
NEAR EAST UNIVERSITY

INSTITUTE OF APPLIED
AND SOCIAL SCIENCES

IDENTIFICATION OF FUZZY SYSTEMS

HUSSAM ELDIN HAMRAWI

Master Thesis

Department of Computer Engineering

Nicosia ... 2003

IID!.!•J!~II ,
NEU

•1.J!!_•U.IU!I.J .. UIJL!lJ 1111 .. 1 •-11 L•_1..1.__L•_•1J1

Hussam Eldin Hamrawi :

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakhraddin Mamedov
Director

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

Assist. Prof. Dr. Kadri Buruncuk, Committee Chairman, Electrical
~ and Electronic Engineering

Department, NEU

Assist. Prof. Dr. Firudin Muradov, Committee Member, Computer p ~ Engineering Department, NEU

Assist. Prof. Dr. Ali Denker, Committee Member, Computer
Engineering Department, NEU

ryev, Supervisor, Computer Engineering
__, Department, NEU

ACKNOWLEDGEMENTS

"First, thank Allah far what ever he gives.

Second/ wottld Ii/re to thanlc my sttpervisor Assoc. Pref. .lJ1~ .Rahib Ab{ve1;far his

valttable advice, encottragement and endless support

J7zird, / would Ii/re to aclcnowledge SJJecial thanlc to the Near .East Universit_y /01-

C?ffering me a sttitable environment during my stz1ay.

/ would lilce to dedicate my research to nzy fami!JJ who are always motivating me with

all theti- love.

gratefitl!JJ acknowledge the role o/. my ./fiends those who sat behiJtd me dunng the hard

times.

.Ftnal!y, Special thaJt!r to the Jttry members who C!lfering me this great

opportuni(Y to present !J'l)l thesis ,,

ABSTRACT

ctice many approaches have been used to model industrial processes from

' er of numerical input and output data. Obtaining mathematical models of the

N«i!i_ allow us to investigate the process and develop efficient control. For this reason

;+ ification (i.e. obtaining a mathematical model) of these processes is one of

NNLillt problems in engineering science.

or technological processes are characterized by uncertainty of environment,

twz:zmess of information. In order to identify these processes the use of fuzzy techniques

tification becomes important.

is devoted to the fuzzy identification of technological processes using fuzzy

-=modologies. To solve this problem, the state of application problems of fuzzy

ology for identification of technological processes is given. The deterministic

mui:fication algorithms, such as batch and recursive least squares algorithms are

ibed. The use of fuzzy version of these algorithms is presented. Also the

icarions of optimal output predefuzzification clustering and nearest neighborhood

, kf Ro ing algorithms for system identification are described .

. ·· the use of optimal output predefuzzification-clustering algorithm for

ckrn11Jcation of static and dynamic systems is described. The simulation of fuzzy

• mfication of static and dynamic systems is realized using Matlab Package.

11

TABLE OF CONTENTS

ACKN'OWLEDGEMENT .i

ABSTRACT .ii

TABLE OF CONTENTS .iii

IN"TRODUCTION 1

CHAPTER ONE

STATE OF APPLICATION PROBLEMS OF FUZZY TECHNOLOGY FOR

IDENTIFICATION OF TECHNOLOGICAL PROCESSES 3

I.I Overview 3

1.2 Systems Identification and Modeling 3

1.3 Identification of Technological Processes using Fuzzy Technology 5

1.4 Summary , 9

CHAPTER TWO

SYSTEM IDENTIFICATION USING LMS METHODS 10

2.1 Overview 10

2.2 Function Approximation Problem 10

2.3 System Identification 14

2.4 Batch Least Squares 15

2.4.1 Batch Least Squares Derivation '. .. .16

2.5 Recursive Least Squares 20

2.6 Summary · 23

CHAPTER THREE

FUZZV IDENTIFICATION USING LMS METHODS 24

3 .1 Overview 24

3.2 Fuzzy Systems 24

3.3 Tuning Fuzzy Systems 25

3 .3 .1 Standard Fuzzy Systems ·: 25

3.3.2 Takagi-Sugeno Fuzzy Systems , 27

3.4 Batch Least Squares Training of Fuzzy Systems 29

3 .5 Recursive Least Squares Training of Fuzzy Systems.. 31

3.6 Summary 33

111

CHAPTER FOUR

FUZZY IDENTIFICATION USING CLUSTERING METHODS 34

4.1 Overview 34

4.2 Clustering with Optimal Output Predefuzzification 34

4.2.1 Clustering for Specifying Rule Premises .34

4.2.2 Least Squares for Specifying Rule Consequents .40

4.2.2.1 Approach l .40

4.2.2.2 Approach 2 : .41

4.2.3 Testing the Approximator. .42

4.3 Nearest Neighborhood Clustering .43

4.4 Summary 46

CHAPTER FIVE

FUZZY IDENTIFICATION OF STATIC AND DYNAMIC SYSTEMS .47

5.1 Overview 47

5.2 Algorithm Formation 47

5.3 Matlab Implementation of Fuzzy Identification .47

5.4 Identification of Course Performance System .49

5.5 Identification of Dynamic Systems 52

5.6 Summary 56

CONCLUSION 58

REFERENCES 60

APPENDIX A , .I

APPENDIX B IV

APPENDIX C VI

APPENDIX D X

IV

INTRODUCTION

'The closer one loo/cs at a "real" world problem, the fi1zzier becomes its

solution. Stated 1°J!fannal(y, the essence ef this principle is that, as the complexi(JJ ef a
system increases, our abili(Y to make precise and yet sign!ficant statements about its

behavior diminishes untt! a threshold beyond which precision and s1gn!ficance

(relevance) become almost mutual(y exclusive characteristics. '(Z. Zadeh)

This throws light on the place of fuzziness in the models we wish to construct.

Fuzzy identification and modeling methodologies have been successfully used in a

number of real-world applications. The Takagi-Sugeno model has often been employed

in the modeling and identification of nonlinear technical processes from data. Examples

are the modeling of a multilayer incinerator [17], a converter in a steel-making process,

or a glass-melting furnace [18]. Biotechnology and ecology are typical examples of

areas where conventional modeling techniques do not give satisfactory results. Fuzzy

modeling has been used in a number of applications, such as Penicillin-G conversion

[19] , prediction of river water flow [20], enzymatic soil removal in washing processes

[21], or modeling of algae growth in lakes [20].

Fuzzy identified models can be used in the design of automatic controllers, for instance

in train operation, combustion control, or pressure control [3]. Fuzzy models can also

serve as decision support systems to assist operators [22], or can be used to clone the

operators based on traces of their behavior.

Fuzzy modeling is a framework in which different modeling and identification methods

are combined, providing, on the one hand, a transparent interface with the designer or

the operator and, on the other hand, a flexible tool for nonlinear system modeling and

control, comparable with other nonlinear black-box techniques. The rule-based

character of fuzzy models allows for a model interpretation in a way that is similar to

the one humans use.

The aim of this thesis is to examine how to design, construct and use fuzzy systems for

identification. The basic problem to be studied here is how to construct a fuzzy system

from numerical data. If the numerical data is plant input-output data obtained from an

experiment, we may identify a fuzzy system model of the plant. This may be useful for

simulation purposes and sometimes for use in a controller. On the other hand, the data

may come from other sources, and a fuzzy system may be used to provide for a

parameterized nonlinear function that fits the data by using its basic interpolation

capabilities. For instance, suppose that we have a human expert who controls some

process and we observe how he or she does this by observing what numerical plant

input the expert picks for the given numerical data that he or she observes. Suppose

further that we have many such associations between "decision-making data." The

methods in this thesis will examine how to construct rules for a fuzzy model from this

data (i.e. identify a model from the human-generated decision making data).

Thesis consists of an introduction, five chapters, conclusion, references and appendixes.

In Chapter 1 the identification problem and state of application of fuzzy technology for

identification of different industrial processes is given.

In Chapter 2 using least mean square methods the estimation of parameters values of

mathematical models of systems is considered. The description of batch least squares

methods and recursive squares methods are given.

In Chapter 3 the description of fuzzy batch and recursive least squares methods is given

and a simple demonstration example is provided.

In Chapter 4 two techniques for training fuzzy systems based on clustering are given.

The first uses "c-means clustering" and least squares to train the premises and

consequents, respectively, of the Takagi-Sugeno fuzzy system; while the second uses a

nearest neighborhood technique to train standard fuzzy systems.

In Chapter 5 the fuzzy identification of static and dynamic systems are considered, two

applications to a course performance system and a tank water level system are analyzed.

In conclusion the important results obtained from the thesis are given.

2

CHAPTER ONE

STATE OF APPLICATION PROBLEMS OF Fuzzy

TECHNOLOGY FOR IDENTIFICATION OF TECHNOLOGICAL

PROCESSES

1.1 Overview

In practice conventional system identification of technological processes are often

developed via simple models of the plant behavior that satisfy the necessary

assumptions, and via the tuning of relatively simple linear or nonlinear processes.

Regardless, it is well understood that heuristic enter the conventional modeling design

process as long as we are concerned with the actual implementation of the system. It

must be acknowledged, moreover, that conventional system identification approaches

that use appropriate heuristics to tune the design have been relatively successful.

Fuzzy models provide a formal methodology for representing, manipulating, and

implementing a human's heuristic knowledge about how a system is responding.

In this chapter the concept of systems identification and modeling and the relevance of

these systems to application and practice are previewed, a review of other researches

and methods concerning the field of fuzzy identification is considered.

1.2 Systems Identification and Modeling

Developing mathematical models of real systems is a central topic in many disciplines

of engineering and science. Models can be used for simulations, analysis of the system's

behavior, better understanding of the underlying mechanisms in the system, design of

new processes, or design of controllers.

Traditionally, modeling is seen as a conjunction of a thorough understanding of the

system's nature and behavior, and of a suitable mathematical treatment that leads to a

usable model. This approach is usually termed "white-box" (physical, mechanistic, first-

3

principle) modeling.

However, the requirement for a good understanding of the physical background of the

problem at hand proves to be a severe limiting factor in practice, when complex and

poorly understood systems are considered. Difficulties encountered in conventional

white-box modeling can arise, for instance, from poor understanding of the underlying

phenomena, inaccurate values of various process parameters, or from the complexity of

the resulting model. A complete understanding of the underlying mechanisms is

virtually impossible for a majority of real systems. However, gathering an acceptable

degree of knowledge needed for physical modeling may be a very difficult, time­

consuming and expensive or even impossible task. Even if the structure of the model is

determined, a major problem of obtaining accurate values for the parameters remains. It

is the task of system identification to· estimate the parameters from data measured on the

system. Identification methods are currently developed to a mature level for linear

systems only. Most real processes are, however, nonlinear and can be approximated by

linear models only locally.

A different approach assumes that the process under study can be approximated by

using some sufficiently general "black-box" structure used as a general function

approximator. The modeling problem then reduces to postulating an appropriate

structure of the approximator, in order to correctly capture the dynamics and

nonlinearity of the system. In black-box modeling, the structure of the model is hardly

related to the structure of the real system. The identification problem consists of

estimating the parameters of the model. If representative process data are available,

black-box models usually can be developed quite easily, without requiring process­

specific knowledge. A severe drawback of this approach is that the structure and

parameters of these models usually do not have any physical significance. Such models

cannot be used for analyzing the system's behavior otherwise than by numerical

simulation, cannot be scaled up or down when moving from one process scale to

another, and therefore are less useful for industrial practice.

There is a range of modeling techniques that attempt to combine the advantages of the

white-box and black-box approaches, such that the known parts of the system are

modeled using physical knowledge, and the unknown or less certain parts are

4

approximated in a black-box manner, using process data and black-box modeling

structures with suitable approximation properties. These methods are often denoted as

hybrid, semi-mechanistic or "gray-box" modeling.

A common drawback of most standard modeling approaches is that they cannot make

effective use of extra information, such as the knowledge and experience of engineers

and operators, which is often imprecise and qualitative in its nature. The fact that

humans are often able to manage complex tasks under significant uncertainty has

stimulated the search for alternative modeling and control paradigms. So-called

"intelligent" modeling and control methodologies, which employ techniques motivated

by biological systems and human intelligence to develop models and controllers for

dynamic systems, have been introduced.

These techniques explore alternative representation schemes, using, for instance, natural

language, rules, semantic networks or qualitative models, and possess formal methods

to incorporate extra relevant information. Fuzzy modeling and control are typical

examples of techniques that make use of human knowledge and deductive processes.

1.3 Identification of Technological Processes using Fuzzy Technology

Conventional system theory relies on crisp mathematical models of systems, such as

algebraic and differential or difference equations. For some systems, such as electro­

mechanical systems, mathematical models can be obtained. This is because the physical

laws governing the systems are well understood. For a large number of practical

problems, however, the gathering of an acceptable degree of knowledge needed for

physical modeling is a difficult, time-consuming and expensive or even impossible task.

In the majority of systems, the underlying phenomena are understood only partially and

crisp mathematical models cannot be derived or are too complex to be useful. Examples

of such systems can be found in the chemical or food industries, biotechnology,

ecology, finance, sociology, etc. A significant portion of information about these

systems is available as the knowledge of human experts, process operators and

designers. This knowledge may be too vague and uncertain to be expressed by

mathematical functions. It is, however, often possible to describe the functioning of
5

systems by means of natural language, in the form of if-then rules. Fuzzy rule-based

systems can be used as knowledge-based models constructed by using knowledge of

experts in the given field of interest. From this point of view, fuzzy systems are similar

to expert systems studied extensively in the "symbolic" artificial intelligence.

Adequate processing of imprecise information, precise numerical computation with

conventional mathematical models only makes sense when the parameters and input

data are accurately known.

As this is often not the case, a modeling framework is needed which can adequately

process not only the given data, but also the associated uncertainty. The stochastic

approach is a traditional way of dealing with uncertainty. However, it has been

recognized that not all types of uncertainty can be dealt with within the stochastic

framework. Various alternative approaches have been proposed, fuzzy logic and set

theory being one of them.

Transparent (gray-box) modeling and identification, Identification of dynamic systems

from input-output measurements is an important topic of scientific research with a wide

range of practical applications. Many real-world systems are inherently nonlinear and

cannot be represented by linear models used in conventional system identification.

Recently, there is a strong focus on the development of methods for the identification of

nonlinear systems from measured data. Fuzzy models are one of the most popular

model structures used. From the input-output view, fuzzy systems are flexible

mathematical functions which can approximate other functions or just data

(measurements) with a desired accuracy.

There are a number of work and research done in the field of fuzzy systems

identification and here are some of them:

In [6] fuzzy relational identification builds a relational model describing system's

behavior by a nonlinear mapping between its variables. The fuzzy relational algorithm

based on simplified max-min relational equation was introduced. This algorithm

presents an adaptation method applied to gravity-center of each fuzzy set based on error

integral value between measured and predicted system's output, and uses the concept of

6

time-variant universe of discourses. The identification algorithm also includes a method

to attenuate noise influence in extracted system's relational model using a fuzzy

filtering mechanism.

In [9] a fuzzy system can be constructed to interpolate between input-output data to

provide an approximation for the function that is implicitly defined by the input-output

data pair associations. This method shows how to choose the input-output data pairs so

that accurate function approximation can be achieved with fuzzy systems. Using this

insight the technique that is called uniform training on which input sequences are

chosen to produce good training data sets is achieved. Also, the technique for function

approximation via fuzzy systems is called modified learning from examples where the

membership functions are specified and rules are added to try to achieve pre-specified

function approximation accuracy

In [16] the use of fuzzy set theory and fuzzy logic to construct an annual time-series for

the (unobservable) underground economy over a period of time was introduced. Two

input variables are used - the effective tax rate and an index of the degree of regulation.

The resulting underground economy time-series is compared with one previously

constructed by the second author using a structural "Multiple Indicators, Multiple

Causes" (MIMIC) model.

In [1 OJ two different methods of fuzzy identification of a class of nonlinear systems are

developed. This is applicable to systems with unknown and partially known

mathematical models. The class of systems considered is nonlinear in output but linear

in input. In the first method, a gray box model is considered. The nominal values of

parameters of the nonlinear system are assumed to be known. The unknown nonlinear

function is identified off-line by choosing a suitable fuzzy relational model and the

parameters of the nonlinear system are updated on-line using recursive least square

(RLS) algorithm. In the second method, a black box model is considered. The nonlinear

plant is identified on-line by choosing a suitable linear model using RLS in stage-I and

the residual nonlinear part is identified in stage-2 using fuzzy identification. The control

input is then calculated based on the identified nonlinear model using weighted one step

ahead control method.

7

In [8] the methods of pre-processing for structure identification of fuzzy models are

developed. There are two approaches the first approach uses the statistical method of

Principal Component Analysis (PCA). The second one uses a clustering technique

called autonomous mountain-clustering method. The statistical method of Principal

Component Analysis helps to select the variables that dominate the system dynamics.

Besides, this method contributes to design fuzzy models with better performance. The

second approach identifies the fuzzy model order. That is, the method identifies the

number of membership functions attributed to each variable, as well as their position

and width. So, the autonomous mountain-clustering eliminates the usual "trial-and­

error" mechanism.

In [7] a simplified incremental type of cause-effect models for additive MISO type

dynamical processes is proposed and analyzed. Dynamics of the process is expressed by

three groups of parameters: gains, memory lengths and shapes of the specially

introduced cause-effect relations membership functions. These functions represent in a

fuzzy manner the degree of relationship between the past time changes of the respective

input and the current change of the process output. The total model of the dynamical

system is identified from experimental data by different modifications of the Least

Mean Squares algorithm for each group of parameters separately. The specially

introduced indirect LSM algorithm is able to reduce significantly the size of the

problem by identifying one-dimensional fuzzy model that represents indirectly the

cause-effect relation for the dynamics.

In [14] a fuzzy modeling framework has been developed for the utilization of a priori

knowledge. The proposed modeling approach transforms the different types of

information into the structure of the model (fuzzy rule base), constraints defined on the

parameters and variables, dynamic local model or data, and steady-state data or model.

This modeling step is followed by an optimization procedure based on these

transformed information. The method describes one element of this framework that was

developed to use prior knowledge in constrained adaptation of the rule consequences of

Takagi-Sugeno fuzzy models.

In [11] the . resilient propagation (RPROP), an efficient nonlinear optimization

technique, for parameter identification is used in order to achieve a fast Takagi-Sugeno

8

modeling (FTSM) that is suited to model high-dimensional data sets containing a large

number of data.

Identification and defining accurate mathematical model of technological systems

allows us to develop efficient control for these processes which increase the quality of

output products.

1.4 Summary

Analyses of industrial processes show that for effective control of these processes it is

necessary to define accurate models of these processes. In this chapter the state of

application problem of fuzzy identification for technological processes is given.

9

CHAPTER TWO

SYSTEM IDENTIFICATION USING LMS l\.fETHODS

2.1 Overview

This chapter starts by precisely defining the function approximation problem, in which

it is needed to synthesize a function to approximate another function that is inherently

represented via a finite number of input-output associations (i.e., it is only known how

the function maps a finite number of points in its domain to its range) .

. . Then the batch and recursive least squares methods are introduced for constructing a

linear system to match some input-output data.

2.2 Function Approximation Problem

Given some function

g:X-+Y

where X c 9t n and Y c 9t n ,in order construct a system

/: x-+ y

where x c X and J/ c Y are some domain and range of interest, by choosing a

parameter vector (} c 9t" so that

g(x) = ./(x/ (}) + e(x) (2.1)

for all x= [;i;,x2, ••• ,xJr EX where the approximation error e(x) is as small as

possible.

If we want to refer to the input at time k, we will use .t(k) for the vector and x;(k) for

10

its /1, component.

Assume that all the information available to choose the parameters () of the system

/(x/B) is part of the function g in the form of a finite set of input-output data pairs

(i.e. the functional mapping implemented by g is largely unknown). The /1, input­

output data pair from the system g is denoted by (x1,y') where .x' E X,y' E Y. We let

x = [x;,~, ... ,x;;r represent the input vector for the /1, data pair. Hence, -S is the z"
element of the /1' data vector (it has a specific value and is not a variable). We call the

set of input-output data pairs the training data set and denote it by

(2.2)

where M denotes the number of input-output data pairs contained in G.

To get a graphical picture of the function approximation problem, see Figure 2.1. This

clearly shows the challenge; it can certainly be hard to come up with a good function /

to match the mapping g when we know only a little bit about the association between X

and Y in the form of data pairs G. Moreover, it may be hard to know when we have a

good approximation; that is, when / approximates g over the whole space of inputs X.

For the function approximation problem we consider a simple example. Suppose that,

11 = 2, X c 9t 2, Y = [0,1 OJ, and g: X-+ Y. Let M = 3 and the training data set

(2.3)

which partially specifies g as shown in figure 2.2. The function approximation problem

amount to finding a function /(xi B) by manipulating () so that /(xi B) approximate

g as closely as possible. We will use this simple data set in several methods we

developed in this thesis.

II

g

G

Figure 2.1 Function mapping with three

.known input-output data pairs.

How do we evaluate how closely a fuzzy system /(xi B) approximate the function

g(x) for all x e .X for a given ()? Notice that

sup~g(x)- /(xi B)I}
XEX

(2.4)

is a bound on the approximation error (if it exists).However, specification of such a

bound requires that the function g be completely known; however, as stated above, we

know only a part of g given by the finite set 0. Therefore, we are only available· to

evaluate the accuracy of approximation by evaluating the error between g(x) and

/(xi B) at certain points xe .X given by available input-output data. We call this set of

input-output data the test set and denote it as F where

r = {ex ,y), ... ,(.~r .r":)}c .Xx y (2.5)

Here Ur denotes the number of known input-output data pairs contained within the test

set. It is important to note that the input-output data pairs (.r',;/) contained in I" may

not be contained in G, or vice versa. It also might be the case that the test set is equal to

the training set (G = I") however; this choice is not always a good one. Most often we

12

will want to test the system with at least some data that were not used to construct

/(xi()) since this will often provide a more realistic assessment of the quality of the

approximation.

c, ,x

0 - - 0 1 2 3 ,4 5 6 7 0 1 ,2 :l 4 , 5 ,6 7
~ y

Figure 2.2 The training data G generated from the functiong.

We see that, the evaluation of the error in approximation between g and a system

./(xi()) based on a test set r may or may not be a true measure of the error between g

and / for every XE X, but it is the only evaluation we can make based on known

information. Hence we can use measures like

1: (g(x')- /(x' I ()))2
(x,y')er

(2.6)

or

sup ~g(x')- /(x' I ())I}
xj)er

(2.7)

to measure the approximation error. Accurate function approximation requires that

some expression of this nature be small; however, this clearly does not guarantee perfect

representation of g with J since most often we cannot test that J matches g over all

possible input points.

We would like to emphasize that the type of function that we choose to adjust (i.e.,

/(xi())) can have a significant impact on the ultimate accuracy of the approximator.

For instance, it may be that a Takagi-Sugeno-Kang (or functional) fuzzy system will

provide a better approximator than a standard fuzzy system for a particular application ..

13

We think of /(xi 0) as a structure for an approximator that is parameterized by B. In

this thesis we will study the use of fuzzy systems as approximators, and use a fuzzy

system as the structure for the approximator. The choice of the parameter vector 0

depends on, for example, how many membership functions and rules we use. Generally,

we want enough membership functions and rules to be able to get good accuracy, but

not too many since if our function is "over-parameterized" this can actually degrade

approximation accuracy. Often, it is best if the structure of the approximator is based on

some physical knowledge of the system.

2.3 System Identification

Many applications exist in the control and signal processing areas that may utilize

nonlinear function approximation. One such application is system identification, which

is the process of constructing a mathematical model of a dynamic system using

experimental data from that system. Let g denote the physical system that we wish to

identify. The training set G is defined by the experimental input-output data.

In linear system identification, the following model is often used

(2.8)
f.=I f.=0

where uf9 and. y (J~ are the system input and output at time k~ 0. Notice that we will

need to specify appropriate initial conditions. In this case /(xi 0), which is not a fuzzy

system, is defined by

where

.x(k) = [.;(k-1), ... ,;,(k- q), u(k), ... , u(k- p){ (2.9)

(2.10)

14

Let JV= q+ .,.o+ 1 so that x(l9 and () are .!Vx 1 vectors. Linear system identification

amounts to adjusting () using information from G so that g(x) = f(x/e) + e(x) where

e(V is small for all XE X. Similar to conventional linear system identification, for

fuzzy identification we will utilize an appropriately defined "regression vector" x as

specified in Equation (2.9). And we will tune a fuzzy system ffi/()) so that e(V is

small.

Our hope is that since the fuzzy system ffi/()) has more functional capabilities (as

characterized by the universal approximation property) than the linear map defmed in

Equation (2.8), we will be able to achieve more accurate identification for nonlinear

systems by appropriate adjustment of its parameters () of the fuzzy system.

2.4 Batch Least Squares

We will introduce the batch least squares method to train fuzzy systems by first

discussing the solution of the linear system identification problem. Let g denote the

physical system that we wish to identify. The training set G is defmed by the

experimental input-output data that is generated from this system. In linear system
identification, we can use a model

(J j,

;,(k) = Leo,Xk-1)+ Leb,u(k-1)
f.=]

where u(k) and ;,(k) are the system input and output at time k. In this case f(x/ ()),

which is not a fuzzy system, is defined by

_/(x/ ()) = gT 4..f) (2.11)

where we recall that

4k) = u(k-1), ... ,_J,,(k- q), u(k), ... , zt(J-- .,.o)f

15

and

B = [B0 , ••• ,e o-:. , ••• ,B;, , ... ,e be f
I 9 Q p

we have H = q + p+ 1 so that .x(k) and e are Hx 1 vectors, and often .x(k) is called
the "regression vector".

Recall that system identification amounts to adjusting B using information from G so

that /(xi B) :::o g(x) for all XE X. Often, to form Gfor linear system identification we

choose x = .x(z),y' = _;,(z), and let G= {(x1,y'): i= 1,2, ... ,.M} to do this we will need

appropriate initial conditions.

2.4.1 Batch Least Squares Derivation

In the batch least squares method we define

Y(.M) = [y1 ,y2 , ... ,/f

to be a Mx 1 vector of output data where the y': i= 1,2, ... ,M come from G (i.e.,

y1such that (x1,y') E G). We let

be a Mx H, matrix that consists of the x' data vectors stacked into a matrix (i.e., the

.rsuch that(x',y') E G) Let

be the error in approximating the data pair (x',y') E G using B. Define

16

II ,,

so that

choose

f/(B) =(_!_Er£)
2

to be a measure of how good the approximation is for all the data for a given e . We

want to pick e to minimize f/(B) Notice that f/(6) is convex in e so that a local
minimum is a global minimum.

Now, using basic ideas from calculus, if we take the partial of //with respect to e and
set it equal to zero, we get an equation for e, the best estimate (in the least squares

sense) of the unknown e . Another approach to deriving this is to notice that

then we "complete the square" by assuming that <l><l>ris invertible and letting

where we are simply adding and subtracting the same terms at the end of the equation).

Hence

the first term in this equation is independent of e, so we cannot reduce //via this term,

so it can be ignored. Hence, to get the smallest value of p; we choose e so that the

17

second term is zero. We will denote the value of e that achieves the minimization of //

by e and we notice that

(2.12)

since the smallest we can make the last term in the above equation is zero. This is the

equation for batch least squares that shows we can directly compute the least squares

estimateB from the "batch" of data that is loaded into <I:> and Y If we pick the inputs to

the system so that it is "sufficiently excited", then we will be guaranteed that <Dr<D is

invertible; if the data come from a linear plant with known q and p then for
sufficiently large M we will achieve perfect estimation of the plant parameters.

In "weighted" batch least squares we use

//(8) = (_!_ET !fE)
2

(2.13)

where, for example, Wis a M x M diagonal matrix with its diagonal elements ~- > 0

for i= 1,2, ... ,Mand its off-diagonal elements equal to zero. These ~.can be used to

weight the importance of certain elements of Gmore than others. For example, we may

choose to have it put less emphasis on older data by choosing u; < u2 < ... < u1,,f when

x2 is collected after x1 , x3 is collected after x2, and so on. The resulting parameter

estimates can be shown to be given by

(2.14)

To show this, we use Equation (2.13) and proceed with the derivation in the same

manner as above.

As an example of how batch least squares can be used, suppose that we would like to

use this method to fit a line to a set of data. In this case our parameterized model is

18

(2.15)

Notice that if we choose x2 = 1, y represents the equation for a line. Suppose that the

data that we would like to fit the line to is given by

{ ([:}1}([~}1}([~}3)}
Notice that to train the parameterized model in Equation (2 .15) we have chosen x~ = 1

for i= 1,2,3 = M. We will use Equation (2.12) to compute the parameters for the line

that best fits the data (in the sense that it will minimize the sum of the squared distances

between the line and the data). To do this we let

and

Hence,

Hence, the line

1
y=x, -3

19

best fits the data in the least squares sense.

2.5 Recursive Least Squares

While the batch least squares approach has proven to be very successful for a variety of

applications, it is by its very nature a "batch" approach (i.e., all the data are gathered,

then processing is done). For small .Mwe could clearly repeat the batch calculation for

increasingly more data as they are gathered, but the computations become prohibitive

due to the computation of the inverse of <P 7 <P and due to the fact that the dimensions of

<P and Y depend on M. Next, we derive a recursive version of the batch least squares

method that will allow us to update our {j estimate each time we get a new data pair,

without using all the old data in the computation and without having to compute the

inverse of <PT<!> . Since we will be considering successively increasing the size of G,

and we will assume that we increase the size by one each tinre step, we let a time index

le= .M and i be such that O ::; i :s; le Let the H x H matrix

(2.16)

and let B(k-1) denote the least squares estimate based on (k-1) data pairs ;Xk) is

called the "covariance matrix". Assume that <P7<P is nonsingular for all k.

We have

,(,

- _p-1 (k) = <Pr <P = 2>,.i(x')T
1=1

so we can pull the last term from the summation to get

k-1
_p-1 (k) = i:x'(x')T + ~'(x1')r

1=1

and hence

(2.17)

20

Now, using Equation (2.12) we have

(

l J-1 ,/·
= ;x'(x')r ;x')/

= .PC k)(I x'y'J
t=I

(2.18)

Hence,

B(k-1) = p<J-1)(f x'j/J
t=I

and so
l-1

»: (k- l)B(k-1) = I x'j/
1=1

Now, replacing p-1(k-1) in this equation with the result in Equation (2.17), we get

l-1

(p-1(k)-/(/f)B(k-l)= Lx'J/
1=)

Using the result from Equation (2.18), this gives us

B(k) = p(k)(p-1 (k) - xk (xl)T)B(k-1) + p(k)x,1"y,1-

= B(k-1) - p(k)x1 (xlf B(k-1) + p(k)xl)/

= B(k-1) + p(k).I' (y,/: - (.Y'f BCk-1)) (2.19)

This provides a method to compute an estimate of the parameters B(k) at each time step

21

k from the past estimate B(k-1) and the latest data pair that we received(x\y,(-).

Notice that (y,(- - (x")T B(k-1)) is the error in predicting y'' usingB(k-1) to update

e in Equation (2 .19) we need .P(k) , so we could use

(2.20)

But then we will have to compute an inverse of a matrix at each time step (i.e., each

time we get another set of data). Clearly this is not desirable for real-time

implementation, so we would like to avoid this. To do so, recall that the "matrix

inversion lemma" indicates that if A, C, and (C-1 + .D.£1 .fl) are nonsingular square

matrices, then A+ .llC.D is invertible and

We will use this fact to remove the need to compute the inverse of p-1 (k) that comes

from Equation (2.20) so that it can be used in Equation (2.19) to update e . Notice that

r(k) = (<l>T (K)<l>(K)rl
= (<l>T (k-1) + <l>(k-1) + ,;r" (/)T)-I
= (p-1(k-l) + x1-(/)T)-1

ifwe use the matrix inversion with A= p-1(k-l),.ll= /, C= ./,.D= (x''f we get

p(K) = .P(k-1)- .P(k-1)/(/ + (/)T p(k-1)/)-I (.,r"')T p(k-1) (2.21)

which together with

B(k) = B(k-1) + .P(k)Y' (y" - (x'')T B(l--1)) (2.22)

that was derived in Equation (2.19) is called the ''recursive least squares (RLS)

algorithm".

22

Basically, the matrix inversion lemma turns a matrix inversion into the inversion of a

scalar (.i.e., the term (/ + (~-l·)T p(/c-1)/rl is a Scalar).

We need to initialize the RLS algorithm (i.e., choose B(O),p(O) One approach to

do this is to use B(O) = O,_p(O) = .Po where /Jo= al for some large a> 0. This is the

choice that is often used in practice. Other times, we may pick _p(O) = .Po but choose

B(O) to be the best guesses that you have at what the parameter values are.

There is a "weighted recursive least squares" (WRLS) algorithm also. Suppose that

the parameters of the physical system e vary slowly. In this case it may be

advantageous to choose

where O < A ::;; 1 is called a "forgetting factor" since it gives the more recent data higher

weight in the optimization (note that this performance index r could also be used to
derive weighted batch least squares). Using a similar approach to the above, you can

show that the equations for WRLS are given by

(2.23)

(Where when A= 1 we get standard RLS), this completes our description of the least

squares methods. Next, we will discuss how they can be used to train fuzzy systems.

2.6 Summary

In this chapter the function approximation problem was stated and the deterministic

batch and recursive least square method for system identification was described:

?" -~

CHAPTER THREE
)

Fuzzy IDENTIFICATION USING LMS METHODS

3.1 Overview

In this chapter the descriptions of fuzzy systems are given. The explanation of batch and

recursive least squares methods for training fuzzy systems is described.

3.2 Fuzzy Systems

A static or dynamic system which makes use of fuzzy sets . or fuzzy logic and of the

corresponding mathematical framework is called a /uzzy system. ;

Fuzzy systems are of two types, numerical and rule-based which in combination

together we get an excellent identification of a systems behavior merely depending on

the choice of the best tuning mechanism that we are going to view in this thesis.

Mainly based on knowledge of experts, this knowledge is often formulated through

fuzzy rule-based format. In the fuzzy rule-based input and output variables are often

characterized by linguistic values. These linguistic values are described by membership

functions.

The input-output data of a system formulate the numerical fuzzy system which we are

going to overview thoroughly through out this thesis.

Here we can state some of the advantages of using fuzzy system:

• Ability to translate imprecise/vague knowledge of human experts.

• Simple, easy to implement technology.

• Software design and hardware implementation support.

• Results are easy to transfer from product to product.

• Smooth tuning behavior.

24

There are a number of ways that fuzzy sets can be involved in a system, such as:

• In the description of the system. A system can be defined, for instance, as a

collection of if-then rules with fuzzy predicates, or as a fuzzy relation. An

example of a fuzzy rule describing the relationship between a heating power

and the temperature trend in a room may be:

If the heating power is high then the temperature will increase fast:

• In the specification of the system's parameters. The system can be defined by an

algebraic or differential equation, in which the parameters are fuzzy numbers

instead of real numbers. As an example consider an equation: y = 3-1:j + 5x2

where 3 and 5 are fuzzy number "about three" and "about five", respectively,

defined by membership functions. Fuzzy numbers express the uncertainty in the

parameter values.

• The input, output and state variables of a system may be fuzzy sets. Fuzzy inputs

can be readings from unreliable sensors ("noisy" data), or quantities related to

human perception, such as comfort, beauty, etc. Fuzzy systems can process such

information, which is not the case with conventional (crisp) systems.

A fuzzy system can simultaneously have several of the above attributes. In this thesis

we will focus on the last type of systems, i.e., fuzzily described systems with crisp or

fuzzy inputs.

3.3 Tuning Fuzzy Systems

It is possible to use the least squares methods described in the previous chapter to tune

fuzzy systems either in a batch or real-time mode. In this chapter we will explain how to

tune both standard and Takagi-Sugeno-Kang fuzzy systems that have many inputs and

only one output. To train fuzzy systems with many outputs, simply repeat the procedure

described below for each output.

3.3.1 Standard Fuzzy Systems

First, we consider a fuzzy system

25

(3.1)

where x= [xi, x2 , ••• , xJr and µ;(x) is defined as the certainty of the premise

of the /' rule (it is specified via the membership functions on the input universe of

discourse together with the choice of the method to use in the triangular norm for

representing the conjunction in the premise). The b1; i= 1,2, ... , .R values are the centers

of the output membership functions. Notice that

and that if we define

(3.2)

then

Hence, if we define

and

then

.r= /(xi(})= er c;(x) (3.3)

26

we see that the form of the model to be tuned is only a slightly different form from the

standard least squares case in Equation (2.11). In fact, if the µ1 are given, then c;(x) is

given so that it is in exact(J1 the right form for use by the standard least squares methods

since we can view ~(x) as a known regression vector. Basically, the training data ~i

are mapped into c;(x) and the least squares algorithms produce an estimate of the best

centers for the output membership function centers b1.

This means that either batch or recursive least squares can be used to train certain types

of fuzzy systems (ones that can be parameterized so that they are "linear in the

parameters," as in Equation (3.3). All we have to do is replace x1 with c;(x) in forming

the <P vector for batch least squares and in Equation (2.23) for recursive least squares.

Hence, we can achieve either on-line or off-line training of certain fuzzy systems with

least squares methods.

If we have some heuristic ideas for the choice of the input membership functions and

hence ~(x) then this method can be quite effective (Note that any known function can

be used to replace any of the c;1 in c;(x) vector). It is found that some of the standard

choices for input membership functions (e.g., uniformly distributed ones) work very

well for some applications.

3.3.2 Takagi-Sugeno-Kang Fuzzy Systems

It is interesting to note that Takagi-Sugeno-Kang fuzzy systems can also be

parameterized so that they are linear in the parameters; so that they can also be trained

with either batch or recursive least squares methods. In this case, if we can pick the

membership functions appropriately (e.g., using uniformly distributed ones), then we

can achieve a nonlinear interpolation between the linear output functions that are

constructed with least squares.

In particular a Takagi-Sugeno-Kang fuzzy system is given by

27

where

p-.(x)=a.0 +a1x1 + ... +a x ~ I ,, ,, r;» 11

Hence, using the same approach as for standard fuzzy systems, we note that

We see that the first term is the standard fuzzy system. Hence, use the ; (x) defined in

Equation (3.2) and redefine ;(x) and fJ to be

and

so that

represents the Takagi-Sugeno-Kang fuzzy system, and we see that it is linear in the

parameters.

Just as for a standard fuzzy system, we can use batch or recursive least squares for

training /(xi fJ). To do this simply pick (a priori) the µ;(x) and hence the ~;(x)

vector, process the training data x< where (x,y') E G through c;(x), and replace x'

28

with .;(x) in forming the <D vector for batch least squares, or in Equation (2.23) for

recursive least squares.

Note that the above approach to training will work for any nonlinear that is

linear in the parameters. For instance, if there are known nonlinearities in the system of

the quadratic form, we can use the same basic approach as the one described above to

specify the parameters of consequent functions that are quadratic.

3.4 Batch Least Squares Training of Fuzzy Systems

To answer the question of how to train fuzzy systems with batch least squares, we will

consider how to tune the fuzzy system

"\'"'JI' " (1 (· J2l .L.r-1 b,JJ exp - - x/ -<
/(x/B) = pl 2 a;.

"\'"'JI'
17

(1 (. :21 .L..r-1 TI exp - - x/ - c>
pl 2 a'. .I

(However, other forms may be used equally effectively). Here, b,.is the point in the

output space at which the output membership function for the /' rule achieves a

maximum, c/ is the point in the /;, input universe of discourse where the membership

function for the /;, rule achieves a maximum, and o ', > 0 is the relative width of the

membership function for the /;, input and the /;, rule. Clearly, we are using center­

average defuzzification and product for the premise and implication. Notice that the

outer most input membership functions do not saturate as is the usual case in control.

We will tune /(x/B) to interpolate the data set Ggiven in Equation (2.3) Choosing .R=

2 and noting that n = .2, we have e =[bl' b2 r and

29

17 [(• J" J' 1 x - 1
- IJ exp -- .I ci

pl 2 er'. .I (3.4)

Next, we must pick the input membership function parameters <, i = 1,2, / = 1,2. one
way to choose the input membership function parameters is to use the x' portions of the

first .R data pairs in G. In particular, we could make the premise of rule i have unity

certainty if .r', (x1,y1) E G is input to the fuzzy system, i= 1,2, ... , .R, .R::;; M; For

instance, if x1 = [0,2f = [Xi,~ f and J = [2,4 f = [.r;, x; f, we would choose

1 _J I _J 2 _2 2 " cl = Xi = 0, C2 = X2 = 2, cl = X1 = 2, C2 = Xi = 4.
., I

Another approach to picking the S is simply to try to spread the membership functions

somewhat evenly over the input portion or the training data space. For instance,

consider the axes on the left of Figure (2.2) where the input portions of the training data

are shown for G. From inspection, a reasonable choice for the input membership

function centers could be c; = 1.5, c; = 3, c; = 3, c; = 5 since this will place the peaks of

the premise membership functions in between. The input portions of the training data

pairs. In our example, we will use this choice of ci.

''1

Next we need to pick the spreads CJ';.. To do this we simply picko , = 2,i= 1,2,/= 1,2 as

a guess that we hope will provide reasonable overlap between the membership

functions. This completely specifies the c;,.(x) in Equation (3.4).

Letc;(x) = [c;1 (x),c;2 (x)Y. We have M = 3 for G, so we find

[
c;T (x1)J [0.8634 0.1366]

(!> = c;T (r) = 0.5234 0.4766
c;7 (X) 0.2173 0.7827

30

and Y=[J),.J},y3f =[1,5,6]7. We use the batch least squares formula in Equation

(3.3) to find B=[0.3646,8.1779r, and hence our fuzzy system is /(x/B).

To test the fuzzy system, note that at the training data

/Cx1 I e) = 1.4320
/Cr/ e) = 4.0883
.1cx / e) = 6.4798

so that the trained fuzzy system maps the training data reasonably accurately

(x3 = [3,6]7).

Next, we test the fuzzy system at some points not in the training data set to see how it

interpolates. In particular, we find

./([1,2]7 / B) = 1.8267

./([2.5,5]7 / B) = 5.3981

./C[4,7f /e) = 7.3673

These values seem like good interpolated values considering Figure (2.2), which

illustrates the data set G'for this example.

3.5 Recursive Least Squares Training of Fuzzy Systems

Here, we illustrate the use of the RLS algorithm in Equation (2.23) for training a fuzzy

system to map the training data given in Gin Equation (2.3). First, we replace ..:i:<· with

i;(x"') to obtain

(3.5)

and we use this to compute the parameter vector of the fuzzy system. We will train the

31

same fuzzy system that we considered in the batch least squares example of the previous

section, and we pick the same c; and a;.,i= 1,2,j= 1,2 as we chose there so that we
have the same.

for initialization of Equation (3 .5), we choose

8(0) = [2,5 .sf

as a guess of where the output membership function centers should be. Another guess

would be to choose 8(0) = [0,0)7.Next, using the guidelines for RLS initialization, we
choose ,I 14'

rfO]=aJ

where a = 2000 . We choose A = 1 since we do not want to discount old data, and

hence we use the standard (non-weighted) RLS.

Before using Equation (3.5) to find an estimate of the output membership function

centers, we need to decide in what order to have RLS process the training data

pairs{.x',y') E 0. For example, you could just take three steps with Equation (3.5), one

for each training data pair. Another approach would be to use each (x', y1) E G, .1V:

times (in some order) in Equation (3.5) then stop the algorithm. Still another approach

would be to cycle through all the data (i.e. (x, _i_)) first, p~ ;l) second, up to

(/,yA1)then go back to (x ,y1) and repeat), say, JV&s times. It is the last approach

that we will use and we will choose JV sis:

After using Equation (3.5) to cycle through the data JV&s times, we get the last estimate

32

[
0.3647]

B(.,,V&S - M) = 8.1778 (3.6)

and

[
0.0685 - 0.429]

r{.N &S - M) = _ 0.0429 0.0851

Notice that the values produced for the estimates in Equation (3.6) are very close to the

values we found with batch least squares-which we would expect since RLS is derived

from batch least squares. We can test the resulting fuzzy system in the same way as we

did for the one trained with batch least squares. Rather than showing the results, we

simply note that since B(.N R£S - M) produced by RLS is very similar to the e produced
by batch least squares, the resulting fuzzy system is quite similar, so we get very similar

values for /(x/ B(H&s -M)) as we did for the batch least squares case.

3.6 Summary

In this chapter the description of fuzzy systems is described, both standard and Takagi­

Sugeno-Kang fuzzy systems are presented.

The use of batch and recursive least squares to train fuzzy systems are explained.

33

CHAPTER FOUR

FUZZY IDENTIFICATION USING CLUSTERING METHODS

4.1 Overview

"Clustering" is the partitioning of data into subsets or groups based on similarities

between the data. Here, we will introduce two methods to perform fuzzy clustering

where we seek to use fuzzy sets to define soft boundaries to separate data in to groups.

The methods here are related to conventional ones that have been developed in the field

of pattern recognition.

We begin with a fuzzy "c-means'' technique coupled with least squares to train Takagi­

Sugeno-Kang fuzzy systems, and then we briefly study a nearest neighborhood method

for training standard fuzzy systems. In the c-means approach, we continue in the spirit

of the previous methods in that we use optimization to pick the clusters and, hence, the

premise membership function parameters. The consequent parameters are chosen using

the weighted least squares approach developed earlier. The nearest neighborhood

approach also uses a type of optimization in the construction of cluster centers and,

hence, the fuzzy system.

4.2 Clustering with Optimal Output Predefuzzification

In this section we will introduce the clustering with optimal output predefuzzification

approach to train Takagi-Sugeno-Kang fuzzy systems. We do this via the simple

example we have used in previous chapters.

4.2.1 Clustering for Specifying Rule Premises

Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets or

"clusters" based on similarities between the data and can be implemented using an

algorithm called fuzzy c-means. Fuzzy c-means is an iterative algorithm used to find

grades of membership µ1/ (scalars) and cluster centers I::1 (vectors of dimensionnx 1)

to minimize the objective function

34

AI .Ii' ry

.r= :I:2)µ,,Y'lx- .!If
,=J /=I

(4.1)

where nz > 1 is a design parameter. Here, Mi, the number of input-output data pairs in

the training data set G, .R is the number of clusters (number of rules) we wish to

calculate, X' for i= 1, ... ,Mis the input portion of the input-output training data pairs,

/ . . T . . L = [I{, v; , ... , ~] for;_;= 1,2, ... ,.Rare the cluster centers, and µ ,.Jor z = 1, ... , M and

j= 1, .. , . .R is the grade of membership of x· in the /;, cluster. Also I~ = ..{;7; where xis
a vector, Intuitively, minimization of J results in cluster centers being placed to

represent groups (clusters) of data.

Fuzzy clustering will be used to form the premise portion of the If- Then rules in the

fuzzy system we wish to construct. The process of "optimal output predefuzzification"

(least squares training for consequent parameters) is used to form the consequent

portion of the rules. We will combine fuzzy clustering and optimal output

predefuzzification to construct multi-input single-output fuzzy systems. Extension to

multi-input multi-output systems can be done by repeating the process for each of the

outputs.

In this section we utilize a Takagi-Sugeno-Kang fuzzy system in which the consequent

portion of the rule-base is a function of the crisp inputs such that If HJ.

Then

(4.2)

where n is the number of inputs and HJ is an input fuzzy set given by

(4.3)

where X,.is the /;, universe of discourse, and µ ul (x) is the membership function

35

associated with H1that represents the premise certainty for rule J;· and g/.x) = q~x
where qj = [a/0' a/;1,···, aj,llr and x= [1,/f where/= l, ... ,..R.

The resulting fuzzy system is a weighted average of the output g/.x) for/= l, ... ,..Rand

is given by

(4.4)

where ..R is the number of rules in the rule-base. Next, we will use the Takagi-Sugeno­

Kang fuzzy model, fuzzy clustering, and optimal output predefuzzification to determine

the parameters q/and µ
9;(.x), which define the fuzzy system. We will do this via a

simple example.

Suppose we use the example data set in Equation (2.3) that has been used in the

previous sections. We first specify a "fuzziness factor" m > 1 which is a parameter that

determines the amount of overlap of the clusters. If m > 1 is large, then points with less

membership in the /1, cluster have less influence on the determination of the new

cluster centers. Next, we specify the number of clusters ..R we wish to calculate. The

number of clusters ..R equals the number of rules in the rule-base and must be less than

or equal to the number of data pairs in the training data set G(l:e., ..R :s; Al) . We also

specify the error tolerance Ee> 0, which is the amount of error allowed in calculating

the cluster centers. We initialize the cluster centers .!!~ via a random number generator

so that each component of !lo is no larger (smaller) than the largest (smallest)

corresponding component of the input portion of the training data. The se~ection !lo,

although somewhat arbitrary, may affect the final solution.

For our simple example, we choose 1n=2 and ..R =2, and let Ee= 0.001. Our initial cluster

centers were randomly chosen to be

36

[1.89]]:'~ = 3.76

and

,} = [2.47]
-0 4.76

so that each component lies in between .x{ andXi, for i = 1,2, 3 (see the definition of G

in Equation (2.3)).

Next, we compute the new cluster centers .!:'{based on the previous cluster centers so

that the objective function in Equation (4.1) is minimized. The necessary conditions for

minimizing J are given by

"'M ;r'(n_ewr
/ _ ~f.=I µfl r.: - "',If (n_ew) m

~f.=l µfl

(4.5)

where

[1
-1

. I 2
,f X - Vold -1

µn_ew = "'. (I - I)m-1
!I c: I A 12 A=l X - v' -O/d

(4.6)

for each I= 1,2, ... ,Mand for each_j=l,2, ... R such that I::1µ7w = 1 (andl~2 = / x). In

Equation (4.6) we see that it is possible that there exists an I= 1, 2, ... , M such that

Ix - _io1dl2 = 0 for some _j=l,2, ... A'. In this case the µ7'''is undefined. To fix this

problem, let µ ti for all ibe any nonnegative numbers such that I:;=1 µ v = 1 and µ ti = 0,

37

Using Equation (4.6) for our example withYo;,1 = J!o, .J = 1,2, we find that

µ1~ew = 0.6729,µ1;ew = 0.3271,µ;;"' = 0.9197,µ;;w = 0.0803,µ;;w = 0.2254,andµ;;w = 0.7746.

We use these µ;,ewfrom Equation (4.6) to calculate the new cluster centers

I [1.366] !::new= 3.4043

and

2 [2.8381] !::new= 5.7397

using Equation (4.5).

Next, we compare the distances between the current cluster centers J!i~ and the pervious
cluster centers Yo~a (which for the first step is J!o\ If jJ!i~, - !::~~di <Ee for all

.J = 1,2, ... , A'then the cluster centers Ynew accurately represent the input data, the fuzzy
clustering algorithm is terminated, and we proceed on to the optimal output

defuzzification algorithm. Otherwise, we continue to iteratively use Equations (4.5) and

(4.6) until we find cluster centers .in'ew that satisfy jJ!i~, - Yo~al < E c for all .J = 1, 2, ... , Jr.

For our example, Yoia= J!o and we see that jJ!i~, - Yo~al = 0·6328 for .J = land 0.6260

for .J =2. Both of these values are greater than E c : So we continue to update the cluster

centers.

Proceeding to the next iteration, letlYo1t1 = Ynewl ,.J =.1,2. ... , A' from the last iteration and

apply Equations (4.5) and (4.6) to find µ1~ew=0.8233, µ{;"'= 0.1767, µ;';" =0.7445,
µ;;'= 0.2555, µ:ieu, = 0.0593, and µ;;''= 0.9407 using the cluster centers calculated
above, yielding the new cluster centers

38

1 [0.9056] V -
-new 2.9084

and

0 [2.8381]
J!:ew = 5.7397

Computing the distances between these cluster centers and the previous ones, we find

that l.inew - Eo1dl > E <, so the algorithm continues. It takes 14 iterations before the

algorithm terminates (i.e., before we have l.iew - Eo~d, ~Ee =0.001, for all_r-1.2, ... ,R).
When it does terminate, name the final membership grade values µ;:,and cluster

centers J!,z= 1,2, ... ,M,.;=l,2, ... ,R.

H''

For our example, after 14 iterations the algorithm finds µ11 = 0.9994,

µ 12 =0.0006, µ21 =0.1875, µ22 = 0.8125, µ31 = 0.0345, µ32 =0.9655,

VJ = [0.0714]
- 2.0725

and

,} = [2.5854]
- 5.1707

Notice that the clusters have converged so that]!1 is near x1 = [0,2f and v2 lies in

between.r' =[2,4f and x3 =[3,6f.

The final values of J!, j = I, 2, ... , .R, are used to specify the premise membership

functions for the /h rule. In particular, we specify the premise membership functions as

39

µ 81(x) =
I./r [Ix- yf Jm~J
A'=I I - Kl2 ;i;- V

-I

(4.7)

/ = !. 2, ... , ..R where y. ,,j= 1. 2Rare the cluster centers from the last iteration that

uses Equations (4.5) and (4.6). It is interesting to note that for large values of m we get

smoother (less distinctive) membership functions. This is the primary guideline to use in

selecting the value of m; however, often a good first choice is m = 2. Next, note that

µ g/ (x) is a premise membership function that is different from any that we have

considered. It is used to ensure certain convergence properties of the iterative fuzzy c­

means algorithm described above. With the premises of the rules defined, we next

specify the consequent portion.
H''

4.2.2 Least Squares for Specifying Rule Consequents ·,

We apply "optimal output predefuzzification" to the training data to calculate the

function g)x) = _q~x,/= 1,2, ... ,..R, for each rule (i.e., each cluster center), by

determining the parameters _q/There are two methods you can use to find_q/.

4.2.2.1 Approach 1

For each cluster center r'. we wish to minimize the squared error between the function

output portion of the the training data pairs. Let

X = [1,(x)rf where(.r',J/) E 0. We wish to minimize the cost function J/' giverrby

k/ 2

J -"()2(_1 (A.i)T) J - ~ Ai \,Y - ;i; £/
;'-]

(4.8)

40

for each / = 1,2, ... , .I? where µ ,,)s the grade of membership of the input portion of the

/1; data pair for the ./1; cluster that resulted from the clustering algorithm after it

converged, y1is the output portion of the /1; data pair d'") = (x,y') , and the

multiplication of (x)7 and £/ defines the output associated with the ./1; rule for the /1;'

training data point.

Looking at Equation (4.8), we see that the minimization of J./' via the choice of the£/

is a weighted least squares problem. From Equation (3.2), the solution !!p for

j=l,2, ... ,.Ir to the weighted least squares problem is given by

(4.9)

where

x= [l ·. · l Jr
x1 ... x"'

Y= (Pi , ... ,y"'r
u;. = (ma~v,···,µ,lij.])2

For our example the parameters that satisfy the linear function

such that ~-in Equation (4.8) is minimized were found to be £1 = [3,2.999,-lr and

[!2 = [3,3,-1(which are very close to each other.

4.2.2.2 Approach 2

As an alternative approach, rather than solving .Ir least squares problems, one for each

rule, we can use the least squares methods we used earlier to specify the consequent

41

parameters of the Takagi-Sugeno-Kang fuzzy system. To do this, we simply

parameterize the Takagi-Sugeno-Kang fuzzy system in Equation (4.4) in a form so that

it is linear in the consequent parameters and of the form

where e holds all the a,:.Jparameters and ~ is specified in a similar manner to how we

did earlier. Now, we can use batch or recursive least squares methods to find e'.

4.2.3 Testing the Approximator

Suppose that we use approach 1 to specify the rule consequents. To test how accurately

the constructed fuzzy system represents the training data set G in Figure 2.2, suppose

that we choose the test point x' such that (.x',y') ~ G. Specifically, we choose

X=[!]
We would expect from Figure 2.2 that the output of the fuzzy system would lie

somewhere between 1 and 5. The output is 3.9999, so we-see that the trained Takagi­

Sugeno-Kang fuzzy system seems to interpolate adequately. Notice also that if we let

x= x';i= 1,2,3. where(x',y') E G, we get values very close to the y',i= 1,2, 3,

respectively. That is, for this example the fuzzy system nearly perfectly maps the

training data pairs. We also note that if the input to the fuzzy system is x = [2.5,5] 7 the

outpu~ is 5.5, so the fuzzy system seems to perform good interpolation near the training
data points.

Finally, we note that the q/will clearly not always be as close to each other as for this

example. For instance, if we add the data pair ([4,5] T ,5.5) to G (i.e., make M = 4), then

the cluster centers converge after 13 iterations (using the same parameters m and Ecas

we did earlier). Using approach 1 to find the consequent parameters, we get

42

qi = [-1.458,0.7307,l.2307f

and

q2 = [2.999,0.00004, 0.5] T

For the resulting fuzzy system, if we let x = [1, 2] r in Equation (4.4), we get an output

value of 1.8378, so we see that it performs differently than the case for M= 3, but that it

does provide a reasonable interpolated value.

4.3 Nearest Neighborhood Clustering

As with the other approaches, we want to construct a fuzzy estimation system that

approximates the function g that is inherently represented in the training data set G. We

use singleton fuzzification, Gaussian membership functions, product inference, and

center-average defuzzification, and the fuzzy system that we train is given by

{

fi~O)- L:141:1ex{-[\~~n
L:1,9,TJ>x{-[\}J]

(4.10)

where .Ris the number of clusters (rules), n is the number of inputs

are the cluster centers, a is a constant and is the width of the membership functions, and

A, and B, are the parameters whose values will be specified below (to train a multi­

output fuzzy system, simply apply the procedure to the fuzzy system that generates each

output).

From Equation (4.10), we see that the parameter vector () is given by

43

The optimal output predefuzzification method was applied first to a static system

represented by a sinusoidal function, a course performance system and to a dynamic

tank water level system. The results of identification were given. As a result of

identification it was clear that fuzzy identification of system gives more accurate model

than sub-space identification method.

57

CONCLUSION

The fuzzy techniques are found to be one of the most effective tools for building

mathematical models and thus to the identification of systems that are found to be

characterized with uncertainty and fuzziness. In this thesis identification of fuzzy

system is considered.

The state of application problems of fuzzy technology for identification of systems is

grven.

The function approximation problem was described and the use of conventional

methods such as batch and recursive least squares are represented for identification of

parameters of model.

The use of these conventional techniques for tuning fuzzy systems was considered and

implied to train standard and Takagi-Sugeno fuzzy models.

The training of fuzzy models using clustering techniques are demonstrated, the use of

optimal output predefuzzification method to train Takagi-Sugeno fuzzy models and

nearest neighborhood clustering to train standard fuzzy models were represented.

The use of fuzzy identification for static and dynamic systems was described using the

optimal output predefuzzification technique. Fuzzy identification of parameters of

mathematical models of course performance system and tank water level system is

represented. Using Matlab package the fuzzy identification of course performance

system and tank water level system is carried out

The thesis demonstrated how to design, develop and implement fuzzy identification

techniques to applications in order to get better models of systems. These models can be

used in different applications in the fields of control, estimation, prediction, etc.

The results comparison of fuzzy identification with conventional identification

demonstrates the efficiency of fuzzy technology.

58

For further studies we can see that there are some accuracy losses in some regions of

our model, these undesirable variances should be evaluated in order to increase the

efficiency of the system. This topic along with the incorporation of linguistic

information in to our system should affect our model accuracy.

59

REFERENCES

[1] Pedrycz W., Fuzzy Modeling Pan1digms and Practice, Kluwer Academic Publishers

, Polt, Dortrecht, The Netherlands, 1996 ..

[2] W. Pedrycz, Fttzzy Control and Fuz.z:;; ,rvstems, Research Studies Press/Wiley &

Sons,London, 1989
[3] Terano, T., K. Asai and M. Sugeno, "Applied Fuzzy ,rvstems'', Boston: Academic

Press, Inc., 1994
[4] Zadeh L.A.," Fuzzy Sets, .byormation and Control'; vol 8,pp. 338-353,1976.

[5] J. Abonyi, R. Babuska, M. Setnes, H.B. Verbruggen, and F. Szeifert, "Constrained

_parameter estimation in.fuzzy modeling''. In Proceedings ofFUZZ-IEEE'99, pages 951-

956, Seoul, Korea, August 1999.
[6] P. J. Costa Branco, J. A. Dente, "A new algorithm far on-line relational

ident(/ication o/' nonlinear dynamic systems', In Second IEEE Int. Conf. on Fuzzy

Systems (IEEEFUZZ'93),pp.1073-1079, 1993.

[7] Gaucho Vachkov and Toshio Fukuda, "Sim_pl(/ied Fttz.z:;; Model .Based .ldent(/ication

ef .Dynamical .ij'Stems'', International Journal of Fuzzy Systems, Vol. 2, No. 4,pp.229-

235 ,December 2000.
[8] S.-K. Sin and R. J. Defigueiredo, "Fuzzy system design throttgh/uzzy clttstering and

optimal _pred(juzz!Jication," in 2nd IEEE Conference on Fuzzy Systems, San Fransico,

California, pp. 190-195, 1993.
[9] Laukonen E.G., Passino K.M., "Tratiting Fuzzy ,rvstems to Pe(farm Estimation and

.ldent!Jication' Engineering Applications of Artificial Intelligence, Vol. 8, No. 5, pp.

499-514, 1995.
[10] H. Tanaka and H. Ishibuchi, "./dent!Jication ef _possibilistic linear systems by
quadratic membershipfimctions ef/uzzy _parameters," Fuzzy Sets and Systems, vol. 41,

pp. 145-160, 1991.
[11] L.-X.Wang, "Fztz.z:;; systems are universal a_p_proximators', in 1st IEEE conference

on fuzzy systems, pp. 1163-1170, March 1992.

[12] Takagi T. and Sugeno M., "Fz1zzy ./denttficaticm e/. ,rvstems and its Applications to
Modeling and Control', IEEE Trans.,rvstems,Man & C(ybernetics 15(1): 116-132,

(1985).

60

[13] Kerimov K. M., Abiyev R.H., Melikov T. G., Fuzzy System for Determination of

Oil-gas Fields Productivity/Geophysics News in Azerbaijan. Baku, N:1,pp.13-15,

(1999).

[14] J. Abonyi R. Babuska, "Local and global identification and interpretation of

parameters in Takagi-Sugeno fuzzy models", Delft University of Technology,

Department of Information Technology and Systems Control Engineering

Laboratory, The Netherlands.

[15] Kerimov K. M., Abiyev R. H., Melikov T. G., ''lJetennination ef Oil and Gas
Field Productivity in The Condition ef /nszflliciency and Fuzziness ef .b?fannatio11 ';
Second International Symposium on Mathematical and Computational Applications,

Baku, September 1-3, (1999).

[16] Robert Draeseke and David E. A. Giles, ':d Fztz.::;p .Logic App.roach to Modelling
the Underground Economy'; Department of Economics, University of Victoria, Canada,
2000.
[17] Sugeno M. and Kang G.T., "Fuzzy modeling and control efmultz!ayer inctize.rator'.

Fuzzy Sets and Systems 18, 329, 1986.

[18] Zhao, J., V. Wertz and R. Gorez, "Afazzy clustering method far the identification

e/. fazzy models far tt)11tamical systems', In 9th IEEE International Symposium on

Intelligent Control, Columbus, Ohio, USA. 1994.

[19] Babuska R., H.J.L. van Can and H.B. Verbruggen, "Fuzzy modeling o/' enzymatic

Penictllin-G conversion", In Preprints 13th IFACWorld Congress, Volume N, San

Francisco, USA, pp. 479-484, (1996).

[20] Sugeno, M. and K. Tanaka, "Successive identification ef a .fi1zzy model and its
application to prediction ef a complex system", Fuzzy Sets and Systems 42, pp. 315-

334, 1991.

[21] Kaymak, U., "Application effazz:;; methodologies to a washing process', Chartered

designer thesis, Delft University of Technology, Control Lab., Faculty of EL Eng.,
Delft, 1994.

[22].Hartog, den, M.H., R. Babuska, H.J.R. Deketh, M. Alvarez Grima, P.N.W. Verhoef

and H.B. Verbruggen, "Knowledge-based fazzy model far pe;fonnance prediction ef a
.rock cutttizg trenchei', International Journal of Approximate Reasoning 16(1),pp. 43-

66, 1997.

[23] Bektas $., Mamedov F. and Khashman A., The Graduate Studies: A Complete

Gt11de, Near East University press, Nicosia (2001).

61

APPENDIX A

Sinusoidal Function Identification

Program

u = (0: 0. 02: l) ' ;
y = sin (7*u);
i=2;
Par.c=i;
Dat.U=u;
Dat.Y=y;
[ym,VAF,FM] = Clust_LMS(Dat,Par,u,y) ;v(l)=0.0;
v(i)=VAF;
while(v(i)>v(i-1))

i=i+l;
Par.c=i;
[ym,VAF,FM] = Clust_LMS(Dat,Par,u,y);
v (i) =VAF;
if (v(i)<=v(i-1))

Par.c=i-1;
[ym,VAF,FM]
v(i-l)=VAF;
plot (y) ;
hold on;

Clust_LMS(Dat,Par,u,y);

plot(ym, '-.r');
break;

end;
end;

Fuzzy model parameters

FM= Ts: l

ni: l

no: l

N: 51

tol: 0.0100

seed: 2.118le+005
'

date: [2003 5 25 22 22 41]

ny: 0

nu: l

nd: 0

ante: l

c: 9

I

m: 2

InputName: []

OutputName: []

Alist: { [1] }

Clist: {[1 2]}

rls: { [Sxl double]}

mfs: { [J }

th: { [5x2 double]}

s : { [5x2 double J }

V: { [5x1 double]}

P: { [2x2x5 double]}

zmin: {[0 -0.9989)}

zmax: {[1 0.9995)}

VAF= 99.8701%

Model performance

Input.Data 011tp11t .Data Model Output

0 0 0.0229
0.0200 0.1395 0.1254
0.0400 0.2764 0.2529
0.0600 0.4078 0.4052
.0.0800 0.5312 0.5539
0.1000 0.6442 0.6570
0.1200 0.7446 0.7270
0.1400 0.8305 0.8078
0.1600 0.9001 0.9072
0.1800 0.9521 0.9791
0.2000 0.9854 0.9833
0.2200 0.9995 0.9708
0.2400 0.9940 0.9860
0.2600 0.9691 0.9964
0.2800 0.9252 0.9417
0.3000 0.8632 0.8396
0.3200 0.7843 0.7562
0.3400 0.6901 0.6919
0.3600 0.5823 0.6122
0.3800 0.4632 0.4927
0.4000 0.3350 0.3361
0.4200 0.2002 0.1710
0.4400 0.0616 0.0285

Il

0.4600 0.0783- 0.0861-

0.4800 0.2167- 0.1923-

0.5000 0.3508- 0.3139-

0.5200 0.4780- 0.4585-

0.5400 0.5959- 0.6100-

0.5600 0.7021- 0.7388-

0.5800 0.7946- 0.8244-

0.6000 0.8716- 0.8702-

0.6200 0.9315- 0.8994-

0.6400 0.9731- 0.9383-

0.6600 0.9957- 0.9925-

0.6800 0.9989- 1.0310-

0.7000 0.9825- 1.0164-

0.7200 0.9468- 0.9515-

0.7400 0.8926- 0.8662-

0.7600 0.8210- 0.7834-

0.7800 0.7333- 0.7091-

0.8000 0.6313- 0.6355-

0.8200 0.5169- 0.5467-

0.8400 0.3924- 0.4282-

0.8600 0.2602- 0.2794-

0.8800 0.1229- 0.1152-

0.9000 0.0168 0.0457

0.9200 0.1562 0.1917

0.9400 0.2925 0.3193

0.9600 0.4231 0.4299

0.9800 0.5454 0.5266

1.0000 0.6570 0.6124

ill

APPENDIXB

Course Performance Identification

Program

AA=4.0;BA=3.5;BB=3.0;CB=2.5;CC=2.0;DC=l.5;DD=l.O;FD=0.5;FF=
0.0;
inp=[AA BA BB CB CC DC DD FD FF];
out=[3 4 11 17 14 10 18 7 5];
u=inp';
y=out';
i=2;
Par.c=i;
Dat.U=u;
Dat.Y=y;
[ym,VAF,FM] = Clust_LMS(Dat,Par,u,y);v(l)=0.0;
v(i)=VAF;
while(v(i)>v(i-1))

i=i+l;
Par.c=i;
[ym,VAF,FM] = Clust_LMS(Dat,Par,u,y);
v(i)=VAF;
if (v(i)<=v(i-1))

Par.c=i-1;
[ym,VAF,FM] = Clust_LMS(Dat,Par,u,y);
v(i-l)=VAF;
plot (y) ;
hold on;
plot (ym, ' - . r') ;
break;

end;
end;

Fuzzy model parameters

FM= Ts: 1

ni: 1

no: 1

N: 9

tol: 0.0100

seed: 2.0899e+005

date: [2003 5 25 23 8 25]

ny: 0

nu: 1

IV

nd: 0

ante: 1

c: 5

m: 2

InputName: [J

OutputName: []

Alist: { [1 J }

Clist: {[l 2]}

rls: { [5xl double]}

mfs: { [J }

th: { [5x2 double] }

s : { [5x2 double]}

V: { [5xl double] }

P: { [2x2x5 double]}

zmin: {[0 3]}

zmax: {[4 18]}

VAF = 100 %(c = 5), 20.55 %(c = 2).

l\iodelperforJD.ance

Input Data Output Data Model Output(c=2) Model Output(c=S)

4.0000 3 6.6521 3.0000
3.5000 4 7.8280 4.0000
3.0000 11 9.3347 11.0000
2.5000 17 12.2907 17.0000
2.0000 14 14.0457 14.0000
1.5000 10 7.0070 10.0000
1.0000 18 9.3117 18.0000
0.5000 7 10.6981 7.0000

0 5 11.8320 5.0000

V

APPENDIXC

Tank Water Level System Identification

Program

i==2;
C == i;
m == 1.2;
tol == 0.01;
Ts== 2;
FMtype == 2;
Ny== 1;
Nu == [1] ;
Nd == [1] ;
load tankdatal
skip == 1;
N == size(system,1);
N2 == floor(size(system,1)/2);

u == control(l:skip:N2);
y == system(l:skip:N2);

ue == control(N2+1:skip:N);
ye== system(N2+1:skip:N);

Dat.U == u; Dat.Y == y; Dat.Ts == Ts; Par.c == c;
Par.ante== FMtype; Par.tol == tol;
Dyn.Ny == Ny; Dyn.Nu == Nu; Dyn.Nd == Nd;

[ym,VAF,FM] Clust LMS(Dat,Par,ue,ye,Dyn);

v (1) ==0. O;
v(i)==VAF;
while(v(i)>v(i-1))

i==i+l;
Par.c==i;
[ym,VAF,FM] == Clust_LMS(Dat,Par,ue,ye,Dyn);
v(i)==VAF;
if (v(i)<==v(i-1))

Par.c==i-1;
[ym,VAF,FM]
v(i-l)==VAF;
plot (ye);
hold on;

Clust_LMS(Dat,Par,ue,ye,Dyn);

plot(ym, '-.r');
break;

end;
end;

VI

lJ. ~

t

Fuzzy model parameters

FM= Ts: 2
ni: 1
no: 1
N: 2000

tol: 0.0100
seed: 2.0908e+005
date: [2003 5 26 2 48 12]

ny: 1
nu: 1
nd: 1

ante: 2
c: 3
rn: 2.2000

InputNarne: [J
OutputNarne: [J

Alis t : { [1 2 J }
Clist: {[1 2 3]}

rls: {[3x2 double]}
rnfs: { { lx2 cell} }
th: { [3x3 double]}
s: { [3x3 double]}
V: { [3x2 double]}
P: { [3x3x3 double]}

zrnin: { [0 . 0 4 3 7 0 . 2 0 0 0 0 . 0 4 3 7 J }
zrnax : { [0 . 9 9 2 6 1 0 . 9 9 2 6 J }

V AF= 98.04 %.

l\.'.lodelperformance

(Note; Fragment of data is given)

1/P(C) 0/P(C) 1/P(T) 0/P(T) 0/P(M)
0.7512 0.5038 0.5180 0.4938 0.4938
0.7610 0.5083 0.4679 0.4735 0.4785
0.8165 0.5156 0.4654 0.4521 0.4597
0.8721 0.5278 0.4628 0.4321 0.4419
0.8062 0.5387 0.5210 0.4162 0.4251
0.7403 0.5425 0.5792 0.4071 0.4149
0.6766 0.5397 0.5617 0.4006 0.4109
0.6128 0.5310 0.5442 0.3929 0.4055
0.6664 0.5224 0.5637 0.3859 . 0.3989
0.7201 0.5196 0.5832 0.3813 0.3945
0.7283 0.5199 0.6300 0.3803 0.3923
0.7366 0.5210 0.6768 0.3839 0.3946

VII

0.6932 0.5203 I 0.6084 0.3860 0.4012
0.6498 0.5155 0.5400 0.3814 0.4008
0.5899 0.5060 0.6132 0.3776 0.3941
0.5300 0.4913 0.6865 0.3810 0.3947
0.5429 0.4755 0.6915 0.3879 0.4022
0.5559 0.4619 0.6966 0.3948 0.4096
0.5733 0.4509 0.6750 0.4003 0.4170
0.5908 0.4423 0.6534 0.4033 0.4218
0.5375 0.4325 0.6992 0.4073 0.4243
0.4843 0.4184 0.7451 0.4154 0.4309
0.4930 0.4031 0.7665 0.4261 0.4413
0.5017 0.3899 0.7880 0.4381 0.4531
0.5063 0.3784 0.8346 0.4525 0.4660
0.5109 0.3681 0.8813 0.4704 0.4824
0.5423 0.3605 0.8494 0.4877 0.5021
0.5737 0.3564 0.8175 0.5007 0.5174
0.5266 0.3519 0.8274 0.5118 0.5286
0.4795 0.3432 0.8372 0.5231 0.5400
0.5363 0.3358 0.8468 0.5346 0.5515
0.5932 0.3344 0.8563 0.5462 0.5631
0.5302 0.3328 0.9039 0.5599 0.5748
0.4672 0.3252 0.9514 0.5773 0.5902
0.5452 0.3192 0.9263 0.5946 0.6090
0.6233 0.3211 0.9011 0.6084 0.6241
0.6458 0.3276 0.9129 0.6207 0.6358
0.6683 0.3357 0.9247 0.6334 0.6477
0.6339 0.3425 0.8409 0.6418 0.6600
0.5994 0.3455 0.7571 0.6415 0.6636
0.6805 0.3506 0.7955 0.6392 0.6590
0.7615 0.3630 0.8338 0.6407 0.6584
0.7661 0.3785 0.8085 0.6427 0.6614
0.7707 0.3932 0.7832 0.6421 0.6618
0.8045 0.4087 0.7693 0.6396 0.6598
0.8383 0.4262 0.7555 0.6360 0.6566
0.8135 0.4429 0.7579 0.6321 0.6524
0.7886 0.4559 0.7603 0.6286 0.6487
0.8561 0.4701 0.7698 0.6259 0.6455
0.9235 0.4899 0.7793 0.6243 0.6434
0.9014 0.5104 0.6883 0.6188 0.6423
0.8794 0.5274 0.5972 0.6048 0.6327
0.9170 0.5440 0.5269 0.5839 0.6153
0.9545 0.5632 0.4566 0.5575 0.5925
0.9486 0.5826 0.4609 0.5297 0.5647
0.9426 0.6003 0.4651 0.5041 0.5392
0.9166 0.6153 0.4856 0.4814 0.5158
0.8906 0.6268 0.5060 0.4623 0.4961
0.9807 0.6408 0.4619 0.4434 0.4796
1.0000 0.6599 0.4178 0.4216 0.4601

VIII

1.0000 0.6781 0.4693 0.4019 0.4378
0.9986 0.6953 0.5208 0.3886 0.4219
1.0000 0.7114 0.4797 0.3767 0.4119
1.0000 0.7266 0.4385 0.3618 0.3988
1.0000 0.7409 0.4300 0.3458 0.3827
1.0000 0.7545 0.4214 0.3302 0.3669
1.0000 0.7672 0.4257 0.3157 0.3514
1.0000 0.7793 0.4300 0.3029 0.3374
1.0000 0.7907 0.4278- 0.2913 0.3247
1.0000 0.8015 0.4255 0.2805 0.3128
0.9868 0.8113 0.4004 0.2694 0.3014
0.9604 0.8184 0.3753 0.2569 0.2885
1.0000 0.8259 0.4311 0.2470 0.2741
1.0000 0.8348 0.4868 0.2435 0.2660
1.0000 0.8432 0.4696 0.2420 0.2636
1.0000 0.8512 0.4524 0.2390 0.2598
1.0000 0.8587 0.4833 0.2371 0.2547
0.9779 0.8652 0.5143 0.2382 0.2528
0.9787 0.8699 0.5263 0.2413 0.2539
0.9795 0.8745 0.5383 0.2452 0.2561
1.0000 0.8805 0.5676 0.2507 0.2593
1.0000 0.8865 0.5969 0.2585 0.2649
1.0000 0.8922 0.6032 0.2672 0.2730
1.0000 0.8976 0.6095 0.2758 0.2811
1.0000 0.9027 0.6292 0.2848 0.2892
1.0000 0.9076 0.6489 0.2949 0.2986
1.0000 0.9122 0.6443 0.3048 0.3092
1.0000 0.9166 0.6398 0.3134 0.3186
0.9893 0.9205 0.6541 0.3217 0.3269
0.9657 0.9222 0.6684 0.3307 0.3360
0.9290 0.9209 0.7662 0.3444 0.3459
0.8922 0.9161 0.8640 0.3664 0.3642
0.8778 0.9091 0.8510 0.3906 0.3904

,,
;,

IX

APPENDIXD

Clustering Function

function [Ymd,Vf,FM,Mu,ZJ = Clust_LMS(Dat,Par,Uin,Yin,Dyn)
%%
if nargin <5, Dyn = []; end;
if is field (Dat, 'U'); U = Dat. U;
elseif is field (Dat, 'X') '; U = Dat .X;
elseif is field (Dat, 'x') '; U = Dat. x;
elseif is field (Dat, 'u') '; U = Dat. u; else U = [J; end;
if is field (Dat, 'Y'); Y = Dat. Y;
elseif isfield(Dat, 'y'); Y = Dat.y; else Y = []; end;
Ninps = size (U, 2); [Nd, NO] = size (Y);
if is field (Dat, 'Ts'); Ts = Dat. Ts; else Ts = 1; end;
if isfield(Dat, '.file'); file= Dat.file; else file= ''; end;
if isfield(Dat, 'N'); N = Dat.N; else N = Nd; end;
%%
Ninps = size(U,2);
[Nd,NO] = size(Y);

if isfield(Dyn, 'Ny'); ny = Dyn.Ny; else ny = zeros(NO,NO); end;
if isfield(Dyn, 'Nu'); nu= Dyn.Nu; else nu= ones(NO,Ninps); end;
if isfield(Dyn, 'Nd'); nd = Dyn.Nd; else nd = zeros(NO,Ninps); end;
if Ninps == 0, nu= zeros(N0,1); nd = nu; end;

if isfield(Par, 'c'); c = Par.c; else c = 2; end;
if isfield(Par, 'ante'); ante = Par.ante; else ante = 1; end;
if isfield(Par, 'm'); m = Par.m; else m = 2; end;
if isfield(Par, 'tol'); tol = Par.tol; else tol = 0.01; end;
if isfield (Par, 'seed'); seed = Par. seed; else seed = sum (lOO*clock);
end;

if max (size (c))
if max (size (m))
if max(size(ante))

1, c = c*ones(l,NO); end;
1, m = m*ones(l,NO); end;

1, ante= ante*ones(l,NO); end;

%%
clstep = 1;
show= O;
lstep = 1;
show = 1;
MFTYPE = 2;
%%
fork 1 NO,

Ali st
Clist

1 : (sum (n y (k, :)) +sum (nu (k, :))) ;
[Alist Alist(length(Alist))+l];

%%
Ne= [0; cumsum(N(:))];
dat = [];
for b = 1:size(Nc,1)-1,

if Ninps == 0,
z = Y(Nc(b)+l:Nc(b+l), :) ;

else
z = [Y(Nc(b)+l:Nc(b+l), :) U(Nc(b)+l:Nc(b+l), :)];

end;
[yr, ur, yl J =regres ([Y (Ne (b) + 1: Ne (b+ 1) , k) z J , O, [ny (k, :)

nu (k, :)] , [ones (1, NO) . * (ny (k, :) >0) nd (k, :) J) ;
dat = [dat; [ur yl]]; % data to cluster

X

end;
%%
ND= size(dat,l);
NI= size(dat,2)-1;
dat = dat(l:clstep:ND, :) ;
rand('seed',seed);
[mu,V,PJ = gkfast(dat,c(k),m(k),tol,0);
[dum,ind] = sort(V(:,l));
mu = mu (: , ind) ;
V = V (ind, :) ;
p = p (: r : rind) ;
%%
M = zeros(NI,NI,c(k));
for j = 1 : c(k),

M (:, : r j)
det(P(Alist,Alist,j)) .A(l/length(Alist))*inv(P(Alist,Alist,j));
end;
%%
mfs = [];
if ante(k) == 2,

range = [min (dat (:, 1 :NI))' max (dat (:, 1 :NI))' J;
perc = 50;
safety= perc*O.Ol*(range(:,2) - range(:,l));
rlimits = [range(:,1)-safety range(:,2)+safety];

mfstep = round(ND/100); if mfstep < 1, mfstep = l; end;
OPT= £options; OPT(l4) = 1000;
for i = 1 : NI,

[ds,fs]=smooth(dat(l:mfstep:ND,i),mu(l:mfstep:ND, :));
mf = mffit(ds,fs,MFTYPE,OPT, [1 0 OJ);
lim = mf(:,3) == min(mf(:,3)); mf(lim,2:3)

ones(sum(lim),l)*[rlimits(i,l) rlimits(i,l)];
if mf(lim,4) < rlimits(i,l), mf(lim,4) = rlimits(i,l); end;
lim = mf(:,4) == max(mf(:,4)); mf(lim,4:5)

ones(sum(lim),l)*[rlimits(i,2) rlimits(i,2)J;
if mf(lim,3) > rlimits(i,2), mf(lim,3) = rlimits(i,2); end;
mfs{i} = mf;

end;
end;
rls = (1: c (k)) '*ones (1, NI);
%%
xl = ones(size(dat,1),1);
if ante(k) == 1,

d = [J;
for j = 1 : c(k),
xv= dat(:,Alist) - xl*V(j,Alist);

if NI == 1,
d (: , j) = M (: , : , j) * xv . A 2 ;

else
d (: I j) sum ((xv*M (:, : , j) . *xv) ') ';

end;
end;
d = (d+le-100)." (-1/ (m (k) -1));

dof = (d ./ (sum(d')'*ones(l,c(k))));

elseif ante(k) == 2,
dof = dofprod(rls(:,Alist),mfs,dat(:,Alist));

end;
%%
de= [dat(:,l:NI) ones(size(dat(:,l)))];

XI

[p,t,t,t,s] = suglrns([dc(:,Clist)l,dat(:,NI+l),dof, [l,0);
%%
FM.Ts= Ts; FM.ni = Ninps; FM.no= NO; FM.N = Nd; FM.tol = tol;
FM.seed= seed; FM.date = fix(clock);;
FM.ny = ny; FM.nu= nu; FM.nd = nd;
FM.ante= ante; FM.c = c; FM.rn = m;
if isfield(Dat, 'InputName'); FM.InputName = Dat.InputName;
else FM.InputName = []; end;
if isfield(Dat, 'OutputName'); FM.OutputName = Dat.OutputName;
else FM.OutputName = []; end;

FM.Alist{k} = Alist; FM.Clist{k} = Clist; FM.rls{k} = rls; FM.mfs{k}
mfs;
FM.th{k} = p; FM.s{k)· = s; FM.V{k} = V(:,l:end-1); FM.P{k} = P;
FM.zmin{k} = min(dat); FM.zmax{k} = max(dat);
%%
[ymd,vf]=modelOP(Uin,Yin,FM);
Ymd=ymd;Vf=vf;
%%
if nargout > 3, if NO> 1, Mu{k} = mu; else Mu= mu; end; end;
if nargout > 4, if NO> 1, Z{k} = dat; else Z = dat; end; end;

end;

if (show-= 0),
fprintf (1, ['Done. \n']) ;
drawnow

end;
%%%
function mfs = mffit(x,f,mfini,OPT,flag)

if nargin < 4, OPT= foptions; end;
if -all(size(OPT)), OPT= foptions; end;
if nargin < 5, flag= [l O OJ; end;
delta= 0.1;

[sx,xi] = sort(x);
f = f(xi,:);
[m, n] = size (f);

if size(mfini,2) == 1,
mftype = mfini.*ones(n,1);
mfs = ones(n,l)*[sx(l) sx(l) sx(m) sx(m)];
for i = 1 n,

peak(i) = mean(find(f(:,i)==max(f(:,i))));
end;
for j = 1 n;

for i = 1 peak(j),
if f(i,j) >= delta, minfl(j) f (i f j) ; mf S (j I 1) sx(i); break;

end;
end;
for i = peak(j) : -1 : 1,

if f(i,j) <= 1-delta, mfs(j,2)
end;
for i = peak(j) : m,

if f(i,j) <= 1-delta, mfs(j,3)
end;
for i = m : -1 : peak(j),

if f(i,j) >= delta, minfr(j)

sx(i); break; end;

sx(i); break; end;

f (i f j) ; mf S (j I 4) sx(i); break;
end;

end;

XII

rninx(j) = rnfs(j,1); rnaxx(j) = rnf s (j , 4) ;
if min fl (j) -= 1, rnfs (j, 1) = rnfs (j, 2) - (rnfs(j,2) - rnf s (j , 1)) ./

(1 - rninfl(j)); end
if rninfr (j) -= 1, rnfs(j,4) = rnf s (j, 3) + (rnf s (j, 4) - rnf s (j , 3)) . I

(1 - rninfr(j)); end
end;
rnfs = [rnftype rnfs];

else
mfs = mfini; mftype = mfini(:,1);
minx= mfs(:,2); maxx = mfs(:,5);

end;

for i = 1 : n,
if flag(l),

p = frnins ('mff' ,rnfs (i, [2, SJ), OPT, [J, sx (sx>=rninx (i) &
sx<=rnaxx (i)), f (sx>=rninx (i) & sx<=rnaxx (i), i) ,rnfs (i,:), 1);

mfs (i, [2, SJ) = p;
end;
if flag (2),

p fmins ('mff', mfs (i, [3, 4]), OPT, [J, sx (sx>=minx (i) &
sx<=maxx(i)),f(sx>=minx(i) & sx<=maxx(i),i) ,mfs(i, :),2);

mf s (i , [3 , 4 J) = p;
end;
if flag(3),

p = frnins('rnff',rnfs(i,2:5),0PT, [J,sx(sx>=rninx(i) &
sx<=rnaxx(i)),f(sx>=minx(i) & sx<=rnaxx(i),i),mfs(i, :) ,3);

rnfs(i,2:5) = p;
end;

end;
%%%
function [p,yrn,yl,ylm,ps,S,delta] = suglms(x,y,f,def,flag)

if nargin < 5, flag= 0; end;
if isempty(flag), flag= 0; end;
if nargin < 4, def= O; end;
if isernpty(def), def= O; end;
if nargin < 3, f = ones(size(y)); end;
if isernpty(f), f = ones(size(y)); end;
[rnx,nx] = size(x); [mf,nf] = size(f); p
sumDOF = sum([zeros(l,mf);f']) ';
sumDOF = sumDOF(~,ones(l,nf));
NoRule = (~umDOF == 0);

zeros(nf,nx) ps = p;

sumDOF sumDOF + NoRule;
xl = zeros(mx,nf*nx);
xx= zeros(nx,nf*mx);
X = X 1

; fl = X (:) ; XX (:)

fl = xl;
x I (:) = XX I;

fl (:,ones (1,nf));

if nf == 1, flag 1; end;

if flag== 0,

xx = f (:) . I sumDOF (:) ;
fl(:) = xx(:,ones(l,nx));
xl = fl.*xl;

if nargout > 5,
[Q,R]=qr(xl);
p(:) = R\Q'*y;

XIlI

else
p(:)

end;
x L \ y;

if nargout > 1,
yl = x'*p';
yrn = xl*p(:) + def.*NoRule(:,1);
ylm = yl;
mask= find(f < 0.2);
ylm(mask) = NaN*ones(size(mask));

end;

else
for i = 1 : nf,

fl= f(:,i)*ones(l,nx);
xl = sqrt(fl) .*x';

if nargout > 5,
[Q,R]=qr(xl);
p(i,:) = (R\Q'*(sqrt(f(:,i)).*y))';

else
p(i,:) = (xl \ (sqrt(f(:,i)).*y))

end;

if nargout > 1,
yl(:,i) = x'*p(~,:)';
ym(:,i) = yl(:,~);
ylm (:, i) = yl (:, ~);
mask= find(£(:,~) < 0.2);
ylm (mask, i) = ,-;-a::yo:ies (s i a e (:nask));

end;

if nargout > (,
df = mx - n=x::.x;
Rr = xl'*x:.;
r = y - x:.x?(~, :) ';
V=r'*r/d=;
M = V*inv(:e;
ps (i,:) = s~(~::.:; ~:)) ';

end;
end;
end;

if nargm.:::. > - •
S = [RC:. : =::'":::<:,

[d:: ze==.s :.=::~=-x-:)~;
[no:== ====s.:,=::x::cx-:.)]);

end;

if nargo~::. > _
E = x , ?..;
e = sq::-::. :-.s-::::.((:=::.~~) ') ');
if d= =::

cie:::.::.
else

---=--- - -- -==,

end
end;

f uncc i cr; · __ ::.h (x , =)

XIV

[sx,xi] = sort(x);
f=f(xi,:);
[m,n] =size(£);

b = [0.1367 0.1367];
a= [1 -0.7265];

for i = 1 : n,
fil = filter(b,a,f(:,i),f(l,i));
fi2 = filter(b,a,f(m:-1:1,i),f(m,i));
fi(:,il = (fil + fi2(m:-1:1)) I 2;
fi(:,i) = fi(:,i)/max(fi(:,i));
fi(l,i) =f(l,i); fi(m,i) =f(m,i);

end;

lf = zeros(l,n); rf = lf;
left= zeros(size(f)); right
for i = 1 : m,

l f = max (l f, f i (i, :)) ;
rf = max (rf, fi (m-i+l,:));
right(rn-i+l, :) = rf;
left(i, :) = lf;

end;
fm = min(left,right);

left;

if nargout == 0, plot(sx,f, 'o',sx,frn); end;

%***
function [Ym,q,DOF,Yl,Ylm] = rnodelOP(U,Y,FM,Ymin,Ymax,show,H)

%%
Ts= FM.Ts;
Ninps = FM.ni;
NO = FM.no;
ny = FM.ny;
nu= FM.nu;
nd = FM.nd;
atype = FM.ante;
C = FM.c;
m = FM.m;
fork= 1

Nr (k)
Nm(k)
Ali st

: NO,
size(FM.rls{k},1);
size (FM. mf s { k} , 1) ;
FM.Alist{k);

NI= length(Alist);
P = FM.P{k}; M = zeros(NI,NI,c(k));
for j = 1 : c (k),

M(:,:, j)
det(P(Alist,Alist,j)) .A(l/length(Alist))*inv(P(Alist,Alist,j));

end;
FM.M{k} = ~;

end;
NI= s ([ny'; zeros(l,NO)]) + sum([nu'; zeros(l,NO)]);

if isemp~y(Y}, Y = zeros(size(U,l),NO); end;
if nargir. < 4, Ymin = -inf*ones(l,NO); elseif isempty(Ymin), Ymin = -
inf*ones(:,NO); end;
if na r q i.n < 5, Ymax = inf*ones (1, NO); elseif isempty (Ymax), Ymax
inf*ones(:,NO); end;

xv

if nargin < 6, show= l; elseif isernpty(show), show= l; end;
if nargin < 7, H = 0; elseif isernpty(H), H = O; end;

DOF = zeros(size(U,l) ,surn(Nr));
Yl = DOF; Ylrn = Yl;
cind = [O curnsurn(c)];
%%
if rnax(rnax(ny)) == 0, % static model

for kk = 1 NO,
%%

Ali st
Clist
p
V
M
rls
mfs

FM.Alist{kk};
FM.Clist{kk};
FM. th{ kk};
FM. V{kk};
FM.M{kk};
FM. rls { kk};
FM.rnfs{kk};

%%
Ml= zeros(NI(kk));
Vl = ones(c(kk),l);
xl = ones(size(U,1),1);

ante= U; cons= [ante ones(size(ante,1),1)];

if atype(kk) == 1,
for j = 1 : c (kk),

xv= ante(:,Alist) - xl*V(j,Alist);
Ml = M (: , : , j) ;
if NI == 1,

d(:,j) = Ml*xv.A2;
else

d(:, j)

,i

sum ((xv*Ml. *xv) ') ';
end;

end;
d = (d+le-100) >(-1/ (rn(kk)-1));
dofe = (d ./ (surn(d')'*ones(l,c(kk))));
elseif atype(kk) == 2,

dofe = dofprod(rls(:,Alist),rnfs,ante(:,Alist));
end;

(:,cind(kk)+(l:c(kk))),Ylrn(:,cind(kk)+(l:c(kk)))J
sugval(p(:,Clist},cons(:,Clist),dofe);

DOF (: ,·cinci C:<:<} + (l: c (kk))) = dofe;

end;

elseif H >

N = size(:!',!.);
Yrn = Y;

for kk = _ .
%%%%%%%%%%~%%%

-~-,

Alise
Clis::.
p
V
M
r2.s
mf s

~-:.~_::.s-:. { kk};
~:.c.: .. :.st{kk};
.:"!·~- ~:1 { kk};
.::•:. = { :<:<) ;

~:. =~s { kk};
=Y-. =--= s { kk} ;

if Ninps -- 0,
z = Y;

else
z = [Y U];

end;
[yr, ur, yl] =regres ([Y (:, kk)

nu (kk,:)], [ones (1, NO).* (ny (kk,:) >0) nd (kk,:) J);
z J , 0 , [n y (kk, :)

%%
Ml= zeros(NI(kk));
Vl = ones(c(kk),l);
xl = ones(size(ur,1),1);

ante= ur; cons= [ante ones(size(ante,1),1)];

if atype(kk) == 1,

d = [l;
for j = 1 : c(kk),

xv= ante(:,Alist) - xl*V(j,Alist);

Ml = M (: , : , j) ;
if NI== 1,

d(:,j) = Ml*xv.A2;
else

d (:, j)
end;

end;

sum ((xv*Ml. *xv) ') ';

d = (d+le-100) .A(-1/(m(kk)-1));
dofe = (d ./ (sum(d') '*ones(l,c(kk))));

elseif atype(kk) == 2,
dofe = dofprod(rls(:,Alist),mfs,ante(:,Alist));

end;

sl = size(dofe,l);
[Ym(N-sl+l:N,kk),Yl(N-sl+l:N,cind(kk)+(l:c(kk))),Ylm(N­

sl+l:N,cind(kk)+(l:c(kk))) J = sugval(p(:,Clist),cons(:,Clist),dofe);
DOF(N-sl+l:N,cind(kk)+(l:c(kk))) = dofe;

end;

else

if Ninps > 0,
kO = max(max(max(max(ny))+l,max(max(nu))+max(max(nd))) ,2);
if size (U, 1) < kO, error (['Supply at least ' int2str (kO)

samples.']); end;
else

kO = max(max(max(ny))+l,2);
end;

data

if Ninps > 0, kmax size(U,1); else kmax size(Y,1); end;

Ym = Y;
fork= kO kmax,

for kk = 1 NO,
%%

Alist = FM.Alist{kk};

J..'VII

Clist
p
V
M
rls
mfs

FM. c:..:..::=::: "k'"I;
FM. tt 1 ,:.:.: ;
FM.V{I;:j,:};

;

;

Ml = zeros (NI e,:.:-:
Vl = ones(c(k~ ,:•·
%%%%%%%%%%%%%%~~~~~~~~~%1~1~1~1%~~~%%%%%%%%%%%%%%%%%%•

ante = t J;
for j = 1 : ~;:

ante = [a::.::=
end;
for j = 1 : ~;--~E,

ante = [a=::= ::
end;
cons = [an t e :. : •
if atype (k:-c

XV = Vl*a..::::::: _::__:_~E::

~-: :-:.:'k.-::y(Y..:•:, j), j) I l;

:-::~-nu(kk,j)-nd(kk,j)+l,i

d = [];
for j = _ : ::
Ml = IV: (: , : , : • -
d(j) = y:;-'·

end;
d = (d+le-:.. ~­
dofe = (d.

~(:;,,:}I;

.':£.. -:..');
:::::E :._,c(kk))));

elseif atype ··
dofe = cio~--­

end; ·
:,~-:..E::,,mfs,ante(Alist));

ds = sum(ci~-­
NoRule = c.s = :
ds = ds -'- ~~=?..:=..:.=
yl = cons(-:2...:..E:: T~ :,==.:.:..::=:::)';
ylm = yl;
mask=::::..::::
ylm(mas

____ ==..:i: ::~::e)*ones(l,Nr(kk)));
:-==:·T :::::E E:..::e (:nas k)) ;

Ym(k,kk) -
Yl(k,c:._::~ J
Ylm (k, ci::::;.:: ••
DO F (k-:.., ::::.::::

::::::: ::...s • .!. Ym(k-1,kk)*NoRule;
:.::: .':£.. = yl;
I.::; fr_j: J) = ylm;
~ ·:.:·:: :::,))) = dofe;

if Yrn C:·:, ;:£) <
if Ym(k,~·.-

Ym (k, kk)
Ym (k, kk)

Ymin(kk); end;
Ymax (kk); end;

end;
end;
end;

if size·~.: =E:..::: ~=,:) & size(Ym,1)>1, q = vaf(Y,Ym)·

functio::. 1:c--Y:.,y!..=.,:ie:.ta] = sugval (p,x, f,def,S)

if
if
if

na:=~:..::. < ""'­
ise:;;::::~(=-==
na:::-c;:..::. < '.:
ise=::··

=-== = 0; end;
::::: = 0; end;

nes(size(x,1) ,size(p,1)); end;
nes(size(x,1),size(p,1)); end; if

XVIII

. "

[mx,nx] = size(x); [mf,nf] = size(f);
sumDOF = sum([zeros(l,mf);f'J) ';
sumDOF = sumDOF(:,ones(l,nf));
NoRule = sumDOF == 0;
sumDOF = sumDOF + NoRule;
yl = x= p I;
ym = sum([zeros (l,mx);

(yl.*f./sumDOF) '])' + def.*NoRule(:,l);
ylm = yl;
mask= find(f < max(f') '*ones(l,nf));
ylm(mask) = NaN*ones(size(mask));

if nargin > 4 & nargout > 3,
nc = nf*nx;
[ms,ns] = size(S);
if (ms -= ns+2) I (nc -= ns)

error('S matrix must be n+2-by-n where n
end
R = S(l:nc,1:nc);
df = S(nc+l,1);
normr = S(nc+2,1);

xl = zeros(mx,nf*nx);
xx= zeros(nx,nf*mx);
X = X 1

; f 1 = X (:) ; XX (:)
fl= xl;
x L (:) = XX I;
xx= f(:) ./sumDOF(:);
fl(:) = xx(:,ones(l,nx));
xl = fl.*xl;

fl(:,ones(l,nf));

E = xl/R;
e = sqrt (l+sum ((E. *E) ') 1);

if df == 0
delta Inf*e;

else
delta normr/sqrt(df)*e;

end
end;

XIX

length (p (:)) ')

