) Systems

For LTID systems the equivalent systems are those whose input and output are

related by constant coefficients difference equations of the form

y[k]+a, yk-1]+a, 3k —2]+....+ a,y[k —n]

=b, flk]+b,  flk—1]+...+ b, flk - m] (L.7)

A simple example of LTID systems is the one whose input and output are’ related

according to the difference equation

k]~ eyl —1]= fk] (1.8)

Figure 1.4 depicts a realization of this system
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F-N

Delay

o

Figure 1.4 LTID System

The impulse response of this system is obtained by letting flk] = 5[k] and finding the
samples of output. The result is (assuming y[k] =0 fork <0)

[0]=ax0+s50]=1
[1] =ax y[O]+ 5[1]: o
wl=axli}+o]=a’

y
y

Thus, the system impulse response is h[k} = a*u[k]. This is similar to the sampled

version of the impulse response of a LTIC system
h(t) = *" u(t) (1.9)

Replacing k by kt in equation (1.8) and making use of (1.9) and then putting t =T gives

ro— b (1.10)

Inax

By simple generalization of this observation, we may say that any LTIC system
governed by a differential equation, has a LTID equivalent governed by a difference

equation.
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1.5 Linear Convolution in Discrete-Time

We note that a signal fTk] may be written as

f[k]=§f[n]5[k—n] | (1.11)

i.e., a summation of impulses.

Applying this as input to an LTID system and considering the linearity and time shifting

properties, we obtain

fk]=3 flelle-n] (1.12)
k
which is linear convolution in discrete-time.

1.6 Some Applications of the Sampling Theorem

The immediate and most important applicationiof sampling theorem is to convert
the samples of the sampled signal to a set of digital numbers. Once these digital
numbers are obtained they can be used to store the signal in a computer or transmit the
information bits through a communication channel. The digital numbers can also be
used for processing the signal in a very convenient way, e.g., filtering the signal using a
digital filter.

In particular, there are many advantages in working with digital signals instead
of their analog counterparts: ‘ |

e Ease of transmission

e Accurate regeneration/reconstruction

e Ease of implementation

¢ Coding can be applied to achieve very low probability of error
e Multiplexing is straightforward

e Lower cost
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1.7 Dual of Time-Sampling

1.7.1 The Spectral Sampling Theorem

Let us begin with the time-limited signal f{t) and its Fourier transform F(w) as

shown in figure 1.5.

N A
fi
® Fw)
t W
' » Ll
T
Figure 1.5 (a) Time-Limited Signal f{(t); (b) Fourier Transform F(w)
F(w)= [f(te™dt= [f(t)e™™dt (1.13)
—0 0 .

Next define the periodic signal fro(t) and its complex Fourier series coefficients D, as

shown in figure 1.6.

A

(1)

Vs

v

A
v

Ty

Figure 1.6 (a) Periodic Signal fro(t); (b) Complex Fourier Coefficient D.
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From the Fourier series (assuming To > 7)

fTO (t)z Z Dnejnwot

where " (1.14)
"I
and
1 T 1 T )
D, == [f@)e ™ dt=— [£@emar (1.15)
TO 0 T 0
which implies that
D, :-1—F(nw0) (1.16)
TO
ie., D, is 1 times the sample F(nw,)of F(w).
0
1.7.2 Spectral Interpolation
Following the same line of derivations to the time interpolation, we get
i e PE L
F(w)= ;F(nwo)smc > mz‘

where (1.17)

2r
W, =—
T
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1.8 Numerical Computation of the Fourier Transform

1.8.1 The Discrete Fourier Transform (DFT)

Given a time-limited signal f{t) and its sampled version f(f), we have the Fourier

transform pairs shown below in figure 1.7

A A
F(w)
£
@ O
: ! L L
A A
70 o)
© @
t w
— > >

Figure 1.7 Time-Limited Signal ft) and its Sampled Version 7()

Now, if we repeat 7(t) after every T seconds the associated Fourier transform will be a
sampled version of F(w).

Figure 1.7 assumes a value of T that is not small enough to avoid aliasing. By
reducing T one can avoid aliasing or, at least, reduce aliasing to a negligible level. Thus,
by reducing T, as shown in figure 1.8, in which aliasing is negligible.

Note: When a signal is time limited, its spectrum in band unlimited. This means that

aliasing cannot be cancelled completely, unless T reduces to zero!

10
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A
. l b 4__F() = I/T()
s
Ll »
To
Figure 1.8 Aliasing is Negligible.
1.8.2 Number of Samples

Let Ny denote number of samples in each period of the time domain signal, and

N'o denote the number of samples in each period of the frequency domain signal. Then,

T , F,
N, =—]—f—and f=—

: (1.18)
i | I
where F,=— and F,=—, it gives
T T,
T, F,
N, =-2=-—2=N; 1.19
*“r F (119

1.8.3 Point of Discontinuity

When f(t) has a discontinuity at a sampling point, the sample value should be
taken as the average of the values on the two sides of the discontinuity, because this
leads to the best regeneration of the time domain signal from the frequency domain

samples.

11
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1.8.4 Zero Padding

For a time-limited signal with duration of T we usually consider a choice of To >

. 1 . . .
1. Since F, = 7 this increases the frequency resolution, i.e., more samples of F(w) are
0
calculated. When the sampling period, T, is kept constant and To is increased, this is
equivalent to increasing Ny, or thinking of samples Ny is increased by padding zeros

behind the samples f, =Tf(kT).

1.9 Summary
The theoretical discrete time signals and systems were presented. The problems

of prefiltering to avoid aliasing, analysis of quantizing error, decilnatipn and

interpolation and up sampling methods were described.

12
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2. BASIC PRINCIPLES OF SAMPLING AND SAMPLING RATE
CONVERSION

2.1 Overview

The purpose of this chapter is to provide the basic theoretical framework for
uniform sampling and for the signal processing operations involved in sampling rate
conversion. As such we begin with a discussion of the sampling theorem and consider
its interpretations in both the time and frequency domains. W“"e then consider sampling
rate conversion systems (for decimation and interpolation) in terms of both analog and
digital operations on the signals for integer changes in the sampling rate. By combining
concepts of integer decimation and interpolation, we generalize the results to the cage of
rational fraction changes of sampling rates for which a general input-output relationship
can be obtained. These operations are also interpreted in terms of thcepts of
periodically time-varying digital systems.

Next we consider more complicated sampling techniques and modulation
techniques for dealing with bandpass signals instead of lawpass. We show that sampling
rate conversion techniques can be extended to bandpass signals as well as lowpass

signals and can be used for purposes of modulation as well as sampling rate conversion.

13
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2.2 Uniform Sampling and the Sampling Theorem

2.2.1 Uniform Sampling Viewed as a Modulation Process

Let X.(2) be a continuous function of the continuous variable . We are interested

in sampling X, (¢) at the uniform rate that is, one every interval of duration T.

t=nT, —wo<n<® 2.1
Figure 2.1 shows an example of a signal Xc () and the associated sampled signal x(n)

for two different values of T.

X0
JAVANEWANFNEN
X @)

9 Tot | T? JTWTT¢ M ..
S *I ‘4_ T #’ ‘u; ‘b

Figure 2.1 Continuous Signal and Two Sampled Versions of it.

’
g

One convenient way of interpreting this sampling process is as a modulation or

multiplication process, as shown in figure 2.2(a). The continuous signal Xc (?) 1s

multiplied (modulated) by the periodic impulse train (sampling function) s(t) to give the :

14
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pulse amplitude modulation (PAM) signal Xe()s(t). This PAM signal is then

discreterized in time to give x(n), that is,

nT+e

x(n) = Iin% Xo ()s(t)dt (2.2)
t=nT—-g
where
s(t) = i uy(t—IT) (2.3)
I=—

where uy(t) denotes an ideal ynit impulse function. In the context of this interpretation,
x(n) denotes the area under the impulse at time nT. Since this area is equal to the area

under the unit impulse (area = 1), at time nT, weighted by X, (nT), it is easy to see that

x(n) = x.(nT) (24

Figure 2.2(b), (c), and (d) show X, (), s(t), and x(n) for a sampling period of T seconds,

15
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s(t)
(a) X (t) t=nT
¢ P :K » X(n)
X.®
. /\‘\ / N\ g
0
S®)
© +»
2T -T 0 T 2T 3T 4T 5T

x(n)

@ fT -\'\‘ 12 3 :TT \T“_ , » n
45 ‘ll' 4

Figure 2.2 Periodic Sampling of X (t) via Modulation to obtain x(n).

200N,

16
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2.2.2 Spectral Interpretations of Sampling

We assume that X. @ has the Fourier transform X (jQ) defined as

X.(jO) = Oj.xc (e dt (2.5)

where Q denotes the analog frequency (in radius/sec). Similarly, the Fourier transform

of the sampling function s(t) can be defined as

S(jQ) = sz(z)e-f"'dt | (2.6)

—o0

and it can be shown that by applying equation (2.3) to equation (2.6), S(jQ2) has the

form
S(jQ) = el > u, o2t (2.7
T = T
by defining
1
F=— 2.8
T (2.8)
Q=2 (2.9a)
and
Q. =2xF (2.9b)
S(jQ) also has the form
S =Q, Y u,(Q-1Q,) (2.10)
J=~0 .

That is, a uniformly spaced impulse train in time, s(t), transforms to a uniformly spaced
impulse train in frequency, S(Q).
Since multiplication in the time domain is equivalent to convolution in the

frequency domain, we have the relation

X (J*S(Q) = [l (Ds(D)le™dt (2.11)

17
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where * denotes a linear convolution of Xc(jQ) and S(jQ) in frequency. Figure 2.3
shows typical plots of Xc(jQ2), S(JQ), and the convolution Xc(jQ)* S(jC), where it is
assumed that Xc(jQ2) is band-limited and its highest-frequency component 2xFc is less
than one-half of the sampling frequency, Qr = 2nF. From this figure it is seen that the
process of pulse amplitude modulation periodically repeats the spectrum Xc(jQ) and
SGQ).

Because of the direct correspondence between the sequence x(n) and the pulse
amplitude modulated signal xc(t)s(t), as seen in equations (2.2) and (2.4) it is clear that
the information content and the spectral interpretations of the two signals are
synonymous. This correspondence can be shown more formally by considering the

(discrete) Fourier transform of the sequence x(n), which is defined as

Xc(GQ2)
1
(a)
f f i t
-2 EFC 0 2 7EFC Q
SG€2)
(b)
20 Eom 0 Q=2 7F O
XGQ2Y*S(Q)
(c)
WAAWAL /\ /[ ,
-37:QF/2 -Or -Qplz 0 0p/2 Qr  3ald/2
Figure 2.3 Spectra of Signals Obtained from Periodic Sampling via Modulation.
X)) = Zx(n)e (2.12)
where w denotes the frequency (in radians relative to the sampling rate F), defined as
18
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w=QT === ' 2.13
7 (2.13)

Since xc(t) and x(n) are related by equation (2.4), a relation can be derived between

Xc(jQ) and X(¢/™) with the aid of equations (2.5) and (2.12) as follows. The inverse

Fourier transform of Xc(jQ) gives xc(t) as
X (f) =1 [x (e aa (2.14)
2r 7
Evaluating equation (2.14) for t = nT, we get
x(1) = x,(nT) = EL [x. (je ™ dg (2.15)
ﬂ' -0 .
The sequence x(n) may also be obtained as the (discrete) inverse Fourier
transform of X(&'™),
$() === [X(e™ Ye™"dhw (2.16)
27 o o
Combining equations (2.15) and (2.16), we get

1 jX(efW)efW" dw = IXC (jQ)e’ ¥ dQ (2.17)
27w = 2m 3

Be expressing the right-hand side of equation (2.17) as a'sum of integrals (each width
2n / T), we get ‘

19
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e . w 2IDziT .y, JOnT
: _21_ J' ()T 40 = _!_. Z J' X (jQ)e™™ d

27 i (2=
_ 1 = T . 277[ jOnT _ j2zin
_5; J/. jQ+]—-]—_’-— e’ el A0 (2.18)
- L MIT Zw:X 'Q+jg~”—i— e™™7dQ
27 ~z | T U= ¢ / T :
since ¢’*"™ =1 for all integer values of 1 and n. Combmmg equations (2.17) and (2.18),

setting Q = w/T and Qp = 21/T, gives

= _[[X(e"")]e"””dw—i; LS x. o+ ngzF) ey (2.19)

-z I——oo

Finally, by equating terms within the brackets, we get

X(e™)=L ZX (@Q+10,) =~ ZX %(w+27rl) (2.20)

I—-—-oo l——oc

Equation (2.20) provides the fundamental link between continuous and digital
systems. The correspondence between these relations and the spectral interpretation of
the PAM signal Xc(jQ)* S(Q) in figure 2.3 is also apparent; that is, the spectrum of the
digital signal corresponds to harmonically translated and amplitude scaled repetitions of

the analog spectrum.
2.2.3 The Sampling Theorem

Given the analog signal Xc(?) it is always possible to obtain the digital signal
x(n). However, the reverse process is not always true; that is, Xc() uniquely specifies
x(n); but x(n) does not necessarily uniquely specify Xc(?). In practice it is generally
desired to have a unique correspondence between x(n) and Xc(t) and the conditions
under which this uniqueness holds is given by the well-known sampling theorem:
If a continuous signal Xc(?) has a band-limited Fourier transform Xc(j€2), that is.
[Xc(jQ)| = 0 for |Q>2xF., then Xc(?) can be uniquely reconstructed without error from
equally spaced samples Xc(nT), o <n < o, if F > 2Fc, where F = 1/T is the sampling
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frequency.
The sampling theorem can be conveniently understood in terms of the spectral

interpretations of the sampling process and equation (2.20). Figure 2.4 shows an
example of the spectrum of a band-limited signal [part ()] and the resulting spectrum of
the digital signal for a sampling period which is shorter than required by the sampling
theorem [part (b)], a sampling period equal to that required by the sampling theorem
[part (c)], and a sampling period longer than required by the sampling theorem [part o)l.
From figure 2.4 we readily see that for parts (b) and (c) (when the conditions of the
sampling theorem are met) the higher-order spectral components (the terms in equation
(2.20) for |l| > 1) do not overlap the baseband and distort the digital spectrum. Thus one
basic interpretation of the sampling theorem is that the spectrum of the sampled signal
must be the same as (to within a constant multiplier) the spectruin of the ‘continuous

signal for the baseband of frequencies (-2nF; < @ <2muF.).

Xc(i€2)
(@)
Q
-2nF, 0 2aF,
________ ®_ T
1= S Qi 2 (=0 7 =1
S g)pi 2,‘
_____ S } ! -
2nF. 0 2nF.
X&)
...... © . T
[= ) s 1= ,,’, I=1
S \Il\ 1
-2aF, 0 2nF

Figure 2.4 Spectral Interpretations of the Sampling Theorem.
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2.2.4 Reconstruction of an Analog Signal from Its Samples

The major consequence of the sampling theorem is that the original sequence
Xc(®) can be uniquely and without error reconstructed from its samples X(n) if the
samples are obtained at a sufficiently high rate. To see how this reconstruction is
accomplished. We consider the spectrum of the continuous-time modulated signal
Xe(t)s(t) as shown in figure 2.3(c). This spectrum is identical to that of the sampled
signal x(n). To recover Xc(jQ) from the convoluti‘on‘X‘c(jQ)* S(iQ), we merely have to
filter the signal Xc(¢) by an ideal lowpass filter whose cutoff frequency is between 2nF.
and Qg - 2aF,. This processing is illustrated in figure 2.5. To implement this process, an
ideal digital-to-analog converter is required to get Xc(t)s(t) from x(n). Assuming that we
do not worry about the realizability of such an ideal converter, the reconstruction

formula from figure 2.5 is

XLt XA0S() K L0S(1) X0

hy ——>

| D/A

1deal Digital-Analog Ideal Lowpass
Converter Fiter

S(t)

Figure 2.5 Sampling and Reconstruction of a Continuous Signal.

X () = O]‘xc (D)s(@h(t —)dT 2.21)

T=—

and applying equations (2.2) to (2.4) gives

X.@)= Samha-nt) (2.22)

h=—0

For an ideal lowpass filter with cutoff frequehcy Fup, the ideal impulse response fu(t) is
of the form

. Sin(QQaFt)

h,(t 2.23
/() 27k, ot ( )

Generally, Frp is chosen as
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F 1
F =—=— (2.24)
Foaoor
leading to the well-known reconstruction formula
2 i -nT)IT
x ()= Y, x(n) sin[z(t—nT)/T] (2.25)

w(t—-nT)/T

n=-co

Figure 2.6 illustrates the application of equation (2.25) to a typical signal. It is seen that
the ideal lawpass filter acts like an interpolator for the band-limited signal x.(%),
allowing the determination of any value of Xc(t) from the infinite set of its samples

taken at a sufficiently high rate.

X(n

v
=

®

A4

Figure 2.6 Illustration of a Band-limited Reconstruction from Shifted and Scaled

Lowpass Filter Responses.

In practice the "ideal" filter is unrealizable because ~it_requir'es values of x(n)for - ©
< n < o in order to evaluate a single value of Xc(#). Therefore, some realizable
approximation to hy(t) must be used. Figure 2.7 illustrates an example of an impulse
response for a realizable reconstruction or interpolating lowpass filter, h(), that extends
over a finite number of samples of x(n). In fhis figure we show plots of X.(t) (bottom
figure) and x(n), and the range of 4 (t-nT) evaluated in the region of the noth sample [Le.,
at t = n,T (top figure)]. To the extent that the frequency response of the actual lawpass

filter approximates the ideal lawpass filter, the reconstruction error of Xc (t) can be kept

small.
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2.2.5 Summary of the Implications of the Sampling Theorem

The main result of the sampling theorem is that there is a minimum rate (related

directly to the bandwidth of the signal at which a signal can be sampled and for which

theoretically exact reconstruction of the signal is possible from its samples. If the signal
is sampled below this minimum rate, then distortions, in the form of spectral fold over

or aliasing [e.g., see figure 2.4(c)], occur from which no recovery is generally possible.

h(t-neT)

=n, ; \“\L_}"/ T I — n

! <4¢—————— Range of h(tn,T) —————->!

Xt

S t
t=ny T

Figure 2.7 Illustration of Reconstruction of a Bahd-limited Signal from its Samples

using a nonideal Finite Duration Impulse Response Lowpass F ilter.

A o
XD hyp(t)

Fe=1/2T)

X(m)

s(t) = iUo(t —nT)

Figure 2.8 Representation of a Practical Sampling System with Prefiltering to Avoid
Aliasing.
Thus to ensure that the conditions of the sampling theorem are met for a given

application, the signal to be sampled is generally first filtered by a lowpass filter whose
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cutoff frequency is less than (or equal to) half the sampling frequency. Such a filter is
often called an anti-aliasing prefilter because its purpose is to guarantee that no aliasing
occurs due to sampling. Thus the standard representation of a system for sampling a
signal. (analog-to-digital conversion) is as shown in figure 2.8. We will see in the
following sections that a lowpass filter of the type shown in figure 2.8 is required for

almost all sampling rate conversion systems.

2.3 Sampling Rate Conversion - An Analog Interpretation

The process of sampling rate conversion is one of converting the sequence x n)
obtained from sampling Xc(?) with a period T, to another sequence y(m) obtained from
sampling Xc(#) with a period T. The most stralghtforward way to perform this
conversion is to reconstruct Xc (f) (or the lowpass ﬁltered version of it) from the
samples of x (1) and then resample Xc(?) (assummg that it is sufﬁc1ently band limited
for the new sampling rate) with period T to give y(m} The processing 1nvolved in this
procedure is illustrated in figure 2.9. Figure 2.10 shows typical waveforms which
illustrate the signal processing involved in implementing the system of figure 2.9.
Because h(t), the impulse response of the analog lowpass filter, is assumed to be of
finite duration, the value of xc(#} at t= m, T is determined only from the finite set of
samples of x(n) shown in part (a) of this figure. Thus for any m, the value of y(m) can be

obtained as

K{0s(t)

y(m)

Ideal D/A Converter Lowpass Filter

Figure 2.9 Conversion of a Sequence x(n) to :andfher Sequence y(m) by Analog

Reconstruction and Resampling.
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) v
Y(m) g~

m = 1y

Figure 2.10 Typical Waveforms for Sampling Rate Conversion by Analog

Reconstruction and Resampling.

Y = 50(0) o= D5 i(RT" =T (2.26)

n=N1 .

where N; and N, denote minimum and maximum of the ;’r‘ange of values of n involved in
the computation of y(m). From equation (2.26) and. figure (2.10) we see that only

specific values of n and specific values of h(t) are used to generate y(m), that is,

y(m) = x(Nh(mT" = NT) + oo+ (N, V(T = N,T) (2.27)
The values of h(t) that are used to give y(m) are spaced T apart in time. In effect the
signal x(n) samples (and weights) the impulse response ﬁ(t) to give y(m). It is

interesting to note that when T =T, the form of equation (2.26) reduces to that of the

familiar discrete convolution
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y(m) =3 x(n)h((m —m)T)

h(f)=0, t>1,,t<t,
this leads to the result
h(mT' —nT)=0, mT' —nT > t,, mT'—nT <t,

or (see figure 2.10)

ml' ~t,
T
mT' -t
T

n<

n>

Thus by integrizing equations (2.31) we get

N, = ml'—t,
T

N, = mI'—t,
T

t;=-t; - 2.8T [part (d)].
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endpoints of the filter #; and #,, and the sample m being determined.

(2.28)

The limits on the summation of equation (2.26) are determined from the range of values

for which A(¢) is nonzero. If we assume that h(f) is zero for t <t; and t > t, that is,

(2.29)

(2.30)

(2.31a)

(2.3 l‘b)

(2.32a)

(2.32b)

It can be seen from equations (2.32) that the set of samples x(n) involved in the

determination of y(m) is a complicated function of the sampling periods T and 7', the

Figure 2.11 illustrates this effect for the case T'= 772, and for two impulse response
durations, t, = -t; = 2.3T and #, = -t; = 2.87. As shown in parts (a) and (b), the
determination of y(m) for m even for both t, = -#; -2.37T [part (a)] and ¢, = -t; -2.8T [part
(b)] involves the identical set of samples of x(n). However, the determination of y ()

for m odd involves different sets of samples of x(n) for ¢, = - ¢; - 2.3T [part (c)] than for
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hMT -t)

nT

nT

Figure 2.11 Examples Showing the Samples of x(n) Involved in the Computation of
y(m) for two Different Impulse Response Durations and for even and odd Samples of

y(m) for a 2-to-1 Increase in the Sampling Rate.

A second important issue in the implementation described above involves the set of
samples of A(2) used in the determination of y(m). For each value of m, a distinct set of
samples of h(t) are used to give y(m). Figure 2.12 illustrates this point for the case T'=T
/2 (ie., a 2-to-] increase in the sampling rate). Figure 2.12(a) shows x(n). hm.T' - 1),
and y(m) for the computation of y(m,), where m. is an even integer, and figure 2.12(b)
shows the same waveforms for mo = m. + 1 (ie., an odd value of m). It can be seen that
two distinctly different sets of values of h(t) are involved in the computation of y(m) for
even and odd m. For the case T'= 2T (i.e, a 2-to-1 decrease in the sampling rate), the
same set of samples of h(t) are used to determine all output samples y(m).

By introducing the change of variables
k {"m'T—j_” 2.33)

the form of equation (2.26) can be modified to another form that more explicitly reveals
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the nature of the indexing problem associated with the evaluation of y(m) in the
sampling rate conversion process described above. This form will be used extensively in

later sections. Applying equation (2.33) to equation (2.26) gives the expression

kR mr - %T* T+ kT (2.34)

y(m) = _sz

v - n
P
NI
./~
.
= n
.
.
.
.
.
' S oo n
0 I b e
i - P
| T ‘
I - -
- @il |
X(ny.- ~
/ '\'
l‘ ‘\_
~.
rd ~.
1 ¢
y) ) NO e -
~
0 \.L Pt n
"~ ”

Figure 2.12 Examples Showing the Samples of fi(t) Involved in the Computation of: (a)
Even Values of y(m), and; (b) Odd Values of y(m) for a 2-to-1 Increase in the Sampling
Rate.
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And rearranging terms gives the desired form

X, " mT!
wm)= Y h((k+8,)T)x 7|k (2.35)
k=K,
where &, is defined as
S, = @;—q—{mf J (2.36)

It is clear that &, corresponds to the difference of a number mT/T and its next lowest
integer,

0<6, <1 (2.37)

Thus from equation (2.35) it can be seen that the determination of a sample value y(m)
involves samples of h(t) spaced T apart and offset by the fractional sample time 6,T,
where &, varies as a function of m. It is also interesting to note that when T =T,

equation (2.35) again reduces to a familiar convolutional form

y(m)=">" h(KT)x(m~k) (2.38)

Figure 2.13 depicts the samples of hi(t) and x(n) involved in determining y(m) based on
equation (2.35). As in the earlier interpretation of equation (2.26), it is seen that the
finite range of A(t) restricts the number of samples x(n) that are actually used in
determining y(m). By again applying the conditions of equation (2.29) it can be shown

that the limits on the summation, X; and K, can be determined from the condition

Wk +8,)T) =0, (k+8,)T >1,, (k+6,)T <1, (2.39)
or
t
k>l2_s 2.40a
7O (2.40a)
k < %- 5 (2.40b)
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and integerizing equations (2.40) gives

t, mT' mT'’ (2.412)
T " T T T '

~

I

|

|
)

I

|

|
+

h_s || mIl), mT (2.41b)
T e

=
I
|

ofh(t) and x(n) Tnvolved in Determining y(m).
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2.4 Decimation and Interpolation of Bandpass Signals
2.4.1 The Sampling Theorem Applied to Bandpass Signals

In the preceding sections it was assumed that the signals that we are dealing with
are lowpass signals and therefore the filters required for decimation and interpolation
are lowpass filters which preserve the baseband signals of ‘int‘eres‘t., In many practical
systems, however, it is of often necessary to deal with bandpass signals, as well as
lowpass signals. In this section we show how the concepts of decimation and
interpolation can be applied to systems in which bandpass signals are present.

Figure 2.14(a) shows an example of the discrete Fourier transform of a digital
bandpass signal S(e’*”" )which contains spectral components only in'the frequency
range f <i f |< fi + f.. If we apply directly the concepts of lowpass sampling F,,
necessary to represent this signal must be twice ‘that of the highest-frequency
component in S(e’*”"), that is, F, 22(f;+/f,)- Alternatively, let S* denote the
component of S(e’>*") associated with f> 0 and S*denote the component of S(e’*™")
associated with /< 0, as seen in fig. 2.14. Then, by lowpass translating (modulating) S
to the band 0 to f, and S to the band - f,to 0, as illiiStrated by figure 2.14(b), it is seen
that a new signal S,(e/*”") can be generated whmh 1s "equlvalent“ to S(e’ 24T ) in the
sense that S(e/*”") can uniquely be reconstructed from S (e’z’*ﬂ ) by the inverse
process of bandpass translation. [Actually, it:is seen tfhat*iS(eﬂs,’ﬂ't)‘: is ‘'the "single-

sideband" modulated version of § (e”"” )]. By applying concepts of lowpass sampling

to S, ™), however it can be seen that the samplmg frequency necessary to
represent this signal is now F, >22f,, which can be much lower than the value of F,
specified above (if f, >> f,)- Thus it is seen that by an appropriate combination of
modulation followed by lowpass sampling, any real bandpass signal with (positive
frequency) bandwidth f, can be uniquely sampled at arate F, >2f, (i.e., such that the

original bandpass signal can be uniquely reconistructed from the sampled representation)
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In practice, there are many ways in which the combination of modulation and
sampling described above can be carried out. In this section we consider three specific
methods in detail: integer-band sampling, quadrature modulation, and single-sideband

modulation (based on a quadrature implementation).

£ S (ej27eff) | o fa
S_ . LS'+
—fi~Ts -1, 0 h fit 1
S;, (ejzdr) / .
sT| s
"f_\ 0 fA

Figure 2.14 Bandpass Signal and its Lowpass Translated Representation.
2.4.2 Integer-Band Decimation and Interpolation

Perhaps the simplest and most direct approach to decimating or interpolating digital
bandpass signals is to take advantage of the inherent frequency translating (ie., aliasing
or imaging) properties of decimation and interpoiétiqﬁ. Sampling and sampling rate
conversion can be viewed as a modulation process kih which the spectrum of the digital
signal contains periodic repetitions of the baseband signal (images) spaced at harmonics
of the sampling frequency. This property can be used to advantage when dealing with
bandpass signals by associating the bandpass ~signaI with one of these images instead of
with the baseband. |

Figure 2.15(a) illustrates an example of this process for the case of decimation by
the integer factor M. The input signal x(n) is first filtered by the bandpass filter /gp(n) to
isolate the frequency band of interest. The resulting bandpass signal, xzp(), is then
directly reduced in sampling rate by an M -sample compressor giving the final output, y
(m). It is seen that this system is identical to that of the integer lowpass decimator, with

the exception that the filter is a bandpass filter instead of a lowpass filter. Thus the
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output signal ¥ (e’') can be expressed as

M-
Y(e™)= _1‘172 H, (e jor-2abM X(e/-2IM Y (2.42)
=0

From equation (2.42) it is seen that ¥ (e™') is composed of M aliased components of

X(e™)H 5, (e™ ) modulated by factors of 271 /M. The function of the filter H,(e”™)
is to remove (attenuate) all aliasing components except those associated with the desired
band of in'tere.st. Since the modulation is restricted to values of 271/ M , it can be seen
that only specific frequency bands are allowed by this method. As a consequence the

“choice of the filter H,,(e™) is restricted to approximate one of the M ideal

characteristics

7 N
H,p(e™)= . kﬁqwk(k«“)‘M (2.43)

0, otherwise
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(@)
X(n) ‘ X , y(m)
»— hpp(n) w® l M P >
F F=FM
® j-m2 1=M-1 1=0 =1 =2

(d

-3/ M

(e)

Figure 2.15 Integer-band Decimation and a Spectral Interpretation for the k = 2.
where k=0, 1,2, ..., M-1; that is, Hzp(e'") is restricted to bands w = kz /M to
w=(k+1)a/M , where z/M is the bandwidth.

Figure 2.15(b) to (e) illustrates this approach. Figure 2.15(b) shows the M possible
modulating frequencies which are a consequence of the M -to-1 sampling rate reduction;
that is, the digital sampling function (a periodic train of unit samples spaced M samples
apart) has spectral components spaced 27 /M apart. Figure 2.15(c) shows the

nsidebands" that is associated with these spectral components, which correspond to the
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‘M choices of bands as defined by equation (2.43). They correspond to the bands that are

aliased into the baseband of the output signal Y(¢™) according to equation (2.42). [As
seen by equations (2.42) and (2.43) and figures 2.15(b) and 2.15(c), the relationship
between k and 1is nontrivial.]

Figure 2.15(d) illustrates an example in which the k =2 band is used, such that
Xgp(¢®) is band-limited to the range 27 /M < [w| < 37/M. Since the process of
sampling rate compression by M tol corresponds to a convolution of the spectra of
Xpp(@”) [Figure 2.15(d)] and the sampling function [Figure 2.15(b)], this band is
lowpass translated to the baseband of Y(¢”) as seen in Figure 2.15(e). Thus the
processes of modulation and sampling rate reduction are achiéved simultaneously by the
M -to-1 compressor.

Figure 2.16 illustrates a similar example for the k - 3 band such that Xzp(e”) is
band-limited to the band 37 /M <|w| < 4z /M. In this case it is seen that the spectrum
is inverted in the process of lowpass translatiéﬁ.?* If the noninverted representation of
y(m) is desired, it can easily be achieved by modulating y(m) by -1)" [ie.,
P(m) = (=1)" y(m) ], which corresponds to inverting the Signs of odd samples of y(m).

 In general, bands associated with even values of k are directly lowpass translated to the

baseband of Y(&") , whereas bands associated with odd values of k are translated and
inverted [see figure 2.15(c)]. This is a consequence of the fact that even numbered
bands (k even) correspond to "upper sidebands” 6'fk:tkhék‘ifnbdﬁ1at‘10n frequencies 27 /M ,
whereas odd-numbered bands (k¥ odd) correspond o "ower sidebands” of the
modulation frequencies (e.g., the k=2 band is anupper sideband for I = 2andl=M-
1 and the k = 3 band is a lower sideband for [ =2 and [ =M-2,as seen inlﬁgur'e 2.15).
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(@ 1-ma2 1=M-1 1=0 1= =2
" - W
~4z/M 27/ M 0 - 2z/M dmiM
Xep(@™)
(b)
TsziM -2mlM O 2mIM 37IM
©

[ )
3

Figure 2.16 Spectral Interpretation of IntegerQbaﬁd ’Decimation for the Band k = 3.

Figure 2.17 illustrates an example in which the ihtegér—band constraints of equation
(2.43) are not satisfied. it is seen that nonrecoverable ahasmg occurs m the baseband of
Y(¢"), and therefore the signal Xgp(e™), when mteger—band conistraints are violated,
cannot be reconstructed from its decimated version.

The process of integer-band interpolation is the inverse to that of integer-band
i decimation; that is, it performs the reconstruction (mterpolatlon) ‘of a bandpass Figure
2.17 illustrates an example in which the mteger-band constraints of equation (2.43) are
not satisfied. it is seen that nonrecoverable aliasing occurs in the baseband of Y(e"*),
and therefore the signal X) ap(e” ), when integer-band constraints are violated, cannot be

reconstructed from its decimated version.

Figure 2.18(a) illustrates this process. The input signal, x(n), is sampling rate
expanded by L [by inserting L-1 zero-valued samples between each pair of samples of

x(n)] to produce the signal w(m). From the discussion of infeger interpolation, it is seen
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that the spectrum of w(m) can be expressed as

W(e™)= X(e™) (2.44)

and it corresponds to periodically repeated images of the baseband of X(e'™) centered at
the harmonics w' = 2zl/L[as depicted in figure 2.17(b) and (c)]. A bandpass filter
hgp(m) is then used to select the appropriate image of this signal. It can be seen that to

obtain the kth image, the bandpass filter must approximate the ideal characteristics

(a)
W
-2zl M 0 2 M
Xpp(e™)
(b)
TaniM —2miM O 27/M 3z/M v
Y(E™)
© ol Naas
-2 —-7& 0 r 2z

Figure 2.17 Spectral Interpretation of Integer-band Decimation when Integer-band

Constraints are violated.

L kZ<w|<k+DZ
I I

F[BP (e™) = (2.45)

0, otherwise

where k=0, 1, 2,...., L — 1. Figure 2.18(d) shows an example of the output spectrum of
the bandpass signal Y(e'™™) for the k = 2 and figure 2.18(e) illustrates an example for the
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k = 3 band. As in the case of integer-band decimation, it is also seen that the spectrum
of the resulting bandpass signal x(n) can first be modulated by (-1)", which inverts the

spectrum of the baseband and consequently the bandpass signal.

()
X(n) R T L w(m) ; hk (m) y(m)
v > bpp(m) >
F F =LF j
X(ej‘w’)
® L
L L )
-2r -7 0 r 2z
(c)
AT
4z /L
(d)
+ i - - w
-3z/L -2x/L 0 ~27:/L 3z/L
(e) Xap(€™)
4 N ,‘ w
—dzl/L -3r/L 0 snlLl An/L

Figure 2.18 Spectral Interpretation of Integer-band ‘Interpc)lation of Bandpass Signals.
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2.5 Summary

This chapter has been directed at the basic concepts of digital sampling of
analog lowpass and bandpass signals and at the fundamentals of converting the
sampling rates of sampled signals by a direct digital-to-digital approach. Basic
interpretations of the operations of sampling rate conversion have been given in terms

of their analog equivalents and" in terms of modulation concepts.
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3. DIGITAL FILTER BANK IN MULTIRATE SIGNAL
PROCESSING

3.1 Overview

There are applications, as in the case of a spectrum analyzer, where it is
desirable to separate a signal into a set of subband signals occupying, usually
nonoverlapping, portions of the original frequency band. In other applications, it may be
necessary to combine many such subband signals into a single composite signal

occupying the whole Shannon range [15].

3.2 Definitions

The digital filter bank is a set of digital bandpass filters with either a common
input or summed output, as shown in figure 3.1. The structure of figure 3. 1(a) is called
an M-band analysis filter bank with the subﬁlters Hk(z) known as the analysis filter. It is
used to decompose the input signal x[n] into a setof M subband signals vi[n] with each
subband signal occupying a portion of the original frequency band. (The signal is being
'analyzed' by being separated into a set of narrow spcctral bands.)

The dual of the above operation, whereby a set of subband signals V,[x]

(typically belonging to continuous frequency bands) is combined into one signal y[n] is

called a synthesis filter bank.

<N

Y

/

- xial » Ho(z) — volnl Volnl—>  Fo(z)
> Hi(z) —> vl P [nl——  Fi(2)

i ; ;

,;"" 0 ; ‘ é
> Hyp(z) > Vyalnl

"; L;l [n] ""'——'* FL-I(Z)

(a) (b)

Figure 3.1 (2) Analysis Filter Bank, and (b) Synthesis Filter Bank.
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3.3 Uniform DFT Filter Banks

We now outline a simple technique for the design of a class of filter banks with
equal pass-band widths. Let Hy(z) represent a causal low-pass digital filter with an

impulse response ho[n]:

Ho(z):f;h)[n]z‘" (3.1)

which we assume to be an IIR filter without any loss of generality. Let us now assume
that H,(z) has its pass-band edge w, and stop-band edge ws around n/M , where M is
some arbitrary integer, as indicated in figure 3.2(a). Now, consider the transfer function

Hy(z) whose impulse response hy[n] is defined to be

B [n] = by [n W k= 01,0, M —1 | (3.2)
where W,, = e **'¥ thus
Hy(2) =3 hnle™ =Y hplnleW )", k=01, M ~1 (3.3)
. n=0 n=0
ie.,
H,(z)=H, (W} ) k=01 M -1 (3.4)

with a corresponding frequency response (Z = é™:

27k

H,e”)=H, ej(w ) k=01,..,M~1 (3.5)

In other words, the frequency response of Hy(z) is obtained by shifting the response of
H,(z) to the right, by an amount 2 © k /M. The response of Hl(’z)‘, Hz), oeeenn , H m
(z)

are shown in figure 3.2(b). Note that the corresponding impulse responses hi[n] are, in
general, complex and hence | Hi(¢™)] does not necessarily exhibit symmetry with respect
to zero frequency. Figure 3.2(b) therefore represents the responses of M -1 filters H(z),
Hy(Z),..., Hy -1(z), which are uniformly shifted versions of the response of the basic

prototype filter Hy(z) of figure 3.2(a).
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X(e™)
A

Ho

HH | > W
0 /4 \ 'ﬂ 27
Wp Ws
/M (a)
X(e™)
ﬁk
Hi
} _e — W
0 2n/M m
G
H
T : : — » W
0 4t/M S 27
A
Hwa
+— | } >
0 S 2n(M-1)/M 27

(d)

Figure 3.2 The Bank of M Filters Hi(z) with Uniformly Shifted Frequency

Response..
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The M filters Hi(z) defined by equation (3.4) could be used as the analysis filters
in the analysis filter bank of figure 3.1(a) or as the synthesis filters Fi(z) in the synthesis
filter bank of figure 3.1(b).

Since the set of magnitude responses H(&™), k = 0,1,....,.M-1, are uniformly
shifted versions of a basic prototype [Ho(e'™), i.e.,

| H, @) |H el (3.6)

the filter bank obtained is called a uniform filter bank.

3.3.1 Nyquist ( Lth Band ) Filters

We introduce a special type of law-pass filter with a transfer function that by
design has certain zero valued coefficients. Due to the presence of these zero-valued
coefficients, these filters are by nature computatioﬁélly more efficient than other law-
pass filters of the same order. In addition, when used as interpolator filters, they
preserve the nonzero samples of the up-sampler oufc:putl at the interpolator output. These
filters, called Lth band filters or Nyquist filters are often used both in single rate and

multirate signal processing.

Consider the factor-of-L interpolator of figure 3.15(a). The rel ation between the
output and the input of the interpolator is given by

¥(2) = H(2)X(z") 3

If the interpolation filter H(2) is realized in the L band polyphase form, then we have

H(z) = E,(z") + 27 E,(z") + 27 E, (2" ) +..oe.. +27EVE, (2Y)

Assume that the kth polyphase component of H(z) is a constant, i.e., Ex(z) = a:

H(z)=E,(z")+ z'E(z") +...+z'(k"l)Ek*l(zL)+az"‘

(3.8)
+z *VE, (") +..+2 " VE (2L)

Then we can express Y(z) as
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Y(z)=az”kX(zL)+§Z'IE,(ZL)X(ZL) (3.9)
1=0
I#k
As a result, y[Ln] = a x[n-k], i.e., the input samples appear at the output without any
distortion at n =k, k = L, k & 2L,...., whereas the in-between (L-1) samples determined
by interpolation.

A filter with the above property is called a Nyquist filter or an Lth band filter
and its impulse response has many zero-valued samples, making it computationally very
attractive. For example, the impulse response of the Lth band filter obtained for k = 0
satisfies the following conditions:

a, n=0

W[ Ln] = (3.10)

0, otherwise

hin]

Figure 3.3 The Impulse Response of a Typical Third-band Filter.

H{( Z)A H(zW.) HEWLY) H(EzWL')

e O

2n

Figure 3.4 Frequency Responses of H(zW;)fork=0,1,.....L-1.

Figure 3.3 shows a typical impulse response of a third-band filter (L=3). If H(z) satisfies
equation (3.8) with k =0, i.e., H(z) = a, that it can be shown that

L-1
> H(zW/)=La =1 (assuming o= 1/L) (3.11)

k=0
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Since the frequency response H(zW;/) is the shifted version lH (ej bo-(ant/ L)]) of H(¢"™),

the sum of all of these L uniformly shifted version of H(eiw) add up to a constant (see
figure 3.4). Lth band filters can be either FIR or IIR filters [10].

3.3.2 Half-Band Filters

An Lth band filter for L = 2 is called a half-band filter. From equation (3.8) the
transfer function of a half-band filter is thus given by

H(z)=a+z'E(z*) S (3.12)

with its impulse response satisfying equation (3.10) with L. = 2. The condition on the

frequency response given by equation (3.12) reduces to

H(z)+H(-z)=1  (assuming o = 1/2) (3.13)

If H(z) has real coefficients, then H(-¢'™) = H(¢"™™), and equation (3.13) leads to

H(e™)+ H(e’™™) =1 (3.14)

1 | y / .
: \ \//\\/ T

. ! ! N
Wp w2 W

Figure 3.5 Frequency Response of a Zero-Phase Half-Band Filter.
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The above equality implies that H(e’’>™®) and H(e’“’ 249y add up to unity
for all 6. In other words, H(¢“) exhibits a symmetry with respect to the half-band
frequency m/2, thus justifying the name thalf-band filter'. Figure (3.5) illustrates this
symmetry for a half-band low-pass filter for which the pass-band and stop-band ripples
are equal, i.e., 5, = & and the pass-band and stop-band bandedges are symmetric with
respect to ©/2, 1.e., Wp + Ws = 1.

An important attractive property of the half- band filter is that about 50% of the
coefficients of fn] are zero. This reduces the number of multlphcatlon required in its
implementation, making the filter computationally qulte efficient.

For example, if N = 101, an arbitrary Type IFIR transfelj function,’requires about 50

multipliers, where as a Type I half-band filter requires only about 25 multipliers.

An IIR half-band filter can be designed with ‘kline‘ar phase. However, there is a
constraint on its length. Consider a zero-phase halffbéhd FIR filter for Which‘h[n] =ah’
[- n], with |a] = 1. Let the highest nonzero coefficient be h[R]. Then R is odd as a result
of the conditions of equation (3.10). Therefore, R =2K + 1 for some integer K. Thus the
length of the impulse response hfn] is restricted tdb‘e of the form 2R+ 1=4K + 3

[unless H(z) is a constant].

3.4 Two-Channel Quadrature-Mirror Filter Bank

In many applications, a dlscrete-tlme 31gnal x[n ] is ﬁrst spht into a number of
processed and finally combined by a synthe31s filter bank resultlng in an output signal
yfn]. If the subband signals are bandlimited to fr’éqliéﬁcy:?r‘ahges much smaller than that
of the original input signal, they can be down-sampled before processing. Because of
the lower sampling rate, the processing of the down-sampled signal can be carried out
more efficiently. After processing, these signals are up-sampled before being combined
by the synthesis bank into a higher rate signal. ‘The combined structure employed is
called a quadrature-mirror filter (QMF) bank. If the down-sampling and the up-
sampling factors are equal to the number of bands of the filter bank, then the output y/n/
can be made to retain some or all of the characteristics of the input x/ n] by properly

choosing the filters in the structure. In this case, the filter bank is said to be a critically
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sampled filter bank. The most common application of this scheme is in the efficient
coding of a signal x/n]. Another possible application is in the design of an analog voice

privacy system to provide secure telephone conversation.

9

A

> Ho(z) volrd l

MO[I’I]‘ e T2 | 1;0[17]; Go(Z) __l

A 4

Hy(z) v, [n] . l 5 u,[n] T 2 AL Gy(2)

Figure 3.6 The Two-Channel Quadratur‘e-MiffOr Filter (QMF) Bank.

1] HoE™) H(E)

0 n/2 o 7T

Figure 3.7 Typical Frequency Responses of the Analysis Filters.

3.4.1 The Filter Bank Structure

Figure 3.6 illustrates the basic two-channel qu‘adi'ature4'mirror filter (QMF) bank
structure. Here, the input signal x/n] is first pa‘S‘séd“ithfoﬁgh a'*t‘vs}o-band' analysis filter
bank containing the filters Ho(z) and Hi(z), which tk‘yp“ic‘ally haVe low-pass and high-pass
frequency responses, respectively, with a cﬁ:mff fr’ekq‘uyér‘xcy at }t/z, ’as indicated in figure
(3.7). The subband signals {v; [n]} are then down-Sampled by a factor of 3. In subband
coding applications, coders are inserted yafktér the down-sampler in each subband channel
and each down-sampled subband signél is encoded by exploiting the special spectral
properties of the signal, such as‘ energy levels, perceptual importance, etc. At the
receiving end, decoder are use to produce approximations of the original down-sampled

signals. The decoded signal are then up-sampled by a factor of 2 and passed through a
two-band synthesis filter bank composed of the filters G, (z) and G,(z) whose outputs
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are then added yielding y/n]. The, analysis and the synthesis filters in the QMF bank are
chosen so as to ensure that the reconstructed output y/n] is a reasonable replica of the
input x/n]. In practice, various errors are generated in this scheme. In addition to the
coding error, the QMF bank itself introduces several errors due to the sampling rate
alterations and imperfect filters. We ignore the coding errors and investigate only the
errors generated by the down-samplers and up-samplers in the filter bank and their

effects on the performance of the system.
3.4.2 An Alias-Free Realization
A very simple alias-free two-band QMF bank is obtained when

H(2)=Hy(-2) (3.15)

The above condition, in the case of a real coefficient filter, implies

|1 (e =|H o (7 )

(3.16)

indicating that if Ho(z) is a low-pass filter, then Hi(z) is a high-pass filter, and vice-
versa. In fact, equation (3.16) indicates that [H;(e™)| is a mirror image of [Ho(e'™)| with
respect to the /2, the quadrature frequency. This has given rise to the name quadrature-
mirror filter bank.

Substituting equation (3.15) in equation (3.33), we arrive at

Gy(2)=Hy(2), G,(2)=~H,(2) =~H,(~2) (3.17)
Equations (3.15) and (3.17) imply that the two analysis filters and the two synthesis
filters in the QMF bank are essentially determined from one transfer function Ho(z).

Moreover, equation (3.17) indicates that if Ho(z) is a low-pass filter the Go(z) is also a

low-pass filter, and G1(2) is a high-pass filter. The distortion function T(z) is:
1) = 2\ ()~ B} @)= {H3 () - 1 (o) (3.18)
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A computationally efficient realization of the above alias-free two-channel QMF
bank is obtained by realizing the analysis and the synthesis filters in polyphase form.
Let the two-band typel polyphase representation of Ho(z) be given by

Ho(z)=E0(22)+z"1E1(zz) (3.19a)

From equation (3.15) it follows then that

H,(2) = E(2*) -2 E(2") (3.19b)

In matrix form equation (3.19a) and (3.19b) can be expressed as

Hy(z)| |1 1] E,(z%)

= (3.20)
H((z)| {1 ~1|z7E(z*)
Likewise the synthesis filters in matrix form, can be expressed as
Ap o2 A1 1
6, G@l=l"E@) E@D], (321)

Using equation. (3.20) and (3.21), we can redraw the two-channelQMFbank as shown
in figure 3.8(a), which can be further sunphﬁedusmgthe ‘cascade equivalences,

resulting in the computationally efficient realization of figure 3.8(b).

The expression for the distortion transfer function in this case, obtained by

substituting equations (3.19a) and (3.19b) in equation (3.18), is given by

T(z)=2z""E,(z")E,(z%) (3.22)
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X(n] EO(Zz) ‘ 2 » 2 E 1(22_)
v v
Z-l Z-l
> * N + - y[n]
Ex(z) 12 12 Ey(z)
(a)
> 2 Ey(z) ! T 2
\4 v
z! ‘{ 7
y[n]
»{ 2 E(2) Eo(z) 2
- J
Analysis Filter Bank Synthesis Filter Bank

(®

Figure 3.8 Polyphase Realization of the Two-Channel QMF Bank. (a) Direct
Realization and (b) Computationally Efficient Realization.
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3.5 L-Channel QMF Bank

We now generalize the discussion of the previous section to the case of a QMF
bank with more than two-channels. The basic structure of the L-channel QMF bank is

shown in figure 3.9

v

Ho(2) volnl L voln] 1 L ALIR Ho(2)

A 4

Ho(z)

X[n] —_ vi[n] l L ul[n]’ T L ’19;1 7] .

S P e T e N

Figure 3.9 The Basic L-Channel QMF Filter Bank Structure.
3.5.1 Analysis of the L-Channel Filter Bank

We analyze the operation of the L-channel‘“kQM‘F bank of figure 3.9 in the z-

domain. The expression for the z-transforms of various intermediate signal in figure 3.9

are given by
V.(2)= H,(2)X(2) - . (3.23a)
U,(2) = %gﬂk'(zvzwg‘)f(gww;)  (323b)
V.(2)=U,(z") (3.23¢)

where k=0, 1,....., L-1. The output of the QMF bank is given by

¥(z)= ¥ G, (2P, (2) (324)

From equations (3.23a), (3.23b) and (3.23¢), we finally arrive at
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V()= LS X DY @G, (325)
=0 L=0

which can be written in compact form as

Y(z)= Lzl a,(2)X(zW}) (3.26)
1=0
where
a,(z) = %in(zWLl)Gk(Z), 0<I<L-1 (3.27)

3.5.2 Matrix Representation

It is convenient to examine the operation 'ofl;the L-channel QMF bank using a

matrix formalism. Define

AZ) =[a,(2) a;(2) e ,afH@]T (3.28a)
82 =[Go(@®) G(2) o Gy (3.28b)

Hy(2)  H(2) e H@)
H(z)= H(:,(ZWLI) I{I(ZWLI) H:L;l(ng) (3.280)

H,zWrY  HWEY  Hy @™ ‘

where the L x L matrix H(z) is called the aliasing!c“‘(‘)‘::‘rhi)oriént (AC)“matfi\kx.‘ U“sing the

above notations, equations, (3.26) reduces to

LA(z) = H(z)g(z) (3.29)

The aliasing cancellation condition can now be written as

H(z2)g(z) = (2) (3.30)

where

1(z) =[La,(z) O ... of =[LT(z) O ... O (3.31)
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Using equation (3.28a) and the notation

X(2)
x(z): XEZWL) = (3.32)

X (ZWLL_I)

we can rewrite equation (3.26) as

Y(z) = A" (2)x(z2) S (3.33a)

or equivalently, as

FO=Tg QH @G (3.33b)

derived using equation (3.29)
From equation (3.28), it follows that by knowing the set of analysis filters {Hi(z)}, we

can determine the desired set of synthesis filters_{Gk(z)'}: as
2(2) = H(2)H(z) - (3.34)

provided of course [detH(z)] # 0. Moreover, a perfeéi kfirécbnst'ruCtion.yQMF'bankf results
if we set T(z) = 2% in the expression for t(z) in equation (3.21’9)‘.‘ In practice, “t’he'abov‘e
approach is difficult to carry out for a number of reasons. A ’more practical solution to
the design of perfect reconstruction QMF . bank 1s obtained via the polyphase

representation.
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3.5.3 Polyphase Representation

Consider the type I polyphase representation of the kth analysis filter Hy(z):

L-1
H,(2)=) z"E,(z"), k=01..,L-1 (3.35)
=0 RN

A matrix representation of the above set of equations is given by

h(z) = E(z")e(z) (3.36)
where o
Wz)=[H,(z) H(z) ~ H,@F (3.37a)
e(z)=[1 z' .- z‘(L‘i)]T (3.37b)
and

Ey(2) E,(z) - Eo;L;1(Z‘)
E\(2) E (z) - EI,L‘—I“(Z)

E(z)= (3.37¢)

EL—],O(Z) EL—I,l(Z) "'EZ;I,L—I(Z)

The matrix E(z) defined above is called the Type I polyphase component matrix. Figure
(3.10a) shows the Type I polyphase representation of the analysis filter bank.

X[n] ; > > vo[n] Vo[n] N —
st 71
— L » vi[n] M——» o
P E(ZY) ® e R(ZL) !
+ ] ]
-1 -1
l | v, [n]
> v1.-1[11] ——p %
(a) (b)

Figure 3.10 (a) Type I Polyphase Representation of the Analysis Filter Bank and
(b) Type I Polyphase Representation of the Synthesis Filter Bank.
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Likewise, we can represent the L synthesis filter in a Type II polyphase form:

L-1
G (2)=Y. 2" PR,(z"), k=0L..,L-1 (3.38)
1=0

In matrix form, the above set of L equation can be rewritten as

g7 (2) = 27 Ve(2)R(z") R (3.39)
here - .
2(2)=[Gy(2) Gi(2) - G, (3.40a)
=N z - z"'1="(z7) . o (3.40b)
X = - H1.3 -
(0] . l‘L > T
-1
71 E@@) | o R(z)
-1 ) -1
l——‘* lL > >

Figure 3.11 L-Channel QMF Bank Structure ?Bjasé\d{bh\the Polyphase Representations
of the Analysis and Synthesis Filter Bank. '
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1
k W
e(zW,;)=A(z) : (3.41)
WL—k(L—l)
where L ;
A@) =diaglt 2z - %P1 (342)

Making use of equation (3.43) in equation (3.4‘1),‘ we arrlve at the desired result after
some algebra: ,
H(z)=D*AN(2)E'(z") (3.43)

where the D is the L x L DFT matrix.

3.6 Filter Banks with Equal Pass-Band Wid
By inserting a two-channel maximally decnnated QMF bank in each channel of

another two-channel maximally decimated QMF bank between the down—sampler and
the up-sampler, we can generate a four-channel maxunally decimated QMF bank, as

shown in figure 3.12.

Hio(z) [ |, 2 {4 2] Gun(2)

— H@ ] 2 L 12 Gu(@) |»
Hu@ | 2|1 2 || 0u@
Ho@ | ] 2|{4 2 || Guta)

L (o) [ | 21 12—-|GH<z> N
Hii(z) l 2 =T 2 | Gu(2)

<— level]l —» +— level2 —p «— level2 —p» <+— Levell —»

Figure 3.12 A Two-Level Four-Channel Maximally-Decimated QMF Structure.
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Since the analysis and the synthesis filter banks are formed like a tree, the
overall system is of ten called a tree-structure filter bank. it should be noted that in the
four channel tree-structure filter bank of figure 3.12, the two 2-channel QMF bank in
the second level do not have to be identical. However, if they are different QMF banks
with different analysis and synthesis filters, to. compensate for the unéqual gains and
unequal delays of the two 2-channel systems, additional delays of appropriate values
need to be inserted at the middle to ensure perfect reconstruction of the overall four

channel system.

An equivalent representation of the four-chaﬁ:n\‘e‘l};QMF system of figure 3.12 is
shown in figure 3.13. |

» Ho(z) —>|v 4 “Ho(z) +

»| Hi(2) v 4 > 44 > Hi2) ,
x[o] y[n]

» Hi(z) v 4 » 14— H2) 7

» Hi(z) > v 4 w14 > Hi(2)

Figure 3.13 An Equivalent Representation of the <;Fouf€Channél QMEF Structure of
Figure 3.12.

The analysis and synthesis filters in the equivalent representation are related to those of

the parent two-level tree-structured filter bank as follows:

Hy(z)=H,(2)H(z), H,(z)=H (2)H, (z") (3.442)
H,(2)=Hy (2)H(z%), H,(2)=Hy(2)H, (z) (3.44b)
G,(2) = G, ()G (z%), G,(2)=G,(2)G,,(z") (3.44c)
Gy(2) = G ()Gy(2%), Gy(2) =Gy (2)Gyy(2”) (3.444)
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From equations (3.44a)-(3.44d) it can be seen that each analysis filter Hi(z) is a
cascade of two filters, one with a single pass-band and a single stop-band and the other
with two pass-band and two stop-bands. The pass-band of the cascade is the frequency
range where the pass-bands of the two filters overlap. On the other hand, the stop-band
of the cascade is formed from three different frequency ranges. In two of the frequency
ranges, the pass-band of one coincides with the stop-‘band of the other, while in the third range,

the two stop-bands overlap. As a result, the gain responses of the cascade in the three regions

of the stop-band are not equal, resulting in uneven stop-band attenuatlon characteristic.

By continuing the process, QMF banks with more than four channels can be

easily constructed. It should be noted that the number ,,Of :(;hannels' resulting from this

approach is restricted to a power-of-2, i.e., L= 2" Iiri’addlﬁ‘ori;ﬁthe: fﬂters in the analysis
(synthesis) branch have pass-bands of equal widthigiVe‘n by /L. However, by a simple
modification to the approach we can design QMF banks with analy51s (synthems) ﬁlters

having pass-bands of unequal width as described next.
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3.7 Filter Banks with Unequal Pass-Band Widths

Consider the two-channel maximally decimated QMF bank of figure 3.14(2). By
inserting another two-channel maximally ‘decimated QMF bank in the top subband
channel between the down-sampler and the up-sampler at the position marked by a *,

we arrive at a three-channel maximally decimated QMF bank, as shown in figure

3.14(b). -
He | 24 2| o] 6@
xin} AT
Hi2) [ | 2 | G |
(@)
Hi(z) l 2 |- :TZ “‘  > - Gu(2)
Hi(z) ..lz o : Tz+ GL(z)
x[n Hiu(z) L 2 2 1) Gu)
Hu(z) | | 2 SRR J1 2] G
(b)
Hi(2) |2 "y t 21— GL@
H(2) [ | 2 - Gu(2)
Hyu(2) l 21 —» TZ _ » Gulz)
Hu(z) [ | 2 Gu(z)
Hi(z) > l 2 —l T 2 k| Gu(@)

T 2 b Gu(2)

x[n]

N

- R
uz) | o

Figure 3.14 (a) 2 2-Channel QMF Bank, (b) a 3-Channel QMF Bank Derived From the
2-Channel QMF Bank, (c) a 4-Channel QMF Bank Derived From the 3-Channel QMF
Bank.
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The equivalent representation of the generated three-channel filter bank is indicated in

figure 3.15(a), where the analysis and synthesis filters are given by

Hy@)=H,@H,), H(@=H,@Hy), B@=H@, ;o

G,(2) =G, (2)G,(z%), G(2)=G(2)Gy(z*), G,(2)=GCy(2)

Typical magnitude response of the a‘nalysis‘ ﬁl‘férs‘of the two-channel QMF bank
of figure 3.14(a) and that of the derived thrée’-‘channel filter of ﬁgure 3.14(b) are
sketched in figure 3.16(a) and (b), respectively. |

We can continue this process and generate a four-channel QMF bank from the
three-channel QMF bank of figure 3.14(b). By inserting a two-channel QMF bank in the
top subband channel at the position marked by a *, resulting in the structure of figure
3.14(c). ‘

Its equivalent representation is indicated in figure 3.15(b), where

H,(2) = H,()H, (HH,(z"), Hy(@) = H (H, () H, (z*),
Hy(2)= Hy(D)H, (2%, Hy(2)=Hy(2),

G,(2) = G,(2)G, ()G, (z"), Gi(2) =G, ()G, (z)Gy (2",
Gy(2) = G, (2)0y (2), Gy(2)=Gy (D)

(3.46)
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> Ho(2) |» l4 * T 4 | Gy(z) |P
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| Ho@ [ |8 o 18 e G (>
» Hi(z) l 8 —» TSk | Gi(2) »

x[0]— o +r—>y[n]
- Ha(2) l4 > T4 | Guz) |
| Hi(z) |- lZ > Tz k'::;‘!‘Gs(Z) »—

(b)

Figure 3.15 Maximally Decimated QMF Banks With Unequal Pass-Band Width
Analysis (Synthesis) Filters.

Figure 3.16 (c) shows typical magnitude’ »re“qur_\l‘sés of the analysis “(’synth‘esis)
filters of the four-channel QMF bank of .ﬁgurq‘: 314( c) ,de‘rriy‘ed:frcki‘m a pareﬁf two-
channel QMF bank with magnitude responses "és iﬁdibated in:ﬁgure 3.16(a).

Because of the unequal pass-band width of the analysis and synthesis filters,
these structures belong to the class of nonuniform QMF banks. The tree-structured filter
banks of figure 3.14 are also referred to as octave band QMF banks.

Various other types of nonuniform filter banks can be generated by iterating branches of
a parent uniform two-channel QMF in different forms. Nonuniform filter banks are

often used in speech and image coding applications [14].
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A
Ho Hl
| | -
0
R (a)
Hy H H,
{ i .
¥ { >
(b)
H H H H;
| |
0
(c)

Figure 3.16 Magnitude Response of the Analysis Filters of a (a) 2-Channel QMF Bark,
(b) 3-Channel QMF Bank Derived from a 2-Chaﬁn‘él QMF Bank, and (c) 4-Channel
Bank Derived from a 3-Chaﬁnél QMTF Bank.
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3.8 Summary

The basics of the digital bank filter and its application for multirate signal processing
was given. Uniform DFT filters having different central frequencies, full and half Lth
band filter was presented. Design and error analysis of the 2-channel QMF bank filters

was given.
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4. INTERPOLATION USING ORTHOGONAL FUNCTION

4.1 Overview

The theory of orthogonal rational functions has been widely studied over the last few
decades; see e.g. the comprehensive monograph [2]k.‘A possible approach to the subject
is to consider orthogonal rational functions as generalizations of orthogonal
polynomials or equivalently, orthogonal polynomials form a spec1a1 case of orthogonal
rational functions (with all poles fixed at infinity). Many clas51cal results from
orthogonal polynomials, such as those concermng recurrence relatlons quadrate
formulas, Favard theorems, moment problems Paden approx1mat1on etc have been

generalized to the case of orthogonal rational fanctions.
4.2 Orthogonal Functions

Let us consider a set of functions gi(t), g2(t),. .-, gx(t) defined over the interval
t; <t <t, and which are related to one another in very special way that any two different

ones of the set satisfy the condition

&, @t =0 . @.1)

where i#j

That is, when we multiply two different functions and then integrate over the interval
from t; to t, the result is zero. A set of functions which has this property is described as
being orthogonal over the interval from t; to t,.

Now we consider that we have some arbitrary function f{t) and that we are
interested in f(t) only in the range from t; to t;, i.., in the interval over which the set of
functions g(t) are orthogonal. Suppose further that we undertake to write f(t) as a linear

sum of the functions g,(t). That is, we write
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fO=Cg®+C,g,(O)+.....+C.g,()= Zn: Cg.() 4.2)

=1

in which the C’s are numerical coefficients. Assuming that such an expansion is indeed
possible, the orthogonality of the g’s makes it very easy to compute the coefficients C,.
Thus to evaluate C, we multiply both sides of equation (4.2) by g.(t) and integrate over
the interval of orthogonality. We have

|g.0f@dt=C, |2,0)g,0dt+C, |2, (08, Ot +......+C, |, (02,0 (43)

Because of the orthogonality, all of the terms on the right-hand side of equation (4.3)

become zero with a single exception and we are left with
tZ 2‘2
[fwe,wdt=c, [g2mar (4.4)
4 4

So that the coefficient that we are evaluating becomes

[r (g,

W

The mechanism by which we use the l‘orthofgénality of the function to “drain”
away all the terms except the term that involves the coefficient we are evaluating is
often called the “orthogonality sieve”.

Next suppose that each gut) is selected so that the denominator of the right-hand

member of equation (4.5) (which is a numerical constant) has the value

zjgj(t)dr =1 (4.6)

In this case
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¢, = [fg,war @)

When the orthogonal functions g,(t) are selected as in equation (4.6) they are
described as being normalized. The use of normalized function has the merit that the
Cy’s can then be calculated from equation (4.7) and thereby avoids the need to evaluate

equation (4.6)
4.3 Completeness of an Orthogonal Sét,“fhe Fourier Series

Suppose on the hand we expand a ﬁihc’ztiidﬁ:' f(t) in terms of orthogonal functions

as
SO =C5,(1)+ Cy5, (0 + Cy85(0) + e (4.8)
and on the other hand we expand it as

(4.9)

£ =Cos,+Cosy 4o

that is, in the second case, we have ‘delyib?‘ra,t‘éliy_;omitted one term in equation
(4.9). A moment’s review of the proceduyev%;d‘efs(‘:ﬁr::ibed in the previous section, for
~ evaluating coefficients makes it apparent that all thé coefﬁments Cy, ‘C3,‘ etc., that appear
in both expansions will turn out to be the same. Hencqif one expans1on1s corréct the
other is in error. We might be suspicious:;o‘fi‘ fche expansion of équation (4.9) on the
grounds that in term is missing. The point is that simply having a set of orthogonal
functions and having a procedure for evaluating coefficients does not guarantee that the
series so developed can represent an arbitrary function. Such can well be the case even
when the orthogonal set consists of an infinite number of independent functions
necessary to allow an error free expansion of an arbitrary function then the set is said to
be complete.

A most important orthogonal set which is complete is the set of sinusoidal

functions (both sines and cosines) which generate the Fourier series. In this case,

67



Interpolation using Orthogonal Function

because of the periodicity of the functions, it is not necessary to specify the end points
of the interval over which the expansion is to be valid but only to specify the length of
the interval. (It may, however, be useful to specify the interval end points for the sake of
computational convenience in connection with evaluating the coefficients.) Specifically,
if the variable of interest is the time t and the length of time interval is T, then the

Fourier expansion of a function x(t) is

@D 0 . 2 . )
X@0)=Y 4, cosz—T@z-kZBn sm—g—,n—z (4.10)
n=0 n=0 )

We take account of the fact that cos 0 =1 and sin 0 = 0, and applying the normalized

procedure we can express the expression of x(t) in terms of orthogonal function as

X(t)=%+ZAn«/Z/Tcos%?—t+Zan/2/Tsing—%n—t— (4.11)
n=1

n=l

The orthogonal functions are given by

1/\/7_1,\/2/7’003(2-—-31”1) and \J2IT sin(g—’;-’i‘-’-)wheren;ao.

Any to such different functions when multiplied and integrated over T yields zero and
any function squared and integrated over T yieldskuﬁity. | | f ;
In general case an expansion is valid only over the finite interval T of orthogonality. In
the case an expansion is periodic with period T. if it should happen that v(t) is also
periodic with period T then the expansion is valid for all t. Thus, a periodic function
with period T can be expanded into a Fourier series as in equation (4.11) in which the

coefficients are given by

4 = _j? TjX(t)dt (4.12)

4, = \/—% TjX(t)cos [-2—’;—’35) at, (4.13)
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2 2mmt
B =_.—{X(H)sin | — | dt 4.14
: TTI (sin| = (4.14)

where n#0
4.4 Trigonometric Polynomial Approximation

Definition: A series of the form

Ty =a, +(a;cos(jt)+b; sin(jt)) (4.15)
is called a trigonometric polynominal of order M.

Theorem: Discrete Fourier series.

Assume that {(t;, y;)}, where y; = f(¢) and that the N+1 points have equally spaced

abscissas

J

t =-7 +%§— for j =0,1,..'...;,N (4.16)

If f{x) is periodic with period 2n and 2M <N then there exist a trigonometric

polynomial Twm(t) of the form equation (4.15) that im/mgnizes the quantity

N .
D (F)~T(t)) S CRY))
k=1 :
The coefficients a; and b; of this polynominal are computedw1th ‘thé“forfﬁnﬂ‘as '
a; = _ﬁZf(t,,)cos(jtk), S for j=01,.... .M (4.18)
k=1 ‘ Lo
and
2 N . .
b, = }\72 f,)sin(jt,),  for j=12,.... M (4.19)
k=1
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Although formula (4.18) and (4.19) are defined with the least—Sq‘Uarié;p_,

they can also be viewed as numerical approximations to the integrals:i'ri Eu

formulas. Euler’s formulas give the coefficients for the Fourier series of continuous -

function, whereas formula (4.18) and (4.19) give the trigonometric polynominal
coefficients for curve fitting to data points. The next example uses data points generated
by the function f{t) = t/2 at discrete points. When more points are used, the

trigonometric polynominal coefficients get closer to the Fourier series coefficients.
4.5 Expansion Signals in Special Orthogonal Functions

a) Legendre Polynomials

1 d"
P ()= 2 -1)" 4.20
()= i ) e

For the first three degree we have

P(t)=1

() =t

P(t)=(3"-1)/2

Legendre polynomials satisfy the following conditions: -
P.(1) if nis even

h0= ~P,(1) i nisodd

(421g)

Figure shows Py(t) forn=0,1,2,3,4,5

14
12
1.0
0.8
0.6

0.4
”
0.2

0
-0.2

-0.8

-0.6
’ 01 02 03 04 05 06 07 08 09 1.0 1.1 12 13

Figure 4.1 Shows Py(t) forn=0,1,2,3,4,5
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The coefficients C, are defined by

‘/2” 1 j F@OP.(0)dt 4.21)

b) Chebyshev Polynomial

Chebeshev polynomials can be generatédfby‘l thé‘following way. Set To(t) =

and Ty(t) = t and use the recurrence relation.

T,(t) = 2T, ()T, , () for (=23 (422)

Graphs of the chebyshev polynomials To(t), T1(t), Tz(t) are shown in figure 4.2.

Lo

08

0.6

0.4

0.2

Figure 4.2 Graph of the ‘C‘h‘ébyshev Polynomials
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The Chebyshev approximation can be written as

N
F(t)= C,T,() (4.23)
j=t
The coefficients C; are computed with the formulas:
1 & 1 &
C, = —— t T, (t)=——) f(t 4.24
0 N+1k§0f(k) o(8) N+1§f(k) (4.24)
and
2 & JrQE+1))
C, =—- f, )cos| —————t 4.25
’ N+1§f(") AN +2 (425)
Such an approximation is based on the nodes .
t, =cog L7ZKED ) (4.26)
2N +2
¢) Khaar Polynomial
1
t
0 >
1
t
0 >
1.4
1
0 - >
1.4
14
t
0 >
-14
2
t
0 >
N 18 28 3/8 43 578 6/8 718

Figure 4.3 Shows some Khaar Polynomials.
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Khaar polynomials are defined by

-7 _
\/5,7 2k “StSZk 1
2n+1 2n+1
po-l Bl
0 tefo]

Khaar functions are considerable practical importa‘riéef because 't‘hélyf fcari easily generated
by digital logic circuitry and because multiplication by these functions be simply

implemented by a polarity reversing switch.

4.6 Orthogonal Filters

4.6.1 Hermite Series

Consider the approximation of the noisy ﬁmctiéhby a Hermite series. The series
approximates the function by a finite expansionl of He‘rrhite functions on an interval

{—OO, 00}

(4.27)

fO= f(0) =Y a,h,@) —oo;_<_'«:-"t‘:‘ :

where {a} are a set of suitably chosen weightkskand hg(t) are the Hermite activation

functions on the interval {—o,0} which satisfy thé‘drthdnonnal condition

w 1 m=n e
nihna)h,,,(r)dr: 0 ~¢n - (428)

The first few Hermite functions in this series are

h o) = 3(3(7;—%@ : (3.29)
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2texp(—t”/2)

hy(t) = JRIZPSIE (3.39)
The remainder may be determined from the recurrence relation
b () =t]—2—h ()= |~k (@) (3.31)
S PTY R R '

Since the fundamental, % , is the Gaussian function it can take the place of the filter

function. The fundamental Hermite function

JozHo= D an@hE-1)de (4.32)
k=0 )
In order to evaluate this expression the correlation between the Hermite functions of

different order is required. This correlation is given by
jh,, ()h, (¢t —7)dt = %l,’,’,“”’ (t*12) (m<n) (4.33)

where I”(¢) is a normalized associated Laguerr‘e_fun:ctiop.,Using this result in equation

(4.32) we obtain

7o) = %fanz;‘ @ 12) (4.34)

n=0 .
Note that only those associated Laguerre func’uons of ;s:ubkscr’ipt {m = 0} contribute,
which is greatly simplifying the result. The assoyciyated‘,Laguerre functions of subscript

are

tan ~1/2

V!

17t = (4.35)
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The usefulness of this expansion is that by fitting a Hermite series to the input function,
one also immediately obtains the weights of the Laguerre series, {a,}, which is the

correlation of the input with a Gaussian function.
4.6.2 Hermite Rodriguez Functions

Hermite-Rodriguez functions are similar to the:Hermite functions except that a

Gaussian window modulates their amplitude. They are defined.as
hr,(0) = (@) b, (e ? (4.36)
where hy(t) is an orthonormal Hermite function. The fundamental Hermit‘e-ROdriguez

function is also a Gaussian function but of different width to the fundamental Hermite

function.

The fundamental is e
hry(t) =exp(-1") (4.37)

The others may be determined by using the recurfen;ie'relation (equation (4.15)) for the

Hermite functions and multiplying by the Gaussian function. Like the Hermite series, a
simple expression also occurs for the coxrelatid ‘of the Hermite-Rodriguez functions.
The correlation of two Hermite-Rodriguez ﬁmctidhs “isgiven by

(n+m)! .

h

hr. (O *hr (1) = ¥ |

(;/Ji) BN ()

Note that the scale is reduced and the order off the . Hermite-Rodriguez function
increased by the correlation operation. Using equation (4.38), the derivation of a
Gaussian filter with the Hermite-Rodriguez functions is similar to the filter derived

using the Hermite series.
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4.7 Signal Duration and Bandwidth

Application requires the duration and bandwidth of the orthogonal series to be
matched to the signal being modeled. The Hermite series behaves as a window in the
time domain. Outside this window the Hermite functions decay exponentially, limiting
the effective range over which a function may be approximated to within the window.
The width of the Hermite series window is equal to the duration of the largest order
Hermite function, hn(t), occurring in the series. The useful range of application of the

Hermite series interpolation is then

11 VAN 71 | (4.39)

where the right hand side, equal to the duration'of the Hermite function of order {N},
may be determined via the Quantum mechanic solution of the Harmonic oscillator as
the location where the oscillator energy becomes negative. The Fourier transform of a

Hermite function is
Fihy ()} = j hy(w) (4.40)

In view of this isomorphic Fourier transform, a similar windowing effect occurs in the

complex frequency domain. The useful bandwidth is
Iwlk2N+1 (4.41)

Together, the bandwidth and window width of equat‘io‘n,(‘4.27) and (4.28) define the
size, N, of the neural series required to approximate a function. Unlike the Hermite
series, which increases in duration with the order {N} kof the function, the Hermite-
Rodriguez series is independent of N. Instead it is limited in duration by the Gaussian

amplitude modulation function to the range

{13 \ (4.42)
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The Fourier transform of the Hermite-Rodriguez function is an associated Laguerre

function
Fihr,(0)} = ()" lg (w* 12) (4.43)

4.8 Scaling

Application to practical problems requires scaling of the orthogonal series. The
procedure is illustrated for the Hermite-Rodrigues series.

The scaled Hermite-Rodriguez series is obtained*by;introducing the variable

t>tla o (4.44)

Scaling changes the duration and bandwidth of the Hermite-Rodriguez series to,

|2]|<3 - (445)

and

2N +1

|wls (4.46)

respectively

Using scaled Hermite-Rodriguez functions, the ic‘drrelation' with the Gaussian function is

hr,,(r/a)*hroa/ﬁ):% el w4

where o and S are the scaling factors and

yr=a’+pt , (4.48)
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4.9 Optimizing the Weights of the Orthogonal Series

The weights of the Hermite and Hermite-Rodriguez series were both obtained
using the same method, which is described in this section for the Hermite series. For a

continuous function defined on {—co, 0} , the weights of the Hermite series are optimum

with respect to the mean square error (equation (4.27)) when

N

A, = O]a(t)hn ()dt (4.49)

=00

We use a simple summation, similar to Euler integration, given by

t=1

4, =Y a(Athh,(A)) (4.50)
=0

where At is the integration step size which was ﬁxed to the sampling rate. A feature of
this type of integration is that it is also suitable fo‘r}'randomly sampled data. For random
data, this type of numerical integration genéralizes to Monte-Carlo integration.
Numerical integration is only an approximation'to:ﬂle:analytical continuous integration.
In addition, the data most often encountered in prééticé‘is discrete, often corrupted with
noise. To cope with these situations the gradientf'de's:éent? algorithm was applied after the
weights had been estimated with the integrat‘ioyrjl.’j Grédient dre'scentred'uces the mean
square error between the Hermite series appféiﬁnétic)n‘ and the discrete data by

successive iterations of the following algorithm

Ay = Ay + ) =3 4,0 ) 451)

n=0

where x is the feedback constant chosen in the range 0.0 to 1.0.
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4.10 Summary

In this chapter different sets of orthogonal functions may be chosen to represent
a given signal, and filter orthogonal, finally the expansidn of the signals in special

orthogonal functions was introduced.
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5. PRACTICAL CONSIDERATION USING MATLAB

5.1 Overview
We investigate the process of upsampling and downsampling signal it introduces

extra samples between measured original samples using lagrange interpolation and
orthogonal function practical band simulation of systems are described by using
MATLAB program.

5.2 MATLAB Implementation

MATLAB provides a function called bilinear to implement this mapping. Its
invocation is similar to improve function, but it-also takes several forms for different
input-output quantities. Here is the design proced,ﬁtc‘ of digital filters.

o Effect of up-sampling in the frequency domam '

* use fir2 to create a bandlimited input sequ¢n§§' f

>> freq=[00.45 0.5 1];

>>mag=[0100];

>> x=1ir2(99,freq,mag);

>> %evaluate and plot the input spectrum

>> [Xz,w]=freqz(x,1,512);

>> plot(w/pi,abs(Xz));grid N

>> xlabel ('Normalized frequency');ylabél('Mééﬂitude');
>> title('Input Spectrum');

>> pause

>> %(Generate the up-sampled sequence

>> L=input('Type in the up-sampling factor="),

Type in the up-sampling factor=5

>> y=zeros(1,L*length(x));

>> y([1:L:length(y)])=x;

>> %evaluate and plot the ouput spectrum

>> [Yz,w]=freqz(y,1,512);

>> plot(w/pi,abs(Yz));grid

>> xlabel('Normalized freq 1ency');ylabel('magnitude');

>> title('output spectrum');
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Figure 5.1 MATLAB Generated Input and Output Spectrum of a Factor of 5

Sampler.

teger factor

» Illustrate of up-sampling by an i

('Input length =");

input

>> N=

Input length =50

>> L=input('Up-sampling factor =');

Up-sampling factor =3

s

('Input signal frequency

input

>> fo

Input signal frequency =0.12
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¢ Generate the input sinusoidal sequence

>>n=0:N-1;

>> x=sin(2*pi*fo*n);

>> % Generate the up-sampled sequence

>> y=zeros(1,L*length(x));

>> y([1:L:length(y)])=x;

>> % Plot the input and the output sequences

>> subplot(2,1,1)

>> stem(n,x);

>> title('Input Sequence');

>>xlabel("Time index n’);ylabel('Amplitude’);
>> subplot(2,1,2)

>> stem(n,y(1:length(x)));

>> title(['Output sequence upsampled by',num2‘str:(L)]);

’

>> xlabel('Time index n’);ylabel('Amplitude')g' o

Input Sequenc:é{ 1

1 &3 T U‘_ T CF\‘I T “T T S
0.5 -
ny .
o ;
= T G
o
14 -
-1 1 1 1 Jj ! L d L
1| 5 1a 14 D25 a 40 45 50
Time m‘dsxn' SN
Output sequence upsampled by3
1 T T T T T b ;\1‘ - T
0.5F .
jat]
sl
2 0d : . .
= a,wcsoasaccmccccmmmmm::e::}ca“
£
g !
04k -
-1 I 1 [ S| 1 ) 1 L O
0 5 10 15 <0 25 30 35 40 0 50

Tima index n
we 5.2 MATLAB Generated Tllustrate of Up-Sampling by an Integer Factor.

32




...... P T e
H : : H i
I S N N N Lo L e g
: " IS
m g
| i )
; | A
£ ] i g )
2 : : 2 o
- 3 : : e 4
& 3 - g o
E4 : ] o
= H ] .
3 foe e N e E g
| “. 2 g =
el - Q
- | g &
: b AN S B N L o Wo 2
N " A A “ ° = 3
&~ .8 o A : o =
= [ L4 . ! ! A fo8
M bS] A S S e B - P m (=}
g o = S S R A P 2 S
) S 9 = H e e i ; L2 -
§ T g g T & £
g - .&h g ¥ 3 83 & 3 & 35 8 W B>
s o o <] s ©° o < c = 3 &
S g 0 > epnyubeyy =
M auu ‘N.u o D ...w o
5 o 2 o Gy 4 3
5 )
3 & & 8 3 8 e
g 9 o 8, = 2 3
) < 3 0 = S
3 s B 5 oy 5 8
S = g 2. 2 B 8
Py an = (=} Q =
Q =] 3 o =] 3 @]
g = 5 e QR & 5 ~
W o, ~ " N .2 QO o~ ] o
- .o oo NS > o o
5 s |5 § 28 8 g o =
12 m - N~ E E] o0
s L 0 o, "L = Q 2 = =
8 | < o < Ny 8 £ 2 g
m ¥ . .o O o BN e Q o = A 2]
E <O ey N .m Q. [7) 14 o’
SEISEEEEEE S| i
o o
o 2 |x S o8 2§ § 5 = 5 <
S S22 2L EZ & = =
+ | [ T el =
S ITLY 383 < 2
— 3
S8 |gpdE A yE LS 0
- m li o & Ll — = L e EaeT et S S RSP S @
[dam) m > 0/ [N [«N > = : ; : : ru..
® ® ANA A A A A A A : : : :
ANAAN AN A AN AN AN L S S N S Wb
o= R
o o o o < o

spnyubepy




Practical Consideration using MATLAB

 [llustration of decimator process

>>clf

>> N=input (length of input signal =");
length of input signal =100

>> M=input('down-sampling factor =');

down-sampling factor =2

>> fl=input(Frequency of first sinusoidal =);
Frequency of first sinusoidal =0.043 -
>> R2=input('Frequency of second sinusoidal ==k'k);
Frequency of second sinusoidal =0.031
>>n=0:N-1;

>> % Generate the input sequence

>> x=sin(2*pi*f1*n)+sin(2*pi*f2*n);

>> Y%generate the decimated output sequence
>> y=decimate(x,M,fir");

>> %DPlot the input and output sequences

>> subplot(2,1,1)

>> stem(n,x(1:N));

>> title('Input sequence");

>> xlabel('Time index n');ylabel(' Amplitude");
>> subplot(2,1,2)

>>m=0:N/M-1;

>> stem(m,y(1:N/M));

>> title('Output sequence");

>> xlabel('Time index n');ylabel(' Amplitude');

o




Practical Consideration using MATLAB

Input sequence
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Figure 5.4 MATLAB Generated Effect of Decimator Process.
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e [llustration of Interpolation process

>> clf

>> N=input('Length of input signal =");

Length of input signal =50

>> L=input('Up-sampling factor =");
Up-sampling factor =2

>> fl=input('Frequency of first sinusoidal =");
Frequency of first sinusoidal =0.043

>> f2=input('frequency of second sinusoidal =");
frequency of second sinusoidal =0.031

>> % Generate the input sequence

>> n=0:N-1;

>> x=sin(2*pi*fl*n)+sin(2*pi* f2*n);

>> % Generate the interpolated output sequence
>> y=interp(x,L); |
>> %plot the input and output sequence

>> subplot(2,1,1)

>> stem(n,x(1:N));

>> title('Input sequence);

>> xlabel('Time index n') ;ylabel(' Amplitude");
>> subplot(2,1,2)

>>m=0:N*L-1;

>> stem(m,y(1:N*L));

>> title('Output sequence);

>> xlabel('Time index n');ylabel('Amplitude");
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Practical Consideration using MATLAB

Input sequence
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_2 [ 1 [ l | 1 1 I 1
0 5 10 15 200 25 30 35 40 45 50
Time index n
Output sequence

2 << T T T T T T

1+ i
otk
-1 L 4
-2 1 i I | } ] i ! | 1

0 10 20 30 40 50 60

Time index n

70 80 90 100

Figure 5.5 MATLAB Generated Illustration of Interpolation Process.
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Practical Consideration using MATLAB

3.3 Design of Algorithms and Devices for Upsampling

For the digital control and signal processing system the main problem is the
reconstruction of a continuous-time signal ffoﬁl its sémj)les when the rate of sampling is
not sufficient. This problem becomes more complicated if the process has difficulty of
access. For this purpose interpolator filter is used.

The application of complicated reconstruction functions is accomplished by performing
mathematical operations such as multiplication, “division and generation different
orthogonal functions. s |
Application of the filtering in these cases yi‘elapsgftotfhe exponential and sharply form
reconstruction missing values between interpckij‘l'aiti:ng‘-hodes. Therefore this problem is
actual.

The proposed algorithm of reconstruction of a signél is desCribed below.

1. Let the samples Xy, X,...., Xy be the prlnc1p ,(measufe) samples.
2. Using X, Xa,...., Xn generating intermediate samples Xy1y..., Ximj X21yeery Xom;

XN15:..5 XNm-

Xi——»( X,

Xo—» | x,

XN X,

3. The intermediate samples are filtered by the filtering operator Pr through
staircase approximation (operator Pp). To obtain intcrmediate samples any

orthogonal or power serics polynomials can be used.
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Practical Consideration using MATLAB

Application of this hybrid algorithm upsampling allow controlling the
interpolation process between the nodes of the interpolation and perform desired
smooth interpolation. Figure 5.6 shows the process of the upsampling,

X, Interpolated Signal

X1

! I I ‘ s !
0 1.5708 2.3562 3.1416 3927 ‘47124 54978 6.2832

Figure 5.6 The Proc‘eskksf‘ko'f theyUpsa’mpling.

Now consider the principle of designing‘"thé'k’disé'r'été' intérpolatofs that realize
Newton polynomial of second order.

From

=20, +U )t +1)({t+2)

u)=U,+(U,, ~U)t-D+ Do 2

By substituting

t=1+-_L=z we have
i+1

Up =G, + Gy Up + Gy Upns 1=12.3,,m; n=0,1,2,3,.... N

where N is the total number of samples and m is the total number of

intermedistz samples.

89




Practical Consideration using MATLAB

G, =3+0.52>-05Z;
Gy =4Z - 7° -3,

Gz =0.5Z% —1.5Z +2;

3
U,=>GU; i=123,..m
j=1

We limit with m = 1, in this case the ':‘vy‘a‘lu'esk of the intermediate samples are
determined by the following equation

U,=0375U, +0.75U,,, - 0.125U, , /

This signal is the output of a ﬁnite 1mpulse résponse filter with the impulse
responses 0.375, 0.75, -0.124. Table 5.1 shbWs the coefficients of the digital
form=2andn=3

filter to generate intermediate sampleS'fdr m

Table 5.1 Coefficients of Digital Filter

Gni G
0375 20,125
0.55 011
022 0.1
0.65 20.09
037 -0.125
0.16 .0.094
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Practical Consideration using MATLAB

Ratio of resistances on each point is defined in accordance to the table 5.1

'\/1\}\: > Uy
LS ‘ ’\/1\{/\ A.:f p—Un
ANy p—Unm
‘_Ré
Uprs
Upiz

The mathematical basic to design of the,a'discre’té ihterpolator realizing sinc(t)

function is obtained by the following expressibn‘si o

] sin w(t —~nT)
X(@) = Z“:) X[nT]————————————w(t "

The value coefficients in table 5.1 can be d‘eté‘rmin‘edais’ =

1o sinﬂ[(m+1)—li—(i+Nk)]
G, =
S, a[m+) -G+ N,)]
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Table 5.2 Coefficients of FIR Filters for np=100; N =4

m Gu Gai Gs;i Gui
1 0.604 0.604 -0.105 -0.102
2 0.843 0.330 -0.052 -0.122
3 0.467 0.732 -0.122 -0.075
Realization of filter is shown in figure 5.8
T
Us ~
;v‘
Memory > Mulﬁﬁlier Accumulator

Figure 5.8 Filter Realization

Taking into account the advantages of the~digifa15"FIR filters (easily both software
and hardware implementation) it is possible to geﬁetate intermediate samples in any
form, in real time systems. | |

Efficiency of reconstruction is increased if there is some priory,informati()n about
the behavior of the process. In this case the criterion of the selection of the
interpolating function is based on the desired precision and pattefn of

reconstruction.
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Practical Consideration using MATLAB .

e Reconstructed Signal from its Samples with 5 Samples

>> x=0:pi/100:2*pi;

>> y=sin(x);

>> plot(x,y);

>> title("Original Signal')
figure

>>hold on

>> x=0:pi/2:2*pi;
>> y=sin(x);
>> stem(x,y, fill");

>> title("Sampled Signal')

figure
>>hold on

>> stem(x,y, fill");

>> stairs(x,y);

>> title("Stair Signal')

figure ‘
>> set(gca,'xtick',[0*pi/4 pi/2 3*pi/4 pi 5*pi/4 6*pi/4 T*pi/4 2*pi]);
>> x=0:2*%pi/100:2*pi;

>> y=sin(x);

>> xi=0:pi/2:2*pi;

>> yi=interpl(x,y,xi);

>> plot(x,y,xi,yi)

>> title('Interpolated Signal')
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Original Signal Sampled Signal
7 T T T T 1
4 0.8}
: 0.6
- 0.4-
1 0.2
1 ° ®
0.2 b 0.2+
0.4} . 0.4l
0.6 - 0.6}
-0.8} 1 -0.8}
"5 1 5 6 7 o 1 2 3 4 5 6
1‘ Stair Signal ~1‘ Interpolated Signal
0.8}
0.6}
0.4
0.2+
0
0.2
0.4
0.6+
-0.8}
- L ; L L . L i
0 1 2 3 4 5 6 7

Figure 5.9 MATLAB Implementation for Reconstructed Signal from its Samples with 5
Samples.

By 5 samples we cannot reconstruct the signal as shown in the figure.




Practical Consideration using MATLAB

e Reconstructed Signal from its Samples with 9 Samples.

>> x=0:pi/100:2*pi;

>> y=sin(x);

>> plot(x,y);

>> title('Original Signal')
figure

>>hold on

>> x=0:pi/4:2*pi;

>> y=sin(x);

>> stem(x,y, fill");

>> title("Sampled Signal')
figure

: >>hold on

>> stem(x,y, fill'’);

>> stairs(X,y);
>> title("Stair Signal')

figure .
>> set(gea,'xtick',[0*pi/4 pi/2 3*pi/4 pi 5~*p;/4;,,6*'pi/4 T*pi/4 2*pi));
>> x=0:2*pi/100:2*pi; '

>> y=sin(x);

>> xi=0:pi/4:2*pi;

>> yi=interpl (x,y,Xi);

>> plot(x,y,xi,yi)
>> title('Interpolated Signal')
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. Original Signal . . Sampled Signal
0.8 B 0.8}
0.6 . 0.6}
04} - 0.4}
0.2 4 0.2+
or : o ® ®
0.2 B 1 _.02 L
0.4} 1 5 0.4t
0.8} 4 i
5 1 5 5 7 ’
6
Stair Signal
1 T T
0.8}
0.6}
0.4}
0.2}
0
-0.21
-0.4r
0.6}
-0.8+
-1 ! 1 1 1 1 1 i
0 1 2 3 4 5 6 7 |5 El

Figure 5.10 MATLAB Implementation for“ReCén‘stfu’cted’fSigﬁal‘ from its Samples with

9 Samples. Ca
By 9 samples we could reconstruct the originalyskigrialf(' very ‘:'closyedy to original signal )
this means if we increase the number of samplesf we can reconstruct and if decrease we

cannot.
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Practical Consideration using MATLAB

Xe(t)

Koc(t)
Xuet)

Figure 5.11 Original signal and result of interpc’létlonyuéing original upsampled nodes

In figure 5.11 after inserting a new value of samples toy’old sarnples we can reconstruct
the signal from its samples by using orthogonal ﬁltenng

The program is shown in appendix 2.

Xo(t) - Original signal

Xoc(t)- Reconstructed signal from original sarnples

Xuc(t)- Signal reconstruction using original and 1nterpolated upsampled

5.4 Summary

Extra samples between measured original ‘s‘amplke‘s‘uéing lagrange interpolation
and orthogonal function practical and simulation of systems was described by using
MATLAB program.
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5.4 Summary

Extra samples between measured original samples using lagrange int‘e‘rp,claﬁbn“ :

and orthogonal function practical and simulation of systems was described by ;u\smg‘il

MATLAB program.
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CONCLUSION

The problem of sampling and reconstruction of bandlimited signals were conSidéred; |

Interpolation properties of different orthogonal and power series functions ‘W'e:r‘e ,
analyzed, Established that using any of orthogonal and Lagrange polynomials can not
give desired result, when the number of samples less than the number of samples
defined by Shannon.

To increase precision of reconstruction was proposed inserting extra
intermediate samples between the original samples and then orthogonal filtering the
combination of original and extra samples.

Inserting extra samples (upsampling) between original samples was realized by
different ways by changing the number of extra samples and by modifying and by
selecting method of computing.

Laboratory implantation using digital signal processing toolbox of Matlab
based on different data were established that proposed method allow to increase
precision of reconstruction of signal, by compare of parapolic interpolation
that is equivalent MAEcO= 0.5380 and MAEc=0.715
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APPENDIX 1
DIAGRAM OF MATLAB PROGRAM

Diagram of program reading combination of lagrange and orthogonal polynomials is
drawn below.

Signal generation

»  Original Signal
A4
Sampling
‘ > Original sample
Interpolating
A
Upsampling using
, ~ Upsamled and
v ’ <+ Original samples
Combination lagrange
and orthogonal =
interpolation

Result of reconstruction . -
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APPENDIX 2
MATLAB PROGRAM AND RESULT

=0:2%pi/40:2*pi;
§=0.35+sin(t+pi/2)+1.34*sin(2*t+pi/4); Signal Generation
plot(t,s,'r")

hold on N
axis([0 7 -2 3])

=0:2%pi/4:2%pi; . >- Original Sample
§=0.35-+sin(t+pi/2)+1.34*sin(2*t+pi/d), |
stem(t,s,"fill','k")

Interpolating Signal
syms tk o \
‘d—sm(Z*(t-(4*k*p1/2)))/(2*(t-(4*k*p1/2))) Zl—syrnsum(xl k-2.2);
x2=sin(2*(t-(4*k+ 1)*p1/2))/(2*(t—(4"k+1)*p1/2)), 22=symsum(x2,k,-2,2);
Bsin(2# -4k 2)*pi )2 (-(4*k+2)*pif2)); B=symsum(x3k,-2,2);
xd=sin(2*(t-(4¥k+3)*pi/2))/(2*(1-(: 4*k+3)*pi72))"k'z4—’symsum(‘<4 k,-2,2); &
x5=sin(2*(t- (4*k+4)*p1/2))/(2*(t— 4*1<+4)"‘p1/2)) zS-—symsum(xS k,-2,2);
hold on S e . |

x¢=2.2975%71-0.5975%22+0.2975%*23-0. 5975"‘24 ezplot(xc {0 2*pi))

~ Upsampled and Original Sampled \
hold on . B
k1=0.3; k2=-0.2; k3=-0.6;
s11=s(1)*k1+s(2)*k2+s(3)*k3;
s21=s(2)*k1+s(3y*k2+s(4)*k3;
s31=5(3)*k1+s(4)*k2+s(1)*k3; >
s41=s(4)*k1+s(1)*k2+s(2)*k3;
x1c=sin(d*(t-(8 ¥k *pi/4)))/(4*(t-(8*k*pi/4)));z1 1=symsum(x1c k,-2,2);
x2<:=Sin(4*(t-(8 1) Fpi/d)) (4*(t-(8%k+1)*pi/4)); z22=symsum(x2c¢,k,-2,2);
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Upsampled and Original Sampled A

x3 c=sin(4*(t-(8 ¥k+2)*pi/4) )/ (4*(t-(8 *k+2)*pi/4)); z33=symsum(x3c.k,-2,2); ~
xdc=sin(4*(t-(8*k+3)*pi/4))/ (4*(1-(8*k+3 ) *pi/4)); z44=symsum(x4c,k,-2,2);

x5 c=sin(4*(t-(8*k+4)*pi/4))/ (4*(t-(8*k+4)*pi/4)); z55=symsum(x5c,k,-2,2); >
x6c=sin(4*(t-(8*k+5)*pi/4))/(4*(t-(8*k+5)*pi/4));, z66=symsum(x6c,k,-2,2);

x7 c=sin(4*(t-(8 *k+6 ) *pi/4))/(4* (t-(8*k+6)*pi/4)); z77T=symsum(x7c,k,-2,2);
x8c=sin(4*(1-(8 *¥k+7 ) *pi/d))/ (4*(1(8*k+7)*pi/4)); z88=symsum(x8c,.k,-2,2),

ss=[s(1) s11 s(2) s21 s(3) s31 s(4) s41] /

Combination Lagrange and Orthogonal Interpolation
xcl=s(1)*z11+ s11%¥222+ s(2)*z33+ s21%744+ 8(3)*255+ s31*266+ s(4)*z77+ s41*z88;
ezplot(xc1,[0 2*pi])

hold on

ss=[s11 s21 s31 s41]; Result of Reconstruction
tt=[pi/d pi*3/4 pi*S5/4 pi*7/4]; |

stem(tt,ss,'fill','m")

88 =

22975 06302 -0.5975 0.1198 0.2975 -1.1698 -0.5975 -0.2802

n=1;
new _xcl=[];
new Xc=1[1;

for t=0:2%pi/40:2%*pi

new_Xc(n)=Xc;
new_xcl(n)=xcl;

t(n)=t;
=t
end

plot(tt,new Xc,'r:")
plot(ttnew_xcl,'r:")
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c=new Xc-sl;
cO=new_xcl-sl;

er_c=load('c.m);
er_cO=load('c0.m);
MAEc=mean(abs(er_c))

RMSEc=sqrt(mean(er_c.”2))

MAEcO=mean(abs(er_c0))
RMSEcO=sqrt(mean(er c0.”2))

total=[s1' new_Xc' new xcl'er cer c0]

MAEc0O =

0.5380

MAEc¢ =

0.7156

RMSEc0 =

0.6120

RMSEc =

0.9061
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The comparison of original signal with parabolic and proposed interpola’tion"si'\gnal. ;

Original | Parabolic proposed
. . N rorEr Error
signal | interpolation | interpolation
"~ c c0
S1 new_Xc new_xcl

22975 22970 2.2970 0
2.5316 22259 23657 -0.1659
2.6246 2.0466 2.1644 -0.4602
2.5645 1.7739 ‘17452 . -0.8193
2.3530 1.4293 11993 - -1.1537
2.0046 1.0395 0.3"7‘62’; o 1.6284
1.5461 0.6339 0.1280 -1.4182
1.0136 0.2425 -0.2504. - 26
0.4494 -0.1073 ‘ v

-0.1019 -0.3927

-0.5975 -0.5975

-1.0004 -0.7133

-1.2825 -0.7400

-1.4275 -0.6857

-1.4317 -0.5655

-1.3046 -0.3998

-1.0674 -0.2126

-0.7506 -0.0284

-0.3914 0.1297

-0.0293 0.2427

0.2975 0.2975

0.5563 0.2880

0.7224 0.2157

0.7825 0.0900

0.7349 -0.0733

0.5904 -0.2532

0.3706 -0.4258

0.1056 -0.5668

-0.1686 -0.6535

-0.4148 -0.6677

-0.5975 -0.5975

-0.6875 -0.4385

-0.6645 -0.1945

-0.5195 0.1222

-0.2562 0.4921

0.1096 0.8898

0.5507 1.2865

1.0314 1.6520

1.5107 1.9577

1.9460 2.1790

2.2975 2.2975




