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ABSTRACT 

Speech coding is important· in the effort to make more efficient use of digital 

telecommunication networks, particularly wireless systems, and to reduce the memory 

requirements in speech storage systems. The desire for a low-rate digital representation 

of speech is often contrary to the demand for a high quality speech reconstruction. 

Linear Predictive Coding (LPC) is one of the most powerful speech analysis techniques, 

and one of the most useful methods for encoding good quality speech at a low bit rate. It 

provides extremely accurate estimates of speech parameters, and is relatively efficient 

for computation. 
In this thesis we implement a Linear Predictive Coding (LPC) technique 

designed for good quality speech coding at bit rates as low as 2.4 kb/s. Windowing and 

preemphasis are important in the accurate determination of the speech parameters. The 

computation of the LPC parameters is explanined. Besides the reflection 

coefficients,there are other sets of parameters carrying exactly the same 

information. There are derived from the reflection coefficients and are used in cases 

where their properties can lead to better speech quality. 

The software implementation of a 2.4 kb/s LPC coder is described. The main 

features of the implemented LPC coder are: Pre-emphasis Filtering to remove the 

natural frequency roll-off in speech, Data Windowing ,AR Parameter Estimation, Pitch 

Period and Gain Estimation to determine whether the block in question was voiced or 

unvoiced ,Quantization ,Decoding and Frame Interpolation. 
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1. INTRODUCTION 

1.1 Overview 

In communications, digital signals become increasingly important. Digital 

signals have some advantages over conventional analog signals: they can be compressed 

more efficiently, messages can be secured more easily against unwanted reception by 

others and digital signals are more robust to channel errors when proper error correction 

is performed. A disadvantage is that a larger channel bandwidth is required. For analog 

signals, the minimum required channel bandwidth equals the highest frequency in the 

signal. For digital signals, the required channel increases with the number of bits used to 

represent each sample and the sampling frequency. 
There are numerous applications where the communication of digital speech 

signals is involved. Some examples are: mobile satellite communications, cellular 

mobile radio, teleconferencing, cordless telephones, mobile telephony, In many 

applications it is necessary to reduce the data rate. For example, the number of potential 

users of mobile telephones is very large, so it is important to keep the number of bits as 

low as possible, because the channel capacity is limited. Other motivations for lowering 

the bit rate are transmission and storage costs. 

Frequencies up to about 20 kHz are audible by humans, but in speech the 

majority of the information is contained in the frequency band up to about 4 kHz. 

Speech signals consequently can be represented more efficiently than audio signals: a 

lower sampling frequency can be used and hence the bit rate is lower. For telephone­ 

bandwidth speech a sampling frequency of 8 kHz is applied. If 16 bits per sample are 

used, telephone bandwidth speech has a bit rate of 128 kbit/s and audio signals have a 

bit rate of about 700 kbit/s (per channel); too high for many applications. For these 

applications, coding systems have to be developed which represent the digital signals by 

binary code numbers with a lower bit rate. 

At low rates, there is always a loss in information and the goal of the coding 

systems is either to maximise the quality for a given bit rate or to minimise the bit rate 

for a given quality. 



The bit rate can be brought down much further for speech signals than for audio 

signals. One reason is that the quality requirements are usually higher for audio signals 

than for speech signals. Another reason is that speech has some specific properties that 

can be exploited. A simple speech production model is available that assumes the 

speech to be formed by the spectral shaping by the vocal tract of either a quasi-periodic 

pitch pulse excitation for voiced speech or a noise-like excitation for unvoiced speech. 

Audio signals form a much broader class of signals. 

A class of speech coders which has been applied successfully is formed by the 

Linear Prediction based speech coders. In these coders, the coded speech is synthesised 

by the excitation of a time-varying all-pole filter. The filter coefficients are obtained 

with an autoregressive estimation method and describe the spectral envelope of the 

signal. Linear Prediction forms the core of many coders at various bit rates. 

Examples are: the Multi Pulse coder , operating at around 16 kbit/s, the Regular 

Pulse coder (13 kbit/s), Code Excited Linear Prediction [14] (4-8 kbit/s). These Linear 

Predictive Coding (LPC) algorithms have led to several standards. 

The main difference between different Linear Predictive coders is the method 

that is used for coding the excitation of the Linear Prediction synthesis filter and in 

particular the number of bits used for this purpose. As the bitrate decreases, an accurate 

estimation,interpolation and quantisation of the autoregressive model parameters 

becomes increasingly important, because at low rates errors in the LPC model cannot be 

easily compensated for by the excitation. An accurate representation of the model is 

very important for the quality. 

Because the Linear Prediction model is such an important part of modern coders, 

this thesis is devoted mainly to the various aspects of Linear Prediction: estimation, 

interpolation and quantisation. 

The main purpose of the research was not to develop new coding techniques, but 

rather to gain theoretical and practical insight in the advantages and disadvantages of 

existing Linear Predictive Coding technique. 
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The objective of this project is to firstly study the spectral features of the speech 

signals and then derive a general framework to do analysis and LPC coding of speech 

signal. In this framework, we will try different methods to do each part of the job. 

Although there have been already several successful standards in speech coding which 

are used extensively in mobile communications, we don't intend to implement any 

standards here because of the detailed complexity of implementation. 

I prefer to do some research for the principles of speech coding and try to 

compare some of the method by discussing the strength or disadvantage of each 

method and hope to derive some insights for future works. 

This thesis is organised as follows. In chapter 2 several speech coding 

algorithms are discussed and give a little bit literature survey of it , most of which use 

Linear Prediction. In chapter 3 a brief review of autoregressive theory will be given. 

Mainly results are given which are necessary for a proper understanding of the contents 

of later parts of the thesis on estimation, interpolation and quantisation in matlab 

implementation. Different autoregressive estimation methods are discussed and it is 

shown that the well-known and often used autocorrelation method is very sensitive to 

edge effects and is therefore not a suitable method. A tapered data window reduces this 

sensitivity but increases the variance of the models. Other methods are available that do 

not need a window.In chapter 4 the implementation of the LPC coding are discussed 

and algoritm is given.Implementation of speech coding algorithm is programmed in 

matlab software packages and using its toolbox. The thesis is concluded with a 

summary of our work in Chapter 5, along with suggestions for future work. 



2. SPEECH CODING 

2.1 Overview 

In this chapter an overview is given of speech coding techniques at several bit 

rates. Most of them use Linear Prediction. This overview is not meant to be complete; 

its purpose is to make the reader somewhat familiar with Linear Predictive Coding 

which is necessary for a proper understanding of later chapters. Section 2.2 treats the 

subject of quantisation and coding. In section 2.3 a description of speech production and 

speech sounds is given. Coders based on linear prediction can be considered as being 

based on a simple speech production model. This model is explained in section 2.4. 

Section 2.5 describes various speech coding algorithms and techniques. Section 2.6 

briefly describes some measures for the quality of coded speech. 

2.2 Quantisation and Coding 

The two main forms in which a signal can be transmitted are analog and digital. 

An analog signal can have any value in a continuous range. If the signal has a 

bandwidth of W Hertz, all its information is contained in 2W samples per second of the 

signal and the original continuous time signal can be exactly recovered from this 

discrete time signal [4][9][33]. A digital signal can be obtained by quantisation of the. 

samples taken from an analog signal, i.e. limiting them to a discrete set of possible 

values. The use of digital signals has some advantages over the use of analog signals: 

digital signals can be compressed more efficiently, messages can be more easily secured 

against unwanted reception by others and digital signals are more robust to channel 

errors when coding is properly performed. Coding of a quantised number ( or vector of 

numbers) means that it is represented by a binary code number. In a coding system, 

these code numbers are transmitted to the decoder which can make a reconstruction on 

the basis of the information provided by the code numbers. In this thesis, the distinction 

between quantisation and coding will not always be made. A drawback of digital signals 
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is that the bandwidth of the signal is larger, and a channel must support this larger 

bandwidth. 

2.2.1 Scalar Quantisation 

The simplest method to quantise a digital signal is Scalar Quantisation (SQ). In 

SQ each sample of the signal is independently represented by ab bit binary number. 

This binary number is the code for one of the 2 possible levels the digital signal may 

have. If these b levels are equally spaced, the quantisation is called uniform. Uniformly 

spaced levels are optimal for the scalar quantisation of uniformly distributed random 

variables (in the sense of the Mean Squared Error). If the samples of the signal have a 

different distribution, e.g. a Gaussian distribution, the levels of the optimal scalar 

quantiser are non_ equally spaced. Such a quantiser with non_ equally spaced levels is 

called a non_ uniform quantiser. 
,. 
;:l 

2.2.2 Vector Quantisation 

Scalar quantisation does not take into account any correlations or dependencies 

that may be present in the signal. These dependencies can be exploited to increase the 

efficiency, i.e. lower the distortion at the same bit rate or decrease the number of bits for 

the same distortion. One way to do this is to remove the correlation or dependencies 

from the signal and quantise the resulting uncorrelated signal. 

This signal will have a smaller variance and can be coded with a smaller error. A 

method for removing correlation from a signal which has proved to be very successful 

in speech coding is Linear Prediction. Section 2.5 contains the descriptions of coding 

techniques based upon Linear Prediction. An other way to exploit the correlations and 

dependencies in a signal is Vector Quantisation (VQ). 

This section will explain the basic principles of VQ . .In VQ several random 

variables are grouped together into a target vector and this entire vector is coded. This 

means that there is a set of code vectors or representation vectors, which form a code 

book that is known both at the encoder and the decoder. The target vector is compared 

with all code vectors in the code book by means of a certain distortion measure. The 

code vector which has the smallest distortion with respect to the target vector is the 

winning code vector. It is represented by a binary index. This number is sent to the 



decoder and there the winning vector can be picked from the code book. If b bits are 

used to code a vector, the code book contains 2 code vectors. The number of bits need 

not be an integer multiple of the vector dimension, which means that fractional bit rates 

are possible, i.e. the average number of bits per vector element need not be an integer 

number and may be even less than one. 
Perhaps the main advantage of VQ over SQ is that the joint probability density 

function of the vector elements is taken into consideration with VQ [7](19][20]. 

Consider figure 2.1 where a scatter plot is shown of samples taken from a 

two dimensional distribution function. The distribution function of the variable 'x' 

covers the range from -1 to + 1 and the distribution function of the variable 'y' the range 

from about -0.2 to + 1.2. If one would quantise x and y independently with SQ, the 

entire area would be covered by rectangles. The centre of each rectangle represents one 

of all possible combinations of quantised values of x and y. 

All combinations of x and y that are in a certain rectangle are represented by the 

central point of the rectangle. There are, however, areas that are not covered by the joint 

distribution function of x and y and there will never be a combination of x and y in 

these areas. Hence SQ is spoiling bits by covering regions which are empty. With VQ, 

this can be avoided because the code vectors can be placed exclusively in regions which 

are covered by the joint probability density function. In this way, correlations and 

dependencies between vector elements can be taken into consideration. 
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Figure 2.1 Scatter plot of samples of a two-dimensional distribution vector. 

Quantisation can efficiently exploit dependencies in the joint distribution of 

random variables. These dependencies are neglected in Scalar Quantisation. [26]. 

Even if the random variables are uncorrelated and there are no dependencies, 

VQ has an advantage over SQ. This advantage has to do with the quantisation cell 

shape. A quantisation cell or Voronoi region is a volume around a code vector. The 

quantisation cell for a certain code vector is defined as the set of all target vectors that 

would be assigned to that code vector in a quantisation procedure. The cells are defined 

by the locations of the code vectors and by the rule or distortion measure that is used to 

select a code vector. In SQ, the cells are rectangular boxes, in VQ the cells can have all 

kinds of shapes. There is some gain because of this freedom in cell shape in higher 

dimensions. 
A drawback of VQ is its complexity in terms of storage space and computational 

effort. If N random variables x are quantised using scalar quantisation with b bits per 

variable, one i has to store N2 levels, if different levels are used for each variable. For 

VQ of the vector b of these N variables, the codebook which uses the same total number 

of bits as used for SQ has a size of 2 , which is generally much much larger than N2 . 

The search complexity is of course also much higher. In the past the use of VQ was 

limited to applications where a coarse quantisation with a small code book was 

sufficient. The development of complexity reduction techniques has made VQ useful for 
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applications were an accurate quantisation is necessary. These complexity reduction 

techniques include special code book structures and fast search methods.Another 

drawback ofVQ is that it is more sensitive to channel errors than scalar quantisation. 

2.2.3 Rate Distortion Theory 

For a stationary correlated normally-distributed stochastic process x, the 

minimum distortion for a given bit rate is given by: 

D 2 2r2R 
min= CfxYx (2.1) 

D1ni11 is the lower bound for the expectation of the squared error between x and 

its coded version .x , R is the rate, that is; the number of bits per sample of x2, o is the 

variance of x and r; is the spectral flatness measure, given by: 

exp[-1 J log(x(w ))dw] 
2 2;rr -1( 

Yx = l 1t 

-Jx(w)dw 
2;rr 

-1( 

(2.2) 

where X( w) is the spectrum of x. 

The spectral flatness measure has a value between zero and one. For an 

uncorrelated process with variance o", r; is equal to one and (2.1) becomes: 

D - 22-2R 
min -a ( 2.3) 

For high rates, there exists theoretical bounds on the performance of quantisers . 

For the coding of d dimensional vectors of normally identically distributed variables 

with b bits, it can be shown that the following bound exists for the mean squared 

distortion D: 

(2.4) 



where o " is the variance of the vector elements, R=b/d is the rate and 

(2.5) 

(2.6) 

The coefficients A are the eigenvalues of the covariance matrix of the vector 

elements and I' is the gamma function. If the vector elements are not correlated with 

each other, their covariance matrix is a diagonal matrix and all eigenvalues are equal 

toa2 and B(d) is equal to one. If scalar quantisation is applied, the dimension is one 

and the bound i's: 

(2.7) 

In the limit that the vector dimension goes to infinity while the rate is kept 

constant, the bound becomes identical to the rate distortion bound (2.3). This illustrates 

the advantage of a higher dimension that VQ has over scalar quantisation. 

2.3 The Speech Signal 

This section briefly explains how speech is produced and gives a short overview 

of different classes of speech. 

Speech is formed by the flow of air from the lungs. The air flows through the 

larynx, which contains the vocal cords, to the pharynx (throat cavity) and next leaves 

the head via the oral cavity and the lips or via the nasal cavity and the nostrils. Both the 

oral cavity and the nasal cavity can be closed. The tube leading from the larynx to the 

pharynx and from there on to the oral and nasal cavities is called the vocal tract. 

The two main mechanisms with which speech sounds can be formed are voiced 

excitation and voiceless excitation. Voiced excitation arises when the air flow causes a 

q 



vibration of the vocal cords. By the influence of Bernoulli forces the vocal cords open 

and close quasi-periodically. The average vibration frequency, the pitch frequency, is 

about 100 Hz for males and twice that for females. Sounds for which the vocal cords are. 

vibrating are called voiced sounds. All vowels are voiced (unless whispered), but also 

some consonants. 
For example, the words "Roman", "yellow" and "wiring" are composed entirely 

of voiced sounds. 
A second important mechanism of speech production is turbulence caused by a 

constriction in the oral cavity. Voiceless sounds such as in the words "flat" and "sound" 

are the result of this turbulence. Both mechanisms can occur simultaneously, as happens 

in the words "voice" and "zip". 
Now some classes of speech sounds will be mentioned. Vowels are voiced and 

are produced without any constriction in the oral cavity. The nasal tract often is closed; 

if it is open the vowel is called nasalised. 
Vowels can be further subdivided into so-called pure vowels, which can be 

generated without a movement in the vocal tract, and diphthongs, which are a 

combination of two vowels. For diphthongs, the vocal tract changes from the position 

corresponding to the first vowel to the position corresponding to the second vowel, as 

takes place e.g. in the words "say", "boy" or "new". 
Consonants are always produced with a narrowing of the vocal tract. Nasal 

consonants arise when only the nasal tract is open, as occurs in the words "man", "him" 

and "wing" [ 18] [25](32][35]. 
If both the oral and the nasal tract are closed, no air can flow from the lungs. The 

pressure increases and when the constriction is suddenly opened, sounds called plosive 

consonants or stop consonants are formed. They can be both voiced ("by", "day", "go") 

or unvoiced ("pi", "to", "kiss"). 
Fricative consonants are produced due to a turbulent airflow at a constriction 

and also may be voiced ("voice", "zoo", "that") or unvoiced ("fit", "see", "thin"). 

This survey is not complete: there are still more types of sounds, such as glides 

(''you","we"), semi-vowels ("ray", "lay") and affricatives ("chew", "jar"). However, the 

main categories are covered. 
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2.4 A Simple Speech Production Model 

The two main mechanisms of speech production, i.e. voiced excitation and 

turbulent airflow through a constriction, can be captured in a simple speech production 

model. In this model, speech is assumed to be formed by the excitation of the vocal tract 

by either a periodic pitch-pulse sequence for voiced speech or a noise-like signal for 

unvoiced speech. This model is shown schematically in figure 2.2. In the figure, the 

pitch pulses are shown as vertical arrows, but in reality they are roughly triangular in 

shape and there spectrum decays with about 12 dB per octave. The influence of the lip 

radiation is approximately a 6 dB per octave increase in the spectrum with higher 

frequencies. The net result is that for voiced speech, the spectrum has a tilt and 

decreases with about 6 dB per octave. This speech model may be a realistic model for 

the production of many sounds, although for e.g. plosives it will be of limited validity. 

In Linear Predictive Coding (LPC) algorithms, the influence of the pulse shape, 

the vocal tract and lip radiation are combined into one filter. The coding algorithm has 

to provide the synthesis filter with a proper excitation. LPC algorithms differ in the way 

the excitation is found and in the number of bits that are spent on it. Next, an overview 

of some important speech coding algorithms is presented. Most of them use Linear 

Prediction. 

illL 
pitch pulse sequence vocal tract I liip radiationi-.---------..,1> 

speech signal 
~.· 

noise 5i gnal 

Figure 2.2 Simple speech production model. Speech is assumed to be generated by a 

spectral shaping of either a periodic pitch pulse sequence or a noise excitation. [25). 
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2.5 Speech Coding Algorithms 

2.5.1 Pulse Code Modulation 

Pulse Code Modulation (PCM) is the simplest of all coding algorithms. It does 

not assume or use any speech production mechanism and it does not use Linear 

Prediction. In fact, PCM is just a digital representation of the original analog signal: the 

signal is sampled and each sample is quantised with a fixed number of bits. In A-law 

and µ-law PCM, the quantisation steps are not of equal size but the quantiser 

characteristic is roughly logarithmic. This leads to a higher quality than a uniform 

characteristic (steps of equal size) and has the additional advantage that the quantiser is 

less sensitive to large variations is signal level. 

For telephone applications, a sampling frequency of 8 kHz is normally used and 

8 bits per sample. Hence the bitrate is 64 kbit/s. 

2.5.2 Adaptive Differential Pulse Code Modulation 

PCM does not make use of correlation or dependencies in the signal. Exploiting 

these redundancies can largely increase the coding efficiency. One way to exploit 

redundancy is to use Linear Prediction (LP). In LP a prediction s(n )of a signal s(n) is 
made on the basis of a weighted sum of preceding signal values: 

p 

s(n) = - 2>is(n - i) 
i=I 

(2.8) 

The minus sign is introduced because this convention is used in autoregressive 

literature.The prediction error is the difference between prediction and predicted signal: 

e(n)= s(n)-s(n) (2.9) 

If the prediction is good, the variance of e(n) is much smaller than the variance 

of s(n). Therefore, if e(n) and s(n) are quantised with the same number of bits, and the 

quantisation step size is adapted to the variance of the signal, then the absolute 

quantisation error in e(n) is much smaller than in s(n), although the signal to 

quantisation noise ratio is the same for both signals. If the prediction error e(n) is 
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quantised in a coder, the decoder must make a reconstruction s(n )on the basis of this 
quantised prediction error e : 

p 

s(n)= -Ial(n-i)+e(n) 
i=l 

(2.10) 

The reconstruction error (s(n)- s(n)) is not equal to the quantisation error (e(n)­ 
e (n)), because s(n) not only depends on e (n) but also on previous values of the 
reconstruction. 

Therefore, a propagation of quantisation errors occurs. The quantisation of the 

prediction error, without taking into account the propagation of quantisation errors, is 
called open _loop quantisation. 

A way to circumvent the propagation of quantisation errors is to use closed _loop 

quantisation of the prediction error, that is; a feed_back loop is put around the quantiser, 

as is depicted in figure 2.3. In this figure, the Linear Prediction polynomial A(z) is 
defined by [5][10][15)(16]: 

p 

A(z)=l+ La;z-i 
i=l 

(2.11) 

where z is the forward time-shift operator, e.g. z s(n)=s(n+ 1). This way of 

coding is known as Differential Pulse Code Modulation (DPCM). A closed _loop 

configuration has the advantage that no propagation of quantisation errors occurs 

because the prediction s(n )is made on the basis of previous reconstructed values: 

p 

s(n)= -Iais(n- ;) 
i=l 

(2.12) 

s(n)= s(n)+ e(n) 



In contrast, in an open _loop configuration, the prediction (2. 8) at the encoder is 

made on the basis of the original signal. The reconstruction error in closed-loop DPCM 

is equal to the quantisation error in the prediction error: 

s(n )- s(n) = s(n )- s(n )- e(n) = e(n )- e(n) (2.13) 

Both for an openIoop and a closedloop configuration, the optimal predictor 

depends on the signal characteristics. For an open_loop configuration, the optimal 

predictor by definition minimises the variance of e(n) in (2.9) and depends only on the 

signal characteristics. For a closed Ioop configuration the optimal predictor depends 

both on the signal and on the quantiser, because predictions are made on the basis of the 

reconstruction. 
In speech, the characteristics of the signal are changing with time. To maintain a 

good prediction, the predictor has to be adapted to the signal. DPCM with adaption of 

the predictor is known as Adaptive DPCM (ADPCM). The adaption of the predictor can 

be performed in two ways: forward adaption or backward adaption. In forward 

adapting schemes the parameters of the predictor are obtained from blocks of the input 

signal. For speech signals an updating interval of about 10-30 ms is appropriate, 

because the signal can be considered more or less as stationary on such intervals. In 

backward adapting schemes the parameters are obtained in an adaptive manner from the 

reconstructed signal. An advantage of backward adaption is that no bits have to be spent 

on coding of the predictor parameters, because both the encoder and decoder use the 

same reconstructed signal to obtain the predictor. Another advantage is that the coding 

delay will be smaller because only one sample or a small number of samples of the 

reconstructed signal is needed for the adaption, instead of a whole block as is the case in 

forward adapting schemes. 
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Figure 2.3 Differential Pulse Code Modulation (DPCM) scheme. DPCM uses Linear 

Prediction and a closed-loop quantisation of the prediction error. In Adaptive 

DPCM the LPC parameters are updated at regular intervals and are also sent 

to the decoder. [ 14]. 

Disadvantages of backward adaption are that the quality of the predictor is lower, 

because it has to be obtained from the reconstructed speech which contains coding noise. 

Therefore, more bits are needed for quantisation of the prediction error to obtain the 

same quality as for forward adaption. 
A typical bitrate for an ADPCM scheme is 32 kbit/s with about the same quality 

as A-law or µ-law PCM. 



2.5.3 Adaptive Predictive Coding 

The predictor order p used in predictive coding schemes for speech is usually not 

very large. A value of 10 is typical for speech sampled at 8 kHz. Therefore, only 

correlation over small distances in time, called short term correlation, is exploited. The 

voiced speech signal is quasi-periodic due to the pitch pulse excitation and therefore 

also has a correlation over longer distances, which is not exploited when the predictor 

order is small. This correlation over longer distances is called long term correlation. 

In Adaptive Predictive Coding (APC) both short term and long term correlation 

are exploited with a linear predictor. An APC scheme is shown in figure 2.4. The long 

term predictor or pitch predictor polynomial has the following form: 

+i 

P(z)= I+ L);rM-i 
t=J 

(2.14) 

where M corresponds to the pitch period in samples. Usually, one or three tap 

pitch predictor filters are employed. The parameters of the pitch prediction filter are 

usually updated at a higher rate than the parameters of the short term prediction filter, 

for example every 5-10 ms. 

2.5.4 Analysis-by-Synthesis Coding 

Accurate quantisation of the parameters of the short and long term prediction 

filters can be performed with roughly about 80 bits per 25 ms, which comes down to an 

average bit rate of less than one half bit per sample for a sampling frequency of 8 kHz. 

For the scalar quantisation of the prediction error in APC schemes at least one 

bit per sample is needed. 
The majority of the bits is therefore spent on quantisation of the prediction error 

signal. The bit rate for quantisation of the error signal can be lowered significantly by 

coding the error signal in blocks, i.e., applying a form of VQ. The vector length cannot 

be taken too large, because in that case the complexity becomes a problem. The 

quantised vector of prediction errors is used in the decoder as an excitation for the long 

and short term synthesis filters. 
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Figure 2.4 Adaptive Predictive Coding (APC) scheme. APC is similar to ADPCM 

(figure 2.3), but a pitch predictor is added to remove the long term correlation. [14]. 

Therefore, the coding of the vector of prediction errors is called vector excitation 

coding.ix is not recommendable to code the excitation vector on the basis of a direct 

comparison with candidate excitation vectors, e.g., with a mean squared error measure, 

because quantisation errors will accumulate in the reconstructed signal, as was 

mentioned earlier in section 2.5.2 after (2.10). A much more efficient way to code the 

excitation is Analysis-by-Synthesis. 

The Analysis-by-Synthesis scheme is shown in figure 2.5. Most high-quality low 

bit rate LPC coders use Analysis-by-Synthesis for coding the excitation. In Analysis-by­ 

Synthesis, a candidate reconstruction is synthesised for each candidate excitation vector. 

The choice of a certain excitation vector is made on the basis of the error between 

original signal and reconstruction [21][30][34]. 

2.5.5 Error Weighting 

In Analysis-by-Synthesis coding, the error between candidate reconstructions 

and original signal is the basis for a selection criterion. The error is not used directly but 

is spectrally shaped with a perceptual weighting filter W(z). The excitation with the 

smallest weighted error is chosen. The weighting filter makes use of the frequency 

domain masking properties of the human auditory system. 
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Figure 2.5 Analysis-by-Synthesis coding scheme. In Analysis-by-Synthesis a recon­ 

struction is made with each candidate excitation. That excitation is selected that gives 

the lowest weighted reconstruction error. [14]. 

For example, large peaks in the spectrum of a signal may mask nearby weaker 

tones so that they are not audible. If the bit rate is high enough, the coding noise in the 

reconstruction is approximately white and has a flat spectrum. The weighting filter 

shapes the noise in such a way that more coding noise is put under the peaks in the 

spectrum where it can be masked. A simple and effective way to find a weighting filter 

is to derive it directly from the LPC filter. The LPC filter is regularly adapted to the 

signal and its parameters are obtained by applying a standard autoregressive estimation 

method. A property of autoregressive modelling is that the model describes the spectral 

envelope of the signal. This property will be explained in chapter 3 where 

autoregressive modelling and estimation will be discussed, but now it suffices to merely 

state it. The LPC synthesis filter has the following transfer function [13]: 

1 - 1 = p 
A(z) 1 + Ia;z-; 

i=I 

z == ejw (2.15) 

An appropriate weighting filter W(z) that is often used, has the form [2]: 

1R 



p . 
1+ La;z-• 

A(z) = i=l . 

W(z)~ A(z!y) I+ :ta,y'z~' 
i=l 

(2.16) 

0 ·1 2 
FnHtuency(kHz) 

4 

Figure 2.6 LPC model spectrum and perceptual weighting filter spectrum for several 

values of the perceptual weighting factory. The aim of the perceptual weighting filter is 

to put more coding noise under formants where it may be masked. For the sake of 

clarity, the spectra are separated by vertical shifts. (28]. 

Where y is the perceptual weighting factor which has a value between zero and 

one. A suitable value for the perceptual weighting factor is between 0.8 and 0.9 for a 

sampling frequency of 8 kHz. The parameters of A(zJ y) are easily found by multiplying 

the i_th parameter a. of A(z) by y; as is shown in (2.16). The poles of 1/A(z/ y) are at 

the same argument angles in the complex plane as the poles of 1/A(z), but their radii are 
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multiplied by 't and therefore their bandwidth is expanded. The net effect of the 

weighting filter is that he frequencies in the signals corresponding to peaks in the 

spectrum are de-emphasized ring the excitation selection procedure and hence more 

noise is put in the places where he model spectrum ll/A(z)!/\2 is large. The noise is 

shaped in a perceptually beneficial way. The weighting filter is not applied at the 

decoder. In figure 2.6 an LPC spectrum is shown, and the spectrum corresponding to the 

weighting filter W(z) for some values of y 

This kind of error weighting is applied in many LPC coding algorithms. Error 

weighting decreases the signal to noise ratio somewhat but increases the subjective 

quality considerably. 

The complexity of the Analysis-by-Synthesis excitation selection can be reduced 

by a rearrangement of the LPC synthesis and weighting filters, as is shown in figure 2.7. 

This rearrangement has the advantage that the input speech has to be weighted only 

once prior to the excitation determination. 

s(n) 

j W:z) j 

sJn) 

I 
Excitation 
Generator 1 I P(z) 1 I A(z/y) + 

I 

Figure 2.7 The complexity of Analysis-by-Synthesis (figure 2.5) can be lowered by a 

rearrangement of short term synthesis and weighting filters. In this way, the input 

speech has to be weighted only once prior to the excitation selection. [14]. 
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2.5.6 Postfiltering 

For algorithms operating at relatively high rates, such as ADPCM, the 

assumption that the coding noise is white is quite accurate ( if no noise-shaping is 

applied). Because the coding noise level is low, a large amount of noise can be masked 

by the signal by application of a suitable noise-weighting filter. At lower bitrates, a 

much smaller fraction of the noise can be masked. Moreover, the coding noise can no 

longer be assumed to be white. This makes error weighting less effective, because the 

weighting filters assume the coding-noise to be white. In the spectral valleys there will 

be noise that is audible most of the time. A postfilter can be used to increase the quality 

at the cost of a decrease in signal to noise ratio. The idea of a postfilter is to enhance the 

formant peaks of the spectrum of the reconstructed speech with respect to the valleys 

where most of the audible noise is present. Postfilters are applied only on the 

reconstruction at the decoder. Postfiltering increases the subjective quality without 

increasing the bit rate. 

2.5. 7 Interpolation 

LPC based Analysis-by-Synthesis coders operate in a blockwise fashion. The 

speech is divided into blocks of about 25 ms, called coding frames. For each coding 

frame, the encoder provides the decoder with the coded parameters of short term and 

long term prediction filters and the coded excitation. The parameters of the short term 

LPC model are determined in analysis frames. The analysis frames do not necessarily 

have to be identical to the coding frames. Analysis frames may for example overlap, 

whereas coding frames do not. Analysis frames may also be shifted with respect to the 

coding frames to reduce the delay. The determination of LPC parameters and 

excitations is synchronised: each coding frame is divided into a fixed number of 

subframes, usually four, in which the excitation is determined. This synchronisation 

ensures that the bit rate is fixed; the same number of bits is sent for every coding frame. 

Another advantage of synchronising the determination of model parameters and 

excitations is that the changes in model parameters occur only at subframe boundaries 

and this is beneficial for the complexity of the selection of the excitation. The 

parameters of the long term prediction filter are adapted at a higher rate than those of 

the short term prediction model, for example, every subframe. 
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It is important for the quality of low bitrate coders that the LPC models vary 

smoothly with time. Large changes at frame boundaries may give audible distortions. 

This becomes more important at lower rates, where less bits are available for the 

excitation to compensate for transition effects. The transition effects can be reduced by 

applying interpolation of the short term LPC model. LPC models from consecutive 

frames are interpolated on a subframe basis. A suitable transformation of the LPC 

parameters is made, and this transformation is linearly interpolated. Several 

transformations are introduced in chapter 3, interpolation increases the quality without 

increasing the bit rate. 

It is possible to interpolate the pitch predictor parameters as well. For this 

application, a so-called fractional delay pitch predictor is more suitable. A fractional 

delay pitch predictor has only one tap. The pitch delay is determined from an upsampled 

version of the signal. This gives an increased resolution which is beneficial because the 

pitch period is never exactly equal to an integer number of samples. The pitch delay is 

specified in terms of a number of samples of the upsampled signal, and may contain a 

non-integer number of samples of the original signal. Next, some analysis-by-synthesis 

coding algorithms are discussed. They differ in the way the candidate excitations are 

generated, and in bit rate. 

2.5.8 Multi-Pulse and Regular-Pulse Excitation Coding 

In this section the multi-pulse and regular pulse excitation coders are described. 

In the multi-pulse excitation coder, the excitation is represented by just a small number 

of pulses at non-regular intervals. The amplitudes and the pulse locations have to be 

coded. About 5 pulses per 5 ms are needed for an acceptable quality. Finding the 

optimal combination of pulse locations and amplitudes with Analysis-by-Synthesis is a 

very complex problem. Therefore, suboptimal procedures are often used where the 

pulse locations and amplitudes are found one at a time. Multi-pulse coders operate at a 

bitrate of about 16 kbit/s. 

In the regular-pulse excitation coder, the pulses are uniformly spaced. Hence, 

only the position of the first pulse and the amplitudes of all pulses have to be coded. For 

a certain position of the first pulse, the amplitudes of all pulses are found by solving a 

linear set of equations. About 10 pulses per 5 ms are needed for a good quality. 
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A version of the regular-pulse excitation coder is recommended by the "Groupe 

Speciale Mobile (GSM)" for digital cellular radio in Europe. 

2.5.9 Code-Excited Linear Prediction 

A successful speech coding technique for low bitrates is Code-Excited Linear 

Prediction (CELP). This technique yields good speech quality at bitrates of about 4-8 

kilobits per second for a sampling frequency of 8 kHz. The basic scheme of the coder is 

shown in figure 2.8. 

The parameters of short term prediction filter are obtained directly from the 

input speech signal with a standard autoregressive estimation method. This is an open­ 

loop method. The parameters of the pitch predictor can also be obtained directly from 

the speech signal. A more efficient way is to use a closed-loop Analysis-by-Synthesis 

method to determine the parameters of the long term predictor. With this method, the 

parameters of the long term prediction filter are obtained from the speech signal and a 

selected part of the most recent past excitation. All possible candidate pitch periods in a 

specific range are considered. 

s(n) 

r------------------------, 
I I 
I I 
1 I I : l adaptive [ 
l codebook r> 1 

] 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

L------------------------~ 

W(z) 

s.v(n) 
1 I A(z/y) + 

stochastic 
codebook 

Figure 2.8 Code-Excited Linear Prediction (CELP) scheme. CELP is an Analysis-by­ 

Synthesis coding algorithm. The pitch prediction filter is usually implemented as an 

adaptive codebook. Furthermore, a fixed 'stochastic' codebook is used. [14] 
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This range is typically between 20 and 147 samples. If the candidate pitch period 

is M, a part of length M of the most recent past excitation is used in the Analysis-by­ 

Synthesis procedure. The past excitation is also available at the decoder. If the candidate 

pitch period M is shorter than the subframe length, the considered part of the past 

excitation has not a sufficient length. In this case, the last M values of the considered 

past excitation are periodically repeated up to a length equal to the subframe length. 

This structure is called an adaptive codebook and it is equivalent to a filter if the pitch 

period is longer than the subframe length. The parameters of the long term prediction 

filter, which are the gains of the adaptive input, are updated every subframe. M denotes 

what part of the past input is used as an excitation for A(z). In order to make a 

reconstruction, the decoder needs the quantised parameters of A(z), the value of M, the 

energy of the current frame and the adaptive and "stochastic" excitations and gains. The 

stochastic excitation is called this way because it is selected from a fixed codebook of 

noise-like excitation vectors, known both at the encoder and decoder. This codebook of 

noise-like signals is called stochastic codebook. The code number of the winning 

excitation in the codebook and its gain are sent to the decoder. 

An example of how the frame length and bit allocation may be chosen is given 

below. This is the bit allocation that is used in the U.S. Department of Defense 4.8 

kbit/s standard [29]: 

Federal Standard FS1016 

Sample frequency: 

Frame length: 

4 subframes 

8 kHz 4,800 bits/s 

30 ms I 240 samples 

bits/frame 

LPC model 34 

Adaptive codebook index 28 

Adaptive codebook gain 20 

Stochastic codebook index 36 

Stochastic codebook gain 20 

Error correction and sync. 06 + 
Total 144 
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In CELP the LPC parameters, the adaptive excitations and the stochastic 

excitation are determined sequentially. Although CELP achieves high quality speech at 

low bitrates, its sequential procedure is certainly not optimal in terms of SNR. The 

optimal procedure would find the best of all possible combinations of parameters and 

adaptive and stochastic excitations. Finding the very best combination is impossible in 

practice because the complexity is enormous. 

2.5.9.1 Complexity Reduction 

Analysis-by-Synthesis coding of the excitation is very complex because all 

candidate excitations ( adaptive and stochastic) have to be filtered before they can be 

compared with the ( weighted) speech signal. Several complexity reduction techniques 

are proposed in literature. 
The adaptive codewords have a large overlap, because they consist of parts of 

the recent past excitation. Consecutive adaptive codewords for which the corresponding 

candidate pitch period is larger than the subframe length, have all but the first and last 

sample in common. If the candidate pitch period is smaller than the subframe length, 

there is less similarity because parts of different lengths of the past excitation are then 

periodically repeated, but consecutive adaptive codewords still have many samples in 

common. This can be used to reduce the complexity considerably. If the filtered version 

of one codeword is known, the filtered version of the next codeword can be obtained 

efficiently with some simple end-point corrections. Fast search methods for obtaining 

the stochastic excitation can also be developed in the autocorrelation domain or in the 

frequency domain. The stochastic codebook may also be overlapping or have another 

special structure. For example, the codebook may be sparse or centre-clipped. In a 

sparse codebook a large fraction of the excitation samples is zero. In a centre-clipped 

codebook the non-zero values are equal to either plus or minus one. For example, the 

Department of Defense 4.8 kbit/s standard [29] uses an overlapping, sparse, centre­ 

clipped stochastic codebook. 
The complexity of CELP coders may be further reduced by the application of an 

alternative error weighting filter proposed in 1992. This weighting filter is obtained by 

replacing the denominator A(z/ y) of W(z) in (2.15) by H(z/ y ), where H(z) is a pre­ 

emphasis filter (this is a first order high-pass filter): 



H(z)=l-µz-1 
k(1) 

µ = R(O) (2.17) 

R(O) and R(l) are sample autocorrelation coefficients of the speech data (see 

chapter 3. The complexity reduction comes from the fact that the filtering action is now 

obtained by a more simple linear recursion. 

2.5.10 The Vocoder 

The name Vocoder (for Voice Coder) is a generic term for coding systems in 

which the excitation and vocal tract transfer functions are treated separate. A Linear 

Prediction filter may be used for the synthesis. In the simplest form, the excitation 

consists of a periodic pitch pulse sequence for voiced speech and a noise signal for 

unvoiced speech. 
The Vocoder, however, is not able to code nonstationary parts of the speech 

signal, like transition segments, with sufficient quality. The excitation coding of CELP 

is much more flexible and can cope with these segments. The decoder needs the coded 

LPC parameters, an unvoiced-voiced decision bit, the energy of a frame and the pitch 

period in the case of voiced speech. It may operate at a bit rate of 2400 bits/s or even 

lower, but the coded speech is not of very high quality. 

2.5.11 Improved Quality at Lower Rates 

There is continuous progression towards good quality at lower rates. One 

possible approach is to adapt the coding method to the properties of the signal. The 

Analysis-by-Synthesis schemes that were described use the same algorithm and number 

of bits, independent of the type of signal under analysis. However, unvoiced speech 

needs far less bits for an acceptable quality than voiced speech, and the main reason is 

that no pitch predictor is needed in unvoiced speech. Non-speech segments, where only 

background noise is present, need even less bits. Adaption of the coding method to the 

signal characteristics leads to coders with a varying bit rate. 

In phonetic segmentation speech segments are classified into phonetically 

distinct categories and the coding mechanism and bit rate are tailored to each class. In 



this way the average bitrate can be lowered to about 3 kbit/s with a quality at least as 

good as the 4.8 kbit/s U.S. Federal Standard 1016 (CELP) algorithm. 

Another promising approach is generalised Analysis-by-Synthesis coding. The 

idea is that not the speech signal itself is coded, but a modified version which sounds 

the same. This modified version has the property that it can be coded more efficiently 

than the original signal. Generalised Analysis-by-Synthesis can be used to improve the 

efficiency of the pitch predictor. 

Improved efficiency may also be obtained by using more extensive interpolation 

techniques: only parts of the signal are coded and missing parts are synthesised by 

interpolation. These techniques are applied only to voiced speech and hence the coders 

need an unvoiced/voiced decision.In 1995 the Kleijn and Haagen have presented a 

coding algorithm which avoids the unvoiced/voiced decisison. This coder also uses 

Linear Prediction and performs at least as well as the U.S. Federal Standard 1016, but at 

only half the bitrate. 

2.6 Quality Measures 

2.6.1 Objective Quality Measures 

An objective quality measure that is used in many fields of signal processing is 

the Signal-to- Noise Ratio (SNR). It is defined as the ratio of the signal power to the 

( coding) noise power, expressed in decibels: 

{ 
Is2(n) } 

SNR - l O'° log ~J,(n )- S(n )}' (dB) (2.18) 

The SNR has several disadvantages for speech coding. One important 

disadvantage is that the SNR may be determined mainly by the segments with the 

highest energy and the influence of, for example, important transition segments may be 

underestimated. The SNR can be improved somewhat by computing the SNR over short 

segments of, say, 15 ms, and averaging these SNR values. In this way the Segmental 

SNR (SSNR) is obtained. SSNR and SNR can also be computed in the weighted domain, 
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i.e. computed after filtering signal and reconstruction with the weighting filter W(z) of 

(2.16). At low bit rates SNR and SSNR do not predict accurately the subjective quality 

of speech. Several measures have been developed which better predict the perfonnartce 

of speech and audio coding systems. 

2.6.2 Subjective Quality - The Mean Opinion Score 

The most often used subjective quality measure for high quality low bit rate 

coding systems is the Mean Opinion Score (MOS). The MOS is determined by formal 

listening tests where experienced listeners rank the reconstructed speech with a value 

between one and five. The average of all listener scores for all speech data is the MOS. 

The values of MOS mean the following: 

1 bad 2 poor 3 fair 4 good 5 excellent 

High quality Analysis-by-Synthesis coders have MOS scores between 3 and 4. A 

MOS score of 4 is considered as near transparent quality over a telephone line. 

2.7 Summary 

In this chapter the various coding algorithms has been given. Only algorithms 

have been considered that use Linear Prediction and waveform matching: the error 

between original and reconstructed signal (in the weighted domain) is minimised. This 

means that phase information is taken into account. The predictor is an all-pole 

(autoregressive) predictor. In principle, a pole-zero ( autoregressive-moving average) 

predictor could be used or a non-linear predictor, but it is not yet clear if these 

predictors will improve the coding quality. However, autoregressive-moving average 

predictors can be applied successfully in speech synthesis. 
Two alternative approaches at low rates are the Multi Band Excitation (MBE) 

coder and the Sinusoidal Transform Coder (STC). In the MBE algorithm, the excitation 

is divided into several frequency bands and in each band an unvoiced/voiced decisison 

is made. In the unvoiced bands, phase information is discarded. MBE coders operate at 

rates of 2.4-4.8 kbit/s. In STC, the synthesised speech is a sum of sinusoidal signals. 

The frequencies, amplitudes and phases are efficiently coded. 



3. AUTOREGRESSIVE MODELLING OF SPEECH 

3.1 Overview 

In the previous chapter several speech coding algorithms based on linear 

prediction have been described. An advantage of linear prediction is that the model has 

a frequency domain interpretation. This frequency-domain interpretation makes it 

possible to use techniques such as error weighting and postfiltering and to use objective 

measures with a frequency domain interpretation for the evaluation of the quality of 

quantised or interpolated models. For high quality coding, the accurate estimation, 

interpolation and quantisation of the models is very important. Some of the questions 

involving these issues can be answered by using properties of model parameters that 

follow from autoregressive theory. In this chapter a short overview of autoregressive 

theory is given. Furthermore, it is shown that the well known autocorrelation method for 

estimation of the parameters is not a useful method. Its shortcomings can be cured to a 

large extent by the application of tapered data windows, but other methods are available 

that do not need a window and even perform better without it in stochastic signals. 

3.2 Autoregressive Estimation 

3.2.1 Estimation Methods 

In a K-th order autoregressive process the signal x(n) is described by a weighted 

sum of preceeding signal values plus an independent identically distributed noise 

signal t::(n) with variance. 

K 

s(n)= x(n)+ Ia;x(n-i) 
i=I 

(3.1) 
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(3.2) 

The coefficients a; are the autoregressive parameters, called LPC parameters in 

speech coding. 

The best known autoregressive estimation methods are the autocorrelation or 

Yule Walker method, the covariance or one-sided least squares method, the modified 

covariance or two-sided least squares method and the Burg method. All these methods 

estimate the parameters from N samples of a signal. 

The autocorrelation method assumes the signal to be exactly zero outside the 

interval of observation and estimates the AR parameters of a p-th order model by 

minimising the residual sum of squares s2[PJ of the forward residuals from minus to 

plus infinity: 

This is equivalent to the minimisation of the following expression: 

S
,2 T ~ 
'[P] = a Ra (3.3) 

where a = [1 a ... a] is the vector of AR parameters to be found. The elements 

R(i,j) of the autocorrelation matrix R are the autocorrelation coefficients of the data 
and are defined by: 

R(i,J)=-1 fx(n-i)x(n- J)=R~i- Jj) 
N /7;-00 

(3.4) 

Because of the infinite sum, these autocorrelation coefficients are dependent 

only on the absolute value of the difference between i and j, i.e. R(i, .J)= R~i - .Jj). This 

means that the autocorrelation matrix R in (3.3) has a persymmetric Toeplitz structure 

for the autocorrelation method. This structure allows the parameters to be found 

efficiently from the autocorrelation coefficients with the Levinson-Durbin algorithm. 

The Levinson-Durbin algorithm transforms an autocorrelation function R(k) of a 

process to the autoregressive parameters of that process: 



j=l 

2 k,,, = - s[m-1] 
m=l, ..... ,p ' 

(3.5) 

s;, = s;,-l (1- k;,,) (3.6) 

a[m] = a[m-1] + k a[m-1] 
J J m m-J , 

[m] - k a,,, - m (3.7) 

Where k,,, is the m-th reflection coefficient, a}"'l is the j-th parameter of an m-th 

order model and s;, is the residual variance for the m-th order model. The reflection 

coefficient k"' can be interpreted as the negative of the partial correlation coefficient 

[6][27][31] between x(n-m) and x(n). The partial correlation coefficient between two 

random variables which both are correlated with a third random variable is defined as 

the correlation between them after the correlation with the third one has been removed 

from both of them. A reflection coefficient k111 can thus be interpreted as the negative of 

the correlation between two samples x(n-m) and x(n) of a time series when the 

correlation with the samples x(n-m+ 1) ... x(n-1) has been removed. The reflection 

coefficients owe their physical names to an acoustic tube model of the vocal tract. They 

describe the reflection coefficients for the forward and backward travelling waves in 

that model. 
A 

The R (k)'s in the autocorrelation method are biased estimates of the theoretical 

autocorrelation coefficients R(k) of the process, because R (k) contains only N-k non­ 
zero terms, but is normalised by 1/N. 

The bias in the sample autocorrelation coefficients for the autocorrelation 

method is caused by the way this method handles edge effects. It will be shown that the 

edge effects in the autocorrelation method give poor results if there are reflection 

coefficients present in the process close to plus or minus one. 

The covariance method uses only data within the segment to minimise the 

residual sum of squares of forward residuals: 



a[P] = -1- f ~(n)+ a1x(n -1)+ + aPx(n - p )}2 (3.8) 
N -p n=p+1 

The modified covariance method minimises the sum of squares of forward and 

backward residuals within the segment: 

(3.9) 

1 N-p --I ~(n)+a1x(n+ 1)+ + aPx(n+ p)}2 
N- p n=1 

The residual sums of squares (3.2), (3.8) and (3.9) are estimates of the 

innovation variance a 2 . 

The equations (3.8) and (3.9) can be expressed in the same form as (3.3), but the 

definition of R for each method is slightly different. The corresponding matrices R are 
symmetric but not Toeplitz. 

Another well-known method is the Burg method. The Burg method does not 

estimate AR parameters with (3.3), but this method estimates reflection coefficients 

directly and uses the Levinson recursion (3.7) to obtain AR parameters. The reflection 
A 

coefficient km is the negative of the correlation coefficient of the forward and backward 

residual signals e:,_1 and e;,_1, respectively, of the (m-1)-th order model [12]: 

N 

- 2 I e!,_1 (n )e;,_1 (n -1) 
f = n:::;m+l 

m f((e:,_Jn))2 +(em_i(n-1))2) 
n=m+I 

(3.10) 

e:, (n) = e!,_1 (n )+ t.r: (n -1) n=m+2, ,N 

(3.11) 

e;, (n) = e!,-1 (n -1)+ k,,,e!,_1 (n) n=m+I, ,N-1 

where e{(n)= eg(n)= x(n). 
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The estimate of the residual variance and the parameters are found subsequently 

with (3.6) and (3.7). The modified covariance method also uses forward and backward 

residuals, but not the Levinson recursion. The Burg method is a constrained 

minimisation of the residual sum of squares (3.9) in the sense that the autoregressive 

predictor parameters of the (m-I )-th order model are assumed to have been estimated 

already. The parameters of the m_th order model are obtained with the Levinson 

algorithm (3.7) from the (m-1)-th order parameters and km . The modified covariance 

method finds parameters by an unconstrained minimisation of (3.9). 

These four methods differ only in the way the edge effects are handled. If p 

zeros are added to the observation interval both at the begin and at the end, these four 

methods are identical. 

3.1.2 Stability 

In speech coding it is necessary that the LPC models are stable, i.e., the poles of 
/' 

the autoregressive transfer function are within the unit circle. This is because otherwise 

the output of the synthesis filter may diverge at the decoder. Even if Analysis-by­ 

Synthesis is used for coding of the excitation this can occur because errors in the 

received bits due to a poor channel can cause the decoder to use an excitation different 

from the one that was intended. Furthermore, Analysis-by-Synthesis is generally 

applied in the weighted domain, while no weighting filter is applied for reconstruction 

at the decoder. 
The bias in the sample autocorrelation function for the autocorrelation method 

ensures that the models obtained with this method are always stable. The covariance 

method and the modified covariance method do not guarantee a stable model, although 

instability will occur less frequently with the modified covariance method than with the 

covariance method. These methods are therefore not suitable for use in a speech coder. 

There exist some modifications of the covariance method that do ensure a stable 

model [2]. 
A convenient stability criterion exists for the reflection coefficients. If the 

absolute value of all reflection coefficients is smaller than one, the model is guaranteed 

to be stable. From (3.10) it follows that the reflection coefficients as they are computed 

in the Burg method satisfy this stability criterion. 



3.2 Asymptotic Theory 

The four main estimation methods that have been described in the previous 

section differ in the way edge effects are handled. If the model order p is small enough 

relative to the number of observations N used to estimate the parameters, and the poles 

of the process are not too close to the unit circle, all methods perform similarly. In 

asymptotic theory no difference is made between estimation methods. The residual 

sums of squares are estimates of the innovation variance a 2 • 

The expectation of the residual sum of squares is called the residual variance. 

The residual variance is the expectation of the minimum of (3.3) and equals (1-p/N) a2 

asymptotically; slightly smaller than a", This is only true if the model order pis higher 

than or equal to the true process order K. If parameters that are found by minimising the 

residual sum of squares for one set of observations, are substituted in another 

independent set of observations of the same process, the "residuals" are called 

prediction errors. If, for a given estimated parameter vector, the expectation of the 

prediction error variance is taken for independent sets of observations, the result is a 

measure for the quality of the estimated parameters. This measure is called Prediction 

Error (PE). It can be computed by substituting in (3.3) the true autocorrelation matrix 

of the process, because the parameters are assumed to be obtained from another 

independent set of observations: 

(3.12) 

If the model order is higher than or equal to the process order, the expectation of 

the prediction Error over the estimated parameters equals ( 1 +p/N) a 2 ; slightly larger 

than a", In chapter 2, no distinction has been made between residuals and prediction 

errors, because it was not discussed in much detail there how the predictor parameters 

are obtained. One application where it is essential to make a clear distinction between 

residuals and prediction errors is order selection. In that case, also differences between 

estimation methods must be taken into account. In speech coding, differences between 

estimation methods are also important, because a stable model is necessary. The 

expressions for the variance of the residuals and the prediction errors are accurate when 

the model order p/N is small and when there are no poles that are too close to the unit 



circle. If there are reflection coefficients close to plus or minus unity, the 

autocorrelation method may suffer from undesirable edge effects. In section 3.3 these 

edge effects will be investigated. 

In (3.12) the parameters are assumed to be estimated from a realisation of the 

process with correlation matrix R. Often a quality measure is needed where no 

assumptions are made about the source of the parameters. For instance, when one has a 

model that has to be quantised, the parameter vector a can be a test vector from a code 

book. Then the matrix R is the autocorrelation matrix of the process that is described by 

the reference model, i.e., the autocorrelation matrix corresponding to the model that has 

to be quantised. The Likelihood Ratio (LR) is such a quality measure, defined by: 

(3.13) 

Rp+I is the (p+ 1 )x(p+ 1) correlation matrix of the reference process, normalised 

by a2 Likelihood Ratio can also be expressed as follows [3]: 

(3.14) 

Where Sa = lAa ..... Aar Jis the vector of differences of the parameters oftest and 

reference models. If the parameter vector a is obtained by estimation from a realisation 

of the reference process, the Likelihood Ratio is equal to PEI a 2 , and its expectation is 

1 +p/N. The Likelihood Ratio can also be expressed in the frequency domain: 

LR = _I s" I A~ejw ~12 
2JT · dw 

-tr 

(3.15) 

whereA(e.fw )::;: 1 + a.e" + a2e2Jw + + ae'" , and A(eJw) is defined in a similar way. 

The spectrum of the autoregressive process is given by a 2 /IA( e )I . From these 

expressions an important conclusion can be drawn: if the model order p is relatively 

small in comparison with the number of observations used to estimate the parameters, 

but high enough to catch all relevant parameters, an autoregressive model can give an 

accurate description of a signal in both the time and frequency domain. An accurate 

spectral description means a small prediction error in the time domain, and vice versa. 



In speech coding algorithms at high rates, such as ADPCM, use is made of the good 

predicting capabilities of the autoregressive model. Algorithms at lower bit rates use 

both the good predicting capabilities (for Analysis-by- Synthesis excitation coding) and 

the spectral interpretation (for error weighting, postfiltering and quantisation). 

3.2.1 Spectral Distortion Measure 

The Likelihood Ratio is an LPC distortion measure that is used frequently in 

speech processing. There are many other LPC distortion measures. Perhaps the most 

often used distortion measure is the Spectral Distortion (SD). The Spectral Distortion is 

defined in the frequency domain as a squared relative distortion measure of the LPC 

log-spectra: 

1 "I IA. jw 212 
SD = . I- J log e . , I dw 

2TC A e" -Jt 

(3.16) 

It can be expressed in the time domain as an infinite sum as follows: 

co 

SD = . IL {ck - (\ }2 (3.17) 
-<X) 

Where ck and ck are the cepstral coefficients corresponding to A and A , 
respectively. These cepstral coefficients can be computed recursively from the LPC 

parameters. Spectral Distortion is usually expressed in decibels. The value in dB can be 

obtained by multiplying (3.16) or (3.17) with 10 loge.In 1976 it has been state that for 

values of Spectral Distortion smaller than about 2 dB, Spectral Distortion and 

Likelihood Ratio are for all practical purposes identical (23]: 

(3.18) 

Spectral Distortion is often used to express the quality of a quantiser of the LPC 

model. An accurate quantisation of the LPC model is of much importance for the 



quality of low bit rate speech coders. Current research aims at transparent quantisation, 

that is; the effects of quantisation are not audible. 

3.2.2 Other Representations 

The Levinson-Durbin algorithm transforms an autocorrelation function to the 

autoregressive parameters. The reflection coefficients show up as an intermediate set of 

coefficients. The parameters, the reflection coefficients and the autocorrelation function 

(normalised with respect to a2) are one-to-one transformations of each other and all 

describe the same model. 

Such a one-to-one transformation of the parameters which completely describes 

the model is called a representation of the model. The cepstral coefficients are also a 

representation of the LPC model. To compute the LPC coefficients from the 

autocorrelation function, only R(O) through R(p) are needed. These are the elements of 

the first row (or column) of Rr+t in (3.13). This representation will be denoted COR. 

How COR can be computed from the LPC parameters is described in [ 1]. The 

normalised autocorrelation function (NCOR) is obtained by dividing COR by R(O). 

NCOR is also a representation of the model. Although different representations describe 

the same model, their properties are quite different. The specific properties of 

representations are of great importance for their interpolation and quantisation 

behaviour. Other representations of interest are the Log Area Ratios (LAR.s) l; and the 

Arcsine of Reflection Coefficients (ASRCs) m; (24]. These are scalar transformations of 

the reflection coefficients and are defined as follows: 

l+k1 
I; = log 1- k; ' i=l, ,p (3.19) 

A uniform scalar quantisation of the LARs or the ASRCs is similar to a non­ 

uniform quantisation of the reflection coefficients with more closely spaced levels for 

values of the reflection coefficients near plus or minus one. This is necessary because 

quality measures such as Likelihood Ratio and Spectral Distortion become more 

sensitive to changes in reflection coefficients if these are close to one in absolute value. 

These Reflection Coefficient based representations have been used frequently in the 
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past for scalar quantisation because stability is easily guaranteed, in contrast to, e.g., the 

LPC parameters or the (normalised) autocorrelation function. 

Another representation which has been applied successfully for both 

quantisation and interpolation is formed by the Line Spectrum Frequencies (LSFs). It is 

defined as the locations of the zeros of two polynomials. These polynomials are formed 

by adding to an LPC polynomial an extra reflection coefficient equal to + 1 or -1, 

respectively. Consider an LPC polynomial AP (z). It can be factorised as Pa product of 

first order polynomials: 

p 

AAz)=l+a1z-1 + ..... +aPz-P = IT(l-q;z-1) 
;~1 

(3.20) 

The coefficients q; are the zeros of Ap (z). From this expression it is readily seen 

that the last parameter a P , which is equal to the last reflection coefficient, is the 

product of all zeros: 

(3.21) 

When the artificially an extra reflection coefficient, k p+I , is added to Ap (z), 

with a value equal to plus or minus one. The result is two polynomials of order p+ 1: an 

antisymmetric polynomial P(z) for kp+I =-1 and a symmetric polynomial Q(z) for 

k p+l =+ 1. The product of all zeros of these polynomials is equal to the extra reflection 

coefficient, and it follows that all zeros of P(z) and Q(z) are located on the unit circle. 

The frequencies corresponding to the locations of the zeros are the LSFs. The term 

"Line Spectrum" stems from the fact that Ill P(eJw )I and Ill Q(e1w )I describe line spectra 
in the frequency domain. It can be shown that P(z) and Q(z) can be written for even 

order LPC polynomials as: 



p/2 

P(z) = (1- z-1 )[I(1-2cos w2;z-1 + z-2) 
i=I 

(3.22) 

p/2 

Q(z) = (1 + z-1 )TI(l - 2 cos w21_1z-1 + z-2) 
i=l 

where the w1, i=l,2, ... ,p, are the Line Spectrum Frequencies. The LSFs can be 

defined in a similar way for p odd, but the polynomials P(z) and Q(z) then look slightly 

different. A simple stability criterion for the polynomial AP (z) can be expressed in 

terms of the LSFs. Ap (z) is stable if and only if the following ordering property is 

fulfilled: 

0 < wl < w2 < < w P < Jr (3.23) 

Another name that is often used for the LSFs is Line Spectrum Pairs (LSPs) 

because the even and odd LSFs are obtained from the coefficients of a pair of 

antisymmetric and symmetric polynomials. Another property of LSFs is that if there is a 

peak in the spectrum 1/j A (e1w }I , then in the vicinity of this peak LSFs tend to be close 
together. The smaller the bandwidth of the peak, the closer the LSFs are. Figure 3.1 

shows an example of an LPC spectrum and the corresponding LSFs. 



1 
I 
I 
I 
I 
j 
i 

i 
i 
i 
i 

0.5 ·L5 2 2.5 3 3.5 4 

Frec1uency (kHz} 

Figure 3.1 LPC spectrum and corresponding Line Spectrum Frequencies (shown as 

vertical lines). [ 17]. 

Another property of LSFs is that a small change in one of the LSFs gives a 

change in the autoregressive spectrum mainly in the neighbourhood of that LSF. This is 

known as the localisation property. Similar properties hold for odd order polynomials. 

A representation which is closely related to the LSFs is formed by the Immitance 

Spectral Pairs (ISPs). The ISPs of a p-th order autoregressive polynomial AP (z) are 

formed by a 'gain' and p-1 frequency parameters. They are defined in the following 

way. For autoregressive polynomials, the following recurrent relation exists: 

AP (z) = Ap-l (z )+ kPz-1 Bp-l (z) 

(3.24) 

where Bp(z) is equal toz-P A)z-1) and almmitancefunction!P(z) 
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(3.25) 

and give the following stability theorem: 

AP (z) is stable if and only if IP (z) can be written, when p=2m, as: 

m-I 
K(l- z-2 )[I (1- 2cos2; z-1 + z-2) 

f 2m(z) = m i 

[1(1-2cosw2Hz-1 +z-2) 
(3.26) 

and when p=2m+ 1 as: 

(3.27) 

with p parameters that are real and satisfy: 

K-1 
O < wl < w2 < < w p-l < 1C , k > 0 , k P = K + 1 (3.28) 

The polynomials that occur in this stability theorem are very similar to the 

polynomials in (3.22) for the LSFs. It can have shown that the w; in (3.28) are the LSFs 

of a (p-1 )-th order model. In other words, the ISP frequency parameters for AP ( z) are 

actually the LSFs for A (z). Together with K, the transformation in (3.28) of the p-th 

reflection coefficient kP of AP_1 (z), they form a representation of the autoregressive 

parameters. It is clear that ISPs and LSFs are closely related. 
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3.2.3 Statistics 

In this section the statistics of different LPC representations are considered. 

These statistics will turn out to be of importance for the interpolation and quantisation 

behaviour of the representations 

3.2.3.1 Covariance matrices in AR processes 

Consider the covariance matrix of estimated AR parameters : 

(3.29) 

Where .3 is the expectation Operator and a = l121 &2 ..... Q p T j is the vector Of estimated 

parameters. 

Asymptotic autoregressive theory states that the covariance matrix Ca of the 

estimated parameters is given by: 

C = _!__R -i 
a N p 

(3.30) 

where N is the number of observations that is used to estimate the parameters 

and RP is the pxp autocorrelation matrix of the AR process, normalised by a", RP can 

be computed recursively from the true parameters of the process. Expressions in a 

closed form exists for the elements of Ca . 

Asymptotically, the theoretical covariance matrix C;.. for stationary AR 

processes of a different representation '"A, can be computed from that of the LPC 

parameters: 

(3.31) 

The symbol denotes a transformation of the LPC parameters, such as reflection 

coefficients, LARs, LSFs, etc. The (ij)-th element of the (pxp) matrix Lis the partial 

derivative of the i-th coefficient A; with respect to the j-th LPC parameter. 
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The theoretical covariance matrix of estimated reflection coefficients can be 

found with a recursive procedure. The covariance matrices of LAR and ASRC follow 

from that of the reflection coefficients by using the matrix of partial derivatives of the 

LARs and ASRCs with respect to the reflection coefficients. This matrix is a diagonal 

matrix, because the LARs and ASRCs are scalar transformations of the reflection 

coefficients. 
A general property of the theoretical covariance matrix of estimated reflection 

coefficients is that all estimated reflection coefficients of the orders greater than or 

equal to the true process order K, are uncorrelated with all other estimated reflection 

coefficients of the orders below K. In other words, for a K-th order process, the 
A 

covariance between the i-th estimated reflection coefficient, k, , and the j-th estimated 

reflection coefficient, kJ , is always zero it either i or j is greater than or equal to K (and 

i and j are different). The situation is different for the lower order estimated reflection 

coefficients: if there are true reflection coefficients close to plus one or minus one, the 

lower estimated reflection coefficients can have large variances and covariances, in 

contrast to the LPC parameters. 

For example, for third order processes the variances of the first estimated 

reflection coefficient, k1 , and the first estimated LPC parameter, a1 , are equal to: 

(3.32) 

Theoretically, the variance of k1 may become very large, but the variance of a1 

is always smaller than 1/N. 
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Due to their large variances and covariances, estimated reflection coefficients 

may differ much from their theoretical values, but still yield good models in terms of 

Likelihood Ratio. This is also true for LAR and ASRC. Despite their names, the 

estimated coefficients of the Reflection Coefficient based representations have therefore 

no physical meaning in the presence of large reflections. This is one of the reasons why 

the diameters of the sections in an acoustic tube model cannot be found directly from 

the speech signal with an autoregressive model. 
Symmetry relations may be used to show that even and odd LSFs are mutually 

uncorrelated when estimated from stationary autoregressive processes. If the 

polynomials P(z) and Q(z) in (3.22) are written in the same form as AP(z), then the 

parameters follow from the Levinson recursion (3. 7) with k p+I equal to plus or minus 

one. In this way two sets of equations are obtained connecting the LSFs wi to the LPC 

parameters a;. From these relations it can be readily seen that the LSFs are functions of 

the parameters of P(z) and Q(z), which themselves are differences and sums of the LPC 

parameters: 

P(z) = a [p+i] = a [P] - a[P] . 
) J p+l-; 

(3.33) 

Q(,z)= a[p+I] = a[P] +a[P] . 
J J p+l-J 

The even LSFs are functions of the differences of LPC parameters and the odd 

LSFs of the sums of LPC parameters only. Therefore, the following symmetry relations 

hold for the elements of the LPC to LSF derivative matrix: 

aw aw1 , J even J - - 

i»; aa p+l-i 

(3.34) 

aw awj ,j odd ~-) =+ 
aa. aap+l-i I 
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The covariance matrix RP of an autoregressive process has a persymmetric 

Toeplitz structure, so R(i,j)=R(j,i)=R(p+ 1-i,j)=R(p+ 1-j,i). These symmetries also hold 

for the correlation matrix Ca of the LPC parameters. Using these symmetries in C0 and 

the symmetry relations of (3.34) it follows from (3.31) that the even and odd LSFs are 

mutually uncorrelated. Analytical computation of the covariance matrix of the LSFs for 

process orders up to p=6 showed that all LSFs are uncorrelated for these orders, i.e., C 

is a diagonal matrix. For higher orders, analytical computation of the covariance matrix 

is rather straightforward but very tedious. However, numerical computation of the 

covariance matrix of LSFs for many different processes indicated that LSFs are also 

uncorrelated for higher order processes. In a similar way it turns out that the ISPs are 

also uncorrelated. 

3.2.3.2 Distributions in speech 

When parameters are estimated from a stationary AR process asymptotic theory 

says that their correlation matrix is given by (3.30) and their mean is given by the true 

parameters, apart from a bias of order 1/N. In chapter 2 it was mentioned that Vector 

Quantisation makes use of correlations and dependencies to code random vectors in an 

efficient way. For coding of the LPC parameters in speech, it is not only the correlations 

expressed by (3.30) or (3.31) that are exploited. Speech is a continuously changing 

signal and may at best be considered as a concatenation of stationary pieces of about 25 

ms. The correlations as expressed by (3.31) are therefore changing all the time and the 

poles of the models could, in theory, be located anywhere inside the unit circle. In 

practice, more models are found in certain areas of parameter space than in others. It is 

these distributions in speech that are mainly used to code the LPC models efficiently by 

designing codebooks which put more codevectors in areas which are covered by speech. 
A problem is that the distributions are different for different languages and speakers and 

hence it is difficult to obtain efficient and robust codebooks. 



3.3 Bias Propagation in the Autocorrelation Method 

3.3.1 Introduction 

Many low bitrate speech coders use an autoregressive linear prediction model to 

describe the speech spectral envelope. All standard techniques for estimation 

asymptotically have a similar performance on stochastic signals. Some well-known 

methods have been described in section 3.1.1. For small samples, clear differences exist 

between these methods because the edge effects are handled. It is known that a tapered 

data window improves the performance of the autocorrelation method in speech 

analysis. In this section, a time-domain analysis of the autocorrelation method will be 

presented, that gives a clear insight in the behaviour of this method, with and without 

windowing. 
For stochastic signals, the behaviour of estimation methods is expressed in terms 

of bias and variance of the model parameters. In 1983 they study the asymptotical bias 

of parameters obtained with different estimation methods by means of asymptotic 

Taylor expansions. In 1985 it can be show theoretically that for strongly correlated 

second order autoregressive processes, the estimate of the residual variance for the 

autocorrelation method is severely biased. They express the bias in terms of the poles of 

the autoregressive process. In 1988 they give expressions for the bias of the covariance 

and autocorrelation methods in terms of the parameters. Although these studies describe 

the bias quite accurately, the formulas do not give much insight in what causes the bias 

and what are the consequences of it for higher order processes. In this section, it is 

shown that this bias in the estimate of the residual variance is caused by edge effects 

and that it occurs if a reflection coefficient is close to one in absolute value. This bias in 

the residual variance propagates with the Levinson-Durbin recursion to the estimates of 

higher order reflection coefficients and leads to a large bias in them as well. A tapered 

data window may improve the performance of the autocorrelation method because it 

smooths the edge effects. All estimation methods perform similarly with a tapered data 

window, but for the least squares methods and the Burg method a tapered data window 

is theoretically superfluous for stochastic signals and even undesirable because the 

variance of the estimated models is increased. 
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In 1980 the suitability of the Burg method has been investigated for speech 

analysis and synthesis applications. Their conclusions, based mainly on deterministic 

signals (responses to periodical pulse sequences), are that the autocorrelation method 

and Burg method perform very similar with a data window, and slightly better than the 

Burg method without a window. 
It can be report that an LPC-VQ system using the Burg method performs both 

qualitatively and quantitatively better than similar systems that use the autocorrelation 

method. 
Results of autoregressive estimation methods are dependent on the location of a 

pulse within the analysis frames. Windowing reduces the sensitivity of estimation 

methods to the location of the pulses. Hence, for real speech two opposite effects of 

windowing exist: a deterministic advantage because the sensitivity to the location of 

pitch pulses is decreased, but a stochastic disadvantage because the variance of the 

models is increased [22]. 

3.4 Summary 

The autogressive modelling of speech is given in this chapter. The types of 

autocorrelation method is discussed such as Levinson-Durbin, Burg and Covariance 

method. 
The autocorrelation method of autoregressive estimation is not suitable if 

reflection coefficients are close to plus or minus one. This result is of practical interest 

because for sampled band-limited signals the first reflection coefficient is close to 

minus one unless the sample frequency is low. The poor performance of the 

autocorrelation method is due to edge effects; incomplete terms in the residual cause a 

large bias in the residual variance, this bias is propagated via the denominator of the 

Levinson-Durbin recursion and causes higher order reflection coefficients to be 

seriously biased as well. A data window decreases the edge effects and reduces the 

differences between the autocorrelation method and other estimation methods. 
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4. LINEAR PREDICTIVE CODING 

4.1 Overview 

In previous chapter, we discuss little bit literature survey of the speech coding. 

In this chapter, the implementation and of the Linear predictive coding of speech will be 

given. We will discuss the practical aspects and implementation of the LPC coding. 
As we know frequency content of typical speech is within the range 300-3300 

Hz. According to Nyquist's Sampling Theorem, speech has to be sampled at 6.6 kHz to 

avoid aliasing and ensure perfect reconstruction. However, 8 kHz has become the 

standard sampling frequency because it provides for a margin of error. 
Uncompressed speech using 8-bit quantization requires a total bit rate of 64 

kbits/s. This rate is far too high for most applications and can be reduced considerably 

through various compression schemes. Among these schemes, linear predictive coding 

(LPC) has been found to give high compression ratios. 
LPC accomplishes high compression by modeling speech as an AR process and 

encoding the model parameters rather than the speech. 

4.2 Speech Signals 

In this thesis, I use my own speech signal and other speech signals taken from 

the internet sites [36]. In order to record and edit of the speech samples, we need a 

microphone (or sound source such a tape recorder), sound card and sound recorder 

program. I used Quake SPQ-03V type head-microphone, PCL sound card and a 

COLEA program to record my speech in wave format in my PC, which is shown in 

figures 4. 1. 
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Quake SPQ - 03V 
Headphone 

Soundcard 
CMl8738/c3dx PCL 

AMO Athlon 800MHz. PC 

Fig 4.1 recording of our speech sample 

Then I convert my own speech samples into matlab format by usmg 

' [Data]=wavread('buraka.wav'); 'command. 
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4.3 Spectral Analysis of Speech Signals 

The analysis of the speech signal is always the foundation of related l)wcessing 

techniques. So we first studied the spectral features of speech signals. 

4.3.1 Features of Speech Spectrum 

Since speech signal is time-varying, the analysis should be a time-frequency 

analysis. We always assume WSS and hope to take length of samples as long as 

possible to obtain a low-bias. Besides, bias variance tradeoff is always what we hope to 

control. In speech signal, however, we have to cut the whole signal into blocks to obtain 

short time stationary. Typically the block is 20-30 ms long. Short-time FT (STFT) is 
applied in the spectral analysis for speech. 
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Fig. 4.2 Long-term spectrum vs. Short-time spectrum. (a). shows the long-term 

spectrum. (b) is the predictor error spectrum; ( c) The red line is the AR model spectrum, 

and the blue line is STFT of one block. 
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spectrum. 
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Fig. 4.3 The spectragram style and colorbar of my speech. 

4.3.2 Voiced/Unvoiced Spectrum 

Speech can be generally divided into voiced and unvoiced. We studied both the 

spectrum of typical voiced and unvoiced block. The spectrum in Fig 4.4 shows that for a 

voiced speech, the time series have obvious periodic. The spectrum of voiced speech is 

featured as some fine spectrum with formant envelope. The fine peaks mean the pitch 

period and the formants reflect the vocal tract feature. While for the unvoiced case, the 
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signal looks much like a white noise. The spectra lose the pitch period but keeps some 

formant peaks. 
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Fig.4.4 Voiced and Unvoiced segments and their short time spectra. [14] 

The figure below shows that the AR model fits the speech signal quite well. By 

passing the speech through a predictor filter A(z), the spectrum is much more flatten 

(whitened). But it still containes some fine details. 
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4.4 Voice Model 

When we speak, we physically change the way our vocal tract (mouth, tongue, 

and trachea) is shaped. The vocal tract (basically a lossless, non-uniform tube), can be 

modeled as a linear mechanical system that is (relatively) slowly varying in time. A 

good model for a lossless tube is an all pole system, in the case of the vocal tract a 

model order of around ten is appropriate. The input to this system is an excitation signal 

that depends on what sound we are trying to make. 

Our speech is made up of two basic components, voiced (vowels), and unvoiced 

(consonants). For example, when somebody is saying the word "fast", the 'f is unvoiced, 

the short 'a' is voiced, and the 's' and 't' are unvoiced. When we make an unvoiced sound, 

we constrict part of our vocal tract to a very small passage way, and push air through 

this small opening. The resulting airflow is very turbulent and is modeled in our system 

input as white (Gaussian) noise. To make a voiced sound, our vocal cords vibrate 

against the glottis ( entrance to the vocal tract) periodically interrupting the airflow. The 

vocal tract anatomy is shown in appendix A. This is modeled by input into our system 

of a series of impulses. The time in between these impulses,called the pitch 

period,varies with the vowel we are trying to form.Our linear system model of speech is 

shown in the Figure below.We will make the assumption that over short periods of time 

(30 ms), our speech is a stationary random process. So, for 30 ms time intervals, we use 

the speech data to estimate model parameters, and then code these parameters. We also 

need to code whether the sound made during the 30 ms was voiced (in which case we 

also need the pitch period) or unvoiced. 
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Fig 4.7 The engineering model for speech synthesis. [14] 



To reconstruct (synthesize) the speech, either an impulse train (for voiced) or 

white noise (for unvoiced) was passed through a filter made up from the coded vocal 

tract parameters. 

The model of the vocal tract as an all pole linear system is surprisingly accurate. 

In fact, LPC works extremely well at very low bit rates for unvoiced signals.However, 

the quality of LPC for voiced signals is limited due to the approximation of the voiced 

driving signals. LPC performance depends heavily on the accuracy of the pitch period 

estimation. 

4.5 LPC Coder Architecture 

For a two-state LPC vocoder, the system block is almost fixed. What makes 

difference is the application of different algorithms to do all these parts of work. In brief, 

there are three big problems, i.e. (1). linear prediction, (2). voice/unvoiced decision 

and (3).pitch detection. So we first set up the framework of LPC coder. Then we 

focused our efforts on algorithms for each part and carried out features, hoping to 

derive some insights for future work. 
To improve the performance, people will also assume more complex production 

models(e.g. mixed excitation and residual excitation). 

4.5.1 Encoder 

Based on the analysis of the previous sections, the system of out two-state LPC 

coder follows the following block. In the encoder, we first did some kinds of pre­ 

processing which include pre-emphasis, segmentation and windowing. We did Linear 

prediction analysis to extract the linear prediction parameters for each block, which 

include reflection coefficients, alfa coefficients, Gain and prediction error. Then we 

applied some kind of voiced/unvoiced decision algorithm to determine the 

voice/unvoiced feature and some kind of pitch detection algorithms to extract the pitch 

period. Before transmission, the LP coefficients; pitch period, gain and uvdecision( one 

bit) result were encoded. For simplicity, we here only discussed the quantization feature 

of linear prediction coefficients. 
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Fig 4,8 LPC Encoder (Federal Standard FS1015). [14]. 

4.5.2 Decoder 

Based on the simplest two state speech production model, the decoder is as the 

following figure shows. Unvdecision is a switch to determine whether the excitation 

should be white noise or an impulse train with pitch period. The reflection coefficients 

were conversed to direct coefficients as the parameters of the all-pole inverse filter. 

Gain is used to reconstruct the energy of the speech. Then some post-processing 

procedures were applied to align the output speech. 
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Fig 4.9 LPC Decoder (Federal Standard FS1015). [14]. 



4.6 LPC Coding implementation 

LPC consists of the following steps 

1. Pre-emphasis Filtering 

2. Data Windowing 

3. AR Parameter Estimation 

4. Pitch Period and Gain Estimation 

5. Quantization 

6. Decoding and Frame Interpolation 

4.6.1 Pre-emphasis Filtering 

When we speak, the speech signal experiences some spectral roll, off due to the radiation 

effects of the sound from the mouth (see the Figure below). As a result, the majority of 

the spectral energy is concentrated in the lower frequencies. However, the information 

in the high frequencies is just as important to us understanding the speech as the low 

frequencies; we would like our model to treat all frequencies equally. To have our 

model give equal weight to each, we need to apply a high-pass filter to the original 

signal. This is done with a one zero filter, called the pre-emphasis filter. The filter has 

the form: 

y[n] = 1 - a x[n] (4.1) 

where a is generally a value around 0.9. Most standards use a = 15/16 = .9375. Of 

course, when we decode the speech, the last thing we do to each frame is to pass it 

through a de-emphasis filter to undo this effect. 
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Fig 4.10 Typical spectral envelope of voiced sound 

4.6.2 Data Windowing 

We will assume that a speech signal is a stationary AR process over a short 

amount of time. However, to avoid discontinuities in the model, we will use 

overlapping data frames. As the frame size gets larger and larger, our bit rate gets lower 

and lower, but of course our assumption of the process being stationary over a frame 

becomes more and more precarious. For the LPC coder implemented in this thesis, the 

original speech signals were sampled at 8kHz. The signal was cut into 240 sample 

'blocks' which overlapped the previous and succesive blocks by 60 samples. These 

blocks were Hamming windowed before further processing was done. 
I 

Because sometimes it is desirable to window the data to lower the variance of 

the autocorrelation matrix estimate. The standard bias-variance trade-offs for the AR 

estimate (autocorrelation estimate) occur for different data windows. In this project we 

used a Hamming window, as shown in the figure below. 

In total, each block represented 180 data points, or 22.5ms. This is referred to as the 

'frame period' in LPC coding. 
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Fig 4.11 Window placement and frame overlapping 

4.6.3 Linear prediction (AR parameter estimation) 

There are various kinds of formulations for linear prediction problem. Two 

important algorithms are Levinson Algorithm and Burg Algorithm. Although a bunch of 

functions to solve AR model problem can be found in matlab (such levinson, ar, lpc, ... ) 

the interfaces are always too complex . I also implement my own implementatioh of 

algorithms to understand and help for drawing some graphs. In Coder implementation 

each block of data was modeled as an AR process using the method. If the block was 

voiced, a tenth order model was used. For unvoiced speech, we used a fourth order 

model. The AR reflection coefficients were taken instead of the standard 'a' parameters, 

as this model is more stable when quantized. I hope this study more helpful for the 

deeper understanding of the literature. Moreover, the expertise built through this work 

can help us easily write a C or asm language program for real-time application. We also 

carried out comparisons of these two algorithms. 

4.6.3.1 Levinson algorithm 

In a p-th order forward linear predictor, the current sample of speech is predicted 

from a linear combination of the p-past samples. Levinson algorithm is achieved by 

minimizing the MSE of forward prediction error. And then by applying the Toeplitz 



feature of the auto- correlation matrix, a fast algorithm based on order-recursion is 

derived by levinson. The recursion is formulated as Fig below: 

•••••• 
s(n) 

Fig 4.12 Linear prediction realizations, Direct forward LP analysis. [14]. 

4.6.3.2 Burg Algorithm 

Burg algorithm is a kind of forward-backward prediction. Based on the Levinson 

recursion and this prediction, we derived the following recusive computation: 

(4.2) 

In which the reflection coefficients are computed with this expression: 

N 

2 L e;;_1 (n )e!,_1 (n -1) 
k = n=m+! 

ni N 2 N 2 L \e:,_1 (n ~ + I le!,_1 (n -1 ~ 
n=rn+l n=m+l 

(4.3) 

The figure below shows a clear diagram of the recursive computation of Burg algorithm. 

6() 
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Fig 4.13 Linear prediction realizations, Lattice forward-backward predictor.The input 

is the speech signal; the output is the residual error. [14]. 

I carried out a comparison between these two algorithms. Summarily, they have 

the following differences: 

1. Computation form: Note that Levinson algorithm has a direct form while Burg 

algorithm has a Lattice form. In burg algorithm, the reflection coefficients can 

be computed directly in different stages without the computation of the 

prediction filter coefficients. We also highlight here that the lattice form is a 

representative direction in filtering theory. 
2. Although both algorithms guarantee stability in theory, in practice, Levinson is 

more sensitive than Burg. Some kinds of preprocessing (preemphsizing, 

windowing) will improve the performance. But for burg, this procedure can be 

saved. 
3. For Levinson algorithm, the computation of Autocorrelation function is required. 

In burg algorithm, there is no need for this. 

4.6.3.3 Order Selection 

Order selection is very important for AR model. We did experiments for both 

levinson and burg with AIC and MDL criterion. AIC is expressed as 

AIC(k)=Nln(MSE(k))+2*k, MDL is computed as MDL(k)= N* ln(MSE(k))+k*ln(N); 

The left figure below is the result of levinson and the right burg. Solid line is AIC and 

dashed line is MDL. From the result, we found that MDL has a clearer valley for both 
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levinson and burg algorithm. AIC tends to overestimate the order since the valley is not 

clear even for order 20. This means that MDL has a better performance in the selection 

of order. This maybe because MDL considers the number of bits in the second term, We 

can also see clear from the result that an order 10 is enough for voiced while order 4 

looks good for unvoiced speech( result not shown here). That is why we can typical 

LPC coder LPC-10. We also found that the cost function decreases faster than Levinson. 

This may also support the strength of Burg over Levinson. 
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Fig 4.14 Order selection for Levinson. 
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Fig 4.15 Order selection for Burg. 

4.6.3.4 Application of LPC parameters 

We mainly studied features of the predictor error. The ACFs of both original 

signals and residual are plotted for one section of typical voiced speech. It is clear that 

the ACF of residual shows more significant periodics than original signal. This is 

because the residual has been reduced the long-term correlation and made more 

whitened. So it may be used for pitch detection with better performance. 
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Fig 4.16 Autocorrelation Function of block data and residual of speech. 

4.6.4 Determining Pitch Period and Voiced/Unvoiced Decision 

For each frame, we must determine if the speech is voiced or unvoiced. We do 

this by searching for periodicities in the residual (prediction error) signal. 

In the figures below, we see the residuals for two typical frames, one voiced and one 

unvoiced. Clearly, the unvoiced frame is very noise-like, but the periodicities in the 

voiced residual are not easy to see. Therefore, we compute the autocorrelation of both 

residuals. In the unvoiced frame, the autocorrelation is near zero except for the spike at 

Rx(O), as we expect for white noise. However, the autocorrelation for the voiced frame 

clearly displays the periodicities. 
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Fig 4.17 Residuals for two typical frames.(a) unvoiced ;(b) voiced ;(c) autocorrelation 

of unvoiced ;( d) autocorrelation of voiced. 



To determine if the frame is voiced or unvoiced, we apply a threshold to the 

autocorrelation (shown below). Typically, this threshold is set at Rx(O) * 0.3. If no 
values of the autocorrelation sequence exceed this threshold, then we declare the frame 

unvoiced. If we have periodicities in the data ( as in the second figure), then we should 

see spikes which do exceed the threshold; in this case we declare the frame voiced. 

Notice that the distance between spikes in the autocorrelation function is equivalent to 
the pitch period of the original signal. 
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The figures below demonstrate the voiced and unvoiced decisions for the phrase 

look for sounded unsounded. Notice the large unvoiced regions which correspond to l 

ands. Also note the pitched regions which correspond to the vowels. 
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Fig 4.20 My Speech signal and Voiced- Unvoiced decision with pitchperiod. 



4.6.5 Quantization 

Quantization was simulated through scaling and rounding. For example, four 

bit quantization was simulated by scaling the output between -8 and 8, rounding, and 

scaling back. Note that this is not strictly 4 bit quantization (17 possible values, not 16), 

but is still very close. 
Each AR reflection coefficient was quantized to four bits. The pitch period and 

gain (volume) were scaled to six and seven bits respectively. Unvoiced speech was 

coded by a pitch period of zero. 
This leads to 53 bits/frame for voiced speech, and 29 bits/frame for unvoiced, 

with respective compression ratios of 27x and 49x, or bit rates of 2.4 kbits/s and 1.3 

kbits/s. For our actual speech samples, with both voiced and unvoiced components, 

compression was between 35x and 42x. 
Although 4 bits for the model parameters may be seem to be a bit coarse, it 

should be noted that the quantization had very little effect on the quality of the speech 

that was synthesized by the decoder. 
Many LPC systems operate in such a way as to require constant bit rates. These 

systems use extra space in the unvoiced frame models for error detection and correction. 

Note that 2.4 kbits/s is the standard for LPClO coding, the US standard in this area. 

4.6.6 Decoding and Frame Interpolation 

Now that we have a voiced/unvoiced decision for each frame, along with the 

appropriate pitch periods, we must send this information to the decoder and reconstruct 

the residual signals. Below are the reconstructed residuals (for a voiced frame - 

unvoiced is simply white noise) using pulses, doublets, and the government test signal. 

The pulses and the government test signal both yield equivalent sounding results, 

but the government test signal more closely recreates the original signal visually (no 

impact on sound quality). The last figure is the actual residual we are trying to recreate. 

As you can see, we capture some of the information, but this inadequate reconstruction 

leads to a mechanical sounding result. 
Remember that our frames are overlapping. We therefore cannot just concentrate 

our results for each frame. Instead we interpolate the time series output by windowing 

each frame with an interpolation window (we used a trapezoidal window, pictured in 



the Figure below) and putting the frames in their appropriate positions (adding the 

overlap between frames). It is desirable that the interpolation windows add to 1. 
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Fig 4.21 Representation of interpolation window. 
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Fig 4.22 Typical excitation signal. (8] 



4. 7 LPC Performance 

In this thesis, we quantized each of the 10 AR parameters (reflection coefficients) 

with 4 bits. Thus, the voiced/unvoiced and pitch period information was encoded with 4 

bits and 6 bits. Also, we used 7 bits to encode the gain for each frame. Then we 

reconstruct the speech signal using lpc techniques. So the performance of our lpc 

implementation is shown in below. 

Table 4 .1 LPC performance 

SJ!eech samJ!les Original bits Our coded bits ComJ!ression ratio Bit rate 

My speech 239040 6622 36.0979 1.773 kb/s 

Female 1 162720 4845 33.5851 1.905 kb/s 

Female 2 146880 4166 35.2568 1.815 kb/s 

Female 3 154080 4719 32.6510 1.960 kb/s 

Malel 2l8880 5904 37.0732 1.726 kb/s 

Male2 177120 4607 38,4458 1.665 kb/s 

Male3 210240 4986 42.1661 1.517 kb/s 

As a result typical LPC techniques that we implement, result in rates of about 

2. 0 kbits/s, a considerable improvement over the uncompressed rate of 64 kbit/s. 
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4.8 Summary 

Linear predictive coding with Autogressive Modelling and its implementation 

are discussed in this chapter. Other practical aspects is considered and shown also. 

We code the speech signal with such consideration and then we reconstruct it 

using LPC techniques. The reconstructed speech is very mechanical. This is due to the 

poorly reconstructed error residuals, which are used to drive the output models for each 

frame. However, even when each frame is driven with white noise (totally ignoring the 

pitch periods and voiced/unvoiced decisions), the speech is still understandable. This 

demonstrates that the AR model did a good job of removing the structure from the 

original signal. Therefore, we suspected that we could improve the quality by doing a 

better job of encoding the error residuals. This is what is done in the Residual Excited 

Linear Predictor (RELP). 
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5. CONCLUSION 

5.1 Overview 

This thesis has focused on different aspects of autoregressive modelling of 

speech, for the application in LPC. The LPC system yielded varying qualitative results, 

yet it had desirable characteristics. The LPC system resulted in very intelligible speech 

at very low bit rates, yet the voices had a very mechanical sound to them, a typical 

artifact of this type of coder. Overall bit-rates for the LPC were around .2 bits/sample, a 

compression ratio of roughly 27:1. 
The LPC coder would not be very useful in trying to get high quality speech. It 

was determined that there is a signal degradation using LPC regardless of the number of 

bits used to quantize the signal before putting it on the channel. LPC is the system of 

choice when bit-rate is an important issue. 

5.2 Summary of Contribution 

Digital communication systems become increasingly important. To reduce costs 

and bandwidth, data compression is necessary. An important signal is speech and an 

enormous effort is put into the development of efficient coding algorithms, because of 

the commercial applications. 
Linear Prediction has been applied very successfully in speech coding and many 

coders are based on this technique. These coders use an autoregressive model to 

describe the speech signal. The reconstructed speech is synthesised by feeding a suitable 

excitation through the autoregressive synthesis filter. Coders differ mainly in the way 

the excitation is selected and coded. Perhaps the main reason for the success of Linear 

Prediction is that the autoregressive model combines good prediction capabilities in the 

time domain with an accurate description of the speech spectral envelope. These 

properties can be used for efficient coding of the model and its excitations and for 

techniques such as interpolation, error weighting and postfiltering. This thesis focused 
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on application of autoregressive models for speech coding, such as estimation, 

interpolation and quantisation. 
The Autocorrelation method of Linear Prediction is treated. This estimation 

method is frequently used in speech coding. It is known that it does not perform 

satisfactorily without a tapering data window Many Linear Prediction based coders 

process the speech on a frame by frame basis. It is important for the subjective quality 

that the model changes sufficiently smoothly from one frame to another. Therefore, 

interpolation of the autoregressive spectral models of consecutive frames is used. 

Different transformations of the parameters of the autoregressive model, called 

representations, can be used for interpolation. Then the autoregresive model is 

quantized and send to a channel. 

5.3 Future Work 

Future work in this realm could include a more complex encoding scheme than 

the ones implemented in this project. It could be worthwhile to take the residual in the 

RELP scheme and code it using a wavelet encoder in order to reduce the overall bit­ 

rate.Another scheme known as CELP, code excited linear prediction, is a very useful 

compromise between the LPC and RELP schemes. CELP is similar to the LPC system 

except that it has a look-up table of driving signals. 
This allows much less information to be sent than in the RELP system, yet due 

to the many driving signals in the table, the reconstruction is comparable to the RELP. 

The additional driving signals allow a better approximation of the true residual than 

LPC which only uses white noise or an impulse train to model the residual. The CELP 

system is one that is commonly implemented in many digital cellular phones. Finally, it 

could be useful to explore non-linear models instead of the AR model implemented in 

the LPC schemes. 
Non-linear models have the potential to improve system performance, since they 

can match a broader class of signals. 
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APPENDIX A: VOCAL TRACT 

Figure : Sagittal, or longitudinal, section of the human vocal apparatus, reprinted from 
Sundberg(1977). 
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Figure is a sketch taken from sundenberg(1977), which shows the airways that are 
involved in sound production during speech, except the lungs which are connected via 
the trachea: the larynx, the pharynx, and the oral and nasal cavities, which together 
constitute the vocal tract. The shape of these passage ways is modified by the tongue, 
the lips, the jaw and the velum,which hangs down from the soft palate. The epiglottis 
covers the larynx during swallowing to prevent any unwanted food stuffs from entering 
the trachea, but is normally held open during speech and lies close to the back of the 
tongue. These parts of anatomy are often referred to as the articulators since the 
adjustment of the geometry along the vocal tract allows for the full range of sounds that 
make up our phonetic repertory to be produced. 
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APPENDIX B: CALCULATION AND ESTIMATION 

B.1 PARAMETER ESTIMATION 
Given N samples of speech, we would like to compute estimates to a; that result 

in the best fit. One reasonable way to define "best fit" is in terms of mean squared error. 

These can also be regarded as '' most probable" parameters if it is assumed the 

distribution of errors is Gaussian and a priori there were no restrictions on the values of 

a.. The error at any time, en, is: 

e,, = s,, - s,, 

p 

= s,, - Ia;s,,_; 
i=I 

Hence the summed squared error, E, over a finite window of length N is: 

The minimum of E occurs when the derivative is zero with respect to each of the 

parameters, ak. As can be seen from equation the value of Eis quadratic in each of the 

ak therefore there is a single solution. Very large positive or negative values of akmust 

lead to poor prediction and hence the solution to aE / aa k = 0 must be a minimum. 

E 

\I J 
,, / .._.,, 

Zit 

Figure Bl: Schematic showing single minimum of a quadratic. 
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N-l N-1 p 

=== -2Is»sn-j +2IIaksn_ksn-j 
n=O n=O k=l 

Hence differentiating equation with respect to a.i and setting equal to zero gives 

the set of p equations: 

rearranging equation gives: 

Now we can write equation as: 

or in matrix form: 

<l\o 1 <I\, <I>,,' <I>,., .... <I>,., a1 

(l) 2,0 - (l) 2,1 (l) 2,2 (l) 2,3 · · · .<D 2,p a2 

(l) 3,0 - (l) 3,1 (l) 3,2 (l) 3,3 · · · .<l> 3,p a3 

······························· 
(l) p,O) l <l> p,1 <l> p,2 <l> p,3 .... <l> P,P A a P 

or simply: 

Hence the Covariance method solution is obtained by matrix inverse: 



Note that <I> is symmetric, i.e. <I>; k = <I> k.i , and that this symmetry can be 
' ' 

expoited in inverting <I> 

B.2 THE AUTOCORRELATION METHOD 

When dealing with windowed speech we need to take into account the boundary 

effects in order to avoid large prediction errors at the edges. Can refine the area over 

which we perform least squares minimisation in equation above and make use of the 

fact that samples are zero outside of the window to rewrite <I> i,J as: 

N-1-(i-J) 

<t>i,J = Is,,sn+(i-.J) 
n=O 

Now <I>; . is only dependent on the difference, i-j, and may be written in terms of 
,) 

the autocorrelation function, <I> ;,J = ri,J : 

N-1-k 

r. = Is,/,,+k 
n=O 

Now <I> is Toeplitz: 

r1 ror1r2······rp-1 al 

r2 r1r0r1 ...... rP_2 a2 

r. = r2r1r0 ...... rP_3 G3 

...... , ... ·········· 
rP) ~ rP_1rP_2 ... r0 Jl aP 

Efficient methods exist to invert such matrices, one of which is Durbin's 

algorithm. Denoting the values of the LP parameters at iteration i byai') and the residual 

b · E(·) E(o) - c. . = 1 2 energy y 1 , - r0 1or 1 , , ... 

k = (r. - ~ aHr .JI E(i-1) 
l I L.J } 1-J 

j=! 

Rl 



For example, for the signal let be: 

ro = 2.4470 * 108 

r1 = 2.2466 * 108 

r2 = 1. 7823 * 108 

Therefore on the first iteration: 

a}1l = k1 = 0.9181 

E(1l =(1-k?)E(o) =(1-0.9181*0.9181)2.4470*108 =0.38441*108 

And on the second iteration: 

k2 = ~2 - a}tlrJ/ E(I) = (1.7823 * 108 -0.9181 * 2.2466 * 108 )/o.38442 * 108 = -0.72915 

a~2) = k2 = -0.72915 

The parameters k, are known as the reflection parameters. 



APPENDIX C: MATLAB PROGRAM 

C.1 Linear Predictive Encoding and Decoding 

% elpc. m - linear predictive encoding 
%[Data I ]=wavread('sfl _ cln.wav') ; 
% [Data]=decimate(Datal,2); 
[Data J=wavread('buraka. wav') ; 

%specgram(Data, 512, 8000); 
%colorbar 
% Initial value%%%%%%%%%%%%%%%%%%%% 
global flt_ speech; 
burak_speech = Data-mean(Data); % speech signal 
S=length(Data); 
N=240; % length of frame window 
overlap = 60; % amount of overlap between adjacent windows 
frame = N-overlap; % frame rate 
[B,A] = butter(10,pi*9/40); % lowpass filter used in v/uv decision 
% to sure that data length evenly divides frame length 
rm = rem(length(burak _ speech)-overlap,frame ); 
burak_speech = burak_speech(l :length(burak_speecb)-rm); % Cut-off end 
number_of_blocks = (length(burak_speech)-overlap)/frame; % number ofblocks in speech 
vuv = zeros(l,number_of_blocks); % voiced/unvoiced for each block 
pperiod = zeros(l,number_of_blocks); % pitch period for each block 
encoder = zeros( number_ of_ blocks, 12); % model the coefficient matrix 
% Voiced/unvoiced decisions ( each block)%%%%%%%%%%%%%%%%%%%%%%% 
fork= 1 :number_of_blocks, 
indices =r (k-l)*frame; 
blkind = (indices+ 1 ):(indices+N); % block indices 
origblk = burak_speech(blkind); % block from original data 
(vuv(k) pperiod(k),error,fthrd] = vunvl(origblk,B,A); %the v/unv decision and the pitch P 

end; 

% AUTOGRESSIVE(AR) modeling and encoding 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

flt_speech = filter([l -0.9375], l,burak_speech); % premphasis filtering 

fork= 2:(number_of_blocks-1), % model the inner blocks 
if(vuv(k-1) == vuv(k+l)), % if adjacent blocks are similar, ensure that the 
vuv(k) = vuv(k-1); % current block is of similar type (voiced or unvoiced) 
ift vuv(k)==l) 
pperiod(k) = floonjpperiodfk- l )+pperiod(k+ 1 ))/2); % Changeto voiced - pperiod=average else 
pperiod(k) = O; % Changeto unvoiced - pperiod=O 

end 
end 

fltrblk = make_block((k-l)*frame+ 1,N); % block from filtered data 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if(vuv(k) = 1) 
[model,refl] = ar(fltrblk, 1 O,'burg'); % Apply an AR IO for voiced 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Refl_coef= hut(:,1); % The PARCORcoeffcients 
%Aparm = [I a(IO,:)]; % The A-par of Prediction Error Filter A(z); 
%error _f.= ef'; 
%error_ b=eb; 
%Gain=MSEP(10); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% LAR=loglO((l-refl)./(l+refl)); 

refl _ coeffs = refl( 1,2: 11 ); % Quasi-4 bit quantization 
reflcoeffs = round(refl_coeffs*8)/8; 
energy = model(!, 1 ); 

if(energy > le-5) 
energy= le-5; 

end 
energy=quant( energy, 1 e- 7}; % 100 values=> 7 bits 
qperiod = 2*round(pperiod(k)/2); % 40 vals (100-20)/2 => 6 bits 
encoder(k, :) = [ energy qperiod refl _ coeffs l; 
encoderburak(k,) = [refl coeffs]; 

else 
[model,refl] = ar(fltrblk,4,'burg'); % Apply an AR 4 for unvoiced 

% [h,a,ef,eb,MSEP]=rnyburg(fltrblk,4); 

refl _:coeffs = refl( 1,2 5); 
refl coeffs = round(refl_coeffs*8)/8; % Quasi-4 bit quantization 
energy= model(l, 1); 

if(energy > le-5) 
energy= l e-S; 

end 
energy=quant( energy, 1 e- 7); % I 00 values=> 7bits 
qperiod = 2*round(pperiod(k)/2); % 40 vals (100-20)/2 => 6 bits 
encoder(k,:) = [ energy qperiod refl _ coeffs zeros(l, 6)]; 
encoderburak(k,:) = [refl coeffs zeros(l,6)]; 

end; 
end; 

function chunk=make _ blk(m,N) 

global flt speech; 

% chunk=blk(rn). This function first obtains a block oflength N=240 
% starting from index m, Hamming windows this block and returns it. 

chunk= flt_speech(m:(m-l)+N); 
chunk= chunk.* hamming(length(chunk)); 

R4 



K=0.6; % clipping factor 

if (length(chunk) -= N) 
disp('Error'); 

end; 

function [vu,pperiod,error,fthrd] = vunv(x,B,A) 
% This function determines whether x is voiced or unvoiced. It also 
% determines the pitch period 

[ model,refl] = ar(x, 1 O,'burg'); % obtain an AR model for voiced block 
%[h,a,ef,eb,MSEP]=myburg(x, 1 O); 

[num,den] = th2ttTmodel); 
error= filter([! den],num,x); 
errorl = filter([! den],num,x); 

error= error * hamming(length( error)); % windowing error data 

fltx = filter(B,A,error); % filtering data 

fthrd = 1 :round(length(fltx)/3); 
fmaxl = max(abs(fltx(fthrd))); 

% first third indices 

sthrd = (length(fltx)-length(fthrd)):length(fltx); %last third indices 
fmax2 = max(abs(fltx(sthrd))); 

C = K*min([fmaxl fmax2]); % clipping value 

fltx = (fltx - C*sign(fltx)). *(fltx > C I fltx < -C); % clipping 

cor = xcorrtfltx); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% 
% Draw the ACF of both BlkData and error_f; 
% Rxx=xcorr(BlkData); 
% Rxx=xcorr(Data); 
% Ree=xcorr(error); 
% figure('Name','The Autocorrelation ofBlkData and error_f); 
% subplot(2, 1, 1 );plot( cor); 
% title('The ACF of BlkData'); 
% subplot(2, 1,2);plot(Ree); 
% title('The ACF of error f'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
[amax,indices] = max(cor); % maximum correlation value at center 

rcor = cor(indices+20:indices+ 100); %indices 20-100 of right half original correlation 

start= find(rcor < 0.3*amax); 
start = start(l ); 

[ cmax.indices] = max( rcor( start:length( rcor)) ); 

if(cmax > 0.3*amax) 
pperiod =indices+ 20 + start - 1; 
vu= I; 

else 



insig = sqrt( encoder(k, 1 ))*insig; 
den= rc2poly(encoder(k,3:12)); 
outsig = int : win. *filter(l,den,insig); 

% assign excitation energy 
% turn reflect coeffs into AR 

pperiod = O; 
vu= O· 

end· ' 
' 

%%%%%%%%%%%%%%%%%%%%%Cepstrum%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%if (length(x)<3) 
% pperiod=O; 
%else 

%xffi=abs(ffi(x)); 
%1ogffi=log( xffi ); 
%ceps=ifft(logffi ); 
%[ cmax,indicesburak]=max( ceps ); 
%pperiod=indicesburak; 
%end; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
% decode lpc encoding 
% 
% Input - encodem (# offrames)xl2 matrix of AR parameters 
% 

% Glottal Excitation sequence to mimic actual voice excitations 
glttl = [ 249 -262 363 -362 100 367 79 78 10 -277 82 376 288 -65 -20 138 -62-315 -247 -78 -82 -123 -39 
65 64 19 16 32 18 -15 -29 -21 -18 -27 -31 -22 -12-10 -10-4]; 

N=240; 
overlap = 60; 
frame= N-overlap; 

% length of window 
% amount of overlap between adjacent windows 

% frame length 

numblks = length(encoder); 
outsig = []; 
final signal = zeros( 1,numblks*frame+overlap ); 

. int , win= [(l :overlap )/overlap ones(l,N-2*overlap) (overlap:-1: 1)/overlap ]; 

fork= 2:(numblks-1), 
if(encoder(k,2)-= 0) % check if frame was voiced 
insig = zeros(l,N+length(glttl)); 
pp= encoder(k,2); % pitch period of frame 
for I = 1 :floor(N/pp) 
st= (1-1 )*pp; 
insig( ( st+ 1): ( st+length(glttl)) )=glttl; % periodic glottal train 

end 
insig = insig(l :N); 
insig = insig/std(insig); 
else 
insig = randn(l ,N); 

end; 

% normalize variance 
% Unvoiced excitation 

% form random noise input signal 



st= (k-l)*frame; 

% Add data from each overlapping frame into final signal 
finalsignal((st+ l):(st+N)) = finalsignal((st+ l):(st+N)) + outsig; 

end; 

final signal= filter(l,[l -0.9375],finalsignal); % de-emphasis filtering of speech 
wavwrite(finalsig,'burakb.wav'); 

o/orate.m 
% compression rate for our lpc encoder 

frame_number = length(encoder)-2; % Omit first and last frames 
% since we don't encode them 

% Original bits = bits per sample * # of frame * sample per frame 
original_ bits = 8 *frame_ number* 180 

our_bits = (6+7)*frame_number+ 10*4*sum(encoder(:,2)>0)+4*4*sum(encoder(:,2)=0) 

bits_ sec= 64000/ compression _ratio 

compression _ratio = original_ bits/ our_ bits 



C.2 Levinson and Burg Function 

function [k,a, er _f,er _ b,MSE]=myburg( s,P) 

% the P-order LPC coefcients 
% Lattice-burg algorithm; 
% Burak Alacam 

N=length(s); 
a=zeros(P ,P) 
k=zerosfl', l ); 

MSE=zeros(P+ 1, 1 ); 

MSE(l )=s'*s/N; 

complexity= 1; % computing complexity; 

ef-=zeros(P+ l ,N); eb=zeros(P+ l ,N); 

% (l).lnitialize the ef(l,:)=eb(l,:)=s(l:N); 
ef(l, 1 :N)=s(l :N)'; 
eb(l, 1 :N)=s(l :N)'; 

% k(l)= 
nef=sum(ef(l ,2:N). *ef(l,2:N));neb=sum( eb(l, 1 :N-1 ). *eb(l, 1 :N-1)); 
norm=nef+neb; 
k(l)=-2*sum(ef(l,2:N) *eb(l, l :N-1))/norm; o/ocomplexity=N; 
a(l,l)=k(l); 

MSE(2)=(1-k(l)*k(l))*MSE(I); 
% compute the ef(2,n)=ef(2,n)+k(l)*eb(l,n-1 )---n: 1-N; 
% eb(2,n)=eb( l .n-I )+k( 1 )*ef(l ,n); 
e±\2, l )=ef(l, 1 ); 
ef(2,2:N)=ef(l,2:N)+k(l)*eb(l, 1 :N-1); 

eb(2, l)=k(l)*ef(l, I}; 
eb(2,2 N)=eb(l, 1 :N-1 )+conj(k(l ))*ef(l ,2:N); 

% Iterate to compute the p=2:Pth orders LPC pars; 
for p=2:P 
nef=sum(ef(p,p+ 1 :N). *ef(p,p+ I N)); neb=sum( eb(p,p:N-1). *eb(p,p:N-1)); 
norm=( nef+neb )/2; 
k(p )=-sum( ef(p,p+ 1 :N). *eb(p,p:N-1))/norm; o/ocomplexity=complexity+N; 

% compute a(p,2:p) 
a(p, 1 :p-l)=a(p-1, 1 p-l)+k(p )*a(p-1,p-1 :-1: 1 ); o/ocomplexity=complexity+ 1; 

a(p,p)=k(p); 

% compute ef(p+l,n)=ef(p,n)+k(p)*eb(p,n-1); 
% eb(p+ l ,n)=eb(p,n-1 )+k(p )*ef(p,n); 
ef(p+ 1, 1 )=ef(p, 1 ); 
ef(p+ 1,2 N)=ef(p,2:N)+k(p)*eb(p, 1 :N-1); 

eb(p+ 1, l)=-k(p)*ef(p, 1 ); 
eb(p+ 1,2:N)=eb(p, 1 :N-1 )+k(p )*ef(p,2:N); 
MSE(p+ 1)=(1-k(p )*k(p))*MSE(p ); 



er _f=ef(P+ l ;.)~ 
er_b=eb(P+l, ); 

end 

function [A, MSEP, K] = myLevinson(x,P) 

N=length(x); 

R=xcorr(x); 
R=R(N:2*N-l); % shift it to make it R(O)-R(N-1); 

% To compute the p-order prediction, we only need R(O)-R(p); 

Apar=zeros(P,P); % To store the A parameters in each recursion; 
MSEp=zeros(P); % To store the MSE(Rou(f,p )) in each recursion; 
Kpar=zeros(P); % To store the P ARCOR coef in each recursion; 

%compute the initializations 
Apar(l, l )=-R(2)/R(l ); 
MSE(l )=R(l )-R(2)"2/R( 1 ); 
Kpar(l)=Apar(l,l); 
%loop to compute the parameters in 2--> P orders; 
for p=l:P-1 
Deltap=R(p+2); 
form=l:p 
Deltap=Deltap+Apar(p,m)*R(p+2-m); 

end 
Kpar(p+ 1 )=-Deltap/MSE(p ); 
for m=l:p 
Apar(p+ l,m)=Apar(p,m)+Kpar(p+ l)* Apar(p,p+ 1-m); 

end 
Apar(p+ l ,p+ 1 )=Kpar(p+ 1 ); 
MSE(p+ 1 )=MSE(p )*(1-Kpar(p+ 1 )"2); 

end 

A= Apar; % A P*P matrix; 
MSEP=MSE; % 1 *P vector; 
K=Kpar; % l *P vector; 

return; 



C.3 LPC ANALYSIS 

% LPC ANAL YSiS 

function [Refl _ coef,Aparm,error _f,error _ b, Gain ]=LPCanalysis 

[Data]=wavread('rain8k.wav'); 
Start=l; 
WL=lOOO; 
WindowType=[ 

'I.hamming'; 
'2.hanning '; 
'3 .bartlett'; 
'4.triang '; 
'5.blackman'; 
'6:Rectrang' 

]; 

disp('Type of Window:'); 
disp(WindowType ); 

WT=[]; 
in=[]; 
while( -strcmpun,' l ')&-strcmp(in,'2')&-strcmp(in,'3')&-strcmp(in,'4')&-strcmp(in,'5')&-strcmp(in,'6')) 
in=input('please input the type of Window:','s'); 
switch in 
case 'l' 
WT='hamming'; 

case '2' 
WT='hanning'; 

case'3' 
WT='bartlett'; 

case '4' 
WT='triang'; 

case '5' 
WT='blackman'; 

case '6' 
WT='Rectrang'; 

end 
end 
BlkData=Data(Start:Start+WL-1); 
if strcmp(WT, 'Rectrang') 
BlkDatac;=BJkData; 
w=ones(WL, 1 ); 

else 
winfun=strcat(WT, '('); 
winfun=strcat( winfun, 'WL'); 
winfun=strcau winfun, ')'); 
w=eval(winfun); % Get the window data; 
BlkData=BlkData. *w; % This is for pure Analysis Case. 

end 

BlkData=Data; 

FS=8000; 

%w = hamming(length(Data)); % windowing error data 

()0 



N=length(Data ); 

POrder=l O; 

FFTpoint = 1024; 

% [A, MSEP, K] = myLevinson(BlkData,POrder); 
% Refl_coef= K(:,l) 
% Aparm=(l A(POrder,:)] 
%error _f = filter(Aparm, l ,BlkData) 
% error_ b=[] % for Levinson algorithm, no backward_ error; 
% Gain=MSEP(POrder); 

[k,a, e±:eb,MSEP]=myburg(BlkData,POrder); 
Refl _ coef = k( :, 1 ); % The P ARCOR coeffcients 
Aparm = [l a(POrder,:)]; % The A-par of Prediction Error Filter A(z); 
error f= ef'; 
error_b=eb; 
Gain=MSEP(POrder); 

% plot the Coeff ecients; 

% In LPC analysis, we will plot the following graphs: 
% Fig 1. 
figure('Name','The signals in Time Domain!'); 

subplot( 4, 1, 1 );plot((l :N)/FS,Data);hold on; 
title('The original Signal and windowed signal!'); 
xlblstr=strcat('Time in Sec, FS=',num2str(FS)); 
xlblstr=strcat(xlblstr,' Data Length='); 
xlb lstr=strcat( xlblstr,num2str(N)); 
xlblstr=strcat( xlblstr,' WO=');xlb lstr=strcat( xlblstr,num2str(Start) ); 
xlblstr=strcat(xlblstr,' WL=');xlblstr=strcat(xlblstr,num2str(WL)); 
xlabel(xlblstr);ylabel('Value of signal'); 
W dtmp=zeros(N, 1 ); 
Wdtmp(Start:Start+WL-l)=w(l:WL)*max(BlkData); 
% plot the Window ; 
plot(( 1 :N)/FS,W dtmp,'g-. ');hold on; 
W dtmp(Start: Start+WL-1 )=BlkData(l: WL ); % plot the windowed data 
plot((lN)/FS,Wdtmp,'r--');hold on; 

% plot the zoomed out data; 
subplot( 4, l,2);plot((l :WL )/FS+(Start)/FS,Data(Start:Start+WL-1 ));hold on; 
% title('The zoom out windowed data!'); 
Wdtmp=zeros(WL, l); 
Wdtmp(l :WL)=w(l WL)*max(BlkData); % plot the Window; 
plot((Start+(l :WL))/FS,Wdtmp,'g-.');hold on; 
W dtmp=BlkData; % plot the windowed data 
plot( (Start+( 1: WL) )/FS,BlkData, 'r--');hold on; 

subplot(4, l,3);plot( error_ f); 
% title('The forward prediction error'); 

RecData=filter( l ,Aparm, error_ f); 
subplot( 4, l,4);plot(RecData); 
% title('The reconstructed data with error_f as excitation!'); 

() 1 



PSDData=20* log 10( abs(fft(Data)) ); 
subplot(3, 1, 1 );plot(PSDData(1 :N/2)); 
title('The long-term PSD of data'); 

% For the whole data 

figure('Name','The Spectra of these signals'); 

PSDerrf=20*log 1 O(abs(fft( error _f,FFTpoint))); 
subplot(3, l,2);plot(PSDerrf(l :FFTpoint/2)); 
title('The PSD of error _f'); 

AF=abs(fft(Aparm,FFTpoint))./\2; 
%AModelPSDdb= 1 O*log 1 O(AF); 
InvModPSD=Gain./ AF; 
InvModelPSDdb=lO*loglO(InvModPSD); 
PSDWData=abs( fft(B lkData,FFTpoint)). /\2; 
PSDWDatadb=lO*loglO(PSDWData); 
subplotfS, l,3);plot(PSDWDatadb(l :FFTpoint/2));hold on; 
%subplot(3, 1,3 );plot( Aparm, 'r--'); 
%subplot(3, l,3);plot(AModelPSDdb(l :FFTpoint/2),'r--'); 
subplot(3, 1,3 );plot(InvModelPSDdb(l: FFTpoint/2), 'r-. '); 
figure('Name','Put together'); 

plot(PSDWDatadb( 1 :FFTpoint/2));hold on; 
plot(InvModelPSDdb(l :FFTpoint/2),'r-');hold on; 
plot(PSDerrf(l :FFTpoint/2),'g-.');hold on; 

grid on;legend('DataPSD','Model PSD','errorPSD'); 

figure('Name','Analysis of The linear prediction parameters'); 
subplot( 4, 1, 1 );plot(Refl _ coef); 
LAR=logl 0((1-Refl_ coet)./(1 +Refl _coet)); 
subplot( 4, l,2);plot(LAR); 
title('LAR '); 
subplot( 4, l,3);plot(MSEP); 
[Ha, Wa ]=freqz( l.Aparm ); 
subplot(4, 1,4);z=roots(Aparm);zplane(l,z); % plot the poles 

Hord=figure('Name','The order selection of the Linear predictor'); 
for p= 1 :POrder 
AIC(p)= WL*log(MSEP(p))+2*p; 

MDL(p)=WL*log(MSEP(p))+p*log(WL); 
end 

plot(AIC);hold on; 
plot(MDL,'-.');hold on; 
legend('AIC value', 'MDL value'); 
grid on; 

% Draw the ACF of both BlkData and error_f; 
Rxx=xcorr(BlkData ); 
Ree=xcorr( error _t); 
figure('Name','The Autocorrelation ofBlk:Data and error f'); 
subplot(2, 1, l);p1ot(Rxx); 
title('The ACF ofBlk:Data'); 
subplot(2, l ,2);plot(Ree ); 
title('The ACF of error _f'); 

Q? 
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