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ABSTRACT

The condition under which the signal is exactly recoverable from the samples is
embodied in the sampling theorem, For exact reconstruction, this theorem requires that
the signal to be sampled be band limited and that the sampling frequency be greater than
the twice the highest frequency in signal to be sampled. Under these conditions exact
reconstruction of the original signal is carried out by means of ideal filtering,

However in practice we face the problem fo recover the original signal from its
limited number of samples located at his large lntereals 'than saınplitıg intervals defined
by Shannon theorem. In this case, it is iınpossible to exact recover · the original signal

from its samples.

To increase precision of reconstruction we propose inserting extra interpolated
samples between the original samples and then orthogenal fıltering the combination of

original and extra samples,
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INTRODUCTION

The theory of conventional single rate digital signal processing of the continuouş

time signal is based on the Shannon Saınpling Theorem. In accordance to this theoreni; arıy
'

continuous time signal can be represented :fromits saınples taken at least twice the maximal

frequency of the content signa1.

On process of control it is necessary to reconstruct CTS from limited numbers cf

discrete samples .the problem is carried in control of parameter that difficult to access {eğ.

Special system, petrol and chemistry industries).

In this cases application only Lagrange orthogonal polynomial for reconstruction yields

unacceptable errors between nodes of interpolation to increase precision and enha:ı:ıciriğ

process of interpolation in this we use combiriationof above measured two types nıethôdC):f

interpolation.

In chapter 1, the theoretical discrete time signals and systems are present~dfi'I'h~

problems of prefılteririg to avoid aliasing, analysis of quantizing error, decimatiôti>.ancl

iriterpolationand up samplirigmethods are described.

Chapter 2 iritroduces basic Saınpling and Saınpling Rate Conversion. The impu.lse

and frequency responses, properties of Linear-phase filters with symmetrical and

antisymmetrical impulse responses are analyzed.

The Matrix and polyphase representation condition ofperfect reconstruction by(Qu·······~çlr. a.<tu.•••.J.e.i
) •· . ..• . • •..•. > ><Mirror Filter) QMF filters, bank filter with equal .and unequal pass band are analyzed.

Conclusion states therefore results obtained by author in investigation multirate/?siğria.1
processing system.

Chapter 3 gives basic of the digital ba:ı:ık filter and its application for mııltirate

processing. Uniform(Discrete Fourier Transform ) DFT filters having different

frequencies, fu11 and half (Number of Band) Lth band filter are presented. Design

error analysis of the 2-channel QMF bank filters are given.

Chapter 4 introduces many different sets of orthogonal function may be chosen to

represent a given signal, and fınally the expansion of the signals in special orthogonal

vi



Finally in chapter 5 introduces extra samples between measured original samples

using lagrange interpolation and orthogonal function practical and simulation of systems

are described by using MA TLAB program.

)
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Discrete-Time Signals and Systems

1. DISCRETE-TIME SIGNALS AND SYSTEMS

1.1 Overview

The world around us is analog, that is, continuous in time and amplitude.

However, because of progresses in digital technology, it is common to take samples of

signals and perform all kind of processing (including störa.ge and transmission) in

digital domain, i.e., discrete in time and amplitude.
In this chapter, we introduce discrete-time signals as saı:n.pled versions of

continuous-time signals. We also introduce different equations as • discrete-time

equivalent of differential equations. The concept of convolution in disctete-time will

also be introduced.

Analog
Output
--=-tı

Analog
Input Discrete-tiıne

System
Discrete to

Continuous D/CContinuous to
Discrete C/D

Figure 1.1 Operation of Obtaining Analog OutputSigna.l from Analog Input after

Converting to Discrete Signa].

1.2 Sampling Theorem

Shannon (sampling) theorem states that ifa continuous time signal J(t) is band­

limited to B Hz, i.e., \F(ro)\ = O for \rol > 21tB, then the samples of J(t), taken at a

frequencies Fs ?: 2B, are suffıcient for reconstfüCtion of JV). That is, there will be no

loss of information in using the sampled signal in place of its continuous time version.

The frequency Fın = 2B is called Nyquist ırequency of/(t).



Discrete-Time Signals and Systems

To prove the sampling theorem, we define the sampled version of J(t) as

](t) = f(t)8r(t) = Lf(nT)8(t- nT) (1.1)
n

where T = 1/Fs and

ör(t) = Lö(t-nT) (1.2)
n

since 8r(t) is a periodic signal, it has a Fourier series. Moreover, recalling that 8r(t) is

symmetric with respect to origin, its Fourier series is ofthe form

where
2ffw =-=21tF

s T s
(1.3)

1 rn . la., =- J ÖT(t)dt=-
T -t n T

and
2 T/2 2

an= - J8r(t)cos wtdt = -; n = 1, 2, .
T -T/2 T

(1.4)

Thus,
1

öT(t) = -[1 + 2cos wst + 2cos2w,t + ]
T

(1.5)

Hence,
- 1
f(t) = T [f(t) + 2/(t)cos w,t + 2/(t)cos2w,t + ..... ] (1.6)

The above results are depicted in fıgure 1 .2.

Notes:

1. Sampling results in repetition of the spectrum at the intervals

2. When Fs 2: 2B for COs > 2nB the original spectruın and the Fourier transform

pairs F(w) can be extracted :from F(w) through a lowpass fıltering.

2



Discrete-Time Signals and Systems

F(w)

f(t)

(\ (\ t• (b)(•) V V

A

-2ıtB

w

Lo;:,~'"-r-t.•( NT

öT(t)

IIIIIIII t•

f(t) (d)

(e)

21tB

-2ıtB 21tB w, w

Figure 1.2 Sampling Results in Repetition ofthe Spectrum at the Intervals

(a) Function of time signal
(b) Function of frequency signal
(c) Impulse train signal
(d) Sampling frequncy intervals
(e) After sampling for time signal

3



Discrete-Time Signals and Systems

1.3 Practical Issues

1.3.1 Interpolation/Filtering

In practice, the realization of the ideal lowpass filter mentioned above is not

possible, as it is non-causal. It is thus replaced by a fılter which is realizable. Such a

filter requires a non-zero transition band. This means that signals have to be sampled at

a rate above Nyquist, to introduce a guard band such that transition bands could be

accommodated.

We shall also note that a practical fılter can never cancel the replicas of signal spectrum,

completely. Thus, interpolation error is inevitable in practice. However, this error will

be reduced by using a higher order fılter or by choosing a larger sampling frequency

such that a süfficient guard band will be present.

1.3.2 Aliasing

Strictly speaking, the assumption that a signaTis band-limited is not satisfied in

most of the practical applications. Most of the signals have a spectrum which stretches

over a relatively wide band. However, there is usuallytıegligible energy above a certain

band.

When a signal is sampled at a rate which is less tharlNyquist rate, higher frequency

components will fold over and mix with the lowetffe~ue11cy cortıpo11eııts/asyshdwıfin

figure 1.3. The phenomenon of folding the higher frequencies to theJower frequencies

is called aliasing. Higher frequency
components are mixed
with lower frequency

components

-w/2

Figure 1.3Definition of Aliasing

4



Discrete-Time Signals and Systems

1.3.3 The Treachery of Aliasing

When a signal is sampled below Nyquist rate, there are two consequences to the

aliasing: (i) the components above roJ2 are cancelled in the process of signal

reconstruction; (ii) the aliased (folded) components distorts the signal components

below roJ2. Therefore the damage done to the signal is two-fold.

To resolve the two-fold problem just mentioned, analog antialiasing filters are

used to cancel any signal components beyond COs /2. in this way, the loss of information

in the sampled signal is only due to cancellation of components above roJ2. The signal

components below roJ2 remain untouched.

1.4 An Important Class of Linear Ttme-Invariant Discrete-Time

(LTID) Systems

For LTID systems the equivalent systems are those whose input and output are

related by constant coefficients difference equations öf the form

y[k ]+ an_1y[k - ı]+ an_2y[k-2 ]+ + a0y[k-n]
= bmf[k]+bm_J[k-l]+ +b0f[k-m]

(1.7)

A simple example of LTID systems is the one whose 'input and output ate fefated

according to the difference equation

y[k]-ay[k-1] = J[k] (1.8)

1 .4 depicts a realization of this system

5



Discrete-Time Signals and Systems

y [k]f[k]

Delay

a

Figure 1.4 LTID System

The impulse response of this system is obtained by letting f1k] = 8[k] and fınding the

samples of output. The result is (assuming y[k] = O for k < O)

y[o] = a x o + 5[0] = ı
y[ı] = a x y[o]+ 5[1] = a
y[2]= a x y[ı]+ 5[2]= a2

Thus, the system impulse response is h[k] = aku[k]. This is similar to the sampled

version ofthe impulse response ofa LTIC system

h(t) = e·th u(t) (1.9)

Replacing k by kt in equation (1.8) and making use of(l .9) and then putting t = T gives

1r=---
lna

(1.10)

By simple generalization of this observation, we lnay say that any LTIC system

by a differential equation, has a LTIDequivalent governed by a difference

6



Discrete-Time Signals and Systems

1.5 Linear Convolution in Discrete-Time

We note that a signal :f[k] may be written as

f[k]= It[n]ö[k-n]
k:

(1. 11)

i.e., a summation of impulses.

Applying this as input to an LTID system and considering-the[inearity and time shifting

properties, we obtain

f[k]= Lf[n]h[k~n]
k

(1.12)

which is linear convolution in discrete-time.

1.6 Some Applications of the Sampling Theorem

The immediate and most important applicatiott.of'sampling theorem is to convert

the samples of the sampled signal to a set of digital .numbers. ünce these digital

numbers are obtained they can be used to store tlıe stğııttlin a computer or transmit the

information bits through a communication channeLThe digital numbers can also be

used for processing the signal in a very convenienfM7~y,~.g., fıltering the signalusing a

digital filter.

In particular, there are many advantages irı.i.wôrkirı.g with digital signals instead

oftheir analog counterparts:

• Ease of transmission

• Accurate regeneration/reconstruction

• Ease of implementation

• Coding can be applied to achieve verylow'probability of error

• Multiplexing is straightforward

• Lower cost

7



Discrete-Time Signals and Systems

1.7 Dual ofTime-Sampling

1.7.1 The Spectral Sampling Theorem

Let us begin with the time-limited signal ft:t) and its Fourier transform F(w) as

shown in fıgure 1.5.

f(t)
F(w)

w

Figure 1.5 (a) Time-Limited Signal f(t); (b) Fourier Transform F(w)

"' co

F(w)= JJ(t)e-jw1dt= JJ(t)e-jw1dt
-co o

(1.13)

define the periodic signal fTo(t) and its compleX Fourier series coeffıcients D, as

in fıgure 1.6.

w

Figure 1.6 (a) Periodic Signal fro(t); (b) Complex Fourier Coeffıcient Dn,

8



Discrete-Time Signals and Systems

From the Fourier series (assuming To > r )

"'fr. (t) = L Dnejnwol
n=-ao 

(1.14)where

2Jr
Wo=Ta

and

(1.15)

which implies that
(1.16)

i.e., D, is ..!.__ times the sample F(nw0)of F(w).
Ta

1.7.2 Speetral Interpolation

Following the same line of derivations to the time interpolation, we get

17)where

9



Discrete-Time Signals and Systems

1.8 Numerical Computation of the Fourier Transform

1.8.1 The Discrete Fourier Transform {DFT)

Given a time-limited signal f{t) and its sampled version .f(t), we have the Fourier

transform pairs shown below in fıgure 1.7

F(w)
f(t)

(a)
t w

r

.f(t) F(w) 

(d)
w

(c)

Figure 1.7 Time-Limited Signalj(t) arıdiits Sampled Version .f(t)

Now, i(we repeat ](t) after every T seconds the assdciated Fouriertransfornı will be a

sampled version of F(w).

Figure 1.7 assumes a value of T thatis>rıôt smııll erıôugh to avoid · aliasing. By

reducing T one can avoid aliasing or, at least; reduce a.lia.sirıg to a negligible level. Thus,

by reducing T, as shown in fıgure 1.8, in whichııliasirığ is negligible.

Note: When a signal is time limited, its spectrum in band unlimited. This means that

aliasing cannot be cancelled completely, unless T reduces to zero!

10



Discrete-Time Signals and Systems

T
+-

1-._Fo = 1/To

Figure 1.8 Aliasing is Negligible.

1.8.2 Number of Samples

Let N0 denote number of samples in each period of the time domaiıısiğııal, and

N' o denote the number of samples in each period of the frequency domain signal. Then,

T F N = _Q_and N' = _5-.
o T o Fo

where F, = _!_ and F0 = _!_, it gives
. T T0

1.8.3 Point of Discontinuity

(1.18)

(1.19)

When f(t) has a discontinuity at a sampling pôint, the sample value should be

tak.en as the average of the values on the two sides öfthe discontinuity, because this

leads to the best regeneration of the time domain signal from the frequency domain

samples.

11



Discrete-Time Signals and Systems

1.8.4 Zero Padding

Fora time-limited signal with duration oh we usually consider a choice of T, >

r. Since F0 = J_, this increases the frequency resolution, i.e., more samples of F(w) are
t,

calculated. When the sampling period, T, is kept constant and To is increased, this is

equivalent to increasing Ne, or thinking of samples No is increased by padding zeros

behind the samples h = Tf(kT).

1.9 Summary

The theoretical discrete time signals and systems were presented, Jhe problems

of prefiltering to avoid aliasing, analysis of quantizing error, deeinıa.tion and

interpolation and up sampling methods were described.

12



Basic Principles of Sampling and Sampling Rate Conversion

2. BASIC PRINCIPLES OF SAMPLING AND SAMPLING RATE

CONVERSION

2.1 Overview

The purpose of this chapter is to provide the basic theoretical framework for

uniform sampling and for the signal processing operations involved in sampling rate

conversion. As such we begin with a discussion of the sampling .theorem and consider

its interpretations in both the time and frequency domains. We the:rı cônsider sampling

rate conversion systems (for decimation and interpolation) in terms ef-both analog and

digital operations on the signals for integer changes in the sampling fate. By combining

concepts of integer decimation and interpolation, we generalize the results fothe cage of

rational fraction changes of sampling rates for which a general input-output tela.tionship

can be obtained. These operations are also interj:)feted in terms of. cô:rıcepts of

periodically time-varying digital systems.

Next we consider more complicated sampling techniques and modulation

techniques for dealing with bandpass signals instead oflawpass. We show that sampling

rate conversion techniques can be extended to bandpass signals as well as lowpass

signals and can be used for purposes of modulation'as well as sampling rate conversion.

13



Basic Principles of Sampling and Sampling Rate Conversion

2.2 Uniform Sampling and the Sampling Theorem

2.2.1 Uniform Sampling Viewed as a Modulation Process

LetXc(t) be a continuous function ofthe continuous variable t. We are interested

in sampling X, (t) at the uniform rate that is, one every interval of duration T.

t=nT, =co c.n c co (2.1)

Figure 2. 1 shows an example ofa signal X; (t) and the associated sampled signal x(n)

for two different values ofT.

X (n).,
."" . .J·, 

·,
I,,

'
,·

X (n)

Figure 2.1 Continuous S ignal and Two Sampled Versions of it.

n

n

üne convenient way of interpreting this sampling process is as a

multiplication process, as shown in figure 2.2(a). The continuous signal X,

multiplied (modulated) by the periodic impulse train (sampling function) s(t) to

14



Principles ofSampling and Sampling Rate Conversion

amplitude modulation (PAM) signal Xc(Vs(t). This PAM signal is then
discreterized in time to give x(n), that is,

nT+s

x(n) = lim fxc (t)s(t)dt
&-',Ü

t=nT-s
(2.2)

where

OC)

s(t) = Lu0(t-!T)
l=-oc, (2.3)

where uo(t) denotes an ideal unit impulse function. In the context of this interpretation,

x(n) denotes the area under the impulse at time nT. Since this area is equal to the area

under the unit impulse (area = 1), at time nT, weighted byX0 (nT), it is easy to see that

x(n) = xc(nT) (2.4)

Figure 2.2(b), (c), and (d) show Xc (t), s(t), and x(n) fora sampling period ofT seconds.

15



Basic Principles ofSampling and Sampling Rate Conversion

(a) ~ FnT
x, (t) ııı, ııı,~ ııı, X(n)

Xc(t)

(b)

S(t)

(c) 1111111111.
-2T -T O T 2T 3T 4T 5T

x(n)

'
·,

(d) . \ 1 2 3 I

-2 -1 o \ ,r 4 5 ·,ıı }· n

Figure 2.2 Periodic Sampling of X, (t) via Modulation to obtain x(n).

16



Basic Principles of Sampling and Sampling Rate Conversion

2.2.2 Spectral Interpretations of Sampling

We assume that X.,(t) has the Fourier transform XcUQ) defined as

00

Xc(jQ) = Jxc(t)e-1nıdt (2.5)
-00

where Q denotes the analog frequency (in radius/secj: Siınilarly, the Fourier transform

of the sampling function s(t) can be defined as

00

S(jQ) = Js(t)e-Jrudt (2.6)
-00

and it can be shown that by applying equation (2.3) to equation (2.6), )S(jQ) has the

form

S(jQ) = 2,r f uo[n- 2(,r)l]
T ı=-<Y.! T

(2.7)

by defining

F=_!_
T

Q=2ef

(2.8)

(2.9a)

and
(2.9b)

S(jQ) also has the form
00

S(jQ) = QF l>o(Q-lQF)
l=-00

(2.10)

That is, a uniformly spaced impulse train irıtime,is(t),transforms to a uniformly spaced

impulse train in frequency, S(jQ).

Since multiplication in the time domain is equivalent to convolution in the

frequency domain, we have the relation
00

X c (jQ) * S(jQ) = f[xc (t)s(t)]e-101dt (2.11)
-00

17



Basic Principles ofSampling and Sampling Rate Conversion

where * denotes a linear convolution of Xc(jO) and S(jQ) in frequency. Figure 2.3

shows typical plots of Xc(jO), SGQ), and the convolution Xc(jO)* SGQ), where it is

assumed that Xc(jO) is band-limited and its highest-frequency component 21tFc is less

than one-half of the sampling frequency, Qp = 21tF. From this fıgure it is seen that the

process of pulse amplitude modulation periodically repeats the spectrum Xc(jO) and

SGQ).

Because of the direct correspondence between .the sequence x(n) and the pulse

amplitude modulated signal xc(t)s(t), as seen in equatiohs (2.2) and (2.4) it is clear that

the information content and the spectral interpretations · · öf the two signals are

synonymous. This correspondence can be shown more fornıally>by considering the

(discrete) Fourier transform of the sequence x(n), which is defıned as

Xc(iQ)

(a)

-2 1tFc o 2 1tFc

(b) rt t t
-2!1F

t
-!1F o 7tF

(c)
Xc(iQ)~SGQ)

Q

o Qp/2

Figure 2.3 Spectra of Signals Obtained from Periodic Sampling via Modulation.

"'X(e.iw) = Lx(n)e-jwn (2.12)
n=-oo 

where w denotes the frequency (in radians relative to the sampling rate F), defıned as

18



Basic Principles of Sampling and Sampling Rate Conversion

Q
w=OT=­

F

Since xc(t) and x(n) are related by equation (2.4), a relation can be derived between

XcOO) and X(eij with the aid of equations {2.5}a.n.d(2. 12) as follows. The inverse

(2.13)

Fourier transform ofXcUO) gives xc(t) as

(2.14)

Evaluating equation (2.14) for t = nT, we get

1 00 .

x(n) = Xc(nT) = - JxcUQ)e1QnT dQ
27ı

-00

(2.15)

The sequence x(n) may also be obtained as the (discrete) ifrverse Fourier

transform ofX(eİw),

1 "J . .x(n) = - X(eJW )eıwn dw
21ı -;r

(2.16)

Combining equations (2.15) and.(2.16), we get

ı "s . . ı- X(eJW )e1wn dw = -
21r 21ı

-K -00

(2.17)

Be expressing the right-hand side of equation (2.17) as a sum of integrals (each width

2n I T), we get

19



(2.18)

since e12"1n = 1 for all integer values of l and n. Coınbirıfüg iequations (2.17) and (2.18),

setting Q = w/T and QF = 2n/T, gives

(2.19)

Finally, by equating terms within the brackets, we get

. 1 "' 1 "' [ . JX(eJW) = T l~Xc(j(Q+/QF)) = T l~Xc : (w+2m) (2.20)

Equation (2.20) provides the fundamental link between continuous and digital

systems. The correspondence between these relations and the spectral interpretation of

the PAM signal Xc(i!l)* S(iQ) in fıgure 2.3 is also apparent; that is, the spectrum ofthe

digital signal corresponds to harmonically translated arıd amplitude scaled repetitions of

the analog spectrum.

2.2.3 The Sampling Theorem

Given the analog signal Xc(t) it is always pössible to obtain the digital signal

x(n). However, the reverse process is not aıways -true; that is, Xc(t) uniquely specifıes

x(n); but x(n) does not necessarily uniquely specify Xc(t). In practice it is generally

desired to have a unique correspondence between' x(n) and Xc(t) and the conditions

under which this uniqueness holds is given by the well-known sampling theorem:

If a continuous signal Xc(t) has a band-limited Fourier transform Xc(iO), that is.

/Xc(i!l)I = O for lü/>21tFc, then Xc(t) ca.n be uniquely reconstructed without error from

equally spaced samples Xc(nT), oo < n < oo, if F > 2Fc, where F = 1/T is the sampling

20



Basic Principles ofSampling and Sampling Rate Conversion

frequency.
The sampling theorem can be conveniently understood in terms of the spectral

interpretations of the sampling process and equation (2.20). Figure 2.4 shows an

example of the spectrum ofa band-limited signal [part (a)] and the resulting spectrum of

the digital signal for a sampling period which is shörter than required by the sampling

theorem [part (b)], a sampling period equal to that required bythe sampling theorem

[part (c)], anda sampling period longer than requiredbyiith~/sanıpling theorem [part c)].

From :figure 2.4 we readily see that for parts (b) and (c) (when the conditions of the

sampling theorem are met) the higher-order spectral coınporı.e:nts(theıerms in equation

(2.20) for 111 > 1) do not overlap the baseband and distort the digitafsp~ı;;tJJllm. Thus one

basic interpretation of the sampling theorem is that the spectruin of the saınp}ed signal

must be the same as (to within a constant multiplier) the spectrüm qfth~ çpntinuous

signal for the baseband offrequencies (-21tFc < co < 21tFc).

Xc(in)

\
(a) / ~ n

-21tFc o 21tFc

(c) 1/T .,-----------·,

1 =- 1 ' ' ' ' '

l=O
,,,,,,

l= 1

o

Figure 2.4 Spectral Interpretations ofthe Sampling Theorem.
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2.2.4 Reconstruction of an Analog Signal from Its Samples

The major consequence of the sampling theorem is that the original

Xc(t) can be uniquely and without error reconstructed from its samples X(n) if th.e

samples are obtained at a suffıciently high rate. To see how this reconstruction is

accomplished. We consider the spectrum of the continuous-time modulated signal

Xc(t)s(t) as shown in fıgure 2.3(c). This spectrumis identical to that of the sampled

signal x(n). To recover Xc(jQ) from the convolution Xc(jQ)* SGQ), we merely have to

fılter the signal Xc(t) by an ideal lowpass filter whose cutoff frequency is between 2nFc

and Qp - 21tFc, This processing is illustrated in figure 2.5. To implement this process, an

ideal digital-to-analog converter is required to get Xc(t)s(t) from x(n). Assuming that we

do not worry about the realizability of such an ideal converter, the reconstruction

formula from figure 2. 5 is

Xc(t)
Xc(t) ıı, ı

idealDigital-Analog idealLowpass
Converter Fiter

S(t)

Figure 2.5 Sampling and Reconstructiotı.ôfaContinuous Signal.

"'
X c (t) = Jxc(r)s(r)h(t- (2.21)

-r=-ı:o

and applying equations (2.2) to (2.4) gives

(2.22)
n=-oo 

For an ideal lowpass filter with cutoff frequehcy fap, the ideal impulse response hı(t) is
ofthe form

(2.23)

Generally, FLP is chosen as
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Basic Principles of Sampling and Sampling Rate Conversion

F = F =-1
LP 2 2T

leading to the well-known reconstruction formula

(2.24)

Xc (t) = f x(n )[sin[n"(t - nT)IT]J
n=-"' 1t(t-nT)IT

(2.25)

Figure 2.6 illustrates the application of equation (2.25) to a typical signal. It is seen that

the ideal lawpass fılter acts like an interpolator for the band-limited signal Xc(t),

allowing the determination of any value of Xc(t) from the infinite set of its samples

taken at a sufficiently high rate.

X(n)

(a) ,·

'.

X(no )lıı(t-no T)

(b)

Figure 2.6 Illustration ofa Band-limited Recorısfrl.J.ctiôh from Shi:ftedand Scaled

Lowpass Filter Respôri.Ses.

In practice the "ideal" filter is unrealizable becauseifl"equireS Valuesöfx(n)for - oo

< n < oo in order to evaluate a single value · of XC(t)i Therefore, •· some realizable

approximation to hı(t) must be used. Figure 2.7 illustrates arı example of an impulse

response for a realizable reconstruction or interpolating lowpass filter, h(t), that extends

over a fınite number of samples of x(n). In this figure we show plots of Xc(t) (bottom

fıgure) and x(n), and the range of h(t-nT) evaluated in the region ofthe n-th sample [Le.,

at t = n.T (top figure)]. To the extent that the frequency response of the actual lawpass

fılter approximates the ideal lawpass fılter, the reconstruction error ofXc (t) can be kept

small.
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2.2.5 Summary of the Implications of the Sampling Theorem

The main result of the sampling theorem is that there is a minimum rate (related

directly to the bandwidth of the signal at which a signal can be sampled .and for which

theoretically exact reconstruction of the signal is possible from its samples. If the signal

is sampled below this minimum rate, then distortions, in the form of spectral fold over

or aliasing [e.g., see fıgure 2.4(c)], occur from whichno recovery is generally possible.

h(t-noT)

,,,
'

X(n)---,,,

..,,""""
~', n

n=n,

Range of h(t-noT)

Xc(t)

t=nşT

Figure 2.7 Illustration of Reconstruction ofa Ba:n.d-fü:nited Signal from its Samples

using a nonideal Finite Duration ImpulseRespcmse Lowpass Filter.

Xc(t) __ --ı h1p(t)

Fc = 1/ (2T)

,"/)

s(t) = LU0(t- nT)
-•)')

Figure 2.8 Representation ofa Practical Sampling System with Prefıltering to Avoid

Aliasing.

Thus to ensure that the conditions of the sampling theorem are met for a given

application, the signal to be sampled is generally first fıltered by a lowpass filter whose
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cutoff frequency is less than (or equal to) half the sampling frequency. Such a fılter is

often called an anti-aliasing prefilter because its purpose is to guarantee that no aliasing

occurs due to sampling. Thus the standard representation of a system for sampling a

signal (analog-to-digital conversion) is as shown in fıgure 2.8. We will see in the

following sections that a lowpass filter of the type shown in fıgure 2.8 is required for

almost all sampling rate conversion systems.

2.3 Sampling Rate Conversion - An Analog Jnterpretation

The process of sampling rate conversion is one of convertingthe sequence x (n)

obtained from sampling Xc(t) with a period T, to another sequerı.cey(m)obtained from

sampling Xc(t) with a period t'. The most strı:ı.ightforward WaYJo p~rform this

conversion is to reconstruct Xc (t) (or the lowpass filtered version of it) from the

samples of x (n) and then resample Xc(t) (assuming that it is suffıciently band-liınited

for the new samplingrate) with period r' to give)f(rnj. 'The processing invôlved in this

procedure is illustrated in fıgure 2.9. Figure 2.10 shows typical waveforms which

illustrate the signal processing involved in implementing the system of fıgure 2.9.

Because lı(t), the impulse response of the analog lowpass fılter, is assumed to be of

fınite duration, the value of xc(t} at t= m; r' is deterırıined only from the fmite set of

samples ofx(n) shown in part (a) ofthis fıgure. Thusforany m, the value ofy(m) can be

obtained as

~---, Xc(t)s(t...,__) -----.

X (n) D/ A lı(t)

t =:mT'

Xc(t) {$-.. .., y(m)

Ideal D/A Converter Lowpass Filter

Figure 2.9 Conversion ofa Sequence x(rt)tôafibtherSequence y(m) by Analog

Reconstruction and Resampling,
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(b)

,·

m=mo

Figure 2.10 Typical Waveforms for SamplitığRate Conversion by Analog

Reconstruction and Resa:m.plitıg.

N,

y(m) = Xc(t) lı=mT'= "Lx(n)h(mT'
n=NI

(2.26)

where Nı and N2 denote minimum and ruax.uuu ıu

the computation of y(m). From equation

specific values of n and specifıc values of h(t)

y(m) = x(N1 )h(mT' - N1T) + ..... + (2.27)

The values of h(t) that are used to give y(:m.)ate spaced T apart in time. In effect the

signal x(n) samples (and weights) the impulse response h(t)to give y(m). It is

itıteresting to note that when r' = T, the form of equation (2.26) reduces to that of the

familiar discrete convolution
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y(m) = Lx(n)h((m-n)T) (2.28)
n

The limits on the summation of equation (2.26) are determined from the range of values

for which h(t) is nonzero. Ifwe assume that h(t) is zero for t < t1 and t > t2, that is,

h(t)=O, t>t2,t<t1 (2.29)

this leads to the result

h(mT' - nT) = O, mT' - nT > t20 (2.30)

or (see fıgure 2. 10)

mT'-tn < 2

T
(2.31a)

mT'-tn > ı
T

(2.31b)

Thus by integrizing equations (2.31) we get

N1 = [mT~-t2 J (2.32a)

(2.32b)

It can be seen from equations (2.32) that

determination of y(m) is a complicated rnu ••uvu

x(n) involved in the

::.cıuıpuu~ periods T and t', the

endpoints ofthe fılter tı and tı. andthe sample<mbeinğdetermined.

Figure 2.11 illustrates this effect for the case r'= T/2, and for two impulse response

durations, !2 = -I ] = 2.3T and tı = -tı = 2.8T. As shown in parts (a) and (b), the

determination ofy(m) form even for both t2 = -tı -2.3T [part (a)] and t2 = -t1 -2.8T [part

(b)] involves the identical set of samples of x(n). However, the determination ofy (m)

form odd involves different sets of samples ofx(n) for t2 = - t1 - 2.3T [part (c)] than for

tz = - tı - 2.8T [part (d)].
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İı(MT'·t)
1

ı
1

(a)
,,

,,,( 11 lli rr i I f"'r-,, <. ,/r-·, nT

m~M

İı(MT'-t)
!
1

X(n) 1
(b) i, rn-- ,' ', o

', ' o', ,
' ,,,--r-··r,,

nT,,f ' '
' ,

m=M ' ,

Figure 2.11 Examples Showing the Samples ofx(n) Involved in the Computation of

y(m) for two Different Impulse Response Durations and for even and odd Samples of

y(m}for a 2-to-1 Increase in the Sampling Rate.

A second important issue in the implementation described above involves the set of

samples of h(t) used in the determination ofy(m). For each value of m, a distinct set of

samples of h(t) are used to give y(m). Figure 2.12 illustrates this point for the case T' = T

/2 (i.e., a 2-to-1 increase in the sampling rate). Figure 2.12(a) shows x(n). h.(meT' - t),

and y(m) for the computation ofytm.), where meis an even integer, and figure 2.12(b)

shows the same waveforms for m0 = m; + 1 (i.e., an cdd value of m). It can be seen that

two distinctly different sets of values of h(t) are involved in the computation ofy(m) for

even and odd m. For the case T' = 2T (i.e., a 2-to-l decrease in the sampling rate), the

same set of samples pfh(t) are used to determine ali output samples y(m).

By introducing the change of variables

k =lm:' J-n (2.33)

the form of equation (2.26) can be modified to another form that more explicitly reveals
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the nature of the indexing problem associated with the evaluation of y(m) in the

sampling rate conversion process described above. This form will be used extensively in

later sections. Applying equation (2.33) to equation (2.26) gives the expression

(2.34)

(a)

n

',

(b)

1 .

- -·-·- n,1'f I ı1 1 hs,LI I I ı · ·-IlTT il , ,
o ·-·~·-··

_ •.. -

X(n) '1 1 1 r ı
n

J(I 1 : : ,0.J,~-1 ·r- .• _ ı ı ı ı ı ,'
o

Figure 2.12 Examples Showing the Samples of h(t) Involved in the Computation of: (a)

Even Values ofy(m), and; (b) Odd Values of y(m) fora 2-to-1 Increase in the Sampling

Rate.
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And rearranging terms gives the desired form

y(m)= th((k+ôm)T)x[lmT'J-k]
ı-x, T

(2.35)

where om is defıned as

0 = mT' -lmT'J
m T T

It is clear that ôm corresponds to the difference ofa number mr'/T and its next lowest

(2.36)

integer,

(2.37)

Thus from equation (2.35) it can be seen that the determination ofa sample value y(m)

involves samples of h(t) spaced T apart and offset by the fractional sample time ôm T,

where ôm varies as a function of m. It is also interesting to note that when T' = T,

equation (2.35) again reduces to a familiar convolutional form

y(m) = "I.h(KT)x(m-k)
k

(2.38)

Figure 2.13 depicts the samples of h(t) and x(n) involved in determining y(m) based on

equation (2.35). As in the earlier interpretation of equation (2.26), it is seen that the

fınite range of h(t) restricts the number of samples x(n) that are actually used in

determining y(m). By again applying the conditions of equation (2.29) it can be shown

that the limits on the summation, K1 and K2, can be determined from the condition

A

h((k + Ôm )T) = Ü, (k + Ôm )T > 12, (k + Öm )T < 11 (2.39)

or

k tz>--ôT m 
(2.40a)

ı.k<--öT m
(2.40b)
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and integerizing equations (2.40) gives

K -f i-öml-f i-m;l+lm:'J
K -fi-öml-fi-m:'l+tm;J

(2.41a)

(2.41b)

lı.(t) :X(l)

X(O)
X(2)./
,-~

''
kT

o

Figure 2.13 Alternative Form for Sampling RateCôiıversiôn Process Showing Samples

ofh(t) and x(n) Involved in Detgrirtiliiııgy(m).
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2.4 Decimation and Interpolation of Bandpass Signals

2.4.1 The Sampling Theorem Applied to Baııdpa.ss Signals

In the preceding sections it was assumed that the sigtıals that we are dealing with

are lowpass signals and therefore the fılters required for deci:ı:rtation and interpolation

are lowpass fılters which preserve the baseband signals bfiritef~st.)n many practical

systems, however, it is of often necessary to deal with bandpass signals, as well as

lowpass signals. In this section we show how the concepts of decimation and

interpolation can be applied to systems in which bandpass signals are 1>:resent.

Figure 2.14(a) shows an example of the discrete Fourier transfor:ı:rt of a digital

bandpass signal S(e12lifT) which contains spectral: tömponents only in>the 'frequency

range fı < l!I < /1 + !ı:.. If we apply directly the concepts of lowpass sanıpling Fw,

necessary to represent this signal must be twic~ fthat of the highest-frequency

component in S(e12lifT), that is, F; 2 2(fı. + Jı,,.). A.ltematively, let s: denote the

component of S(e12,ifT) associated with/> O

associated with/ < O, as seen in fig. 2.14. Then,

to the band O to fı:. and s· to the band - fı:. to O,

that a new signal Sy( e 12,ifT ) can be generated

sense that S(e12,ifT) can uniquely be ""'"" •..."+""

process of bandpass translation.

sideband" modulated version of Sr(e12,ifT

to Sy( e12lifT), however, it can be seen

denote the component of S(e12,ifT)

UaU:HGI.Ulll:5 (modulating) S",

in the

frequency necessary to

represent this signal is now Fı:. 2 2t..which can be .much lower than the value of F w

specified above (if fı. >> fı:. ). Thus it is seen.that by an appropriate combination of

modulation followed by lowpass samplinğ, any real bandpass signal with (positive

frequency) bandwidth fı:. can be uniquelysarnpled ata rate Fı:. 2 2fı:. (i.e., such that the

original bandpass signal can be uniquelyrecorlstructed from the sampled represen.tation)
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In practice, there are many ways in which the combination of modulation and

sampling described above can be carried out. In this section we consider three specific

methods in detail: integer-band sampling, quadrature modulation, and single-sideband

modulation (based ona quadrature implementation).

Figure 2.14 Bandpass Signal and its LowpassTranslated Representation.

2.4.2 Integer-Band Decimation and Interpolatiou

Perhaps the simplest and most direct approachfodecirtıating or interpolating digital

bandpass signals is to take advantage ofthe inhererı.f:freq_uency translating (i.e., aliasing

or imaging) properties of decimation and interpôlatiôrı.. Sartıplin.g and .saırıpling rate

conversion can be viewed as a modulation processirı..iwhicföthe spectrülilofthe digital

signal contains periodic repetitions of the baseband' sigrıa.L(iın.a.ğes)spacedat harmonics

of the sampling frequency. This property callbe usedfo advarıtage when dealing with

bandpass signals by associating the bandpass siğtıalwith one Of these images instead of

with the baseband.
Figure 2.15(a) illustrates an example ofthis process for the case of decimation by

the integer factor M. The input signal x(n) is fırst filtered by the bandpass filter hBp(n) to

isolate the frequency band of interest. The resulting bandpass signal, Xsp(n), is then

directly reduced in sampling rate by an M -sample compressor giving the final output, y

(m). It is seen thatthis system is identical to that of the integer lowpass decimator, with

the exception that the filter is a bandpass fılter instead of a lowpass filter. Thus the
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output signal Y(ejw') can be expressed as

Y(ejw') = _ı_y HBp(ej(w'-27'/)IM)X(ej(w'-2,r/)IM)
M l=O

(2.42)

From equation (2.42) it is seen that Y(ejw'} is composed of M aliased components of

X (ejw' )H BP ( ejw') modulated by factors of 2nl/ M . The function of the fılter HBP (ejw)

is to rernove (attenuate) all aliasing cornponents except those associated with the desired

band of interest. Since the rnodulation is restricted to values of 27d / M , it can be seen

that only specifıc frequency bands are allowed b)' this method. As a corısequence the

choice of the fılter HBP ( ejw ) is restricted to approximate one of the M ideal

characteristics

k_!:_ < \wl < (k
M

otherwise

34
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(a)

X(n) •
F

(b) ,~r,
-41t!M

1 hru{n) 1 x,, fol •'~
y(m)

IJı IJı
F' =F/M

r ,r r r r w
o-21t!M 21t!M 41t!M

(c)- -~~--- _ --~;---- --~~--- _ --~ı:--... ...--~~--- .. -
1 1 I il h 11 ı I U t I - •.•., •• - •• -

1 :: !! :• K=·~ !! K=2 11 K=ı:! K-011 K-O' x-u: K=?" K=,11
ı, il ,! .. 11 : : il - : : - : : : -:! ~ : :

-,
1
1

w
o 21t!M

(d)

o

(e) 1 -
1
1
1

w
o

Figııre 2.15 Integer-band Decimation and aSpectralltıterpretatiön for the k == 2.

where k = O, 1,2, ... , M-1; that is, Hsp(dw)isrestrictedfoba.rids w == kn I M to

w = (k + 1)1l / M , where iI.M is the bandwidth.

Figure 2.1 S(b) to (e) illustrates this appfoach. Figure 2.1 S(b) shows the M possible

modulating frequencies which are a consequence ofthe M -to-I sampling rate reduction;

that is, the digital sampling function (a periodic train of unit samples spaced M samples

apart) has spectral components spaced 21t / M apart. Figure 2.15(c) shows the

"sidebands" that is associated with these spectral components, which correspond to the
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M choices of bands as defined by equation (2.43). They correspond to the bands that are

aliased into the baseband of the output signal Y(dw) according to equation (2.42). [As

seen by equations (2.42) and (2.43) and fıgures 2.15(b) and 2.15(c), the relationship

between k and 1 is nontrivial.]
Figure 2.15(d) illustrates an example in which the k = 2 band is used, such that

XBP(dw) is band-limited to the range 2rc / M < lwl < 3rc / M. Since the process of

sampling rate compression by M to 1 corresponds to a convolution of the spectra of

XBP(dw) [Figure 2.15(d)] and the sampling function [Figure 2.15(b)], this band is

lowpass translated to the baseband of Y(dw) as seen irı. Fiğure 2.15(e). Thus the

processes of modulation and sampling rate reduction are a.chievedsimultaneously by the

M -to-1 compressor.
Figure 2.16 illustrates a similar example for the .k - 3 band su.chfhatXBP(dw) is

band-limited to the band 3rc / M < [w] < 4rc / M ;l:rrthis case it is seetıtha.ttheisPectrum

is inverted in the process of lowpass translatiôri..

y(m) is desired, it can easily be

y(m) = (-ır y(m) ], which corresponds to

· In general, bands associated with even

baseband of Y(eiw) , whereas bands associated

inverted [see figure 2.15(c)]. This is a "uıı:,c4

nnninvP.rted represeııtation of

HlVUU!i:1.Ullö y(m) by (-l)m [i.e.,

of odd samples of y(m).

tra.nsla.tedto the

of kare translated and

fact that even numbered

whereas odd-numbered bands (k odd)

modulation frequencies (e.g., the k = 2

1 and the k = 3 band is a lower sideband for
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(a) l=M-2 l=M-1 !=O 1 = 1 1=2

I I I I I w
-4:ı /M -2:ıl M o 2:ı/M 4:ı/M

(b)

rıi11i1 1
- 3:ı/ M - 2:ı/ M o

~
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(c)
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1
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1

-2:ı -1[ o ff 21l'

Figure 2.16 Spectrallnterpretation oflnteger-bari.dDecitnation for the Band k = 3.

Figure 2.17 illustrates an example in which theirıteger ... baridconstraints of equation

(2.43) are not satisfied. it is seen that nonrecover~b1/}~li'~~~f?f~~rsi~t~: baseband of
Y(eiw), and therefore the signal Xsp((JW), when integer ..band constraints are violated,

cannot be reconstructed from its decimated version.
The process of integer-band interpolation is the .ifrverseto that of integer..band

decimation; that is, it performs the reconstructi&rt>(ttı.terpölatiı:Hı.5, ô:rı:ibaiıdpass Figüre

2.17 illustrates an example in which the integet-l:>atı'cfCônstraintsof equation (2.43) are

not satisfied. it is seen that nonrecoverable alfasirıg occurs in the baseband of Y(dw),
and therefore the signal XBP(dw), when integer-barıd constraints are violated, cannot be

reconstructed from its decimated version.

Figure 2.18(a) illustrates this process. The input signal, x(n), is sampling rate

expanded by L [by inserting L-1 zero-valued samples between each pair of samples of

x(n)] to produce the signal w(m). From the discussion of integer interpolation, it is seen
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that the spectrum ofw(m) can be expressed as

W(eiw') = X(ejw'L) (2.44)

and it corresponds to periodically repeated images ofthe baseband ofX(eiw) centered at

the harmonics w' = 2ırlI L [as depicted in figure 2.17(b) and (c)]. A bandpass fılter

hBp(m) is then used to select the appropriate image ofthis signal. It can be seen that to

obtain the kth image, the bandpass fılter must approximate the ideal characteristics

(a)

I I I
~2ır/ M o w

2ır/M

(b) n 1 X,,,(.i') n
- 31ı I M - 21ı IM o 21ı/ M 3!l iM

w

(c)
_,

--- 1r---------ı 1

1 1 1
1 1

1
1 1
!

~ ~--.-----------.--,
1 I 1

1
1 1
! w'

-27ı -;r o

Figure 2.17 SpectralTntetpretation oflnteğef..baiid DeciriıatiotiWhen.Iriteger-band

Constraints are violated.

k 1r < Jw'I < (k + 1) ır
L L 

otherwise
(2.45)

where k = O, 1, 2, .... , L- 1. Figure 2.18(d) shows an example of the output spectrum of

the bandpass signal Y(eiw') for the k = 2 and fıgure 2.18(e) illustrates an example for the
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k = 3 band. As in the case of integer-band decimation, it is also seen that the spectrum

ofthe resulting bandpass signal x(n) can first be modulated by (-lt, which inverts the

spectrum ofthe baseband and consequently the bandpass signal.

(a)

X(n) ~t L 1
F:::; ıı, 1 hBP(m} 1

y(m)
•• ••
F'F

(b)

w
- 4;r / L - 2;r / L 2;r/Lo

- 37r / L - 21l I L

lJ
- 4;r / L - 3tr I L

r.,(d')
o

Figure 2.18 Spectral Interpretation oflnteger-bandlriterpôlatioriôfBaridpass Signals.
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2.5 Summary

This chapter has been directed at the basic concepts of digital sampling of

analog lowpass and bandpass signals and at the fundamentals of converting the

sampling rates of sampled signals by a direct. digital-to-digital approach. Basic

interpretations of the operations of sampling rate Cgııy~rsionhave been given in terms

oftheir analog equivalents and" in terms of modulatiqtı.cç.rrıçepts.
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3. DIGITAL FILTER BANK iN MULTIRATE SIGNAL
PROCESSING

3.1 Overview

There are applications, as in the case of a spectrum analyzer, where it is

desirable to separate a signal into a set of subband signals occupying, usually

nonoverlapping, portions ofthe original frequencyband;lnother applications, it may be

necessary to combine many such subband signals>into..a single composite signal

occupying the whole Shannon range [15].

3.2 Definitions

The digital filter bank is a set of digitalban.dpass filters witheithefa>common

input or summed output, as shown in figure 3.LT~estnıcture of figute 3.l(affacalled

an M-band analysis filter bank with the subfiltersH1c(z)known as the analysis filter. It is

used to decompose the input signal x[n] into a setôfM subband signals Vk[n] with each

subband signal occupying a portion of the origiııal frequen.cyband. (The signal is being

'analyzed'by being separatedinto a set ofnarrowsp~cır~vbands.)
The dual of the above operation, whereby>a set of subband signals 1\[n]

(typically belonging to continuous frequency baridS)is/coınbined into one signal y[n] is

called a synthesis filter bank.

\ ıı, y[n]x[n] J H0~v0[n] v0[n]

Hıwl-----+ vı[n]

•• •• •
H1:wı----. vM-ı [n] VL-ıf,ı] ıı,I FL-ı(z)

(a) (b)

Figure 3.1 (a) Analysis Filter Bank, and (b) Synthesis Filter Bank.
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3.3 Uniform DFT Filter Banks

We now outline a simple technique for the design of a class of fılter banks with

equal pass-band widths. Let H0(z) represent a causal low-pass digital fılter with an

impulse response ho[n]:
00

Ho(z) = Lho[n]z--n
n=I

(3.1)

which we assume to be an IIR fılter without any loss ofgenerality. Let us now assume

that H0(z) has its pass-band edge Wp and stop-band edge w. around n/M , where M is

some arbitrary integer, as indicated in fıgure 3.2(a). Now, côn.side:t"the transfer function

Hk(z) whose impulse response hk[n] is defined to be

hk[n] = h0[n]W;kn, k = 0,1,.....,M -1 (3.2)

where WM = e-Jı11:ıM, thus

Hk(z) = f hk[n]z-n = f h0[n](zw; r. k = 0,1, .... ,M -1 (3.3)
. n=O n=O

i.e.,
Hk(z) = H0(zw; 1 k = 0,1,.....,M -1

with a corresponding frequency response (Z = e1w):

(3.4)

[
·( 2ırk)Jjw _ 1 w-M _Hk (e )- H0 e , k - 0,1,....,M--l (3.5)

In other words, the frequency response of Hk(z) is obtainedby!shiftihg the response of

Ho(z) to the right, by an amount 2 n k iM. The response ôf Ht(z), H2(z ), , H M-I

(z)

are shown in fıgure 3.2(b). Note that the corresponding impulse responses hk[n] are, in

general, complex and hence IHk(eİw)I does not necessarilyexhibit symmetry with respect

to zero frequency. Figure 3.2(b) therefore represents the responses ofM - 1 filters Hıız),

H2(Z), ... , HM _J(z), which are uniformly shifted versions of the response of the basic

prototype fılter Ho(z) offıgure 3.2(a).
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Ho

0/i\ " 2n w
Wp Ws

n/M

X(eİM)

(a)

O 4n/M

o 2rc(M-1)/M 2TI

(d)

Figure 3.2 The Bank of M FiltersHk(z) with Uniformly Shifted Frequency

Response.
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The M filters Hk(z) defined by equation (3.4) could be used as the analysis filters

in the analysis fılter bank offıgure 3.l(a) or as the synthesis fılters Fk(z) in the synthesis

fılter bank offıgure 3.l(b).
Since the set of magnitude responses IHk(eİ'JI,k = O,l, .... ,M-1, are uniformly

shifted versions ofa basic prototype IHo(eİjl, i.e.,

(3.6)

the fılter bank obtained is called a uniform filter bank.

3.3.1 Nyquist ( Lth Band) Filters

We introduce a special type of law-passfiltef with a transfer function that by

design has certain zero valued coefficients. Due to<the presence of these zero-valued

coefficients, these fılters are by nature computaHô~llyffiore efficient than other law­

pass filters of the same order. In addition, when<used as interpolator filters, they

preserve the nonzero samples of the up-samplerQµtpµt ı:1Jthe jnterpolator output. These

fılters, called Lth band fılters or Nyquist fılters ar~.<cffterı used both in single rate and

multirate signal processing.

Consider the factor-of-L interpolator of figüre 37l5(a). The relation. between the

output and the input of the interpolator is given by

Y(z) = H(z)X(zL) (3.7)

Ifthe interpolation fılter H(z) is realized in theLba~?.Pol)'Phase form, then we have
H(z) = E0(zL) + z-1 E1 (z") + z-2 E2(zL) + + z-<L-ı) Eı-ı (zL)

Assume that the kth polyphase componentof H(z) is a constant, i.e., Ek(z) = c:

H(z) = E0(zL) + z-1E1(zL)+ ... + z-<k-ı)Ek-ı (zL)+az-k
-(k+l)E ( L) -(L-l)E ( L)+z k+ı z + ... +z L-ı z

(3.8)

Then we can express Y(z) as
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L-1
Y(z) = az" X(zL) + 1:z-ı E1(zı)X(zL)

/=O
/,ı,k

(3.9)

As a result, y[Ln] = a. x[n-k], i.e., the input samples appear at the output without any

distortion at n = k, k ± L, k ± 2L, .... , whereas the in-between (L-1) samples determined

by interpolation.
A fılter with the above property is called a Nyquist fılter oran Lth band fılter

and its impulse response has many zero-valued samples;makinğit computationally very

attractive. For exaınple, the impulse response ofthe Lth' band filter obtained for k = O

satisfies the following conditions:

{
a n=O

h[Ln] = '
O, otherwise

(3.10)

h[n]

• • • ••• ı

-6 3 6-3

Figure 3.3 The Impulse Response ofa Typical Third-band Filter.

o
Figure 3.4 Frequency Responses of H(zW/)for k = 0,1, .... ,L-1.

Figure 3 .3 shows a typical impulse response ofa third-band fılter (L=3). If H(z) satisfies

equation (3.8) with k = O, i.e., H(z) = c, that it can be shown that

L-1

LH(zW{) =La= 1 (assuming a. = 1/L)
k=O

(3.11)
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Since the frequency response H(zW{) is the shifted version IH(eAw-<2"*1L>]~ of H(eiw),

the sum of all of these L uniformly shifted version of H(eiw) add up to a constant (see

figure 3.4). Lth band fılters can be either FIR or IIR fılters [10].

3.3.2 Half-Band Filters

An Lth band filter for L = 2 is called a half-band fılter. From equation (3.8) the

transfer function ofa half-band filter is thus given by

(3.12)

with its impulse response satisfying equation (3.10) with L = 2. The cortdition on the

frequency response given by equation (3.12) reduces to

H(z)+H(-z)=l (assuming c = 1/2) (3.13)

If H(z) has real coefficients, then H(-eiw)= H(eiCn-w)), and equation (3.13) leads to

(3.14)

H(ei")

l+öı ···""······· ··-'-·············· . ,

1-ö , .

Figure 3.5 Frequency Response ofa Zero-Phase Half-Band Filter.
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The above equality implies that H(ej«"12>-e>) and H(ej«"12>+e>) add up to unity

for all B. In other words, H(e61) exhibits a symmetry with respect to the half-band

frequency n/2, thus justifying the name 'half-band filter'. Figure (3.5) illustrates this

symmetry for a half-band low-pass fılter for which the pass-band and stop-band ripples

are equal, i.e., öp = 8 and the pass-band and stop-band ba.ndedges are symmetric with

respect to n/2, i.e., Wp + Ws = n.
An important attractive property of the half-band filter is that about 50% of the

coefficients of h[n] are zero. This reduces the rı.uın.l:>efqf nıtıltiplication required in its

implementation, making the filter computationally .quite effieient,

For example, if N = 101, an arbitrary Type IFII.tlt~srerftıµöti8ijtrecı~i.res about 50

multipliers, where asa Type I half-band fılter requires only about25 multipliers.

An IIR half-band fılter can be designed withJinear phase. Hôwevet, there is a

constraint on its length. Consider a zero-phase hal:f-l>[ııd FIR fılter for which h{n] == ah*

[- n], with lal = 1. Let the highest nonzero coeffıcieııfbe h[R]. Then R is odd as a result

ofthe conditions of equation (3.10). Therefore, R::!!!:JK +1 for some integer K. Thus the

length of the impulse response h[n] is restrictedfübe of the form 2R + ı = 4K + 3

[unless H(z) is a constant].

3.4 Two-Channel Quadrature-Mirror FilterBaıık

In many applications, a discrete-tim•e•••·•~•~.ttı/,~!/:.~rst0~1~tiıt)••··:r~~111her····o;
subband signals {v, [n]} by means of analysis fılterbank,the subband signals are then

processed and finally combined by a synthes!~~ı~~I;%~~>r~t~~ti~~i~ anôutputsigrı.aı
y[n]. If the subband signals are bandlimitedto frequ.encyranges much smaller than that

of the original input signal, they can be dôwn.:..sarnpledbeföre processing, Because of

the lower sampling rate, the processing ofthe döwn..sarrıpled signal can be carried out

more efficiently. After processing, these sigrtals are up-sampled before being combined

by the synthesis bank into a higher rate signaL The combined structure employed is

called a quadrature-mirror filter (QMID bank, If the down-sampling and the up­

sampling factors are equal to the number of bands of the fılter bank, then the outputy[n]

can be made to retain some or all of the characteristics of the input x[ n] by properly

choosing the filters in the structure. In this case, the fılter bank is said to be a critically
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sampled filter bank. The most common application of this scheme is in the efficient

coding ofa signal x[n]. Another possible application is in the design of an analog voice

privacy system to provide secure telephone conversation.

ı\[n] Go(z)

y[n]

1 1 vo[n] •I ı 2Ho(z)

v1[n] Gı(z)Hı(z)

Figure 3.6 The Two-Channel

o 1C

Filters.

3.4.1The Filter Bank Structure

Figure 3 .6 illustrates the basic

structure. Here, the input signal x[n] is fırstpassed

bank containing the filters Ho(z) and HI(z), whichtypicallyha.ve fow-pass and high-pass

frequency responses, respectively, with a cuföfffreqı..fonc)'at fc/2, as indicated in figure

(3.7). The subband signals {v, [n]} are then dowıi..Sarrtpledby a factor of 3. In subband

coding applications, coders are inserted after the down-sampler in each subband channel

and each down-sampled subband signal is encoded by exploiting the special spectral

properties of the signal, such as energy levels, perceptual importance, ete. At the

receiving end, decoder are use to produce approximations of the original down-samp 1 ed

signals. The decoded signal are then up-sampled.by a factor of 2 and passed through a
two-band synthesis filter bank composed of the filters GO (z) and G1 (z) whose outputs
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are then added yieldingy[nj. The, analysis and the synthesis fılters in the QMF bank are

chosen so as to ensure that the reconstructed output y[nj is a reasonable replica of the

input x[nj. In practice, various errors are generated in this scheme. In addition to the

coding error, the QMF bank itself introduces several errors due to the sampling rate

alterations and imperfect fılters. We ignore the coding errors and investigate only the

errors generated by the down-sampl ers and up-samplers in the filter bank and their

effects on the performance of the system.

3.4.2 An Allas-Free Realization

A very simple alias-free two-band QMF batik is obtained when

(3.15)

The above condition, in the case ofa real coeffıcientfilter, implies

(3.16)

indicating that if Ho(z) is a low-pass filter, then H1(z) is a high-pass filter, and vice­

versa. In fact, equation (3.16) indicates that IHı(eİw)I is a mirror image of IHo(eİjl with

respect to the ır/2, the quadrature frequency. This has givehtisetotlıenaınequ.a.drature­

mirror fılter bank.

Substituting equation (3. 15) in equation (3.33), we arfiyeiat

(3.17)

Equations (3.15) and (3.17) imply that the two arıalysis fılters and the two synthesis

filters in the QMF bank are essentially detemiined from one transfer function Ho(z).

Moreover, equation (3.17) indicates that ifHo(z) is a low-pass fılter the G0(z) is also a

low-pass fılter, and Gı(z) is a high-pass filter. The distortion function T(z) is:

T(z) = !{H;(z)-H/ (z)}= !{H;(z)-iı; (-z)}
2 2

(3.18)
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A computationally efficient realization ofthe above alias-free two-channel QMF

bank is obtained by realizing the analysis and the synthesis fılters in polyphase form.

Let the two-band typel polyphase representation ofHo(z) be givenby

(3.19a)

From equation (3.15) it follows then that

(3.19b)

In matrix form equation (3.19a) and (3.19b)

[
H 0(z)] = [1
H1(z) 1

(3.20)

Likewise the synthesis fılters in matrix form,

-ı] (3.21)

Using equation. (3.20) and (3.21), we can rı:>rlt',:ıh,

in figure 3.8(a), which can be further

resulting in the computationally efficient

The expression for the distortion trarısfer fün.ction in this case, obtained by

substituting equations (3.19a) and (3.19b) inequatiöri(3.18), is given by

(3.22)
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-1z

x[n] rız H Eo(z)

z-ı

'---+I ı 2 H E1(z)

"---y
Analysis Filter Bank

ı 2

ı 2 Eo(z2)

(a)

y[n]

(b)

Figure 3.8 Polyphase Realization ofthe

Realization and (b)
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3.5 L-Channel QMF Bank

We now generalize the discussion of the previous section to the case ofa QMF

bank with more than two-channels. The basic structure of the L-channel QMF bank is

shown in fıgure 3 .9

1 uo[n] *-1 •ifit 1 Vo[n]..,I Ho(z)
[ Ho(z) 1

vo[n] ·I ı L

X[n]
~ 1 Ho(z) 1 vı[n] •f1 L ••••

Ho(z)~

Figure 3.9 The Basic L-Channel Structure.

3.5.1 Analysis of the L-Channel Filter Bank

We analyze the operation of the L-~muırn:a

domain. The expression for the z-transforms

are given by

of fıgure 3 .9 in the z­
ıımamı:;uıı:m, signal in fıgure 3.9

(3.23a)

(3.23b)

(3.23c)

where k = O, 1, ..... , L-1. The output ofthe QMFbarıkis given by

L-1

Y(z)= LGk(z)ı\(z)
k=O 

(3.24)

From equations (3.23a), (3.23b) and (3.23c), we fınally arrive at
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which can be written in compact form as

L-1
Y(z) = Laı(z)X(zW1)

l=O

where

(3.25)

(3.26)

1 L-1
aı(z)=-LH1c(zW[)G1c(z), o::;,/::;,L-l (3.27)

L k=O

3.5.2 Matrix Representation

It is convenient to examine the

matrix formalism. Define

A(z) = [a0(z) a1(z)

g(z) = [G0(z) G1 (z)

H(z) = ı Ho(zW1) Hı(zW}J

using a

(3.28a)

(3.28b)

(3.28c)

where the L x L matrix H(z) is called the aliasing conıporıerıt

above notations, equations, (3.26) reduces to

LA(z) = H(z)g(z)

The aliasing cancellation condition can now be written as

H(z)g(z) = t(z)

where

t(z) = [La0(z) O of = [LT(z) O of
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Using equation (3.28a) and the notation

X(z)

x(z) = ı X(zWj)

we can rewrite equation (3 .26) as

Y(z) = Ar (z)x(z)

or equivalently, as

derived using equation (3.29)

From equation (3.28), it follows that by

can determine the desired set of synthesis

g(z) = H-1(z)t(z)

(3.32)

(3.33a)

(3.33b)

analysis filters {Hk(z)},we

(3.34)

provided of course [detH(z)] t O.

if we set T(z) = z-n0 in the expression for

approach is difficult to carry out for a numoeı

the design of perfect reconstruction

representation.
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3.5.3 Polyphase Representation

Consider the type I polyphase representation of the kth analysis filter Hk(z):

L-1

Hk(z) = 2>-ıEkl(zı), k = -1 (3.35)

A matrix representation of the above set of equatio11sisgiven by

h(z) = E(zı)e(z) (3.36)

where
(3.37a)

(3.37b)

h(z)=[H0(z) H1(z)

e(z) = [1 z-1

and
Eoo(z)

E(z) =, Eıo(z)

e;(z) Eo,ı-ıCz)

E11 (z) Eı,ı-ı (z) (3.37c)

Eı-ıo(z) Eı-ıı(z) ···Eı~ıı-ı(i)' ' ' .

The matrix E(z) defined above is called the Type I pölyphase component matrix. Figure

(3.1Oa) shows the Type I polyphase representation of the analysis filter bank.

X[n] 1 ıııı vo[n]

ı ıııı vı[n]

•
••
• +

1 ı---1 -~n]

•

1 1 ıııı VL-ı[n]

(a) (b)

Figure 3.10 (a) Type I Polyphase Representation of the Analysis Filter Bank and

(b) Type II Polyphase Representation of the Synthesis Filter Bank.
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Likewise, we can represent the L synthesis fılter in a Type II polyphase form:

L-1
Gk(z) = z:z-cL-ı-ı) R1k(zL), k = 0,1, ....,L-1

1=0

(3.38)

in matrix form, the above set ofL equation can beteW:ritten as

here

(3.39)

(3.40a)

(3.40b)
g(z) = [G0(z) G1(z) ···

e(z)=[l Z ••• ZL-l]=eT(z-1)

X[n]

•
E(z) ı •

•

L

Figure 3.11 L-Channel QMF Bank

of the Analysis and
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1
w-k

e(zWf) = A(z)I t (3.41)

w-k(L-'-1)
L

where
(3.42)A(z) = diag[l z-1

Making use of equation (3 .43) in equation (3

some algebra:

desired result after

(3.43)

where the D is the L x L DFT matrix,

3.6 Filter Banks with Equal
By inserting a two-channel ruaxıuıauy ucı"'uu,ucıu

the up-sampler, we can generate a rour-cnanneıemaxımaııy xıecınıaıeu

shown in fıgure 3.12.

Hıo(z)

Q(z)HL(z)

Hıı(z)

x:[n] +

+-- Level l __. -+-- Level 2 --. .- Level 2 __. +- Level l -.

Figure 3.12 A Two-Level Four-Channel Maximally-Decimated QMF Structure.
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Since the analysis and the synthesis fılter banks are formed like a tree, the

overall system is of ten called a tree-structure filter bank. it should be noted that in the

four channel tree-structure filter bank of figure.3.12, .the two 2-channel QMF .bank in

the second level do not have to be identicaLIJ:oweyer,.ifthey are different QMF banks

the unequal gains and

of appropriate values

of the overall four

with different analysis and synthesis

unequal delays of the two 2-channel

need to be inserted at the middle to ensure

channel system.

An equivalent representation of the

shown in figure 3.13.

3.12 is

Ho(z)

Hı(z) 1-----..Hı(z)
y[n]

1 •••x[ı4ı

H3(z)ı~

Figure 3.13 An Equivalent Representation

Figure

The analysis and synthesis fılters in the equiva.lehfrepresentation are related to those of

the parent two-level tree-structured fi.lter bank asföllows:

H0(z) = Hı(z)H10(z2), H1(z) = Hı(z)H11(z2)

H2 (z) = HH (z)H10(z2 ), H3 (z) = HH (z)H11 (z2)

G0(z) = Gı (z)G10(z2), G1 (z) = Gı (z)G11(z2)

G2 (z) = Gn (z)G10(z2 ), G3 (z) = GH(z)G11 (z2)

(3.44a)

(3.44b)

(3.44c)

(3.44d)
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From equations (3.44a)-(3.44d) it can be seerı that each analysis filter Hıtz) is a

cascade of two fılters, one with a single pass-band and a single stop-band and the other

with two pass-band and two stop-bands. The<pa.ss-bahd'ofthe cascade is the frequency

range where the pass-bands of the two fıltersôve:flaplOrithe other hand, the stop-batıd

of the cascade is formed from three

ranges,the pass-bandof one coincideswith

the two stop-bandsoverlap.As a result, the gain resoôriSeS ôf

of the stop-band are not equal, resulting in

By continuing the process, QMF banks

easily constructed. It should be noted that

approach is restricted to a power-of-2, i.e., L =
(synthesis) branch have pass-bands of equal

modification to the approach we can design

having pass-bands ofunequal width as uescrıueu

In two of the frequency

in the third range,

cascaue in the three regions
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3.7 Filter Banks with Unequal Pass-Band Widths

Consider the two-channel maximally decimated QMF bank of figure 3.14(a). By

inserting another two-channel maximally deciıriated · QMF bank in the top subband

channel between the down-sampler and the upLsampler at the position marked by a *,

bank, as shown in figurewe arrive at a three-channel maximally uı::ı\.nııa.~ı::ıu

3.14(b).

x[n]

Ht(z)
Gı,(z)

HB(Z)

Gıı(z)
HH(Z)

Gı,(z)

HH(z)

G:ıı(z)

~I°"<,)

Hıı(z) r[G ~ı · Gıı(z)
(c)

Figure 3.14 (a) a 2-Channel QMF Bank, (b) a 3-Channel QMF Bank Derived From the

2-Channel QMF Bank, (c) a 4-Channel QMF Bank Derived From the 3-Channel QMF

Bank.
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The equivalent representation of the generated three-channel filter bank is indicated in

figure 3.15(a), where the analysis and synthesis filters are given by

Ho(z) =HL(z)HL(z2), H1(z) = HL(z)Hs(z2), Hı(z) = Hs(z),

G0(z) = GL(z)GL(z2), G1(z) = GL (z)GH(z2), G2(z) = Gs(z)
(3.45)

Typical magnitude response of the analysisfilters of.the two-channel QMF bank

of fıgure 3.14(a) and that of the derived three--chaıııieffiltef of figure 3.14(b) are

sketched in figure 3.16(a) and (b), respectively.

We can continue this process and generate rf~ur-channrı~rF bank from the

three-channel QMF bank offıgure 3.14(b). Byins~r-tingatwo-channeLQMF bank in the

top subband channel at the position marked bya.\l,resulting in the stı:u.ctüre of figure

3.14(c).
Its equivalent representation is indicated in figure3.t5(h), where

H0(z) =HL (z)HL (z2)H L (z4 ), Hı(z) =HL (z)H{(z2.)Hs(z4 ),

H2(z) = HL(z)Hs(z2), H3(z) = Hs(z), (3.46)
G0(z)=GL(z)GL(z2)GL(z4), G1(z)=GL

G2(z) = Gr(z)Gs (z2), G3(z) = Gs (z)

),
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Ho(z)

~~~·
·ı Ho(z) ~j ı 8 Htsi/J±J Cio(~) .•ı~

x[n]~ .• ·•• .. · .. • t -ı--~y[n]

~ı···•t•4iil•\ ... l·•••·02<z) 1

~I f>2\1·1;·~1/G3(z) I·
(b)

Figure 3.15 Maximally Decimated QMF Bankswith Unequal Pass-Band Width

Analysis (Synthesis) Filters.

Figure 3 .16 (C) shows typical magnffi/4e:;i~R~~esofJiı• 3!l")Yf,\i/ \~ııı:~sis)
fılters of the four-channel QMF bank of figure 3.14( c) derived from a parent two-

channel QMF batık with magnitude responses as indicated in figure 3.16(a).

Because of the unequal pass-band width of the analysis and synthesis fılters,

these structures belong to the class of nonuniform QMF banks. The tree-structured fılter

banks of fıgure 3 .14 are also referred to as octave band QMF banks.

Various other types of nonuniform fılter banks can be generated by iterating branches of

a parent uniform two-channel QMF in different forms. Nonuniform fılter banks are

often used in speech and image coding applications [14].
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.,
Ho Hı

o
(a)

Hı

(b)

(c)

Figure 3.16 Magnitude Response ofthe AnalysisFilters ofa (a) 2-Channel QMF Bank,

(b) 3-Channel QMF Bank Derived from a 2.•chatıı:teFQMF Bank, and(c)4--Channel

Bank Derived from a 3-ChantıeFQMF Barık.
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3.8 Summary

Digital Filter Bank in Multirate Signal Processing

The basics of the digital bank fılter and its application for multirate signal processing

was given. Uniform DFT fılters having differenr central frequencies, full and half Lth

band fılter was presented. Design and error analysis of the 2-channel QMF bank fılters

was given.
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Interpolation using Orthogonal Function

4. INTERPOLATION USING ORTHOGONAL FUNCTION

4.1 Overview

The theory of orthogonal rational functions has been widely studied over the last few

decades; see e.g. the comprehensive monograph [2]. A possible approach to the subject

is to consider orthogonal rational functions as generalizations of orthogonal

polynomials or equivalently, orthogonal polynomials form a special case of orthogonal

rational functions (with all poles fixed at infinity). Many classical results from

orthogonal polynomials, such as those concerning recurrence relations, quadrate

formulas, Favard theorems, moment problems, Paden approximation ete. have been

generalized to the case of orthogonal rational functions.

4.2 Orthogonal Functions

Let us consider a set of functions

t1 ::; t::; t2 and which are related to one another

ones of the set satisfy the condition

uı;;;ııuı;;;u over the interval

way that any two different

ı,

Jg,(t)g/t)dt = o
ı,

(4J)

where i * j

That is, when we multiply two different functicns and then integrate over the interval

from tıto tı the result is zero. A set of fuuctions which has this property is described as

being orthogonal over the interval from trto tz.

Now we consider that we have some arbitrary function f(t) and that we are

interested in f(t) only in the range from t1 to tı, i.e., in the interval over which the set of

functions g(t) are orthogonal. Suppose further that we undertake to write f(t) as a linear

sum of the functions gn(t). That is, we write
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Interpolation using Orthogonal Function

n

J(f) = C1g1 (r)+ C2g2 (r) + +Cngn(f) = LC,g,(t)
ı=l

(4.2)

in which the C's are numerical coefficients. Assuming that such an expansion is indeed

possible, the orthogonality of the g's makes it-very easy to compute the coeffıcients Cn.

Thus to evaluate Cn we multiply both sides of equation (4.2) by gn(t) and integrate over

the interval of orthogonality. We have

Because of the orthogonality, all of the terms orithe right-hand side of equation (4.3)

become zero with a single exception and we

G GfJ(t)gn(t)dt = en fg;(t)dt (4.4)

So that the coefficient that we are evaluating

ı,

JJ(t)gn(t)dt
C =-'-1, _

n g;(t)dt

The mechanism by which we use

away all the terms except the term

often called the "orthogonality sieve".

Next suppose that each gn(t) is selected-sô .that the denominator of the right-hand

member of equation (4.5) (which is a numeticatconstant) has the value

ı,fg,~(t)dt = 1
ı.

(4.6)

In this case
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Interpolation using Orthogonal Function

ı,

en= JJ(t)gn(t)dt (4.7)

When the orthogonal functions gn(t) are selected as in equation (4.6) they are

described as being normalized. The use of ııormalized function has the merit 'that' the
Cn's can then be calculated from equation (4.7) and thereby avoids the need to evaluate

equation (4.6)

4.3 Completeness of an OrthogonalSet,the Fourier Series

Suppose on the hand we expand a terms of orthogonal functions
as

(4.8)

and on the other hand we expand it as

(4.9)

that is, in the second case, we

(4.9). A moment's review of the

other is in error. We might be

grounds that in term is missing. The poi11t.isth~tsin1ply having a set of orthogonal

functions and having a procedure for evaluatirıg coeffıcients does not guarantee that the

series so developed can represent an arbitrary function. Such can well be the case even

when the orthogonal set consists of an infinite number of independent functions

necessary to allow an error free expansiôtı of an arbitrary function then the set is said to

be complete.

A most important orthogonal isef which is complete is the set of sinusoidal

functions (both sines and cosines) which generate the Fourier series. In this case,
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lnterpolation using Orthogonal Function

because of the periodicity of the functions, it is not necessary to specify the end points

of the interval over which the expansion is to be valid but only to specify the length of

the interval. (It may, however, be useful to specify the interval end points for the sake of

computational convenience in connection with evaluating the coeffıcients.) Specifıcally,

if the variable of interest is the time t and the .Jerıgtp of time interval is T, then the

Fourier expansion ofa function x(t) is

00 2mıt 00 21rflt
X(t) = LAn cos--+ LBn sin--·

n=O T n=O T
(4.10)

We take account of the fact that cos O = 1 and sin O = O, and applying thetıormalized

procedure we can express the expression ofx(t) in terms of orthogonaffü11ctiônas

X(t)= ~+ fAn,J2JTcos2mıt+fBn-J2/Tsin ımıt
...ıT n=I T x=I T

(4.11)

The orthogonal functions are given by

1/ Ii, ,J2ır cos( 2;t) and n:;t:O.

Any to such different functiorıS when ıuumprn,u

any function squared and integrated over T

In general case an expansion is valid only

the case an expansion is periodic with

periodic with period T then the expansion is

with period T can be expanded into a

coefficients are given by

and

also

perıoctıc function

(4.11) in which the

A0 = ~ JX(t)dt

An =#JX(t)cos(2;t)dı,

(4.12)

(4.13)
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(4.14)

where n * O

4.4 Trigonometric Polynomial Apprô:Ximitfön

Definition: A series ofthe form

(4.15)

is called a trigonometric polynominal of order

Theorern: Discrete Fourier series.

Assurne that {(tj, Yj)}, where y1 = J(tj) and have equally spaced

abscissas

2j;ı fi .t . =-n+-- or J =; N (4.16)

If f(x) is periodic with period 2n and 2M

polynornial TM(t) ofthe form equation (4.15)

exist a trigonornetric

N
2)f(tk)-TM(tk))2
k=l

The coefficients aj and bj of this

(4.18)

and

(4.19)
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Although forrnula (4.18) and (4.19) are defıned with the

they can also be viewed as numerical approximations to the ,ntı:>or!:I

formulas. Euler's forrnulas give the coeffıcients for the Fourier series of wmumv •.•o

function, whereas formula (4.18) and (4.19) give the trigonometric polynominal

coefficients for curve fıtting to data points. The next example uses data points generated

by the function f(t) = t/2 at discrete points. When more points are used, the

trigonometric polynominal coefficients get closer föthe Fourier series coeffıcients.

4.5 Expansion Signals in Special OrthogonalFuıı.ctfoııs

a) Legendre Polynomials

p (t) =-1- dn (t2 -ır
n 2nn!dtn

(4.20)

For the fırst three degree we have

P0(t) = 1

Pı_(t) = t
Pz(t) = (3t2 - 1) I 2

Legendre polynomials satisfy the following wuuıuvu.:,

{
t; (t)

p -t -n( ) - -Pn(t) g)

Figure shows Pn(t) for n = 0,1, 2, 3, 4, 5

1.4
~--

~ V"' ;:// j
- _.,,,......... // n

ıl
_.,,,............- P!/V ,,11

~
,, , ?, .•.. , L,--- // ... ., .,

~
, ,

tı,. ~ ...... ~. /i 
..._.... . _.;

' .. .... V"/ •••. p ı,~ ~·/_, ~ . ~ ;J, . P;
•.............. ' ~ ~ V ,"' /.,. >ı--..... ' .--..... .. ı,,. ı.~ ı_........... ; /

ı...--- ı-. •.. _ _ ..,,,,,,.1 ..... ... ,- .....••..

1.2

1.0

0.8

0.6

0.4

0.2

o
-0.2

-0.8

-0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Figure 4.1 Shows Pn(t) for n = 0,1, 2, 3, 4, 5
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The coefficients Cn are defined by

(4.21)

b) Cbebyshev Polynomial

way. Set To(t) = 1Chebeshev polynomials can be

and T1(t) = t and use the recurrence relation.

(4.22)

Graphs of the chebyshev polynomials To(t), in figure 4.2.

Figure 4.2 Graph
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The Chebyshev approximation can be written as
N

F(t) = LC1T/t)
J=I

(4.23)

The coeffıcients C1 are computed with the formulas:

(4.24)

and

(4.25)

Such an approximation is based on the nodes

(4.26)

c) Khaar Polynomial

1.4 ı--------

-1.4

1.4

O l ' 1
' 1-\4 ] ' . ~ ı ' ~

-2
1/8 2/8 3/8 4/8 5/8 6/8 7/8

Figure 4.3 Shows some Khaar Polynomials.
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Khaar polynomials are defıned by

2k-2 2k-1--<t<--
2n+I - - 2n+I

x;u)=i-Fn
o

2k-1 2k--<t<-
2n+I - - 2n+I

t (2: [o,ı]

Khaar functions are considerable practical

by digital logic circuitry and because

implemented by a polarity reversing switch.

generated

simply

4.6 Orthogonal Filters

4.6.1 Hermite Series

Consider the approximation ofthe

approximates the · function by a fınite expans

{-oo, co]

ı...,.,•• ..,.., series. The series

ôf:JiFiermite functions on an interval

N

f(t) = fN(t) = 2:anhn(t)
n=O 

where {a} are a set of suitably chosen

functions on the interval {-oo, co] which

(4.28)

The fırst few Hermite functions in this series are

ho (t) = exp(-t /2)
1l

(3.29)
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Jnterpolation using Orthogonal Function

ho(t)= 2texp(-t2 12)
Jrl/4 21/2

(3.30)

The remainder may be determined from the recurrence relation

2 ~ nhn+I(t) = t1/-hn(t)- --hn-I(t)
n+I n+I

(3.31)

Since the fundamental, ho(ı) , is the Gaussian function it can take the place of the filter

function. The fundamental Hermite function

f(t) = JN (t) = l{t (4.32)

In order to evaluate this expression the

different order is required. This correlation is

00 1
Jhn ('r)hm (t - r)dr = 2z;-m

(t2 /

-00

(4.33)

(4.32) we obtain

A 1 N 
!N(t) = - I.a);(t2 /

2 n=O 

(4.34)

Note that only those associated .wa6 •.• ,.,.

which is greatly simplifying the result.

= O} contribute,

of subscript

are

(4.35)
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The usefulness of this expansion is that by fıtting a Hermite series to the input function,

one also immediately • obtains the weights of the Laguerre series, {an}, which is the

correlation of the input with a Gaussian function.

4.6.2 Hermite Rodriguez Functions

Hermite-Rodriguez functions are similattotheHermite functiorıs except that a

Gaussian window modulates their amplitude. Theyiarerdefıried as

(4.36)

where hn(t) is an orthonormal Hermite tunctıon.

function is also a Gaussian function but of different.wi

function.

The fundamental is

hr0 (t) = expr--z ") (4.37)

The others may be determined by using the

Hermite functions and multiplying by the

simple expression also occurs for the

The correlation oftwo Hermite-Rodriguez rurıctıons

(4.38)

Note that the scale is reduced and

increased by the correlation onı:;,rı:ıtinn

Gaussian filter with the

using the Hermite series.

_ function

(4.38), the derivation of a

is similar to the fılter derived
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4.7 Signal Duration and Bandwidth

Application requires the duration and bandwidth of the orthogonal series to be

matched to the signal being modeled. The Hermite .series behaves as a window in the

time domain. Outside this window the Hermite functions decay exponentially, limiting

the effective range over which a function may be approximated to within the window.

The width of the Hermite series window is equal to the duration of the largest order

Hermite function, hN(t), occurring in the series .. Jhe useful range ofapplication of the

Hermite series interpolation is then

(4.39)

where the right hand side, equal to the duratiôri;qfytlie.Hermite functioniof örder {N},

may be determined via the Quantum mechanic sC>hitiôn of the Harmonic oscillator as

the location where the oscillator energy beconıesrneğative. The Fourier transform ofa

Hermite function is

(4.40)

In view of this isomorphic Fourier transform,>aisiınilar!Win.dowingeffect occurs-inthe

complex frequency domain. The useful bandwldtlids

1 w 1~ .J2N +1 1)

Together, the bandwidth and window widthbfeqıiatiofr.(4.27) aıid (4.28) define the

size, N, of the neural series required to appföximate a..function. Unlike the Hermite

series, which increases in duration with the ordef{N}öfthe function, the Hermite­

Rodriguez series is independent of N. Instead it is limited in duration by the Gaussian

amplitude modulation function to the range

1 t ,~ 3 (4.42)
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lnterpolation using Orthogonal Function

The Fourier transform of the Hermite-Rodriguez function is an associated Laguerre

function

F{hr»(t)} = (-jf lJ(w?/2) (4.43)

4.8 Scaling

Application to practical problems

procedure is illustrated for the

The scaled Hermite-Rodriguez series is

orthogonal series. The

t=s t l a
Scaling changes the duration and bandwidth

(4.44)

1 t ls3a (4.45)

and

1 w Is -JıN +1
a

(4.46)

respectively

Using scaled Hermite-Rodriguez functions,

r' =aı (4.48)
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4.9 Optimizing the Weights of the Orthogonal Series

The weights of the Hermite and Hermite-Rodriguez series were both obtained

using the same method, which is described iı1this sectiöri for the Hermite series. F'ôr a

continuous function defıned on {-oo, oo] , the · weiğhts ôfthe · Hermite series are optimum

with respect to the mean square error (equation (4.27)) when

"'
An = fa(t)hn (t)dt (4.49)

-«ı

We use a simple summation, similar to Euler integratiön, giveıfby

t=I

An = L a(ııti)hn (!iti)
1=0

(4.50)

where M is the integration step size which

this type of integration is that it is also

data, this type of numerical integration

Numerical integration is only an ı:ınnrnvin-ı

rate. A feature of

""mı.ııvu <lata. For random

Monte-Carlo integration.

continuous integration.

noise. To cope with these situations the

weights had been estimated with the

successive iterations of the following

(4.51)

where J.l is the feedback constant choseninfhe range O.Oto 1.0.
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lnterpolation using Orthogonal Function

4.10 Summary

In this chapter different sets of orthogonal fünctions may be chosen to represent

a given signal, and fılter orthogonal, fınally the expansion of the signals in special

orthogonal fünctions was introduced.
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5. PRACTICAL CONSIDERATION USING MATLAB

5.1 Overview
We investigate the process ofupsaınpling and downsaınpling signal it introduces

extra saınples between measured original saınples using lagrange interpolation and

orthogonal function practical band simulation of · systems are described by using
MATLAB program.

5.2 MATLAB Implementation

MATLAB provides a function called)hiliB.ear.to impleıneııtthis<ınapping. Its

invocation is similar to improve function, btitit}als() takes several fô:rrns för. different

input-output quantities. Here is the design procedur'eôfdigital fılters.

• Effect of'up-sampling in the frequencydôın.aiıı

• use fır2 to create a bandlimited input seq~~p.qe

>> freq= [O 0.45 0.5 I];

>> mag=[O1 O O];

>> x=fır2(99,freq,mag);

>> %evaluate and plot the input spectrum

>> [Xz,w]=freqz(x,1,512);

>> plot(w/pi,abs(Xz));grid

>> xlabel ('Normalized

>> title('Input Spectrum');
>> pause

>> %Generate the up-sampled sequence

>> L=input('Type in the up-sampling factôt==');

Type in the up-sampling factor=5

>> y=zeros(l,L *length(x));

>> y([l :L:length(y)])=x;

>> %evaluate and plot the ouput spectrum

>> [Yz,w]=freqz(y,1,512);

>> plot(w/pi,abs(Yz));grid

>> xlabel('Normalized frequcncy');ylabel('magnitude');
>> title('output spectrunı');

-·-----··---
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lnput Spectrum

1 1 1 I 1 1 1 l 1
1 1 ı 1 1 1 1 1 ı
1 1 t I ı I I I to.g~------(-----(---t-----;-- ----ı-----··:---···-ı-·-----:-----t-·----

O.S~------r---t·----r- "[: --r----r----r----r-----ı-------
:::f~ L ! .l L J +.L i ) _

Q) ı ı ı , ı ı ı ı r
"C 1 1 ı 1 1 1 f 1 1::ı l 1 1 I I I I I 1i 0.5 -----+----+ ---+----+---- +----+----+----+----+------
::i: : ' : : : : : : :

0.4 ı ı ; ı ı r r ı r
0.3~-----+ ----(-----[----- -(----f------[-----+----- (-------(-------
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O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized fi'equency

Figure 5.1 MATLAB Generated Input

• Illustrate ofup-sampling by an integer

>> N=input('Input length =');

Input length =50

>> L=input('Up-sampling factor =');

Up-sampling factor =3

>> fo=input('Input signal frequency =');

Input signal frequency =0.12

output spectrum

IH--- - -+-------!J\---·-t---- ı-------ı------- ,ı------•-----

-t-----r---- · r---- --r------ ~~4----- l-----

• :------:! -\----,:- -- --:-------:------- - ----t--l- :---• I t 1 1
1 l 1 1 1
1 l I l 1
1 1 1 1 1

___ : · 1 ··-.~.--.ı··_-_--- · .. --- ···ı ·--_ ···ı··-

----~-r --- !- - - r---- - ----- -r-J-----[L _

• ~------:------+----\!- - - - -1-- -- -------ı,- ----.--
-------\: -----·· -----··:··----- ------ :ı·.----ı,.---

ı• : ı,

Q3 Q4 Q5 Q6 Q7 QS Q9
Normalized fi'equency

81



Practical Consideration using MATLAB

• Generate the input sinusoidal sequence

>>n=O:N-1;

>> x=sin(2*pi*fo*n);

>> % Generate the up-sampled sequence

>> y=zeros(l,L *length(x));

>> y([l :L:length(y)])=x;

>> % Plot the input and the output sequences
>> subplot(2,1,1)

>> stem(n,x);

>> title('Input Sequence');

>> xlabel('Time index n');ylabel('Amplitude');
>> subplot(2,1,2)

>> stem(n,y(l :length(x)));

>> title(['Output sequence upsampled by',num.2!str(L)]);

>> xlabel('Time index n');ylabel('Amplitude');

Ol
cJ
:l.•....

Time index n
]1';~,ı(,;,:5.2 MATLAB Generatcd Illustrate ofUp-Sampling by an Integer Factor.
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• Effect of down-saınpling in the frequency domain

• use fir2 to create a bandlimited input sequence

>> freq=[O 0.42 0.48 1];

>> mag=[O 1 O O];

>> x=fir2(101, freq, mag);

>> % Evaluate and plot the input spectrum

>> [Xz, w]=freqz(x,1,512);

>> plot(w/pi,abs(Xz));grid

>> xlabel('Normalized frequency');ylabel('Magı:ıittide');
>> title ('Input Spectrum')

lnput Spectrum

t ı 1 1 1 1

0.9~------ -------;------- -----} -----r-----r-----;------- ------1------
0·8~------ -------;------- - ----1-------(---1-------1------- ------1------
o.n------ -------;------ r------ı-- ----r------1-------:------- -----ı------

1 •. _i / _J_ __[_ j / j _
O) o I l t 1 1 1
(Q 1 1 ! 1 1 I l

:::E ' ' ' ' ' ' '0'4
- ; i i i i i 1

0.3~------ - ----:------+----+-- --:-----+-----:------- ------:------
0.2~---- ı;-------;-------r------;-------:------;-------:------- ------:------
o.Hı---:-------;-------;------;----- -r------;-------;------- ------;------

QL-.~-'--~__.ı__~_J_~--1~--''--~-'--~-'-~--'-~--J.~~
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 5.3 MATLAB Generated Effect ofDown-Sampling in the Frequency Domain

using FIR to create a had-limited Input Sequence.



Practical Consideration using MATLAB

• Illustration of decimator process

>>cif

>> N=input ('length of input signal =');

length of input signal =100

>> M=input('down-sampling factor =');
down-sampling factor =2

>> f1=input('Frequency of fırst sinusoidal =');

Frequency offırst sinusoidal =0.043

>> f2=input('Frequency of second sinusoidal ==');

Frequency of second sinusoidal =0.031
>> n=O:N-1;

>> % Generate the input sequence

>> x=sin(2*pi*fl *n)+sin(2*pi*f2*n);

>> %generate the decimated output sequence
>> y=decimate(x,M,'fır');

>> %Plot the input and output sequences
>> subplot(2,l,1)

>> stem(n,x(l :N));

>> title('Input sequence');

>> xlabel('Time index n');ylabel('Amplitude');
>> subplot(2,l,2)

>> m=O:N/M-1;

>> stem(m,y(l :N/M));

>> title('Output sequence');

>> xlabel('Time index n');ylabel('Amplitude');



Q)
"O
::ı
:!:a..
E
<(

Q)
"O::ı
:!:a..
E
<(

Practical Consideration using MATLAB

lnput sequence

10 20 30 40 50 60 70 80 90 100
Tımejhdex n

Output sequence

5 10 15 35 40 45 50

Figure 5.4 MATLAB Generated
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Practical Consideration using MATLAB

• Illustration of Interpolation process

>>cif

>> N=input('Length ofinput signal =');

Length of input signal =50

>> L=input('Up-saınpling factor =');

Up-sampling factor =2

>> fl =input('Frequency of fırst sinusoidal =');

Frequency of fırst sinusoidal =0.043

>> f2=input('frequencyof second sinusoidal =');

frequency of second sinusoidal =0.031

>> % Generate the Inputsequence
>> n=O:N-1;

>> x=sin(2*pi*fl *n)+sin(2*pi*f2*n);

>> % Generate the interpolated output sequence
>> y=interp(x,L);

>> %plot the input and output sequence
>> subplot(2,l,1)

>> stem(n,x(l :N));

>> title('Input sequence');

>> xlabel('Time index n');ylabel('Amplitude');
>> subplot(2,l,2)

>> m=O:N*L-1;

>> stem(m,y(l :N*L));

>> title('Output sequence');

>> xlabel('Time index n');ylabel('Amplitude');
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Practical Consideration usirıgMATLAB

lnput sequence

Q)
'"O
::ı
:::o.
E
<( -1

~~~~~-'---~-,-L-~__J_~__J_~~L-~J__~__[_~__ı_~_Jo 5 10 5015 20 25 30 35 40 45
lime irıdı:ıx..n

Output sequence

Q)
'"O
::ı

:::o.
E
<(

~L_~_J_-----~'--'---""--L.._~_J_~~--'----'--'---1-='--'--._J_~~~~L____J
O 1 O 20 30 40 50 60 70 80 90 100

lime

Figure 5.5 MATLAB Generated
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Practical Consideration using MATLAB

5.3 Design of Algorithms and Devices for Upsampling

For the digital control and signal processing system the main problem is the

reconstruction ofa continuous-time signal frofü its samples when the rate of sampling is

not suffıcient. This problem becomes more coınplicated if the process has diffıculty of
access. For this purpose 'interpolatorfılter is

The application of complicated reconstru accomplished by performing
mathematical operations such as

orthogonal functions.

Application of the fıltering in these cases

reconstruction missing values between interpgıf!-L~!~o
actual.

The proposed algorithm of reconstruction

1. Let the samples Xı, X2, .... , XN be

2. Using Xı, X2, .... , XN generating intermçctraJ

and: · generation different

XNt,, •• , XNm•

x, IXı

X2 IX2

M
X2m

x, ı-lxN

3. The intermediate samples are fıltered by the fıltering operator Pp through

staircase approximation (operator Po). To obtain intcrmediate samples any
orthogonal or power serics polynomials can be used.

88



Practical Consideration using MATLAB

Application of this hybrid algorithm upsampling allow controlling the

interpolation process between the nodes of the interpolation and perform desired

smooth interpolation. Figure 5.6 shows the process ofthe upsampling.

X2 lnterpolated Signal

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1~~~~~-'--~-'-~~.L.....c..C--'-2....Co 1.5708 2.3562 3.

Figure 5.6 The

Now consider the principle of uı;;;:;ıgıuııg

Newton polynomial of second order.

From

By substituting

k
t =1+--=z wehave

i + 1)

where N is the total number of samples and m is the total number of
interrnedir.:e samples.
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Practical Consideration using MATLAB

Gni = 3 + 0.5Z2 - 0.5Z;

G(n+t)i = 4Z - Z3 - 3;

G<n+ı>; = 0.5Z2 - l.5Z + 2;
3

uni =L GniUi; i = 1,2,3,.....m
i=l

We limit with m = 1, in this case the Vahıes of the intermediate samples are
determined by the following equation

U; = 0.375Un + 0.75Un+l -0.125Un+2

This signal is the output of a

responses 0.375, 0.75, -0.124.

fılter to generate intermediate samples

ıuıvuı.;:,~ response filter with the impulse

the coeffıcients of the digital

n=3

Table 5.1 Coeffıcients of Digital

-0.11

-0.11

m Gcn+2)i

1 0.375 -0.125

2
0.55

0.22

3

0.65

0.37

0.16
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Practical Consideration using MATLAB

Ratio of resistances on each point is defıned in accordance to the table 5 .1

R

R<'.R<R:

Figure 5.7 Shows the Realization ofDigitaFFilt

The mathematical basic to design of realizing sinc(t)
function is obtained by the following expressıons

-c<) •

X(t) = LX[nT]sınw(t-nT)
n="' w(t-nT)

The value coeffıcients in table 5.1 can be determined as

G. = I sin1r[(m+lf1i-(i+Nk)J
nı k=-no -l (m + lf1 i-(i + Nk)]
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Practical Consideration using MATLAB

Table 5.2 Coeffıcients of FIR Filters for no = 100;N = 4

m Gli Gıi G3i G4i

1 0.604 0.604 -0.105 -0.102

2 0.843 0.330 -0.052 -0.122

3 0.467 0.732 -0.122 -0.075

Realization of fılter is shown in fıgure 5.8

Figure 5.8

Taking into account the advantages

and hardware implementation) it is

form, in real time systems.

Ef:ficiencyof reconstruction is increased

the behavior of the process. In this case

interpolating function is based on

reconstruction.

any

the

and pattem of

(\')_;.:.,



• Reconstructed Signal from its Samples with 5 Samples

>> x=O:pi/100:2*pi;

>> y=sin(x);

>> plot(x,y);

>> title('Original Signal')

fıgure

>> hold on

>> x=O:pi/2:2*pi;

>> y=sin(x);

>> stem(x,y,'fıll');

>> title('Sampled Signal')

figure

>> holdon

>> stem(x,y,'fıll');

>> stairs(x,y);

>> title('Stair Signal')

figure

>> set(gca,'xtick',[O*pi/4 pi/2 3*pi/4 pi

>> x=0:2*pi/100:2*pi;

>> y=sin(x);

>> xi=O:pi/2:2*pi;

>> yi=interpl(x,y,xi);

>> plot(x,y,xi,yi)

>> title('Interpolated Signal')

2*pi]);
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Practical Consideration using MATLAB

Original Signal

Q8

Q6

Q4

Q2

o

42

44

46

48

~ o 1 2 3 4 5 6

Stair Signal

0.8

0.6

0.4

0.2

o,

-0.2

-0.4

-0.6

-0.8

-1 o 1 2 3 4 5 6 7

Sarnpled Signal

0.8

0.6

0.4

0.2

2 3 4 5 6

lnterpolatecl Signal

Figure 5.9 MATLAB Implementation for Recôn.structedSigrial from its Samples with 5

Samples.

By 5 samples we cannot reconstruct the signal as shown in the fıgure.
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Practical Consideration using MATLAB

• Reconstructed Signal from its Samples with 9 Samples.

>> x=O:pi/100:2*pi;

>> y=sin(x);

>> plot(x,y);

>> title('Original Signal')

figure

>>holdon

>> x=O:pi/4:2*pi;

>> y=sin(x);

>> stem(x,y,'fill');

>> title('Sampled Signal')

figure

>>hold on

>> stem(x,y,'fill');

>> stairs(x,y);

>> title('Stair Signal')

figure

>> set(gca,'xtick',[O*pi/4pi/2 3*pi/4

>> x=0:2*pi/100:2*pi;

>> y=sin(x);

>> xi=O:pi/4:2*pi;

>> yi=interpl(x,y,xi);

>> plot(x,y,xi,yi)

>> title('Interpolated Signal')
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Practical Consideration using MATLAB

Original Signal

0.8

0.6

0.4

0.2

o

-0.2

-0.4

-0.6

-0.8

Stair Signal

0.8
ıt- ·-

il-- ·-

0.6

0.4

0.2

o

-0.2

-0.4

-0.6

-0.8

-1 o 4 5 62 3

Sampled Sigııal

0.8

0.6

0.4

0.2

-0.2

2 4 5 63

7

Figure 5.10 MATLAB Implementation with

9 U<UUIJJL\,.;),

By 9 samples we could reconstruct the signal )

this means if we increase the number and if decrease we

cannot.
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Practical Consideration using MATLAB

In figure 5.11 after inserting a new value of :s<1.111_pı~:s
the signal from its samples by using
The program is shown in appendix 2.

Xo(t) - Original signal

Xoc(t)- Reconstructed signal from original ;:)ruupıı;.;;,

Xuc(t)- Signal reconstruction using vu5ım.u

5.4 Summary

Extra samples between measured

and orthogonal function practical and ;:)uuuıauvı.ı

MATLAB program.

interpolation

was described by using
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Practical Consideration using MATLAB

5.4 Summary

Extra sarnples between measured original sarnples using

and orthogonal function practical and simulation of systems was

MATLAB program.
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CONCLUSION

The problem of saınpling and reconstruction of bandlimited signals were cönsıcterect

Interpolation properties of different orthogonal and power series ı.uııı.;uuıı.:ı

analyzed, Established that using any of orthogonal and Lagrange polynomials

give desired result, when the number of saınples less than the number of .:ıa..uı_pn""

defıned by Shannon.

To increase precision of reconstruction was proposed inserting extra

intermediate saınples between the original.sajnples and then orthogonal fıltering the
combination of original and extra saınples.

Inserting extra sanıples · (upsaınpling)\b~tween original saınples was realized by

different ways by changing the number of extra saınples and by modifying and by
selecting method of compııting.

Laboratory implan.tation using diğit~c;sigmıLprocessing toolbox of Matlab

based on different data<were established .tha.tfpfopösed ·· method allow to increase

precision öf reconstructiôllôfsignal, by compa.re.ôfpııra.policinterpolation
that is equivalent MAEcO:!::: 0.5380 and MAEc:!:::0.715
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APPENDIXl
DIAGRAM OF MA TLAB PROGRAM

Diagram of program reading combination of lagrange and orthogonal polynomials is ,
drawn below. ··

Signal generation

Original Signal

Sampling

lnterpo lating
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APPENDIX2
MA TLAB PROGRAM AND

t=0:2*pi/40:2*pi; }

s=0.35+sin(t+pi/2)+ 1.34*sin(2*t+pi/4); . ·.

plot(t,s,'r')

Signal Generation

hold on
a-xis([O 7 -2 3])

t=0:2*pi/4:2*pi;

s=0.35+sin(t+pi/2)+ 1

stem(t,s,'fill','k')

Original Sample

lnterpolating Signal

syms t k

hold ôn

xc=2.2975*zl

hold on

kl =0.3; k2=-0.2; k3=-0.6;

sl l =s(l)*kl +s(2)*k2+s(3)*k3;

s21=s(2)*kl +s(3)*k2+s(4)*k3;

s3l==s(3)*kl+s(4)*k2+s( 1 )*k3;

s4l==s(4)~kl+s(l)*k2+s(2)*k3;

xl c=sin(4*(t-(8*k*pi/4)))/(4*(t-(8*k*pi/4)));zl l=synısum(xl c,k,-2,2);

x2c=sin(4*(t-(8*k+ 1 )*pi/4))/(4*(t-(8*k+ l)*pi/4)); z22=symsum(x2c,k,-2,2);
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Upsampled and Original Sampled

x3c=sin(4*(t-(8*k+2)*pi/4))/(4*(t-(8*k+2)*pi/4)); z33=symsum(x3c,k,-2,2);

x4c=sin(4*(t-(8*k+3)*pi/4))/(4*(t-(8*k+3)*pi/4)); z44=symsum(x4c,k,-2,2);

x5c=sin(4*(t-(8*k+4)*pi/4))/(4*(t-(8*k+4)*pi/4)); z55=symsum(x5c,k,-2,2);

x6c=sin(4*(t-(8*k+5)*pi/4))/(4*(t-(8*k+5)*pi/4)); z66=symsum(x6c,k,-2,2);

x7c=sin(4*(t-(8*k+6)*pi/4))/(4*(t-(8*k+6)*pi/4)); z77=symsum(x7c,k,-2,2);

x8c=sin(4*(t-(8*k+7)*pi/4))/(4*(t-(8*k+7)*pi/4)); z88=symsum(x8c,k,-2,2);

ss=[s(l) sll s(2) s21 s(3) s31 s(4) s41]

Combitı.atiönLagrange and Orthogonal Interpolation }

xcl=s(l)*zl l+ sl 1 *z22+ s(2)*z33+ s21 *z44-ı>s(3)*z55+ s31 *z66+ s(4)*z77+ s41 *z88;

ezplot(xc l,[O 2*pi])

hold on

ss=[sl 1 s21 s31 s41];

tt=[pi/4 pi*3/4 pi*5/4 pi*7/4];

stern(tt,ss,':fill','m')

ss =

2.2975 0.6302 -0.5975 0.1198 -0.2802

n=I;
new_xc:1= [];
new_Xc = [ ];

for t=0:2*pi/40:2*pi

new_Xc(n)=Xc;
new_xcl(n)= xcl;

tt(n)=t;
n=n+l ;
end

plot(tt,new_Xc,'r:')
plot(tt,new_xcl,'r:')
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c=new _Xc-s 1;
cO=new_xc1-s1;

er_c=load('c.m');
er_cO=load('cO.m');

MAEc=mean(abs(er_c))

RMSEc=sqrt(mean(er_c.A2))

MAEcO=mean(abs(er_cü))

RMSEcO=sqrt(mean(er_c0./\2))

total=fsl' new Xc' new xcl ' er cer cü]- - - -

MAEcO=

0.5380

MAEc=

0.7156

RMSEcO=

0.6120

RMSEc=

0.9061
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The comparison of original signal with parabolic and proposed interpolation signal.

Original Parabolic proposed rorEr
1

Errorsignal interpolation interpolation \
C cOsı new :X:c n~w_xcl

-
2.2975 2.2970
2.5316 2.2259
2.6246 2.0466
2.5645 1.7739
2.3530 1.4293
2.0046 1.0395
1.5461 0.6339
1.0136 0.2425
0.4494 -0.1073
-0.1019 -0.3927
-0.5975 -0.5975
-1.0004 -0.7133
-1.2825 -0.7400
-1.4275 -0.6857
-1.4317 -0.5655
-1.3046 -0.3998
-1.0674 -0.2126
-0.7506 -0.0284
-0.3914 0.1297
-0.0293 0.2427
0.2975 0.2975
0.5563 0.2880
0.7224 0.2157
0.7825 0.0900
0.7349 -0.0733
0.5904 -0.2532
0.3706 -0.4258
0.1056 -0.5668
-0.1686 -0.6535
-0.4148 -0.6677 -0.2530 -0.2770
-0.5975 -0.5975 o o
-0.6875 -0.4385 0.2491 0.1036
-0.6645 -0.1945 0.4700 0.0472
-0.5195 0.1222 -0.6284 0.6417 -0.1089
-0.2562 0.4921 -0.5366 0.7482 -0.2804
0.1096 0.8898 -1.5738 0.7802 -1.4642
0.5507 1.2865 0.1576 0.7359 -0.3931
1.0314 1.6520 0.7366 0.6207 -0.2948
1.5107 1.9577 1.3654 0.4471 -0.1452
1.9460 2.1790 1.9242 0.2330 -0.0218
2.2975 2.2975 2.2975 o o

106


