NEAR EAST UNIVERSITY

GRADEUATE SCHOOL OF APPLIED AND SOCIAL
SCIENCES

ELLIPTIC CURVE CRYPTOGRAPHY ANALYSIS
AND IMPLEMENTATION

Hazem A. Elbaz

MASTER THESIS

DEPARTMENT OF COMPUTER ENGINEERING

Nicosia 2004

- :
P L L LI L L LR TN

NEU JURY REPORT

DEPARTMENT OF Academic Year: 20

COMPUTER ENGINEERING
STUDENT INFORMATION

Full Name Hazem A M Elbaz

Undergraduate degree | BSc. Date Received Spring

1998-2002
University The Islamic University
of Gaza CGPA 3.10

THESIS

Title | Elliptic Curve Cryptography Analysis and Implementation

Description
Analysis of Elliptic Curve Cryptography algorithms and implement ElGamal Elliptic
Curve over network communication channel to perform Encryption/ Decryption on data
transmitting.

Supervisor | Prof. Dr. Fakhraddin Mamedov | Department | Computer Engineering

DECISION OF EXAMINING COMMITTEE

The jury has decided to accept / #ejeet-the student’s thesis.
The decision was taken unanimously / by-majority--

COMMITTEE MEMBERS

Number Attending | 3 Date 5/2/2004

. Name
Assoc. Prof. Dr. Rahib Abiyev, Chairman of the jury

Assist. Prof. Dr. Dogan Haktamr, Member

Assoc. Prof. Dr. Ilham Huseynov, Member

APPROVALS /

Date Y.z-2/f— Chairman of Department
5/2/2004 ' Assoc. Prof. Dr. Dogan Ibrahim

DEPARTMENT OF COMPUTER ENGINEERING
DEPARTMENTAL DECISION

Date:5/2/2004

Subject: Completion of M.Sc. Thesis

Participants: Prof. Dr. Fakhraddin Mamedov, Assoc. Prof. Dr. Rahib Abiyev,
Assist.Prof. Dr. Dogan Haktanir, Assoc.Prof. Dr. Ilham Huseynov, Mohammed
Abdelal, Mohammed Aldiri.

DECISION

We certify that the student whose number and name are given below, has fulfilled all

the requirements for a M .S. degree in Computer Engineering. ,
CGPA

20021298 Hazem A M Elbagf . 3.857

Assoc. Prof. Dr. Rahib Abiyev, Committee Member, Computer Engineering
Department, NEU

, et
Assist. Prof. Dr. Dogan Haktanir, Committee Member , Electrical and Electronic
Engineering Department, NEU

1

Assoc. Pref. Dr. ITham Huseynov, Co ¢e Member, Computer Information System
Department, NEU

Prof. Dr. Fakhraddin Mamedov, Superviﬁor, Dean of Engineering Faculties, NEU

— Chairman of Department
Assoc. Prof. Dr. Dogan Ibrahim

Hazem A M Elbaz : Elliptic Curve Cryptography Analysis and Implementation.

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakliraddin-Mamedov

Assoc. Prof. Dr. Rahib Abiyev, Chairman of the jury, Computer
Engineering Department, NEU

| s
Assist. Prof. Dr. Dogan Haktanir, Member , Electrical and
| Electronic Engipeering Department, NEU

o

Assoc. Prof. Dr. Ilham Huseynov, Member, Computer
Information System Department, NEU

Prof. Dr. Fakhraddin Mamedov, Supervisor, Dean of Engineering
Faculties, NEU

ACKNOWLEDGMENTS

First, I would like to thank my supervisor Professor Fakhraddin Mameédov for giving

me the opportutiity to work on this interesting project and for the help and guidance

More over I want to pay special regards to my parents who are enduring these all
expenses and supporting me in all events. I am nothing without their prayers. They
also encouraged me in crises. I shall never forget their sacrifices for my education so
that I can enjoy my successful life as they are expecting. They may get peaceful life in
Heaven. At the end I am again thankful to those all persons who helped me or even
encouraged me to complete me, my project. My all efforts to complete this project
might be fruitful.

I want also to pay special thanks to my lovely aunt Najah Elbaz, she have helped me
so much in doing my master study. This thesis would not have been possible without

her help, encourage, supporting, and her prayers.

I would also like to thank my housemate tamer fatayer, who encouraged me in doing

my project.

ABSTRACT

This thesis describes ellipﬁc curve cryptosystems (ECCs), which are expected to
become the next-generation public key cryptosystems. ECC requires a shorter key
length than RSA cryptosystems, which will be one of standards of public key
cryptosystems, but provide equivalent security levels. Because of the shorter key

length, ECCs is fast and can be implemented with less hardware.

The application of elliptic curves to the field of cryptography has been relatively
recent. It has opened up a wealth of possibilities in terms of security, encryption, and
real-world applications. In particular, we are interested in public key cryptosystems

that use the elliptic curve discrete logarithm problem to establish security.
The objective of this thesis is to assemble the most important facts and findings into a

'board, unified overview of this field. To illustrate certain points, we also discuss a

sample implementation of the elliptic curve analogue of ElGamal cryptosystem.

ii

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS
INTRODUCTION

IINTRODUCTION TO CRYPTOGRAPHY

1.1 Overview

1.2 What is Cryptography?

1.3 What Cryptography Can Do?

1.4 What Cryptography Cannot Do?

1.5 Symmetric Key Cryptography

1.6 Asymmetric Key Cryptography

1.7 Modern use of cryptography

1.8 Cryptanalysis and attacks on Cryptosystems
1.9 Summary

OVERVIEW OF ABESTRACT ALGEBRA
2.1 Abstract Algebra

2.2 Groups

2.3 Rings

2.4 Integer module n -

2.5 Fields

2.6 Finite Fields

2.7 Elliptic Curve over GF(p)
2.8 Summary

ELLIPTIC CURVE CRYPTOGRAPH

3.1 Overview
3.2 Elliptic Curve
3.3 Addition Low
3.4 Factorization and Discrete Logarithm Problem
3.4.1 Integer Factorization Problem (IFP)
3.4.2 Discrete Logarithm Problem (DLP)
3.4.2.1 Cryptosystem based on DLP -

3.5 Elliptic Curve Discrete Logarithm Problem (ECDLP)

3.6 Elliptic Curve Cryptography

ii
iii

O 00 ~1 W»ni w1 nhho—

13
14
16

17
17

17
19
20
22
23
25
27

28
28

29
32
36
37
39
39
41
42

3.6.1 Elliptic Curve Cryptosystems
3.6.2 Security and Efficiency of ECC
3.6.2.1 Security of ECC
3.6.2.2 Efficiency of ECC
3.6.2.2.1 Computational Overheads
3.6.2.2.2 Key Size
3.6.2.2.3 Bandwidth
3.6.3 Comparison bettween ECC and RSA
3.6.3.1 Size key
3.6.3.2 Speed
3.6.4 Possible to attack ECC
3.6.4.1 Naive Approach
3.6.4.2 Shanks' Method (baby-step, giant-step)
3.6.4.3 Pohling-Hellman Attack
3.6.4.4 Index And Xedni Calculus
3.6.4.5 Special-Purpose Attacks
3.6.4.6 Suggestions to avoid
3.6.5 Standards of the ECC algorithms
3.7 Elliptic Curve Protocols
3.7.1 Elliptic Curve Diffie-Hellman Algorithm (ECDHA)
3.7.1.1 Integer Diffie-Hellman key Exchange.
3.7.1.2 Elliptic-curve Diffie-Hellman key Exchange.
3.7.2 Digital Signature
3.7.2.1 Digital Signature Algorithm (DSA)
3.7.2.2 Elliptic Curve Digital Signature Algorithm
(ECDSA)
3.7.3 Encryption (ElGamal Elliptic Curve)
3.7.3.1 ElGamal Cryptosystem
3.7.3.2 ElGamal Elliptic Curve Cryptosystem
3.7.4 Menezes-Vanstone Elliptic Curve Cryptosystem
3.8 Summary
IMPLEMENTATION MENEZES ECC ENCRYPTION

USING VISUAL C++ 6.0

iv

42
45
45
47
48
48
48
49
49
51
54
54
54
55
56
56
57
57
59
59
59
60
62
63
65

68
68
69
71
72
73

4.1 Overview

4.2 Program Explanation

4.3 Design of Program
4.3.1 Generate public key
4.3.2 Encrypt file
4.3.3 Decryption file

4.4 Summary

CONCLUSION
REFERENCES
APPENDICES

73
73
78
79
80
82
83
84

85
91

INTRODUCTION

The word “Cryptography” is derived from the Greek and it literally means “secret
writing”. Cryptography has been around for more than a thousand years and the Roman
Empire was thought to be the masters of cryptography as they used simple cipher
techniques to hide the meaning of messages. Some of the earlier and popular
cryptographic techniques were Caesar cipher, Substitution cipher and Transposition
ciphers. Cryptography is the process of encrypting the plain text into an
incomprehensible cipher text by the process of Encryption and the conversion back to

plain text by process of Decryption.

The basic of any cryptographic algorithm is the “seed” or the “key” used for
| encrypting/decrypting information. Many of the cryptographic algorithms are available
| publicly, though some organizations believe in having the algorithm a secret. The
general method is in using a publicly known algorithm while maintaining the key a
secret [9] .

Hence the common method adopted is to use a public key system to securely transmit a
“secret key”. Once we have securely exchanged athefKe‘y, we then use this key for
encryption and decryption using a Symmetric Key algorithm ’[9]. So now there is
question asked itself; why public key crypotograpphy needed?

Until recently, most users of cryptography were military and/or diplomatic
organizations that, by their very nature, were a small, finite number of individuals who

would share a system of keys distributed internally.

The relatively recent advent of computer network communication has changed the
nature of the average user of cryptography. Now, every time you order that book from
some book web sites, do your banking online, or electronically sign your email, your are
using some sort of cryptography. Because we may require secure communications with
many different parties, these parties constantly changing, the use of classical

cryptography quickly becomes unwieldy in all but the smallest of networks.

Therefore, new requirements are made of cryptosystems, such as authentication, non-
repudiation, message integrity, and distributed trust, which go beyond mere message

hiding [7] .

Elliptic curve cryptography has appeared as a promising new branch of public-key
cryptography in recent years, due to its potential for offering similar security to
established public-key cryptosystems at reduced key sizes. Improvements in various
aspects of implementation, including the generation of elliptic curves, have made
elliptic curve cryptography more practical than it was when first introduced in the
1980's. As security of elliptic curve cryptography becomes better understood, a chance
is available to develop standards for this technology, thereby promoting interoperability

at the same time as implementations are being deployed.

In 1985 Niel Koblitz and Victor Miller independently proposed the Elliptic Curve
Cryptosystem (ECC), a method of utilizing a Discrete Logarithm problem over the

points on an elliptic curve.

Most cryptosystems based upon -the ‘assumed difficulty of the - discrete logarithm

problem for finite fields have analogous elliptic curve versions [10].

Over the past 12 years, ECC and later ECDLP (Elliptic Curve Discrete Logarithm
Problem) has received considerable attention from mathematicians around the world,
and no significant breakthroughs have been made in determining weaknesses in the

algorithm [10] .

Although critics are still skeptical as to the reliability of this algorithm, several
encryption techniques have been developed recently using these properties. The fact
that the problem appears so difficult to crack means that key sizes can be dropped in

size considerably — even exponentially.

The idea of usiﬁg Elliptic curves in cryptography as an alternative to established public-
key systems such as DSA and RSA. The Elliptical curve Discrete Log Problem
(ECDLP) makes it difficult to break an ECC as compared to RSA and DSA where the

problems of factorization or the discrete log problem can be solved in sub-exponential
time. This means that significantly smaller parameters can be used in ECC than in other
competitive systems such as RSA and DSA. This helps in having smaller key size hence

faster computations.

This thesis discusses popular algorithm using Elliptic curve, and comparing the old
algorithm that doesn’t use Elliptic Curve Schema with the developed algorithm with
Elliptic Curve Schema. The result of the thesis is implementing Encryption/Decryption
«algorithm that use Elliptic Curve Schema, which is ElGamal Elliptic Curve, it
implemeted with VC++ 6.0. T choice this algorithm because all resarchs and publishes
concerns on Key Exchange using Diffie-Helman and Digital Signature using DSA,

where developed using Elliptic Curve Schema.

The aim of this thesis is: to analyze Elliptic Curve Cryptography algorithms and to
apply ElGamal Elliptic Curve over network communication channel to perform

Encryption/ Decryption on data transmiting.

This thesis includes four chapters covering the main topics related in the following

structure:

Chapter 1, Discusses the cryptography as whole; definition and types of cryptography,
mechanism of public key cryptography, techniques used in cryptography and the key
management process, what can cryptography do and what can’t do, Modern using of

cryptography and at last cryptanalysis and attack on cryptosystems

Chapter 2, Processes the abstract of algebra as, Groups, Rings, Fields and Finite Fields,
and the properties of these concepts and the behavior of Elliptic Curve over it, also how

can we use it in our purpose.

Chapter 3, Gives the Elliptic Curve Cryptography as, history of elliptic curve, what is
elliptic curve in mathematics concepts, the problems the elliptic curve depends on,
Elliptic Curve Cryptosystem, and at last elliptic curve protocols and how it different

between new one and old one.

Chapter 4, Presents the developed application of elliptic curve cryptography based on
the ElGamal Elliptic Curve Algorithm.

Finally in conclusion the obtained important results for the thesis are given.

1. INTRODUCTION TO CRYPTOGRAPHY

1.1 Overview

This chapter plans to give the reader a bottoms-up introduction to the basics of
cryptography and this is the goal. Special emphasis will be given to the differences,
advantages, and disadvantages of the various methods used in cryptography, without

delving too deeply into the mathematical foundations of cryptography [41].

The origin of the word cryptology lies in ancient Greek. The word cryptology is made
up of two components: "kryptos", which means hidden and "logos" which means word.
Cryptology is as old as writing itself, and has been used for thousands of years to
safeguard military and diplomatic communications. For example, the famous Roman
emperor Julius Caesar used a cipher to protect the messages to his troops. Within the
field of cryptology one can see two separate divisions: cryptography and cryptanalysis.
The cryptographer seeks methods to ensure the safety and security of conversations

while the cryptanalyst tries to undo the former's work by breaking his systems [43].

The basic idea behind cryptography isas follows The message passes through a filter to
“encrypt the message into the c1phertext The c1phertext goes to the receiver who passes

the ciphertext through a related filter to decrypt the message and obtam the plamtext

1.2 What is Cryptography?
~ The word “cryptography” is derived from Greek and when literally translated, means
| “secret writing.” Before the advent of digital commumcatlons cryptography was used
primarily by the military for the purposes of esplonage Wlth the advances in modern
“communication, technology has enabled businesses and 1nd1v1duals to transport
information at a very low cost via public networks such as the Internet. This
development comes at the cost of potentially exposing the data transmitted over such a
medium. Therefore, it becomes imperative for businesses to make sure that sensitive
data is transferred from one point to another in an airtight, secure manner over public
, ‘networks. Cryptography can help us achieve this goal by making messages
unintelligible to all but the intended recipient [41].

Encryption refers to the transformation of data in “plaintext” form into a form called

“ciphertext,” which renders it almost impossible to read without the knowledge of a
“key,” which can be used to reverse this transformation. The recovery of plaintext from
the ciphertext requires the key, and this recovery process is known as decryption. This
key is meant to be secret information and the privacy of the ciphertext depends on the

cryptographic strength of the key.

Types of Cryptography
There are two types of cryptographic algorithms: Secret Key Cryptography and Public

Key Cryptography.

Secret Key Cryptography:
- This crypto-system uses the same key for both encryption and decryption (this is also
referred to as “symmetric” cryptography).
- Both the sender and the receiver need to have the same key in order to communicate
successfully.
- Examples: DES, 3-DES, RC4, RCS, etc [41].
Advantages:
o Very fast relative to public key cryptography;
o Considered secure, provided the key is relafiizelyk‘étréngjj o
o The ciphertext is compact (that is, encryption does not add much excess
“baggage” to the ciphertext); |
o Widely used and very popular.
Disadvantages:
o The administration of the keys can become extremely complicated;
o A large number of keys is needed to communicate securely with a large group
of people; | ‘
o Non-repudiation is not possible.

o The key is subject to interception by hackers.

Public Key Cryptography
- This crypto-system uses one key for encryption and another key for decryption (also
known as “asymmetric” cryptography).

- Each user has two keys — one public key, which is revealed to all users, and one
private key, which remains a secret. The private key and the public key are
mathematically linked.
- Encryption is performed with the public key and decryption is performed with the
private key.
- Examples: RSA, Elliptic Curve Cryptography (ECC) [41].
Advantages:
o Considered very secure;
o No form of secret sharing is required, thus reducing key administration to a
minimum;
o Supports non-repudiation;
o The number of keys managed by each user is much less compared to secret
key cryptography.
Disadvantages:
o Much slower compared to secret key cryptography;

o The ciphertext is much larger than the plaintext, relative to secret key

cryptography.

1.3 What Cryptography Can Do : e
Potentially, cryptography can hlde information whlle it is in trans1t or storage In
general, cryptography can:

- Provide secrecy.

Authenticate that a message has not changed in transit.

- Implicitly authenticate the sender.

- Cryptography hides wordls: At most, it can only hide zz2/fzng abowus contraband or illegal

- actions. But in a country with "freedom of speech,” we normally expect crimes to be

more than just "talk." |

Cryptography can kill in the sense that boots can kill; that is, as a part of some other
process, but that does not make cryptography like a rifle or a tank. Cryptography is
defensive, and can prozect ordinary commerce and ordinary people. Cryptography may
be to our private information as-our home is to our private property, and our home is our

"castle."

Potentially, cryptography can hide secress, either from others, or during communication.
There are many good and non-criminal reasons to have secrets: Certainly, those
engaged in commercial research and development (R&D) have "secrets" they must
keep. Business often needs secrecy from competitors while plans and laid and executed,
and the need for secrecy often continues as long as there are business operations.
Professors and writers may want to keep their work private, until an appropriate time.
Negotiations for new jobs are generally secret, and romance often is as well, or at least
we might prefer that detailed discussions not be exposed. And health information is

often kept secret for good reason.

One possible application for cryptography is to secure on-line communications between
work and home, perhaps leading to a society-wide reduction in driving, something we

could all appreciate.

1.4 What Cryptography Can Not Do

Cryptography can only hide information g/fer it is encrypted and w/i/e it remains
encrypted. But secret information generally does not sz ous encrypted, so there is
normally an original period during’ which ‘the secre‘t*:isf not - protected. And ‘secret
information generally is not wsed-in : encfypted" fb‘fmi,f :’:”s'o:l,it‘jis5~ ag'aiin“: outside the

cryptographic envelope every time the secret is used.

Secrets are often related to public information, and subsequent activities based on the
secret can indicate what that secret is.
And while cryptography can hide wordls; it cannot hide:

- Physical contraband,

- - Cash,

- Physical meetings and training,

- Movement to and from a central location,

- An extravagant lifestyle with no visible means of support, or °

- Actions.

And cryptography simply cannot protect against:

- Informants,

- Undercover spying,
- Bugs,
- Photographic evidence, or

- Testimony.

It is a joke to imagine that cryptography alone could protect most information against
Government investigation. Cryptography is only a small part of the protection needed

for "absolute" secrecy [45].

1.5 Symmetric Key Cryptography

Symmetric key algorithms, known as secret-key algorithms, use a the same key for both
encryption and decryption. Symmetric-key systems are simpler and faster than
Asymmetric-key (public-key) systems, but their main drawback is that the two parties

must somehow exchange the key in a secure way.

- Symmetric algorithms can be divided into stream ciphers and block cipher. Stream
~ ciphers can encrypt a single bit of plaintext at a time, whereas block ciphers take a
‘number of bits (typically 64 bitsin modern ciphers), and encrypt them as a single unit.
The most popular symmetric-key system: ”is,ithe_~~sD‘a‘ta&Ehcryptioni Stahda‘rd’“(DES)
‘developed in 70s. DES is a block ciper with 64-bit block size. It uses 56-bit key. With
this key length, DES is considerated as unsafe for the future use. There is a variant of
bES, Triple-DES or 3DES. It is based on using DES three times (in an encrypt-
" decrypt-encrypt sequence with three different, unrelated keys) Since November 1998,

DES was no longer allowed for US government use.

A block cipher is a type of symmetric-key encryption algorithm that transforms a fixed-
- length block of plaintext data into a block of ciphertext data of the same length. This

transformation takes place under the action of a user-provided secret key. Applying the

reverse transformation to the ciphertext block using the same secret key performs
~decryption. The fixed length is called the block size, and for many block ciphers, the
blogﬁk size is 64 bits, for example DES. This means ‘that they take a fixed-size block of
data, an trahsform it to another 64 bit block using a function selected by the key. The

cipher basically defines a one-to-one mapping from 64-bit integers to another

permutation of 64-bit integers [46].

The following list summarizes the private key systems in common use today.
ROT13
A simple cryptography algorithm, which is used, among other things, to obscure the
content of risqué jokes on various Usenet groups. The ROT13 encryption algorithm has
no key, and it is not secure.
. Crypt
The original UNIX encryption program which is modeled on the German Enigma
encryption machine. Crypt uses a variable-length key. Some programs can
bautomatically decrypt cryprencrypted files without prior knowledge of the key or the
'7 plaintext. crypt is not secure. (This program should not be confused with the secure one-
way c#ypz program that UNIX uses for encrypting passwords.)
DES
‘The Data Encryption Standard (DES), an encryption algorithm developed in the 1970s

by the National Bureau of Standards and Technology (since renamed the National
Institute of Standards and Technology, or NIST) and IBM. DES uses a 56-bit key.
Technically, we should refer to it as the DEA?:i‘Data*EnCryption Algorithm. Standard-
conforming implementations are certified by NIST, and usually :require a hardware
implementation. However, nearly everyone refers to it as the DES, so we will too.
RC2

‘A block cipher originally developed by Ronald Rivest and kept as a trade secret by RSA
“Data Security. This algorithm was revealed by an anonymous Usenet posting in 1996
and appears to be reasonably strong (although there are some particular keys that are
~ weak). RC2 is sold with an implementation that allows keys between 1 and 2048 bits.
The RC2mail key length is often limited to 40 bits in software that is sold for export,
Unfortunately, a 40-bit key is vulnerable to a brute force attack.
RC4
A stream cipher originally developed by Ronald Rivest and kept as a trade secret by
RSA Data Security. This algorithm was revealed by an anonymous Usenet posting in
1994 and appears to be reasonably strong (although there are some particular keys that
are weak). RC4 is sold with an implementation that allows keys between 1 and 2048

10

bits. The RC4 key length is often limited to 40 bits in software that is sold for export,
Unfortunately, a 40-bit key is vulnerable to a brute force attack.

RCS

A block cipher developed by Ronald Rivest and published in 1994. RCS allows a uset-
defined key length, data block size, and number of encryption rounds.

IDEA

The International Data Encryption Algorithm (IDEA), developed in Zurich, Switzerland
by James L. Massey and Xuejia Lai and published in 1990. IDEA uses a 128-bit key,
and is believed to be quite strong. IDEA is used by the popular program PGP (described
later in this chapter) to encrypt files and electronic mail. Unfortunately, wider use of
IDEA may be hampered by a series of software patents on the algorithm, which is
currently held by Ascom-Tech AG, in Solothurn, Switzerland. Ascom-Tech supposedly
will allow IDEA to be used royalty free in implementations of PGP outside the U.S., but
concerned users should verify the terms with Ascom-Tech or their licensees directly.
Although we are generally in favor of intellectual property protection, we are opposed
to the concept of software patents, in part becauéc they hinder the development and use
of innovative software by individuals and small companies.

Skipjack ; ,

A classified (SECRET) algorithm developed by ~the“-Nationé1'{Se:,c'urityngen’cy (NSA).
Reportedly, a Top Secret security clearance is required to see the ﬁ"algO‘ritM's source
code and design specifications. Skipjack is the algorithm used by the Clipper encryption
chip. It uses an 80;bit key [42].

1.6 Asymmetric Key Cryptography

Unlike symmetric key algorithms, public key algorithms use a different key for
" encryption and decryption. The decryption key cannot (practically) be derived from the
encryption key. The merit of public key algorithms is that they can be used to transmit
encryption keys or other data securely even when the parties have no opportunity to

agree on a secret key in private.

RSA (Rivest-Shamir-Adelman) is developed by Ron Rivest, Adi Shamir, and Leonard
Adleman in 1977. This public-key cryptosystem offers both encryption and digital

 signatures (authentication). It is generally considered to be secure when sufficiently

11

long keys are used (512 bits is insecure, 768 bits is moderately secure, and 1024 bits is

good) [46].

The following list summarizes the public key systems in common use today:
Diffie-Hellman

A system for exchanging cryptographic keys between active parties. Diffie-Hellman is
not actually a method of encryption and decryption, but a method of developing and
exchanging a shared private key over a public communications channel. In effect, the
two parties agree to some common numerical values, and then each party creates a key.
Mathematical transformations of the keys are exchanged. Each party can then calculate
a third session key that cannot easily be derived by an attacker who knows both

exchanged values.

Several versions of this protocol exist, involving a differing number of parties and
different transformations. Particular care must be exercised in the choice of some of the
numbers and calculations used or the exchange can be easily compromised. If you are

interested, consult the references for all the gory details.

The Diffie-Hellman algorithm is frequently used as ~~‘~i',theﬁi~‘«2~b~ésisfﬁ for exchanging
cryptographic keys for encrypting a communications link. The keyf‘mays:be 'i’a’n‘y,length,
depending on the particular implementation used. Longer keys are generally more
secure. |
"RSA

The well-known public key cryptography system developed by (then) MIT professors
Ronald Rivest and Adi Shamir, and by USC professor Leonard Adleman. RSA can be
used both for encrypting information and as the basis of a digital signature system.
:Digital signatures can be used to prove the authorship and authenticity of digital
information. The key may be any length, depending on the particular implementation
: used. Longer keys are generally considered to be more secure.

ElGamal

Another algorithm based on exponentiation and modular arithmetic. ElGamal may be
" used for encryption and digital signatures in a manner similar to the RSA algorithm.

Longer keys are generally considered to be more secure.

12

DSA

The Digital Signature Algorithm, developed by NSA and adopted as a Federal
Information Processing Standard (FIPS) by NIST. Although the DSA key may be any
length, only keys between 512 and 1024 bits are permitted under the FIPS. As specified,
DSA can only be used for digital signatures, although it is possible to use DSA
implementations for encryption as well. The DSA is sometimes referred to as the DSS,

in the same manner as the DEA is usually referred to as the DES [42].

1.7 Modern use of cryptography

Actually, public key cryptography is really interesting because it is ‘easy to use and it
solves many security problems unsolved so far. More -precisely, it solves a few
authentication problems: | '

- Identifying individuals: using anonymous communications means of today,
Alice wants to be sure the person with whom she is talking is not cheating and
impersonating Bob. To do so, she uses an identifying protocol. Multiple
identifying protocols exist and commonly rely on the principles of RSA or of
discrete logarithm.

- Document authentications an authority authenticates documents through a
digital signature. Signing consists in appending a few bits whicharekthe result
of some processing with document and authority as %iriput, and which are
generally hashed by a hash algorithm such as MD5 or SHA. 'Moreover, any
person with access to the document should be able to verify the authority has
really issued that signature. To do so, signature schemas are used. One of the
most famous signature schemes is ElGamal - once more based on discrete

logarithm problems.

Besides, as secret key cryptography, public key cryptography provides encryption-based

cryptosystems, guaranteeing confidentiality of communications.

Let's imagine Alice wants to communicate secretly with Bob. Alice retrieves Bob's
public key in a public directory, and enciphers her message with this key. When Bob
receives the ciphertext, he uses his private key to decipher the ciphertext and read initial -

clear text. Both keys have very different roles, this explains why such systems are called

13

asymmetric cryptosystems - referring to secret key cryptosystems, which use the same

key for encipherment and decipherment and are also know as symmetric cryptosystems.

Public key cryptography offers another major benefit over secret key cryptography. As
a matter of fact, if n users communicate through a secret key cryptosystem, each of
them needs one different secret key for each person in the group. So, n(n-1) keys need
to be managed. If n is over thousands of users, then millions of keys need to be
managed... Furthermore, adding a new user to the group is not an easy task, because n
new keys need to be generated for the user to communicate with all members of the
group. Then, those new keys need to be sent over to the group. On the contrary, in
asymmetric cryptosystems, the n public keys of the members are stored ‘in a public
directory. Adding a new user simply consists in adding his public key to the directory

[44].

1.8 Cryptanalysis and attacks on Cryptosystems
Cryptanalysis is the art of deciphering encrypted communications without knowing the
proper keys. There are many cryptanalytic techniques. Some of the more important ones

for a system implementer are described below.

" Ciphertext-only attack: This is the situation where the. attacker . does not know
- anything about the contents of the message, and must work from ciphertext only. In
practicé it is quite often possible to make guesses about the plaintext, as many types of

messages have fixed format headers. Even ordinary letters and documents begin in a

very predictable way. It may also be possible to guess that some ciphertext block

contains a common word.

o Known-plaintext attack: The attacker knows or can guess the plaintext for
some parts of the ciphertext. The task is to decrypt the rest of the ciphertext
blocks using this information. This may be done by determining the key used to
encrypt the data, or via some shortcut.

e Chosen-plaintext attack: The attacker is able to have any text he likes
encrypted with the unknown key. The task is to determine the key used for
encryption. Some encryption methods, particularly RSA, are ‘extremely

vulnerable to chosen-plaintext attacks. When such algorithms are used, extreme

14

care must be taken to design the entire system so that an attacker can never have
chosen plaintext encrypted.

o Man-in-the-middle attack: This attack is relevant for cryptographic
communication and key exchange protocols. The idea is that when two parties
are exchanging keys for secure communications (e.g., using Diffie-Hellman), an
adversary puts himself between the parties on the communication line. The
adversary then performs a separate key exchange with each party. The parties
will end up using a different key, each of which is known to the adversary. The
adversary will then decrypt any communications with the proper key, and
encrypt them with the other key for sending to the other party. The parties will
think that they are communicating securely, but in fact the adversary is hearing
everything.

e One way to prevent man-in-the-middle attacks is that both sides compute a
cryptographic hash function of the key exchange (or at least the encryption
keys), sign it using a digital signature algorithm, and send the signature to the
other side. The recipient then verifies that the signature came from the desired
other party, and that the hash in the signature matches that computed locally.
This method is used e.g. in Photuris.

Timing Attack: This very recent attaék is béséd on kr‘épekatedly measuring the
exact execution times of modular exponentiation operations. It is relevant to at
least RSA, Diffie-Hellman, and Elliptic Curve methods. More information is

available in the original paper and various follow up articles.

There are many other cryptographic attacks and cryptanalysis techniques. However,
these are probably the most important ones for a practical system designer. Anyone
‘contemplating to design a new encryption algorithm should have a much deeper
understanding of these issues. One place to start looking for information is the excellent
book Applied‘ Cryptography by Bruce Schneier [47].

15

1.9 Summary
This chapter gave basic concepts of what is cryptography and what can cryptography do
and can’t do, it describe the both type of cryptography Symmetric and Asymmetric

methods, also it gave brief idea of algorithms of each type, it show also the modern

using of cryptography and the cryptanalysis of attacks of cryptography.

16

2. OVERVIEW OF ABESTRACT ALGEBRA

2.1 Abstract Algebra
Abstract algebra is the field of mathematics concerned with the study of algebraic

structures such as groups, rings and fields. The term "abstract algebra" is used to
distinguish the field from "elementary algebra" or "high school algebra" which teaches
the correct rules for manipulating formulas and algebraic expressions involving real and

complex numbers.

Historically, algebraic structures usually appear first in some other field of mathematics,
were specified axiomatically, and were then studied in their own right in abstract
algebra. Because of this, abstract algebra has numerous fruitful connections to all other

branches of mathematics.

Examples of some algebraic structures with a single binary operation are:

e groups
® rings
e modules
e fields

In universal algebra, all those definitions and facts are collected that apply to all-
algebraic structures alike. All the above classes of objects, together with the proper
notion of homomorphism, form categories, and category theory frequently provides the

formalism for translating between and comparing different algebraic structures [30].

2.2 Groups

A great many of the objects investigated in mathematics turn out to be groups, including
familiar number systems, such as the integers, rational, real, and complex numbers
under addition, non-zero rational, real, and complex numbers under multiplication, non-
singular matricies under multiplication, invertable functions under composition, and so
on. Group Theory allows for the properties of these systems and many others to be
- investigated in a more general setting, and its results are widely applicable. Group

theory is also a rich source of theorems in its own right. Groups underlie the other

17

algebraic structures such as fields and vector spaces and are also important tools for
studying symmetry in all its forms. For these reasons, group theory is considered to be

an important area in modern mathematics [31].

A group G is a finite or infinite set of elements together with a binary operation, which
together satisfy the four fundamental properties of closure, associativity, the identity
property, and the inverse property. The operation with respect to which a group is
defined is often called the “group operation" and a set is said to be a group “under" this
operation. Elements A, B, C, ...with binary operation between A and B denoted AB
form a group if:

a. Closure: If A,B € G, then AB € G:

b. Assosiativity: For all A,B,C G, (AB)C = A(BC).

Identity: There exists an element I such that Al =IA =A for all AeG.
d. Inverse: For every A € G, there exists an element B = A such that

AB=BA=I[7].

2.2.1 Abelian Groups
Abelian groups are groups where all elements in that group commute. That is, for group

G,AB=BA forall A B €G[7].

If a group is abelian, we usually write the operation as + instead of *, the identity
element as O (often called the zero elemens in this context) and the inverse of the

element # as -«

Examples of abelian groups include all cyclic groups such as the integers Z (with
addition) and the integers modulo /z’ Z, (also with addition). The real numbers form an
| “abelian group with addition, as do the non-zero real numbers with multiplication. Every
field gives rise to two abelian groups in the same fashion. Another important example is

the factor group Q/Z, an injective cogenerator [32].

If #» is a natural number and » is an element of an abelian group &, then zr can be
defined as » + x + ... + x (# summands) and (-#).r = -(zr). In this way, &' becomes a

;module over the ring Z of integers. In fact, the modules over Z can be identified with

18

the abelian groups. Theorems about abelian groups can often be generalized to theorems
about modules over principal ideal domains. An example is the classification of finitely

generated abelian groups.

Any subgroup of an abelian group is normal, and hence factor groups can be formed
freely. Subgroups, factor groups, products and direct sums of abelian groups are again
abelian. If / g : G — A are two group homomorphisms between abelian groups, then
their sum g, defined by (F2)(x) = Ax) + g(x), is again a homomorphism. (This is not
true if /s a non-abelian group). The set Hom(G, /4) of all group homomorphisms from

G'to Athus turns into an abelian group in its own right.

The abelian groups, together with group homomorphisms, form a éategory, the

prototype of an abelian category.

Somewhat akin to the dimension of vector spaces, every abelian group has a raz£ It is
defined as the cardinality of the largest set of linearly independent elements of the
group. The integers and the rational numbers have rank one, as well as every subgroup
of the rationals. While the rank one torsion-free abelian groups are well understood,
even finite-rank abelian groups are not well 'undérStOOd. Infinite-rank abelian groups
can be extremely complex and many open questions exist,,fibften -fi‘ntimatelyk connected to

questions of set theory [32].

2.3 Rings
A ring is a set S together with two binary operators + and *(addition and multiplication,
respectively) satisfying the following conditions: -
- Additive associativity: Forall a,b,c € S,(a+b)+c=a+(b+c).
1. Additive commutativity: Foralla,be S, a+b=b+a.
2. Additive identity: There exists an element 0 € S such that for all a € S,
0+a=a+0=a.
3. Additive inverse: For every a € S there exists -a € S such that
at(-a)=(-a)+a=0.
4, Multiplicative associativity: Foralla,b,c € S,(a*b)*c=a* (b * ¢).

5. Left and right distributivity: For all a, b, ¢ € S, a*(b + ¢) = (a*b)+(a*c)

19

and (b+c)*a=(b*a)+(c*a).

This means that a ring is an abelian group under addition [7, 33].

2.4 Integer module n

A left Zmodule consists of an abelian group (44 +) together with a ring of scalars
(R+,*) and an operation & x 47 -> A/ (scalar multiplication, usually just written by
juxtaposition, i.e. as 7 for #in £and xin 47) such that for all 7sin 4, 1 in A we have:
1. (m)xr=(sx)

2. (Hs)x=rrtsy
3. rlrty) = rrtry
4

lr=x
Usually, we simply write "a left Z-module 47" or A/

Some authors omit condition 4 for the general defintition of left modules, and call the
above defined structures "unital left modules". In this encyclopedia hovvever, all

modules are assumed to be unital.

A right Z-module 47 or My is defined similarly, only the ring acts on ~thé,right, ie. we
- have a scalar multiplication of the form #/'x £ -> 44, and the above three axioms are
written with scalars »and .5 on the right of xand . If £is commutative, then the left A~

module is the same as the right #-module and is simply called an A-module [34].

If R1is a field, then an Amodule is also called a vector space. Modules are thus
generalizations of vector spaces, and much of the theory of modules consists of
recovering desirable properties of vector spaces in the realm of modules over certain

rings. However, in general, an A~module may not have a basis [35].

 Every abelian group 4/is a module over the ring of integers Z if we define zr=

x+x+ ... + x (2 summands) for »> 0, 0.x= 0, and (-2).x = -(szx) for z <0.

20

o If #is any ring and # a natural number, then the cartesian product K is a

module over Zif we use the component-wise operations.
e If #/is a smooth manifold, then the smooth functions from 47 to the real
- numbers form a ring £ The set of all vector fields defined on 47form a module
over £, and so do the tensor fields and the differential forms on A/
e The square 7-by-7 matrices with real entries form a ring 4, and the Euclidean
space R” is a left module over this ring if we define the module operation via
matrix multiplication.

o If Ris any ring and /is any left ideal in £, then /is a left module over £ [35].

Submodules and homomorphisms :
Suppose 4/ is an Amodule and #is a subgroup of 4 Then Ais a~$ubm’odule (or &
submodule, to be more explicit) if, for any #in /and any ~in /&, the product 7zis in &/

(or zrfor a right module) [34, 35].

If A and / are left A-modules, then a map /: & -> NV is a homomorphism or A-
modules if, for any 7 #in A7 and 7 5 in &, frm + sn) = ;/m) + sA7). This, like any
homomorphism of mathematical objects, is just a mapping Wthh preserves the structure

of the objects.

Alternative definition as representations : ; . o

If A7is a left A~module, then the aczzon of an element 7in A is defined to kbe the map 47
— A/ that sends each v to #r (or a7 in the case of a right module), and is necessarily a

group endomorphism of the abelian group (44+). The set of all group endomorphisms

of /is denoted Endgz(47) and forms a ring under additioh and composition, and sending

a ring element » of £ to its action actually defines a ring homomorphism from £ to

Endz(/II).

Such a ring homorphism £ — Endz(4#4) is called a representarion of &R over the abelian
group 4% an alternative and equivalent way of defining left Z~modules is to say that a

left Zmodule is an abelian group 4/together with a representation of £ over it.

21

A representation is called szl it and only if the map £ — Endz(47) is injective. In
terms of modules, this means that if 7is an element of & such that 7+=0 for all .xin 47
then 7=0. Every abelian group is a faithful module over the integers or over some

-modular arithmetic Z/#Z [34].

2.5 Fields

A field is an algebraic structure in which the operations of addition, subtraction,
multiplication, and division (except division by zero) may be performed and the
associative, commutative, and distributive rules hold, which are familiar from the

arithmetic of ordinary numbers.

Fields are important objects of study in al‘gébré* since they provide the proper
generalization of number domains, such as the sets of rational numbers, real numbers,

or complex numbers. Fields used to be called rational domains.

The concept of a field is of use, for example, in defining vectors and matrices, two
structures in linear algebra whose components can be elements of an arbitrary field.
Galois theory studies the symmetry of equa’uons by 1nvest1gat1ng the ways in Wthh

fields can be contained in each other [36]. -

Definition: A field F is a nonempty set together with two binary operations |

+:FXF—Fand.:FXF—F such that:

1. (F, +) is an abelian group.

2. (F — {0}, .) is an abelian group. (Here 0 represents the identity element for
the + operation)

3.Foralla,b,c € F,a.(b+c)=a.b+a.c.

4.0 # 1. (The identity elements for the addition and multiplication operations

are distinct) [18].
As an example of a finite field, let p be a prime number and consider the set

Z,={0,1,2, ..., p-1}

give with the usual operations of addition and multiplication modulo p.

22

The only part of the definition that is not clear satisfied is that each element of Z,- {0}
has a multiplicative inverse. Clearly 1 is its own inverse, so consider n,
where 2 < n < p- 1. Since ged(n, p) = 1, there exist integers x and y such that

xn+yp=1,s0xn = 1(mod p), i.e. xn =1 and so x is a multiplicative inverse for n [18].

We can also talk about elliptic curves over a finite field. For example, we can consider
E : y2=x3 + 1 as an elliptic curve over Z3. A short calculation shows that

E (Z3) = {0, (0,1), (0,2), (2, 0)}.

2.6 Finite Fields
Finite field play a crucial role in many cryptographic algorithms. It can be shown that
the order of finite (number of elements in the field) must be a power of a prime p",

where n positive integer.

The finite field of order p" is generally written GF(p"); GF stands for Galois field, in

honor of the mathematical who first studied finite field.

A finite field or Galois field is a field that contains only ﬁmtely many elements. Finite
fields are important in cryptography and codrng theory The finite ﬁelds are completely

known, as will be described below.

\ .
Since every field of characteristic O contains the rationals and is therefore infinite, all

finite fields have prime characteristic [37].

If pis a prime, the integers modulo z form a field with z elements, denoted by Z,, F,, or
GF(p). Every other field with z elements is isomorphic to this one.

=/ is a prime power, then there exists up to isomorphism exactly one field with &
lements, written as F, or GF(y). It can be constructed as follows: find an irreducible
lynomial A7) of degree » with coefficients in GF(p), then define GF(y) = GF(»)[7] /
]D Here, GF(p)[7] denotes the ring of all polynomials with coefficients in GF(p),

the quotient is meant in the sense of factor rings. The polynomial A7} can be found

23

by actormgthe polynomlal 77-7 over GF(p). The field GF(y) contains GF(p) as a
o subﬁeld g"[‘l:i‘fe‘fé*are‘ no other finite fields [37].

‘Examples

- The polynomial £7) = 7%+ 7+ 1 is irreducible over GF(2), and GF(4) can therefore be
 written as the set {0, 1, 4 #1} where the multiplication is defined (modularly) by 7 + 7
+ 1=0. For example, to determine 7, note that 1(12 i+ D) =050 2 + A+ 2= 0, and

thus 7 + 7+ 7+ 1= I,s02=1. Similarly, since the characteristic of the field is 2, 7= #
+1.

~ In order to find the multiplicative inverse of #in this field, we have to find a polynomial
A7) such that 7* A7) = 1 modulo 7° + 7'+ 1. The polynomial A7) = 7'+ 1 works, and
:hence 1/7= 7+ 1. Note that the field GF(4) is completely unrelated to the ring Zs of
integers modulo 4.

To construct the field GF(27), we start with the irreducible polynomial 72 + 72 + 7- 1
- over GF(3). We then have GF(27) = {2/ + &r+ ¢ : 4, 4, ¢ in GF(3)}, where the
multiplication is defined by #°+ A2 +7-1=0.[37] .

Properties and facts: : ; , S

If Zis a finite field with ¢ = 2~ elements (where p is prime), then 4/ = x for aH xin 7.
S’?E‘lwlrthermore, the Frobenius homomorphism /: #-> #defined by L) = 4 is bijective,
and is therefore an automorphism. The Frobenius homomorphism has order », and the

cyclic group it generates is the full group of automorphisms of the field.

The field GF(#”) contains a copy of GF(2”) if and only if 7 divides . The reason for
this is that there exist irreducible polynomials of every degree over GF(/").

The multiplicative group of every finite field is cyclic, a special case of a theorem
mentioned in the article about fields. This means that if Zis a finite field with q
=lements, then there always exists an element .+ in Z’such that

={0,1, 524 .., #2).

24

The element v is not unique. If we fix one, then for any non-zero element < in /4, there
is a unique integer 7 in {0, ..., ¢ - 2} such that # = +". The value of »~ for a given 2 is
called the discrete /og of « (in the given field, to base .¥). In practice, although

calculating +” is relatively trivial given »# finding » for a given «# is (under current

theories) a computationally difficult process, and so has many applications in

cryptography [37].

Finite fields also find applications in coding theory: many codes are constructed as

subspaces of Vector spaces over finite fields.

Finite fields may be used to create a coordinate system for finite geometry, in the same

way that the set of real numbers can be used as coordinates for Euclidean geometry.
2.7 Elliptic Curve over Galois Field

2.7.1 Elliptic Curves over Binary Finite Fields:
We start work in the field G/(2”) where we have characteristic = 2. Here we only
“consider so called “nonsupersingular curves”. They have the property 21 # 0. So we

can perform the following change of variables:

- This leads us to the following definition [16].
Definition 3. A (nonsupersingular) elliptic curve E over the finite field F2m is given
‘through an equation of the form

YV2y XV =1 +al*+ 5, a,be

2///

Before starting with the arithmetic of the points on an elliptic curve, we take a final look
at the coefficients in the following equation:

Definition: .4 elliptic curve £ over the ficld ¥ is a smooth curve in the so-called "long

4

Weierstrassform’

V+a, XV +a,V=X +a, ¥’ +a,X¥+a,, aclF.

7

25

The subscripts of these coefficients seem to be a little bit strange. But consider
following: For big values of .¥'we can say that the equation is very close to

F =_F>2, This function can be parameterized by setting £= 72, = 7*. One says, "X
has degree 2” and Y has degree 3”. The subscripts of the coefficients in previous
equation indicate the degrees that must be given to the coefficients in order that the
equation be homogeneous (this means that each term has the same total degree which is

6 in this case) [16].

2.7.2 Elliptic Curves over Prime Finite Fields:
Now we work with F, (7 € P, p >3, char(Fy) #2,3) and we cam make the following

change of variables:
¥ > r-2
3
a, X + a,
2

Yy - ¥V -

Let’s take a look what is happening to the left side after the substitution for 7~

(Y (a,X +2,)/2)* +a,X(Y - (aX+a)/2)+a (Y - (aX+a3)/2)—
w=Y?-alX?/4-2,a,X/2~-a; 24

Both, ¥ Vand ¥ have vanished, so their coefficients 21 and &3 must equal zero! That
reduces the left side to a single 72. If we make the substitution for .¥and take a look at
‘the right side of Y> + XY =X’ +aX’ + b we get:

(X-a,/3) +a,(X-a,/3)* +a,(X~-2,/3)+as =...
=X>+(@2/9+a,)X+2a}/27-a,/3a,3,

Setting (éaz + @4) = @and 527@3 - %@ a ag = & we have the much nicer form

®+ 2¥+ 4. InF, the equation:
2+41/I’7+a3}’——-/1’3+42/I’2’+a4/1’+a6, a, e f.

4

ducesto V2 =_P + af+ 4.

26

What can we say about the smoothness of this equation? Consider the partial derivative
of the equation y 2= f(»), whichis / (») =2 'y % . The expression of i—?—; Zs undefined

in (.,) if and only if /" (1) =_Axn) = 1 = 0. In other words, the function /() must
have a multiple root at the point 0. In the case that |
D) =2+ ar+ 4, this is equivalent to Zisc (f¥)) = —(42 + 274) = 0. We give now

our definition for an elliptic curve over the finite field F:

Definition: 47 e//jptic curve £ over the finite field ¥, is given z‘émzzgé an equation of
the Form.

V=X +ak+s, abelF, and —(42+215)#0

Please note that as stated in the beginning of the section, the ”= should be replaced by
an ”=" in the above definition. Another remark is that when we talk about partial
derivatives we mean the “formal partial derivate” which can be defined over an

arbitrary field [16].

28 Summary ; J o

This chapter planed to gii/e the reader a kbe‘ttoniys’-up “ihﬁoducﬁdn to“thezbasijce of algebra
that using in elliptic curve cryptography and this is. the goal Spec1a1 emphas1s will be
given to what is the groups, Rlngs ﬁels ﬁmte field, and the propertles of each of them,
this topic are important to reader of th1s the51s o give him imagin how the elliptic curve '

“works.

27

3. ELLIPTIC CURVE CRYPTOGRAPH

3.1 Overview

With the need for information security in today’s digital systems both acute and
gov’ving, cryptography has become one of their critical components. Cryptographic
services are required across a variety of platforms in a wide range of applications such
: secure access to private networks, stored value, electronic commerce, and health
mre. Incorporating these services into solutions presents an ongoing challenge to

manufacturers, systems integrators, and service providers because applications must

meet the market requirements of mobility, performance, convenience, and cost

al Koblitz and Victor Miller first proposed elliptic curve cryptography in 1985
dependently. Elliptic curve cryptosystems (ECCs), which are expected to become

e next-generation public key cryptosystems. Elliptic curves and elliptic curve

rete logarithm problem have been used in cryptography system for the last 12
S, (ECC) is based on the properties of the elliptic curve, which define and set
nstraints on the set of public and pnvate keys An elhpt1c curve is a set of solutions
¥) to an equation of the form: ~ o A '

R=13 +ar +5(mod p)

thich 1, 3; @ 5 are elements of the set of integers modulo .

1e primary advantage of elliptic curve systems over the “conventional” public key
stosystems based on factoring or on the discrete logarithm problem is that there is
known sub-exponential algonthm to solve the d1screte logarlthm problem on
;tiC curves. Also, elliptic curve systems ‘need smaller key sizes to ensure the same
of security, and thus also less memory and processor ‘time for calculation.
ermore, many cryptographic systems (e.g. Digital Signature Algorithm, ElGamal
ption scheme, Diffie-Hellman key exchange protocol) have analogues for the

CUI’VGS

- of these algorithms are also included in standards of American National

ards Institute (ANSI X9.62, ANSI X9.63), Institute of Electrical and Electronics

28

Engineers (IEEE P1363), International Standards Organization (ISO/IEC 14888-3,
ISO/fEC 15946) and National Institute of Standards and Technology (NIST FIPS
186-2) we present it below [1].

In this chapter we describe in details 4 protocols based on elliptic curve cryptography
-~ techniques, and the result of our implementation of ECC over Galois Field over prime

GF(p), where p is prime number in the next chapter.

3.2 Elliptic Curve

An elliptic curve is not an ellipse! The reason for the name is a little more indirect. It
has to do, as we shall explain shortly, with "elliptic integrals", which arise in
omputing the arc length of an ellipse. But this happenstance of nomenclature isn't too
significant, since an elliptic curve has different, and much more interesting, properties

“as compared to an ellipse [38, 5].

'An elliptic curve is an object that is easily definable with simple high school algebra.
Tis amazing fruitfulness as an object of investigation may well depend on this
implicity, which makes possible thestudy of a-number of much more sophisticated

mathematical objects that can be defined in terms of elliptic curves.

The purpose of this section is to provide sufficient background material in ECC to

mderstand the remainder of this document.

liptic curves are mathematical constructs that have been studied by mathematicians
1ce the seventeenth century. In 1985, Neal Koblitz and Victor Miller independently
) }gosed public-key systems using a group of points on an elliptic curve, and elliptic
e cryptography (ECC) was born. Since that time, numerous researchers and
elopers have spent several years researching the strength of ECC and improving
iniques for its implementation. Today it offers those looking for a smaller, faster
, ic -key system a practical and secure technology for even the most qonstrained

onments [3].

29

Elliptic curves arise from algebra and number theory, and also make use of groups
from which we can see how these would be related to both modular arithmetic and the
discrete logarithm problem.

ECC delivers the highest strength per bit of any known public -key system because of
the difﬁculty of the hard problem upon which it is based. This greater difficulty of the
hard problem “‘ the elliptic curve discrete logarithm problem (ECDLP) “ means that
smaller key sizes yield equivalent levels of security. The following Table compares
the key sizes needed for equivalent strength sécurity in ECC with RSA and DSA.
Given the best-known algorithms to factor integers and compute elliptic curve

logarithms, the key sizes are considered to be equivalent strength based on MIPS

years needed to recover one key [3].

Table 3.1 Key length Equivalent Strength Comparison [3].

Time to break in | RSA/DSA ECC RSA/ECC key size
M MIPS years Key size key size ratio
/ 10* 512 106 5:1
10 768 132 6:1
/ 10" 1024 | 160 S 7:1
! 10% 2048 210 10: 1
1078 21000 | 600 | - 35: 1

The first thing to note is that an elliptic curve is not an ellipse! An elliptic curve is a
mathematical equation: ¥ = x> + ax + b, where all calculations are performed modulo’

p, and 4a® +27b* # 0 modulo p, for some odd prime p.

The mathematical property that makes elliptic curves useful for cryptography is
simply that if, in general, we take two (distinct) points on the curve then the chord
oining them intercepts the curve in a third point (because we have a cubic curve). It
then reflect that point in the x-axis we get another point on the curve (since the

ve is symmetric about the x-axis).

is allows us to define a form of arithmetic on the curve. If we denote the two

ngirilal points by P and Q then we will denote the final (reflected) point by P+Q (see

30

Figure 3.1). It turns out that this “addition” satisfies all the usual algebraic properties
that we associate with integers, provided we define a single additional point “the point

at infinity”, which plays the role of 0 in the integers [5].

y

(2

<

P+€!\

Figure 3.1 Addition of Elliptic Curve Points [5].

The “point at infinity” is a “yirtual” point, not a point on the curve. It is needed for
completeness of the newly defined arithmetic system. For example, if the points P and
Q are mirror images of each other in the x-axis then the chord joining P and Q does
‘not actually meet the curve again, so in this case we say P+Q = ®, where @ denotes

~ the point at infinity. If we identify @ with the zero of the system then this naturally

leads to the idea of denoting the mirror image of P by -P.

In other words, we can define a form of arithmetic on the points of an elliptic curve
{plus the point at infinity) that lends itself to normal algebraic manipulaﬁon. In
mathematical terms, we can define a finite additive abelian group on the points of the
curve, with the zero being the point at infinity. In particular, if we let the points P and

Q coincide, we can define P+P, naturally denoted 2P. Extending this idea, we can

efine kP, for any integer k, and hence define the order of P, being the smallest

m%eger k such that kP = @ [5].

We are now in a position to define the Z//pric Curve Dlifcrez‘e}logariz%m Problem
CDLP) which is the reason we are considering these systems: Grver @ “base point”
 and the point kB, lying on the curve, /?/m’ the value of Tt is believed that, for
itable elliptic curves and base points, this is a really, really hard problem! From a
tographic point of view, we are in a position to define hpw cryptographic systems

d on elliptic curves. In particular, any standard system that relies on the discrete

31

logarithm problem has a direct analogy based on the ECDLP. For example, £Zpzic
Curve DSA4 (ECDSA) has already been standardized (ANSI X9.62). Diffie-Hellman
key exchange can be easily implemented in an elliptic curve framework, so in section

3.4 you can find more details on Elliptic Curve Discrete Logarithm Problem ECDLP
[5].

3.3 Addition Low

ECC involves several areas of mathematics including finite fields, representations of
field elements, and group theory. In this section we describe the mathematics

necessary to understand the main algorithms being investigated in this research.

- In its most simple form, an elliptic curve is a set of elements of the form (r, 3/ that

satisfy the equation y*= x>+ ax + b mod n.

Where @, 4 and » are predetermined numbers. In cryptographic applications, we
specify that 423 +2742 # 0 (mod n) and that »~ be prime. See an example of an elliptic

curve at the end of the section.

In addition, another single element *denot‘ed; ~;0:isi~a1sdlpar‘t; of;ﬁthef set, and represents

‘the point at infinity” (the top and bottom of every vertical line).

ese curves can be defined over any f7e/Z real, fractional or complex. The majority

f efliptic curves used for cryptographic purposes are defined over finze frelds.

-finite field 7}, is simply a finite set of elements with two operations, addition and

lar multiplication, where the operations are performed modulo # and satisfy the

owing properties: [2] 4

" 1. Closure under addition. If rand yare elements of a field #,, then x+ p
el ' ’,

2. Closure under scalar multiplication. If xis an element of a ﬁeld/ﬁ},, and

A is any integer, then A x € /2,

most cryptographic applications, finite fields of the form /7, , where pis prime, or

where k is a positive integer are most common.

32

In the case of an elliptic curve, addition is defined in the following way (illustrated in

Figure 3.2):

o
[2¥3
] -
¥

P4=F 1+P2

Figure 3.2 An example in addition in an elliptic curve [2].

1. Given points p1 and 22 on the elliptic curve, find Z3, which is the third point
of intersection with the elliptic curve of a line through »1 and 2.

2. Letps = (%) where p3 = (i,).
3. Define p/ + p2 = p#.

ultiplication of a point 21 by akpkositive integér’ A is then s1mply déﬁned by fepeated

0 i a=0

Apl =
2T rs (A -Dr i A>0

ay be unclear how J»/=p/ + p/is determined, since there are an infinite number

es that pass through just the point »1. To find this result (which is known as the

Pl=(x1l.v1)

N, o

Pd=(x3 pE)

\

Figure 3.3 An example of the double of a point on an elliptic curve [2].

33

Draw a line that is tangent to the elliptic curve at point 1. This line will

—

intersect the curve again at point 23.
2. Let p# = (&, -3/ wWhere pF = (%,).
3. Define Jp/ =p/ +p2 =p4.

‘Now the avid reader may wonder how we can be so sure that our straight lines are
~going to intersect the elliptic curve at a new point in both the above cases. Suppose

that the straight line in question has the form y=mr+ c.

If we now substitute into the elliptic curve equation, we obtain
(mr+c) =x +ar+d
= P 2mic+ =X +ar+ b
= 0= 1 —w* P +(a-2mc)x+b-C"

And so we are left with a cubic equation in .x that we have to solve. In both the cases

@?ﬁbve, we already have two roots of this equation (in the second case, 2l is a repeated
:@t since the straight line is tangential to the elliptic curve), and since these roots are
-al-valued it follows that the third must be real—vélued. To find the root, one would
actorize the cubic as: | B N
((x—x)(x—x,)(x—x) where wehavetwo points p 1?'aﬁdf~p2

(x— x)(x— x)(x—x,) where we have one pointpl

‘here p1=(x1, /1), 22=(12, 32) and we wish to find point ZB=(3, }3).

ther mathematics can be used to show that, in general

xy, = A — o — o,
| y3 = A(x — x50
ete pl = (41, J1) and z2=(x2, j2) for any points z1 and 22 on the elliptic curve

v may be equal), Z3=(13, j3), p3 = pl+ 22 and where: [2]

222 it P2 Q
Xy= X

2
3xf + a if P =Q
2

34

See the following example using these formulae:

Example:
Let £be the elliptic curve v = 3+ x + 6 over Zy;. For a given .x we can test to see if

7= x>+ x + 6 mod 11 is a quadratic residue by applying Euler’s criterion. Applying

this formula, we have that the square roots of a quadratic residue z are:

LA +D T4 p0d 11 = + 23 mod 11

“The results of these computations in this table:

X | X+X+6mod11 | InQR(11)? Y
0 6 No

! 2 5 Yes 4,7
3 3 Yes 5,6
4 8 No
5 4 Yes 2,9
6 8 No
7 4 Yes 12,9
8 9 Yes 3,8
9 7 No -
10 4 Yes 2,9

us & has 13 points on it. Suppose we take the generator a—(2 7) Then we can
pmpute the “powers” of a(which we will wrlte as multlples of a, since the group
ration is additive). To compute 2a=(2,7)+(2,7), we first compute

= (3*2* + 1)(2*7)" mod 11

=2*3" mod 11

=2*4 modl1

=8
we have
x3=8"-2-2mod11=5

y3=8(2-5)~7mod 11=2

2a=(5,2).

35

The next multiple would be 3a=2a+a=(5,2) + (2,7).‘ Again, we begin by computing
1, which in this solution is done as follows:
A =(7-2)2-5)" mod 11
=5%8" mod 11
=5*7 mod 11

Then we have
x3=2*-5-2mod11=8

y3=2(5-8)—2mod 11 =3

3a=(8,3).

';,4 Factorization and Discrete Logarithm Problem

rer the years, many of the proposed public-key cryptographic systems have been

ken and many others have been demonstrated to be impractical. Today, only three

es of systems are considered both secure and efficient. Examples of such systems
and the mathematical problems, on which their security is based, are:

1. Integer factorization problem (IFP): RSA and Rabin-Williams.

2. Discrete logarithm problem (DLP): the U.S. government’s Digital
Signature Algorithm (DSA), the Diffie-Hellman key agreémént~'écheme,Ithe;
ElGamal encryption and signature schemes, the Schnorr signature scheme,
and the Nyberg-Rueppel signature scheme.

3. Elliptic curve discrete logarithm problem (ECDLP): the elliptic curve
analog of the DSA (ECDSA), and the elliptic curve analogs of the Diffie-
Hellman key agreement scheme, the ElGamal cncryption and signature
schemes, the Schnorr signature scheme, and the Nyberg-Rueppel signature

scheme.

ust be emphasized that none of these problems have been prover to be intractable
difficult to solve in an efficient manner). Rather, they are deleved to be

table because years of intensive study by leading mathematicians and computer

o

sts have failed to yield efficient algorithms for solving them [4].

36

3.4.1 Integer Factorization Problem (IFP)

In mathematics, the integer prime-factorization (also known as prime
decomposition) problem is this: given a positive integer, write it as a product of
prime numbers. For example, given the number 45, the prime factorization would be
32.5. The factorization is always unique, according to the fundamental theorem of
arithmetic. This problem is of significance in mathematics, cryptography, complexity

theory, and quantum computers.

’i‘he complete list of factors can be derived from the prime factorization by
incrementing the exponents from zero until the number is reached. For example, since
45 = 325, 45 is divisible by 3%:5°, 3%:5", 31.5°, 315", 3%.5% and 35, 0r 1, 5, 3, 15, 9,

d 45. In contrast, the prime factorization only includes prime factors.

Given two large prime numbers, it is easy to multiply them together. However, given
their product, it appears to be difficult to find the factors. This is relevant for many
odern systems in cryptography. If a fast method were found for solving the integer
ctorization preblem then several important cryptographic systems would be broken,

fiudmg the RSA public-key algonthm and the Blum Blum Shub random number

: :ﬂerator

ough fast factoring is oze way to break these systems there may be a/éer ways to
i ‘ak them that don't involve factoring. So it is possible that the integer factorization
blem is truly hard, yet these systems can still be broken quickly. A rare exception
he Blum Blum Shub generator. It has been proved to be exactly as hard as integer

ﬁeﬁzation. There is no way to break it without also solving integer factorization

arge, ~bit number is the product of two primes that are roughly the same size,

no algorithm is known that can factor in polynomial time. That means there is no

m algorithm that can factor it in time O(//) for any constant £ There are
mhms, however, that are faster than ©(e”). In other words, the best known
rithms are sub-exponential, but super-polynomial. In particular, the best known
ptotic running time is for the Gereral/ Number Field Sieve (GNFS) algorithm,

1188

37

1

® | exp —ég——n 3(log n)i—

For an ordinary computer, GNFS is the best known algorithm for large » For a
quantum computer, however, Peter Shor discovered an algorithm in 1994 that solves
it in polynomial time! This will have significant implications for cryptography if a
~ large quantum computer is ever built. Shor's algorithm takes only O(/7) time and O(»)

space. Forms of the algorithm are known that use only about 2~ qubits. In 2001, the
first 7-qubit quantum computer became the first to run Shor's algorithm. It factored
the number 15.

It is not known exactly which complexity classes contain the integer factorization

‘problem. The decision-problem form of it ("does /' have a factor less than 42?") is

fknown to be in both NP and co-NP. This is because both YES and NO answers can be

hecked if given the prime factors along with their primality proofs. It is known to be
in BQP because of Shor's algorithm. It is suspected to be outside of all three of the
@fnplexity classes P, NP-Complete, and cb-NP-Complete. If it could be proved that it
S kin either NP-Complete or co-NP-Complete, that would imply NP = co-NP. That

would be a very surprising result, th¢r¢fbr¢ kintegér_factprization is widely suspected
o be outside both of those classes. Many people have tried to find polynomial-time
gorithms for it and failed, therefore it is widely suspected to be outside P.

iterestingly, the decision problem "is /’a composite number?" (or equivalently: "is
prime number?") appears to be much easier than the problem of actually finding the

ors of A/ Specifically, the former can be solved in polynomial time (in the number

of digits of), according to a recent preprint given in the references, below. In
dition, there are a number of probabilistic algorithms thét cah test primality very
c}ily if one is willing to accept the small possibility of error. The easiness of prime
ing is a crucial part of the RSA algorithm, as it is necessary to find large prime
bers to start with [39].

38

3.4.2 Discrete Logarithm Problem (DLP)
Taher ElGamal was the first mathematician to propose a public-key cryptosystem

based on the Discrete Logarithm problem. He in fact proposed two distinct

cryptosystems, one for encryption and the other for digital signatures. Since then,
many' variations have been made on the digital signature system to offer improved

“efficiency over the original system.

' :,The discrete logarithm problem (DLP) is the following: given a prime p, a
generator o of Z,, and a non-zero element B € Z,, find the unique integer X, 0 <x <p
- 2, such that B = a” (mod p). The integer x is called the discrete logarithm of § to the
“base a [8].

é%ed on the difficulty of this problem, Diffie and Hellman proposed the well-known
iffie-Hellman key agreement scheme in 1976. Since then, numerous other
cryptographic protocols whose security depends on the DLP have been proposed,
ncluding: the ElGamal encryption and signature schemes, the U.S. government

digital signature algorithm (DSA), the Schnorr signature scheme, and the Nyberg-

nd ElGamal encryption is the best-known example of a large system where the
iscrete Logarithm algorithm is used. '

e to interest in these applications, mathematicians have extensively studied the
M’ for the past 20 years [4].

4.2.1 Cryptosystem based on DLP

F, be a finite field of 4 elements so that q = p" for some prime » and integer 7. It
rell known that the multiplicative group of nonzero elements of Fy, denoted by K,
'k@yclic group of order #~1.Thus if a is a generator of this multiplicative group, then
nonzero element B in Fy is given by p= o* for some integer 1; in fact for each B
is a unique integer in the range 0< x <q-1 with this property. For a given .rand a,
power o can be quickly computed by the square-and-multiply method as
trated in Example below. The inverse problem, i.e., the'problem of finding, for

X

en o and P, the v in the range 0 < x < &1 satisfying p= o, is the discrete

39

oA

logarithm problem,; it is believed to be hard for many fields. Thus, exponentiation in

finite fields is a candidate for a one-way function.

Example:
For the prime p = 1999, the ring Z, is a finite field and the nonzero elements Z", and
Z, from a group G under multiplication modulo p:

G=2",={1,2,...,p-1}.
Furthermore, the element a = 3 is a generator of G, and is also known as a primitive
~ element modulo p: ,
| G={1,a,u2,...,ocp'2}modp.
It is easy to compute that

37 = 1452 mod p.

wowevet, it is not nearly so easy to determine that x = 789, given only that x is in the
range from 0 to 1997 and satisfies the equation
| * = 1452 mod 1999 .
A more realistic challenge is to find an integer x such that
3x =2 mod p, where p = 142 . (10°"" +531) + 1.

e know a solution exsits but we don’t know the value.

he above discussion can be generalizédatd ﬂany;\g.rollipfG’\i(WhO‘sévioperatiOn';i‘si\ written
ultiplicatively). The &iscrete logarithm problem for Gis to ﬁnd, for given a,peG, a
ﬁnégative integer . (if it exists) such that f= o”. The smallest such integer x is
lled the discrete logarithm of B to the base o, and is written x=log,f. In previous
ample, log;1452=789. Clearly, the discrete logarithm problem for a general group
exactly the problem of inverting the exponentiation function exp:Zy=>G defined
exp(x)= o where /Vis the order of o [14].

Discrete Logarithm Problem consists mainly of transformations of the form &
7 pJ, for some integer .r and a fixed number g (between 0 and z~1). As with the
A algorithm, these transformations raise the computational complexity of the

iem. The discrete logarithm system relies on the discrete logarithm problem
du o p for security, and the speed of calculating the modular exponentiation for

ziency.

40

3.5 Elliptic Curve Discrete Logarithm Problem (ECDLP)
The elliptic curve discrete logarithm problem can be stated as follows. Fix an elliptic
curve. xP represents the point P added to itself x times. Suppose Q is a multiple of P,

-so that Q = xP for some x. Then the elliptic curve discrete logarithm problem is to

determine x given P and Q.

The security of the ECC rests on the difficulty of the elliptic curve discrete logarithm
problem. As is the case with the integer factorization problem and the discrete
| lbgarithm problem modulo p, no efficient algorithm is known at this time to solve the

elliptic curve discrete logarithm problem.

One of the advantages of ECC is that the elliptic curve discrete logarithm problem is
believed to be harder than both the integer factorization problem and discrete
logarithm problem modulo p. This extra difficulty implies that ECC is one of the
strongest public key cryptographic systems known today.

The elliptic curve discrete logarithm problem is relatively easy for a small class of
Tliptic curves, known as supersingular elliptic curves and also for certain anomalous
{liptic curves. In both cases, the weak instances of the problem are easily identified,
and an implementation merely checks that the specific instance selected is not one of

he classes of easy problems.

Basically, elliptic curve cryptography is constructed on similar concepts to those used

for discrete logarithm systems, but the discrete logarithm functions are performed on

iptic curves over finite fields.

major factor in accepting ECC is the fact of smaller cryptographic key sizes. With
1, electronic commerce and banking type transactions this may be an important

msideration in overall system performance.

re are many possible algorithms to use for encryption with elliptic curves. As EC-
Gamal Algorithm and Menezes-Vanstone Algorithm, many discrete logarithm
blems can be converted to use elliptic curves. The newest version of IEEE's P1363

dard does not however define any encryption algorithm to use with elliptic curves.

41

In one of the earlier version of P1363 they recommended to use the ElGamal
cryptosystem, but now it has been removed from the document. Because there is no

-recommendations which encryption algorithm to use [28].

Only two elliptic curve signature schemes are given in the IEEE P1363 standard:
Nyberg-Rueppel and ECDSA. They are similar in overall security. The security of

both schemes depends on the order of the base point being a large prime number.

3.6 Elliptic Curve Cryptography

‘3.6.1 Elliptic Curve Cryptosystems

Elliptic curve cryptosystems (ECCs) include key distribution, encryption, and digital
signature algorithms. The key distribution algorithm is used to share a secret key, the
“encryption algorithm enables confidential communication, and the digital signature

ffaigorithm is used to authenticate the signer and validate the integrity of the message.

CCs is based on the addition of rational points on a chosen elliptic curve.

An elliptic curve E over a Galois field GF('p),’ where 223 and is prime, is the set of all
1,) (1, v € GF(p)) that satisfy the following equatidr’l:'

: =2+ ar+ bwhere 2, b € GF(p), and 42° + 274 # 0.

'he rational points on the elliptic curve E are the points over GF(p) that satisfy the
defining equation. If the set of parameters {w 4, p} are specified, the number of
rational points on the elliptic curve is determined uniquely; this number is called the
der of the elliptic curve E and is denoted by #E. It is known that rational points form

additive group in the addition over the elliptic curve shown in Figure 3.4.

ead of giving a hard definition of the addition of two rational points on an ECC

GF(p), we will give an simple definition of addition

‘

42

D

\Eliipﬁc cuirve E

Figure 3.4 Addition rule over an elliptic curve.

by using an illustrative model of an ECC over real numbers.

‘When points A and B on the elliptic curve E shown in Figure above are added, the
result is defined as the point D obtained by inverting the sign of the y-coordinate of
_point C, where point C is the intersection of E and the line passing through A and B.
;iﬁ'A and B are at the same position, the line is the tangent of E at A.

oreover, an ideally defined point O, namely the point at infinity, is also recognized

as a point on E. The sum of the point at infinity and a point P is defined as point P

We define the £ scalar multiplication df a point G as thé opefaﬁori by Wthh point G is
: ‘déd to itself £ times. We denote the resulting point as £4G. We can easily calculate
[= 4G from a given #and G, but it is computationally difficult to calculate the scalar
; from points W and G. If a prime p as large as 160 bits long is selected, we cannot
d £ within a reasonable time, even if we use the most efficient algorithms known so
‘and the world’s most powerful computers. The problem’ of calcﬂating £ from
sen points G and W is called “the discrete logarithm problem over the elliptic
rve.” The security of ECC derives from the difficulty of solving the problem.

loreover, when a point G on an elliptic curve E is given, there is a minimum positive

ger ~ such that #G = O. Integer # is called the order of the point G. It is known

#1s a divisor of the order of the curve E [17].

43

Elliptic curve cryptography is one of several ways to accomplish the objectives of
security. Like any other cryptosystem, it isn't perfect, but it has definite advantages
over other systems. The cryptosystem about to be described is called a public key
cryptosystem, in that it involves the divulging of public information while allowing

the individuals to retain and use private pieces of information (“keys™).

Here's how it works. Alice and Bob agree upon a fixed elliptic curve E over a finite

field Z, and a “base point” P € E(Z,). Nobody else knows these quantities. They
,/: also agree upon an encryption system; namely, given an “encoding key” z (a point on
:,f‘{he elliptic curve) and a “message letter” m (another point on the elliptic curve), they
determine how one might construct an “encoded message” z*m. (Please note that this
| *;\Lhas nothing to do with the group law on the elliptic curve; just think of z*m as “m

encoded by z”.

Now suppose Alice wants to send Bob a message. First, she should assign letters of
e alphabet to (distinct) points of E(Zp) to turn her (English) message into a sequence
f points of E(Z,). Alice will then alert Bob that she is about to send a message. In
x@s?on‘se, Bob will choose a (probablY';fairly‘lafge) integer S,, known as his secret, or
@ﬁvate key. He will not divulge this to Alice or anyone else, however, he will send
- quantity Sp.P=P+P+ ... +P (This is P added to itself S, times) to Alice,

N

s is, of course, another point on the elliptic curve.

w Alice picks an integer k as her private key and sends Bob two pieces of data: kP
(kSpP) * m. Clearly she can compute kP since she knowsk, P, and the elliptic
e on which P resides; she can also compute the later quantity since she knows
from Bob's transmission and ‘can hence calculate k(SpP), her encryption key.

Iy, she knows how to use this key to encode the message m, so she can compute

P) * m.

then receives kP and (kS,P) * m from Alice. He doesn't know k, but he does
S, and kP (the latter from Alice's transmission), so he can calculate the

tion key S, kP = kS,P. Hence he can find the decryption key, call it (kS,P)"!

44

and apply that to encrypted message (kS,P)*m sent by Alice to recover (kSpP)'l(kSPP)

* m = m; the original message sent by Alice [18].
3.6.2 Security and Efficiency of ECC.

3.6.2.1 Security of ECC
One of the advantages of using elliptic curve based cryptographic systems instead of

integer factorization or discrete logarithm based methods is that they provide similar

security levels using smaller key lengths.

Why is this? As mentioned in the previous sections, the security of any public-key

_based cryptography is based upon the difficulty of solving certain mathematical

problems. Thus, we can determine the amount of effort that would be required to
reak one of these public-key systems by looking at the effort required to solve these
hard problems, using the best algorithms, software and hardware which are known. It
should be noted that in the future new solutions to any of these problems might be
covered that drastically change the amount of effort required to solve them. The

analysis below is based on the best methods known today.

ost people consider the integer factorization and discrete logarithm problems to
ve approximately equivalent security. Both of these problems have hard. intensive
%:i\éw and study by many of the world’s top mathematicians and cryptographers..
‘can give us a sense of comfort that these problems are, in fact, difficult to solve.
&@al‘ly, the best method known to solve each of these problems is the Number Field
eve (NFS). The NFS is what is known as a sub-exponential time method. This
mizans that the problem can be considered hard to solve, but not as hard as problems

-only allow fully exponential solutions.

 generally accepted that, based on the difficulty of solving the integer factorization
em and discrete logarithm problem, RSA, DSA and Diffie-Hellman keys should
at least 1024 bits long and that for very long-term security (20 years or more) 2048
eys should be used. Recently a large-scale effort was able to factor a 512-bit

er, thus showing that keys of this size are vulnerable to attack by large,

icated adversaries.

45

On the other hand, solving the ECDLP is generally considered to be a much more
difficult problem than factoring integers or solving the discrete logarithm problem.
Because of the structure that is inherent within an elliptic curve, the types of solutions
to these problems do not seem to apply to the ECDLP. The best method known to
solve the ECDLP is an elliptic curve version of an attack developed by Entrust
researchers for the discrete logarithm problem, known as the parallel collision search
method [VOW]. This method is fully exponential, which means that that the ECDLP
can be considered among the hardest types of problems to solve, using the best
methods known today. One of the consequences of the ECDLP only having a fully
exponential solution is that for every two additional bits of key used, attacking that
key requires twice aé much effort. Thus, attacking a 193-bit elliptic curve public key

requires twice as much effort as attacking a 191-bit key.

ecause it is relatively new, the ECDLP has not received as much attention from
mathematicians and cryptographers as the integer factorization and discrete logarithm
roblem. Although, within the past few years, that has begun to change and a great

eal of effort has been made at attempting to solve this problem.

ince a great deal of research is still ongoing, it is difficult to directly compare the
security levels provided by ECC with those provided by RSA, DSA and Diffie-
fellman, for example. However, it seems reasonable that for security equivalent to an
RSA key with 1024 bits, one should use an elliptic curve with about 170 bits and that
r security equivalent to an RSA key with 2048 bits, one should use an elliptic curve

th about 230 bits.

e above discussion on the difficulty of attacking an ECC public key assumes that
weak cases have been avoided when constructing the elliptic curve parameters.
V:Ie are certain elliptic curves that are known to produce cryptographic systems with
' bstantially lower security level than the general case described above. These weak
es include:

“ - A class of curves known as super singular elliptic curves;

- Elliptic curves modulo z which contain exactly 2 points; and

- Elliptic curves defined over a finite field with 2™ elements where # is not

a prime.

46

Fortunately, each of these classes of weak curves is easy to identity and most
standards bodies forbid their use. In order to guarantee that a given curve has not been
intentionally constructed to somehow be weaker than expected and also to guard
against possible future attacks against additional classes of weak curves, it is
generally recommended to use elliptic curves which have been verifiably generated at

random. This is the most conservative, or safest, option when choosing elliptic curves

on which to base a system.

There exists another class of special elliptic curves, which requires attention. This
class of even characteristic curves, called Koblitz curves, allows more efficient

implementations. For very resource constrained environments these curves are an

attractive option. However, some cryptographers are concerned that the additional

structure exploited in these curves to obtain the efficient implementations may also be
used to efficiently attack them. In fact, Entrust researchers were one of two

independent groups, which were able to show that these curves provide a few bits less

security than randomly generated curves. While the slight weakness demonstrated
should not, in itself, stop people from using these curves, it does raise the question of

how secure these curves really are. Entrust recommends that these curves be used

-with caution [19].

.6.2.2 Efficiency of ECC
When talking about the efﬁc1ency of a public-key cryptographlc ‘system, there are

ee distinct factors to take into account:

« Computational overheads - how much computation is required to
perform the public key and private key transformations.
« Key size - how many bits are required to store the key pairs and any

system parameters.

. Bandwidth - how many bits must be communicated to transfer an

encrypted message or a signature.

%aﬂy the comparisons should be made between systems offering similar levels of
rity, SO in order to make the comparisons as concrete as possible, 160-bit ECC is

pared with 1024-bit RSA and DSA. As indicated in Section 5.1, these parameter

joffer comparable levels of security.

47

3.6.2.2.1 Computational Overheads

In each of the systems, considerable computational savings can be made. In RSA, a
short public exponent can be employed (although this does incur some security risks)
to speed up signature verification and encryption. In both DSA and ECC, a large
proportion of the signature generation and encrypting transformations can be pre-
computed. Also, various special bases for the finite field /4" can be employed to
perform more quickly the modular arithmetic involved in ECC operation. State-of-
the-art implementations of the systems show that with all of these efficiencies in
~ place, ECC is an order of magnitude (roughly 10 times) faster than either RSA or
| DSA. The use of a short public exponent in RSA can make RSA encryption and

_signature verification timings (but not RSA decryption and signature generation

‘timings) comparable with timings for these processes using the ECC.

3.6.2.2.2 Key Size
Table 3.2 compares the size of the system parameters and key pairs for the different
systems.

Table3.2 Size Of\sjis‘tem’paraméters and key pairs (approx)

System patameter | Public key | Privatekey
(bits) . - (bits). | (bits)
RSA N/A 1088 | 2048
DSA 2208 1024 160
ECC 481 161 160

It is clear from the figure that the system parameters and key pairs are shorter for the
CC than for either RSA or DSA.

.2.2.3 Bandwidth

All three types of systems have similar bandwidth requirements when they are used to

'ﬂcrypt or sign long messages. However, the case when short messages are being
MSformed deserves particular attention, because public-key cryptographic systems
are often employed to transmit short messages — for example to transport session keys
or use in a symmetric-key cryptographic systeni. For the sake of a concrete

omparison, suppose that each is being used to sign a 2000-bit message, or to encrypt

48

messages respectively.

Table 3.3 signature size on long messages and s

a 100-bit message. Table 3.3 compares the lengths of the signatures and encrypted

ize of encrypted 100-bits messages

Signature size Encrypted message
(bits) (bits)
RSA 1024 1024
DSA 320
ECC 320 321
ElGamal -- 2048

Therefore ECC offers considerable bandwidth savings over the other types of public-

key cryptographic systems when being used to transform short messages.

In summary, the ECC provides greater efficiency than either integer factorization

systems or discrete logarithm systems, in terms of computational overheads, key

sizes, and bandwidth. In implementations, these savings mean higher speeds, lower

power consumption, and code size reductions [40].

3.6.3 Comparison bettween ECC and RSA ‘
s ECC public key sizes, s1gnature and. encryptlon lengths and
scr1be the effect

" This section compare
~speed with those of RSA. Typical usagescenarlos wﬂl be used to.de

“these have on various implementations.

The ECC system under consideration will use an odd characteristic 192-bit elliptic
curve, which is the default used by the Entrust product line. The RSA system will use
024-bit keys, which is also the default in the Entrust product line.

eﬁ.3 1 Size key
e size of an ECC public key, ECDSA s1gnatu;re and an ECIES encryption will be

\k'mpared with those produced by an RSA system.

ﬁ 3.1.1 Public Key Size
RSA public key consists of an ordered pair (7,¢) where #is a composite number,

ed the modulus, and ¢is the public exponent. In a 1024-bit RSA system, 7~ will

= 1024 bits. A common value for the public exponent is e=216+1. This is the value

49

that Entrust uses. Thus, an Entrust RSA public key would require 128 bytes for the
modulus and 3 bytes for the public exponent. The total size is then 131 bytes.

An ECC public key consists of a point on the elliptic curve. Each point is represented
by an ordered pair of elements (% 3/ each with 192 bits. For a 192-bit elliptic curve,
the public key would then be represented by two 24-byte values, giving a total key
size of 48 bytes.1As can be seen from the numbers above, ECC does provide a
significant reduction in public key size. This reduction can be crucial in many
severely constrained environments where Jarge public keys are not possible. However,

~ in a PKI using X.509 certificates, the effect of using the smaller public keys is

" minimal. A typical size for an X.509 certificate would be about 1K (~1000 bytes).
“Thus, changing a user’s public key from RSA or DSA to ECC would reduce his/her

‘certificate size by less than 10%.

Another important point to keep in mind is that each ECC public key is only valid in
the context of certain parameters. These parameters must also be specified and
" transferred with integrity to the public key recipient (e.g. within an X.509 certificate).
: 'While there do exist certain curves which can be represented using short identifiers, in
the general case, it will require an additional five 192-bit (24-byte) quantities to
specify these parameters. Thus, it could take up to 110 additional bytes. RSA does not

g@q’uire any parameters be transferred with the public key.

.3.1.2 Signature Size
An RSA signature consists of a single 1024 bit value. Thus, it can be represented in

8 bytes.

ECDSA signature consists of two 192-bit values. Thus, it can be represented using
o 24-byte values, for a total signature size of 48 bytes Again, the reduction in
nature size is substantial and may be important for many constrained environments.

swever, as with public key size, the difference represents less than 10% of the size

ublic key certificate. For larger signed messages, the difference would represent

ven smaller percentage of the overall message.

3 Encryption Size

50

This section will compare the difference in size in transporting a 128 bit symmetric
key using RSA and ECIES. This is the typical scenario when files are encrypted, for
example. The encryption algorithm ECIES is specified in the ANSI X9.63 draft .

onsist of one 1024-bit value.

b

A 128 bit symmetric key encrypted using RSA will ¢
Thus, it can be represented using 128 bytes.

A 128 bit symmetric key encrypted using ECIES will consist of an elliptic curve
point, a 128-bit value and a 160-bit value. The elliptic curve point consists of two
192-bit values, so it can be represented using two 24-byte values, or 48 bytes.3 the
128-bit value can be represented using 16 bytes and the 160-bit value can be
represented using 20 bytes. Thus the encrypted symmetric key requires 84 bytes.

While ECIES does indeed produce smaller encrypted values than RSA, the difference

is not as dramatic as for public keys and signature values. When considering that the

symmetric key will then usually be used to encrypt much larger files, the advantage

may become inconsequential.

3.6.3.2 Speed

This section will compare the time fequired to perform ECC signature and éncryption
#L;pgrations with the timé required for RSA signatures' and encryption. Absolute
timings for different cryptographic implementations can vary widely. These variations
can be caused by a number of factors, including the quality of the implementation, the
atform used, optimizations made which exploit certain special cases, or the use of
oprietary or patented techniques not available to other implementers. For this reason
can often be misleading to directly compare any individual timings. It is better to

onsider general trends in timings for types of cryptographic systems. That is what we

‘Tere.

first issue to consider is whether the implementation is in software or hardware.

‘2 hardware implementation in custom silicon, even characteristic elliptic curves

rly allow the fastest implementations. This is due to the fact that the underlying

metic for even characteristic curves can be implemented using fewer gates, and

< in a smaller area, than the arithmetic for odd characteristic curves or for RSA.

51

Thus, the advantage these curves have is lost if the implementation is in software or
firmware on an embedded processor. Odd characteristic elliptic curves and RSA
however can take advantage of the integer mathematics routines that inherently exist
on most computers and therefore they should be used for software implementations.
The decision as to which of these two to use in a software implementation will depend
on the particular environment in which the cryptography will be used. The remainder
of this section will examine some common, general software environments in which

_this choice must be made.

Using a small public exponent value (e.g. e=216+1), the RSA public key operations

can be made very fast. .

This means that RSA signature verification and RSA encryption can be performed up
to 40 times faster than an ECDSA verify or ECIES encryption operation. The RSA
private key operations (i.e. signature generation and decryption) are generally slower
than the public key operations. The ECC private key operations are generally faster

than the public key operations. The situation can be summarized in Table 3.4.

Table 3.4 Generation of Key in ECC and RSA

Private Key Operations , LESS FAST | FAST
(Signature Generation and Decryption)

Public Key Operations VERY FAST | LESS FAST
(Signature Verification and Encryption)

t ‘ff‘fs now consider four common situations. First, let’s consider the quesﬁon of which
sorithm would be best for CA signing keys. CA signing keys are used to sign
certificates and CRLs. Each certificate and CRL only gets signed once, but is verified
ny times. In particular, every time that an end user’s signature is verified or
mething is encrypted at least one certificate and CRL must be verified. Thus, it

ces sense for CAs to try and minimize the amount of time end users spend on

lic keys.

52

Now let’s consider end user signing keys. Each signature, regardless of the number of

people to whom it will be sent or the number of times that it will be verified, will only

be created once. In the general case however, many different people may potentially

verify it many times. Thus, it makes sense in this situation, again, to try and minimize
the time that signature verification takes. Since signature generation will only be
performed once, we are not as concerned about the amount of time that operation

takes. Thus, again, RSA appears to be a more optimal choice for end user signature

keys.

Let’s now look at what happens with end user encryption keys. When encrypting a
document, the actual document will get encrypted with a symmetric algorithm (e.g.
"DES, CAST, IDEA) and then the symmetric key will be individually encrypted using
“the public-key algorithm for each recipient. Thus, the person encrypting the document
must perform a separate public-key encryption for each recipient and therefore may
~ need to perform many public-key encryptions each time a document is encrypted.
Each recipient, however, will only need to perform one decryption operation each

ﬁme access to the document is required.

Thus, in this situation it makes sense to try and minimize the amount of t1me the
person encrypting the document must spend and, therefore, minimize the amount of

ne spent on encryptxon Agam usmg RSA seems to make the most sense in this

inally, let’s consider a general email application where a user wishes to digitally sign
encrypt an email for one recipient. ngxtally signing the email requ1res one private
3? operation. Encrypting the email requlres one public key operation to encrypt the
etric key, which will be used to encrypt the contents of the email. However,
ore using the recipient’s encryption public key, the sender must first validate the
1ent s public key certificate. Validating the certificate will involve verifying the
ture on at least one certificate and also verifying the signature on at least one
. Thus, at least three public key operations must be performed before the email
get sent. In this situation, the difference between the time required for an RSA-

system and an ECC-based system is very small. Either choice will result in a

ast implementation [19].

53

3.6.4 Possible to attack ECC.

In this section we overview known attacks on the discrete logarithm elliptic curve

discrete logarithm problems and discuss how to avoid them in practice.

3.6.4.1 Naive Approach

The most basic method for solving the ECDLP (or the DLP) is to compute multiples
of the generators Q (say, of order n) and store them in a table.

Considéring an operation to be an elliptic curve addition, then this method take 0%/
time to build the table and O/ space to store it. The following methods are

improvements upon these worst-case bounds [10].

3.6.4.2 Shanks' Method (baby-step, giant-step)
An algorithm of Daniel Shanks reduces the running time to O(n'”? log n) and the space
“to O(n'?) points. The elliptic curve version of his algorithm is as follows. Assume that

Q is a generator of order n, and, given A, we want to compute k such that kQ = A. Let
m= 4\/—/; l Store in a list L; the pairs (j, jmQ) for 0 <j < m-1. Sort this list by the

second element of the pairs.

Create a second list L, from the pairs (i , -Q + A) for 0 <i<m-1. Sort this list by the
second element. Search the lists unﬁl pairs (j; P) € L, and (i; P) € L, are found. Then
P =jmQ |
P=-iQ+A
jmQ=-iQ+A
(m+D)Q=A
us, the multiple of Q such that kQ = A is k = jm + i. Of course, A must be a
miﬁple of Q for this algorithm to work. One simple way to be certain of this is to
se an elliptic curve with order prime p. Since the order of any element must
ide the order of the group, every element must have either order 1, namely the
nfity, or order p. The space requirement is for storage of the two lists, each

posed of n* points. The time complexity is dominated by the sorting of these n'?

54

Asan example consider y 2 =x 3 + 2 mod (19). This curve has order 13. Choose as a
“generator Q = (4, 16) and as the element of unknown index A = (8, 18). Let m =
\/E |= 4. Lists L; and L, work out as follows.

List 1= { (1, (9, 3)), (2, (12, 18)), (3, (4, 3)) }

- List2={ (1, (8 1)), (2, (12, 1)), 3, 9,3)) }

Ttem 1 in L; matches item 3 in L,. This indicates that 4Q = -3Q + A or 7Q = A. This is
orrect [10].

3.6.4.3 Pohling-Hellman Attack
Pohling-Hellman attack is an elliptic curve equivalent of the standard DLP attack. In

s attack the DLP is reduced to DLP in prime order subgroups and then the result is

tﬁesized using the Chinese Remainder Theorem.

Let 7= pf p°...p" be the prime factorization of the order of the group generator. If

‘= [K]P, then first all ki = k mod z{(fori=1, ..., 1) has to be determined. Let ki =

1

o+kiipit. . Hkigi1 Z7 is the pi-ary representation of ki and yj = kio + kiipit..

ij 1 pf“l . Then

=2 lo-l A=lk-r,]| =2
Qll,/ pl(+1 (Q [}//]P) [7/ pl(+1

. g er~1] 4

- I:é’l,_/l”l/ +..t érz',ei——lpi | +1
7

- g er~1] 4

- évl’,/’l”z(+“‘+é'1',ez'—‘1p1' i }_ P
Walts

= [é//][j

: re P’ = [n/pi] P. (The last equality holds since P’ has order p;.) Hencé, after
o ating ECDLPs for Q’;; = [ki;] P’ for all j from 0 to ; - 1 using another method

keﬁ'(haustive search), k; =k mod 2 can be determined. And after obtaining all

es k; (i=1,...,1), the solution is computed using the Chinese Remainder

sorem as 4= Y. £V, modz , where Ni=n/piand Mi= 4, ' mod pi.

55

Given the factorization of 1, the Pohling-Hellman algorithm needs

0(2; | e(lg 7+ \/Z)) steps to solve an ECDLP.

In order to avoid this attack, the order of the group generator must be divisible by a

large prime. Preferably, the order should be a prime or a prime multiplied by a small

~ integer [1].

3.6.4.4 Index And Xedni Calculus
" Tndex method is the most efficient method known t0 solve the standard DLP — it runs

in sub exponential time. Although most methods for the standard DLP are applicable

also to the ECDLP, riQ pfactical index calculus method has been found for the

ECDLP, and there are theoretical as well as practical reasons to believe that the

‘ECDLP is not susceptible to this kind of attacks.

There is another attack based on the idea of the index calculus — Xedni calculus

{Xedni is index backwards) —, which might be used to solve the ECDLP. This

method is applicable also to the standard DLP as we
of the method resisted quantification necessary to

11 as to the integer factorization

problem, and because the main step

raluate its complexity, it scemed to be a big threat for all nowadays widely used

ryptographic sjstems. However, it turned out later that this method is unpractical [1].

;.4.5 Special-Purpose Attacks

wough there is no known general sub-exponential algorithm to solve the ECDLP,

o classes of elliptic curves OVer Fp have special properties, which disqualify them

m the cryptographic‘uSe at all (they are also prohibited by all standards considering

1. Supersingular curves. A curve over Fp is super singular if #E(Fp) =p + 1.

on attacks (Menezes—Okamoto—Vanstone' and Frey-Ruck)

There are reducti
which reduce the discrete logarithm problem in these curves to the

r some B > 1, where the sub-

standard DLP in an extension field Fo 10

exponential aumber field sieve algorithm applies. The attacks are only

practical if B is small. Supersingulér curves can be excluded by the MOV

condition: Fork=1,2, ... B verify that n does not divide p*_1. (This

56

condition does not exclude only supersingular curves, but all curves
susceptible to the mentioned attacks.) For an implementation, it is
important to choose appropriate value for the constant B. ANSI X9.62
recommends to use B > 20 to ensure resistance against the reduction
attacks.

2. Anomalous curves. A curve over Fp is anomalous if #E(Fp) = p. There are
methods (Semaev, Smart, Satoh-Akari), which solve the ECDLP for these

curves efficiently. They can be excluded by the Anomalous condition:

Verify that #E(Fp) # p [1].

3.6.4.6 Suggestions to avoid

In order to avoid attacks mentioned in this section, the elliptic curve E over a prime
field F, and the order # of the generator of the group of elliptic curve points on E
should satisfy this properties:

1. The curve is not anomalous, i.e. n #P.

2. The smallest value of B such that p? =1 (mod n) is large (at least 20).

3, The group of all points on the curve has a subgroup with a large prime

order [1].

'3.6.5 Standards of the ECC algorithms.

The development of standards is a very important point for the use of a cryptosystem.
Standards help ensure security and interoperability of different implementations of

one cryptosystem. There are several major organizations that develop standards.

The most important for security in information technology are the:
. International Standards Organization (ISO),
» American National Standards Institute (ANSI),

" Institute of Electrical and Electronics Engineers (IEEE),
«Federal Information Processing Standards (FIPS).

¢ most famous ECC algorithm, the ECDSA was accepted 1998 as ISO standard
014888-3), 1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and
DS (186-2) standard. Several other standardization efforts are in progress. The most

nous is the ANSI X9.63, which includes dozens of key transport and key agreement

57

schemes. Table 3.5 provides an overview of the various standards and the included

algorithms [25].

Table 3.5 Standards and algorithms [16].

Standard Schemes Status
ANSI X9.62 ECDSA Approved
ANSI X9.63 ECIES,ECDH,ECMQV Draft
FIPS 186-2 ECDSA Approved
IEEE P1363 ECDSA,EDDH,ECMQV | Approved
| IEEE P1363A ECIES : Draft
ISO 14888-3 ECDSA Approved
ISO 15946 - | ECDSA,EDDH,ECMQV | Draft

“The relationship between these standards is visualized in Figure 3.5.

ANSI X96.2
SECG

. FIPS 186-2

Figure 3.5 Standards [16].

re is a company with a certain interest in elliptic curve cryptography, which
enforces the integration of ECC in several commonly used protocols. We will
mﬁﬁﬁon some of them. For example in the recent version of the TLS/SSL (Transport
sver Security/Secure Socket Layer) protocol basically ECC is supported. In its

ent implementation of this protocol, Certicom has already included this feature.

,,mthcr important application is the Wireless Application Protocol (WAP/WTLS). It
ures secure wireless communications and includes in its recent version ECC in the |
S layer. Also in the ATM Security Specification 1.0 ECC is included. They used
ed variants of the ANSI algorithms in order to avoid the costly inversion in the

: ture generation [16].

58

Table 3.6 compares the two algorithms.

Table 3.6 ECDSA vs. ECDSA-Like

ECDSA-Like ECDSA
» =xtmod r=xlmod
5 =(fr-e)d’ s =F (e +dy)

The Secure/Multipurpose Internet Mail Extensions (S/MIME) standard specifies
security. mechanisms for electronic communications. S/MIME can be applied to all
compatible MIME formats, such as http for example. The internet Draft Elliptic Curve
~ S/MIME tries to embed ECC in S/MIME [25, 16].

3.7 Eﬂipﬁc Curve Protocols

3.7.1 Elliptic Curve Diffie-Hellman Algorithm (ECDHA)

The first public key cryptosystem ever invented was Diffie-Hellman. Because the
computation behind public key cryptosystems takes a relatively long time when
éompared’ to classical cryptosystems, public key cryptography is often used in a
modified role along with a symmetric cryptosystem to transmit hidden messages. In
"976,\ Diffie and Hellman provided a detailed method of agreeing upon a key for a
: énmetric system using public key methods, the mathematics of which were based on

the discrete log problem.

his section focuses on the elliptic—curve Diffie-Hellman key exchange as an example
io illustrate the differences of elliptic¥¢urve algorithms from integer algorithms. We

1irst review the integer version.

7.1.1 Integer Diffie-Hellman key Exchange.
;e-Hellman key exchange (DHKE) is used to establish a shared key between two

rties over a public channel. It is based on the multiplicative group Z; of integers,

ere o is a prime. Figure 3.6 shows how a secret key, K, is agreed upon between

ce and Bob by exchanging two quantities z-and &7 publicly. We assume that the

59

two parties Alice and Bob have agreed on » and o values in advance, where a is a

primitive element of the group £ ; . [4]

Step Alice : Bob
Choose random a Choose random b
: a e [2, p-2] b e [2, p-2]
5 Compute ar Compute br
Ar=o*modp br=a’mod p
Send ar ar—~> Send br
: Receive br <br Receive ar
Compute key K Compute key K
4 | K=(bp)*modp K = (ar)’ mod p
= o™ mod p = 0® mod p

Figure 3.6 Diffie-Hellman key exchange (integer) [4].

The security of the integer Diffie-Hellman is based on the Discrete Logarithm
problem: given g, o and @ it is computationally infeasible to compute « (for
sufficiently large p). Therefore, even though an eavesdropper may capture the
f’ intermediate values #rand éfés‘they are eXchanged over the public channel, neither &
“nor 4 will be exposed, and therefore the final key A remains known only to Alice and
Bob.

7.1.2 Elliptic-curve Diffie-Hellman key Exchange.

This protocol establishes a shared key between two parties. The original Diffie-
Hellman algorithm is based on the multiplicative group modulo 2, while the elliptic
curve Diffie-Hellman (ECDH) protocol is based on the additive elliptic curve group.

ptic-curve Diffie-Hellman key exchange (ECDHKE) is similar to the integer
rsion except that it uses the points on an elliptic-curve rather than integers. We
assume that Alice and Bob have previously agreed on a binary field GF(p), a common
| ptic curve £ with suitable coefficients, and a base point 2=/, which lies on £

"d has order ».

60

To generate a key, first Alice chooses a random @ € F, (of high order) which she

keeps secret. Next she calculates 27 € £ which is public and sends it to Bob. Bob

does the same steps, i.e. he chooses a random integer b (secret) and calculates 47

which is sent to Alice. Their secret common key is then K = 24/ € Z The Figure

3.7 show the idea in simple word.

Step Alice Bob
Choose random a Choose random b

: ae [2,n-1] b e [2,n-1]

5 Compute At Compute B
Ar=Pxa Br=Pxb

: SendAr | Ar> Send Br
Receive Bt <Br Receive At

Compute key K Compute key K

4 K=Brxa K=Arxb

=Pxaxb =Pxaxb

Figure 3.7 Elliptic Curve Diffie-Hellman key exchange

Alice Bob
Generates k, Generates ky,
Computes P = k,Q Computes M =k,Q
Sends P
P Sends M
Computes P; = k.M Computes P, = kyP
Use this computed
point (P or Py) as
the shared secret
< key

Figure 3.8 [lustration of Elliptic Curve Diffie-Hellman Protocol [9].

61

At the end of the protocol the communicating parties end up with the same value £
that is a point on the curve. A part of this value can be used as a secret key to a secret-

key encryption algorithm.

The security of the EC-DHKE is based on the elliptic curve Discrete Logarithm
problem: given GF(p), £ 7, 4z it is computationally infeasible to compute « (for
sufficiently large £ and #). Unlike the integer discrete logarithm problem, the elliptic
curve discrete logarithm problem has no known sub-exponential time solutions (for a

well-chosen set of system parameters) [4].

Accordingly, a given level of security can be achieved with a # smaller than the

number of bits required to encode the z in the integer Diffie-Hellman key excharige.

Table 3.7 provides a comparison of the basic features of 1024-bit integer Diffie-
Hellman and 160-bit elliptic-curve Diffie-Hellman key exchanges.

-Table 3.7 Comparison of integer Diffie-Hellman and elliptic curve
Diffie-Hellman

DHKE EC-DHKE
Group Integers in Zp Points on the elliptic curve E
: Elliptic Curve point
Base object ae Z :
z PEE
. . Exponentiation Point multiplication
Primary operation
(a*mod p) (Pxa)
Key length 1024 bits 160 bits

7.2 Digital Signature

The ECDSA is the elliptic curve analog of the DSA. Vanstone first proposed ECDSA
1992 in response to NIST’s (National Institute of Standards and Technology)
request for comments on their first proposal for DSS. Digital signature schemes are
counterpart to handwritten signatures. A digital signature is a number that depends
om the secret key only known by the signer and on the éontents of the message being
igned. Signatures must be verifiable without access to the signer’s private key.

gnatures should be existentially unforgeable under chosen-message attacks. This

62

asserts that an adversary who is able to obtain Alice’s signatures for any messages of

his choice cannot forge Alice signature on a single other message.

37.2.1 Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by the U.S. National Institute of Standards
and Technology (NIST) and became a U.S. Federal Information Processing Standard
(FIPS 186) in 1993. It was the first digital signature scheme to be accepted as legally

binding by a government.

The algorithm is a variant of the ElGamal signature scheme. It exploits small

subgroups in Z;in order to decrease the size of signatures. The key generation,

signature generation, and signature verification procedures for DSA [24].

The foﬂowing figures describe the DSA in details. There are three parameters that are
public and can be common to a group of users. A 160-bit prime number q is chosen.
Next, a prime number p is selected with a length between 512 and 1024 bits such that
q divides (p-1). Finally, g is chosen to be of the form h® Y4 mod p, where h is an
integer between 1 and (p-1) with the restriction that g must be grater than 1.

 With these numbers in hand, each user selects private key and generates a public key.
The private key x must be a number form 1to (g-1) and should be chosen randomly or
pseudorandomly. The public is calculated from the prlvate key as y = g mod p. the
calculation of y given x is relatively straightforward. However, given the public key,
is believed to be computationally infeasible to determine X, which is the discrete

garithm of y to the base g, mod p. we summarize the in the following:

Global Publlc-Key Components
P prime number where 2<p<t
for 512<=L <=1024 and L a multiple of 64;
i.e bit length of between 512 and 1024 bits
in increment of 64 bits.

q prime divisor of (p-1), where 219 <p <21
i.e bits length of 160 bits.
g =h®D mod p;

where h is any integer with 1<h <(p-1)
such that h®4> 1.

63

User’s Private Key
X random or pseudorandom integer with 0 <x <q

User’s Public Key
y =g mod p

User’s Per-message Select Number
k random or pseudorandom integer with 0 <k <q

To create signature, a user calculates two quantities, r and s, that are functions of the
public key components (p, g, g), the user’s private key (x), the hash code of the
meésage, H(M), and additional integer k that should be generated randomly or

pseudorandomly and be unique for each signing.

Signing
r =(g" mod p) mod p

s =[k(HM) + xr)] mod p

signature = (z,5)

| At receiving end, veriﬁcatioﬁ is performed using the fbrmulas shown in the following
;iﬁgure. The receiver generates a quanﬁty v that is a function of the public key
%:omponents, the sender’s public key, and hash code of the incoming message. If this
?gﬁanﬁty matches the r components of the signature, then the signature is validated

29].

Verifying
W =(s") mod p
ul =[H(M’)w] mod p
. u2 =(r’)w mod p
v =[(g"y"*) mod p] mod p
TEST: v=r’

64

3.7.2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)
ECDSA is the elliptic curve analogue of the DSA. That is, instead of working in a

subgroup of order #in Z;, we work in an elliptic curve group ZAZ,). The ECDSA is
currently being standardized within the ANSI X9F1 and IEEE P1363 standards

committees. The following table shows the correspondence between some math

notation used in DSA and ECDSA [24].

Table 3.8 Correspondence between DSA and ECDSA notation [24].

DSA notation | ECDSA notation
17 n
G P
x d
- 5

We next describe the elliptic curve analogue (ECDSA) of the U.S. government digital
signature algorithm (DSA). The ECDSA is an ANSI standard and is also being
considered by the ANSI X9F1 and IEEE P1363 standards committees as a digital

signature standard [25].

Suppose Alice wants to send a digitally signed message to Bob. They first choose a
finite field Fg, an elliptic curve 2 defined over that field and a base point /2 with
order 7 Alice’s key pair is (£ (), where &is her private and Qis her public key. To

sign a message 47 Alice does the following:

ECDSA Key Generation. £ is an elliptic curve defined over Fg, and Zis a point of
f'ki@rime order # in ZF ¢/, these are system-wide parameters. For simplicity, we shall
“suppose that ¢ is a prime, although the construction can easily be adapted to a prime
power ¢ as well. Each entity . does the following:

1. Select a random integer #in the interval [1, 7 - 1].

2. Compute @ = 27

3. 4's public key is ¢} £'s private key is &

65

ECDJ'A Signature Generation. To sign a message 7, 4 does the following:
1. Select a random integer £in the interval [1, ~- 1].
2. Compute /2 = (x1, j1) and » = x1 mod » (where 1l is regarded as an
" integer between 0 and ¢ - 1). If » =0 then go back to step 1.
3. Compute £ mod 7.
4. Compute s = £71 {/m/) + ar/mod », where /is the Secure Hash
Algorithm (SHA-1). If s =0, then go back to step 1.

5. The signature for the message # is the pair of integers (7 s/.

ECDSA Signature Vergfication. To verify A£'s signature (7; 5/ on 2, £ should do the
following:

1. Obtain an authenticated copy of .#’s public key ¢

2. Verify that » and s are integers in the interval [1, #- 1].

3. Cdmpute w =" mod zand A/m).

4. Compute #1 = 4fm/wmod zand 22 = rwmod 7.

5. Compute z1 2 + 20 = (10, 30) and » =10 mod 7.

6. Accept the signature if and only if v =7 [25].

66

Alice Bob

oo
S’

Verify r and s are integers in
the range [1,n—1]

|

Compute ¢ = SHA-1(m)
r=xmodn ‘

> Generates k
Computes P=k G={x, y)

w=s!modn

Yes l
Sends P, m u; =ew and Uy =1.W
No P ‘
e = SHA-1(m) .
Point X = (x5, y) =wG + wQ
Compute
s=k"! (e +d,*r) mod n
. P o /,
Yes Reject
No
Signature of message Accept Alice’s signature if v=r

m is the Pair P=(r, §)

Figure 3.8 Illustration of Elliptic Curve Digital Signature Algorithm [9].

DSA and DSA is in the generation of 7.

The only significant difference between EC
o mod 2/ and reducing it modulo

The DSA does this by taking the random element (

g, thus obtaining an integer in the interval [1, ¢ - 1]. (In the DSA,
s an element of order 7 in F'p.) The ECDSA generates the

-1] by taking the rcoordinate of the random point £7and

¢is a 160-bit prime

“divisor of 7 - 1, and @ i
integer ~in the interval [, »

reducing it modulo 7.

0 obtain a security level similar to that of the DSA, the parameter # should have

about 160 bits. If this is the case, then DSA and ECDSA signatures have the same
bitlength (320 bits). “

Tnstead of using system-wide parameters, We could fix the underlying finite field Fg

- all entities, and let each entity select its own elliptic curve £ 'and point /~ € EE).

o this case, the defining equation for £ the point 2, and the order 7 of Zmust also be

67

included in the entity’s public key. If the underlying field F7 is fixed, then hardware
ot software can be built to optimize computations in that field. At the same time, there

are an enormous number of choices of elliptic curves £ over the fixed Fg [25].

Other features of ECDSA
e Since the public key of an individual is not solely determined by the elliptic
curve AyZn) used, nor on the point /Z many users can use the same curve
Z{Ln) and point A, and thus an individual’s private key consists solely of ¢
This is good as it reduces the size of the public-key.

e Since ECDSA defines private keys are per-signature values as statistically
unique and unpredictable rather than being simply random, as per the DSA

standard, it is more secure than DSA (as only “non-weak” keys are considered.

e ECDSA makes use of deterministic primality testing, while DSA only requires
probabilistic testing. Thus numbers which are claimed to be prime can verified

to indeed be prime, and thus avoid potential security hazards [2].
3.7.3 Encryption (ElGamal Elliptic Curve)

3.7.3.1 ElGamal Cryptosystem ’
This cryptosystem is based on the difficulty of the discrete logarithm problem. Given

2 and p, it is difficult to find # when: £° =(mod p), o in which p is a prime number
larger than two; 1 <@ <p—-1;2<a<p-2; and g1is a primitive element of a group of

numbers. Note that @ 1. In addition, ## 1, for reasons as mentioned later.

Tence zis limited to values less than » —2, since by the little Fermat’s theorem &£ =
mod) is always true if g and 2 are co-prime. As shown below, having a value of @

ss than 2 is of no practical use, as a trapdoor.

The public key here is (# & @) and it is used in the encryption’ and decryption
processes. To send the plaintext the sender performs the following operations to

generate the ciphertext (37, 32):

68

Encryption function: »/ = g/‘ (mod p)
yZ?——x/ (mod p) ;

Decryption function: x =y2 (y1%! (mod 2)
which is feasible because w2 (py'= x (¢! (mod p)

(&) (g (mod p)

=1,

i}

in which #is a randomly chosen integer?
Thus cannot be equal to 1 if the plaintext xis to be effectively masked [26].

Security
Breaking FlGamal is believed to be, by most informed observers, generally as

difficult as solving the discrete logarithm problem. If the discrete logarithm problem

could be solved efficiently, then ElGamal could be broken. However, it remains

possible that there may be some way to break ElGamal without having to solve that

problem.

3.7.3.2 ElGamal Elliptic Curve Cryptosystem
How can we set up a public-key cryptosystem using an elliptic curve? The only
~ public-key cryptosystem that we've studied so far is the RSA cryptosystem;

~ unfortunately, there is no analogue of RSA for elliptic curves!

The original ElGamal cryptosystem was developed on the standard discrete logarithm

problem.

Thls algorithm has expansion factor of two, i.e. for each plaintext field element, the

corresponding ciphertext consists of a pair of field elements. An elliptic curve

‘analogue of the ElGamal cryptosystem has a message expansion factor of four, i.e. for

ach plamtext field element, the corresponding ciphertext consists of four field

lements. Moreover, the plaintext space has to consist of points on the elliptic curve

69

and there is no known deterministic method of generation of points on an elliptic

curve.

Now we describe the ElGamal elliptic curve version in simple words. Bob choose an

elliptic curve E(mod p), where p is a large prime o on E and a secret integer a. he

computes
B=a*a (=at ot ... +o).

The points o and are public, while a is kept secret. Alice expresses her message as a

x on E. she choose a random integer k, and computes

point
| yl =k*a and
y2 =x+k*B,
and sends the pair 2Cyl, y2] to Bob. Bob decrypts by calculating
- x=y2—ayl.

Example: (Z//ptic curve encryption).
Consider the following elliptic curve:

- p=2+art bmodp
S =2 —r+188mod 751
that is: @= —1, 6= 188, and p=751. The elliptic curve group generafed by the above

elliptic curve is then Efa b= Fisi(—1, 188).

N

‘Let the generator point 0. = (0, 376). Then the multiples 4o of the generator point o are

(for 1 <A<T51):
a=(0, 376)
50.= (188, 657)
9q = (582, 736) 100 = (57, 332) ..

761 0= (565,312) 7620= (328, 569) 763 0= (677, 185)

764 0.= (196, 681) 765 a= (417,320) 766a= (3, 370)

67 o= (1, 377) 768 0. = (0, 375) 769 o = Apoint at infinity)

2a.= (1, 376) 30.= (750, 375) 4a.= (2, 373)
60 = (6, 390) Ta= (667, 571) 80, = (121, 39)

£ Alice wants to send to Bob the message M which is encoded as the plaintext point x

=(443, 253) € Zs1(—1, 188). She must use Bob public key to encrypt it. Suppose that

: ob secret key is az= 85, then his public key will be:
f=aza=285(0, 376)

70

f= (671, 558)

Alice selects a random number £= 113 and uses Bob’s public key /= (671, 558) to

message point into the ciphertext pair of points:

2C=[(#0), (x+ #8)]
PC=[113 x (0, 376), (443, 253) + 113 x(671, 558)]

PC=[(34, 633), (443,253) + (47, 416)]
PC=[(34, 633), (217, 606)]
Upoh receiving the ciphertext pair of points,
az= 85, to compute the plaintext point, %, as follows

(r+ £ —[afAW)] = (217, 606) —[85(34, 633)]

(rr £ —[afAW)] = (217, 606) —[(47, 416)]

(r+ £8) — [agA0)] = (217, 606) + [(47, —416)] (since —~= (1, —11))

(x + 49 — [asko)] = (217, 606) + [(47, 335)]

(since —416 =335 (mod 751))

(x + £8) —lagfAN)] = (443, 253)
the plaintext point /247 = (443, 253) back into the original plaintext

encrypt the

PC= [(34, 633), (217, 606)], Bob uses

his private key,

and then maps
" message M [27].

3.7.4 Menezes-Vanstone Elliptic Curve Cryptosystem

The Menezes-Vanstone elliptic curve cryptosystem is defined a
elliptic curve defined over Z, (0 > 3 prime), or in GF(p") with n > 1, such that E
rete logarithm problem is intractable.

s follows. Let E be an

contains a cyclic subgroup H in which the disc
pXZ*p,C=E X Z*p X Z*p, and define K= {(B; o; ; B): B = ao};

LetP=2*
public and a is secret. For K= (E, a, a, B), for a

Where o, € E. the values o and B are
and for x = (x1, X2) € Z*p X Z*p, define ex(x, k) =

(secret) random number keZ,

é:}r{), Yi, y2)9

Where yo = ko,

(c1,2) =kP

y1 = C1X1 mod p

ya = CoXz mod p.

“or a ciphertext y = (Yo, Y1, y2), define ,,
dx(y) = (yic1” mod p,¥2 € ! mod p),

71

where

ayo = (¢1,62).

The Menezes-Vanstone cryptosystem is a more efficient variation of the well-known

ElGamal cryptosystem [28].

There are some practical difficulties in implementing an ElGamal cryptosystem on an
elliptic curve. The ElGamal cryptosystem, when implemented in Z,, has a message
expansion factor of two. An elliptic curve implementation has a message expansion
factor of (about) four. This happens because there are approximately p plaintexts, but
each‘ciphertext consists of four field elements. A more serious problem is that the
plaintext space consists of the points on the curve E, and there is no convenient

method known to deterministically generate points on E.

In the Menezes-Vanstone variation of the ElGamal cryptosystem an elliptic curve is
used for masking, and plaintexts and ciphertexts are allowed to be arbitrary ordered
pairs of (nonzero) field elements (i.e. they are not required to be points en E). This

yields a message expansion factor of two, the same as original EIGamal cryptosystem.

In addition, using point compression can reduce the message expansion. That is, the
| y-coordinate of the point can be recovered given its x-coordinate and a single bit of

extra information. This yields a message expansion factor of 1.5 [28.]

3.8 Summary

This chapter described the Elliptic Curve Cryptography as bellow; the chapter gave
e history of elliptic curve, elliptic curve in mathematics side, the problems that
public key algorithms depends on and described it in deep, then it study the elliptic
curve cryptosystems in more details as showed general idea how elliptic curve
myptography works, elliptic curve discrete logarithm problem and how the security if
C depends on it, the showed the security and efficiency of ECC compared with
RSA algorithm, then possible attack to ECC and how we can avoid from these ways,
last described the ECC protocols and how developed the some algorithm that
orked without elliptic curve cryptography schema.

72

4. IMPLEMENTATION ELGAMAL ECC ENCRYPTION USING
VISUAL C++ 6.0

4.1. Overview

With the rapid growth of the Internet technology and its application especially in
electronic commerce and electronic male systems, the need for more secure
communication channel has become critical for surviving in this open world. As we
have mentioned before cryptography systems is the solution for this problem of security
and the Elliptic Curve Cryptography using ElGamal ECC encryption protocol has
helped to fill that need by providing an easy to understand implementation of Public key

encryption.

This chapter is to introduce an application developed to secure transaction over
communication channel and by using public key cryptography and the ElGamal ECC

protocol.

4.2. Program Explanation

What we will introduce here is how to use my application to secure your data transfer
over communication channel, this application was developed by using VISUAL C++
6.0 programming language and the source code of this application is found in Appendix
A

The reason for using VISUALC++ 6.0 programming language is, VISUAL C++is a
powerful and complex tool for building 23-bit application for Windows 9X and
Windows NT. These applications are much larger and more complex than their
predecessors for 16-bit windows or older program that didn’t use a graphical user
interface. Yet, as program size and complexity has increased, programmer effort has

decreased, at least for programmers who are using right tools.

Visual C++ 6.0 is one of the right tools. With its code-generating wizards, it can
produce the shell of a working Windows application in second. The classes library
include with visual C++, the Microsoft Foundation Classes (MFC), has become the
industry standard for windows software development in a variety of C++ compilers. The

visual editing tools make layout of menus and dialogs and snap. The time you invest in

73

levarning to use this product will pay for itself on your first windows programming

project.

The following flow chart will explain the step of how work on the application:

Main Menu

Is press encryption
button?

Is press decryption

button?

Is press Generation
button?

No

Exit button

Figure 4.1 Start Maim Menu

In Figure 4.1 we explain that the program when it start, it contain three steps and the
exit that are 2, 3 and 4 where step 2 explain in Figure 4.2 to illustrated the encryption

operation, step 3 explain in Figure 4.3 to illustrated the Generation public key operation,

and step 4 explain in Figure 4.4 to illustrated the decryption operation.

74

A » Encrypt Mode

A

Enter File Name

Is press open
hatton?

ENTER: Elliptic Curve,
Prime No, Secret Key,
Based Point, Public Key

Is press encryption

button?

Is press send file
button?

/ send process

STOP

Figure 4.2 Encryption operation

In Encryption operation you work as follow, first you enter the file name that you want
to encrypt, if you don’t press open you can’t do any thing, if press yes the you go to the

step, you enter the Elliptic curve Equation, Prime number, Based Point, and enter the

Public key, after that you face 3 choices encrypt, send file and exit, to encrypt you must
do the last steps, to send file you must encrypt file then send it, and you have exit if you
don’t like to any thing and you change your mind.

75

Generate key Menu

ENTER:
Elliptic Curve, Prime No,
Secret Kev. Based Point

1s press

generatine button

yes

h 4

Output: Public
Key generating

Figure 4.3 Generation Public key

 generation public key you works as follow, you enter the coefficients of elliptic curve
equation A and B, the prime number, based point, all these you must first agree on it
with other side, and enter your secret key also, then you face 2 choices generate key and
exit, after you did the last steps and press the generate key you get a public key as a
point, if you change your mind and don’t like to any thing press exit.

76

r) Decrypt Menu [&

3 Enter File Name

NO

Is press open
button?

ENTER: -
Elliptic Curve, Prime No,
Secret Key

Exit Receive file

A

Is press

receive

h 4
Enter IP Address

hutfon? Yes

Is press No

decrypt

Is press ccnnécting
hutton?
Ne hito button?

Decryption Yes
Decryption process Receiving process
complete
A
STOP

Figure 4.4 Decryption operation

In Decryption operation you work as follow, first you enter the file name that you want
to decrypt, if you don’t press open you can’t do any thing; if press yes the you go to,
enter the Elliptic curve Equation, Prime number, and secret key, after that you face 3
choices decrypt, receive file and exit, to decrypt you must do the last steps, to receive
file you must enter the TP of the sender, and press connect to do receiving operation, and

you' have exit if you don’t like to any thing and changing your mind.

77

4.3. Design of the program

The usage of the application is very easy and the interface of the application that is
shown in figure 4.5 to figure 4.11, by ifo‘ll‘owing direction stated below the user will be
able to use efficiently. To complete the éncryption, transfer and decryption and the
program can be used the following general asks; Generate public key, Encrypt file,
Decrypt file, as you see in figure 4.5.

Figure 4.5 Main Menu

78

Figure 4.6 Generation Key

In the mode the user generate his public key, to use the other side that will encrypt the
file to him. As we know the public key using to encrypt the message and the private key

use to decrypt the message.

To generate the public key the user must agree with the other side on the following:
1. Elliptic Curve Equationy* =x’ + Ax + B,

2. Prime Number.

3. Based Point it belong to Elliptic curve.

The user enters the A and B from the Equation, the prime number, based point, and his

secret key, to get the Public Key as point.

79

4.3.2 Encrypt file

Figure 4.7 Encryption Mode

In this mode the user will encrypt the file, as following: first of all he will select the text
file that he want to encrypt as you see in figure 4.8, then he will enter the A and B of
elliptic curve equation, the prime number, the based point, the secret key where it is

generate automatically, and the public key.

In this mode there is option to send the file over communication channel, so if you are
connected to networks, press Send to it will appear the figure 4.9 to select the encrypt
file to send, then if the other side receive the file the file the program will give message

“Sending file operation successfully”, else it will give you message “Sending file

operation failed”.

80

iProgram Files

Eaprograming

-
oy
o ‘g}

Figure 4.9 Select Encrypt file

81

4.3.3 Decryption file

Figure 4.10 Decryption Mode

In this mode the user will decrypt the file, as following: first of all he will select the
Encrypt file as you see in figure 4.9, that he want to decrypt, then he will enter the A

and B of elliptic curve equation, the prime number, the based point, and the secret key.

In this mode there is option to receive file over communication channel, so if you are
connected to networks, press Receive from it will appear the figure 4.11 to add the
address or computer’s IP for the other side, then he will press connect to accomplish the
receiving process, then if the file is received the program will give message “Receiving
file operation successfully”, else it will give you message “Receiving file operation
failed”.

82

Figure 4.11 Receiving file

4.4. Summary
This chapter has described the how the application works, ?Vhich is an implementation
of the Elliptic Curve Cryptography in public key cryptography concepts using ElGamal
ECC algorithin.

83

CONCLUSION

In this thesis, it has given an analysis the most important facts of Elliptic Curve
Cryptography and findings into a board. It also illustrated certain points of this filed. It
has given a detailed view on the protocols of Elliptic Curve cryptography (ECC); it also
has provided a sample program using ElGamal Elliptic Curve protocol a practical

implementation of the pervious theoretical background.

Next paragraph the important result obtained from this thesis:

e Basic of cryptography and where it is used, the basics of the cryptography
system and its types, techniques and algorithms used by any ¢ ryptography
system were discussed in more details, and finally we talked about modern using

of cryptography and possible ways to attacks.

o Before cryptographic systems, the ‘corresponding mathematical problems
discussed, the difficulty of a problem defined. What did it mean for a
mathematical problem to be difficult?

e Elliptic Curve Cryptography (ECC) is the next generation techniques of public
key cryptography systems, describe history of ECC, prosperities of ECC using
algebra concepts, describe ECDLP and how the security depend on it, compare
with RSA, describe the protocols of ECC.

o An application developed to secure data transmission over communication
channels using Elliptic Curve Cryptography technology (ECC) implemented
using Visual C++ 6.0.

But we have observed that:

o The usage of this technology is grown by time to the interest of the public key
cryptography due to the growing of client/server application and needs more

secure in this filed.

84

REFERENCES

[1] Lenka Fibikova’, “Elliptic Curve Cryptography Over Prime Fields”, Institute
for Experimental Mathematics University of Essen. Essen, Germany,

September, 2002,

[2] Carl Hultquist, “Elliptic Curve Encryption The Immediate Future of

Cryptography”, National Institute for Research in Computer Science and

Control, 8 April 2003

[3] Certicom Corp., “The Elliptic Curve cryptosystem for smart cards”, A
Certicom White Paper, The seventh in a series of ECC white papers,
Published: May 1998, You can download these papers from Certicom’s Web

site at http://www.certicom.com.

[4] Certicom Corp., “The Elliptic Curve Cryptosystem” remarks on the security of
the elliptic curve cryptosystem, Published: September 1997 Updated: July

2000

[5] Michael J Ganley, “Elliptic Curve Cryptography- an Introduction”, CHI
Publishing Ltd, June 2001.

[6] Montserrat B. Ros, “Hyperelliptic curve cryptosystems over optimal extension
fields”, Department of Computer Science and Electrical Engineering,

University of Queensland, October, 2000.

[7] Jeffrey L. Vagle, “A Gentle Introduction to Elliptic Curve Cryptography”,
BBN Technologies, November 21, 2000.

" [8] Richard Southern, “Elliptic Curve Cryptosystems The Future of Public-Key
Encryption”, sthric003, 20 April 1998.
http://www.cs.uct.ac.za/courses/CS4OOW/NIS/papers98/rsouther/ecc.htm

85

[9] Vikram V Kumar, Satish Doraiswamy, Zabeer Jainullabudeen, “Design and

Analysis of Algorithms Elliptic Curve Cryptography ™.
[10] Jeff Hamblin, “Elliptic Curve Cryptography”, May,12,1999.

[11] Mugino Saeki, “Elliptic Curve Cryptosystems”, school of computer science
McGill University, Montreal, February 1997.

[12] Daniel R.L. Brown, “Generic Groups, Collision Resistance and ECDSA”,
Certicom Research, Canada. Feb 26 2002.

[13] Jacques Stern, “Evaluation Report on the Discrete Logarithm Problem over
finite fields .

[14] Shuhong Gao, “Cryptosystems Based on Discrete Logarithms”, Sun Oct 17
11:04:53 EDT 1999,
http://www.math~.~clcmson.edu/facultv/Gao/crvnto mod/node2.html

[15] Tim Kerins', Emanuel Popovicil, William Marnane', and Patrick
Fitzpatrickz, “Fully Parameterizable Elliptic Curve Cryptography Processor
over GF(2m) » IDept of Electrical and Electronic Engineering, University
College Cork, College Rd., Cork City, Ireland.
ftimk,emanuel,liamg@rennes.ucc.ie, 2Dep‘lu of Mathematics, University

College Cork, College Rd., Cork City, Ireland. nﬁﬁtzpatrick@ucc.ie

[16] Elisabeth Oswald, “Introduction to Elliptic Curve Cryptography ”, Institute
for Applied Information Processing and Communication A-801 0
Inffeldgasse 16a,Graz, Austria Elisabeth.Oéwald@iaik.at, July 3,2002.

86

[17] Naoya Torii, Kazuhiro Yokoyama, “Elliptic Curve Cryptosystem”, FUJITSU
Sci. Tech. J.,36,2,pp.140-146, Manuscript received June 6, 2000.
[18] Dr. Reza Akhtar, “Elliptic Curve Cryptography”, SUMSRI Algebra Short

Course Note.

[19] Robert Zuccherato, “Elliptic Curve Cryptography Support in Entrust”,
4 Entrust Securing Digital Identities & Information, May 9, 2000 Version: 1.0

‘[20] Darrel Hankerson (Auburn University) Alfred Menezes (University of
Waterloo), “Elliptic Curve Discrete Logarithm Problem”, February 25,

2003.

[21] M. Aydos, E. SaVas; and C. K. KoC, “Implementing Network Security
Protocols based on Elliptic Curve Cryptography”, Electrical & Computer
Engineering Oregon State University Corvallis, Oregon 97331, USA.

[22] A.Murat Fiskiran and Ruby B. Lee, “Workload Characterization of Elliptic
Curve Cryptography and other Network Security Algorithms for Constrained
Environments”, Princeton Architecture Laboratory for Multimedia and
Securify (PALMS) Department of Electrical Engineering Princeton
’ University {fiskiran,rblee} @ee.Princeton.edu. November 2002.

[23] M. Aydos, B. Sunar, and C. K. KoC, “An Elliptic Curve Cryptography based
Authentication and Key Agreement Protocol for Wireless Communication”,

Electrical & Computer Engineering Oregon State University Corvallis,

Oregon 97331.

[24] Aleksandar Jurisic, Alfred J. Menezes, “Elliptic Curves and Cryptography”.
Certicom Corp. (Canada), Publishers, 1993 "

87

[25] Neal Koblitz, Alfred Menezes, Scott Vanstone, “The State of Elliptic Curve
Cryptography”, Designs, Codes and Cryptography, Kluwer Academic,
Boston. Manufactured in The Netherlands. Publishers (2000), 173-193

[26] Chue Peck Har, Luo Yanying, Wong Xiu Ming,“Information Security and
Cryptographic Systems”, Special Program in Scince A Y 2002/2003.

[27] Wade Trappe, and Lawrence C. Washingtone. Cryptography Coding Theory.
Prentice-Hall, Upper Saddle River, 2002.
[28] Henna Pietildinen, “E]liptic curve cryptography on smart cards”, Faculty of

Information Technology, October 30, 2000.

[29] Willim Stallings. Cryptography and Network Security principles and
practice. Third Edition. Prentice-Hall, Upper Saddle River, 2002.

[30] Abstract algebra, From Wikipedia, the free encyclopedia.

httn://Www.wikinedia.org/wiki/Abstract algebrahttp

[31] Group (matheniatiCS); From 'Wikipédia, the free encyclopedia;

hitp://www.wikipedia.org/wiki/Group (mathematics)

[32] Abelian group, From Wikipedia, the free encyclopedia.
http://www.wikipedia.org/wiki/Abelian group

[33] Abelian group, From Wikipedia, the free encyclopedia.
http://Www.wikipedia.or,q/wiki/Ring (algebra)

[34] Module, From Wikipedia, the free encyclopedia.

http://www.wikinedia.org/wiki/Module”

{35] Modular arithmetic, From Wikipedia, the free encyclopedia.
http://Www.wikipedia.or,q/wiki/Modular arithmetic

88

[36] Field, From Wikipedia, the free encyclopedia.
http://www.wikipedia.org/wiki/Field

[37] Finite field, From Wikipedia, the free encyclopedia.
http://www.wikipedia.org/wiki/Finite_field

[38] Charles Daney, “Elliptic Curves and Elliptic Functions”, March 28, 1996
http://cgd.best.vwh.net/home/flt/flt01 . htm

[39] integer factorization, From Wikipedia, the free encyclopedia.

http://www.wikipedia.org/wiki/integer factorization

[40] A Certicom Whitepaper, The Elliptic Curve Cryptosystem “Current Public-
Key Cryptographic Systems”, Published: April 1997 Updated: July 2000

[41] Mohan Atreya, “Introduction to Cryptography”.

[42] Simson Garfinkel, and Gene Spafford, Practical UNIX and Internet
Security Second Edition, April 1996.

[43] Introduction to Cryptography Mark Vandenwauver Katholieke Universiteit
Leuven, Laboratorium ESAT-Groep COSIC,

http://www.esat.kuleuven.ac.be/cosic/intro/

[44] Pierre Loidreau, “Introduction to cryptography”,
http://www.security-labs.org/index.php3

[45] Terry Ritter, “Learning About Cryptography” A Basic Introduction to
Crypto, Ciphers By Ritter Page,2003 September 2,
http://www.ciphersbyritter.com/

89

[46] Alan S H Lam, “Overview of Cryptographic Algorithms” Last Updated
Tuesday, 23-Nov-1999 15:05:59 HKT,
http://itec.erg.cuhk.edu.hk/index.html

[47] Tatu Ylonen, “Introduction to Cryptography”,
http://burks.brighton.ac.uk/burks/pcinfo/security/cryptint.htm

90

APPENDICES

// ECCDIlg.cpp : implementation file
1 .

#include "stdafix.h"
#include "ECC.h"
#include "ECCDIg.h"
#include "EncrDlg.h"
#include "DecrDlg.h"
#include "GkDIg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=_ FILE_;
#endif

I I
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{ .
public:

CAboutDlg();

// Dialog Data
g /I{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
(I3 YAFX _DATA

// ClassWizard generated virtual function overrides
/1{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
INYAFX_VIRTUAL

// Implementation
protected:
/1 { AFX_MSG(CAboutDlg)
/1YY AFX_MSG
DECLARE MESSAGE_MAP()

I
CAboutDlg::CAboutDIg() : CDialog(CAboutDlg::IDD)

//{{AFX_DATA_INIT(CAboutDlg)
//}YAFX_DATA_INIT

'

91

void CAboutDlg::D()DataExchange(CDataExchange* pDX)

CDialog: ‘DoDataFxchange(pDX);
14 {AFX_DA’].‘A__MAP(CAboutDlg)
/Y YAFR X_DATA MAP

}

BEGINﬂMESSAGEﬁMA’P(CAboutDlg, Chyialog)
I{{AFX_MSG_MAP (CAboutDlg)
// No message handlers
INYAFX_MSG_MAP
"END_MESSAGE_MAP()

///
// CECCDlg dialog

- CECCDg: -CECCDIg(CWnd* pParent / #=NULL*/)
: CDialog(CECCDIg::IDD, pParent)

JI{{AFX_DATA_INIT (CECCDIg) ;

J/NOTE: the ClassWizard will add member initialization here
INYAFX_DATA INIT
// Note that LoadIcon does not require a subsequent Destroylcon in W. in32
m_hlcon = Aﬁ(GetApp()—>Load.Icon(IDR'MAINFRAME);

)
void CECCDlg::D0.DataExchange(CDataExchange* pDX)
{
JDialog::DoDataExchange(pDX);
1 {A‘FX__DATAﬂMAP(CECCDlg)
// NOTE: the ClassWizard will add DDX and DDV calls herc
1} }AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CECCDlg, Chialog)
11§ {AFX_MSG_MAP(CECCDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_ENC, OnEnc)
ON_BN_CLICKED(IDC_DEC, OnDec)
ON_BN_CLICKED(IDC_GK, OnGk)
/1YY AFX_MSG_MAP

END_MESSAGE_MAP()

///
// CECCDIg message handlers

92

' BOOL CECCDIg::OnlnitDialog()
4
1
CDialog::OnlnitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu = NULL)
{
1
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu. IsEmpty())
{
pSysMenum>AppendMenu(MF“SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,
strAboutMenu);

}
}

J/ Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

/] TODO: Add extra initialization here
CComQIPir<ISkin> pSkin = GetDlgltem(IDC_SKIN1)-

>GetControlUnknown();
pSkin->ApplySkin((long)m_hWnd);

return TRUE; // return TRUE unless you set the focus to a control

¥
void CECCDIg::0nSysCommand(UINT nlD, LPARAM IParam)
§

if (nID & 0xFFF0) == [DM_ABOUTBOX)

§

1
CAboutDlg dlgAbout;

dligAbout.DoModal();

93

CDialog::OnSysCommand(nlD, Param); .

}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CECCDlg::OnPaint()

if (Islconic())

{
CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
de.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM._CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClieniRect(&rect);

int x = (rect. Width() - cxlcon+ 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
de.Drawlcon(x, y, m_hlcon);

5
else
{
CDialog::OnPaini();
}

B
5

// The system calls this to obtain the cursor to display while the user drags

//- the minimized window.
HCURSOR CECCDIg::OnQueryDraglcon()

{
return (HCURSOR) m_hlcon;

3

void CECCDIg::OnEne()

{

!
// TODO: Add your control notification handler code here
CEncrDlg dlg;
dig.DoModal();

1

5

void CECCDIg::OnDec()

94

// TODO: Add your control notification handler code here

CDecrDlg dlg;
dlg.DoModal(};

[y

void CECCDIg::0OnGk()

// TODO: Add your control notification handler code here

CGkDilg dlg;
dlg.DoModal();

1
¥

// EncrDlg.cpp : implementation file
A

#include "stdafx.h"
#include "ECC.h"
#include "EncrDlg.h"
#include "GkDlg.h"

#include <stdlib.h>
" #include <stdio.l>
#include <math.h>
#include <conio.h>

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

* static char THIS FILE[}=_ FILE ;
#endif

NI T T
// CEncrDlg dialog

CEncrDlg::CEncrDlg(CWnd* pParent /*=NULL*/)
: CDialog(CEncrDlg::IDD, pParent)

e

/1{{AFX DATA_INIT(CEncrDlg)
m_ceA =0;

m_eeB = 0;

m_prime = 0;

95

m BPX =0;

m BPY = 0;

m SK=20;

m_PKX = 0;

m PKY =0;
m_enc_file=_T("");
/YYAFX _DATA_INIT

void CEnerDlg::DoDataBExchange(CDataExchange® pDX)

{
CDialog::DoDataExchange(pDX);
/1{{AFX_DATA_MAP(CEncrDlg)
DDX_Text(pDX, IDC_EDIT2, m_eeA);
DDX_Text(pDX, IDC_EDIT3, m_eeB);
DDX_Text(pDX, IDC_EDIT4, m_prime);
DDX_Text(pDX, IDC_EDIT6, m_BPX);
DDX_Text(pDX, IDC_EDIT7, m_BPY);
DDX_Text(pDX, IDC_EDIT8, m_SK);
DDX_Text(pDX, IDC_EDIT10, m_PKX);
DDX_Text(pDX, IDC_EDIT11, m_PKY);
DDX_Text(pDX, IDC_EDIT1, m_enc_file);
INYAFX DATA_MAP

BEGIN MESSAGE_MAP(CEncrDlg, CDialog)
/1{{AFX_MSG_MAP(CEncrDig)
ON_BN_CLICKED(IDC_Encrypt, OnEncrypt)
ON_BN CLICKED(IDC_Sendl, OnSendl)
ON_BN_CLICKED(IDC_Brows, OnBrows)

. IIVYAFX_MSG_MAP
END MESSAGE_MAP()

i
// CEncrDlg message handlers

void CEncrDlg::OnEncrypt()
{

!
[k ok R Rk ol RS # Eneryption Mode
s s s ok o b ke o sl o o e bk el ol bk ok ok ol o

//Here we are making the encryption operation

CGkDIg D;

FILE *input, *output;

96

char ch, ch_out;
: int prime, A;
Assign assign[256],ass;
Point alpha={0,0};
Point beta={0,0};

UpdateData(TRUE);

alpha.x = m_BPX;
alpha.y =m_BPY;

beta.x =m PKX;
beta.y =m_PKY;

prime = m_prime;

A=m_eeA;

J/ here k is sectet key for Alice uses in ecnryption operation
int k=6;

/*srand(100);
do
{

k = rand();
ywhile (k>2*D.E|| k<0);*/

m_SK =k UpdateData(FALSE);

J/Here clear the buff where we put PlainText
for (int i=0; i<256; i++)
{

assign[i].PT.x=0;

assign[i]. PT.y=0;

// Here we open file to read from
if ((input = fopen(m_enc_file, "r+"M)

NULL)

MessageBox("Cannot open input file");
exit(1);
3

s

fseek(input, SEEK_SET, 0);
CString Save_file;
CFileDialog m_IdFile (FALSE,"*.ENC", NULL,

OFNJ-HDEREADONLY,"Encrypt files|* ENC");

97

m_IdFile.m_ofi IpstrInitialDir = "o\
if (m_IdFile.DoModal() != IDCANCEL)

Save file = m_IdFile.GetPathName();
UpdateData(FALSE);

// Here we open file to write into
if ((output = fopen(Save_file, "w-+")) == NULL)

MessageBox("Cannot open output file");
exit(1);

char my, mz;
Encrypt enc;

MessageBox("You now enter thye loop in file");
o do

{
/% read a char from the file */

ch = fgetc(input);
ch = CAP (ch);//convetr char to Capetail
putch(ch);

ass.ch = ch;
ass.PT = map(ass.ch);//function converts char to point

enc = encrypt (ass.PT, alpha, beta, K, prime, A);

c¢h_out = cmap(enc.x);

fputc(ch_out, output);
fputc(enc.y, output);
fputc(enc.z, output);

} while (ch = EOF);

fclose(input);
felose(output);

MessageBox("Your Encryption opertion Successfuly™);

int x = MessageBox("Do You Want To Send The File","Send
File",MB_YESNO);

98

if (x ==IDYES)

f

!

MessageBox("Press Send");

GetDlgltem (IDC_Send1) -> EnableWindow (TRUE) ;
3
if (x == IDNO)

MessageBox("You are offline");

char CEncrDlg::CAP(char a)

{
char A;
int aa;
aa = a;
if (aa>=97 && a<=122)
{ B
aa=aa-32;
A = aa;
3
s
else
A=a;
return A;
¥

Point CEncrDlg::map(char ¢)
char ch;
int ascii;
char str]2];
float num;
double fraction, integer;
Point p={0,0};

ch=g¢;
ascii = ch;
num = ascii;

num = num/10;

fraction = modf(num, &integer);

99

p.x = jnteger;
p.y = int(fraction*10+0.1);
return p;
}
Encrypt CEncrDlg::encrypt(Point X, Point alpha, Point beta, int k, int prime, int A)
{
Point y0={0,0},C1_C2={0,0};
int y1=0,y2=0;
Encrypt enc;

CGkDlg d;

y0 = d.Mult(alpha, A, prime k);
C1_C2 = d.Muli(beta,A,prime,k);

yl =(Cl_C2x* Xx);yl = finod(y1,prime);
y2=(Cl1_C2y* X.y); y2= finod(y2,prime);

enc.x=y0;
enc.y=yl;

enc.z=y2;

return enc;

}

char CEncrDlg::ecmap(Point p)
{

int x;
char ¢;

x = (p.x*10) +p.y;
C=X;

return ¢,

void CEnerDlg::0OnSend1()
// TODO: Add your control notification handler code here
SendFile();
//GetDlgltem (IDC_Send!) -> EnableWindow (FALSE) ; "
}

void CEncrDlg::SendFile()

100

#define PORT 34000 /// Select any free port you wish

AfxSocketInit(NULL);

CSocket sockSrvr;
CSocket sockRecv;

sockSrvr.Create(PORT); // Creates our server socket
sockSrvr. Listen(); // Start listening for the client at PORT

if (sockSrvr.Accept(socchcv)) /] Use another CSocket to accept the connection
MessageBox("you'r online now -

else
MessageBox("you'r offline now ...");

// Select the file to send

CFileDialog m_IdFile (TRUE,NULL, NULL,
OFNﬁHIDEREADONLY,"Encrypt files|* ENC");

m__IdFile.m*_oﬁl.lpstxflnitialDir = "o\

if (mﬂIdFile.DoModal() 1= IDCANCEL)
{

m_enc_file= m_dIdFile.G-etPathName();
UpdateData(FALSE); ‘
}
CFile myFile;

myFilc,Open(m__enc“ﬁle, CFile::modeRead | CFile::typeBinary); |

int myFileLength = myFile.GetLength(); // Going to send the correct File Size
sockRecv.Send(&myFileLength, 4); // 4 bytes long

byte* data = new byte [myFileLength];

myFile.Read(data, myFileLength);

sockRecv.Send(data, myFileLength); // Send the w}}ole thing now

my¥File.Close();
delete data;

sockRecv.Close();

101

MessageBox("Sending file operation successfuly™);

void CEncrDlg::OnBrows()

{
/1 TODO: Add your control notification handler code here

CFileDialog m_IdFile (TRUE,NULL, NULL, OFN_HIDEREADONLY,"text
files|*.txt");
m_IdFile.m_ofi.lpstrInitialDir = "c:\\";

it (m_IdFile.DoModal() != IDCANCEL)

{
m enc file=m_IdFile.GetPathName();

UpdateData(FALSE);

——

BOOL CEnciDlg::OnlnitDialog()

{ CﬁDialog::innitDialog();
// TODQ: Add extra initialization here
CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SKIN1)-

>GetControlUnknown();
pSkin->ApplySkin((long)m _hWnd);

//GetDlgltem (IDC_Send1) -> EnableWindow (FALSE) ;

return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

("

void CEncrDlg::0nOK()
{
// TODO: Add extra validation here

CDialog::OnOK();

// GkDlg.cpp : implementation file
//

102

#include "stdafx.h"
#include "ECC.h"
#include "GkDlg.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include "ECCDlg.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS_FILE

static char THIS FILE[]=__FILE_ ;
#endif

i
// CGkDlg dialog

CGkDlg::CGkDIlg(CWad* pParent /#=NULL*/)
: CDialog(CGkDlg::IDD, pParent)

I{{AFX_DATA_INIT(CGkDIg)
m_eeA = 0;

m_eeB = 0;

m_prime = 0;

m BPX=0;

m_BPY = 0;

m SK=20;

m PKX = 0;

m PKY = 0;

m E=0;

/AYAFX_DATA_INIT

void CGkDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
/1{{AFX_DATA_MAP(CGkDIlg)
DDX_Text(pDX, IDC_EDIT2, m_eeA);
DDX Texi(pDX, IDC_EDIT3, m_eeB);
DDX_ Text(pDX, IDC_EDIT4, m_prime);
DDX_ Texi(pDX, IDC_EDIT6, m_BPX);
DDX_Text(pDX, IDC_EDIT7, m_BPY);
DDX_Text(pDX, IDC_EDITS, m_SK);

103

DDX_Text(pDX, IDC_EDIT10, m_PKX);
DDX_Text(pDX, IDC_EDIT11, m_PKY);
DDX_Text(pDX, IDC_EDIT9, m_E);
//AYAFX_DATA_MAP

BEGIN MESSAGE_MAP(CGkDIg, CDialog)
/1{{AFX_MSG_MAP(CGkKDIg)
ON_BN_CLICKED(IDC_GenKey, OnGenKey)

/IVYAFX_MSG MAP
END MESSAGE_MAP()

e
// CGkDlg message handlers

void CGkDIg::0nGenKey()
// TODO: Add your control notification handler code here
UpdateData(TRUE);

int prime, A, B, y1, y2, tst;
int Nset; // No of QR elements
int QR[5000], Ysqr{5000];
Point point[8000];
Point alpha={0,0}; /PT={9,1}; // x and y must be less than prime
Point beta={0,0}; //dec={0,0};

E=0;
prime = m_prime;

A=m eecA;
B=m eeB;

/fto test if A and B are multiple of prime or not?
tst = tst_AB(prime,A,B),

if (tst == 0)
{
1
MessageBox("your have wrong equation TRY AGAIN");
EndDialog(0);
j
else

MessageBox("your have right equation");

e o R st ol R R AR A

104

Nset = (prime-1)/2;
for (int i=1; i<=Nset; i++)

QR[i] = (i*1)%prime;

int 7=0; // index of point

for (int x=0; x<prime; x++)

{
Ysqr[x] = ((xFx*)+HA*X)+B) % prime;
for (i=1; i<=Nset; i++)
if (Ysqr{x] == QRI[i])
{
B+t
yl =1
y2 = prime - i;
point[j].x=x; pointfjl.y=yl;
s
point[jl.x=x; point[j].y=y2;
ji+s
}
)
3

m E=2%E;

//test the alpha if it is belonge to elliptic curve or not
int chk = 0,

alpha.x =m BPX;
alpha.y =m_BPY;

for (i=0; i<(2*E); i)

———

if (point[i].x == alpha.x && point[i].y == alpha.y)
chk=1;

105

if (chk == 0)
f
1

s NOT belong to Elfiptic curve™);

MessageBox("No alpha 1

EndDialog(0);

et

//****4\4‘**‘“**+**$44‘4‘+$*7¥-4~4¢>}-$ New Step *******=l=**=i=**********************’

//Generation key Mode.

//Here T compute beta is public key

//Here Bob make generation public key and give it to Alice ‘
// here a is secret key for Bob and the [a*(alpha)] make the public key

int a=0;

a=m _SK;

if (a>2+E+1 || a<2)

{
MessageBox("Choose Bobs secret key [a], it must 2=<a < Number oi
points");
MessageBox("Try again ... BYE BYE");
FndDialog(0);
}

beta = Mult(alpha, A, prime, a);
m PKX = beta.x; U pdateData(FALSE);
m_PKY =beta.y; UpdateData(FALSE);

}
int CGkDlg::ist_AB(int P, int A, int B)
{
int equation;
equation = (4¥A*A*A) + (27*B*B) % P;

if (equation = 0)

106

return 1;

return 0;

1
i

Point CGkDIlg::Mult(Point alpha, int A, int prime, int a)

{
int x3=0, y3=0;
float lamda=0.0,1.1=0.0,1.2=0.0;
Point Q={0,0};

L1 = (3*alpha.x*alpha.x+A); L1 = finod(L1,prime);
if (L1<0)
L1=prime+L1;

/fcout<<"\nL1 is: "<<L1;
L2 = (2*alpha.y); 1.2 = finod(L2,prime);
if (L2<0)
L.2=prime-+L.2;
/fcout<<"\nl.2 is: "<<L2;
lamda = L1 * inverse(prime,L2); ;
lamda = fmod(lamda,prime);
it (lamda<Q) -
lamda=prime-+lamda;
Jlcout<<"\nthe lamda is: "<<lamda<<"\n";
x3 = (lamda*lamda) - 2*alpha.x; x3 = fmod(x3 Jprime);
if (x3<0)
x3=prime1x3;
Jfeout<<"X3="<<x3<<endl;
y3 = lamda * (alpha.x - x3) - alpha.y; y3 = finod(y3,prime});
if (y3<0) :
y3=prime-+y3;

/leout<<"Y3= "<<y3<<endl

Q.x=x3;
Qy=y3;

107

if (a>2) ‘
for (int i=1; i<(a-1); i++)
{
I_: 1 :O ;L2:O ;X?) :0 ;y3 :0;

Jlcout<<"Now P("<<alpha.x<<","<<alpha.y<<") ";
//C()ut<<"Q("<<Q_X<<","<<Q.y<<") n;

L1 = (Q.y-alpha.y); L1 = finod(L1,prime);
if (L.1<0)

L1=prime+L1;
Jeout<<"nL1 is: "<<L1;
1.2 = (Q.x-alpha.x); L2 = finod(L2,prime);
if (1.2<0) :

[.2=prime+L2;

leout<<"\nL2 is: "<<L.2;

lamda = L1 # inverse(prime,L2);
lamda = fmod(lamda,prime);
if (lamda<0)
lamda=prime-+lamda;
/fcout<<"\nthe lamda is: "<<lamda<<"\n";
x3 = (lamda*lamda) - alpha.x - Q.x; x3 = finod(x3,prime);
if (x3<0)
X3=prime+x3;
[feout<<"X3= "<<x3<<endl;
y3 = lamda * (alpha.x - x3) - alpha.y; y3 = fimod(y3,prime);
if (y3<0)
y3=prime+y3;
Jfeout<<"Y3= "<<y3<<endl;

/1getch();

Q.x=x3;
Q.y=y3;

return (;

108

int CGkDlg::inverse(int prime, int B3)

int Al1=1,A2=0,A3=5;
int B1=0,B2=1;
int T1=0,T2=0,T3=0;

float Q=0;
A3= prime;
do
f
if (B3 == 0)
[Jcout<<" No inverse so A3: "<<A3<<endl;
return A3;
3 N
if (B3 ==1)
[leout<<" The inverse in it self: "<<B2<<endl;
return B3;
y
Q= A3/B3;
Q = nt(Q);

T1= A1-(Q*B1);
T2= A2-(Q*B2);
T3= A3-(Q*B3);

Al =Bl;
A2 =B2;
A3 =B3;
Bl =TI;
B2 =T2;
B3 =T3;

ywhile (B3 1= 1);
if (B2<0)
{

B2 = prime+B2;
}

/Jcout<<" The inverse is: "<<B2<<endl;

return B2;

109

o}

BOOL CGkDIg::OnlnitDialog()
CDialog::OnlnitDialog();

/] TODO: Add extra initialization here

CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SKIN1)-
>GetControlUnknown();
pSkin->ApplySkin((long)m_hWnd);

return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE
N .
.‘ /Ik-i-‘}-?lwi*%*****&%4‘4****L*********Lév****?l’**'}-*év?l*#**i"}-*vlv*vlflﬁ*ﬂéwl%-%«}‘*fl"lv}«*r!dl/
- // ECC.cpp : Defines the class behaviors for the application. '
1/

#include "stdafx.h"
#include "ECC.h"
#include "ECCDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE
- static char THIS FILE[]=_ FILE ;
#Hendif

I T T T
/l CECCApp

BEGIN MESSAGE_MAP(CECCApp, CWinApp)
v /1{{AFX_MSG_MAP(CECCApp)
/I NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/N YAFX MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END MESSAGE_MAP()

I T T T
// CECCApp construction

CECCApp::CECCApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

110

I T
// The one and only CECCApp object

CECCApp theApp;

I T
// CECCApp initialization

“BOOL CECCApp::InitInstance()

f
1

if (! AfxSocketInit())

AfxMessageBox(IDP_SOCKET S_INIT _FAILED);
return FALSE;
¥

AfxEnableControlContainer();

// Standard initialization

// If you are not using these features and wish to reduce the size

/I of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef AFXDLL _

Enable3dControls(); // Call this when using MFC in a shared
DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

CECCDIg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();
if (nResponse == IDOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)

§ .
1

// TODO: Place code here to handle when the dialog is

// dismissed with Cancel
}
// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE; :

/*************$***$$***/

111

J/ Recive.cpp : implementation file

1

#include "stdafx.h"
#include "ECC.h"
#include "Recive.h"
#include "ECCDIg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS FILE[]=_ FILE_;
#endif

/// >
// CRecive dialog

CRecive: :CRecive(CWnd* pParent / #=NULL*/)
. CDialog(CRecive::IDD, pParent)

{
14 {AFX_’DATA_INIT(CRecivc)
m _ip=_T("");
m dec_file=_T("");
IIVYAFX_DATA_INIT

void CRecive::DODataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
/1{{AFX_DATA MAP(CRecive)
DDX_Text(pDX, IDC _EDITL, m_ip);
DDX_Text(pDX, IDC_EDIT2, m_dec_file);
/[Y}AFX_DATA _MAP

BEGINﬁMESSAGE_MAP(CRecive; CDialog)
14 {AFX_MSG_MAP(CRecive)
ON_BNﬂCLICKED(IDC;RConnect, OnRConnect)
ONﬂBN_CLICKED(IDC_BUTTON1 , OnSave)
INYAFX_MSG_MAP

END MESSAGE_MAP()

///
// CRecive message handlers

112

void CRecive::OnRConnect()

// TODO: Add your control notification handler code here

ReciveFile();
b
void CRecive::ReciveFile()
{

int chk=0;

CString x;

#define PORT 34000 /// Select any free port you Wish
AfxSocketInit(NULL);

CSocket sockClient;
sockClient.Create();

// "127.0.0.1" is the IP to your server, same port
UpdateData(TRUE);
chk = sockClient.Connect(m_ip, PORT);

if{chk == 0)
MessageBox(""You connection faild");
else
MessageBox("Your connection successfuly, you now reciving file");

int dataLength;
sockClient.Receive(&dataLength, 4); /Now we get the File Size first

byte* data = new byte[datal.ength];
sockClient.Receive(data, dataLength); //Get the whole thing

OnSave();

CFile destFile(m_dec_file,CFile::modeCreate | CFile::modeWrite
CFile::typeBinary),

destFile. Write(data, dataLength); // Write it
destFile.Close();

delete data;

113

sockClient.Close();

MessageBox("Reciving Operation Successfly");

N

BOOL. CRecive::OnlnitDialog()

{
CDialog::OnlnitDialog();

/! TODO.: Add exira initialization here

CComQIPtr<ISkin> pSkin = GetDlgltem(IDC_SKINT1)-
>GetControlUnknown();
pSkin->ApplySkin((long)m_hWnd);

return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

void CRecive::OnSave()

{
// TODO: Add your control notification handler code here

CFileDialog m_YdFile (FALSE,"*.ENC", NULL,
OFN_HIDEREADONLY,"Encrypt files|* ENC");

//CFileDialog m_IdFile (FALSE,NULL, "* ENC",
OFN_HIDEREADONLY,"Encrypt files ENC");
m_IdFile.m_ofn.lpstrInitialDir = "¢:\";
if (m_IdFile.DoModal() I=IDCANCEL)
{
m_dec_file= m_IdFile.GetPathName();
UpdateData(FALSE);

// Send.cpp : implementation file
//

#include "stdafich"
#include "ECC.1"
#include "Send.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

* static char THIS FILE[]=__ FILE ;

114

#endif
il
// CSend dialog

CSend::CSend(CWnd* pParent /*=NULL*/)
: CDialog(CSend::IDD, pParent)

{
IH{{AFX _DATA_INIT(CSend)
// NOTE; the ClassWizard will add member initialization here
/}YAFX _DATA INIT
}

void CSend::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
/I{{AFX DATA MAP(CSend)
// NOTE: the ClassWizard will add DDX and DDV calls here
. //}YAFX DATA MAP
}

BEGIN MESSAGE_MAP(CSend, CDialog)
/1{{AFX_MSG_MAP(CSend)
// NOTE: the ClassWizard will add message map macios here
: I} YAFX_MSG_MAP
END _MESSAGE_MAP()

i
// CSend message handlers

Y

/l ECCDIg.h : header file

/.

#if

ldefined(AFX_ECCDLG H__78BD108D F35E_4023 B801_34489B80B63F__INCL
UDED)

#define .

AFX _ECCDLG H_ 78BD108D_F35E_4023_B801_34489B80B63F__INCLUDED _

#Hf MSC _VER > 1000
#pragma once

#endif // MSC_VER > 1000

#import "actskind.ocx" no_implementation raw_interfaces_only raw_native_types
using namespace ACTIVESKINLIib;

115

#include "atlbase.h"

///
// CECCDIg dialog

class CECCDIg : public CDialog

{

// Construction

public:

CECCDlg(CWnd* pParent = NULL); /1 standard constructor

// Dialog Data
1§ {AFX_DATA.(CECC’Dlg)
emum { IDD = IDD_ECC_DIALOG };

/] NOTE: the ClassWizard will add data members here
1} YAFX_DATA

J/ ClassWizard generated virtual function overrides
/1{{AFX_VIRT UAL(CECCDIg)

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

/VYAFX_VIRTUAL

// Implementation
protected:
HICON m_hlcon;

// Generated message map functions
JI{{AFX_MSG(CECCDlg)

virtual BOOL OnlInitDialog();

afx_msg void OnSysCommand(UINT olD, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();
afx_msg void OnEnc();

afx_msg void OnDec();

afx_msg void OnGk();

/IVYAFX._MSG

DECLARE MESSAGE_MAP()

I

/{{AFX_IN SERT LOCATION}}
// Microsoft Visual C-++ will insert additional declarations immediately before the
previous line.

#endif //
!deﬁued(AFX_ECCDLGﬁH___’]8BD 108D F3 5E~4023;8801_3 4489B80B63F_ INCL

UDED)

116

/*************************************$******************************/

#if

Idefined(AFX_ENCRDLG H_FC8F4E2D“OAA7W40BO_8 535 72B1F57A3 B02_ IN
CLUDED) '

#define

AF X_ENCRDLG*H___FC §F4E2D 0AA7_40B0_853 5 72BI1F5 7A3B02 INCLUDED

#include "GkDlg.h" // Added by ClassView
#include "ECCDIlg.h "

#if MSC_VER > 1000

#pragma once

#endif // MSC_VER > 1000

// EncrDlg.h : header file

I :

///
// CEncrDlg dialog '

class CEnerDlg : public CDialog
{

// Construction

public:
‘ void SendFile();

char cmap (Point p);

Encrypt encrypt(Point X, Point alpha, Point beta, int k, int prime, int A);
Point map (char c);

char CAP (char a); '
CEnciDIg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
I{ {AFX_DATA(CEnchlg)
enum { IDD = IDD_ENCRYPTION ¥
int m_eeA;
mt m_eeB;
int m_prime;
int m BPX;
nt m_BPY;
int m_SK;
int m_PKX;
int m_PKY:;
CString m_enc_file;
IIVIAFX_DATA

// Overrides
J/ ClassWizard generated virtual function overrides
A {AFX_VIRTUAL(CEnchlg)

117

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/11 YAFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
H{{AFX_MSG(CEncrDlg)
afx_msg void OnEncrypt();
afx_msg void OnSend1();
afx_msg void OnBrows();
virtual BOOL OnlnitDialog();
virtual void OnOK();
I} YAFX MSG _
DECLARE _MESSAGE_MAP()

B

HH{{AFX_INSERT LOCATION}}
/] Microsoft Visual C-++ will insert additional declarations immediately before the
previous line.

Hendif //
defined(AFX_ENCRDLG_H_ FC8FAE2D_0AA7_40B0_8535_72B1F57A3B02__IN
CLUDED) '

bR oo ok Rl s R o ok o ks /

#if
Idefined(AFX_GKDLG _H__60B8FD97_BE34 4EC3_9184_BDI 4219AD261 INCL
UDED)
#define
AFX_GKDLG H _60B8FD97_BE34 4EC3_9184_BD1421 9AD261 INCLUDED _

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000
// GkDlg.h : header file

/ '

sl el ol ol ol sl el ol ok sl sl s sk ook
ook s ok /

typedef struct
{

float x;
float y;
}Point;

typedef struct
{

118

Point x;
int y;
; int z;
} Encrypt;

typedef struct

char ch;

Point PT;
} Assign;
/**m***********
ek | ’
I
// CGkDlg dialog

class CGkDlg : public CDialog

{

// Construction

public:

int E;// to count #E ... No of points on elliptic curve;

int inverse (int prime, int B3);

Point Mult(Point alpha, int A, int prime, int a);

int tst_AB (int P, int A, int B);

CGkDIg(CWnd* pParent = NULL); // standard consiructor

/ Dialog Data
/1{{AFX_DATA(CGkDIg)
enum { IDD =IDD_GENERAT KEY };

mt m_eeA,;
int m_eeB;
int m_prime;
, int m_BPX;
int m_BPY;
int m_SK;
int m_ PKX;
int m PKY;
“int m _E;

J/\YAFX_DATA

/! Overrides

J/ ClassWizard generated virtual function overrides
/{{AFX_VIRTUAL(CGKDlIg)

protected:

virtual void DoDataExchange(CDataBxchange* pDX); // DDX/DDV support
INYAFX_VIRTUAL

/ Tmplementation

119

protected:

// Generated message map functions
H{{AFX_MSG(CGkDIg)
afx_msg void OnGenKey();
virtual BOOL OnlnitDialog();
/Y YAFX_MSG
DECLARE MESSAGE_MAP()
35

J//{{AFX_INSERT_LOCATION}}
/) Microsoft Visual C-++ will insert additional declarations immediately before the
previous line.

#rendif / |
defined(AFX_GKDLG H__60BSFD97_BE34_4EC3_9184_BD14219AD261 _INCL
UDED) |

/******$***/

// DecrDlg.cpp : implementation file
1

#include "stdafk.h"
#include "ECC.I"
#include "DecrDlg.h"
#include "EncrDlg.h"
#include "GkDlg.h"
#include "Recive.h"
#include <stdlib.h>
#include <stdio.h>
#inclade <math.h>
#include <conio.l>

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=_ FILE_;
#endif

I T
// CDecrDlg dialog

CDecrDlg::CDecrDlg(CWnd* pParent / *=NULL*/)

- CDialog(CDecrDlg::IDD, pParent)
JI{{AFX_DATA_INIT(CDecrDlg)

m_eeA = 0;

120

m_eeB = 0;

m_prime = 0;

m_SK = 0;

m_dec file=_T("");
/YYAFX DATA_INIT

void CDecrDlg::DoDataExchange(CDataExchange® pDX)
{

CDialog::DoDataExchange(pDX);
/1{{AFX_DATA_MAP(CDecrDlg)
DDX_Text(pDX, IDC_EDIT2, m_eeA);
DDX_Text(pDX, IDC_EDIT3, m_eeB);
DDX_Text(pDX, IDC_EDIT4, m_prime);
DDX_Text(pDX, IDC_EDITS, m_SK);
DDX_Text(pDX, IDC_EDIT1, m_dec_file);

/Y YAFX _DATA_MAP

'BEGIN_MESSAGE_MAP(CDecrDlg, CDialog)

' /1{{AFX_MSG_MAP(CDecrDlg)
ON_BN_CLICKED(IDC_Decrypt, OnDecrypt)
ON BN CLICKED(IDC_Send2, OnSend2)
ON_BN_CLICKED(IDC_Brows2, OnBrows2)
. /1 YAFX_MSG_MAP
END_MESSAGE_MAP()

I T T T
/ CDecrDlg message handlers

void CDecrDlg::OnDecrypt()
{

// TODO: Add your control notification handler code here

j/**#********:x:*************:w Decryption Mode
S oo o o e o ool e o o e o ke o sl sk ol ok ol sk ok sl s ok kR
//Here we are making the decryption operation

FILE *decryptl;
FILE *outputl;

CEncrDlg EN;

int A, prime, a;
UpdateData (TRUE);

A=m_eehA;

121

prime = m_prime;
a=m_SK;

if ((outputl = fopen(m_dec_file, "r")) == NULL)

MessageBox("Cannot open input file to reaf from");
exit(1);

}
fseek(outputl, SEEK_SET, 0);

CString Save _file;

CFileDialog m_IdFile (FALSE,"*.txt", NULL,
OFN_HIDEREADONLY,"Decrypt files|*.txt");

m _IdFile.m of.lpstrInitialDir = "c:\\";

if (m_IdFile.DoModal() = IDCANCEL)

{
Save_file= m_IdFile.GetPathName();

UpdateData(FALSE);

if ((decrypt1 = fopen(Save_file, "w+")) == NULL)

MessageBox("Cannot open output file to write on™);
exit(1);

char cl, ¢2, ¢3, ch_dec;
Encrypt Encl;

Point dec;
do

¢l = fgetc(outputl);
Encl.x = EN.map(cl);

¢2 = fgetc(outputl);
Encly=c2;

¢3 = fgetc(outputl);
Encl.z=c3;

122

[y

dec = decrypt (Encl, A, prime, a);
ch_dec = EN.cmap(dec);

puich(ch_dec);

fwrite (&ch_dec, sizeof(char), 1, decryptl);
} while (c1 = EOF);

fclose(outputl);
fclose(decrypt1);

MessageBox("Your Decryption Operation Successfulys")

Point CDectDlg::decrypt(Encrypt Enc, int A, int prime, int a)

Point res={0,0};
Point dec;
int x1,x2;
CGkDlg d;
res = d.Muli(Enc.x,A,prime,a);
getch();
x1 = (d.inverse(prime,res.x) * Enc.y); x1 = fmod(x1,prime);
X2 = (d.inverse(prime,res.y) * Enc.z); x2 = fimod(x2,prime);

dec.x = x1;
dec.y = x2;

- return dec;

void CDectDlg::OnSend2()
// TODO: Add your control notification handler code here

CRecive recive;
MessageBox("Enter the IP of your friend");

recive.DoModal();

id CDecrDlg::OnBrows2()

123

// TODO: Add your control notification handler code here

CFileDialog m_IdFile (TRUE,NULL, NULL, OFN_HIDE READONLY ,"text
files|*.Enc");

m_IdFile.n ofn.lpstrinitialDir = "¢:\\";
it (m_IdFile.DoModal() = IDCANCEL)

{
m_dec_file= m_IdFile.GetPathName();
UpdateData(FALSE);

}

BOOL CDecrDlg::OnlnitDialog()

CDialog::OnlnitDialog();

[/ TODO: Add extra initialization here

CComQIPtr<ISkin> pSkin = GetDlgltem(IDC _ &»KIN])
>GetControlUnknown();

pSkin->ApplySkin((long)m hWnd);

return TRUE; // return TRUE unless you set the focus to « control
/1 EXCEPTION: OCX Property Pages should return FALSE

#dehne
AFX_RECIVE H__1728CEAA_CADA_450A_A089 B6B3D8783167 INCLUDED

Af MSC VER > 1000
‘pragma once

=endif / MSC_VER > 1000
/ Recive.h : header file

ST T T T T T T
/! CRecive dialog

lass CRecive : public CDialog

! Construction

mblic:
void ReciveFile();

124

CRecive(CWnd* pParent = NULL); // standard constructor

'Dialog Data
/1{{AFX_DATA(CRecive)

enum { IDD =1DD_DIALOG1 |5
CString m_ip;

CString m_dec_file;
INYAFX DATA

! Overrides

‘ J/ ClassWizard generated virtual function overrides

1 {AFX_VIRTUAL(CRecive)

protected:

virtual void DoDataExchange(CDataExchange™® pDX); // DDX/DDV support
/YAFX_VIRTUAL

J/ Generated message map functions
J1{{AFX_MSG(CRecive)

afx_msg void OnRConnect();
virtual BOOL OnlnitDialog();
afx_msg void OnSave();

IV AFX. MSG
DECLARE_MESSAGE_MAP()

{{AFX_INSERT LOCATI ON}}
Microsoft Visual C++ will insert additional declarations immediately before the

revious line.

deﬁned(AFX__RECIVEjI__l728CEAA_CADA~450A_A089~BGBB'D8783167MINC

7§ {NO DEPENDENCIES}}
i Microsoft Developer Studio generated include file.

Used by ECC.rc

efine IDM_ABOUTBOX 0x0010
efine IDD_ABOUTBOX 100

efine IDS_ABOUTBOX 101

efine IDD_ECC_DIALOG 102
define IDP_SOCKETS_INIT FAILED 103
lefine IDR._ MAINFRAME 128

125

#define IDD_ENCRYPTION 129
#define IDD DECRYPTION 130
#define IDD_GENERAT_KEY 131
#define IDD_DIALOG! 133
#define IDC_ENC 1000
~ #define IDC_DEC 1001
#define IDC_GK. 1002
#define IDC_Encrypt 1003
#define IDC_Sendl 1004
#define IDC_EDIT1 1005
#define IDC_Brows 1006
#define IDC_EDIT2 1007
#define TDC_EDIT3 1008
#define IDC_EDIT4 1009
#define IDC_EDITO 1011
#define IDC _EDIT7 1012
#define IDC_EDIT8 1013
#define IDC_EDIT10 1015
#define IDC_EDIT11 1016
#define TDC_Decrypt 1017
#define IDC_Send2 1018
#define IDC_Brows2 1019
#define IDC_GenKey 1020
#define IDC_RConnect 1023
idefine IDC_SKIN1 1024
#define IDC_BUTT ON1 1025
#define IDC_E 1027
#define IDC_EDIT9 1029

¢

/] Next default values for new objects
1
sitdef APSTUDIO_INVOKED
Hifndef APSTUDIO_READONLY_SYMBOLS
‘define APS NEXT RESOURCE VALUE 143
 #define APS_NEXT ~_CO1\/[1\/IAND_VALUE 32771
#define _APS NEXT __CONTROL_VALU E 1030
#define ~APS~_N'.BX”I‘_‘E‘»‘1(1\/IEDWVALLUE 101
#endif
#endif

/**************$*******************#***************$*$*****$$*$4$$***/

// stdafich : include file for standard system include files,
// or project specific include files that are used frequently, but

/| are changed infrequently

/

#if
!de:ﬁned(AFX_STDAFX_H#_H’FES07C59”E3CE'49FF__83CA__B'BO1’BDEA()C85___1NC
LUDED)

126

#define
AFX _STDAY X_H_;FES07CS9_’E3CE__49FF_83CA_B'BO1BDBAOC85WINCLUDED

#if MSC_VER > 1000
#pragma once
#endif // MSC_VER > 1000

#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows
headers
#include <afxwin.h> // MFC core and standard components

#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MEC Automation classes

#include <afxdtctl.h> // MEC support for Internet Explorer 4 Common Controls
#ifndef AFX NO_AF XCMN_SUPPORT ' '
#include <afxcnm.h> /] MEC support for Windows Common Controls

Hendif // _AFX_NO_AFXCMN_;SUPPORT
#Hinclude <afxsock.h> // MEC socket extensions

//{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif //

Idefined(AFX_STDAF X H_FE5 07C59 _E3CE_49FF 83 CA_3B01 BDBAOC85 INC
LUDED)
/***********************ﬂ:**/
#if

'.d.eﬁned(AFX_DECRDLG_H_”ﬁD 8CAFS 3_8B2A_44FEWB3E 1 F39804D5 AC90 _IN
CLUDED)

#define

AF X_DECRDLG_}'-I__ﬁD8CAF83_8B2A_44FE_“B3E 1._F39804’D5AC90__INCLUDE

D

#include "GkDIg.h" // Added by ClassView
#inclade "ECCDIg.h "

#f MSC_VER > 1000

#pragma once

#endif/ MSC_VER > 1000

// DecrDlg.h : header file

I

///
// CDecrDlg dialog

class CDecrDlg : public CDialog
{

127

// Construction

public:
Point decrypt (Encrypt Enc, int A, int prime, int a);
CDecrDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
I/ {AFX_DATA(CDechlg)
enum { IDD = IDD DECRYPTION };

int m eeA;

int m_eeB;

int m_prime;
int m_SK;
CString m _dec_file;

//}}AFX_DATA

// Overrides
J/ ClassWizard generated virtual function overrides
114 {AFX_«VIRTUAL(CDechlg)
protected:
virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
/3YAFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
11{{AFX_MSG(CDectDlg)
afx_msg void OnDecrypt();
afx_msg void OnSend2();
afx_msg void OnBrows2();
virtual BOOL OnlnitDialog();
IYAFX_MSG
DECLARE _MESSAGE_MAP()

IS

/1{{AFX_INSERT LOCATI ON}} v
/] Miicrosoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif //
!deﬁned(AFXuDECRDIJG~I{_6D8CAF83_8B2Aw44FEMB3E1_’F39804D5A(;90_~IN
CLUDED) |

/*************************$************************$***********$****$/
// ECC.h : main header file for the ECC application
1

128

#if

ldefined(AFX_ECC_H__B19448DB_OE6A_40FC_9ASE_SEDSB69FA381_ INCLUD
ED)

#define

AFX ECC_H_ B19448DB _0E6A_40FC_9ASE_SEDSB69FA381_INCLUDED_

#if MSC_VER > 1000
#pragma once
#endif / MSC_VER > 1000

#ifhdef AFXWIN H
#error include 'stdafx.h' before including this file for PCH
' #endif

#include "resource.h” // main symbols

T T T

/I CECCApp:

// See ECC.cpp for the implementation of this class
M

 class CECCApp : public CWinApp
]

1
_ public:
CECCApp();

- // Overrides
" // ClassWizard generated virtual function overrides
K I{{AFX_VIRTUAL(CECCApp)
“ public:
virtual BOOL InitInstance();
/N YAFX_VIRTUAL

7 // Implementation

/1{{AFX_MSG(CECCApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
I} YAFX MSG
' DECLARE MESSAGE_MAP()
IR

I
//{{AFX_INSERT LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

129

#endif //
ldefined(AFX_ECC _H__B19448DB OE6A_40FC 9A8E SED8B69FA381- INCLUD
ED)

DR o oA A A A A ol ol oo o oo sk ko

130

