
NEAR EAST UNIVERSITY

INSTITUTE OF APPLIED AND SOCIAL SCIENCES

DESIGN SIMPLE CRYPTOGRAPHY ALGORITHMS
FOR INTERNET BASl;:D EMBEDDED

MICROCONTROLLER

MED FOUAD MOSLEH ZOUROB

Master Thesis

Department of Computer Engineering

Nicosia - 2003

--~---

NEU JURY REPORT

DEPARTMENT OF
COMPUTER ENGINEERING

Academic Year: 2002-2003

STUDENT INFORMATION
Full Name Raed Fouad Mosleh Zourob

Undergraduate
dezree

BSc.Eng. I Date Received I 22 Novmber 1999

Institution Islamic Instituate of
Technology

CGPA 2.24

THESIS

Title I Design Simple Cryptography Algorithms For Internet Based Embedded
Microcontroller.

Description The aim of this thesis is to provide analysis of the embedded
microcontroller based systems, and to suggest suitable encryption algorithms for such
systems. One of the basic problems in this field is that the resources are extremely
limited and the main requirement is that the algorithm should occupy as little memory
as p_ossible, and also it should not demand large processing oowers.
Supervisor I Assoc. Prof. Dr. Doğan İbrahim I Department I Computer Engineering

JURY'S DECISION

The jury has decided to accept I reject the student's thesis.
The decision was taken unanimously I by majority.

JURY MEMBERS

Number Attending I 3 Date 29/07/2003

Assoc. Prof. Dr. Rza Bashirov , Member

Name
Prof. Dr. Fakhreddin Mamedov, Chairman of the jury

Assoc. Prof. Dr.Ilham Huseynov , Member

APPROVALS
Date
29/07/2003

Chairman of Department
Assoc. Prof. Dr. Doğan İbrahim

DEPARTMENT OF COMPUTER ENGINEERING
DEPARTMENT AL DECISION

Date: 29/07/2003

Subiect: Completion of M.Sc. Thesis

Participants: Prof. Dr. Fakhreddin Mamedov, Assoc. Prof. Dr. Rza Bashirov, Assoc.
Prof. Dr. Ilham Huseynov, Hani Albreem, Raid Haj Ahmed, Kamil Dimililer, Atif
Munir, Abd Alhay Nabhan, Rami Matar, Mohmmed Al Hamss, Khaled Almasri, Reyad
Bader.

DECISION

We certify that the student whose number and name are given below, has fulfilled all
the requirements for a M .S. degree in Computer Engineering.

CGPA

200211244 Raed Fouad Mosleh Zourob 3.714

Prof. Dr. Fakhreddin Mamedov, Committee Chairman, Dean of Engineering
Faculty, NEU

~ 'J j..'

Assoc. Prof. Dr. Rza Bashirov, Committee Memaer, Applied Math. And Computer
Department, E

Assoc. Prof. Dr. ilham Huseynov, Committee Member, CIS Department, NEU

W-
Assoc. Prof. Dr. Doğan İbrahim, Supervisor, Chairman of Compute Engineerin.g

Department, NEU

Chairman of Compute Engineering Department
Assoc. Prof. Dr. Doğan İbrahim

(J)ecficatecf to my ?dom and brothers

ACKNOWLEDGEMENTS

Special appreciation and gratitude to my supervisor Assoc. Prof. Dr. Doğan Akay,

Department of Computer Engineering, Near East University, for his precious advice,

intimate guidance and belief on my work and constant supervision throughout the MSc.

Degree.

I am also thankful to Prof. Dr. Fakhreddin Mamedov, Assoc, Prof. Dr Adnan Khashman

and Assoc. Prof. Dr Rahib Abiyev for their support during my studies at Near East

University.

I would like to thank examining committee chairman of the jury, members and

participants for there participate of this thesis.

I would like to thank my family for their constant encouragement support of my mother,

brothers and sister during the preparation of this thesis

I would like to express my gratitude to Near East University for the scholarship that

made the work possible.

Finally, I would also like to thank all my friends for their advice and support.

11

ABSTRACT

The development, over the last two years, of embedded web appliances can be

considered the logical outcome of certain, different trends of progress, manufacturers

concurrently began exploring possibilities in the embedded domain which could provide

needed services often highly customized and requiring but a small fraction of

investment on part of the customer. It is of no little consequence that the increase in

capabilities ofmicroprocessors fuelled the development in this field.

The term microcomputer is used to describe a system that includes a minimum of a

microprocessor, program memory, data memory, and input/output.

A microcontroller is basically a single-chip microcomputer with additional computer

such as timers, counters, analogue-to-digital counters and so on. An embedded

microcontroller is a microcontroller built inside an applications system, such as a

microwave oven, fridge, heavy equipment, cars etc.

The market of the web based embedded microcontroller applications is growing rapidly.

The main elective of this thesis is to investigate various security issues of embedded

microcontroller and devise an algorithm for secure transfer of data to an embedded

microcontroller system.

For this purpose, level low-cost, small size encryption algorithms have been studied and

suitable algorithms have been proposed in the thesis.

In addition to clearly understanding the anatomy of an internet appliance, we take a

brief look at the ways in which the appliance itself can affect the choice of internet

protocol and how the protocols affect, in tum, the appliance. A brief treatment of the

role of internet appliances in today's fast paced developments.

iii

ıv

LIST OF GLOSSARY

ARP Address Resolution Protocol: The TCP/IP protocol that translates an Internet

address into the hardware address of the network interface hardware.

Client A program that requests services from a server.

Client/server A style of computing that allows work to be distributed across hosts.

DNS Domain Name System: The name/address resolution service that uses a distributed

database containing address. DNS makes it easier to refer to computers by name rather

than numeric address (www.microchip.com -- instead of 198.175.253.68)

FTP File Transfer Protocol: A TCP/IP application, service, and protocol for copying

files from one computer to another.

HTML Hypertext Markup Language: The language used to write pages for the Internet.

HTTP Hypertext Transfer Protocol: The TCP/IP protocol for transferring pages across

the Internet.

ICMP Internet Control Message Protocol: The TCP/IP protocol used to report network

errors and to determine whether a computer is available on the network.

Internet The international collection of internets that use TCP/IP to work together as

one immense logical network.

IP One of the two main parts of the TCP/IP protocol suite. IP delivers TCP and UDP

packets across a network.

IP Address A 32-bit unique numeric address used by a computer on a TCP/IP network.

LCP Link Control Protocol: The protocol that negotiates the parameters used by the

link between two computers and is protocol within PPP.

NCP Network Control Protocol: The protocol within PPP that negotiates the type of

network connection made by the two computers.

V

POP3 Post Office Protocol version 3: The protocol that you use to download e-mail

from a POP3 mail server to your computer.

Port A number used by TCP and UDP to indicate which application is sending or

receiving data.

PPP Point-to-Point Protocol: A protocol that provides serial line connectivity (that is, a

dial-up with a modem) between two computers, between a computer and a network, or

between two networks. PPP can handle several protocols simultaneously.

Protocol Rules and message formats for communication between computers in a

network.

Protocol layers The divisions of a hierarchical network model. Each layer performs a

service on behalf of the layer directly above it. Each layer receives services from the

layer directly below it.

Protocol stacks A group of protocols that work together across network layers.

Server A computer program that provides services to clients, and/or the computer that

runs the server program.

SMTP Simple Mail Transfer Protocol: The TCP/IP protocol for sending and receiving

e-mail across a network.

Socket A data structure that allows programs on an internet to communicate. It works as

a pipeline between the communicating programs and consists of an address and a port

number.

TCP Transmission Control Protocol: One of the two principal components of a TCP/IP

protocol suite. TCP puts data into packets and provides reliable packet delivery across a

network (packets arrive in order and are not lost).

UDP User Datagram Protocol: A TCP/IP protocol found at the network (internet) layer,

along with the TCP protocol. UDP sends data down to the internet layer and to the IP

protocol. Unlike TCP, UDP does not guarantee reliable, sequenced packet delivery. If

Vl

data does not reach its destination, UDP does not retransmit as TCP does. Most

definitions provided by the book TCP/IP for Dummies 3rd Edition by Candace Lei den

and Marshall Wilensky and published by IDG Books Worldwide, Inc. ISBN 0-7645-

0473-8

EEPROMElectrically Erasable, Programmable Read-Only Memory. (Pronounced

"Double-E"-PROM.) A type of ROM that can be erased electronically

EPROMErasable, Programmable Read-Only Memory. A type of ROM that can be

erased by exposing it to ultraviolet light. Once erased, an EPROM can be

reprogrammed with a device programmer.

Embedded system. A combination of computer hardware and software, and perhaps

additional mechanical or other parts, designed to perform a dedicated function. In some

cases, embedded systems are part of a larger system or product, as is the case of an anti

lock braking system in a car. Contrast with general-purpose computer.

FPGA Field Programmable Gate Array. A type of logic chip, with thousands of

internal gates, that can be programmed. FPGAs are especially popular for prototyping

integrated circuit designs. However, once the design is finalized, hard-wired chips

called ASICs are often used instead for their faster performance and lower cost.

Firmware Embedded software that is stored as object code within a ROM. This name is

more common among the users of digital signal processors.

flash memory A RAM-ROM hybrid that can be erased and rewritten under software

control. Such devices are divided into blocks, called sectors, that are individually

erasable. Flash memory is common in systems that require nonvolatile data storage at

very low cost. In some cases, a large flash memory may even be used instead of a disk

drive.

high-level language A language, such as CIC++, Ada, or Java, that is processor

independent. When programming in a high-level language, it is possible to concentrate

on algorithms and applications without worrying about the details of a particular

processor.

~n ı -{
n• (_j ••• -.!"J, t:;

Embedded System

Host A general-purpose computer that communicates with the target via a serial port or

network connection. This term is usually used to distinguish the computer on which the

debugger is running from the embedded system that is being developed.

•••••••••••••••

HOST TARGET

12C
Inter-Integrated Circuit. (Pronounced "Eye Squared C.") An 12C bus is an inexpensive

type of chip interconnection that is popular on circuit boards. Compare with 1-Wire and

SPI.

ICE In-Circuit Emulator.

1/0 Input/Output. The interface between a processor and the world around it. The

simplest examples are switches (inputs) and LEDs (outputs).

1/0 device A piece of hardware that interfaces between the processor and the outside

world. Common examples are switches and LEDs, serial ports, and network controllers.

Also called a peripheral.

1/0 map A table or diagram containing the name and address range of each 1/0 device

addressable by the processor within the 1/0 space. 1/0 maps are a helpful aid in getting

to know the target.

1/0 space A special memory region provided by some processors and generally

reserved for the attachment of 1/0 devices. Memory locations and registers within an

1/0 space can be accessed only via special instructions. For example, processors in the

80x86 family have special 1/0 space instructions called in and out. Contrast with

memory space.

vu

Interrupt An asynchronous electrical signal from a peripheral to the processor. When

the peripheral asserts this signal, we say that an interrupt occurs. When an interrupt

occurs, the current context is saved and an interrupt service routine is executed. When

the interrupt service routine exits, control of the processor is returned to whatever part

of the software was previously running.

interrupt latency The amount of time between the assertion of an interrupt and the start

of the associated interrupt service routine.

interrupt service routine A piece of software executed in response to a particular

interrupt.

interrupt type A unique number associated with each interrupt.

interrupt vector The address of an interrupt service routine.

interrupt vector table A table containing interrupt vectors and indexed by interrupt

type. This table contains the processor's mapping between interrupts and interrupt

service routines and must be initialized before the first interrupt occurs.

intertask communication/synchronization A mechanism used by tasks and interrupt

service routines to share information or synchronize their activities or access to shared

resources. The most common building blocks of intertask

communication/synchronization are mutexes and semaphores. However, some operating

systems support more advanced mechanisms such as message queues or monitors.

Linker A software development tool that accepts one or more object files as input and

outputs a relocatable program. The linker is thus run after all of the source files have

been compiled or assembled.

memory map A table or diagram containing the name and address range of each

peripheral addressable by the processor within the memory space. Memory maps are a

helpful aid in getting to know the target.

viii

memory-mapped 1/0 A common hardware design methodology in which 1/0 devices

are placed into the memory space rather than the 1/0 space. From the processor's point

of view, memory-mapped 1/0 devices look very much like memory devices.

memory space A processor's standard address space. Contrast with 1/0 space.

Microcontroller A microcontroller is very similar to a microprocessor. The main

difference is that a microcontroller is designed specifically for use in embedded

systems. Microcontrollers typically include a CPU, memory (a small amount of RAM

and/or ROM), and other peripherals on the same chip. Common examples are the PIC

and 8051, Intel's 80196, and Motorola's 68HCxx series.

Microprocessor A piece of silicon containing a general-purpose CPU. The most

common examples are Intel's 80x86 and Motorola's 680x0 families

Opcode A sequence of bits that is recognized by the processor as one of the instructions

in its instruction set.

PROM Programmable Read-Only Memory. A type of ROM that can be written

(programmed) with a device programmer. These memory devices can be programmed

only once, so they are sometimes referred to as write-once or one-time programmable.

protocol stack Any set of communication protocols, such as TCP/IP, that consists of

two or more layers of software and hardware. It's called a stack because each layer

builds on the functionality in the layer below. For example, in TCP/IP parlance, the

lowest layer is called the physical layer. That's where the rubber meets the road; or,

more accurately, the bits meet the communications medium at the network interface.

Above that is the data link layer, which gives each device on the network its unique

address. These first two layers of the TCP/IP protocol stack are typically implemented

in hardware. Once the networked devices have addresses, they can communicate. That's

where layer three, the network layer, comes in. IP is just one of the protocols that exists

at this level in a TCP/IP stack; TCP and UDP are competing protocols at the transport

layer. Three more layers of software (session,presentation, and application) are defined

above those, thus completing the 7-layer OSI Reference Model. Only layers 1-2

(hardware) and 3-5 (software) are shown in this figure; some individual protocols are

ıx

X

excluded. When data is sent across the network, it generally begins at layer 5 or above,

travels down through the protocol stack on the sending system, out onto the network,

then back up the stack on the receiving system.

Pulse width modulation A technique for controlling analog circuits with a processor's

digital outputs. PWM is employed in a wide range of applications, from measurement

and communications to power control and conversion.

Target Another name for the embedded system. This term is usually used during

software development, to distinguish the embedded system from the host with which it

communicates.

DEDICATED

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF GLOSSARY

TABLE OF CONTENTS

i

ii

iii

iv

xi

TABLE OF CONTENTS

INTRODUCTION 1

1. EMBEDDED MICROCONTROLLERAND SECURITY 3

1.1. Overview 3

1.2. What is an Embedded System? 4

1.2.1. Definition of an Embedded 5

1.3. What is An Embedded System Anyway? 5

1.4. A Typical Embedded System 6

1.4.1. The Up Side of Embedded Programming 8

1.5. Embedded Web Server VS. Client 9

1.6. Security Incidents 10

1.7. Sources of Incidents 10

1.8. Basic Security Concepts 12

1.9. Why to Care about Security? 13

1.1O. Cryptography 13

1.10.1. Terminology 15

1.11. Web Security 15

1.11.1. Web Traffic Security Approaches 16

1.12. Summary 17

2. WEB APPLIANCES AND THE INTERNET PROTOCOLS 18

2.1. Overview 18

2.2. Internet Protocol (IP) 19

2.3. TCP Connection Establishment 19

2.4. Applications oflntemet Protocol 19

2.4.1. TCP/IP Networking 19

XI

xıı

2.4.2. TCP/IP Networking Promer 20

2.4.3. Transferring Data 24

2.4.4. The command is of the form 25

2.5. Web Appliances and the Internet Protocols 26

2.6. Web Appliances and their Implementation 29

2.7. Scope of Web Appliances 32

2.8. Summary 33

3. MICROCONTROLLERCRYPTOGRAPHY 34

3 .1. Overview 34

3.2. Enhancing Embedded Security 35

3.2.1 Encryption Is Not Enough 35

3.2.2. Attacking Interprocess Communications 36

3.3. Firmware Security 37

3.3.1. Security Lock 38

3.4. How to Design a 3DES Security Microcontroller 39

3.4.1. 3DES Secure Data Encryption/Decryption Application 39

3.4.2. Reference Design 40

3.5. RAM Memory 41

3.5.1. Encrypted Memory 41

3.5.2. Encryption Algorithm 44

3.5.3. Dummy Bus Access 44

3.5.4. Encryption Key 46

3.5.5. Application: Advanced Security Techniques 46

3.5.6. Avoid Clear Text 47

3.6. Avoid CRC or Checksum 47

3.7. Avoid Long Straight Runs of Code 47

3.8. Use Random values 47

3.9. Change Code 48

3.10. External Circuits 48

3.11. Tamper Protection 48

3.11.1. Secure Microcontroller Features 48

3 .12. Strong Cryptography with Weak Microcontrollers 49

Xlll

3 .13. Hardware Configuration 50

3.14. The Method 51

3.15. Longer Messages 52

3.15.1. Replay Attacks 52

3.15.2. Random Numbers 53

3 .15.2.1. 1-Wire Serial Communication 53

3.15.3. The SHA Device 53

3.15.4. Secret Rotation 54

3.16. Summary 54

4. INTERFACING & MICROCONTROLLERS 55

4.1. Overview 55

4.2. Interfacing the Parallel Port 56

4.3. Introduction to Universal Serial Bus 57

4.4. Interfacing The Serial Port 58

4.5. RS 232 C 58

4.5.1. Null Modems 59

4.6. Embedding PIC micro® Microcontrollers in the Internet 60

4.7. Design Representation 61

4.8. Microcontroller Architecture 63

4.9. Microcontroller 63

4.10. TCP/IP STACK & Embedded Microchip 66

4.11. Modem 67

4.12. Web Server Application 69

4.13. Client Application 71

4.14. Summary 73

5. CHOOSING A SECURITY ALGORITHM 74

5 .1. Overview 74

5.2. security Requirement in Embedded applications 74

5.3. Cryptography Basics 75

5.4. The Caesar Cipher 76

5.4.1. The algorithm 77

xıv

5.4.2. Translations 77

5.5. Tiny Encryption Algorithm (TEA) 83

5 .5 .1. The Algorithm 84

5.5.2. Basics of the routine 84

5.5.3. Tests 85

5.5.4. Usage 86

5.6. Combining Caesar and Simple TEA 86

5.7. Using Variable key 90

5.8. Microcontroller implementation using a Timer to Create keys 93

5.9. Current Software and Hardware Cryptography 97

6. CONCLUIONS 99

REFERENCES 100

APPENDX "Al" Al.1

APPENDX "A2" A2.1

APPENDX "A3" A3.1

INTRODUCTION

Microcontrollers are general purpose microprocessors which have additional parts that

allow them to control external devices. Basically, a rnicrocontroller excites a user

program which is loaded in its program memory. Vader the control of this program,

data is received from external devices, manipulated and then sent to external output

devices.

Embedded systems are designed to reform specific, usually dedicated tasks. These

systems are designed using microcontroller as their processing elements. Such systems

have very limited resources, usually very small program and data memories, and low

processing speed; the major advantage of rnicrocontroller systems is their externally low

cost.

"I

The aim of this thesis is to provide analysis of the embedded microcontroller based

systems, and to suggest suitable encryption algorithms for such systems. One of the

basic problems in this field is that the resources are extremely limited and the main

requirement is that the algorithm should occupy as little memory as possible, and also it

should not demand large processing powers.

The thesis consists of the introduction and five chapters.

Chapter 1 describes the basic principles of embedded systems and their security

requirement, brief overview on viruses and related threats.

Chapter 2 present the commonly used internet protocols and also describes how the web

appliances can be designed using these protocols. IP Addressing and message/packet

sending criteria is defined.

Chapter 3 studies the basic internet security issues with respect to rnicrocontrollers and

presents some of the techniques used to enhance internet security and available

cryptographic engines.

1

Chapter 4 the principles of microcontroller systems and their interfacing techniques are

decided.

Chapter 5 is the main part if the thesis and this chapter describe various small- size

encryption algorithms which are suitable to embedded controller. Programs are

developed by the author to simulate carious algorithms in order to access their

suitability to low-cost microcontroller based security applications.

Finally conclusion section presents the results of the study and values recommendations

for future work in this field.

2

1. EMBEDDED MICROCONTROLLER AND SECURITY

THREATS

1.1 Overview

The growth in connectivity with regards to speed of connection and number of people

connecting to the Internet has spawned great many web-related services. Our focus is

principally on microcontroller based devices able to connect to the Internet without

using a PC.

The chip we have chosen is iChip S7600-A and the iReady tuner technology which

offers more efficient and less cost solutions using TCP/IP stack, it is a completely self

contained, hardware drop-in solution providing dial-up connectivity to the Internet. We

have chosen the Seiko Instruments iChip because it is ideal for any application for

uploading files over the Internet through secure means in an automatic mode, having the

critical communications functions in pure hardware means extremely high reliability as

there is no risk of a software 'crash' as is seen in so many PC software programs. The

controller can support virtually any type of input ballot medium, such as punch card,

touch screen, or optical mark sense, just by inserting a different PCMCIA card which

contains the appropriate applications software. It requires no monitor or keyboard.

Election officials simply press one button on the device to scan ballot information and

another button to send the collected results, via a modem, to a central location.

Traditionally the PC was considered the principal device that could connect to the

Internet. Only recently have developments made it possible to build microcontroller

based systems that can negotiate a connection to the Internet. These developments are

listed as:

The convergence of network standards. Before the acceptance of TCP/IP as an Internet

standard, manufacturers developed proprietary, largely incompatible standards, making

it difficult to generate services uniformly to vast number of users.

The availability of custom made ASICS as well as off the shelf chips incorporating both

a CPU as well as network components.

3

4

The emergence of software tools which help designers with the task of packing their

product with more features.

This thesis focuses on the various aspects of Web Appliances, their anatomy, purpose

and relevance.

1.2. What is an Embedded System?

This seems like an almost impossible question to answer since the topic is so vast. The

thing is, embedded systems are all around us. They can be found in cars, watches,

mobile phones, stereos, hand-held devices, as well as elevators, just to name a few.

Nowadays, almost everything electric-powered contain some sort of embedded

Intelligence, you can say that all these everyday things get their "smarts" from

embedded systems [22].

An embedded system consists of computer hard wares and soft wares that in turn form a

component of a larger system that is expected to function without human interference.

Embedded Systems are designed to perform a specific, dedicated function. They

typically have tight constraints on functionality and implementation. They also must

guarantee real-time operation (RTOS) reactive to external events, conform to size and

weight limits, budget power and cooling consumption, satisfy safety and reliability

requirements, and meet cost targets as well as time constraints[4].

An example of embedded systems can be found in your car's antilock braking system. It

uses a real-time operating system (RTOS) acting as its "brain". A RTOS combines

predictable response times and behaviors and can coordinate functions without missing

a beat.

So in other words, a real-time operating system (RTOS) will guarantee speedy delivery

of certain functions within an appropriate response time[6].

In addition, embedded systems consist of a single microprocessor board with the

software stored in ROM ROM stands for Read-Only Memory, which is a small memory

allowing fast access to permanently-stored data, yet prevents addition to or modification

of the data. The software in the system may perform anything from data logging

functions to advanced computations. An embedded system may even include some sort

of operating system. In recent years, Linux has become a popular choice to be

embedded into many applications. Oftentimes an embedded system is simple enough to

be written as a single program.

Embedded systems employ software that is usually written in high-level languages such

as "C" and is targeted to run on an "embedded" boards or systems. They are also

designed to be invisible to users, thus although they are everywhere, many people have

no idea what they are [4].

1.2.1. Definition of an Embedded System:

An "embedded system" is any computer system or computing device that performs a

dedicated function or is designed for use with a specific embedded software application.

Embedded systems may use a ROM-based operating system or they may use a disk

based system, like a PC. But an embedded system cannot be used as a commercially

viable substitute for multipurpose computers or devices [37].

1.3. What is An Embedded System Anyway?

Typically embedded systems are microcomputer systems with software self-contained

in Read-Only Memory (ROM) and without a readily-recognizable software operating

system. In essence, the programmer has written a specialized operating system in the

process of making the hardware function. Embedded systems are most often "dedicated"

microprocessor environments with single functional utilization. Frequently, the systems

are "black boxes" associated with manufacturing equipment, process control devices, or

similar industrial hard ware. These boxes generally provide the common benefits of

directing, controlling, or monitoring specific functions of specific devices. They all

contain microcomputer systems with software that is totally ROM-based, and they

usually have programmable interfaces. The capabilities of individual systems, the de

vices attached, and the methods of gathering information from the operator and of

disseminating information to the operator (operator/interface), are ostensibly unique, but

have similar conceptual and technical characteristics [4].

With these common traits revealed, there is still no way to precisely define those

systems that fall into the embedded category. A comprehensive and concise definition

5

of embedded systems probably does not exist. Even the United States Department of

Defense does not attempt definition within its series of "Military Standard" publications.

If the operating system were removed from a typical personal computer (PG), and all

the programs that were to be executed in a given environment were made to reside in

ROM, then the modified PG might be considered an embedded system with processing

dedicated to predetermined functions, but this is a stretch.

Better examples are found inside consumer products. Many American homes have

microwave ovens, dishwashers, security systems, audiovisual entertainment centers, or

communications equipment that use programmable embedded systems to monitor or

control these units. The owner can "program" features of the device via touch panels

buttons, or hand-held remote controllers to accomplish a desired end and the system

does the rest. Some controlled operations are sequential, some are timed, and some are

one-shot commands to the equipment.

In this case, it appears that minimal cost and optimum design could be achieved with a

PC and a versatile, pre-emptive, multitasking operating system. In addition, the PC

approach would provide the requisite interoperability and flexibility to accommodate

the fast-paced evolution of computer technologies, as well as the slower, but ultimately

ensuing, evolution of customer requirements. Considerations of this nature may prove to

be a real concern for manufacturers of specialized equipment in many industrial areas.

1.4. A Typical Embedded System

Embedded systems are used in a vast array of applications across many industries;

however, most that will be encountered by consultants and others outside a specific

market environment will be of a control nature for plant floor equipment or process

control. Manufacturers of less complex, small systems seldom ask for help outside their

organizations. Those who deal in larger and more complex systems frequently have

other engineering focus, greater workloads, and a myriad of other reasons to ask for

occasional outside help.

Technically, there are prevalent and common characteristics of embedded systems.

From a programmer's perspective the following components are a minimum: Central

Processing Unit (CPU), Random Access Memory (RAM), Programmable Read Only

6

Memory (PROM) or Erasable PROM (EPROM), and Input/Output (I/0) space [4].

Since many embedded systems contain time-critical functions, another of ten essential

components is one or more system timers. Timer units are available in a variety of

commercial forms. For boxes built around the VME or STD system bus architectures,

timers are frequently included as features of CPU boards manufactured for these

systems, or as separate specialized timer boards." CPUs sometimes provide timers for

programming purposes; Intel's 80186, for example, have three.

Device interaction is the sole reason for the system's existence, so application-specific

devices are also ultimate system essentials. One or more devices will be used for

operator interaction with the system (operator interface). All devices will be attached to

the system via the I/O space. From the programmer's perspective, a baseline embedded

system is shown in Figure 4.2

I/O Space

ROM
Operator
interface

Timer

Device 1

Device "N"

Figure 4.2 Baseline Embedded System

Obviously, the devices above can vary drastically from environment to environment.

For the spray equipment mentioned earlier, there might be multiple heaters, pumps,

indicator lights, and interlocks as a minimum. A serial communications interface could

allow remote configuration, and certainly a display and keypad would be required.

Feedback from a conveyer could allow automatic adjustment of pump pressure for

varying production-line speeds. For a carpet metering and cutting machine, there could

be multiple photo eyes and conveyer motors. A measuring wheel, a cutting mechanism,

7

a display, and a keypad would be desirable. Several serial communications interfaces

could allow centralized reporting and/or bar-coded inputs for preprinted orders.

Operator interfaces are equally disparate devices. Control boxes for large plant floor

machinery sometimes use serial interfaces to giant high-resolution color screens

sporting Carroll infrared touch technology. The huge physical size allows a single

individual in the plant to monitor several machines from a comfortable distance. Stand

alone embedded units typically have small keypads and small liquid crystal diode

(LCD) displays that show only a few lines of text, or only a single text line of a few

characters. This allows more economical construction when feasible. For further

economy under the right circumstances, interfaces may even be digital switches for

operator input with only indicator lights for problem determination.

Regardless of the devices used in the system, the programmer will be required to write

some level of driver for each device. The depth of knowledge required for a single

device will depend entirely on its purchased capabilities and system specific

implementation details.

1.4.1. The Up Side of Embedded Programming

It is precisely the diversity of devices and the varying depth of knowledge required

about each one, which makes embedded systems programming so attractive to those.

who choose the field. There is a constant learning process. Fun for the initiated includes

the substantial timing challenges found in the "realtime" aspects of device coordination.

In addition, since computer operating systems shield programmers from many low-level

functions of hardware and peripheral I/0, the programming of embedded systems

requires more in-depth knowledge of how platform: components function and interact

than does programming under an operating system.

Embedded systems programming is much closer to the hardware. In actual practice,

restraints of economy can affect the quality and capability of selected components for a

given system. When organizations must require that specific system board costs do not

exceed a given figure, substantial programming challenges that translate to "drudgery"

sometimes ensue as with anything there are good and bad projects.

8

9

The makeup of excellent programmers is still an elusive compound. Some are graduate

musicians and airplane pilots rather than computer engineering majors. Whatever the

ingredients, they share the common trait of project dedication born of genuine interest.

All enjoy savoring the fruits of their labor when, for example, a control unit does

exactly what it is supposed to do. A casual observer looking at computer-controlled

machinery would see only moving parts; the programmer sees the coordinated

execution of each code thread performing its function. Sometimes this is reward

enough; but for those programmers with a less technical bent, embedded systems

programming can be a real pain. Some things are better left unknown, and, to many, this

includes device details and other aspects of the field.

1.5. Embedded Web Server VS. Client

When most people think of the Internet, they think about viewing web pages filled with

information. A computer of some sort provides the necessary resources required to

support a web server. The computer has significant hard disk space to hold the web

pages and ancillary data files such as data sheets, application notes, etc. It also has a

high-speed communications interface such as a Tl line, a 56K modem, etc., that can

serve this information to a user quickly. Embedded systems are quite different from

standard web servers. They have limited resources in terms of memory space and

operating speed. Embedded systems usually work with a few kilobytes, up to several

megabytes of memory and operate up to 40 MHz. Typical PCs have several gigabytes

of memory storage and are starting to operate in the gigahertz range. Therefore, web

servers are not really \)ractical for embedded applications, but the embedded web client

is very practical. One of the most viable embedded web client applications is a vending

machine.

The microcontroller keeps track of all functions:

• Price for each item.

• Number of items left.

• Amount of deposited money.

• Amount of money available for change.
One could also argue that the machine could keep track of the name or type of items

that it is dispensing. On a preset interval (such as once a night between 11 PM and 4

AM), the vending machine would dial out and make a connection to a local Internet

Service Provider (ISP). The machine would then connect to a server and upload all the

information. If the machine is out of change, full of deposited money, or needs

restocking, a report can be generated detailing exactly what is required. The service

person can now make one trip to the machine because they know exactly what that

particular machine needs. The machine can also call out if an operating error has been

detected. This may include the vending machine is tilted to improperly dispense items,

or lights have burned out. A service report is generated and the service person knows

exactly what is needed to fix the problems. Since we have established a full duplex link,

the embedded Internet connection can provide additional benefits, such as

reprogramming the microcontroller with new firmware to fix bugs, or new pricing

structure for items.

A security incident is any network-related activity with negative security implications.

This usually means that the activity violates an explicit or implicit security policy (see

the section on security policy). Incidents come in all shapes and sizes. They can come

from anywhere on the Internet, although some attacks must be launched from specific

systems or networks and some require access to special accounts. An intrusion may be a

comparatively minor event involving a single site or a major event in which tens of

thousands of sites are compromised. (When reading accounts of incidents, it is observed

that different groups may use different criterion, for determining the bounds of an

incident.). A typical attack pattern consists of gaining access to a user's account, gaining

privileged access, and using the victim's system as a launch platform for attacks on

other sites. It is possible to accomplish all these steps manually in as little as 45

seconds; with automation, the time decreases further.

1.6. Security Incidents

1. 7. Sources of Incidents

It is difficult to characterize the people who cause incidents but I have collected the

information from different location. like "Mr. James Niccolai" April 04, 2003 said that

"The number of computer security incidents and attacks detected at businesses

worldwide soared by 37 percent between the fourth quarter of2002 and the first quarter

10

11

ofthis year, fueled in part by a surge in the number of mass-mailing worms", according

to a report due out Monday from Internet Security Systems Inc [46].

"1123 incidents were reported to AusCERT by the end of February 2000, compared

with 235 incidents by the same time last year," Mr. McMillan said "The largest reported

increase was in the commercial and education sectors" [47].

The number of security-related incidents reported to the Team each year since 1988 to

1998 from Computer Emergency Response Team [48]. Computer Security Incident

Response Teams [49].

An intruder may be an adolescent who is curious about what he or she can do on the

Internet, a college student who has created a new software tool, an individual seeking

personal gain, or a paid "spy" seeking information for the economic advantage of a

corporation or foreign country. An incident may also be caused by a disgruntled former

employee or a consultant who gained network information while working with a

company. An intruder may seek entertainment, intellectual challenge, and a sense of

power, political attention, or financial gain.

Years of Noof
incidence incidence

1988 6
1989 132
1990 252 60000

1991 406
1992 773

50000

1993 1334 40000
1994 2340
1995 2412 30000
1996 2573
1997 2134 20000

1998 3734 10000
1999 8268

- •• n n n n n ~
2000 21756 o I I I I I I I I I I I

2001 52658 9,'b P;~ p.,'\- ~b4 ~'o p.,'b ~~ ~"'
2002 43136 "Oj "Oj ~ "Oj ~ ~ ~ ~

2003 NIA

Figure 1.1 Growths in Security Incidence [10], [46], [47], [48], [49]

One characteristic of the intruder community as a whole is its communication. There are

electronic newsgroups and print publications on the latest intrusion techniques, as well

as conferences on the topic. Intruders identify and publicize un-configured systems;

they use those systems to exchange pirated software, credit card numbers, exploitation

programs, and the identity of sites that have been compromised, including account

names and passwords. By sharing knowledge and easy-to-use software tools, successful

intruders increase their number and their impact.

The data for 1995 and partial data for 1996 show a slowing of the rate at which

incidents are reported to the CERT/CC (perhaps because of sites' increased security

efforts or the significant increase in other response teams formed to handle incidents).

However, the rate continues to increase for serious incidents, such as root compromises,

services outages, and packet sniffers.

1.8. Basic Security Concepts

Three basic security concepts important to information on the Internet are

confidentiality, integrity, and availability. Concepts relating to the people who use that

information are authentication, authorization, and nonrepudiation.

When information is read or copied by someone not authorized to do so, the result is

known as loss of confidentiality. For some types of information, confidentiality is a very

important attribute. Examples include research data, medical and insurance records, new

product specifications, and corporate investment strategies. In some locations, there

may be a legal obligation to protect the privacy of individuals. This is particularly true

for banks and loan companies; debt collectors; businesses that extend credit to their

customers or issue credit cards; hospitals, doctors' offices, and medical testing

laboratories; individuals or agencies that offer services such as psychological

counseling or drug treatment; and agencies that collect taxes.

Information can be corrupted when it is available on an insecure network. When

information is modified in unexpected ways, the result is known as loss of integrity.

This means that unauthorized changes are made to information, whether by human error

or intentional tampering. Integrity is particularly important for critical safety and

12

financial data used for activities such as electronic funds transfers, air traffic control,

and financial accounting [8].

1.9. Why to Care about Security?

It is remarkably easy to gain unauthorized access to information in an insecure

networked environment, and it is hard to catch the intruders. Even if users have nothing

stored on their computer that they consider important, that computer can be a "weak

link", allowing unauthorized access to the organization's systems and information.

Seemingly innocuous information can expose a computer system to compromise.

Information that intruders find useful includes which hardware and software are being

used, system configuration, type of network connections, phone numbers, and access

and authentication procedures. Security-related information can enable unauthorized

individuals to get access to important files and programs, thus compromising the

security of the system. Examples of important information are passwords, access control

files and keys, personnel information, and encryption algorithms.

The consequences of a break-in cover a broad range of possibilities: a minor loss of

time in recovering from the problem, a decrease in productivity, a significant loss of

money or staff-hours, a devastating loss of credibility or market opportunity, a business

no longer able to compete, legal liability, and the loss oflife.

1.10. Cryptography

One of the primary reasons that intruders can be successful is that most of the

information they acquire from a system is in a form that they can read and comprehend.

When you consider the millions of electronic messages that traverse the Internet each

day, it is easy to see how a well placed network sniffer might capture a wealth of

information that users would not like to have disclosed to unintended readers. Intruders

may reveal the information to others, modify it to misrepresent an individual or

organization, or use it to launch an attack. One solution to this problem is, through the

use of cryptography, to prevent intruders from being able to use the information that

they capture(lO].

13

Encryption is the process of translating information from its original form (called

plaintext) into an encoded, incomprehensible form (called ciphertext). Decryption refers

to the process of taking ciphertext and translating it back into plaintext. Any type of

data may be encrypted, including digitized images and sounds.

Cryptography secures information by protecting its confidentiality. Cryptography can

also be used to protect information about the integrity and authenticity of data. For

example, checksums are often used to verify the integrity of a block of information. A

checksum, which is a number calculated from the contents of a file, can be used to

determine if the contents are correct. An intruder, however, may be able to forge the

checksum after modifying the block of information. Unless the checksum is protected,

such modification might not be detected. Cryptographic checksums (also called

message digests) help prevent undetected modification of information by encrypting the

checksum in a way that makes the checksum unique.

The authenticity of data can be protected in a similar way. For example, to transmit

information to a colleague by Email, the sender first encrypts the information to protect

its confidentiality and then attaches an encrypted digital signature to the message. When

the colleague receives the message, he or she checks the origin of the message by using

a key to verify the sender's digital signature and decrypts the information using the

corresponding decryption key. To protect against the chance of intruders modifying or

forging the information in transit, digital signatures are formed by encrypting a

combination of a checksum of the information and the author's unique private key. A

side effect of such authentication is the concept of nonrepudiation. A person who places

their cryptographic digital signature on an electronic document cannot later claim that

they did not sign it, since in theory they are the only one who could have created the

correct signature.

Current laws in several countries, including the United States, restrict cryptographic

technology from export or import across national borders. In the era of the Internet, it is

particularly important to be aware of all applicable local and foreign regulations

governing the use of cryptography.

14

15

1.10.1. Terminology

Encryption was the first cryptographic operation used to ensure secrecy or

confidentiality of information transmitted across an insecure communication channel.

The encryption operation takes a piece of information (also called the message, message

block, or plaintext) and translates it into a cryptogram (ciphertext or codeword) using a

secret cryptographic key. Decryption is the reverse operation to encryption. The

receiver who holds the correct secret key can recover the message (plaintext) from the

cryptogram (ciphertext).

The step-by-step description of encryption (or decryption) is called the encryption

algorithm (or decryption algorithm). If there is no need to distinguish encryption from

decryption, we are going to call them collectively ciphers, Crypto algorithm or

cryptosystems.

Private-key or symmetric cryptosystems use the same secret key for encryption and

decryption. More precisely, the encryption and decryption keys do not need to be

identical the knowledge of one of them suffices to find the other (both keys must be

kept secret).

Pnb 1 ic-key or asymmetric cryptosystems use different keys for encryption and

decryption. The knowledge of one key does not compromise the other. [8].

1.11. Web Security

Virtually all businesses, most government agencies, and many individuals now have

Web sites. The number of individuals and companies Internet access is expanding

rapidly, and all of these have browsers. As a result, businesses are enthusiastic about

setting up facilities on the Web for electronic commerce. But the reality is that the

Internet and the Web are extremely vulnerable to compromises of various sorts. As

businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book (several are

recommended at the end of this chapter). In this chapter, we begin with a discussion of

the general requirements for Web security and then focus on two standardized schemes

that are becoming increasingly important as part of Web commerce: SSL/TLS and SET.

TCP

S/MIMES I PGP SET

Kerberos SMTP STTP

UDP TCP

lP

c) Application level

1.11.1. Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The varıous

approaches that have been considered are similar in the services they provide and. to

some extent, in the mechanisms that they use, but they differ with respect to their scope

of applicability and their relative location within the TCP/IP protocol stack, Figure 1.2

illustrates this difference. One way to provide Web security is I use IP Security (Figure

1.2a). The advantage of using IPSec is that it is transparent to end users and applications

and provides a general-purpose solution. Further IPSec includes a filtering capability so

that only selected traffic need incur the over head ofIPSec processing [2].

Another relatively general-purpose solution is to implement security just above TCP

(Figure 1.2). The foremost example of this approach is the security Sockets Layer (SSL)

and the follow-on Internet standard of SSL knows transport Layer Security (TLS). At

this level, there are two implementation Choices. For full generality, SSL (or TLS)

could be provided as part of the underlying protocol suite and therefore be transparent

to applications. Alternatively, SSL can be embedded in specific packages. For example,

Netscape and Microsoft Explorer browser come equipped with SSL, and most Web

servers have implemented the protocol.

Application-specific security services are embedded within the application. Figure 1.2c

shows examples of this architecture. The advantage of this

HTTP I FTP I SMTP
SSLorTLSHTTP I FTP I SMTP

TCP

(b) Transport Level(a) Network Level

Figure 1.2 Relative Locations of Security Facilities in the TCP-IP Protocol Stack.

Approach is that the service can be tailored to the specific needs of a given application.

In the context of Web security, an important example of this approach is Secure

Electronic Transaction (SET) [2].

16

1.12. Summary

It is obvious at the end of this chapter that growth in connectivity with regards to speed

of connection and number of people connecting to the Internet has spawned great many

web-related services, and how the embedded systems play a vital role in providing

efficient and low cost solution.

Also we have seen in this chapter the S7600-A and the iReady tuner technology was

chose because it offers more efficient and less cost solutions using TCP/IP stack and is a

completely self-contained, hardware drop-in solution providing dial-up connectivity to

the Internet, and not to require any monitor or keyboard. Election officials simply press

one button on the device to scan ballot information and another button to send the

collected results, via a modem, to a central location.

We must walk a fine line between closing as many doors as possible without

encouraging trusted users to try to circumvent the policy because it is too complex and

time-consuming to use.

Allowing Internet access from an organization poses the most risk to that organization.

This chapter has outlined the types of attacks that may be possible without a suitable

level of protection. If a compromise occurs, tools and applications are available to help

flag possible vulnerabilities before they occur or to at least help the network

administrator monitor the state of the network and its resources.

It is important to stress that attacks may not be restricted to outside, unknown parties,

but may be initiated by internal users as well. Knowing how the components of your

network function and interact is the first step to knowing how to protect them.

In next chapter will cover topics related to internet protocols and web applicants for

microcontroller.

17

2. WEB APPLIANCES AND THE INTERNET PROTOCOLS

2.1. Overview

The Internet protocols are the world's most popular open-system (nonproprietary)

protocol suite because they can be used to communicate across any set of

interconnected networks and are equally well suited for LAN and WAN

communications. The Internet protocols consist of a suite of communication protocols,

of which the two best known are the Transmission Control Protocol (TCP) and the

Internet Protocol (IP). The Internet protocol suite not only includes lower-layer

protocols (such as TCP and IP), but it also specifies common applications such as

electronic mail, terminal emulation, and file transfer. This chapter provides a broad

introduction to specifications that comprise the Internet protocols. Discussions include

IP addressing and key upper-layer protocols used in the Internet.

Documentation of the Internet protocols (including new or revised protocols) and

policies are specified in technical reports called Request for Comments (RFCs), which

are published and then reviewed and analyzed by the Internet community. Protocol

refinements are published in the new RFCs. To illustrate the scope of the Internet

protocols, Figure 2.1 maps many of the protocols of the Internet protocol suite and their

corresponding OSI layers. This chapter addresses the basic elements and operations of

these and other key Internet protocols.

OSI REFERENCE Internet Protocol sulfa

Application FTP, Telnet, NFS

Presentation SMTP,SNMP
XDR

Session RPC

Transport TCP,UDP

Network IPI Routing Protocols I I ICMP I
Link ARP,RARP

Physical Not Specified

Figure 2.1 Internet protocols span the complete range of OSI model layers.

18

2.2. Internet Protocol (IP)

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing

information and some control information that enables packets to be routed. IP is

documented in RFC 791 and is the primary network-layer protocol in the Internet

protocol suite. Along with the Transmission Control Protocol (TCP), IP represents the

heart of the Internet protocols. IP has two primary responsibilities: providing

connectionless, best-effort delivery of datagrams through an internet work; and

providing fragmentation and reassembly of datagrams to support data links with

different maximum-transmission unit (MTU) sizes.

2.3. TCP Connection Establishment

To use reliable transport services, TCP hosts must establish a connection-oriented

session with one another. Connection establishment is performed by using a "three way

handshake" mechanism.
01·.,, ..•

A three-way handshake synchronizes both ends of a connection by allowing both sides

to agree upon initial sequence numbers. This mechanism also guarantees that both sides

are ready to transmit data and know that the other side is ready to transmit as well. This

is necessary so that packets are not transmitted or retransmitted during session

establishment or after session termination. Each host randomly chooses a sequence

number used to track bytes within the stream it is sending and receiving. Then, the

three-way handshake proceeds in the following manner:

2.4. Applications of Internet Protocol

• The Internet protocol suite includes many application-layerprotocols that

represent a wide variety of applications

2.4.1. TCP/IP Networking

With Ethernet chips becoming a dime a dozen, it's a lot easier to justify having your

network Ethernet driven. Ingo walks you through all the nitty-gritty steps of how to get

your Ethernet-based device working with real-time capabilities.

First question: what do I define as an Ethernet-based device?

19

The device has an Ethernet port, as a primary interface. A temperature sensor with an

Ethernet port is one example, but I'm not sure about the economics of such a project. To

make developing such a device more interesting to me, it needs to solve one of my

problems. So, here goes.

I frequently use a prototyping system called a logic engine, which is essentially a

system tester. It has 128 VO ports and is controlled via a PC-compatible parallel port.

The device I want to discuss is an Ethernet-to-parallel port device that controls the logic

engine. In a sense, the parallel port-based logic engine becomes an Ethernet-based logic

engine. This technique has several advantages. First of all, I don't need to write and

install a device driver on the system controlling the logic engine. Secondly, I can share

the logic engine between workstations or over the Internet.

Finally, I can use a variety of programming languages on many platforms to talk to this

device. All my language on the workstation needs now is a network library. I don't have

to write various libraries like I did for the old parallel-based interface.

But before getting started on this thesis, I want to take a look at one of its major

components-TCP/IP.

,,

2.4.2. TCP/IP Networking Promer

Recall that TCP/IP implementations use the socket API for application programs to

interface to the stack In a nutshell, when two programs want to establish a TCP/IP

connection, they set up a socket which is identified with an Internet address and a port.

Once the connection is set up, the programs write data to the socket as if it were a file

and the data comes out the other end of the socket, where the other program reads it like

a file. The protocol stack treats the TCP/IP as an unstructured byte stream, so it's easy

to program for TCP/IP.

But as you probably know, the actual network interface between computers usually

consists of a LAN or serial interface, with data being transferred in packets. Let's look

at what goes on in the TCP/IP stack to give us this illusion of a connection. The

protocol stack for TCP/IP is illustrated in Figure 2.5. At the top, we have the application

20

layer, which is followed by the transport and Internet work layers. The network

interface and the network are at the bottom.

The application program, in the application layer, is considered part of the protocol

stack. The application usually implements some kind of protocol on top of the

unstructured byte stream provided by TCP/IP.

For example, Internet mail uses the Simple Mail Transport Protocol (SMTP) to

exchange E-mail messages between different hosts on the Internet. You may also be

familiar with the Hypertext Transport Protocol (HTTP) that Web browsers and servers

use to communicate.

Note that application-layer protocols are implemented in the application and that the

interface between the application layer and the transport layer is the socket API. The

rest of the protocol stack the transport layer through the network interface is usually

implemented in the OS because its implementation is the same for any application.

The transport layer implements the byte stream abstraction of the transmission control

protocol (TCP) over the packet-switched Internet work protocol (IP). TCP implements

what networking folks call a reliable virtual circuit. It is reliable because the

implementation makes sure that the data, once received, is not corrupted by noise,

arrives in order, and nothing is missing or duplicated. A virtual circuit is kind of like a

phone connection. Once the connection is made, it is maintained until disconnected.

TCP implements this reliable virtual circuit by maintaining a state on each end of the

connection. There is state information for each active (or connected) port. The status

information maintains the connection state (i.e., whether the circuit is being set up or

tom down and whether it is connected). Sequence pointers are kept to indicate which

byte of the stream has been received, acknowledged, and delivered to the receiver. The

transmitter also tracks which byte it sent, how much data is left to send, and the last byte

acknowledged by the receiver. Each time one side of the connection has data to send

(TCP is full-duplex, by the way), it bundles up the data into a packet and adds a TCP

header to the packet.

The packet header includes an end-to-end checksum to make sure that the TCP packet is

received intact, a copy of the sequence pointer of the sent data, and a copy of the

21

sequence number for the data it last received, which serves as the acknowledgment.

Including the acknowledgement for the data received, while transmitting data in the

other direction is referred to as piggybacking the acknowledgment. The header also

contains the destination port number this TCP packet goes to and the source port

number from which it was sent. Figure 2.6 shows how the various sequence pointers are

related.

Application
programı

Application __ ~ Data
Layer -----------·-·····---········---

Transport

Laier __J __ ---~
~---

TCP Message

TCP I Data

Operating
system Intemetworking ı IP packet

Lay:_.----------i IP I TCP I Data

Network interface

Ethernet ı PPP
driver driver

-ı- SerialI Ethem~tcard 11 ~. PPP Frame

Hardware r--,,, :---ı PPP I IP I TCP I Data I
' '' 'i ',,,, Ethernet packet
1 ',,,,ı Ethernet I IP I TCP I Data I

Figure 2.5 Each layer in a TCP/IP stack has a specific function and adds a header to the

data from the application layer [13], [18].

Once the TCP header has been added, the TCP packet is passed to the Internet work

layer. This layer gets packets to and from other hosts using the network interface. This

22

layer adds an lP header to the 1'CP packet. 1'his header contains the destination host

address and the source host address. These addresses along with the port numbers from

the TCP header let us uniquely identify which TCP connection this packet belongs to as

well as the direction it needs to goes.

The Internet layer needs to send the packet out over a network using one of the one or

more network interfaces. Internet packets can be up to 8 KB long, but most network

interfaces can't handle packets of that size.

For example, an Ethernet interface can only handle packets 1506 bytes long. Therefore,

the Internet layer often needs to fragment the IP packet into smaller packets. It splits the

packet into smaller chunks and copies the IP header into each one. A field in the IP

header tells at what offset in the original packet the fragment packet belongs. The

receiving host's Internet layer reassembles the fragments into the original packet before

passing it on to the receiving transport layer.

.················, , .

t t t
ack tast

I 1. .

t t
ack Read by app

Write data Read data

ack

Figure 2.6 TCP uses a variety of sequence pointers to track how much data is sent and

acknowledged out of the 32-KB window. TCP uses a sliding-window protocol, where

each sequence number identifies a single byte.

For the Internet to work, we need to be able to connect various networks together via

special hosts that have more than one network interface. These hosts are called routers

23

or Internet gateways. On a router, the Internet-layer implementation also needs to

decide which network interface a packet needs to be sent on. A routing table does this

job. Now we're at the business end of the protocol stack, the network interface layer,

which has the device drivers for the network devices. A network device may be an

Ethernet card, a serial port, or wireless Ethernet interface that connects the host to the

network. Probably the most common network device is the Ethernet interface. Its

versatile LAN architecture can be connected to twisted pair, coax, or fiber-based media.

An Ethernet card usually has some memory in which the outgoing Ethernet packet is

constructed and received. The actual transmitting and receiving is done with hardware

on the card.

The network interface driver copies the packet it received from the Internet layer into

the Ethernet card's memory, adds an Ethernet header to it, and tells the card to send the

packet. When the card transmits the Ethernet packet, it interrupts the network interface

driver. Of course, the card also interrupts if a packet was received from the Ethernet.

The network interface usually communicates with the network driver queues, transmit

and receive queues decouple the upper level network code from the interrupt service

code for the driver. In a real-time application, this task is especially important because

we don't want to spend a lot of time in the interrupt service routine.

The receive interrupt routine simply pulls the packet from the Ethernet card's memory,

puts it in the receive queue, and signals the upper level code. The transmit interrupt

routine checks the transmit queue. If it has something to send, it pulls off the packet

from the queue, copies it to the card's memory, and starts the transmission.

2.4.3. Transferring Data

We also need to discuss transferring data via TCP/IP. There are two Ethernet speeds, 10

and 100 Mbps. MostlOO-Mbps cards automatically detect if the network they're

plugged into is 100 or 1 O Mbps. At 1 O Mbps, Ethernet can transfer almost 1 MBps of

data in one direction. However, you most likely won't see that high of a throughput. In

many cases, if there's more than one host on the Ethernet, there will be some overhead

in trying to access the media and deal with contention.

24

For Ethernet, this situation can be really bad. The utilization may be as low as 30%

when Ethernet is saturated with tens of hosts.

That means all hosts together are only able to transfer about 300 kbps on a highly

congested 10-MBps Ethernet. Of course, if only two hosts are involved, we should be

able to achieve almost full utilization of the Ethernet.

Another problem is latency. To send data to another host, the data has to traverse the

protocol stack, possibly get copied into the Ethernet card's memory, be transmitted over

the Ethernet, be received and copied form the receiving card, and passed back up the

protocol stack on the receiver and then reverse this to get an acknowledgment back.

On a lightly loaded 10-MBps network with high-performance Ethernet cards, you might

see latencies down to 1 .Oms. However, if the network gets loaded, the latency can easily

reach 10-20 ms or more.

Basically, make sure the Ethernet is not very loaded if you expect high utilization or

throughput. Also, this means there are upper bounds to what can be done with Ethernet

as a device bus.

2.4.4. The command is of the form:

For every command received, the logic-engine interface sends back a byte again in a

two-digit hexadecimal encoding.

I also haven't addressed how an Ethernet-based device finds out its Internet address, so

it's easy to configure the Internet host address in one of the start-up scripts via the

console. In an embedded Ethernet device, however, there probably isn't a console. But

don't despair. There are solutions. One option: include a serial port on the Ethernet

device, which would run a small command-line-based interface that lets you configure

things like the Internet host address and store data in a flash file system. But, this

solution mars the beauty of having an Ethernet device it would have a console and seem

more like a computer.

A better solution is to use one of the protocols available for this purpose. There's the

dynamic host configuration protocol (DHCP) and the boot protocol (BOOTP). The idea:

you can use a Windows or Unix machine as an Internet host address clearinghouse.

25

When turned on, the Ethernet device sends a DHCP or BOOTP broadcast over the

Ethernet. A workstation configured to be a DHCP or BOOTP server then assigns an

Internet address to the Ethernet device and sends a response. The Ethernet device uses

this address until it's turned off. It would be easy to replace the logic engine interface

with a PC/104 AID board that plugs into to the Ethernet device, then change the code to

read out the data from the AID board and send it to the workstation using a TCP/IP

stream. Viola an Ethernet-based data-acquisition device, I'm can think of other

applications as well.

2.5. Web Appliances and the Internet Protocols:

In order to understand the basic requirements of an Internet appliance, we must take a

look at the manner in which the Internet works. Broadly speaking, there are those

machines on the Internet, which serve up or deliver data on request, called servers and

those machines requesting data from the servers, called clients. Each computer, whether

server or client, connected to the internet gets a unique 32 bit identification tag called an

IP address.

To avoid assigning a unique IP address to every terminal purchased or potentially able

to connect to the Internet, Internet service providers generate dynamic addresses for

every machine requesting an active connection. The same client connecting twice to the

Internet may not be assigned the same address for each session. In contrast, servers,

which host well known web sites, essentially require a fixed address. The allocation of

these addresses is governed by agencies like InterNIC or IANA.

Raw data is passed around the Internet in the form of datagram's, specially marked

packets, which get passed around from computer to computer. The data is split up into

minor chunks of the above mentioned packets and encapsulated with headers and

checksums to enable it to be routed to its final destination.

The Internet protocol used varies depending on the application. In most Internet

applications, a dial up connection to an ISP is the first stage to gain access to the

network layer (called the IP layer). This protocol is generally the point to point protocol,

PPP, which will encapsulate all other protocols. Another protocol used to connect to the

net is the SLIP, i.e. Serial Line Internet Protocol. PPP essentially encapsulates TCP and

26

IP packets and handles username and password authentication. The transport layer

provides the basic connectivity between server and client. In this layer, we can choose

between a simpler protocol called UDP (User Datagram Protocol) and a more robust

TCP (Transmission Control Protocol). UDP is not based on making a connection

between two hosts, it is a connectionless protocol, i.e., the receiving host does not

acknowledge the packets it receives from the host and thus the transmitting host has no

indication as to whether the datagram has made it to the receiving computer.

UDP provides best effort delivery of data with an optional checksum to preserve data

integrity. UDP packets have the same reliability as IP; packets are not guaranteed to be

received in order at the remote host. UDP packets can be sent at full speed-as fast as the

underlying physical device can send them. On slow processors, UDP's lack of overhead

can make a large difference in the throughput when compared to TCP. On fast

processors, the difference is not as large. The lack of an end-to-end connection in UDP

means that it can be used to send one-to-many and many-to-many type messages.

In contrast, TCP offers connections based and flow controlled transfer of data. TCP is

generally accepted to be the more reliable of the two protocols, but the choice in the

case of our web appliances is influenced by considerations of the type of data being

dealt with. For example, consider a device transmitting ambient temperature values

measured on site over the net. The device establishes a connection with the server every

few minutes and uploads data. Loosing a few readings may not be as severe a handicap

in this case; temperature, which changes, but slowly, can easily be interpolated and

found. The simpler UDP in this case comes close to achieving some of the features of

TCP.

Before sending data to a remote host, a TCP connection must be established. This

means that only data between two end-hosts may be exchanged over a TCP connection.

Every TCP segment that contains data is acknowledged to provide reliability. The

acknowledge segments themselves are not acknowledged to prevent an infinite

recursion. TCP's reliability comes at the price of being much more complicated than

UDP [18].

27

In order to negotiate Internet protocols, the Internet appliance uses a Network Stack. A

stack can be a software implementation, commonly available with many vendors.

However, TCP has large RAM and ROM requirements to keep track of connections and

packets not acknowledged by the remote computer (TCP has a habit of retransmitting

lost datagram's). A software stack implementation may run into stonewalls in such

cases, especially since the hardware implementation of a web appliance generally is

centered around a microprocessor, able to address limited amounts of memory and in

addition having to control the working of the appliance in itself. Packing this sort of

functionality into a design may require tradeoffs, cutting down on some options, which

could otherwise be available to the user etc. Embedded designers have many different

concerns-for some, code size is of ultimate importance, while for others, data rate and

reliability are a higher priority. The simplicity of UDP is slightly misleading-UDP

applications typically require code at the application layer to build in some level of

reliability. Data sequencing is the most common addition because it allows the

application to mark missing data and to resolve out-of-order packets.

The case study we present uses a hardware implementation of a network stack, which

relieves large amounts of memory to be left for other code. The block diagram shows

the hardware components required for constructing a low cost arrangement like this,

which can double as a web server as well as a client. The processor choice is wide, with

a playing field split between several manufacturers. The device of interest is the

hardwired Network stack the S7600, manufactured by Seiko. The hardware stack must

minimally provide a Network access layer implementation, Internet layer and transport

layer as shown. Once configured the chip acts as a data buffer, storing data on its 1024

byte internal RAM while its TCP engine appends various checksums and headers to it.

The chip has registers to store the Internet addresses of both the server as well as client

and supports PPP as well as Password and Username authentication. The only code the

designer has to write to web enable the device is limited to initializing the registers to

necessary values. No software routines as to the computing of checksums or framing of

datagram are needed. Consequently the code size works out to be much lower than in

case of a software implementation. A suitable modem is to be chosen. For our

temperature application mentioned above, it is quite obvious that speed is not of prime

consequence and hence a lower cost modem capable of only lower speeds can be used

28

as well. Choosing a microcontroller that provides on chip flash memory further can

shrink the size of the device construction.

2.6. Web Appliances and their Implementation:

The instrument collects data on the temperature using sensors and front ends, which are

not shown. The objective is to get the data to a remote terminal for analysis. The

instrument can either operate in server mode, where a remote computer can connect to

it, to access data, which is served up by the instrument in the manner of a web server.

The other alternative is to configure the instrument as a web client, wherein it will

connect to a site on a web server and upload data. The remote machine can then access

this data by requesting the site with a standard web browser interface.

A third alternative also exists, wherein the instrument is configured to send data

periodically via emails to any desired email ID. Such a device configuration is called,

among other things an e-mail-reporting engine. We will focus on the client operation of

the device. The flow chart for client operation is shown. The client application needs to

know the port number and IP address of the server it is meant to upload data to. This

means that there must be a program running on the server end that will listen on the

above-mentioned port. Once connected the transfer of information may take place

between server and client.

The user requesting data connects to the server using a simple web browser. The

responses sent back to the browser are in the form of HTTP responses. Broadly, there

are five methods of delivering data through HTTP [20].

• Static html pages.

• Run time generated HTML.

• Scripting languages.

• Stylesheets.

• Object interfaces.

Static HTML pages can be used to display information that does not change. They can

be stored as files in file systems or simply in memory without a file system. Dynamic

HTML pages are generated during application run time.

For example C functions can be used to create these pages in memory. The function can

be thus that the pages displayed show the latest data. Scripting gateway interfaces are

similar to run time generated HTML except that an interpreted scripting language is

used to HTML pages. The choice of scripting languages is split between PERL,

JavaScript and ASP. Stylesheets have been used to transform data files into HTML

pages. Object interfaces are applications that can run in a browser like Java applets and

active X controls. Object interfaces are available from the server upon browser request.

The speed at which the server can deliver data to the browser depends upon the mode

chosen and ranges from Static HTML (fastest) to Objects (slowest). Apart from these

there is another method that is of essence if the server happens to be a JAVA server.

Servlets are yet another offering from the growing pool of JAVA based solutions. A

Servlet is a JAVA based program analogous to an APPLET, but where an APPLET

needs a Virtual Machine or a JAVA supporting browser, a SERVLET runs on the server

end of our application. Our Servlet opens a specific user defined port (the lower 1024

ports that can be opened for client server communications are reserved for certain well

known services) for the web appliance and listens for a request from the web browser.

Such an HTTP request will initialize the Servlet. The Servlet then reads in the data from

the web appliance and send it to the requesting browser in the form of well-formatted

HTML/TXT responses. The reloading of the page periodically is necessary to refresh

data, the page being essentially static in nature. Quite obviously this works only because

the data that is being uploaded is of slowly changing nature. Our Web appliance can use

this technology. The embedded device which is a client creates a client socket and the

Servlet creates a Server Socket at the server end. As the user requests for the data from

the Web appliance to be seen, the Servlet is invoked through the browser and a snapshot

of the current data can be uploaded to it. The response is in HTML form and is

forwarded to the client (i.e. the browser) on which it is displayed.

The hardware consists of a microcontroller, a network stack and a modem. The

microcontroller performs the functions of collecting data on the quantity to be

measured, say temperature, and also is responsible for configuring the network stack

and modem. The S7600 needs to be initialized before it goes online. The

microcontroller sets the clock divider rate and writes modem configuration to the serial

port buffer of the S7600. The control of the serial port is given over to S7600.

30

By writing to PPP registers, the S7600 can be forced to bring up a PPP connection to an

ISP. PAP is optional and depends on whether the ISP uses password authentication. The

S7600 can be set to function in TCP server or client mode and also supports a UDP

mode. The stack has registers to hold the 32 bit IP Addresses for the remote server as

well as for itself. If the ISP assigns addresses dynamically, the address is negotiated for

in the PPP phase. Port registers determine which port to open for communication, as

mentioned above, we must exercise some care in the choice of port numbers, since

some are assigned to fixed services.

The socket registers allow us to open sockets and read to or from them. It is quite

obvious that the entire exercise of the controller interfacing to the Internet reduces to

merely pushing 8 bit data to our network stack. The modem can be an ordinary external

modem, the sort that goes to the serial port of the ubiquitous PC or it can also be an

embedded modem which can be fabricated right on the instrument board itself. The

modem need not support very high baud rates. The Si2400 chip set is a good example of

an embedded modem. The embedded modem usually supports a working subset of the

complete Hayes commands that a complete external modem supports. AT commands

are sent as ASCII strings to the modem.

ddd -------------------------------- I
I

S7600 Signal
MODEM Network processing

Stack Front End

1} ------------------------------

I I µp based Measuring
User Instrument

Server
Hosting I User IWeb Page
and

Back end

I IProgram User

Browser Requests

Figure 2.8 Concept of Web Appliance

31

The Systems software in this application first initializes the Network Stack and the

Modem. Modems have different initialization strings, best referred to from their

individual manuals. The first step in establishing the dialup is forcing the modem Off

Hook, then with a small delay to wait for the dial tone and then we set the PPP register

in the Network Stack to kick start the PPP dialup. Immediately after this we send dial

string (ATDT<phone no of ISP>) to the Serial port buffer of the Network Stack. The

processor relinquishes control of the serial port to the S7600. Once the PPP has been

established PAP request is sent to the ISP. The Usemame and Password follows the

PAP request [19].

The Network Stack is ready to open Sockets on the client and server and hence data

transmission commences. Some form of Server-side programming in the form described

above is necessary. Beware, however not all servers allow you to open sockets

indiscriminately on them!

2.7. Scope of Web Appliances.

Having taken a look at the engineering of a web appliance i now consider its feasibility

or viability in today's networking context.

Viability of any such device is entirely dependant on the functionality and features that

are of value to today's users, an understanding of which takes time and insight. The

possibilities that arise of putting web appliances to use are many and varied. Imagine a

lab experiment that needs to be monitored intermittently and necessarily needs this

monitoring to go on over a long period.

The results I data from the experiment can be obtained by the experimenter taking a

weekend off at home. Going further we can apply these techniques to weather

indicating instruments, which can update community web pages. Think of refrigerators

that send online orders to departmental stores when they sense themselves to be too

empty or photocopier machines which summon service men online when they need

servıcıng.

Robots can be controlled from remote terminals using nothing but a browser like

interface. Web enabled laser printers, which can receive and print files directly from

32

email attachments could be serious competition for an overpriced fax system. One could

combine the quality of superior print with the rock bottom prices of sending emails.

However it is also equally true that the basic nature of appliances requires some

compromise of cost vs. feature vs. size vs. portability, but decisions concerning what

features the consumer expects and desires will separate commercially successful

appliances from those which can be considered of little consequence in today's market.

2.8. Summary

This chapter presented the commonly used internet protocols and also describes how the

web appliances can be designed using these protocols.

IP addresses provide the foundation for identifying individual network interfaces (and

therefore computers or other devices as well) on TCP/IP networks.

Understanding address structures, restrictions, and behavior is essential to designing

TCP/IP networks and appreciating how existing TCP/IP networks are organized.

Understanding binary arithmetic is essential to knowing how to deal with IP addresses,

particularly when working with subnet masks, knowing how to convert from decimal to

binary, and vice versa, help you understand how the concept of stealing bits from the

host portion of an IP address permits a network to be subdivided into logical

subnetwork, or subnets. Likewise, it helps you understand how stealing bits from the

network portion of multiple contiguous IP addresses increases the number of

addressable hosts.

I have actually give you guidelines to build one & to show you how many different

options does a designer charged with the task of including web connectivity in his

design have?

33

3. MICROCONTROLLER CRYPTOGRAPHY

3.1. Overview

When systems communicate telemetry or control information between peers the security

and authenticity of the communicated data may be important. If the medium is public or

could be subject to compromise, securing the communicationspath becomes an issue. But

encrypting control and status messages that are passed between subsystems on networks,
telephone lines, or RF channels usually requires extensive microcontroller resources, and

the maintenance of secrets (keys) is usually the weak point in the system. Changing or

customizing critical system secrets is often impossible in ROM-based equipment, which

further reduces the security of the system.Dallas Semiconductormanufactures 'lo« cost 1-

Wire® memory devices that contain fast, powerful cryptographicengines. Some of these

devices have the ability to perform the SHA-1 hash very quickly, and to securely store,

protect, and rotate secrets. These devices can be used with small microcontrollers and

limited resources to provide strong small-message encryption and peer-to-peer

authenticationbetweensubsystems.

Security features are useful if an application dispenses services on a pay per service basis.

Electronically bypassing the security would allow the dispensing of the service for free,

resulting in lost revenue to the system owner. Another common application is the

transmission of secret information.The user's algorithmand key data could be observed in

an unsecured system, resulting in a break in the secure transmission. The Secure

MicrocontrollerFamily is designed to protect the contents of memory from being viewed.

This is done with a combination of circuit techniques and physical security. The

combination is a formidable defense. Regardless of the application, the secure

microcontroller protects the contents of memory from tampering and observation. This

preserves secret information, access to services, critical algorithms etc. The security

features of the Secure Microcontroller include physical security against probe, memory

security through cryptographicscrambling,and memory bus securitypreventing analysis of

the CPU's operation. The features mentioned above and described below protect the

applicationcode and data.

34

3.2. Enhancing Embedded Security

More and more embedded systems are connecting to company intranets or to the Internet.

Such network connections can greatly enhance an embedded system's utility and

capability. Unfortunately, they also increase the system's vulnerability to attack by leaving

an open door for malicious programs to enter. To enhance the security of these networked

embedded systems, operating systems must change.

Embedded systems with network conditions find use in an ever-increasing range of

applications. Industrial control systems use networks of embedded control nodes for

applications such as chemical processing, electrical-power distribution, and factory

automation. Entertainment systems, such as set-top boxes and game consoles, use the

Internet for downloading new menus, features, and games. Home control systems are using

both the Internet and their own intranet to manage heating, lighting, and security for

residences. Even household appliances are connecting to networks to add features and

automate maintenance. A common aspect of all these applications is that the embedded

system uses the network as a channel for receiving instructions, control parameters, and

new programs [50].

For embedded systems that connect to tne 'ıntemeı, tnıs openness means.:, \na\ ~~?:ı.\\'j

anyone can gain access to the system. If the system allows software updates, abusers can

load malicious programs into the system and cause it to misbehave or crash. Even if

changing a program is impos.:,s.:,i'b\e, an an\l':>\!.-t \:.an \!.~\ıi!.t m.'la\\.ıi ~t ma\)\\t~\\t\ate \\&am.et.en.

and commands.

3.2.1 Encryption Is Not Enough

Implementing encryption protocols would seem to address the problem, but encryption has

several drawbacks for embedded systems. For one, encryption is a computationally

intensive activity that may be impossible in smaller embedded systems. For another, the

protocols may be ineffective in an emb

edded system.

35

Key encryption method would be ineffective. Every developer would need to know every

game system's private key, so the key would hardly be private. A public-key system, on the

other hand, leaves the system open to attack from someone mimicking a game developer.

Most embedded systems use RTOSs (real-time operating systems), which allow application

programs to fully access system resources.

PROCESS

RTOS
MESSAGE
HANDLER

HANDLE=2

Figure 3.1 By duplicatingthe "handle" used to identifya message's recipient in

Interprocesscommunications,a maliciousprocess can disrupt the behavior

of an embedded system.

3.2.2. Attacking Interprocess Communications

A more subtle attack mechanism is to interfere with a system's interprocess

communications. Most RTOSs use messaging queues to transfer information from one

process to another. The informationtransfer requires the sending process to make a system

call to the RTOS (Figure 3.1). The call provides the RTOS with a pointer to the memory

location where the information resides, along with a handle, or identifying number that

specifies which process is to receive the message. The operating system then notifies the

receivingprocess ofa pendingmessage [50].

36

3.3. Firmware Security

One of the most unique featuresof the Secure Microcontrolleris its firmware security.The

family far surpasses the standard offering of ROM based microcontrollers in keeping

system attackers or competitors from viewing the contents of memory. In a standard

EPROM based microcontroller,a knowledgeableattacker can disable the EPROM security

bit and have access to the entire memorycontents [35].

The Secure Microcontroller's improved securitymakes it a natural choice for systemswith

high security requirements such as financial transaction terminals. However, the firmware

security can also be employed to keep competitors from copying proprietary algorithms.

Allowingaccess to these algorithmscan create an instant competitor.This section describes

the security features and their application. Also included are guidelines to using

microcontroller security within the framework of total system security. As with memory
map control, there are variations between the different Secure Microcontroller versions.

The original DS5000 has a high level of firmware security and the DS5002 has added

several distinct improvements.Note that the DS5001 has only minimal securityand should

only be applied when other physical security is used or when security is not needed. The

table 3.1 provides a brief summary of the versions and their security features. A detailed

description of each feature follows. In the description, elements that are unique to a

particularSecureMicrocontrollerversionhave that versionunderlined.

Table 3.1 Summaryof SecurityFeaturesofParticular Secure Microcontroller

FEATURE DS5001 DS5000 DS5002

SecurityLock Yes Yes Yes

RAM memory Yes Yes Yes

Encrypted memory None Yes, user must enable Yes

Encryption Key None 48 bits 64 bits

EncryptionKey Selection None User selected True random number

EncryptionKeys loaded NIA When user selects Automatic, any new

37

load, dump

Dummy bus access None Yes, when encrypted Yes

On-chip Vector RAM None Yes, when encrypted Yes

Self-Destruct Input None None Yes

Die Top Coating None None Optional
(DS5002FPM)

Random Number Generator Yes None Yes

3.3.1. Security Lock

Ordinarily, the easiest way to dump (view) the memory contents of a Secure

Microcontroller is using the Bootstrap Loader. On request, the Loader will transfer the

contents of memory to a host PC. This is prevented by the Security Lock. The lock is the

minimal security feature, available even in the DS5001. Once set, the Security Lock

prevents the Loader from gaining access to memory. In fact, no Loader commands except

Unlock) will work while the Lock is set. The Security Lock is similar in function to an

EPROM security bit on a single chip microcontroller. It prevents a programmer from

reading the memory. In addition, the Security Lock prevents the microcontroller from

executing code on the expanded bus of Ports O and 2. Thus an attacker can not add a

memory and use MOVC instructions that would force the microcontroller to read out the

contents of protected memory. However, the Secure Microcontroller Security Lock does

provide one important difference from EPROM security bits. When the Security Lock is

cleared, it destroys the RAM contents. If a knowledgeable user were to physically erase the

security bit in an EPROM-based microcontroller, the memory contents would remain to be

read. The Security Lock consists of a multiple bit latch distributed throughout the

microprocessor with circuits that collapse the lock in the event of tampering. Clearing the

lock starts an irreversible destructive process that acts differently for each device as

described below. In a DS5001 clearing the lock causes the loader to manually write over

the first 32K bytes of NV RAM with zeros. Thus the contents of memory would be erased.

This is obviously a low level of security but would deter casual inspection. In a DS5000 or

DS5002, clearing the lock causes an instantaneous erasure of the Encryption Key and

38

Vector RAM. This action is unpreventable once the lock is cleared and happens

independent of VCC or crystal. Once the erasure has occurred, a DS5000 assumes a non

secure (brand-new) state. In a DS5002, the Loader proceeds to load a new Encryption Key

once the erasure has occurred. In both, the Bootstrap Loader will then proceed to overwrite

the first 32K bytes of RAM if power is available and the crystal is still present. This last

action is for thoroughness. In systems that really require security, the Lock should be

combined with Memory Encryption (discussed below).

3.4. How to Design a 3DES Security Microcontroller

Using IP cores and a pre-integratedIP platform, engineers at SoC Solutions built a custom

microcontrollerplatform in less than two modules. Today's seemingly limitless access to

information has also brought forth·a need to secure personal and corporate information

from unauthorizedaccess and to protect privacy. This need for secure data not only applies

to securingwired and wireless communications,but is also important in applicationswhere

access control; data integrity, confidentiality, and authentication are required. For this

reason, cryptography will find its way into a host of common devices, including bank

ATMs, kiosks, informationportals, video surveillanceequipment, building access controls,
and the like [51].

3.4.1. 3DES Secure Data Encryption/Decryption Application

Many applications, such as online private information transfers, require that data files or

streamed informationbe secured by encryptingthe payload data. 3DES is considered to be

very secure because it can use three separate keys to encrypt data. Our secure
microcontroller implements a smart device that stores DES encrypted data in memory; it

then decrypts the data before storing it back to memory. This is useful where data is

provided as medium to large data files (or streams) and where the microprocessor has

limited bandwidth to do the math intensive encryptions (or decryption) while

simultaneouslyprocessingother tasks or applications [51].

The 3DES core uses a three-key concatenated DES algorithm to provide 192 bits of

security. Keys can be stored in memory or input through a software application, which is

39

run on the secure microcontroller's microprocessor core. The microprocessor controls data

movement to and from memory.

It also sets up the 3DES engine. Extra microprocessor bandwidth is available for additional

application software. We used a 32-bit microprocessor, although a Xilinx Micro Blaze™

core could also be used in our secure microprocessor design. Figure 3.2 is a flow diagram

of an encryption/decryption microcontroller device.

3.4.2. Reference Design

The two main hardware components of the reference design are the microprocessor core

chip and a platform FPGA, such as a Xilinx Spartan™ or Virtex device. All of the

functions (excluding the microprocessor) are implemented in the FPGA using SoC

Solutions' IP platforms and soft cores. The secure microcontroller reference design

provides the basis, or starting point, for the custom design. This implementation uses the

microprocessor to load memory, control the start of encryption/ decryption, and then verify

the stored result. In a typical application, a communications port such as Ethernet, PCI,

USB, or a simple COM port would be used as a data I/O port. The design includes a direct

memory access engine to read and write data from/to the 3DES core to internal FPGA

SRAM or external memory. Also included are an internal SRAM controller, an interrupt

controller, timers, UARTS, and an external bus interface. The process of encrypting or

decrypting a file is simple. The microprocessor fills memory from data acquired either

under software control or through a COM port. The microprocessor then sets up the DMA

engine with a source address, destination address, and a block length. The processor writes

a start bit to the DMA engine and then "lets 'er rip." The DMA engine reads a sub-block

from the source address, sends it to the 3DES core for processing, and then writes the

processed sub-block results to the destination address.

ıı:;,•

Timers can be used to poll the DMA engine dma_done flag to know when the operation is

complete. The interrupt controller can also be used to signal the end of the 3DES operation.

40

- - ••..•. _..rcrypted ..•.. ~ 1/0 ~
.......

Memory ata In ~ Or \
··...

~crypted COM ··.. - A•
r-

ata Out Port
\.~ ·~~

3DES
Cryptoıraphic

Processor

E
D

D
D

Figure 3.2 Secure microcontroller data flow diagram [51].

3.5. RAM Memory

NV RAM provides a useful way to store program and data. The contents can be retained for

a long period, but can be changed when desired. This attribute is important when

considering security. No matter what probing techniques are used on a ROM, the contents

remain unaffected. With resources and patience, a determined attacker will obtain the

contents of a ROM based product. NV RAM can be destroyed on demand. The user's

physical security must simply remove the power (VCC and VBAT) from a microprocessor

chip to eliminate the memory contents. Thus NV RAM provides flexibility as well as

security. Enough physical security can be combined with even a DS5001 to provide a very

secure system. The DS5002 even provides a direct facility to destroy memory discussed

below [35].

3.5.1. Encrypted Memory

The heart of Secure Microcontroller security is the memory encryption function. Since the

NV RAM is visible, the memory contents and memory bus are encrypted. That is, in real

time, the addresses and data moving between the RAM and the microcontroller are

scrambled by on-chip encryption circuits. Thus an attacker that observes the RAM contents

or memory bus will see unintelligible addresses and data. Figure 3.3 shows the conceptual

41

diagram of the memory encryptor for a DS5000 series device. Figure 3.4 shows the

encryptor for a DS5002 [35].

l5
I, I

II I
1·1·1
I 1:1

EXTERNAL
BYTEWIDE

RAM40-BIT ENCRYPTION
KEY

I' ı'ENCRYPTEDı. :, 1,ı

•: İııiı..,•:~'aYTEWIDEDAl'A-..ı nATA I · ,.,DATA
ENCRYPTOR

,·,
·'

Figure 3.3 Ds5000 Software Encryption Block Diagram

EXTERNAL
BYTEWIDE

RAM

,,',

Figure 3.4 Ds5002 Software Encryption Block Diagram

In a DS5000, the encryption feature is optional. A DS5000 can be locked irrespective of its

encryption and encrypted irrespective of the lock. Neither makes much sense by itself. The

42

encryption process is enabled by loading an Encryption Key for the first time. Prior to

loading a Key, the DS5000 remains in a non-encrypted state. Once encrypted, the memory

interface will remain so until a part is locked, then unlocked. The process of clearing the

Security Lock deactivates the encryption circuits. Note that an Encryption Key of zero is

still a valid Key. A DS5002 has encryption enabled at all times. No extra steps are required

to invoke it. As discussed below, the DS5002 generates its own security Keys.

Encryption logic consists of an address encryptor and a data encryptor using separate but

related algorithms. This encryptor is high speed circuits that are transparent to the

application software. They are bidirectional and repeatable. That is, addresses and data that

are scrambled prior to writing to RAM will be correctly unscrambled when reading in

reverse. Each encryptor operates with its own algorithm but both are dependent on the

Encryption Key. Encryptor operates while programs are being loaded so that the memory

contents are stored in its scrambled form. When program memory is fetched, the process is

reversed. Thus the actual program or data is only present in its "true" form while inside the

microcontroller. The address encryptor translates each "logical" address.

The Data Encryptor operates in a similar manner to the address encryptor. As each byte

including opcode, operand, or data is received during Bootstrap Loading, its value is

scrambled prior to storing it in RAM. The value that is actually written in RAM is an

encrypted representation. All values that are subsequently stored in RAM during execution

also are encrypted. As each byte is read back to the CPU during execution, the internal Data

Encryptor restores it to its original value. This encryptor uses the Encryption Key and the

data value itself, but also the logical address. Thus the same data with the same Key will

have different physical values at different address locations. The data encryption algorithm

is repeatable and reversible so that with the same key, data and address, the same encrypted

value will be obtained. Note however that there are many possible encrypted data values for

each possible true value due to the algorithms dependency on Key and address. Using the

combination of address and data encryption, the normal flow of program code is

unintelligible in the NV RAM. What had been a sequential flow of addresses is now

apparently random. The values stored in each memory location appear to have no relation

43

to the original data. Another factor that makes analysis more difficult is that all 256

possible values in each memory are valid possibilities. Thus an encrypted value is not only

scrambled, but it becomes another potentially valid byte.

Different memory areas are encrypted in the DS5000 and DS5002. For a DS5000, all

memory accessed under CEI can be encrypted. CE2 is not encrypted. This allows access to

peripherals such as a Real-time Clock to be performed using CE2. For the DS5002,

encryption is performed on all bytes stored under CEI through CE4. The memory or

peripherals accessed by PEI through PE4 on a DS5002 are not encrypted.

3.5.2. Encryption Algorithm

The Secure Microcontroller family uses a proprietary algorithm to encrypt memory. The

DS5000FP and DS5002FP use different encryption algorithms. They are the result of

improvementsmade over time in the proprietary encryptor circuits. The original S5000FP

(circa 1988) has the first version of encryptor. This was soon improved with a second

version encryptor in 1989, and remains in production today. A substantial improvement

was made in the DS5002FP,which uses a wider Key and a more non-linear algorithm.The

DS5002FP memory encryptor uses elements of the DES (Data Encryption Standard)

although not the entire algorithm. Full DES is impractical as memory encryption must be

performed in real-time on a one-to-one substitution and not a block cypher basis. The

encryption algorithm is supported by the fact that both address and data are encrypted, the
algorithm and key are both secret, the most critical data can be stored on chip in vector

RAM (discussed below), and the bus activity is scrambledusing dummy access (discussed

below). For this reason, a security analysis of the DS5002FP is not simply a mathematical

treatmentof the encryptionalgorithm.

3.5.3. Dummy Bus Access

The Secure Microcontroller makes its memory contents obscure through encryption.

Additional steps are also to prevent analysis of the bus activity by 8051-familiar hackers.

Both the DS5000FP and DS5002FP insert dummy memory operations when possible. In

the 8051 architecture, there are typically two identical memory accesses per instruction

44

cycle, but most operations so nothing with the second program fetch. In the Secure

Microcontroller, a pseudo-random address is generated for the dummy cycle and this

random memory address is actually fetched, but the dummy data is discarded. The orders of

the real and dummy accesses are switched according to a pseudo-random process. This is

repeatable so that the execution always appears the same. During these pseudo-random

cycles, the RAM is to all appearance read. Thus by repeatedly switching between real and

dummy access, it is impossible to distinguish a dummy cycle from a real one. In analyzing

bus activity, a large percentage of the memory fetches will be garbage that has no meaning.

The dummy accesses are always performed on a DS5002FP, but are only used on a

DS5000FP when encryption is enabled. Naturally, dummy accesses are always read

operations since the dummy address might contain valid data.

NON-ENCRYPTED ~ORY ACCESS
~ SINGLECYCLEN INSTRUCTION -+r- SINGLECYCLE N INSTRUCTION~

ALE __ __,

CEl

BAl4--0J PC X PC X PC+! X PC+! X~----

BD7--0

ENCRYPTEDMEMORYACCESS WITH DUMMY FETCHES
~ SINGLECYCLE N INSTRUCTION+ SINGLECYCLE N INSTRUCTION~

ALE _

CEl

BA14--0~ YYYYh X QQQQh x RRRRh x'-----

Figure 3. 5 Dummy Bus Access Timing

45

3.5.4. Encryption Key

The DS5000FP uses a 40-bit Encryption Key that is stored on-chip. As mentioned above,

the Key is the basis of the encryption algorithm. The resulting physical addresses and data

are dependent on this value. Tampering with or unlocking the microcontroller will cause

the Key to be instantaneously destroyed. If the memory contents are encrypted, they

become useless without this Key. A user selects the 40-bit Key and loads it via the

Bootstrap Loader. Selecting this Key enables the encryption feature. The DS5002FP uses a

64-bit Key. It is similarly stored on-chip in tamper resistant circuits. In much the same

way, this Key is the basis for the physical values that are presented on the bus. Using a

wider Key gives the encryption more complexity and more permutations that must be

analyzed by an attacker. Apart from the width of the Key and complexity of the encryptor,

the principal differences between the DS5000FP and DS5002FP are discussed below under

Key Selection and Loading.

3.5.5. Application: Advanced Security Techniques

The Secure Microcontroller family has been used for numerous applications requiring

security. Different levels of security are required depending on the sensitivity of the

application and the value of the protected information. As mentioned above, the goal of the

microcontroller security is to make stealing the protected information more difficult than

the information is worth. This task actually has two pieces. First, the Secure

Microcontroller makes attack difficult. This is combined with the user's physical security to

make information retrieval difficult. The second part is to make the protected information

less valuable. To this end, the NV RAM nature allows a user to frequently alter the

firmware based security aspects of the system. Thus if the critical information changes

before the security can be broken, the information that is actually retrieved will be

worthless. To assess the security of a system, the total implementation must be examined.

The DS5000FP or DS5002FP provide a high level of security, but the user's firmware can

accidentally defeat some features. Below are samplings of implementation issues that will

make the DS5000FP or DS5002FP more difficult to crack. There are also suggestions on

making a system more secure using external circuits.

46

3.5.6. Avoid Clear Text

The encryption algorithms used by DS5000FP or DS5002FP are generally adequate to

prevent analysis when combined with well developed code. However, the encryption is

defeated to some extent if the user stores text that appears on a display in encrypted form.

This gives the pirate a starting point to look for the clear text in encrypted storage and

analyze the encryption algorithm. The "data answer" is already known. If clear text is

required, then preferably store it in no encrypted memory. If this is impractical, then

disperse it so that it is hard to find. Avoid at all costs reading the clear text from memory

then immediately displaying it. This is a sure means to identify the encrypted values of the

text for the attacker.

3.6. Avoid CRC or Checksum

Running a checksum on power up provides the pirate with a sequential listing of the

addresses in encrypted form. Therefore the attacker has a great advantage in deciphering

the Address Encryptor. Preferably avoid a checksum. If one is needed, then check the

minimum amount of memory and perform the check in non-sequential fashion.

3. 7. Avoid Long Straight Runs of Code

A common coding practice is to run numerous sequential operations. This is common

knowledge and should be avoided. The pirate can use this in the same way as a checksum

process. It provides a sequential listing of encrypted addresses and assists with analysis of

the address encryption.

3.8. Use Random values

The Random Number Generator of the DS5002FP can be used to make a pirate's task more

difficult. When time is available, the software should perform random actions at random

time intervals. As an example, the Random Number Generator can be used to select a timer

interrupt value. Thus the microprocessor will be interrupted at random intervals making

characterization very difficult. Software can elect to out of Vector RAM for a random

period of time. Also as discussed above, the microprocessor generates dummy RAM reads

47

when possible. However, it can not generate dummy writes. However the user's code can.

Random numbers can be written to address that are known to be unused. If this is done

while the microprocessor is visibly performing a meaningful task, it will make analysis

'lı~~ ~\~,"~~-

3.9. Change Code

Perhaps most importantly, the user should reprogram portions of the Secure

Microcontroller that deal with security. For example, if the microprocessor is performing

DES, the user can change DES keys. Any security system can be broken with enough time

and resources.By alteringthe securityfeatures,this threat can be minimized.

3.10. External Circuits

A variety of external circuits can support secure operation. For example, the DS2400 is a

unique 48-bit Silicon Serial Number. If it is installed with the microprocessor, it can be

read when the system is first powered up, then stored inside the Secure Microcontroller.

This serializes the system. If the software ever finds a different serial number (or missing

number) from the stored one, it can refuse to work. This would mean that the

microprocessorhad been moved.

3.11. Tamper Protection

Using a variety of tamper sensors in conjunction with the DS5002 makes the system very

difficult to crack. These circuits vary from simple switches to light, temperature,pressure,

or oxygen sensors. When the physical security is violated, the SDI pin is activated and the

memorycontents are destroyed.

3.11.1. Secure Microcontroller Features

• PiP-EC02embeddedcontrollerplatform

• AHB

• SRAMcontroller

• interruptcontroller

48

• UART

• timers

• AHB - APB bridge

• external bus interface

• general purpose 1/0

• 3DES cryptographic processor core

• DES - DMA controller

3.12. Strong Cryptography with Weak Microcontrollers

When a subsystem component has limited processing power and memory, advanced

cryptography is usually not possible. Secure exchange of data and peer-authentication

requires secrets, and microcontrollers are not very good at keeping secrets from clever

hardware and software attacks. The solution is to move the cryptographictask to a device

that is specially designed to perform these tasks well. This thesis will discuss the

application of I-Wire devices that perform SHA-1 hash functions to provide a low-cost,

low-overheadcryptographicsolutionfor smallmessageencryptionand authentication[29].

To keep microcontroller code space to a minimum, we will use a simple fundamental

cryptographic concept called the one time pad. Given an array of bytes that comprise a

message, it can be said that the byte-wiseXOR (Exclusive-OR)result of that array of bytes
against an array of random bytes results in an array of bytes that are equally random. In

other words, no information about the message remains in the resulting array to put it

another way a byte when XOR'ed against a random byte results in an equally random byte.

If one was to generate an array of truly random bytes (called a pad), one could then XOR

that array against any valid message and the result would be an encrypted message that is

unbreakableby any cryptographicmeans (so long as the pad is held secret and known only

to the valid participants in the conversation). This result, when XORed again against the

same pad, will be restored to the originalmessage. This is a basic tenet of cryptographythe

function is simple (XOR) and the power is entirely in the quality and security of the pad,

not in the algorithmby which it is appliedto the message.

49

~
~e,.}' ._ -v-1;.,~~

ı(t ~ ~\I ::> A. I I\

~

~ coô) co
~ :!: /

~
This would seem to be a very simple, very powerful way to perform message en~

but there are caveats:

1. The pad must be passed from the sender to the recipient in a way that it cannot be

compromised. Both parties to the conversation must share the same pad.

2. If the pad is used on more than one message, its strength is greatly diminished if not

wholly compromised. A new pad must be created for each message.

What is needed is the ability to generate an array of bytes (a pad) at will, and then to pass

some key with the message that can be used by the recipient to regenerate the same pad.

This means that each legitimate participant in the conversation must hold some secret that

allows the pad to be regenerated given the key, and the secret must be protected at all costs.

In the world of cryptography, the pad generator that we have described is a function called

a one-way hash. This function takes input data and generates a digest from it. This digest is

entirely affected by every bit of the input data, and yet is derived in such a way that the

input data cannot be discovered given the algorithm and the digest. The best-known and

Tifü'::.\ 1:,e~\ı1e~:m.e-~'Zı."'j \\'Zı.<::.\\\'u\\\:,\\\'ı\\ \<::. 'b~-\ \'::.~\:,\\t~ \\~'::,\\ ~\ı,\'ıt\\\\\\\.\.

The Dallas DS1963S SHA iButton®, and the DS2432 SHA memory chip performs all the

required tasks to serve as specialized cryptographic coprocessors:

1. Inexpensive

2. Easily connected to a microcontroller using only one I/O pin

3. Can hold a secret in nonvolatile storage and protect it from attack

4. Can rotate (iterate) the secret easily and with complete security

5. Can quickly generate a cryptographically sound pad using SHA-I

3.13.Hardware Configuration

The SHA device requires only a single microcontroller port pin and a pull up resistor. Code

in the microcontroller generates the appropriate waveforms to perform two-way

communication with the device at either 14.KBPS or 140KBPS data rates. Each device

includes a globally-unique serial number. The device has the ability to hold and protect

secrets and to perform the SHA-1 hash algorithm very quickly.

50

3.l4.1'l\e Method

To use the SHA device for peer-to-peer small message encryption, the following simple

algorithm is employed [29]:

1. The microcontroller generates a random number and sends it to the device.

2. The microcontroller directs the device to generate a SHA-1 digest using the random

number and the secret.

3. The microcontroller reads the 160-bit digest from the device.

4. The microcontroller XORs each byte of the message with a byte of the digest (the

pad) to obtain the encrypted message.

5. The microcontroller concatenates the random number and the encrypted message

and transmits the result to the peer.

XOR ~Message to send ~
Encrypted •...

Message to send •••j

-.
Random Generator ı- rE) i Secret I

SHA Devıce

When an encrypted message arrives, the following algorithm is employed:

1. The random number portion of the message is sent to the device.

2. The microcontroller directs the device to generate a SHA-1 digest using the random

number and the secret.

3. The microcontroller reads the 160-bit digest from the device.

4. The microcontroller XORs each byte of the message with a byte of the digest (the

pad) to obtain the original message.

5. The microcontroller processes the decrypted message.

Despite the simple appearance of this algorithm, it is quite secure. The microcontroller

needs only perform basic I-Wire communications with the device and then XOR the SHA-

51

I digest, byte for byte, against the message data. Security is assured by the strength of the

SHA-I function. Because the SHA-I hash function is not reversible, the secret cannot be

derived from the message traffic. Without the secret, there is no way to decipher or falsify a

message. The random seed value used with each message makes every message unique,

and makes the deciphering messages all but impossible.

Encrypted
Message
Received

XOR Message
Received

Secret

SHA Device

3.15. Longer Messages

The SHA-1 hash function provides a 160-bit (20-byte) result. When the message to be

encrypted exceeds this length, the system may simply perform another SHA operation (to

obtain another 20 bytes of pad data).

3.15.1. Replay Attacks

This encryption scheme provides authentication of the source of each message (because

only a valid system participant could have generated a valid message) as well as message

data security. However, replay attacks (where a previous valid message is captured and sent

again at a later time) are still possible. Several simple methods can protect against this. One

method is to include a counter in each message that increments when the message is sent,

and then program the recipients to reject duplicate messages.

Another method is to have the recipient send a random number (called a challenge) that the

sender then includes in the encrypted message. Because the random challenge is very likely

not the same for any two messages, a replayed message will be rejected.

52

3.15.2. Random Numbers

The system described herein relies on the cryptographic quality of the random numbers

generatedby the microcontrollers.

3.15.2.1. 1-Wire Serial Communication

Communication with the device is done using a single port pin and a well-defined

communicationsprotocol. For details on the Dallas I-Wire serial protocol, see applications

information that can be found at www.iButton.com. Generating the 1-Wire waveforms

requires simple subroutines that can usually be implemented in a few dozen lines of

assemblercode in most simplemicrocontrollers. : iıı

Encryption or decryption of a small (<160-bit) message can usually be performed in less

than 1 Oms at slow communication speeds, and in less than 2ms at high communication

speeds.

3.15.3. The SHA Device

There are two forms of SHA device available, each with different characteristics. The

DS1963S is a nonvolatile memory with an SHA-1 engine, plus a lithium power source,

inside a stainless steel container called an iButton.This device has sixteen 32-bytepages of

memory and eight separate SHA-1 secrets. The DS1963S is used in a coprocessormode to

performthe type ofSHA-1 functionrequiredfor smallmessageencryption.

The DS2432 is a lower-cost, surface mounted EEPROM version of the DS1963S in a very

small TSOP-8 package. It has four 32-byte pages of memory and a single SHA-1 secret.

Being surface-mounted,battery-less and lower in cost than the DS1963S, the DS2432 is

perhaps better suited for this type of application,but current versions of the DS2432 do not

provide the coprocessor mode required for this functionality. Future versions of the

DS2432will includethis option.

53

3.15.4. Secret Rotation

The SHA devices also provide internal mechanisms to perform secret rotation. The system

ma-y send a rotation message to tbe device and ask tbat tbe message be basbed against tbe
old secret to generate a new secret. The device microcontroller does not need to know the

old secret to generate the new secret, and the new secret is never revealed never visible

outside the device. In this manner, the system-wide secret can be easily changed (rotated).

An attacker is required to have access to the original secret and the rotation message to

figure out the new secret. This allows a system to rotate secrets from time to time to assure

secret security. This mechanism also allows system secrets to be installed in multiple pieces

and by different parties so that no one party knows everything required to generate the

system secret. This secret sharing method further enhances system security.

3.16. Summary

Although there is a lot of Microcontroller cryptography techniques exist we can implement

all but with the time we have considered above mentioned techniques and after analyzing

these we have adopted one technique to make it running as an implementation part.

3DES security is just the kind of value-add customers are turning to as a way of

differentiating their products from the competition. By using a co-development approach

instead of coding the design first and then synthesizing it, we were able to design in

security in two modules.

The DS1963S SHA iButton can be used with small microcontrollers to provide strong

encryption and authentication of control and status messages, telemetry, or sensitive

pt\ıC€~n \,;Ofllfüf1 ıdfdftfflltltifl:' 1'8f" JöW'' côsrana"' low··ovem~aa: il... prÖvıd~s-nonvof~til~ -
memory, secure secret storage, secret sharing and rotation, fast SHA-I pad generation, and

a globally unique serial number. A simple microcontroller needs only provide a single port

pin and a few dozen lines of code to attain quality cryptographic security. Future versions

of the DS2432 will lower the cost and space requirements even further in an EEPROM type
device.

54

4. INTERFACING & MICROCONTROLLERS

4.1. Overview.

Microprocessor interfacing technology is evolving as dynamically as the VLSI

components it supports. The techniques of interfacing are based on fundamental

electrical engineering principles, advanced micro fabrication rules, and computer

hardware and software concepts. It is the solemn aim of this thesis to bind together

these different ideas and develop basic skills of interfacing. The thesis sets off with the

intricate aspects of interfacing the parallel port using the IEEE488 protocols. Then it

delves into serial ports and the RS232 protocols which govern the abyss of serial

communication.

In the past 20 years, there has been little substantial change in the actual sequence of

steps we go through when designing a system. On the other hand, there has been a

significant change in emphasis of the design steps: as the later phases have become

more or less automated, designers have come to focus more and more on the earlier,

more abstract phases of the system-design process. This shift in focus has enabled

designers to create increasingly complex systems in shorter lengths of time. In

designing such complex systems, achieving correct functionality is far more important

and more difficult than minimizing silicon area or program-memory size. The system

functionality, however, can best be understood during the earlier design steps, before a

lot of implementation details have been added, and this is why these early phases of the

process have become so crucial in system design.

The market for products or services that are Internet related is HOT! Increased amounts

of money and design resources are being thrown at these products and services. One

significant portion of this trend is to embed the Internet or, in other words, make

embedded products have the capability to connect to the Internet. It is estimated that by

the year 2005, the number of embedded applications with the ability to connect to the

Internet will be larger than the number of PCs by a factor of 100 or more. The latest in

PDAs and cellular telephones allow the user to access stock quotes, sports scores,

Email, and more. The other advantage of the movement to embed the Internet is

55

enabling client devices, such as appliances and vending machines, to connect to the

Internet and upload status information.

4.2. Interfacing the Parallel Port

Toe Parallel Port is the most commonly used port for interfacing home made projects.

This port will allow the input of up to 9 bits or the output of 12 bits at any one given

time, thus requiring minimal external circuitry to implement many simpler tasks. The

port is composed of 4 control lines, 5 status lines and 8 data lines. It's found commonly

on the back of your PC as a D-Type 25 Pin female connector. There may also be a D

Type 25 pin male connector. This will be a serial RS-232 port and thus, is a totally

incompatible port.

Newer Parallel Port's are standardized under the IEEE 1284 standard first released in

1994. This standard defines 5 modes of operation which are as follows, Compatibility

Mode, Nibble Mode, Byte Mode, EPP Mode (Enhanced Parallel Port). ECP Mode

(Extended Capabilities Port).

,,,ı

The aim was to design new drivers and devices which were compatible with each other

and also backwards compatible with the Standard Parallel Port (SPP). Compatibility,

Nibble & Byte modes use just the standard hardware available on the original Parallel

Port cards while EPP & ECP modes require additional hardware which can run at faster

speeds, while still being downwards compatible with the Standard Parallel Port.

Compatibility mode or "Centronics Mode" as it is commonly known, can only send data

in the
1. Forward direction at a typical speed of 50 Kbytes per second but can be as high

as 150+ bytes a second. In order to receive data, you must change the mode to

either Nibble or Byte mode. Nibble mode can input a nibble (4 bits) in the

reverse direction. E.g. from device to computer. Byte mode uses the Parallel's

bi-directional feature (found only on some cards) to input a byte (8 bits) of data

in the reverse direction. Extended and Enhanced Parallel Ports use additional

hardware to generate and manage handshaking.

This limits the speed at which the port can run at. The EPP & ECP ports get around this

by letting the hardware check to see if the printer is busy and generate a strobe and /or

56

appropriate handshaking. This means only one 1/0 instruction need to be performed,

thus increasing the speed. These ports can output at around 1-2 megabytes per second.

The ECP port also has the advantage of using DMA channels and FIFO buffers, thus

data can be shifted around without using 1/0 instructions.

4.3. Introduction to Universal Serial Bus:

In October, universal serial bus got a boost when the seven leading vendors of the USB

2.0 Promoter Group-Compaq, Hewlett-Packard, Intel, Lucent Technologies, Microsoft,

NEC, and Philips-said that the upcoming USB 2.0 specification would be 40 times

faster than USB 1.1. Higher speeds will fuel quick growth for USB, experts predict. The

USB 2.0 spec-which will be finalized during the first quarter of 2000, with products due

in the second half-is expected to have a throughput speed of 480 Mbps. It can also adapt

127 peripherals on the port and peripherals can be connected without having to restart

the IBMPC.

Thanks to another USB feature known as "hot-swapping" you don't even need to shut

down and restart your PC to attach or remove a peripheral. Just plug it in and go! The

PC automatically detects the peripheral and configures the necessary software. This

feature is especially useful for users of multi-player games, as well as business and

notebook PC users who want to share peripherals.

USB also lets you connect many peripherals at one time. Many USB PCs come with

two USB ports. And special USB peripherals -- called USB hubs -- have additional

ports that let you "daisychain"multiple devices together.

An external universal serial bus port eliminates the need for PCs to have multiple ports

serial and parallel, mouse, monitor, and keyboard. It can be used to add multiple

peripherals-printers, scanners, desktop backup devices, networking devices, and

modems-all without requiring users or integrators to open the PC's chassis. The changes

being made to USB are enabling it to surpass the IEEE 1394 high-speed interface

standard, known as FireWire, which runs at about 400 Mbps

57

4.4. Interfacing the Serial Port.

The Serial Port is harder to interface than the Parallel Port. In most cases, any device

you connect to the serial port will need the serial transmission converted back to parallel

so that it can be used. This can be done using a UART. On the software side of things,

there are many more registers that you have to attend to than on a Standard Parallel Port

(SPP).

The advantages ofusing serial data transfer rather than parallel are:
1. Serial cables can be longer than Parallel cables with a maximum voltage swing

of 50V (± 3 to ± 25) as compared to parallel, 5V (0-5V). Hence cable loss is not

a problem for serial cables.
2. Wires required are less compared to parallel transmission. Null modems taking

only 3 core cables for long distance transmission as against 19-25 core cables

required by parallel.
3. Microcontrollers have also proven to be quite popular recently. Many of these

have in built SCI (Serial Communications Interfaces) which can be used to talk

to the outside world. Serial Communication reduces the pin count of these

MPU's.
4. For Infra red devices using Serial communication, deciphering the bits is much

easier than in case of Parallel transmission.

:.:--
ıı

The UART 8250 and USART 8251 are designed specifically for this purpose and they

use the following reference standards [1].

4.5. RS 232 C

This EIA standard introduced in 1962 defines the interface between data terminal

equipment and data communication equipment employing serial binary data interchange

(both synchronous and asynchronous). This standard describes functions of 25 signal

and handshake pins for serial data transfer. It also describes voltage levels, impedance

levels, rise and fall times, maximum bit rate and maximum capacitance for these signal

lines. It states that the DTE connector should be male and the DCE connector should be

female. The voltage levels 3 to 15 volts define logic O and -3 to -15 volts define logic 1

.The control and timing signals are compatible with TTL level. Since data lines are

58

incompatible with TTL logic, voltage translators called line drivers and line receivers

are required to interface TTL logic with RS 232 signals. Refer to figure below.

The standard specifies that "the driver shall be able to withstand and open circuit, a

short circuit between the conductors carrying that interchanged circuit in the

interconnecting cable or any passive non inductive load connected between that

interchanged circuit and any other interchanged circuit including signal ground, without

sustaining damage to itself or its associated equipment". In an RS-232C application an

RS-232C interface is connected between DTE and DCE. The CCITT (International

Telegraph and Telephone Consultative Committee) Standard V.24 is identical to RS-

232C.

A Null Modem is used to connect two DTE's together. This is commonly used as a

cheap way to network games or to transfer files between computers using Zmodem

Protocol, Xmodem Protocol etc. This can also be used with many Microprocessor

Development Systems.

4.5.1. Null Modems

It only requires 3 wires (TD, RD & SG) to be wired straight through thus is more cost

effective to use with long cable runs. The aim is to make to computer think it is talking

to a modem rather than another computer. Any data transmitted from the first computer

must be received by the second thus TD is connected to RD. The second computer must

have the same set-up thus RD is connected to TD. Signal Ground (SG) must also be

connected so both grounds are common to each computer.

D9 D25 D25 D9

3 2 TD RD 3 2

2 3 RD TD 2 3

5 7 SG • ~ SG 7 5

4 20 DTR3 EDTR 20 4

6 6 DSR DSR 6 6

I 8 CD CD 8 1

7 4 RTS:J c:RTS
4 7

8 5 CTS CTS 5 8

59

The Data Terminal Ready is looped back to Data Set Ready and Carrier Detect on both

computers. When the Data Terminal Ready is asserted active, then the Data Set Ready

and Carrier Detect immediately become active. At this point the computer thinks the

'Jittu.a\ MQÖ.em \Q ~\\ic\\ i\ l':> CC)N\ec\ed \':> read'] and has detected the carrier of the other

modem.

All left to worry about now is the Request to send and Clear to Send. As both computers

communicate together at the same speed, flow control is not needed thus these two lines

are also linked together on each computer. When the computer wishes to send data, it

asserts the Request to send high and as it's hooked together with the Clear to Send, It

immediately gets a reply that it is ok to send and does so.

Notice that the ring indicator is not connected to anything of each end. This line is only

used to tell the computer that there is a ringing signal on the phone line. As we don't

have a modem connected to the phone line this is left disconnected.

r
II

4.6. Embedding PIC micro® Microcontrollers in the Internet

The term microcomputer is used to describe a system that includes a microprocessor,

program memory, data memory, and an input/output (1/0); some microcomputer

systems include additional components such as timers, counters, analogue-to-digital

converters and so on. Thus, a microcomputer; system can be anything from a large

computer system having hard disks, floppy disks and printers, to single chip computer

Systems. In this thesis we are going to consider only the type of microcomputers that

consist of a single silicon chip. Such microcomputer systems are also called

microcontrollers. The price for such products is being reduced dramatically due to the

introduction of new technology. The application note presented here is based on the

block diagram shown in Figure 4.1 It consists of the PIC16F87X microcontroller, the

Seiko iChipTM S-7600ATCP/IP stack IC, and the ISO modem TM Si2400 and Si3015

DAA from Silicon Labs. Each of these components was specifically selected for this

application because of the feature set it provides. Each of the following sections will

present the reasons for selection.

The sample al)l)licationsinclude both a web server and a client. The web server stores

the HTML page in an external serial EEPROM and dynamically inserts temperature and

60

potentiometer settings into the HTML file as it is being sent. The client application

mimics a vending machine that uploads status information at predefined intervals.

M
p
u

S-7600A

PIC16F877

I MSSP I'

\ C"P"P ' '&RAM
18 Kbytes

I AID I Physical Layer interface I I

~ I 16byteI USART I BUFFER

Ring
ISOcap ,~ Defect ı.u ITIP
interface

~t1 OC/AC Exter
Terminal nal

Microcont- I SI2400

Desca I RIN

roller AFE rtes

Si3015 (Codec)

Figure 4.1 Block Diagram

4.7. Design Representation

For any particular product, the design process will always start with conceptualizing the

product's functions, and will end only when we have produced a manufacturing

blueprint. Before it is finished, many different people will have been involved in this

process.

For example, the marketing department is needed to study market needs and to

determine requirements for the new product. A chief architect is needed to convert those

requirements into architecture for the product. Technologists are involved in selecting

the technology, the possible components and the suppliers, while computer-aided

design and computer-aided-software-engineering groups must either acquire or develop

61

the tools necessary to support the design of the product, including each of its parts. A

design team will develop the blueprint that indicates how to manufacture the product

from the available components in the selected technology. The software engineers will

write the code for the processors used in the product. The testing engineers are needed

to develop test strategies and test vectors to determine the reliability of the product,

while manufacturing engineers are needed to define the machine operations and to

develop plant schedules for the actual manufacture of the product.

Each of these groups looks at the product from its own point of view, and requires

specific information to support its particular work. Thus, each product, and

consequently each design, must have several different representations or views, which

differ in the type of information they emphasize. This is also true of single

representations, which can acquire different levels of detail as the design cycle

progresses.

t::
I

The three most frequently used representations are those that emphasize the behavioral,

structural and physical aspects of the product a behavioral representation views the

design simp\y as a b\ack box, while Sl)ecifyingits behavior as a function of its inl)ut

values and expired time. In other words, a behavioral representation describes the

system's functionality, but tells us nothing about its implementation; it defines how the

black box would respond to any combination of input values, but omits any indications

about how we would design that box.

A structural representation, by contrast, begins to answer some of these questions, as

it serves to define the black box in terms of a set of components and their connections.

In other words, this representation focuses on specifying the product's implementation,

and even though the functionality of the black box can be derived from its inter

connected components, the structural representation does not describe the functionality

explicitly.

A physical representation carries the implementation of the design one step further,

specifying the physical characteristics of the components described in the structural

representation. For instance, a physical representation would provide the dimensions

and location of each component, as well as the physical characteristics of the

62

connections between them. Thus, while the structural representation provides the

design's connectivity, the physical representation describes the spatial relationships

among these interconnected components, describing the weight, size, heat dissipation,

power consumption and position ot eacn ·mpu\ or ou\pu\ 1)\I\."-\n~~ m..m.~"\.'o."~~~ ~~~\~.

4.8. Microcontroller Architecture

The simplest microcontroIIer architecture consists of a microprocessor memory, and

input/output. The microprocessor consists of a central processing unit (CPU) and the

control unit (CU).

The CPU is the brain of a microprocessor and is where all of the arithmetic an (logical

operations are performed. The control unit controls the internal operations of the

microprocessor and sends control signals to other parts O the microprocessor to carry

out the required instructions.

Memory is an important part of a microcomputer system. Depending upon the

application we can classify memories into two groups: program memory and data

memory. Program memory stores all the program code. This memory is usually a read

only memory (ROM). Other types of memories, e.g. EPROM and PEROM flash

memories are used for low-volume applications and also during program development.

Data memory is a read/write memory (RAM). In complex applications where there may

be need for large amounts of memory it is possible to interface external memory chips

to most microcontrollers.

4.9. Microcontroller

The microcontroller is the primary component of the application, not necessarily a part

of the Internet communications. In some cases, it may be advantageous to offload the

Internet communications to an external device, so the microcontroller can focus on the

details of the application, as well as the application layer of the Internet Protocol Stack

(see Figure 4.2).

One feature that provides the most flexibility for an embedded application is FLASH

based program memory.

63

TABLE 4.1 PIC16F87X PRODUCT FAMILY

Features PIC16F870 PIC16F8 PIC16F8 PIC16F8 PIC16F8 PIC16F876 PIC16F877

71 72 73 74

Operating

Frequency
DC-20MHz

Resets Power-on Reset, Brown-out Reset, Power-up Timer, Oscillator Start-up Timer

FLASH

Program 2K 2K 4K 4K 8K 8K 8K

Memory

Data Memory 128 128 128 192 192 368 368

EEPROMData 64 64 64 128 128 256 256

Memory

Interrupts 10 10 11 13 14 13 14

UO Pins 22 33 22 22 33 22 33

Timers 3 3 3 3 3 3 3

Capture/Compar 1 l l 2 2 2 2

e/PWM

Serial USART USART MSSP MSSP, MSSP, MSSP, MSSP,

Communication USART USART USART USART

Parallel PSP PSP PSP

Communication

lü-bit AID 5 8 5 5 8 5 8

Channels

Instruction Set 35

Instructions

Packages Packages 40-pin 28-pin 28-pin 40-pin 28-pin DIP 40-pinDIP

28-pin DIP, DIP DIP, DIP, DIP SOIC 44-pin

SOIC, 44-pin SOIC, SOIC 44-pin PLCC,

SSOP PLCC, SSOP PLCC, TQFP

TQFP TQFP

""~ ..

Information that is updated frequently can be stored in the data EEPROM, which has

increased endurance over the FLASH program memory. This data can be modified

without interrupting the operation of the application. Other information that is rarely

changed can be stored in FLASH program memory. When updating these locations, the

microcontroller ceases to execute instructions, but continues to clock the peripherals

and queue interrupts. The programming operation is self-timed, i.e., an internal clock

source applies the high voltage to the memory cells to erase and/or write the data for a

predetermined amount of time. This frees the designer from the task of timing the event.

65

It also reduces the risk of the high voltage being applied too long, which damages or

reduces the endurance of the cell, or not longs enough, which does not fully program the

memory location.

4.10. TCP/IP STACK & Embedded Microchip

The S-7600A TCP/IP Stack IC from Seiko Instruments was designed specifically for

this type of market. It integrates the TCP/IP Stack engine, 10 Kbytes of RAM,

microcontroller interface and UART into a single chip. Once configured, it acts like a

data buffer. Data to be transmitted, up to 1024 bytes, is stored in the internal RAM

buffer and the TCP/IP engine appends the various headers and checksums. It then

transmits this packet from the UART. When packets are received, the TCP/IP engine

determines if the IP address and port number match those set during configuration,

calculates and verifies the checksums, and transfers the data contents of the packet to a

buffer. It then uses interrupt lines to indicate there is data available to the

microcontroller.

,,,,,

The complete lists of features for the S-7600A are:

• Implements PPP, IP, TCP, UDP and PAP.

• Two general purpose sockets.
• Two parallel interfaces (68K/x80 Motorola/Intel MPU bus) or synchronous

serial interface.

• On-chip UART physical layer transport interface.

• 256 kHz typical operating frequency.

• Low power consumption (0.9 mA typical, 1.0 µA standby).

• 2.4 V to 3.6 V operating voltage range.

The designer now has full Internet capabilities without any of the limitations of the

software implementations. The bulk of the program memory on the microcontroller can

now be used for the main application and also for implementing some of the

Application Layer protocols previously described. The size of the program memory is

now dependent on the application and can be scaled accordingly. The S-7600A delivers

Internet capability to the bulk of microcontrollers that were previously constrained due

to program and data memory size.

66

4.11. Modem

The last key ingredient is the communications medium used to connect to the Internet.

The type of medium selected is highly application dependent but can include:

• Wireless

• Cellular

• Power Line Carrier

• POTS (Standard telephone lines)

All of these mediums require some infrastructure to be in place before the embedded

device can communicate. Both wireless and cellular transceivers require antennas to be

placed in the surrounding area to provide the communication channel. While most areas

have some of this infrastructure in place, there are areas that are not completely covered.

Everyone has probably experienced this with a cellular telephone at one time or another.

Power line carrier also requires infrastructure to be in place. There has to be some sort

of transceiver at the other end of the power lines that communicates with the embedded

application. This infrastructure for this technology does not currently have the

widespread use that wireless or cellular offer and therefore, the costs to build this

infrastructure would be substantial. The standard telephone lines are everywhere.

ı.

The telephone poles, wırıng, relay stations, etc., are already in place. The cost of

building the infrastructure is zero and therefore, makes the most sense for the bulk of

embedded applications. There will be applications where the other mediums are needed,

but the application will be able to justify and therefore, absorb the additional costs

associated with using the respective mediums. Usually, the telephone modem

technology is significantly less expensive than that of other mediums. It also fits better

into embedded applications due to size and power consumption. The key to modem

selection is to find one that is highly integrated, i.e., smaller in size. This is important

due to the fact that most embedded applications are small. This modem should be easy

to use and provide all the necessary features in a single package. Fortunately, the folks

at Silicon Laboratories have developed an embedded modem that may be one of the

best designs ever to hit the streets. The first feature that stands out is the size. Figure 4.3

shows the size of the Silicon Labs design compared to a standard modem design. NO

relays. NO opt isolators. NO transformers. This design has the Si2400 modem and the

67

Si3015 DAA chip and some passive devices (resistors, capacitors, diodes and

transistors). The secret is in the ISO cap TM Technology, used to transfer control and

data over a capacitive interface as shown in Figure 4.4 This interface provides a low

cost solution based off standard high voltage capacitors and over 2400 V of isolation.

Never before has the embedded control electronics industry seen a modem design this

integrated AND this small AND this CHEAP! But one question remains;

Why 2400 baud? Isn 't that baud rate a little slow to use for Internet applications, even

embedded Internet applications?

The answer is quite simple. If the application was a web server, then yes, a 2400 baud

modem is not practical. But it was already established that a web server was not

practical for the embedded world. A typical embedded application will only transfer

several hundred bytes of data. When looking at the complete connect and transfer time

of one session, a 2400 baud modem will connect in approximately three seconds and

upload 200 bytes of data in 0.833 seconds (200 bytes x 10 bits/byte x ls/2400 bits) for a

total of 3.833 seconds. A 56K modem will connect in approximately 15 seconds and

transfer 200 bytes in 0.036 seconds (200 bytes x 10 bits/byte x ls/56000 bits). This

calculation shows that a 2400 baud modem can connect to the ISP, dump the data to the

server and disconnect before the 56K modem even establishes a connection to the

modem on the other end of the line. It just doesn't make sense, especially when you

consider the price of the 2400 baud modem versus the 56K modem. Another feature of

a telephone-based system is choosing the ISP to make the Internet connection.

SI2400
Modem

TypicalPC Card ____...
Modem ~,c;;

Figure 4.3 Modem Size Comparisons

68

capTM ISO
Digital

. .1 1ı- Interface I Io t C<ı C +--
Digital a r I

Interface -- t f l. a 1 +--
o C I

Digital I e
Interface --

Si2400

ntrol•

. İ t--1 Ring Detect1
I f r-ı DC Terminationo ı C AC Terminationa r To
t f Ring Impedance telephon. a line1 o C Ring Threshold

I e
11

AFE I! Hvbrid

Si 2015

•ata

Figure 4.4 ISOcap™ Interface

Everyone hears about the high speed Internet links such as cable modems. Most

providers are targeting customers that want high-speed access for web browsing.

According to the estimates, this market which itself is very large, will be dwarfed by the

embedded devices. Some companies are starting to realize this fact and are catering

towards these embedded applications with low speed modems.

4.12. Web Server Application

The embedded web server application is more for show and tell. As mentioned before, it

is not really a practical use of the hardware. The memory sizes required to serve web

pages and data files far outweighs that which can be found on a typical microcontroller.

In fact, if the price of non-volatile semiconductor memory and that of hard drives were

compared, the results would show that the average price per megabyte of FLASH

memory is approximately $1.00 - $2.00 and approximately $0.01 - $0.05 for hard

drives. That equates to a ratio of 40: 1 favoring hard drives. Demonstrations of

embedded web servers are just that, demonstrations of Internet connectivity. They are

easy to design and require nothing more than a web browser and a phone line to

demonstrate the capabilities.

Demonstrating a client application such as a vending machine is more difficult. Toting

around a vending machine in your car for product demonstrations really impacts your

gas mileage. It's heavy, too shows the schematic for the embedded web server. It uses

the PIC16F877, the S-7600A TCP/IP stack IC, the Si2400 modem and Si3015 DAA.

69

The design uses 24LCxx serial EEPROM that comes in sizes from 16 bytes up to 32

Kbytes. It holds the ISP phone number, user name and password, and the HTML web

page. Remember that we are transmitting several thousand bytes of information over the

Internet at 2400 baud.

The schematic for everything but the modem and serial port interface. Since the modem

must meet FCC or other governing body regulations, the schematics are not provided

for the modem evaluation board. The schematics and layout considerations for the

Si2400/Si3015 can be obtained from the Silicon. The web server has two modes of

operation. One is the standard web server mode where the device makes a phone call to

the local ISP and establishes an IP address.

The user may access the web page by typing in the IP address displayed on the LCD

display into any web browser. In the web page some variable information, such as

number of hits, temperature where the web server is, IP address, and a potentiometer

setting. This information is dynamically inserted into the web page as it is transmitted.

The other mode is a configuration mode, which allows the ISP information and web

page to be downloaded into the serial EEPROM. The ISP information includes the

phone number, user name and password. The size of the serial EEPROM is application

dependent. It can range from 16 bytes (24LCOO) to 32 Kbytes (24LC256). The board is

currently using a 16 Kbytes device, the 24LC64. To configure the web server, the RS-

232 interface on the modem evaluation board is connected to the USART module on the

PIC16F877. Ring Detect DC Termination Ring Impedance AC Termination Ring

Threshold AFE Hybrid Isolation Interface Isolation Interface to Host Digital Interface

Micro-Controller DSP Si2400 Si3015 to Telephone Line Data Control IS0cap™.

Any terminal program will work, as the PIC16F877 displays a text menu that allows the

user several options:

1. Enter user name

2. Enter password

3. Enter phone number

4. Download HTML file

5. Or exit configuration mode

70

Each piece of information has specific memory locations reserved in the serial

EEPROM. 32 bytes are reserved for both the user name and password. The ISP phone

number takes an additional 16 bytes. Finally, 32688 bytes are available to store the

HTML file. The serial interface must use hardware flow control, otherwise the USART

buffer will be overrun, due to the programming time required by the serial EEPROM.

The application provides lots of status information. Messages are displayed when a call

is being made, a dial tone is detected, and a ring occurs, a busy phone line is detected,

or when the modem finally makes a connection. The display will show the IP address

once the modem has made the connection. There are also a couple of LEDs that indicate

the status of the web server. The first LED shows if the modem is connected. The

second LED flickers when the web server is being accessed. Special characters are used

to allow the web server to insert variable data into the web page. The following

information can be displayed when these characters are found in the HTML web page:

t·!

• %a displays the IP address for web page reloads function.

• %c inserts the current temperature in degrees Celsius.

• %f inserts the current temperature in degrees Fahrenheit.

• %h displays the number of times the web site has been accessed.

• %p inserts the current value of the potentiometer several modifications had to be

made to the modem evaluation board.

1. It was originally designed to interface the serial port on the PC directly to the

modem. Using a terminal program, the user could make or receive phone calls.

This interface was hacked to allow stacking of the control board on top of the

modem evaluation board...

4.13. Client Application

This application represents a typical embedded Internet application, where the

embedded device is the client and is capable of connecting to a server to upload

information and download new information, or firmware. In this case, a vending

machine that receives new information. The vending machine application has an LCD

display that shows the current items in the machine and the price for each. It will

"dispense" items until the machine is empty. At any time, a push-button switch may be

71

pressed to start the connection to the server via the Internet. The modem dials an ISP,

makes a connection to the server, and receives new names and prices of items to be

dispensed. The hardware design is a subset of the web server application.

This design removes the serial EEPROM, potentiometer and temperature IC. It adds

some push-button switches for the additional user interface required. It uses the same

modem evaluation board as the web server with all the same modifications. The

vending machine has two modes of operation. It has the standard operating mode of

reading the push-button switches and "dispensing" items based on which button is

pressed. It tracks the number of items remaining in the vending machine and the total

amount of money collected.

The second mode of operation is the Internet connection. Most of the code to interface

with the S-7600A is the same as the web server, with the exception that it is now a TCP

client instead of a TCP web server. It must also know what the IP address and port

number of the server is before it can make a connection to the server. This means that

more than a web browser is required to complete the connection on the server side.

There must be a program running on the server that listens to a port. Once connected,

the transfer of information may take place between the client and the server. In this

application, the Internet connection provides the names and prices of new items. Every

connection to the server downloads two new item names and prices that are then

programmed into data EEPROM. Since these are values that could change frequently,

the data EEPROM was used for nonvolatile storage of the information, due to the higher

endurance. The same methods presented here can be used in conjunction with the boot

loader of AN732 to the new source code into FLASH program memory. The data that is

transferred between the client and the server has some handshaking built in. Once the

connection is established, the client waits for a response from the server. The value of

the data is not important, only the response from the server, so the buffer is emptied

without any processing of the information. The client now responds with an index

number between O and 9. This index is used by the server to extract the next vending

machine item names and prices out of a database. The format of this data is - - # - -

where # is the index value 0-9. The server will then respond with the new names and

prices in the following format: - <namel>; <name2>; <pricel>; <price2>;

..

72

The tilde character is used to denote the start of the string. Each of the names and prices

is a null terminated ASCII string and they are delimited using semicolons. Once the

client receives this information and updates the data EEPROM, the connection with the

server is terminated. At this point, the client must be reset through a MCLR Reset, or by

cycling the power. It now switches back to the normal mode of operation, using the new

names and prices provided by the web server. Other information, such as total amount

of money collected and the number of remaining items, could have been transmitted

back to the server, but the application was kept simple for both the client and the server.

This interaction is highly application dependent and can be easily adapted based on the

system requirements.

4.14. Summary

The matters covered and the topics discussed in the thesis are just drops in the ocean of

the interfacing world. This thesis attempts to bind together the different interfacing

techniques which are implemented for different applications in the computer world. A

general coverage of the basic interfacing techniques is done and recent developments

like the EPP, ECP and the USB are discussed. Most of these techniques are used for

communication between PCs and for Data Acquisition Systems. Though the age old

methods of interfacing are cast in the limbo of oblivion, this thesis makes a modest

attempt to relate its use in the rising technologies that adorn the dawn of a new era.

The move to embed the Internet is creating many new and fascinating devices for all

different types of markets. Cellular phones and PDAs are the latest devices to add

Internet capability. Soon many household appliances, such as refrigerators, will have

Internet capability and these embedded applications will dominate the Internet. These

devices can Internet-enable any application that has already used most of the available

microcontroller resources to control the application. In most cases, a microcontroller

cannot afford to dedicate 5 Kbytes of program memory and a significant portion of data

memory for Internet connections. This need has created devices such as the S-7600A

and Si2400 specifically for the embedded Internet markets.

73

5. CHOOSING A SECURITY ALGORITHM

5.1 Overview

The aim of this thesis is to implement and encryption algorithm which can be used by

an embedded microcontroller system. One of the major problems here is that the

microcontrollers have very limited resources. Most microcontrollers are equipped with

only a few k-bytes of program memories and only several hundred bytes of data

memories for example; one of the most popular microcontrollers PIC16F84 has only

lk-byts of program memory and 68 bytes of RAM data memory. The maximum clock

frequency of this microcontroller is only 4MHZ. With these revere constraints its not

on task to implement advanced security algorithm on such devices.

This chapter gives and overview of the popular and small-size encryption algorithms

and gives recommendations for making a selection. The algorithms are simulated on PC

in order to access their suitability.

5.2. Security Requirement in Embedded Applications

There are many embedded microcontroller applications which require different reveal of

security. Some applications may require no security at all, while some other may require

top security.

In general, we can classify the security requirement of embedded microcontroller

applications as follows.

• No Security: these are embedded microcontroller applications where are no

security requirements. Data can be sending to the microcontroller as raw plain

text. For example, the microcontroller used in standard home TV remote

controller applications, do not require any security.

• Low level security: these are embedded systems where some level of security

is required. For example the microcontroller used in office automation products

(e.g. a printer) may require low level of security.

• High level security: some embedded system such as controlled entry and exit

systems usually require higher security levels. The encryption algorithm chosen

for such systems should be more difficult to decode by unauthorized persons.

74

• Top levels security: Most embedded systems in military applications usually

require top levels of security. These systems should have high resistance to

unauthorized attacker. A compute encryption algorithm is usually chosen for

such applications.

5.3. Cryptography Basics

When privately communicating with another patron, the use of a secret code can privet

unintended recipients from reading the messages. Both the sender and receiver must

agree on a system to the used. If the repaint receivers an encoded message without

knowing how to decode the message, the message is useless. The message to the

encoded is usually called the "plain text", and the encoded reaction of the message is

called the "cipher text".

Cryptography is divided into two parts "private-key encryption" and "public-key

encryption". A private key cryptosystem is one that s intended to the used awing a small

group of regal and this type of cryptosystem are easily controlled. A public-key

encryption is at a much loge scale. There are usually many participants as well as many

attempting to break the codes. This cryptosystem is not security, is usually large and

requires sophisticated loads.

Some commonly used private-key encryption algorithms are [2].

• Caesar Cipher

• Affine Cipher

• Random Cipher

• Vigenere Cipher

• Transposition Cipher

• Digital Encryption standard (DES)

As we will see later on, most of the above algorithms are simple do not require large

resources.

Some commonly used public-key encryption algorithms are [2].

• Rivest, Shamir, Adelman (RSA)

• Pretty Good Privacy (PGP)

75

All encryption algorithms are based on some kind of key which is used to decode the

plain text. This key can be a simple number or a complex algorithm. The choice of the

key affects the security level and the complexity of the encryption algorithm for

examples Caesar Cipher algorithm a simple shift of the letters is used a key. In more

complex algorithms such as the RSA, Pair of keys (usually very large numbers), are

public, and are private are used.

Because the embedded microcontroller systems have very limited resources, it is not

possible to implement complex algorithms or then which may require large amount of

program or data memories. Processing powers of the microcontroller can also be a

problem when complex encryption algorithms are implemented.

In this thesis we are only interested in simple, small-size, but effective encryption

algorithms. i.e. Algorithm which can be implemented with less than Ik-byte of program

memory and few MHZ chick speed.

The encryption algorithms studied in this thesis and found suitable for the embedded

microcontroller applications are presented in the remaining parts of this chapter.

5.4. The Caesar Cipher

One of the simplest and perhaps the smallest encryption algorithms is the Caesar Cipher

as described below in figure 5.1.

Encrypted
Message to send

.·.

Figure 5.1 Caesar Cipher Message to send

76

Encrypted
Message
Received

Message
Received

:::.:::.:::::::::::::::::-:-:::·:···:::::::::'.:::::

Figure 5.2 Caesar Cipher Encrypted Messages Received

5.4.1. The algorithm

The Caesar cipher encrypts a message by shifting every letter forward a specific number

of places. For example, every letter could be shifted forward one place, so that 'a' is

encrypted as 'B', 'b' as 'C', 'c' as 'D', and so on. As there are 26 letters in the alphabet,

you can choose a shift of anything up to 25 places. (A shift of 26 takes each letter back

to its original position, thus leaving each one unencrypted.)

To encrypt a message by applying a Caesar shift of one, for example, we would look up

each letter in the top row and replace it with the corresponding letter in row 1. So the

message 'defend east side', for example, becomes 'EFGFOE FBTU TJEF'.

The Caesar Cipher is a very simple example of a substitution cipher. It is also one the

oldest examples of a cryptographic system. It was used by Roman military leaders, in

particular Julius Caesar and Octavius.

5.4.2. Translations

The mathematical transformation that shifts the alphabet is called a translation. The

shift to the right of three spaces can be symbolized as C =p + b where C is ciphertext,

p is plaintext, and b is the shift.

We think of assigning numbers to the letters of the alphabet. A usual numbering is

77

number O 1 02 03 04 05 06 07 08 09 1 O 1 1 12 1 3

letters A B C D E F G H I J K L M

Number 14 1 5 16 17 1 8 19 20 21 22 23 24 25 26

letters N o p Q R s T u V w X y z

Using this numbering, a, which is represented by 01, is mapped to 01 + 3 = 04, which

represents D. a~ D, b ~ E, c ~ F, etc. When we come to the end of the plaintext

alphabet, the ciphertext alphabet returns to the beginning: w ~ Z, x ~ A, y ~ B,

andz ~ C.

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute

the ciphertext letter C:

Mathematically, we can express the Caesar Cipher as:

C = E (p) = (p + 3) mod (26)

A shift may be of any amount, so that the general Caesar algorithm is

C = E (p) = (p + k) mod (26)

Where k takes on a value in the range 1 to 25. The decryption algorithm is simply

P = D (C) =(C - k) mod (26)

The key for this Caesar cipher is 3 the number added to the plaintext letter to arrive at

the corresponding ciphertext letter.

Here is a key that need not be written it can be remembered. Because we are adding the

key to the numbers corresponding to the letters of the alphabet, we call this an additive

key. In the case above, we say we are using an additive key of 3.

78

Start

Open plain text file

Open cipher text file

Read the key

1
Read a character from

plain text file

Shift the a character and
store in cipher text file

EOF?

Close plain text file

Close cipher text file

Start

Figure 5.3 Caesar Cipher Flow Chart

79

l •

/**

Caesar Cipher Encryption Example
This program implements the Caesar Cipher encryption algorithm on a PC. The key is

entered as entered as a number from the keyboard. The program opens the plain-text file

called "sample.txt" and writes the encryption message into a file called "out.txt".

Characters in the plain text file are shifted right by the amount in the key.

**/

#include"stdio.h"

#include"stdlib.h"

main O
{ :ı

char c,code,key;

FILE *ifp,*ofp;

ifp = fopen("sample.txt","r");

ofp = fopen("out.txt","w");

printf("Caesar Cipher Example\n");

printf("\n Enter key:");

/*Get the key from the keyboard*/

scanf("%d" ,&key);

while((c = getc(ifp)) !=EOF)

{

code = c + key;

fprintf(ofp, "%c" ,code);

}

fclose(ifp);

fclose(ofp);
/* Now see if it works. Read from "out.txt" and store in "decoded.txt" using the same

key value*/

ifp= fopen("out.txt","r");

ofp= fopen("decoded.txt","w");

printf("\n Enter SAME key:");

/*det the key*/

80

scanf("%d" ,&key);

while ((c=getc(ifp))!=EOF)

{

code=c-key;

fprintf(ofp,"%c",code);

}

fclose(ifp);

fclose(ofp);

return O;

Figure 5.4 Caesar Cipher PC Program (key used is 5)

4 Decoded - Notepad 1!!1@£3
E~e f.dit ~earch !::!~
THE FOLLOWING IS THE PLAIN-TEXT EXAMPLE

The term microcoıııputer is used to describe a system that includes a mınımum of a
microprocessor. prograıııe rnemory, data memory, and input/output. soıııe microcomputer
systems include additional components. such as tiıııers,counters. analogue to digital
conuerters, and so on.

Figure 5.5 Plain Text Input

') out - Notepad -- R~ EJ
£ile .E_dit ~earch Help
YMJt-KTQQT\NSLt-NXt-YMJt-UQFNS2YJ]Yt-J]FRUQJ~Ynjt-yjwrt-rnhwthtruzyj
w1-nx1-zxji1-yt1-ijxhwngj1-f1-x-xyjr1-ynfy1-nshqzijxt-ft-rnsnrzr1-tkt-f1-~r
nhwtuwthjxxtw3t-uwtlwfrjt-rjrtW""1t-ifyft-rjrtW""1t-fsit-nsuzy4tzyuzy3
1-xtrj1-rnhwthtruzyj""°x-xyjrx1-nshqzij1-fiinyntsfq1-htrutsjsyx11-xzh
n1-fx1-ynrjwx1htzsyjwx11-fsfqtlzj1-yt1-inlnyfq1-~hts{jwyjwx11-fsi1-xt1-
ts3

Figure 5.6 Cipher Text Output

/***

Microcontroller Program for Caesar Cipher

This program was compiled using the PIC C compiler the code is written for the

PIC16F84 microcontroller. This microcontroller has lk program memory and 64 byte

RAM.

81

The text to be encrypted is stored in the program memory using the "const" declaration

in order to save RAM space. Also, long text can be stored in the program memory.

Fixed key value of 2 is used in this program.

This program occupies only 43 bytes in program memory, and 4 bytes in RAM

memory. 13 bytes of the 43 are the text. Therefore, the size of the actual program

(without the send_code routine is only 30 bytes).

**/

#include<pic.h>

void send_code(char c)

{

}

main(void)

{

l:

char c, code ,i;

unsigned char key = 2;

const char text[]="text to send!";

i=O;

while(c!='!')

{

c=text[i];

·ı

//i=O

//! Is the terminator

//get a char

//encrypt

//send out

//print to next char

code = c + key;

send_code(code);

i++·'
}

}

Figure 5.7 Caesar Cipher Microcontroller Program (Key=5)

A computer program was developed to simulate the Caesar Cipher on a PC. The

flowchart of this program is given in Figure 5.3. As can be seen from the flow diagram,

the implementation of the standard Caesar Cipher is extremely easy. The PC program is

given in Figure 5.4. The program open a plain text file on the hard disk of the computer,

reads characters from this file decodes the characters by shifting each character by the

82

amount specified in the key, and then writes the resultant Cipher text to an output file.

The key is a number which specifies the amount of shift and is extend interactively from

the keyboard. The plain text and the cipher text output from this program are shown in

Figure 5.5 and 5.6 respectively. The simple Caesar Cipher was also implemented on a

popular PIC16F84 model microcontroller, using the PIC C microcontroller compiler.

The program simply encrypts some characters and sends them out from the

microcontroller. The algorithm occupies only 43 bytes in program memory and only 4

bytes in RAM data memory. The microcontroller program listing is given in Figure 5.7.

5.5. Tiny Encryption Algorithm (TEA)

The Tiny Encryption Algorithm is one of the fastest and most efficient cryptographic

algorithms in existence. It was developed by David Wheeler and Roger Needham at the

Computer Laboratory of Cambridge University. [16] The author has dean use a short

program which will run on most machines and encipher safely. It uses a large number of

iterations rather than a complicated program as shown in figure 5.8.

ı:ı

.,:~
It is hoped that it can easily be translated into most languages in a compatible way. The

first program is given below. It uses little set up time and does a weak non linear

iteration enough rounds to make it secure. There are no preset tables or long set up
times. It assumes 32 bit words.

·.·

(:!
Encrypted

Message to send <}><
1 : 1 ~ ! ~ I ! ! ! i ! 1 : 1 : ~

Figure 5.8 Tiny Encryption Algorithm (TEA) Encryption Message to Send

83

1 ı '. [I ı I ı I ı I ı I ı f ı i ı ~II~;:;!~'.11 IH 1 ! ı 1 ı; ı ! ı
••••••••••

·,·,·.·.·.·.· ·.·.·.·.. -:-;-:-;-;-:-.·

Encrypted
Message
Received

:::::::::1/1/(~!i=~i~~~~~~~~;;:!:~:!:~:!:~;1:(~j(()ii(
: : : : : : : : : : : . : . : : ~ : : : '. : . : .. ::·-.:.-::::::::;:::::::;:;.;.: .. : ...·. :::::::::::::::
::: : : : : : : =::: ~-; ·,::: =::::: 1/('.(':)i?=/J) : :_:_:,: : (/j: : //:;:::::::::

Figure 5.9 Tiny Encryption Algorithm (TEA) Encryption Message Received

5.5.1. The Algorithm

• Key 128 bits (k [O] ..k [3]).

• Plaintext 64 bits (2 x 32 bits, text [O], and text [1]).

• In 32 rounds combines plaintext and key, swapping the two.

• Halves of plaintext.

• Uses reversible addition ofunsigned integers, XOR(").

• Combines plaintext with constant delta to obscure key.

5.5.2. Basics of the routine

It is a Feistel type routine although addition and subtraction are used as the reversible

operators rather than XOR. The routine relies on the alternate use of XOR and ADD to

provide nonlinearity. A dual shift causes all bits of the key and data to be mixed

repeatedly.

The number of rounds before a single bit change of the data or key has spread very

close to 32 is at most six, so that sixteen cycles may suffice and we suggest 32. The key

is set at 128bits as this is enough to prevent simple search techniques being effective.

The top 5 and bottom four bits are probably slightly weaker than the middle bits. These

bits are generated from only two versions of z (or y) instead of three, plus the other yor

z. Thus the convergence rate to even diffusion is slower. However the shifting evens

this out with perhaps a delay of one or two extra cycles.

84

The key scheduling uses addition, and is applied to the unshifted z rather than the other

uses of the key. In some tests k[O] etc. were changed by addition, but this version is

simpler and seems as effective. The number delta, derived from the golden number is

used where delta= (~)231 A different multiple of delta is used in each round so that

no bit of the multiple will not change frequently. We suspect the algorithm is not very

sensitive to the value of delta and we merely need to avoid a bad value. It will be noted

that delta turns out to be odd with truncation or nearest rounding, so no extra

precautions are needed to ensure that all the digits of sum change.

The use of multiplication is an effective mixer, but needs shifts anyway. It was about

twice as slow per cycle on our implementation and more complicated.

The use of a table look up in the cycle was investigated. There is the possibility of a

delay are one entry of the table is used. For example if k [z&] is used instead of k[O],

there is a chance one element may not be used of (3/4)32, and a much higher chance that

the use is delayed appreciably. The table also needed preparation from the key. Large

tables were thought to be undesirable due to the set up time and complication. The

algorithm will easily translate into assembly code as long as the exclusive or is an

operation. The hardware implementation is not difficult, and is of the same order of

complexity as DES, taking into account the double length key.

5.5.3. Tests

A few tests were run to detect when a single change had propagated to 32 changes

within a small margin. Also some loop tests including a differential loop test to

determine loop closures.

A considerable number of small algorithms were tried and the selected one is neither the

fastest, nor the shortest but is thought to be the best compromise for safety, ease of

implementation, lack of specialized tables, and reasonable performance. On languages

which lack shifts and XOR it will be difficult to code. Standard C does makes an

arithmetic right shift and overflows implementation dependent so that the right shift is

logical and y and z are unsigned.

85

5.5.4. Usage

This type of algorithm can replace DES in software, and is short enough to write into

almost any program on any computer. Although speed is not a strong objective with 32

cycles (64 rounds) on one implementation it is three times as fast as a good software

implementation of DES which has 16 rounds.

The modes of use of DES are all applicable. The cycle count can readily be varied, or

even made part of the key. It is expected that security can be enhanced by increasing the

number of iterations.

5.6. Combining Caesar and Simple TEA

The original TEA algorithm is computer and requires 128 bits key with 64 bits of plain

text. A modified and singles version of the TEA algorithm has been tired by the author

XOR ring a key value with the characters to be encrypted. The flow diagram of this

algorithm is given in figure 5.10. A program was developed on a PC to simulate the

TEA algorithm. The program listing is given in Figure 5.11, where the key is accepted

at the keyboard from the use. Figures 5.12 and 5.13, shows the plain text and the cipher

text produced by this program. The simple TEA algorithm was also implemented on a

PIC16F84 microcontroller and the program listing is given in Figure 5.14. This program

occupies only 43 bytes in the program memory and only 4 bytes in the RAM data

memory.

Another program was also divided by the author to simulate the behavior of the Caesar

Cipher and the TEA algorithms. This is given in appendix A the plain text and the

cipher text for these programs are also given in Appendix A.

The author has developed programs to simulate the behavior of combining the Caesar

and simple TEA algorithm the program listing is given in Appendix B.

86

Start

Open plain text file

Open cipher text file

Read the key

Read a character from plain text file

Apply TEA algorithm

Store character in cipher file

N

Close plain text file

Close cipher text file

Stop

Figure 5.10 Simple TEA Flow Chart

/**

Simple TEA Cipher Encryption Example
This program implements the TEA Cipher encryption algorithm on a PC. The key is

entered as entered as a number from the keyboard. The program opens the plain-text file

called "sample.txt" and writes the encryption message into a file called "out.txt".

Characters in the plain text file are shifted right by the amount specified in the key.

**/

87

#include"stdio.h"

#include" stdlib.h"

main()

{

char c,code,key;

FILE *ifp, *ofp;

ifp = fopen("sample.txt","r");

ofp = fopen("out.txt","w");

printf("Simple TEA Cipher Example\n");

printf("Enter key:");

/*Get the key from the keyboard*/

scanf("%d" ,&key);

while((c = getc(ifp)) !=EOF)

{

:ı

code = c I\ key;

fprintf(ofp, "%c" ,code);

}

fclose(ifp);

fclose(ofp);

/* Now see if it works. Read from "out.txt" and store in "decoded.txt" using the same

key value*/

ifp= fopen("out.txt","r");

ofp= fopen(" decoded. txt", "w");

printf("\n Enter SAME key:");

/*det the key*/

scanf("%d" ,&key);

while ((c=getc(ifp))!=EOF)

{
Code = c I\ key;

fprintf(ofp, "%c" ,code);

}

fclose(ifp);

fclose(ofp);

88

return O;

}

Figure 5.11 Program listing of simple TEA ciphers

~ sample - Notepad 11!1~ E3
file .E_at ,Ş_eaıch .!::!eiı
frHEFOLLOWIHG IS THE PLAIN-TEXT EXAMPLE SIMPLE TEA

The ter• •icrocoıııputer is used to describe a syste• that includes a •ınııııu• of a
microprocessor. prograıııe •emory, data ıııemory, and input/output. soıııe •icrocoıııputer
syste~s include additional coıııponents, such as tiıııers,counters, analogue to digital
conuerters, and so on.

Figure 5.12 plain text for simple TEA cipher

4 out - Notepad 11!!1@ 13
file f.dt ~earch !:!elp
~r~z~-,,-~rt~zr z~r~z
ı~rt~l..,;;.z..:~v
1~z fV
ı~z~PP~2?z.?(7z739(5957*/.?(z3)z/)?>z.5z>?)9(38?z;z)V).?7z.2;.z34
96/}?)z;z73437/7z5<z;zP739(5*(59?))5(tZ*(5=(;7?z7?75(Vuz>;.;z7?75(V
uz;4>z34*/.u5/.*/.tz)57?z739(5957*/.?(P)8).?7)z3496/>?z;>>3.354;6z9
57*54?4.)uz)/92z;)z.37?()u95/4.?()uz;4;65=/?z.5z>3=3.;6zP954,?(.?()
uz;4>z)5z54t

Figure 5.13 Cipher text for simple TEA cipher (key=90)

/***

Microcontroller Program for simple TEA Cipher
This program was compiled using the PIC C compiler the code is written for the

PIC16F84 microcontroller. This microcontroller has lk program memory and 64 byte

RAM.
The text to be encrypted is stored in the program memory using the "const" declaration

in order to save RAM space. Also, long text can be stored in the program memory.

Fixed key value of 2 is used in this program.

This program occupies only 43 bytes in program memory, and 4 bytes in RAM

memory. 13 bytes of the 43 are the text. Therefore, the size of the actual program

(without the send_code routine is only 30 bytes.)
**/

89

#include<pic.h>

void send_ code(char c)

{

}

main(void)

char c, code ,key,i;

unsigned char key = 2;

count char text[]="Text to send!";

i=O; //i=O

while(c != '!')

{

c=text[i];

//! Is the terminator

code = c ıı. key;

send_code(code);

//get a char

//encrypt

//send out

//point to next chari+r:'
}

}

Figure 5.14 Microcontroller implementation of simple TEA cipher

5.7. Using Variable key

The Caesar Cipher and the simple TEA algorithms are based a single key which can be

crashed exactly. The author has developed a program which uses a variable key for each

character in order to increase the security of the simple TEA algorithm. The program

listing is given in Figure 5 .17 have the key is incremented at each iteration; the

microcontroller implementation of this algorithm is given in Figure 5.18.

90

Figure 5.15 TEA Encryption Algorithm+ variable key for message to send

.·.-:-:-:-:-:-:-:-:-:-:-:-:, ··::::::::::::::::: ·.·.·.·.·.·.·........

:::::::':::/:/:!:!:::::::::::~:>>il XOR Message
Received Encrypted

Message
Received

,.

:;:;:;:::~:}~:~1:~:;:~:;:~:;1 '. '. '. '. ~== :·-:::::::::::.:-::::::::: :;::::::::::: .rr· · · · r ·: · : ::: : : : : ı ::.: :.u_u.u.:.u.:_:_:_:_:_:_:_:_:_ı_u.u.u.: :: =::~~~~~~~~:::::

Figure 5.16 TEA Encryption Algorithm - variable key for Received message

#include"stdio.h"

#include"stdlib.h"

main()

{

/* First encode the data. Read from "Sample.txt and store in"out.txt"*/

char c,code,key;

FILE *ifp, *ofp;

ifp = fopen("sample.bct","r");

ofp = fopen("out.bct","w");

key=l;

while((c = getc(ifp)) !=EOF)

{

code = c " key;

fprintf(ofp,"%c",code);

key++;

}

fclose(ifp);

91

fclose(ofp);

/*Now decode and see if it works. Read from "out.txt" and store in "decoded.txt" */

ifp= fopen("out.txt","r");

ofp= fopen("decoded.txt","w");

key=l;

while ((c=getc(ifp))!=EOF)

{

code=cokey;

fprintf(ofp, "%c" ,code);

key++;

}

fclose(ifp);

fclose(ofp);

return O;

}
Figure 5.17 simple TEA algorithms with varying key

/***

Encryption Using A 8 Bit Microcontroller.
This program was compiled using the PIC C compiler the code is written for the

PIC16F84 microcontroller. This microcontroller has lk program memory and 64 byte

RAM. The text to be encrypted is stored in the program memory using the "const"

declaration in order to save RAM space. Also, long text can be stored in the program

memory.

This program occupies only 44 bytes in program memory, and 4 bytes in RAM

memory. 13 bytes of the 44 are the text. Therefore, the size of the actual program

(without the send_code routine is only 31 bytes).

**/

void send_ code(char c)

{

} main(void)

{

92

char c, code ,key,i;

count char text[]="text to send!";

key= 1;

i=O;

//set the key

//i=O

//! Is the terminatorwhile(c!='!')

{

c=text[i]; //get a char

//encrypt

//send out

//next key

//point to next char

code = c I\ key;

send_ code(code);

key++;

i++·'
}

}
Figure 5.18 Microcontroller Implementation of Simple TEA with Varying Key

5.8. Microcontroller implementation using a Timer to Create keys

The simple new algorithm "NEU" can be made key cure if a random key value is used

for each character. The author has developed a program for microcontroller (PIC16F84)

which uses the time of the microcontroller to get key values. The program listing is

given in Figure 5 .17 the time of the microcontroller is let to run continuously at rate

of2 µs . The keys are then read by the assignment key = TMRO. For each call to the

time routine a different key is affianced and thus if becomes key difficult to break the

code as shown in figure 5.17 & figure 5.18. If both the sender and the receiver use the

same routines with the same microcontroUer, then the same keys will be obtained.

The code given in Figure 5.21 can be improved by reading the time generated key

values outside the encryption routine. This way, it will be easier to obtain the same key

values for both the sender end the receiver systems. The new microcontioJlcI program
listing is given in figure 5.22.

93

. --. -. -.. ---.-.- - - ·.·.·.·.·-.·~ ·-:-:-:-:~--~-. . .

Message to send !//YI XOR f \::\\<:>:<:<~:ı
.

Encrypted
Message to send

. . -:-:-:-·-:-::::::::::: :;
....

:·:·:·:···:··.·.·.·.·.::~:::::::::::ı::~:::
::: :-:-:-:-::::::::.:_:_. ·• -· -~.

I•• •. ,. • • • 1' • • • • • • • • • • • ' • • • • • • • • • • •
-- --- (l

.
·-·-::::::::::::-.·..... .· -·-::::::::::-:::::::::+ Generate key 1-J~ : iii : /:;:+Secret:-:-:·>i:i:):/tt<><<:::: ·:-:-:-:-:-:~:_:::::-:-·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:-:-:•.·:-:•:-:-:•:-·.·.·.·.·.· .·.·.·.·.·.. ·.·.·.· .. .

Figure 5.19 New Algorithms "NEU"

. : :-:-:-:-· :-:-:-:-:-:-:-:-:-: ·.·.·.·.·.·.·.·
.·.·.·.·.·.·.·.·.· XOR ·.·.·.·.·.·.·.· .·.·.·.·.·.·.·.· Message

Received
~ .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:~........<<:.+·' Encrypted

Message
Received Ai:!: :fi:l: ! : : ~ ! : : : ! : !~:: ! : ! ! ! ! ! : : : /: ! ! :! : : : ! i ! : ! ! : : ! ! : !: :

.... ·.·.·.·.·.·.·.·........

. ··r·~· ı~· ·()·.·.·.·.·.·.·.·-·-·.·.·.· .

·:: :;:::::: •• :r }/)
mu rn ı····-~e~e,ate<ke;>>P•••> < ii iii } :• •;: !/: /
.... ·.·.·.·.·.·. ..,~..............................·.·.·.·.· .·. ·.·.·.·.·.· .·.·.·.·. ·.·.·.·.·.·.·. ·.·.·.·.·.·. · Tını' er
::::::::: ::: ::::::::::: ::::::::: :::::::::::::: :::::::::::::
·.·.·.·.· .·. ·.·.·.·.·.· .·.·.·.·. ·.·.·.·.·.·.·. ·.·.·.·.·.·... .. .:-:-:-:-: <· :-:-:-:-:-: -:-:-:-:- :-:-:-:-:-:-:- :-:-:-:-:-:- •, Secret

:::::::: •• :.:.::::::::. ~:,·.·~0•• .·~,·.·.·~:.·.·.·. :>::::::::::::::::::::::::.:;::::::::::::~:~:::·:i::::::/L:>::.<.:.:<2:::::::::::::::::::~::
Figure 5.20 New Algorithms "NEU"

/**

Encryption Using A 8 Bit Microcontroller & Timer

This program was compiled using the PIC C compiler the code is written for the

PIC16F84 microcontroller. This microcontroller has lk program memory and 64 byte
RAM.

The text to be encrypted is stored in the program memory using the "const" declaration

in order to save RAM space. Also, long text can be stored in the program memory.

Timer TMRO is used to generate the keys.

This program occupies only 55 bytes in program memory, and 4 bytes in RAM

memory. 13 bytes of the 44 are the text. Therefore, the size of the actual program
(without the send_code routine is only 42 bytes.)

**/

94

#include<pic.h>

void send_ code(char c)

{

}

setup_timer (void)

{

TOCS = O;

PSA = O;

PSO = O;

PS1 = O;

PS2 = O;

TOIF = O;

//selecr TMRO

//select TMRO pre-scaler

//as 1 :2 i.e. 2 us

//activate TMRO

}

main(void)

{

char c, code ,key,i;

count char text[]="text to send!";

setup_ timer();

TMRO=O;

key=TMRO;

//select TMRO

//by loading a different

//value to TMRO we can vary the first

//key value

//i=O

//! Is the terminator

i=O;

while (c != '!')

{

c=text[i]; //get a char

//encrypt

//send out

//get next key

//point to next char

code = c I\ key;

send_ code(code);

key=TMRO;

i++·'
}

}
Figure 5.21 Microcontroller have limitations using a Timer

95

!***

Encryption of New algorithm "NEU" By Using A 8 Bit Microcontroller & Timer

This program was compiled using the PIC c compiler the code is written for the

PIC16F84 microcontroller. This microcontroller has Ik program memory and 64 byte
RAM.

The text to be encrypted is stored in the program memory using the "const" declaration

in order to save RAM space. Also, long text can be stored in the program memory.

Timer TMRO is used to generate the keys. All the keys are read at the beginning of the

program of the program to avoid any problems with timing.

This program occupies only 66 bytes in program memory, and 53 bytes in RAM

memory. 13 bytes of the 66 are the text. Therefore, the size of the actual program

(without the send_code routine is only 53 bytes.)

**/

#include<pic.h>

void send code(char c)

{

}

setup_timer (void)

{

TOCS = O;

PSA= O;

PSO = O;

PSI= O;

PS2=0;

TOIF = O;

//select TMRO

//select TMRO pre-scalar

//as 1 :2 i.e. 2 s

//activate TMRO
}

main(void)

{

char c, code .i;

unsigned char keys (50];

count char text[]="Text to send!";

96

setup_ timer();

TMRO=O;

//setups TMRO

//by loading a different value to TMRO we

// can vary the first key value

//get the keys

//i=O

//! Is the terminator

for(i=O;i<50;i++)keys[i]=TMRO;

i=O;

while (c != '!')

{

c=text[i];
code= c I\ key[i];

send_code(code);

//get a char

//encrypt

//send out

//print to next chari++·'
}

}

Figure 5.22 Getting the Time Generated Keys outside the Encryption Routine

5.9. Current Software and Hardware Cryptography

Most cryptographic algorithms are not designed with efficient software implementation

as primary design criteria. For example, current workhorse encryption algorithms such

as Triple-DES1 (3DES), requires 108 clock cycles per byte on a Pentium processor

[39], yielding about -9MBytes/second on a Gigahertz Pentium Pro. Likely successors to

Triple-DES, the Advanced Encryption Standard (AES) candidates [40], all improve on

the performance of Triple-DES, but still require 20-69 clock cycles per byte for 8 KB

requests with an average penalty of an additional 3 cycles per byte a smaller, 1 KB

request [39]. Hash functions have significantly better software performance than

encryption. For example, SHA-1 on a 200MHz Pentium requires 13 clock cycles per

byte (15 MB/second) while RIPE-MD160 hashes at 16 clock cycles per byte

(12.5MB/second) [Preneel98]. While better than the fastest AES algorithms, they will

still consume most of a 200 MHz Pentium's cycles supporting the media rates of current

disk drives. These numbers show that a NASD-class processor, -200 MIPS (e.g. 200

MHz Strong ARM), will be unable to support software-based cryptography, thus

requiring hardware-based cryptography.

97

There are a wide range of hardware cryptographic accelerators. Eberlee at Digital' s

System Research Center demonstrated an experimental DES chip in 1992 that delivered

1 Gb/s performance [43]. Currently, you can purchase chips such as the Hi/Fn 7751 [42]

or VLSI's VMSl 15 running at 80 MHz which deliver approximately 100 Mb/sand 200

Mb/s performance for both SHA-I and Triple-DES. These chips, primarily designed to

enable IPsec-based virtual private networks in 1 OOMb/second routers, may not be priced

aggressively for commodity devices. Pijinburg Custom chips, next generation ASIC

(500k gates, 0.18 micron) will implement SHA-1, Triple-DES, Safer SK64, and

RIPEMD-160 [44] and is expected to deliver up to 500 Mb/s performance from each

functional unit. Cognitive Designs next generation ASIC, the CDI 3000, will perform

Triple-DES at I 72 Mb/s and concurrent SHA-1 at 204 Mb/s, priced at approximately

$20 in volume. While these cost and performance numbers are difficult to map directly

into a NASD, they do provide an intuition of the performance and cost of readily

available hardware support.

98

6. CONCLUSION

Microcontroller based security system and some cryptography algorithms have

significance in this thesis. All the microcontrollers are working on some sort of

encryption and decryption technique. This idea is implemented in many ways and by

using many programming language softwares, like CIC++, JAVA, Visual Basic, Visual

C++, etc.

I use a simple algorithm which can be translated into a number of different languages

and assembly languages very easily. It is short enough to be programmed from memory

or a copy. It uses a sequence of word operations rather than wasting the power of a

computer by doing byte or 8 bit operations.

Caesar Cipher and the simple TEA can easily be implemented as an embedded

microcontroller system, each occupying less than 50 bytes. The Caesar Cipher and TEA

were combined to obtain an algorithm which is slightly more difficult to crash. The

TEA algorithm was used with a varying key where different keys were used for each

character. The resulting cipher text is more difficult to crash. The new version of the

simple "NEU" algorithm is implemented. It runs on the microcontrollers and uses the

timer routines to generate variable keys, making it very difficult to crash.

The table below summarizes the algorithms suitable for microcontrollers and their

security levels.

Algorithm Security level

Caesar Cipher Algorithm low

TEA Encryption Algorithm low

Caesar Cipher Algorithm + TEA Encryption Algorithm Medium

TEA Encryption Algorithm+ variable key Good

New Algorithm "NEU" Very Good

99

REFERENCES

[l] Doğan Ibrahim (2000) "microcontroller Projects in C for the 8051" First

published.

[2] Cryptography and Network Security, principles and practice Second Edition.

[3] W. Timothy Polk, John P. Wack, Lawrence E. BasshamIII, Lisa J. Carnahan

"Anti-Virus Tools and Techniques for computer Systems".

[4] John Forrest Brown."Embedded Systems Programming in C and Assembly".

[5] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, Jie Gong ."Specification and

design of Embedded Systems". University of California at Irvine.

[6] Hermann Kopetz.(1997). "Real-Time Systems Design Principles for Distributed

Embedded Applications". Kluwer Academic Publishers, Boston/ Dordrecht/

London

[7] O.Goldreich. (1999). "Algorithms and Combinatorics. Modem Cryptography,

Probabilistic Proofs and Pseudo-randomness"

[8] Josef Pieprzyk, Thomas Hardjono, Jennifer Seberry. "Fundamentals of

Computer Security". [Springer].

[9] Charlie Kaufman, Radia Perlman, Mike Speciner. "Network Security Private

Communication in a Public World".

[10] Sumit Ghosh. (2002). "Principles of Secure Network Systems Design".

[11] Kenneth L. Calvert, University of Kentucky, Michael J. Donahoo, Baylor

University. (2001). "TCP/IP Sockets in Java Practical Guide for Programmers".

[12] Near East University. The Graduate Studies: A Complete reference. First

Published 2001.

[13] Douglas E. Comer . "Intemetworking With TCP/IP", Vol 1: principles,

Protocols, and Architecture. Third Edition. Department of Computer Sciences,

Purdue University, West Lofayette, In 47907.

[14] Laura A. Chapplell, Ed Tittel. "Guide to TCP/IP". Course Technology,

Thomson Learning.

[15] Buck Graham. "TCP/IP Addressing, designing and Optimizing your IP

Addressing Scheme".

[16] Bruce Schneier. (1996) "Applied Cryptography, Protocols, Algorithms and

Sucre Code in C". 2d ed., John Wiley & Sons, New York.

100

[17] George Coulouris, Jean Dollimore, Tim Kindberg. "Distributed Systems,

Concepts and Design".

[18] W.Stevens. "TCP/IP Illustrated". www.google.com.

[19] Embedded TCP/IP Paper- Tracy Thomas at techonline.com

[20] Microchip manuals and Application Notes on Device Web-Connectivity

[21] S7600-device specs, and program guide "www.google.com"

[22] Economic Factors "What is an Embedded System" .www.eco.utexas.edu

[23] National Institute of Standards, Data Encryption Standard, Federal Information

Processing Standards Publication 46. [January 1977].

[24] E. Biham and A. Shamir, Di_erential Springer-Verlag, (1993)"Analysis of the

Data Encryption Standard".

[25] The Science of Secrecy http://www.channel4.com/science/microsites/S/secrecy

[26] Client Services Systems Administration. "htm:http://www.common

sense.com/servicesintro.html"

[27] Cryptology: Albrecht Beutelspacher. Mathematical Association of America,

(1994).
[28] Jon C. Graff Wiley, (2000). "Cryptographyand E-commerce".

[29] Application Note 150 Small Message Encryption using SHA Devices.

www.maxım-ıc.com
[30] Rodger "Embedding PICmicro® Microcontrollers in the Internet".

Richey/Steve Humberd,Microchip Technology Inc.Chandler, AZ

http://www.sii.co.jp/compo.
[31] Caelli, W., Longley, D., and Shain, M., (1991). Information Security

Handbook, Stockton Press, New York.
[32] Garfinkel, S., and Spafford, G., (1996). "Practical UNIX and Internet

Security". 2d ed., O'Reilly & Associates., Sebastopol, CA.

[33] Kaufman, C., Perlman, R., and Speciner, M., (1995). "Network Security:

Private Communication in a Public World". PTR Prentice-Hall, Englewood

Cliffs, NJ,.
[34] National Research Council, Computers at Risk: Safe Computing in the

Information Age, National Academy Press, Washington, D. C., (1991).

[35] Application Note 703 Embedded Networking with IPv6. www.maxim-ic.com

101

[36] Seiko Instruments Electronic Components."S-7600A Series iChip TCP/IP

Protocol" http://www.seiko-usa-ecd.com/index.htrnl

[3 7] Embedded-inet, Solutions.http://embedded-inet.com/

[38] Turley, Jim. "Embedded Processors by the Numbers." (1999).

http://www.embedded.com

[39] Lehrbaum, Rick. "Linux and Windows Square Off over Devices." (2000).

http://www.wideopen.com

[40] Schneier, and Whiting, D., Fast Software Encryption: Designing Encryption

Algorithms for Optimal Software Speed on the Intel Pentium Processor, Fast

Software Encryption, Fourth International WorkshopProceedings, [Springer -

Verlag, 1997], pp. 242-259.24

[41] National Institute of Standards and Technology, Advance Encryption Standard

Development Effort Webpage ttp://csrc.nist.gov/encryption/aes/aes_home.htrn

[42] [Preneel98] Preneel, B., Rijmen, V., and Boosselaers, A., "Principles and

performance of cryptographic algorithms," Dr. Dobb's Journal, Vol. 23, No.,

12, [December 1998], pp. 126-131.

[43] Hi/fn, Inc. HiFn, 7751 Encryption Processor Data Sheet, [1999].

[44] Eberle, H., "A High-Speed DES Implementation for Network Applications,"

Advances in Cryptology-- Proceedings of Crypto '92, Lecture Notes in

Computer Science, Springer Verlag, pp. 521-539.

[45] Van Pelt, P., Marketing Manager, Pijinenburg Custom Chips B.V., Personal

Communication, [January 1999].

[46] Report finds 37 percent jump in security incidents Surge in mass-mailing

worms fuels increase By James Niccolai. "InfoWorld" [April 04, 2003]

[47] Computer security incidents rise dramatically. The University of Queensland,

Brisbane Australia http://www.uq.edu.au/ [06-Mar-2000]

[48] The Computer Emergency Response Team (www.cert.org) [1996-2001]

[49] Cyber Security, The Insurance Takeover http://www.ocipep-bpiepc.gc.ca/

critical /index_e.asp

[50] Design feature Embedded-system security By Robert Monkman, OSE

Systems. www.edn.com

[51] SoC Solutions,www.xilinx.com/products/logicore/alliance/soc/soc.htm.

President by James Bruister SoC Solutions, LLCjbruister@socsolutions.com

102

APPENDXI

CAESAR CIPHER AND TEA FLOW CHART

No

start

Declare & Initialize
FP

Loop=Loop+ 1

Display Message
"Invalid"

Input choice

CAESAR CIPHER
ALGORITHM FOR

DECRABTION

Display message
"thanks for joining;•

I

Input Key

Al.I

Open read file

No

NoNo

Display Message
"file not ooen"

Display Message
"file not ooen"

No

End

Get data & put in other
file by using OXR KEY

Get data & put in other
file by using OXR KEY

While! EOF While! EOF

'DisplayMessage" More
Dec"

'DisplayMessage" More
Enc"

Display Message
"more Dec"

Display Message
"more Dec"

B"l ı.---·-·
No

End End

Al.2

CAESAR CIPHER
ALGORITHM FOR

ENCRABTION

Open read file Open read file

No

NoNo

Display Message
"file not ooen"

Open write file Display Message
"file not onen"

Open write file

No
End

Get data & put in other
file by using - key

Get data & put in other
file by using + key

While! EOF While! EOF

®
Al.3

'Display Message" More
Dec"

Display Message" More
Enc"

Display Message
"more Dec"

Display Message
"more Dec"

c-1 ' Yes~---·-·

End

Al.4

Program Encryption and Decryption of Caesar Cipher and Tea Algorithm

#include<stdio.h>

#include<conio.h>

#include<process.h>

int main(void){

FILE *in, *out;int counter=O;intflag=l,key;

int choice; char ch;

char *argvl;

char *argv2;

char *argv3;

char *argv4;

char pass[6];int loop=O;

do{

clrscrt);

printf("Enter password");

while(counter<=4){

pass[counter]=getch();

counter++;

}

counter-O;

if(pass[O]='r') {

if(pass[l]='a')

if(pass[2]='e')

if(pass[3]='d'){

getch();

goto Lable1;
}

}

else{

printf("Invalid password");

getch();

}
loop++;

Al.5

}while(loop<3);

if(loop=3)exit(O);

Lablel:

clrscrQ;

printf("\n\n **ENCRYPTION AND DECRYPTION FUNCTION MENU *****\n");
printf("\n * * * 1. Caesar Cipher Encryption data ***\n");
printf("\n * * * 2. Caesar Cipher Decrypt data ***\n");
printf("\n * * * 3. Encrypt data by TEA algorithm ***\n");
printf("\n * * * 4. Decrypt data by TEA algorithm ***\n");
printf("\n * * * 5. Exit from Program ***\n");
printf("\n * * * * * * * * ** * * * * ** * * * * * * * * * * * * * *** *\n");

scanf("%d",&choice);

switch(choice) {

case 1:

printf("Enter Filename to encrypt: \t");

scanf("%s" ,argv 1);

printf("%s ",argv 1);

printf("\nEnter Encrypted fıelname: \t");

scanf("%s",argv2);

printf("%s" ,argv2);

printf("\nEnter Key:");

scanf("%d" ,&key);

if ((in = fopen (argv 1, "r")) NULL)

{

printf("Cannot open input fıle.\n");

return l;

}

else if ((out = fopen (argv2, "w"))= NULL)

{

printf("cannot open output fıle.\n");

return l;

}

else{

Al.6

while (!feof(in))

fputc(fgetc(in)"'key ,out);

}

fclose(in);

fclose(out);

printf("\nData encrypted successfully");

getch();

printf("\nMore Enc");

if(getch()=27 II getch()=27)

exit(O);

else

goto Lable1;

break;

case 2:

printf("Enter Filename to Decrypt:\t");

scanf("%s",argv1);

getch();

printf("%s",argv1);

printf("\nEnter Decrypted fıelname:\t");

scanf("%s",argv2);

printf("%s",argv2);

printf("\nEnter Key:");

scanf("%d",&key);

getch();

if ((in = fopen (argv1,"r")) NULL)

{

printf("Cannot open input fıle.\n");

return 1;

}

else if ((out = fopen(argv2,"w"))=NULL)

{

printf("cannot open output fıle.\n");

return 1;

Al.7

}

else{

while (!feof(in))

fputc(fgetc(in)"'key,out);

}

fclose(in);

fclose(out);

printf("\nData Decrypted successfully");

getchı);

printf("\nMore Enc");

if(getch0=27 II getch()-27)

exit(O);

else

goto Lablel;

break;

case 3:

printf("Enter Filename to encrypt: \t");

scanf("%s",argv3);

printf("%s",argv3);

printf("\nEnter Encrypted fıelname: \t");

scanf("%s",argv4);

printf("%s",argv4);

printf("\nEnter Key:");

scanf("%d",&key);

if ((in= fopen (argv3,"r")) NULL)

{

printf("Cannot open input fıle.\n");

return I;

}

else if ((out= fopen (argv4,"w"))= NULL)

{

printf("cannot open output fıle.\n");

return I;

Al.8

}

else{

while (!feof(in))

fputc(fgetc(in)-key,out);

}

fclose(in);

fclose(out);

printf("\nData encrypted successfully");

getch();

printf("\nMore Enc");

if(getch()=27 II getch()-27)

exit(O);

else

goto Lablel;

break;

case 4:

~m\tf\''£~\~'>Ekm.w.•.~ \<o D~~'i'fl,t·:-ıt'y,

scanf("%s",argv3);

getch();

printf("%s",argv3);

printf("\nEnter Decrypted fıelname:\t");

scanf("%s",argv4);

printf("%s",argv4);

printf("\nEnter Key:");

scanf("%d",&key);

getch();

if ((in= fopen (argv3,"r")) NULL)

{

printf("Cannot open input file.\n");

return I;

}

else if ((out = fopen(argv4,"w"))= NULL)

{

Al.9

,ı.

Al.IO

printf("cannot open output fıle.\n");

return I;

}

else{

while (!feof(in))

fputc(fgetc(in)+key,out);

}

fclose(in);

fclose(out);

printf("\nData Decrypted successfully");

getchQ;

printf("\nMore Enc");

if(getchQ=27 II getchQ=27)

exit(O);

else

goto Lable1;

break;

case 5:

printf("\nHave a nice time");

getchQ;

system("exit");

break;

default:

printf("\nlnvalid choice");

getchQ;

break;

}

printf("\nThanks for joining us");

getchQ;

return O;

}

~ T eslene · Notepad l!ll!J £1

~BSTRACT

The deuelop.ent, ouer the last tııo years,
of eıılıedded ıeb appliances can be considered the logical outco.e of certain,

different trends of progress.

Firstly,
the possibility of prouiding certain seruices,

ııtıerein, it ııould clearly be superfluous to inuest in hardııare,
the ııajor part of ııtıich's resources ıill reııain under utilized or

ııtıose resources are totally unsuited to the application at hand. or inuest in hardııare.

Secondly,
ııanufacturers concurrently began exploring possibilities in the eıılıedded doııain ııtıich
could prouide needed seruices often highly custoaized and requiring but a sııall fraction

of inuest.ent on part of the custo.er.
It is of no little consequence that the increase in capabilities of aicroprocessors
fuelled the deuelop.ent in this field. And security related features.
1

Example of Text File for Caesar Cipher Encryption Algorithm

4 Testdec - Notepad 11!!!1~ £1
£ile .Edit .S.earch .!::! elp
DGUQWDFQ~Qm',.a's'ijuh'kq},.js'w,.qm',.iduq,.qrj,.l'dwu}
,.~jc,.'hg'aa'a,.r'g,.duuildkf'u,.fdk,.g',.fjkula'w'a,.qm',.
ijblfdi,.jpqfjh',.jc,.f'wqdlk}~f.alcc'w'kq,.qw'kau,.jc,.uw
jbw'uu+,.~cıwuqil},.~qm',.ujuulglilql,.jc,.uwjslalkb,.f'
wqdlk,.u'wslf'u>~,.rm'w'lk},.ıq,.rjpia,.fi'dwil,.g'ıupu'
wcipjpu,.qjılks'uq,.ık,.mdwardw'),.~qm'ıhdojwıudwqıjc,.
rmlfm•• uıw'ujpwf'u,.rliiıw'hdlk,.pka'w,.pqlil?'aıjw.o,.
rmju',.w'ujpwf'uıdw',.qjqdiil,.pkuplq'a,.qjıqm',.duuilf
dqljk,.dq,.mdka+,.jw,.lks'uq,.ık,.mdwardw'+,.~U'fjkail}'"
~hdkpcdfqpw'wu,.fjkfpww'kqil,.g'bdk,.'}uijwlkbıujuulg
lilql'uıık,.qm',.'hg'aa'aıajhdlk,.rmlfm,.~fjpiaıuwjsla
'ık''a'a,.u'wslf'uıjcq'kımıbmilıfpuqjhl?'aıdka,.w'tp
lwlkb,.gpq,.d,.uhdiiıcwdfqljk~,.jcııks'uqh'kq,.jk,.udwq,.
jc,.qm',.fpuqjh'w+,.~Lq,.ıuıjcıkj,.ilqqi',.fjku'tp'kf',.q
mdqıqm',.lkfw'du',.ık,.fdudglilql'uıjc,.hlfwjuwjf'uujw
u,.~cp'ii'aıqm'ıa's'ijuh'kq,.ıkıqmıuıcı'ia+,.Dka,.u'fp
wıqııw'idq'aıc'dqpw'u+,..o=f

Encryption of Text File by Caesar Cipher Algorithm

Figure A.1 Caesar Cipher

Al.II

I"

i Enctest - Notepad l!!ll!J El

Encryption of Text File by TEA Algorithm

~ out - Notepad f!l[!J EJ
file Edit ~eaıch .!:i e1p
(ljPPWGD\} _dh.kugw?{e{rum6;sk{m UJF~IGT\ A,c~WJQCA~t?YQA ~
\WYYYZZ$a5&&e'781,l*".+{p23=t73w;64(59;-.;i,.;i0V~ F~}~tH .;i,.;il&1•UA~
Y II. :. . ,A?A~, ' - r ..o? ?''?'$o . ' .., ?A?? .. '"r,;,ıA I :. '·ı?§L-, ' I,.r.~ & ı. ~asaıı-uı .a,. a. ee .ı .. ~ ~a,ıı~~. ~~
Jı; .I ' ... ~ A, ~'a+o????'-''"'eA'"ı'c' :..+ıc,ııı.ır §+ \'?""' \''ö', "t??? ~a·· ??r" a··?",_, tr"?x?

.ılS, .,,..,, ~ - •••• ııtY I e!I ,;;:Jı/" ~"411 - $ •• ~ •• ~ IH ••• - • • '' • "' • •

??<?tAefmwlqu&sg)cezh}{Oxl31tdsoxh-o=tkHDLNEOIU~YKYX~Aı•FZZW]lDA
K HSHL \1,2b4-) *Q: , '*1,ln: >57 !t "}40 >8}1-j Aıı » ı}G_,~,~,~
L-QT'tl ULA~AW "] , , , An+' IJ.J 'ö' , ?'"?' A~ ?J '$?A'"fı ~ite - :;. " • ? ~,. ?' ? ttl? t I.A•~ ı.; ""' ~ oe , ç~r'e. ı. au . . uı .••~ a) ...p,. J • • .,..• ,1,D

x ;~~ _no+·ı·~""?"' t ~ı-'e~ ~"'??f§'c'?m.?? oA•??»?'"'c'????T"j,.?f? A?I '?t??ı .-?.ıı.,-· - ııtY,v::s,.,,JJ,JQ ııtY,. ~-ıı.-·. 11• •• ~.... • .,, • • •• .ıl • '

?t t? + '+"?+? ~?io"wl' &bekoohh j /t"'?r H 6' ppys<V }pUHF ~LTWI QAMO.;.eHKKUUr
@QG@A[\I.r.S[JZ.a**l-*>h*?88"1&*46s5;2w*<+.5/71.~A 1·E~G.r.~ H~~ır.;
Mt. I WV~ZH~~ôsçı?ee'"ueuj?"' e0+~ ... ?, 0ai?~el I A j,. a ... xı::ı,~<Rj
a ·W)' '· ·.J~ ~
..•• '";'·ı.b,!~~o?~ç ,., ? . 'tı '$?iı?'c'?'c'§ ,oc?'"?»?A. ~, ?ııı.? +ıT"? ?A???_.,?"?'"+??ı 11 . • ~ • 11 I • 411.,. • "2: • ~ • ~ 11 • • • ıı • 'bı,. • 111 • ,, • • • • v· • • • • -

t-? eguaiiweld?,d'/dy{'4s?rt}4;]sz?SDAUULRA~[OGHYKK·WWR(ljDRKV.,1

Encryption Using EXOR with varying key

Figure A.2 TEA Cipher

Al.12

#include<stdio.h>

#include<conio.h>

#include<process.h>

int main(void){

FILE *in, *out;int counter=O;int flag=l,key;

int choice; char ch;

char * argv 1 ;

char *argv2;

char pass[6];int loop=O;

do{

clrscr();

printf("Enter password");

while(counter<=4) {

pass[counter]=getch();

APPENDIX II

Program Encryption and Decryption of Caesar Cipher+ Tea Algorithm

counter++;

}

counter=O;

if(pass[O]='r') {

if(pass[1]='a')

if(pass[2]='e')

if(pass[3]='d'){

getch();

A2.1

goto Lab le 1;

}

}

else{

printf("Invalid password");

getcht);

}

loop++;

} while(loop<3);

if(loop=3)exit(O);

Lablel:

clrscr();

printf("\n\n ******* Encryption And Decryption FUNCTION Menu *********\n");

:.

printf("\n

printf("\n

printf("\n

*** 1. Encryption Algorthm

2. Decryption Algorthm

3. Exit from Program

***\n");

***\n");

***\n");

printf("\n * * * * * * * * * * * * * * * * * ** ** * *\n");

scanf("%d" ,&choice);

switch(choice) {

case 1:

printf("Enter Filename to encrypt: \t");

scanf("%s" ,argv 1);

printf("%s" ,argv 1);

printf("\nEnter Encrypted fıelname: \t");

scanf("%s" ,argv2);

A2.2

printf("%s",argv2);

printf("\nEnter Key:");

scanf("%d" ,&key);

if ((in= fopen (argvl,"r")) NULL)

{

printf("Cannot open input file.\n");

return 1;

}

else if ((out = fopen (argv2,"w"))== NULL)

{

printf("cannot open output file.\n");

return 1;

}

else{

while (!feof(in))

fputc((fgetc(in)+3)"key,out);

}

fclose(in);

fclose(out);

printf("\nData encrypted successfully");

getch();

printf("\nMore Enc'Yes','No"');

if(getch()=27 II getch()==27)

exit(O);

else

A2.3

goto Lab le 1;

break;

case 2:

printf("Enter Filename to Decrypt:\t");

scanf("%s" ,argv 1);

getcht);

printf("%s" ,argv 1);

printf("\nEnter Decrypted fıelname:\t");

scanf("%s" ,argv2);

printf("%s" ,argv2);

printf("\nEnter Key:");

scanf("%d",&key);

getchQ;

if ((in = fopen (argv 1, "r")) NULL)

{

printf("Cannot open input fıle.\n");

return 1;

}

else if ((out = fopen(argv2, "w"))=NULL)

{

printf("cannot open output fıle.\n");

return 1;

}

else{

while (!feof(in))

A2A

fputc((fgetc(in)"key)-3,out);

}

fclose(in);

fclose(out);

printf("\nData Decrypted successfully");

getch();

printf("\nMore Enc");

if(getch()=27 II getch()==27)

exit(O);

else

goto Lab le 1;

break;

case 3:

printf("\nHave a nice time");

getch();

system("exit");

break;

default:

printf("\nlnvalid choice");

getch();

break;

}

printf("\nThanks for joining us");

getch();

return O;}

A2.5

ASCII CODES of My Computer

r~ NO NAME 00 r,j'·]!!!lli)f3
Auto

A2.6

..
~·ıı
W!

APPENDXIII

#include "conio.h"

#include "stdio.h"
int K[lO][lO];int iJ;char Str[lOO]="NEAR EAST UNIVERISITY IS IN LEFKOSA.";int

loop=O;

int Enc[lO][lO];char Dec[lO][lO];

void main(){

//Kay[3]={2,2,2};

int Kay[lO][lO]={
{27,05, 17,17,05,17, 17,05,04,14 },

{ 17,05, 17,27,04,21, 18,21,01, 14},

{45,05,37,17,06,02,02,19,02,13},

{17,05,17,57,04,17,17,05,04,12},

{14,05,47,47,05,21,18,21,07,11 },

{77,05,17,17,06,02,02,19,06,14},

{ 19,05,57,37,05, 17, 17,05,07,17},
{ 17,05, 17,17,02,21, 18,21,05, 19},

{ 16,05,37,27 ,01,17, 17,05,07, 14},

{23,05, 17, 17, 15,21,18,21,07, 15}
};

'I

I

char c,code;int count=O;

FILE *ifp,*ofp;

clrscr();

ifp = fopen("sample.txt","r");

ofp = fopen("out.txt","w");

printf("Hill Caesar Cipher Example\n");

while((c = getc(ifp)) !=EOF)

{

Str[count] = c ;

fprintf(ofp, "%c" ,Str[count]);

A3.1

A3.2

delay(! O);

count++;

if(i=IO &&j=IO)

{

i=O;j=O;

}

if(count 100){

delay(IO);

count=I;

}

}

fclose(ifp);

II fclose(ofp);

printf("o/od",count);

delay(IO);

clrscr();

for(i=O;i< 1 O;i++){

forG=O;j<IO;j++){

printf(" %d ",Kay[i][j]);

}

printf("\n ");

getch();

}

printf("\n This is the Plaintext From File. \n ");

printf("\n ");

for(i=O;i< 1 O;i++)

forG=O;j<IO;j++){

K[i][j]=(int) Str[loop]*2;

loop++;

}

delay(IO);

for(i=O;i< 1 O;i++){

fortj=Ojj« l O;j++){

printf(" %d ",K[i][j]/2);

}

printf("\n ");

getch();

}

delay(lO);

printf("\n This is the Encryption key\n ");

printf("\n ");

I /Multiplication.

for(i=O;i<l O;i++){

forQ=O;j<l O;j++){

Enc[i][j]=((K[i][j]*Kay[i]0])%26+45);

printf(" %d ",Enc[i][j]);

}

".. ,
,.
ı,.
ı:.'

I

printf("\n");

}

delay(! O);

printf("\n This is the Encryption Output ");

printf("\n \n");

//Character.

for(i=O;i<l O;i++){

forQ=O;j<10;.i++){

printf(" %c ",(char)Enc[i]O]);

}

printf("\n ");

delay(IO);

}

delay(IO);

printf("\n This is the Output of Decryption ");

A3.3

printf("\n \n ");

//Digit.

for(i=O;i< 1 O;i++){

for(j=O;j<IO;j++){

Dec[i][j]=K[i][j]/2;

printf("%c",Dec[i][j]);

}
//printf("\n ");

}

delay(IO);

getch();

}

"'
'"I

A3.4

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	NEU
	JURY REPORT

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	W-

	Images
	Image 1

	Page 4
	Page 5
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 6
	Titles
	ABSTRACT

	Images
	Image 1

	Page 7
	Titles
	LIST OF GLOSSARY

	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Titles
	Embedded System
	HOST
	TARGET

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Titles
	TABLE OF CONTENTS

	Images
	Image 1

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 17
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 18
	Titles
	INTRODUCTION

	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	1. EMBEDDED MICROCONTROLLER AND SECURITY

	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Images
	Image 1

	Tables
	Table 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	2. WEB APPLIANCES AND THE INTERNET PROTOCOLS

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Titles
	--
	ı
	--
	~---
	Lay:_.----------i IP I TCP I Data

	Images
	Image 1
	Image 2

	Page 14
	Titles
	t t
	t t t

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 20
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1
	Image 2

	Page 1
	Titles
	3. MICROCONTROLLER CRYPTOGRAPHY

	Images
	Image 1

	Page 2
	Titles
	3.2. Enhancing Embedded Security
	3.2.1 Encryption Is Not Enough

	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 5
	Images
	Image 1

	Tables
	Table 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	E

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	PC+! X~----

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	ı(t ~ ~\
	I ::> A. I I\
	~ :!: /
	~
	3.13. Hardware Configuration

	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Titles
	4. INTERFACING & MICROCONTROLLERS

	Images
	Image 1

	Page 23
	Titles
	,,,ı

	Images
	Image 1

	Page 1
	Titles
	57

	Images
	Image 1

	Page 2
	Titles
	ıı

	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	u

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2

	Page 6
	Titles
	I

	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	"

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	ı.

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 1
	Images
	Image 1

	Tables
	Table 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	..

	Images
	Image 1

	Page 4
	Titles
	4.14. Summary

	Images
	Image 1

	Page 5
	Titles
	5. CHOOSING A SECURITY ALGORITHM

	Images
	Image 1

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Titles
	1

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 11
	Titles
	:ı

	Images
	Image 1
	Image 2

	Page 12
	Titles
	}

	Images
	Image 1
	Image 2

	Page 13
	Titles
	}
	·ı
	'

	Images
	Image 1

	Page 14
	Titles
	ı:ı
	.,
	:~

	Images
	Image 1
	Image 2

	Page 15
	Titles
	::: : : : : : : =::: ~-; ·,::: =::::: 1/('.(':)i?=/J) : :_:_:,: : (/j: : //:;:::::::::

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	N

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 19
	Titles
	:ı

	Images
	Image 1

	Page 20
	Titles
	}

	Images
	Image 1

	Page 21
	Titles
	'

	Images
	Image 1
	Image 2

	Page 22
	Titles
	Message
	:::::::':::/:/:!:!:::::::::::~:
	>>il XOR

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 23
	Titles
	{

	Images
	Image 1
	Image 2

	Page 24
	Titles
	'

	Images
	Image 1
	Image 2

	Page 25
	Titles
	:·:·:·:···:··.·.·.·.·.
	: iii : /:;:+
	XOR
	. ··r·~· ı~· ·()·.·.·.·.·.·.·.·-·-·.·.·.· .
	Message to send !//YI XOR f \::\\<:>:<:<~:ı
	:-:-:·>i:i:):/tt<><<:::: ·:-:-:-:-:-:~:_:::::-:-·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:-:-:•.·:-:•:-:-:•:-
	:::::::: •• :.:.::::::::. ~:,·.·~0•• .·~,·.·.·~:.·.·.·. :>::::::::::::::::::::::::.:;::::::::::::~:~:::·:i::::::/L:>::.<.:.:<2:::::::::::::::::::~::
	<<:.+·'
	::::::::: ::: ::::::::::: ::::::::: :::::::::::::: :::::::::::::
	·:: :;:::::: •• :r }/)
	mu rn ı····-~e~e,ate<ke;>>P•••> < ii iii } :• •;: !/: /

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 26
	Titles
	{
	'
	}

	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	'
	}

	Page 3
	Images
	Image 1

	Page 4
	Titles
	6. CONCLUSION

	Images
	Image 1

	Tables
	Table 1

	Page 5
	Titles
	REFERENCES

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Titles
	Loop=Loop+ 1
	Al.I
	APPENDXI

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 9
	Titles
	Display Message
	While! EOF
	End
	Get data & put in other
	'Display Message" More
	No
	No
	No
	Display Message
	End
	Al.2
	While! EOF
	Open read file
	Get data & put in other
	'Display Message" More
	No
	No
	B"l ı.---·-·
	End

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 10
	Titles
	Open read file
	®
	Open write file
	While! EOF
	Open read file
	Al.3
	Open write file
	While! EOF
	End

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 11
	Titles
	c-1 ' Yes
	End
	Al.4

	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1

	Tables
	Table 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	~m\tf\''£~\~'> Ekm.w .•. ~ \<o D~~'i'fl,t·:-ıt'y,

	Images
	Image 1

	Page 17
	Titles
	}
	}

	Images
	Image 1

	Page 18
	Titles
	1

	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Titles
	a ·W)' '· ·

	Images
	Image 1
	Image 2
	Image 3

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	}

	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1

	Page 23
	Titles
	}
	A2A

	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Titles
	r~ NO NAME 00 r,j'·]!!!lli)f3
	..

	Images
	Image 1

	Page 26
	Titles
	APPENDXIII
	{

	Images
	Image 1

	Page 27
	Titles
	}
	}

	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Titles
	}
	}
	}

	Images
	Image 1

	Page 29
	Titles
	"'

	Images
	Image 1

