
NEAR EAST UNIVERSITY

GRADEUATE SCHOOL OF APPLIED AND SOCIAL
SCIENCES

ELLIPTIC CURVE CRYPTOGRAPHY ANAL YSIS
AND IMPLEMENTATION

Hazem A. Elbaz

MASTERTHESIS

DEPARTMENT Of COMPUTER ENGINEERING

Nicosia 2004



NEU JURYREPORT

DEPARTMENTOF
COMPUTER ENGINEERING

STUDENT INFORMATION

Full Name Hazem A M Elbaz
Undergraduate degree BSc. Date Reeeived Spring

1998-2002
University The Islamic University

ofGaza CGPA 3.10

THESIS
Title 1 Elliptic Curve Cryptography Analysisand Implementation

Deseriptien
Analysis of Elliptic Curve Cryptography algorithms and implement ElGamal Elliptic
Curve over network communication channel to perform Encryption/ Decryption on data
transmitting.

Supervisor Prof. Dr. Fakhraddin Mamedov Department Computer Engineering

DECISION OF EXAMINING COMMITTEE

Thejury has decided to accept I ~he student's thesis.
The decision was taken unanimously/ l>,c-majt;ıı:~

COMMITTEE MEMBERS

Number Attending 1 3 5/2/2004Date

Name
Assoc. Prof. Dr. Rahib Abiyev, Chairmanofthe jury

Assist. Prof. Dr. Doğan Haktanır, Member

Assoc. Prof. Dr. Ilham Huseynov, Member

APPROVALS
Date
5/2/2004

~ .---· Chairman ofDep~m. ent hı
/ /,, Assoc. Prof. Dr. Doğan Ibrahim ·



DEPARTMENT OF COMPUTER ENGINEERING
DEP ARTMENTAL DECISION

Date:5/2/2004

Subiect: Completion ofM.Sc. Thesis

Participants: Prof. Dr. Fakhraddin Mamedov, Assoc. Prof. Dr. Rahib Abiyev,
Assist.Prof. Dr. Doğan Haktanir, Assoc.Prof. Dr. ilham Huseynov, Mohammed
Abdelal, Mohammed Aldiri.

DECiSi ON

We certify that the student whose number and name are given below, has ful:filled all
the requirements fora M .S. degree in Computer Engineering.

CGPA

20021298 Hazem A M Elba~- 3.857

#~.

~

p;;~-f--
Assec, Prof. Dr, Rabih Abiyev, tee Member, Computer Engineeringh Department, NEU

Assist. Prof, Dr. Doğan ıı2{~ttee Meınber , Eiectrical and Electronic
EngineeringDepartment, NEU1b rv.

Assoe, Pref; Dr, Ilham Huseynov, Co:rnnfitteeMember, Computer Information System
Department, NEU

Prof. Dr. Fakhraddin Mamedov, Su* Dean of EngineeringFaculties,NEU

< (~ 2: ·.
/4 Clıairmanof~ntI r - . Assoc. Prof. Dr. Doğan Ibrahim



Hazem A M Elbaz : Elliptic Curve Cryptography Analysis and Implementation.

Approval of the Graduate School of Applied and
Social Sciences

We certify this thesis1ljf>sa1tisf~,t(jô,Jôr the award of the
Degree of Master of S~iençJ~ in,,Qo~puter Engineering

Examining Committee in charge:-z,4_
Assoc. Prof. Dr. Rabih A~;, Chairınan ofthe jury, Computer

Engineering Department, NEU

):,9:1/~ .
Assist. Prof. Dr. Dogan Haktanır, Member, Electrıcal and

1 Electronic~J,'.iring Department, NEU

kAssoc. Prof. Dr. ilham Huseynov, Member, Computer
Information System Department, NEU

Prof. Dr. Fakhraddin Mamedov, Supervisor, Dean ofEngineering
Faculties, NEU



ACKNOWLEDGMENTS

First, I would like to thank my supervisor Professor Fakhraddin Mamedov for giving

me the opportunity to work orı this interesting project and for the help and guidance

More over I want to pay special regards to my parents who are enduring these all

expenses and supporting me in all events. I am nothing without their prayers. They

also encouraged me in crises. I shall never forget their sacrifices for my education so

that I can enjoy my successful life as they are expecting. They may get peaceful life in

Heaven. At the end I am again thankful to those all persons who helped me or even

encouraged me to complete me, · my project. My all efforts to complete this projeet

might be fruitful.

I want also to pay special thanks to my lovely aunt Najah Elbaz, she have helped me

so much in doing my master study. This thesis would not have been possible without

her help, encourage, supporting, and her prayers.

I would also like to thank my housemate tamer fatayer, who encouraged rne in doing

my project.

1



ABSTRACT

This thesis describes elliptic curve cryptosystems (ECCs), which are expected to

become the next-generation public key cryptosystems. ECC requires a shorter key

length than RSA cryptosystems, which will be one of standards of public key

cryptosystems, but provide equivalent security levels. Because of the shorter key

length, ECCs is fast and can be implemented with less hardware.

The application of elliptic curves to the fıeld of cryptography has been relatively

recent. it has opened up a wealth of possibilities in terms of security, encryption, and

real-world applications. in particular, .we are interested in public key cryptosystems

that use the elliptic curve discrete logarithm problem to establish security.

The objective of this thesis is to assemble the most important facts and fındings into a

board, unifıed overview of .this fıeld. To illustrate certain points, we also discuss a

sample implementation ofthe elliptic curve analogue ofEIGamal cryptosystem.
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INTRODUCTION

The word "Cryptography" is derived from the Greek and it literally means "secret

writing". Cryptography has been around for more than a thousand years and the Roman

Empire was thought to be the masters of cryptography as they used simple cipher

techniques to hide the meaning of messages. Some of the earlier and popular

cryptographic techniques were Caesar cipher, Substitution cipher and Transposition

ciphers. Cryptography is the process of encrypting the plain text into an

incomprehensible cipher text by the process of Encryption and the conversion back to

plain text by process ofDecryptiön.

The basic of any cryptographic algorithm . is 'the "seed" or the "key" used for

encrypting/decrypting information. Many of the cryptographic algorithms are available

publicly, though some organizations believe in having the algorithm a secret. The

general method is in using a publicly known algorithm while maintaining the key a

secret [9] .

Hence the common method adopted is to use a public key system to securely transmit a

"secret key". ünce we have securely exchanged the Key, we then use this key for

encryption and decryption using a Symmetric Key algorithm [9]. So now there is

question asked itself; why public key crypotograpphy needed?

Until recently, most users of cryptography were military and/or diplomatic

organizations that, by their very nature, were a small, fınite number of individuals .who

would share a system ofkeys distributed intemally.

The relatively recent advent of cö:rrı.ptiter network communicaıion has changed the

nature of the average user of cryptography. Now, every time you order that book from

some book web sites, do your banking online, or electronically sign your email, your are

using some sort of cryptography. Because we may require secure communications with

many different parties, these parties constantly changing, the use of classical

cryptography quickly becomes unwieldy in all but the smallest of networks.
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Therefore, new requirements are made of cryptosystems, such as authentication, non­

repudiation, message integrity, and distributed trust, which go beyond mere message

hiding [7] .

Elliptic curve cryptography has appeared as a promising new branch of public-key

cryptography in recent years, due to its potential for offering similar security to

established public-key cryptosystems at reduced key sizes. Improvements in various

aspects of implementation, including the generation of elliptic curves, have made

elliptic curve cryptography more practical than it was when fırst introduced in the

1980's. As security of elliptic curve cryptography becomes betler understood, a chance

is available to develop standards for this technology,. thereby promoting interoperability

at the same time as implementations are being deployed.

In 1985 Niel Koblitz and Victor Miller independently proposed the Elliptic Curve

Cryptosystem (ECC), a method of utilizing a Discrete Logarithm problem over the

points on an elliptic curve.

Most cryptosystems based upon · the assumed diffıculty of the discrete logarithm

problem for fınite fıelds have analogous elliptic curve versions [1 O].

Over the past 12 years, ECC and later ECDLP (Elliptic Curve Discrete Logarithm

Problem) has received considerable attention from mathematicians around the world,

and no signifıcant breakthroughs have been made in determining weaknesses in the

algorithm [10] .

Although critics ·are still skeptical >as to the reliability of this>algorithm, several

encryption techniques have been developed recently using these properties. The fact

that the problem appears so diffı.cult to crack means that key sizes can be dropped in

size considerably- even exponentially.

The idea of using Elliptic curves in cryptography as an altemative to established public­

key systems such as DSA and RSA. The Elliptical curve Discrete Log Problem

(ECDLP) makes it diffı.cult to break an ECC as compared to RSA and DSA where the
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problems of factorization or the discrete log problem can be solved in sub-exponential

time. This means that signifıcantly smaller parameters can be used in ECC than in other

competitive systems such as RSA and DSA. This helps in having smaller key size hence

faster computations.

This thesis discusses popular algorithm using Elliptic curve, and comparing the old

algorithm that doesn't use Elliptic Curve Schema with the developed algorithm with

Elliptic Curve Schema. The result of the thesis is implementing Encryption/Decryption

"'algorithnı that use Elliptic Curve Schema, which is ElGamal Elliptic Curve, it

implemeted with VC++ 6.0. I choice this algorithm because all resarchs and publishes

concems on Key Exchange using Diffıe-Helman and Digital Signature using DSA,

where developed using Elliptic Curve Schema.

The aim of this thesis is: to analyze Elliptic Curve Cryptography algorithms and to

apply ElGamal Elliptic Curve over network communication channel to perform

Encryption/ Decryption on <lata transmiting.

structure:

Chapter 1, Discusses the cryptography as whole; defınition and types of cryptography,

mechanism of public key cryptography, techniques used in cryptography and the key

management process, what can cryptography do and what can't do, Modem using of

cryptography and at last cryptanalysis and attack on cryptosystems

Chapter 2, Processes the abstract of algebra as, Groups, Rings; Fields and Finite Fields,

and the properties of these concepts and the behavior of Elliptic Curve over it, also how

can we use it in our purpose.

Chapter 3, Gives the Elliptic Curve Cryptography as, history of elliptic curve, what is

elliptic curve in mathematics concepts, the problems the elliptic curve depends on,

Elliptic Curve Cryptosystem, and at last elliptic curve protocols and how it different

between new one and old one.
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Chapter 4, Presents the developed application of elliptic curve cryptography based on

the ElGamal Elliptic Curve Algorithm.

Finally in conclusion the obtained important results for the thesis are given.
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1. INTRODUCTION TO CRYPTOGRAPHY

1.1 Overview

This chapter plans to give the reader a bottoms-up introduction to the basics of

cryptography and this is the goal. Special emphasis will be given to the differences,

advantages, and disadvantages of the various methods used in cryptography, without

delving too deeply into the mathematical foundations of cryptography [41].

origin of the word cryptolögy lies in ancient Greek. The word cryptology is made

up oftwo components: "kryptos", which means hidden and "logos" which means word.

Cryptology is as old as writing itself, and has been used for thousands of years to

safeguard military and diplomatic conı.munications. For example, the famous Roman

emperor Julius Caesar used a cipher to protect the messages to his troops. Within the

fı.eld of cryptology one can see two separate divisions: cryptography and cryptanalysis.

The cryptographer seeks methods to ensure the safety and security of conversations

while the cryptanalyst tries to undo the former's work by breaking his systems [43].

The basic idea behind cryptography is as follows. The message passes through a fı.lter to

encrypt the message into the ciphertext. The ciphertext goes to the receiver who passes

the ciphertext through a related fı.lter to decrypt the message and obtain the plaintext.

is Cryptography?

The word "cryptography" is derived from Greek and when literally translated, means

writing." Before the advent of digital communications, cryptography was used

by the military for the purpöses of espionage. With the advances in modern

technology has enabled businesses and · iüdividuals to transport

information at a very low cost via public networks such as the Internet. This

comes at the cost of potentially exposing the data transmitted over such a

Therefore, it becomes imperative for businesses to make sure that sensitive

is transferred from one point to another in an airtight, secure manner over public

Cryptography can help us achieve this goal by making messages

to all but the intended recipient [41].
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Encryption refers to the transformation of <lata in "plaintext" form into a form called

"ciphertext," which renders it almost impossible to read without the knowledge of a

"key," which can be used to reverse this transformation. The recovery of plaintext from

the ciphertext requires the key, and this recovery process is known as decryption. This

key is meant to be secret information and the privacy of the ciphertext depends on the

cryptographic strength of the key.

Types of Cryptography
There are two types of cryptographic algorithms: Secret Key Cryptography and Public

Key Cryptography.

Seeret Key Cryptography:
- This crypto-system uses the same key for both encryption and decryption (this is also

referred to as "symmetric" cryptography).

- Both the sender and the receiver need to have the same key in order to communicate

successfully.

- Examples: DES, 3-DES, RC4, RCS, ete [41].

Advantages:

o Very

o Considered

o The ciphertext is compact (that is, encryption does not add much excess

"baggage" to the ciphertext);

o Widely used and very popular.

Disadvantages:
o The administration of the keys can become extremely complicated;

o A large number of keys is heeded t6 C:O.tl.111lllllicatesectı:felywith a Iarge group

ofpeople;

o Non-repudiation is not possible.

o The key is subject to interception by hackers.

Public Key Cryptography
- This crypto-system uses one key for encryption and another key for decryption (also

known as "asymmetric" cryptography).

6



- Each user has two keys - one public key, which is revealed to all users, and one

private key, which remains a secret. The private key and the public key are

mathematically linked.

- Encryption is performed with the public key and decryption is performed with the

private key.

- Examples: RSA, Elliptic Curve Cryptography (ECC) [41].

Advantages:

o Considered very secure;

o No form of secret sharing is required, thus reducing key administration to a

mınımum;

o Supports non-repudiation;

o The number of keys managed by each user is .trıu.chless compared to secret

key cryptography.

Disadvantages:

o Much slower compared to secret key cryptography;

o The ciphertext is much larger than the plaintext, relative to secret key

cryptography.

1.3 Wbat

cryptography can hide UH.VHHUUVH

general, cryptography can:

Provide secrecy.

Authenticate that a message has not changed in transit.

Implicitly authenticate the sender.

In

Cryptography hides words. At most, it can only hide ta!hııg abou/contraband or illegal

m,uvm,. But in a country with ''fre~dôtrı of speech," we normally expect crimes to be

than just "talk."

Cryptography can kill in the sense that boots can kill; that is, as a part of some other

but that does not make cryptography like a rifle or a tank. Cryptography is

and canprotect ordinary commerce and ordinary people. Cryptography may

to our private information as our home is to our private property, and our home is our

"castle."
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Potentially, cryptography can hide secress; either from others, or during communication.

There are many good and non-criminal reasons to have secrets: Certainly, those

engaged in commercial research and development (R&D) have "secrets" they must

keep. Business often needs secrecy from competitors while plans and laid and executed,

and the need for secrecy often continues as long as there are business operations.

Professors and writers may want to keep their work private, until an appropriate time.

Negotiations for new jobs are generally secret, and romance often is as well, or at least

we might prefer that detailed discussions not be exposed. And health information is

often kept secret for good reason.

üne possible application for cryptographyistosecure on-line communications between

work and home, perhaps leading to a sôciety-wide .reduction in driving, something we

could all appreciate.

1.4 Wbat Cryptography Can Not Do

Cryptography can only hide information . qfter it is encrypted and whi!e it remains

encrypted. But secret inforn:ıatföıi.Yğenerally.does not .start<out encrypted, so there is

normally an original

information generally

cryptographic envelope

Secrets are often related to public information, and subsequent activities based on the

secret can indicate what that secret is.

And while cryptography can hide words, it cannot hide:

Physical contraband,

Cash,

Physical meetings and traininğ,

Movement to and from a central.location,

An extravagant Iifestyle with no visible means of support, or

Actions.

And cryptography simply cannot protect against:

Informants,
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Undercover spying,

Bugs,

Photographic evidence, or

Testimony.

it is a joke to imagine that cryptography alone could protect most information against

Government investigation. Cryptography is only a small part of the protection needed

for "absolute" secrecy [45].

1.5 Symmetric Key Cryptography

Symmetric key algorithms, known as secret-key.algorithms, use a the same key for both

encryption and decryption. Symmetric-key, systems are simpler and faster than

Asymmetric-key (public-key) systems, but their main drawback is that the two parties

must somehow exchange the key in a secure way.

Symmetric algorithms can be divided into stream ciphers and block cipher. Stream

ciphers can encrypt a single bit of plaintext at a time, whereas block ciphers take a

number ofbits (typically 64 bitsin modem ciphers), and encrypt them asa single unit.

The most popular symmetric-key system is the Data Encryption Standard (DES)

in 70s. DES is a block ciper with 64-bit block size. it uses 56-bit key. With

key length, DES is considerated as unsafe for the future use. There is a variant of

Triple-DES or 3DES. it is based on using DES three times ( in an encrypt­

sequence with three different, unrelated keys) Since November 1998,

was no longer allowed for US government use.

cipher is a type of syrnım,tric.-keyencryption algorithmithatttıınsforms a fıxed­

block of plaintext data into a. block of ciphertext data' ofthe same-length. This

w.c.ı..u,n.vııuauvıı takes place under the action ofa user-provided secret key. Applying the

transformation to the ciphertext block using the same secret key performs

The fıxed length is called the block size, and for many block ciphers, the

size is 64 bits, for example DES. This means that they take a fıxed-size block of

an transform it to another 64 bit block using a function selected by the key. The

9



cipher basically defınes a one-to-one mapping from 64-bit integers to another

permutation of 64-bit integers [46].

The following list summarizes the private key systems in common use today.

ROT13

A simple cryptography algorithm, which is used, among other things, to obscure the

content of risque jokes on various Usenet groups. The ROT13 encryption algorithm has

no key, and it is not secure.

Crypt

The original UNIX encryption program which is modeled on the German Enigma

encryption machine. Crypt uses a variable4ength • key. Some programs can

automatically decrypt cry_pt-encryptedfrles without prior knowledge of the key or the

plaintext. crypt is not secure. (This program should not be confused with the secure one­

way cry_ptprogram that UNIX uses for encrypting passwords.)

DES

The Data Encryption Standard (DES), an encryption algorithm developed in the 1970s

by the National Bureau ofStandards. and .Iechnology, (since renamed the National

Institute of Standards and Techrtôlôğy, ôr NIST) and]BM. DES>uses a 56-bit key.

Technically, we should refet: toit as the i!DEA:iData.tErlcryptiôili.i.Alğorithm..iSfa.ndard­

conforming implementations are certifıed ·• by NIST;i a:tid üsliallyi•recıllirea hardware

implementation. However, nearly everyone refers to it as the DES, so we will too.

block cipher originally developed by Ronald Rivest and kept as a trade secret by RSA

Security. This algorithm.was-revealed by an anonymous Usenet posting in 1996

appears to be reasonably streng (although there>a:resome particular keys that are

RC2 is sold with an impleınentatioll thatallowskeys betweerı.Land 2048 bits.

RC2mail key length is often limited to 40 bits in software tbat' is sold for export,

a 40-bit key is vulnerable to a brute force attack.

c,t,..,.,.m cipher originally developed by Ronald Rivest and kept as a trade secret by

Data Security. This algorithm was revealed by an anonymous Usenet posting in

appears to be reasonably strong (although there are some particular keys that

RC4 is sold with an implementation that allows keys between 1 and 2048
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bits. The RC4 key length is often limited to 40 bits in software that is sold for export,

Unfortunately, a 40-bit key is vulnerable to a brute force attack.

RC5
A block cipher developed by Ronald Rivest and published in 1994. RC5 allows a user­

defıned key length, data block size, and number of encryption rounds.

iDEA
The Intemational Data Encryption Algorithm (IDEA), developed in Zurich, Switzerland

by James L. Massey and Xuejia Lai and published in 1990. IDEA uses a 128-bit key,

and is believed to be quite strong. IDEA is used by the popular program PGP (described

later in this chapter) to encrypt files and electronic mail. Unfortunately, • wider use of

IDEA may be hampered by a series of software patents on the algorithm, which is

currently held by Ascom-Tech AG, in Solothurn, Switzerland. Ascoın-Tech supposedly

will allow IDEA to be used royalty free in implementations of PGP outside the U.S., but

concemed users should verify the terms with Ascom-Tech or their licensees directly.

Although we are generally in favor of intellectual property protection, we are opposed

to the concept of software patents, in part because they hinder the development and use

of innovative software by individüals and small companies.

Skipjack

A classifıed

Reportedly, a Top Secret

code and design specifıcations. Skipjack is the algorithm used

chip. It uses an 80-bit key [42].

1.6 Asymmetric Key Cryptograpby

Unlike symmetric key algorithms, publfo key algorithmssuse. a. different key for

and decryption. The decryptionkey ca.n:iı.ot(pra.ctically)bederivedfrom the

key. The merit of public keyalgorithms isthattheycanbeu.sedtotransmit

keys or other data securely · even when the parties have no opportunity to

on a secret key in private.

(Rivest-Shamir-Adelman) is developed by Ron Rivest, Adi Shamir, and Leonard

rı.uıc;ıııuu in 1977. This public-key cryptosystem offers both encryption and digital

sıgrıaıures (authentication). It is generally considered to be secure when suffıciently
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long keys are used (512 bits is insecure, 768 bits is moderately secure, and 1024 bits is

good) [46].

The following list summarizes the public key systems in common use today:

Diffie-Hellman
A system for exchanging cryptographic keys between active parties. Diffıe-Hellman is

not actually a method of encryption and decryption, but a method of developing and

exchanging a shared private key over a public communications channel. In effect, the

two parties agree to some common numerical values, and then each party creates a key.

Mathematical transformations of the keys are . exchanged. Each party canthen calculate

a third session key that cannot easily be <derived by .any attacket.iwhO\krı.ows both

exchanged values.

Several versions of this protocol exist, involving a differing number of parties and

different transformations. Particular care must be exercised in the choice of some of the

numbers and calculations used or the exchange can be easily compromised. If you are

interested, consultthe references for all the gory details.

The

cryptographic

depending on the particular implen:ıentation used. Longet keyS<ate gı;;;ııı;;;ıau

secure.

RSA
The well-known public key cryptography systemdeveloped by (then) MITprofessors

Ronald Rivest and Adi Shamir, and by USC professor Leonard Adleman. RSA can be

used both for encrypting information and as fhe hasis ofa digital signature system.

Digital signatures can be usedUto•prôve the aııthorship andauthenticity>Qf. digital

information. The key may be any len.gth, depending on the particular implementation

used. Longer keys are generally considered to be more secure.

algorithm based on exponentiation and modular arithmetic. ElGamal may be

for encryption and digital signatures in a manner similar to the RSA algorithm.

ısonzer keys are generally considered to be more secure.
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DSA

The Digital Signature Algorithm, developed by NSA and adopted as a Federal

Information Processing Standard (FIPS) by NIST. Although the DSA key may be any

length, only keys between 512 and 1024 bits are permitted under the FIPS. As specifıed,

DSA can only be used for digital signatures, although it is possible to use DSA

implementations for encryption as well. The DSA is sometimes referred to as the DSS,

in the same manner as the DEA is usually referred to as the DES [42].

1.7 Modern use of cryptography

Actually, public key cryptographyis really interesting. becaııse itis easyto .use and it

solves many security problems urısölved /so far. •Mor@. /precisely, jt ': solves a few
authentication problems:

Identifying individuals: using anonymous communications means of today,

Alice wants to be sure the person with whom she is talking is not cheating and

impersonating Bob. To do so, she uses an identifying protocol. Multiple

identifying protocols exist and commonly rely on the principles of RSA or of
discrete logarithm.

Document . authenticatiön/. an a.u.thOrify\ aııtheriticates /documents ·••• through a

dıgital sıgnature. Signing.•cötısists•in··.a.ppendiijğ~<f~w'{pit~ ~lıicharefhe .result

of some processing with. •docıırıienfiand•authô:rify a.s>itıp'l.it,/aııcl/-»7hich.\are

generally hashed by a hash algorithm. such as MD5 ör ·SHA. ·· Moreöver,. aay

person with access to the document should be able to verify the authority has

really issued that signature. To do so, signature schemas are used. üne of the

most famous signature schemes is ElGamal - once . more based on discrete
logarithm problems.

.uı;;;.:.ıuı:;.:., as secret key cryptography,pıı.blic key cryptography provides encryption-based

guaranteeing confıdetıtiality of communications.

imagine Alice wants to communicate secretly with Bob. Alice retrieves Bob's

key in a public directory, and enciphers her message with this key. When Bob

the ciphertext, he uses his private key to decipher the ciphertext and read initial

text. Both keys have very different roles, this explains why such systems are called
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asymınetric cryptosystems - referring to secret key cryptosystems, which use the same

key for encipherment and decipherment and are also know as symınetric cryptosystems.

Public key cryptography offers another major benefit over secret key cryptography. As

a matter of fact, if n users comınunicate through a secret key cryptosystem, each of

them needs one different secret key for each person in the group. So, n(n-1) keys need

to be managed. If n is over thousands of users, then millions of keys need to be

managed... Furthermore, adding a new user to the group is not an easy task, because n

new keys need to be generated for the user to comınunicate withiall rnembers of the

group. Then, those new keys need to be sent .over to the groupo.{)n.the>contrary, in

asymınetric cryptosystems, the.>ll····.public?··keys···Qf/the nıe~pets{are>$toretii•.ina ••• public
directory. Adding a new user simply.consists. inadding his public key to the .directory

[44].

1.8 Cryptanalysis and attaeks on Cryptosystems

Cryptanalysis is the art of deciphering encrypted communications without knowing the

proper keys. There are many crypta.ııalyticteçhtıiqµes. Some ..ofthe rnore importantones

for a system implementer ate ti@sçrib~ti pelôw.

Ciphertext-enly attack: This

anything about the contents of the message, and must work from In

practice it is quite often possible to make guesses about the plaintext, as many types of

messages have fıxed format headers. Even ordinary letters and documents begin in a

very predictable way. It may .also be possible to guess that some ciphertext block

"'vıua.ııı.:ı a comınon word.

• Known-plaintext attack: Tlıe attacker iknöWSi or c;a.ıı gu~ss..the· .plaintext for

some parts of the ciphert~xt.<.Thetask is to decrypt the .rest of the ·. ciphertext

blocks using this information. This may be done by determining the key used to

encrypt the data, or via some shortcut.

• Chosen-plaintext attack: The attacker is able to have any text he likes

encrypted with the unknown key. The task is to determine the key used for

encryption. Some encryption methods, particularly RSA, are extremely

vulnerable to chosen-plaintext attacks. When such algorithms are used, extreme
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care must be taken to design the entire system so that an attacker can never have

chosen plaintext encrypted.

• Man-in-the-middle .·. atta.ek: This attack is relevant for cryptographic

communication and key exchange protocols. The idea is that when two parties

are exchanging keys for secure communications (e.g., using Diffie-Hellman), an

adversary puts himself between the parties on the communication line. The

adversary then performs a separate key exchange with each party. The parties

will end up using a different key, each of which is known to the adversary. The

adversary will then decrypt any communications with the proper key, and

encrypt them with the other key for sending to the other.party. The parties will

think that they are communicating securely, but in factthe adversary is hearing

everything.

• üne way to prevent man-in-the-middle attacks is that both sides compute a

cryptographic hash function of the key exchange (or at least the encryption

keys), sign it using a digital signature algorithm, and send the signature to the

other side. The recipient then verifies that the signature came from the desired

other party, and that the · hash: in the signature matches that computed locally.

This method is used

• Timing Attack: This

exact execution times of

least RSA, Diffie-Hellman, and Elliptic Curve methods.

available in the original paper and various follow up articles.

are many other cryptographic attacks and cryptanalysis techniques. However,

are probably the most important ones for a practical system designer. Anyone

to design a new encryption algorithm shotıld have a much deeper

su.uuuııs of these issues. üne place to start looking for information is the excellent

Applied Cryptography by Bruce Schneier [47].
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1.9 Summary

This chapter gave basic concepts of what is cryptography and what can cryptography do

and can't do, it describe the both type of cryptography Symmetric and Asymmetric

rnethods, also it gave brief idea of algorithrns of each type, it show also the modem

using of cryptography and the cryptanalysis of attacks of cryptography.
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2. OVERVIEW OF ABESTRACT ALGEBRA

2.1 Abstract Algebra
Abstract algebra is the :fıeld of mathematics concemed with the study of algebraic

structures such as groups, rings and fields. The term "abstract algebra" is used to

distinguish the field from "elementary algebra" or "high school algebra" which teaches

the correct rules for manipulating formulas and algebraic expressions involving real and

complex numbers.

Historically, algebraic structures usually appear first in some other field ofmathematics,

were specified axiomatically, and were then studied in their own right in abstract

algebra. Because of this, abstract algebra has numerous fruitful connections to all other

branches ofmathematics.

Examples of some algebraic structures with a single binary operation are:

• groups

• rings

• modules

• :fıelds

In universal algebra, all those definitions and facts are wııcı.m,u

algebraic structures alike. All the above classes of objects, together with the proper

notion of homomorphism, form categories, and category theory frequently provides the

formalism for translating between and comparing different algebraic structures [30].

2.2 Groups
A great many of the objects investigated in mathematics .tum ourto be gröups, .including

familiar number systems, such as the integers, rational, real, and complex numbers

addition, non-zero rational, real, and complex numbers under multiplication, non­

~mguıı:umatricies under multiplication, invertable functions under composition, and so

Group Theory allows for the properties of these systems and many others to be

csugaıeu in a more general setting, and its results are widely applicable. Group

is also a rich source of theorems in its own right. Groups underlie the other
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algebraic structures such as fıelds and vector spaces and are also important tools for

studying symmetry in all its forms. For these reasons, group theory is considered to be

an important area in modem mathematics [3 1].

A group G is a fınite or infınite set of elements together with a binary operation, which

together satisfy the four fundamental properties of closure, associativity, the identity

property, and the inverse property. The operation with respect to which a group is

defıned is often called the "group operation" and a set is said to be a group "under" this

operation. Elements A, B, C, ...with binary operation between A and B denoted AB

form a group if:

a. Closure: If A,B E G, then AB E G:

b. Assosiativity: For all A,B,C E:G,(AB)C ==A(BC).

c. Identity: There exists an element I such that AI= IA =A for all AE G.

d.. Inverse: For every AE G, there exists an element B = A-1 such that

AB = BA = I [7].

2.2.1 Abelian Groups

Abelian groups

G, AB = BA for all A,B EG\[7].

If a group is abelian, we usually write the operation as + instead of *, identity

element as O (often called the zero element in this context) and the inverse of the

element a as -a.

.LAaıııı.m..,c, of abelian groups •· inelüde. allc>cyclicgroüps 'such • as the integers Z (with

and the integers modulo n ZD(aJso with a.dditiôn).The reaLnl1111bers form an

auı;;;uaıı group with addition, as do .thenon...zero real numbers withmultiplication. Every

gives rise to two abelian groups in the same fashion. Another important example is

factor group Q/Z, an injective cogenerator [32].

n is a natural number and .r is an element of an abelian group G, then m- can be

ıuc;ı.ıııı;;;uas x + x + ... + x (n summands) and (-n)x = -(m-). In this way, Gbecomes a

dule over the ring Z of integers. In fact, the modules over Z can be identifıed with
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the abelian groups. Theorems about abelian groups can often be generalized to theorems

about modules over principal ideal domains. An example is the classifıcation of fınitely

generated abelian groups.

Any subgroup of an abelian group is normal, and hence factor groups can be formed

freely. Subgroups, factor groups, products and direct sums of abelian groups are again

abelian. lf .ı; g : G --t Hare two group homomorphisms between abelian groups, then

their sumftg, defıned by (ft-g)(x) =J(x) + g(x), is again a homomorphism. (This is not

true if His a non-abelian group). The set Hom(G, B) of all group homomorphisms from

Gto Hthus turns into an abelian group in its own right.

The abelian groups, together with group hömömôr_phisrns, form• a category, the

prototype of an abelian category.

Somewhat akin to the dimension of vector spaces, every abelian group has a ranlr. It is

defıned as the cardinality of the largest . set of linearly independent elements of the

group. The integers and.the ratiohahıiumbershave rank.onersas.well-as everysubgroup

of the rationals. While

even fınite-rank abelian groups

can be extremely complex and

questions of set theory [32].

2.3 Rings

A ring is a set S together with two binary operators + and *(addition and multiplication,

respectively) satisfying the followihg con.ditions:

Additive associativity: For alla, b, C<E S,(a+ b)--t- c= a+(b+c).

1. Additive commutativity: Foran a, b E S, a + b = b+a.

2. Additive identity: There exists an element O E S such that for all a E S,

O+a=a+O=a.

3. Additive inverse: For every a E S there.. exists -a E S such that

a +(-a) = (-a) + a = O.

4. Multiplicative associativity: For alla, b, c E S, (a * b) * c = a * (b * c).

5. Left and right distributivity: For alla, b, c E S, a*(b + c) = (a'\'b)+(a*c)
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and (b + c) * a = (b * a) + (c * a).

This means that a ring is an abeliaa .group under addi tion [7, 3 3].

2.4 Integer module n
A left ..R-module consists of an abelian group (M, +) together with a ring of scalars

(..R,+,*) and an operation ..R x M -> M (scalar multiplication, .usually just written by

juxtaposition, i.e. as rx for r in ..R and x in .Mj such that for all r,s in .R, XJ' in M, we have:

1. (rs)x= ı(sx)

2. (rts).x=r.ı+sx

3. r(.ı+y) = r.ı+ry

4. 1.x=.x

Usually, we simply write "a left ..R-moduleAl' or RM.

Some authors omit condition 4 for the general defıntition of left' modules, a:nd call the

above defıned structures

modules are

all

A right ..R-module Mor .Mi?. is uı:;nııc;u .::,ıı.nı.ıaıı,r

a scalar multiplication of the fo:rrırM x ..R -> M, and · the

with scalars r and s on the right of x and y. If ..R is commutative, then the left ..R­

uıuuuuo is the same as the right ..R-module and is simply called an ..R-module [34] .

..R is a fıeld, then an ..R-module is also called a vector space. Modules are thus

neralizations of vector spaces, and much of the theory of modules consists of

covering desirable properties of vector spaces in the realm of modules over certain

However, in general, an ..R-modulemay not have a basis [35].

• Every abelian group Mis a module over the ring of integers Z if we define nx =

x+ .r+ ... + x(ıı summands) for n> O, Ox=O, and (-ıı).x= -(nx) for ıı< O.
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• If .R is any ring and n a natural number, then the cartesian product J{' is a

module over .Rifwe use the component-wise operations.

• If M is a smooth manifold, then the smooth functions from M to the real

· numbers form a ring .R. The set of all vector fıelds defıned on Mform a module

over .R, and so do the tensor fıelds and the differential forms on M.

• The square n-by-n matrices with real entries form a ring}?, and the Euclidean

space R11 is a left module over this ring if we define the module operation via

matrix multiplication.

• If .R is any ring and /is any left ideal in ..R, then /is a left module over .R [3 5].

Submodules and homomorphisms :

Suppose Mis an .R-module and .R-

submodule, to be more explicit) if, for any 11 in .ıVand any r in .R, the product rn is in .ıV

(or nrfor a right module) [34, 35].

If M and .ıV are· left .R-modules, then a map /: M -> .ıV is a homomorphism or .H­ 

modules if, for any m, n.. in .J/Jınq ı; ş in .l?,Jf..rm + sn) === ı:;(111) + ıı(n). 1'his,Jike any

homomorphism

of the objects.

Altemative defınition as representations :

If Mis a left .R-module, then the action of an element r in .R is defıned to be the map M
- M that sends each x to rx (or xr in the case of a right module ), and is necessarily a

group endomorphism of the abelian group .(M,+). The set of all group endomorphisms

of Mis denoted Endz(Ad) and fornıs a ring under addition and composition, and sending

a ring element r of .R to its actiorı actually defınes a ring hômoriıôrphism from .R to

Endz(Ad).

Such a ring homorphism .R - Endz(Ad) is called a representation of .R over the abelian

group M, an altemative and equivalent way of defıning left .R-modules is to say that a

left .R-module is an abelian group Mtogether with a representation of .R over it.
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A representation is called faitJ!fiılif and only if the map ..R ----+ Endz(ıld) is injective. In

terms of modules, this means that .if r is an element of ..R such that zı=O for all .r in N,

then z=O, Every abelian group is a faithful module over the integers or over some

modular arithmetic Z/ııZ [34].

2.5 Fields
A fı.eld is an algebraic structure in which the operations of addition, subtraction,

multiplication, and division (except division by zero) may be performed and the

associative, commutative, and distributive rules hold, which are familiar from the

arithmetic of ordinary numbers.

Fields are important objects
generalization of number domains, such as the sets of rational numbers, real numbers,

or complex numbers. Fields used to be called rational domains.

The concept of a fıeld is of use, for . example, in defıning vectors and matrices, two

structures in linear algebra whose components can be elements of an arbitrarv fı.eld.

Galois theory

fıelds can be contained

Defınition: A fıeld F is a nonempty set together with two binary

+: FXF~Fand.: FXF~F such that:

1. (F, +) is an abelian group.
2. (F - {O},.) is an abelian group. (Here O represents the identity element for

the + operation) .
3. For alla, b, c E F, a .(b+c)==a .)b+ a': c,
4. O * 1. (The identity elements for the addition and multiplication operations

are distinct) [18].

As an example ofa fınite fıeld, let p be a prime.number and consider the set

Zp={O, 1,2, ... ,p-1}

give with the usual operations of addition and multiplication modulo p.
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The only part of the defini tion that is not clear satisfıed is that each element of Zp- {O}

has a multiplicative inverse. Clearly 1 is its own inverse, so consider n,

where 2 ::::; n s; p - 1. Since gcd(n, p) = 1, there exist integers x and y such that

xn + yp = 1, so xn = l(mod p), i.e. xn = 1 and so x is a multiplicative inverse for n [18].

We can also talk about elliptic curves over a fınite fıeld. For example, we can consider

E : y2 = x3 + 1 as an elliptic curve over Z3. A short calculation shows that

E (Z3) = {O, (0,1), (0,2), (2, O)}.

2.6 Finite Fields

Finite fıeld play a crucial role in many cryptographic algorithms. It can be shown that

the order of fınite (number of elements in the fıeld) must be a power ofa prime p",

where n positive integer.

The fınite fıeld of order p" is generally written GF(p0); GF stands for Galois fıeld, in

honor of the mathematical who fırst studied fınite fıeld.

A fiaite field or Galois field is a fıeld that contains only fınitely many elements. Finite

are important in cryptography and coding theory. The fınite fıelds are completely

as will be described below.

every fıeld of characteristic O contains the rationals and is therefore infınite, all

fıelds have prime characteristic [3 7].

is a prime, the integers modulo p form a fıeld with p elements, denoted by Zp, FP or

(p). Every other fıeld with p elements is isoı:rıötphic tothis öne.

= .ıf is a prime power, then there exists up to isomorphism exactly one fıeld with q

written as Fq or GF(q). It can be constructed as follows: fınd an irreducible

omial.ı(.JJ of degree II with coeffıcients in GF(p), then define GF(q) = GF(p)[.J] /

. Here, GF(p)[ .J] denotes the ring of all polynomials with coeffıcients in GF(p),

quotient is meant in the sense of factor rings. The polynomial.ı(.JJ can be found
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The fıeld GF(q) contains GF(p) as a

fınite fıelds [3 7].

=fi+ .T+ 1 is irreducible over GF(2), and GF(4) can therefore be

{O, 1, t, ı+-1} where the multiplication is defıned (modularly) by l + t

= O. For example, to determine ?, note that ı(l + t+ 1) = O; so? + l + t= O, and

+i + t+ 1 = 1, so? = 1. Similarly, since the characteristic ofthe fıeld is 2, l = t

the multiplicative inverse of tin this fıeld, we have to fınd a polynomial

such that .T* p(JJ = 1 modulo fi+ .T+ 1. The polynomialp(JJ = .T+ 1 works, and

1/t = t + 1. Note that the fıeld GF(4) is completely unrelated to the ring Z4 of
4.

the fıeld GF(27)fwe startwiththe irreducible polynomial I' +fi+ .T- 1

.GF(3). We then have GF(27) =c.{al bt+. c .:.:tı, b,.cin GF(3)}, where the

a fınite fıeld with q = ıf' elements (wherepis prime), then

the Frobenius homomorphism/: F-> F defıned byJ(x) = x1 is bijective,

is therefore an automorphism. The Frobenius homomorphism has order ıı, and the

group it generates is the füll group of automorphisms of the fıeld.

e fıeld GF(pj contains a copy of GF(z/1) if and only .if ıi divides m. The reason for

is that there exist irreducible polynomials of every degree over GF(z/1).

e. multiplicative group of every fınite fıeld is cyclic, a special case of a theorem

ntioned in the article about fıelds. This means that if Fis afinite fıeld with q

ments, then there always exists an element .r in Fsuch that

F= { O, 1,x,.i, ...,/2 }.
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The element x is not unique. lf we fıx one, then for any non-zero element a in Fq, there

is a unique integer n in { O, ... , q - 2} such that a = .:I'. The value of n for a given a is

called the discrete log of a (in the given fıeld, to base x). In practice, although

calculating .:I' is relatively trivial.given n, fınding n for a given a is (under current

theories) a computationally diffıcult process, and so has many applications in

cryptography [37].

Finite fıelds also fınd applications in coding theory: many codes are constructed as

subspaces of Vector spaces over fınite fields:

Finite fıelds may be used to create a coordinate system for fınite geometry, in the same

way that the set ofreal numbers can be used as coordinates for Euclidean geometry.

2.7 Elliptic Curve over Galois Field

2.7.1 Elliptic Curves over Binary Finite Fields:

We start work in the fıeld

ı.,vıı.:,ıu\,ı so called

perform the following vııuııl",'-'

we

leads us to the following defınition [16].

Defınition 3. A (nonsupersingularj elliptic curve E över the fınite fıeld F2m is given

an equation of the form

r' + .xr = x3 + a,.y-2 + b, a,b E ~nı

starting with the arithmetic of the points on an elliptic curve, we take a final look

e coeffıcients in the following equation:

,finition:An elliptic curve .E over thefteldF is a smooth curve in the so-called 7ong
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The subscripts of these coefficients seem to be a little bit strange. But consider

following: For big values of Xwe can say that the equation is very close to

F: Y=X3ı2. This function can be parameterized by settingX= T2, Y= T3• üne says, "X

has degree 2" and "Y has degree 3". The subscripts of the coeffıcients in previous

equation indicate the degrees that must be given to the coeffıcients in order that the

equation be homogeneous (this means that each term has the same total degree which is

6 in this case) [16].

2.7.2 Elliptic Curves over Prime Finite Fields:
Now we work with F,o (p E P, _p > 3, chaı(F,o) * 2, 3) and we cam make the following

clıange of variables:

X

Let' s take a look wlıat is lıappening to the left side after tlıe substitution for Y.·

-(a1X + a3)/2)2 + a1X(Y -

= Y2 -a~X2 /4-

+aJ/ .X +aJ =

X Yand Ylıave vanislıed, · so
euuces tlıe left side to a single Y2. If we make tlıe substitution for

side ofY2 + XY = X3 + aX2 + b we get:

at

-a2/3)3 +a2(X-a2/3)2 +a4(X-a4/3)+a6 = ...

X3 +(a2 /9+a4)X+2a; /27-a2 /3a4a6

1 2 2 3 1 .( - a + a4) = a and - a2 - - az a4 a6 = b we lıave the muclı nıcer form
9 27 3

b. In F,o tlıe equation:

Y2 + al;fY + a3Y= X3 + a2X2 + a4X + a6, ai E F.
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What can we say about the smoothness of this equation? Consider the partial derivative

of the equation y 2 =/(x), which is/ (x) = 2y dy. The expression of dy zr undefined
dx dx

in (x0, .}t)) if and only if/ (xo) =.ı(xo) = .}t) = O. In other words, the function/(x) must

have a multiple root at the point .ıü. In the case that

.ı(x) = 2 + ax+ b, this is equivalent to disc (.ı(x)) = -( 4d + 27ıJ) = O. We give now

our definition for an elliptic curve over the fınite fıeld F,o:

Definition: An el!iptic curve E aver theftnite fte!dF ,o is given thrôugh alı equation e/

theForm:

r' = x3 + a.J"'"2 + b' a,bE ~ and - (4a3 + 27 b2) -=t= O

Please note that as stated in the begi1111inğôfthe sectiôn, the "'-"'" shôuld beTeplaced by

an "=:!' in the above defınition. Another remark is that when we talk about partial

derivatives we mean the "formal partial derivate" which can be defıned over an

arbitrary fıeld [ 16].

Summary

chapter planed

using in elliptic curve

to what is the groups, ı.'\...lııı:;;:,,

· s topic are important to reader of this thesis to give curve

27



3. ELLIPTIC CURVE CRYPTOGRAPH

the need for information security in today' s digital systems both acute and

cryptography has become one of their critical components. Cryptographic

are required across a variety of platforms in a wide range of applications such

ecure access to private networks, stored value, electronic commerce, and health

. · Incorporating these services into solutions presents an ongoing challenge to

.ü.facfürers, systems integrators, and service providers because applications must

:f 'the market requirements of 'mobility, perforrrıance, convenience, and cost

and Victor Miller fıfst prôpôsed .· elliptic cürve cfyptöğfaphy iri 1985

endently. Elliptic curve cryptosystems (ECCs), which are expected to become

next-generation public key cryptosystems. Elliptic curves and elliptic curve

e logarithm problem have been used in cryptography system for the last 12

. (ECC) is based on 'the properties öfthe elliptic curve, which define and set

equation

y2=x3 +
y, a; b are elements

advantage of elliptic curve systems over the "conventional" public key

§ystems based on factoring or on the discrete logarithm problem is that there is

ö\vn sub-exponential algôritJ.un

ccurves. Also, elliptic

ôf security, and thus also less rrtemôfy aııd prôcessôf time fôf calctifation.

ore, many cryptographic systems (e.g. Digital Signature Algoritlim, ElGamal

,tiôn scheme, Diffıe-Hellman key exchange protocol) have analogues for the

öf these algorithms are also included in standards of American National

s Institute (ANSI X9.62, ANSI X9.63), Institute of Electrical and Electronics
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Engineers (IEEE P1363), Intemational Standards Organization (ISO/IEC 14888-3,

ISO/IEC 15946) and National Institute of Standards and Technology (NIST FIPS

186-2) we present it below [l].

In this chapter we describe in details 4 protocols based on elliptic curve cryptography

techniques, and the result of our implementation of ECC over Galois Field over prime

GF(p ), where p is prime number in the next chapter.

elliptic curve is not an ellipse! The reason for the name is a little more indirect. It

do, as we shall explain shortly, with "elliptic integrals", which arise in

the arc length of an ellipse. But this Iiappenstance of nomenclature isn't too

.,,.euu.ı"a.ı.u, since an elliptic curve has.differeht,Jarid:nıuchınoreinteresting, properties

compared to an ellipse [38, 5].

elliptic curve is an object that is easily defınable with simple high school algebra.

amazing fruitfulness as an object of investigation may well depend on this

plicity, which makes possible tlle.. sfudy Qfa.ııumbet of muelı' rnore sophisticated

thematical objects that can be defiriedihıterrı:ı.s()felliptic cury~s.

purpose of this section is to provide sufficie11tback.grôu.ridniateriaFifr ECC to

rstand the remainder of this document.

,tic curves are mathematical constructs that have been studied by mathematicians

the seventeenth century. In 1985, Neal Koblitz and Victor Miller independently

sed public-key systems using•a..•groupi•öfJ>Oihtson an. elliptip/c1ııw~,al3;d.· elliptic

cryptography (ECC) was bom. Since·.that<time, .nınnerqus ires~a.tchets·... and

pers have spent several years researching the strength of ECC and improving

ues for its implementation. Today it offers those looking for a smaller, faster

system a practical and secure technology for even the most constrained

,.J'J.:lll.J.\.ı.lJ.\..ı.:) [3]. 
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Elliptic curves arise from algebra and number theory, and also make use of groups

from which we can see how these would be related to both modular arithmetic and the

discrete logarithm problem.
ECC delivers the highest strength per bit of any known public -key system because of

the diffıculty of the hard problem upon which it is based. This greater diffıculty of the

hard problem " the elliptic curve discrete logarithm problem (ECDLP) " means that

smaller key sizes yield equivalent levels of security. The following Table compares

the key sizes needed for equivalent strength security in ECC with RSA and DSA.

Given the best-known algorithms to factor integers and compute elliptic curve

logarithms, the key sizes are considered to be equivalent strength based on MIPS

years needed to recover one key [3].

Table 3.1 Key lengthEqti.iValenfStren.ğth Comparisön [3].

Time to break in I RSA/DSA I ECC I RSA/ECC key size

MIPS years Key size key size ratio

10 512 106 5 : 1

108 768 132 6: 1

1 oıı 1024 160 7: 1

1020 1 2048

1078 1 21000

first thing to notc is that an elliptic curvc is not an ellipsel An elliptic curve is a

thematical equation: y2 = x3 + ax + b, where all calculations are performed modulo ·

4a3 + 27b2 * O modulo p, for, some odd prime p.

mathematical propcrty that makes • elliptic curves • • useful • for cryptography is

that if, in general, we take two (distinct) points on the curve then the chord

g them intercepts the curve in a third point (because we have a cubic curve). If

reflect that point in the x-axis we .get another point on. the curve (since the

syınmetric about the x-axis).

us to define a form of arithmctic on the curvc. If we denotc the two

points by P and Q then we will dcnote the final (reflected) point by P+Q (see
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Figure 3.1). lt tums out that this "addition" satisfıes all the usual algebraic properties

that we associate with integers, provided we define a single additional point "the point

at infınity", which plays the role of O in the integers [5].

Figure 3.1 Addition ofElliptic Curve Points [5].

The "point at infınity" is a "virtual". point, not a point on the curve. It is needed for

completeness of the newly defined arithınetic systeın. For example, if the points P and

Q are ınirror iınages of each other in the x-axis then the chord joining P and Q does

not actually ıneet the curve again, so in this case we say P+Q = <l>, where <l> denotes

point at infinity. If we identify <l> with the zero of the system then this naturally

to the idea of denoting

words, we can
fos the point at infınity) that lends itself to normal In

fhematical terms, we can define afiiıite additive abelian groııp on the points of the

ırve, with the zero being the point at infınity. In particular, if we let the points P and

coincide, we can define P+P, naturally denoted 2P. Extending this idea, we can

firie kP, for any integer k, and hence defıııethe>ordet of P/being the smallest

ger k such that kP = <l> [5].

are now in a position to define the .Elliptic Curve .DiscreteLogarithm Problem

DLP) which is the reason we are considering these systems: Given a "ôasepoiııt"

d the poiııt !rP, lyiııg on the curve, flııd the value o/'le It is believed that, for

ıble elliptic curves and base points, this is a really, really hard problem! Froın a

graphic point of view, we are in a position to define n,ew cryptographic systeıns

elliptic curves. In particular, any standard system that relies on the discrete
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logarithm problem has a direct analogy based on the ECDLP. For example, ..Elliptic

Curve .DSA (ECDSA) has already been standardized (ANSI X9.62). Diffie-Hellman

key exchange can be easily implemented in an elliptic curve framework, so in section

3.4 you can fınd more details on Elliptic Curve Discrete Logarithm Problem ECDLP

[5].

3.3 Addition Low
involves several areas of mathematics including fınite fıelds, representations of

elements, and group theory. In this section we describe the mathematics

to understand the main algorithms being investigated in this research.

its most simple form, an ellipticicutv:eis :a,setoföeleınents. ofthe form (x, y) that

~-•WLJ the equation y2 = x3 + ax + b mod n.

ere a, b and ıı are predetermined numbers. In cryptographic applications, we

ecify that 4a3 +27b2 ':/:- O (mod n) and that ıı be prime. See an example of an elliptic

e at the end of the section.

.e point at infınity" (the top

se curves can be defıned over anyfield. real, fractional or complex. The majority

Iliptic curves used for cryptographicpurposes are defıned overfiııitefields.

ite fıeld E;, is simply a finite set of elements withtwp operations, addition and

multiplication, where the operatiöns are perförtıied ınodulo ıı and satisfy the

ing properties: [2]

1. Closure under addition. If .r andyare elements ofa fıeld E;,, then x+y

EE;,.
2. Closure under sealar multiplication. If .r is an element ofa fıeld E;,, and

;ı, is any integer, then ;ı, x EE;,.

applications, fınite fıelds of the form Fp , wherepis prime, or

k is a positive integer are most common.
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the case of an elliptic curve, addition is defıned in the following way (illustrated in

Figure 3.2 An examplein addition in an elliptic curve [2].

Given points pl and p2 on the elliptic curve, fınd p3, which is the third point

of intersection with the elliptic curve ofa line through pl and p2.

Letp4 = p; :JJ)wherep3 = p;y).

Define p/ +p2 =p,ı/.

lication ofa point pl by

Apl ~ {~ + (A - l)x
A =

if A > O

be unclear how 2p/=p/ +p/ is determined, since there are an infınite number

s'that pass through just the point pl. To fınd this result (which is known as the

ôfpl), we simply do thefollôwirig(illiıstratedinFigure.3.3):

P4=(x3.y3)

li'imırı> 3.3 An example of the double ofa point on an elliptic curve [2].
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1. Draw aline that is tangent to the elliptic curve at point _pl. This line will

intersect the curve again at point _p3.

2. Let _p4 = (.,i; -y)where_p3 = (.,i; y).

3. Define 2_p/ = _p/ +_p2 = _p4.

the avid reader may wonder how we can be so sure that our straight lines are

to intersect the elliptic curve at a new point in both the above cases. Suppose

the straight line in question has the formy=m.x+ c.

now substitute into the elliptic curve equation.we obtain

(mx+ c)2 = .x3+ax+b
=> mıxı + 2mxc + cı = x3 + ax+ b
=> O= x3 - mı x2 + (a-2mc)x+ b- cı

so we are left with a cubic equation in x that we have to solve. In both the cases

ve, we already have two roots of this equation (in the second case,_pl is a repeated

ıt since the straight line is tangential

valued it follows that the

these roots are

!f(x- x1 )(x- x2 )(x- x3)l(x - .r1 )(x- .r1 )(.r- x, ) where we hai'e-0rıe poinr pl

::re_pl=(.xl,yl),_p..?-=(.x2,y2)and we wish to fınd point_p3=(.x3,y3).

er mathematics can be used to show that, in general

X3 = A 2 - Xı - Xı

Y3 = A(Xı - X3)Yı

= (.xl,yl) and _p2=(.x2, y2) for any points _pl and p2 on the elliptic curve

be equal),_p3=(.x3,y3),_p3= _pl+_p2 and where: [2]

.,ı =

Yı - Yı
Xı- Xı

3 X1ı + a
2yı

if p * Q

if p = Q
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See the following example using these formulae:

Let .Ebe the elliptic curve y2 = x3 + x + 6 over Zıı. Fora given .rwc can test to see if

= x3 + x + 6 mod 11 is a quadratic residue by applying Euler' s criterion. Applying

formula, we have that the square roots ofa quadratic residue z are:

z ( 11 + 1 ) 1 4 mod 11 = ± z 3 mod 11

results of these computations in this table:

X X'+X+6 mod 11 In QR(l l)?
o 6 No
1 8 No
2 5 Yes
3 3 Yes
4 8 No
5 4 Yes
6 8 No
7 4 Yes
8 9 Yes
9 7
10

y

4,7
5,6

2,9

2,9
3,8

13 points on it.

the "powers" of a(which we will write

is additive). To compute 2a=(2,7)+(2,7), we fırst compute

= (3*22 + 1)(2*7Y1 mod 11

= 2*3-1 mod 11

= 2*4 modl l

=8

= 8(2 - 5) - 7 mod 11 = 2
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multiple would be 3a = 2a + a = (5,2) + (2,7). Again, we begin by computing

in this solution is done as follows:

J = (7 - 2)(2 - 5r1 mod 11

= 5*8-1 mod 11

=5*7 mod 11

=2

y3 = 2(5 - 8) - 2 mod 11 = 3

3a=(8,3).

ctorization and Discrete Logarithm Problem

the years, many of the proposed public-key cryptographic systems have been

and many others have been demonstrated to be impractical. Today, only three

systems are considered both secure and effıcient. Examples of such systems

mathematical problems, on which their security is based, are:

1. Integer factorization problem (IFP): RSA and Rabin-Williams.

2. Discrete logarithm problem (DLP): the U.S. government's Digital

Signature Algorithm (DSA), the Diffie-Hellman key agreement scheme, the

ElGamal encryption and signature schemes, the Schnorr signature scheme,

and the Nyberg-Rueppel signature scheme.

Elliptic eurve diserete logarithm problem (ECDLP): the elliptic curve

analog ofthe DSA (ECDSA), and the elliptic curve analogs ofthe Diffie­

Hellman key agreement scheme, the ElGamal encryption and signature

schemes, the Schnorr signature scheme, and the Nyberg-Rueppel signature

vmpııa<>ıLA,u that none of these problems have been_provento be intractable

solve in an effıcient manner). Rather, they are believed to be

uı;;"'am,ı;; years of intensive study by leading mathematicians and computer

failed to yield effıcient algorithms for solving them [4].
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3.4.1 Integer Factorization Problem (IFP)
In mathematics, the integer prime-factorization (also known as prime

decomposition) problem is this: given a positive integer, write it as a product of

prime numbers. For exarnple, given the number 45, the prime factorization would be

32·5. The factorization is always unique, according to the fundarnental theorem of

arithmetic. This problem is of significance in mathematics, cryptography, complexity

theory, and quantum computers.

'fhe complete Iist of factors can be derived from the prime factorization by

crementing the exponents from zero until the number is reached. For example, since

::>2·5, 45 is divisible by 3°-5°, 3°·51, 31·5°, 31·51, 32·5°, and 32·51, or 1, 5, 3, 15, 9,

45. In contrast, the prime factorizationonly includes prime factors.

two large prime numbers, it is easy to multiply them together. However, given

product, it appears to be diffıcult to find the factors. This is relevant for many

em systems in cryptography. If a fast method were found for solving the integer
would be broken,

ough fast factoring is one way
them that don't involve factoring. So it is possible that the integer factorization

em is truly hard, yet these systems can still be broken quickly. A rare exception

Blum Blum Shub generator. It has been proved to be exactly as hard as integer

ization. There is no way to break . it withoüt' also • solving iriteger factorization

ge, n-bit number is the product of two primes that are rouglily the sariıe size,

algorithm is known that can factor in polynomial time. That means there is no

algorithm that can factor it in time O(ıf) for any constant 1: There are

s, however, that are faster than 8(e'1). In other words, the best known

are sub-exponential, but super-polynomial. In particular, the best known

running time is for the General JVumberField Sı'eve (GNFS) algorithrn,
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For an ordinary computer, GNFS is the best known algorithm for large n. For a

quantum computer, however, Peter Shor discovered an algorithm in 1994 that solves

it in polynomial time! This will have signifıcant implications for cryptography if a

quantum computer is ever built. Shor's algorithm takes only O(d) time and O(n)

Forms of the algorithm are known that use only about 2n qubits. In 2001, the

7-qubit quantum computer became the fırst to run Shor's algorithm. It factored

is not known exactly which complexity classes contain the integer .factorization

The decision-problem form of it ("does .Nhave a factor less than .M?") is

own to be in both NP and co-NP. This is because both YES and Nü answers can be

ecked if given the prime factors along with their primality proofs. It is known to be

BQP because of Shor's algorithm. It is suspected to be outside of all three of the

mplexity classes P, NP-Complete, and co-NP-Complete. If it could be proved that it

in either NP-Complete or co..NP-Coı:n:plete,thafWôuldiı:nplyNP = co-NP. That

uld be a very surprising result, fl1.yr~fçr~ integ;~ff~çtgtiı:~tiçıp. is ymq~lysı.ışp~cted

'be outside both of those classes. Many • peöple · have trieditô fıhd :pôlyııôrrıial-time

rithms for it and failed, therefore it is widely suspected to be outside P.

the decision problem "is Ha composite number?" (or equivalently: "is H

e number?") appears to be much easier than the problem of actually fınding the

s of .ıv. Specifıcally, the forıner çan be solved in polyriömialtime (in the number

digits of Aj, according to a recent .preprint given in the references, bel9w. In

ion, there are a number of probabilistic algorithms that can test primality very

if one is willing to accept the small possibility of error. The easiness of prime

is a crucial part of the RSA algorithm, as it is necessary to fınd large prime

to start with [39].
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3.4.2 Diserete Logarithm Problem (DLP)

Taher ElGamal was the fırst mathematician to propose a public-key cryptosystem

based on the Discrete Logarithm problem. He in fact proposed two distinct

cryptosystems, one for encryption and the other for digital signatures. Since then,

many · variations have been made on the digital signature system to offer improved

'-.Lrn •.-ı"'rn" J over the original system.

discrete logarithm problem (DLP) is the following: gıven a prıme JJ, a

oPnPr!'ltor a of Zp, and a non-zero element p E Zp, fınd the unique integer x, O :S x :5JJ

2, such that p = a"(modp). The integer x is called the discrete logarithm of P to the

on the diffıculty of this problem, Diffıe and Hellman proposedthe well-known

key agreement scheme in 1976. Since then, numerous other

tographic protocols whose security depends on the DLP have been proposed,

hıding: the ElGamal encryption and signature schemes, the U.S. government

signature algorithm (DSA), •• the Schnorr signature scheme, and the Nyberg­

signature scheme.

ElGamal encryption is

:.crete Logarithm algorithm is used.

to interest in these applications, mathematicians have extensively studied the

for the past 20 years [4].

,lCryptosystem based on DLP

be a fınite fıeld of q elements so that q = pn for some prime JJ and integer n. It

known that the multiplicative group of nonzero elements ofF q, denoted by Fq,

Jic group of order q- 1.Thus ifa is a generator of this multiplicative group, then

µonzero element p in F q is given by P= ax for some integer .r; in fact for each p
a unique integer in the range 0:S x :Sq-1 with this property. For a given x and u,

ax can be quickly computed by the square-and-multiply method as

;:,uc:uı;;u in Example below. The inverse problem, i.e., the problem offınding, for

and p, the x in the range O < .r < q- l satisfying P= aX, is the discrete
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logarithm problem; it is believed to be hard for many fıelds. Thus, exponentiation in

fınite fıelds is a candidate for a one-way function.

Example:

For the prime p = 1999, the ring Z, is a fınite fıeld and the nonzero elements z*P and

Zp from a group G under multiplication modulo p:

G = z\ = {1, 2, ... , p-1}.

the element ıı = 3 is a generator of G, and is also known asa primitive

eıement modulo p:

G = {1, e, a2, ... , aP-2} mod p.

is easy to compute that

3789 ='1452>111.od p,

wever, it is not nearly so easy to deternıiııethatx = 789, given-cnly that.x is in the

from O to 1997 and satisfıes the equation

3x = 1452 mod 1999.

realistic challenge is to fınd an integer x such that

3x = 2 modp, where p ==142 . .(10301 + 531)+. ı.
a solution exsits.butwedollttknowi.thevalue:

above discussion

egative integer x (if it exists) such that ~= ax. The smallest such integer x is

d.the discrete logarithm of B to the base c, and is written x=log.B. In previous

ple, log, l 452=789. Clearly, · the discrete Iogarithm problem for a · general group

-a~-·~., the problem of invertiııgthe exponentiatiofffunctionexp:ZN"7G defıned

ax where His the order öfa.[14].

iscrete Logarithm Problem consists mainly of transformations of the forn:ı ~

p), for some integer x and a fıxed number g (between O and p-1). As with the

algorithm, these transformations raise the computational complexity of the

The discrete logarithm system relies on the discrete logarithm problem

for security, and the speed of calculating the modular exponentiation for
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3.5 Elliptic Curve Diserete Logarithm Problem (ECDLP)
The elliptic curve discrete logarithm problem can be stated as follows. Fix an elliptic

curve. xP represents the point P added to itself x times. Suppose Q is a multiple of P,

so that Q = xP for some x. Then the elliptic curve discrete logarithm problem is to

determine x given P and Q.

The security of the ECC rests on the difficulty of the elliptic curve discrete logarithm

problem; As is the case with the integer factorization problem and the discrete

Iogarithm problem modulo p, no efficient algorithm is known at this time to solve the

elliptic curve discrete logarithm problem.

i@~e of the advantages of ECC is that the elliptic curve discrete logarithm problem is

lieved to be harder than both theinteger·· factorization problem. and discrete

·garithm problem modulo p. This extra diffıculty implies that ECC is one of the

ongest public key cryptographic systems known today.

elliptic curve discrete logarithm problem is relatively easy for a small class of

iptic curves, known as supersingular elliptic curves and also for certain anomalous

iptic curves. In both cases, the weak instances of the problem are easily identifıed,

an implementation merely checks that the specifıc instance selected is not one of

classes of easy problems.

dcally, elliptic curve cryptography is constructed on similar concepts to those used

discrete logarithm systems, but the discrete logarithm functions are performed on

,tic curves over fınite fıelds.

factor in accepting ECC is the fact of.smaller cryptogtaplıic key .sizes. With

l, electronic commerce and banking type transactions this may be an important

,;:,ıuc;rnuuıı in overall system performance.

many possible algorithms to use for encryption with elliptic curves. As EC­

al Algorithm and Menezes- Vanstone Algorithm, many discrete logarithm

ms can be converted to use elliptic curves. The newest version of IEEE1s P1363

d does not however define any encryption algorithm to use with elliptic curves.
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In one of the earlier version of P1363 they recomrnended to use the ElGamal

cryptosystem, but now it has been removed from the document. Because there is no

recommendations which encryption algorithm to use [28].

Only two elliptic curve signature schemes are given in the IEEE P1363 standard:

Nyberg-Rueppel and ECDSA. They are similar in overall security. The security of

both schemes depends on the order ofthe base point being a large prime number.

3.6 EHipticCurve Cryptography

;6.1 EHipticCurve Cryptosystems

Iliptic curve cryptosystems (ECCs) include key distribution, · encryption, and digital

ignature algorithms. The key distribution algorithm is used to share a secret key, the

cryption algorithm enables confıdential comrnunication, and the digital signature

gorithm is used to authenticate the signer and validate the integrity ofthe message.

Cs is based on the addition of rational points on a chosen elliptic curve.

elliptic curve E over a Galois fıeld GF(p), where_p>3 and is prime, is the set of all

(x,y E GF(p)) that satisfy the following equation:

= }+ zzr+ b where a, b e GF(p), and 4a' + 27ıJ # O •

.ı.<.uıvrnu points on the elliptic curve E are the points over GF(p) that satisfy the

ing equation. If the set of parameters { a, b, _p} are specifıed, the number of

nal points on the elliptic curve is determined uniquely; this nuınber is called the

r'cf the elliptic curve Eandisden.otedby#E. Itis I<nôwn.tha.tratiônal!poiııtsform

ditive group in the additioncver'the elliptic curve shôwı:ıinFigııre3.4.

of giving a hard defınition of the addition of two rational points on an ECC

we will give an simple defınition of addition
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Figure 3.4 Addition rule over an elliptic curve.

an illustrative model of an ECC over real numbers.

points A and B on the elliptic Cl.l1'Ve E shown in Figure above are added, the

is defıned as the point D obtained by inverting the sign of the y-coordinate of

int C, where point C is the intersection of E and the line passing through A and B.

and B are at the same position, the line is the tangent of E at A.

an ideally defıned point O, nanıyly the point at.infinity, is also recognized

point on E. The sum of the /J)öiııt ati11:fi11ity and a point P Js defıned as point P

ıs

ed to itself k-times. We denote the resulting point as Ki. We can easily calculate

= Ki from a given k-and G, but it is computationally diffıcult to calculate the scalar

'Om points W and G. If a prime pas large as 160 bits long is selected, we cannot

k-within a reasonable time, evenifY\'y use tlıe 111oşteffıcientalgorithms known so

d the world' s most powerful ~oınp11tets. The problem/(>f calc11lating k- from

:n. points G and W is called "the discrete logarithm problem over. the elliptic

e." The security of ECC derives from the diffıculty of solving the problem.

over, when a point G on an elliptic curve E is given, there is a minimum positive

n such that nG = O. Integer n is called the order of the point G. It is known

is a divisor ofthe order ofthe curve E [17].
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Elliptic curve cryptography is one of several ways to accomplish the objectives of

security. Like any other cryptosystem, it isn't perfect, but it has defınite advantages

over other systems. The cryptosystem about to be described is called a public key

in that it involves the divulging of public information while allowing

the individuals to retain and use private pieces of information ("keys").

how it works. Alice and Bob agree upon a fıxed elliptic curve E over a fınite

Z, and a "base point" P E E(Zp). Nobody else knows these quantities. They

agree upon an encryption system; namely, given an "encoding key" z (a point on

elliptic curve) anda "message letter" m (another point on the elliptic curve), they

tletermine how one might construct an '\~ncodedmessage" z*m. (Please note that this

ihas nothing to do with 'the grouplavvôıith.e eiliptic cutve;justthhık of z*m as "m

suppose Alice wants to send Bob a message, First, she should assign letters of

alphabet to (distinct) points of E(Zp) to turn her (English) nıessage into a sequence

oints of E(Zp), Alice will theıı alerfBôbthat she is abôuftô send' a message. In

his secret, or

send

of course, another point on the elliptic curve.

picks an integer k as her private key and sends Bob two pieces of <lata: kP

SpP) * m. Clearly she can compute kP sin:ce she know~ k, P, and the elliptic

which P resides; she can also compute the latter quantity since she knows

Bob's transmission and can hence calculate k(SpP), her encryption key.

she knows how to use this key to encode the message m, so she can compute

kP and (kSpP) * m from Alice. He doesn't know k, but he does

P and kP (the latter from Alice's transmission), so he can calculate the

011 key Sp kP = kSpP. Hence he can fınd the decryption key, call it (kSpPr1
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and apply that to encrypted message (kSpP)*m sent by Alice to recover (kSpPY1(ksPP)

m = m; the original message sent by Alice [18].

Security and Efficiency ofECC.

...:,.u."" • .ı. Security of ECC
of the advantages of using elliptic curve based cryptographic systems instead of

.teger factorization or discrete logarithm based methods is that they provide similar

«PC'mitv levels using smaller key lengths.

y is this? As mentioned in the previous •· sections, the security of any public-key

ed cryptography is based upon .the diffıculty of solving certain mathematical

oblems, Thus, we can determine the amount of effort that would be required to

eak one of these public-key systems by looking at the effort required to solve these

dproblems, using the best algorithms, software and hardware which are known. It

,hld be noted that in the future new solutions to any of these problems might be

covered that drastically change the. amount of effort .required to solve them. The

· İysis below is based on the best-methods known today.

st ••• people consider the integer factörizatiôn. aııd discfet~:Jôgarithm. probleıns to

approximately equivalent security. Both ofthese••Prôblem.s have harch.irıtensive

:w and study by many of the world' s top mathematicians and cryptographers.

can give us a sense of comfort that these problems are, in fact, -difficult to solve.

lly, the best method known to solve each ofthese problems is the Number Field

(NFS). The NFS is what is known as a sub-exponential time method. This

that the problem can be cönsidered hardtoisolve, but not/as hard as problems

,nly allow fully exponential solutions.

:ııetally accepted that, based on the diffıculty of solving the integer factorization

and discrete logarithm problem, RSA, DSA and Diffıe-Hellman keys should

1024 bits long and that for very long-term security (20 years or more) 2048

should be used. Recently a large-scale effort was able to factor a 512-bit

showing that keys of this size are vulnerable to attack by large,
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On the other hand, solving the ECDLP is generally considered to be a much more

diffıcult problem than factoring integers or solving the discrete logarithm problem.

Because of the structure that is inherent within an elliptic curve, the types of solutions

to these problems do not seem to apply to the ECDLP. The best method known to

solve the ECDLP is an elliptic curve version of an attack developed by Entrust

researchers for the discrete logarithm problem, known as the parallel collision search

method [VOW]. This method is fully exponential, which means that that the ECDLP

can be considered among the hardest types of problems to solve, using the best

methods known today. üne of the consequences of the ECDLP only having a fully

exponential solution is that for every two additional bits of key used, attacking that

ey requires twice as much effort. Thus, attacking a 193-bit elliptic curve public key

·equires twice as much effort as attackinğ al9l ..bit key.

ecause it is relatively new, the ECDLP has not received as much attention from

athematicians and cryptographers as the integer factorization and discrete logarithm

oblem. Although, within the past few years, that has begun to change and a great

al of effort has been made at attempting .to solve this problem.

a great deal of research is stiU ônğoing, it is diffıcult to directly compare the

urity levels provided by ECC with those provided b)' RSA, DSA. and Diffıe­

an, fer example. However, it seems reason.ableth.at for secıırity equivalen.tto an

:.A.keywith 1024 bits, one should use an elliptic curve with about 170 bits and that

security equivalent to an RSA key with 2048 bits, one should use an elliptic curve

about 230 bits.

discussion on the diffıculty of attacking. an. ECC\public key assumes that

weak cases have been avoided when constructing the elliptic curve parameters.

certain elliptic curves that are known to produce cryptographic systems with

su.:.wrnıaııy lower security level than the general case described above. These weak

· A class of curves known as super singular elliptic curves;

· Elliptic curves modulop which contain exactlyp points; and

· Elliptic curves defıned over a fınite fıeld with 2m elements where m is not '

aprıme.
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Fortunately, each of these classes of weak curves is easy to identity and most

standards bodies forbid their use. In order to guarantee that a given curve has not been

intentionally constructed to somehow be weaker than expected and also to guard

against possible future attacks against additional classes of weak curves, it is

generally recommended to use elliptic curves which have been verifıably generated at

random. This is the most conservative, or safest, option when choosing elliptic curves

on which to base a system.

There exists another class of special elliptic curves, which requires attention. This

class of even characteristic curves, called Koblitz curves, allows more effı.cient

implementations. For very resource constrained environments these curves are an

attractive option. However, some cryptoğtaphers are concemed that the additional

structure exploited in these curves to -obtain.tlre effıcient implementations may also be

used to effıciently attack them. In fact, Entrust researchers were one of two

independent groups, which were able to show that these curves provide a few bits less

security than randomly generated curves. While the slight weakness demonstrated

should not, in itself, stop people from using these curves, it does raise the question of

.ow secure these curves · really arer Entrust recommends that .these curves be used

Efficiency of ECC
en talking about the effıciency ofa public-key cryptographic 'system, there are

distinct factors to take into account:
• Computational overheads - how much computation is required to

perform the public key and private key transformations.

• Key size - how many bits are required to store the key pairs and any

system parameters.
• Bandwidth - how many bits must be communicated to transfer an

encrypted message ora signature.

the comparisons should be made between systems offering similar levels of

so in order to make the comparisons as concrete as possible, 160-bit ECC is
<

ed with 1024-bit RSA and DSA. As indicated in Section 5.1, these parameter

comparable levels of security.
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3.6.2.2.1 Computational Overheads

In each of the systerns, considerable cornputational savings can be rnade. In RSA, a

short public exponent can be employed (although this does incur sorne security risks)

to speed up signature verifıcation and encryption. In both DSA and ECC, a large

proportion of the signature generation and encrypting transforrnations can be pre­

cornputed. Also, various special bases for the fınite fıeld Fım can be ernployed to

perforrn rnore quickly the rnodular arithrnetic involved in ECC operation. State-of­

the-art irnplernentations of the systerns show that with all of these effıciencies in

place, ECC is an order of rnagnitude (roughly 1 O tirnes) faster than either RSA or

DSA. The use of a short public · exponent in RSA can rnake RSA encryption and

signature verifıcation tirnings (but not RSA decryption and signature generation

tirnings) cornparable with timings foFthese prôôesses using the ECC.

.-,.o."'·"'·"' Key Size
3 .2 cornpares the size of the systern pararneters and key pairs for the different

Table3.2 Size of systernpararneters and key pairs (approx)

Private key
(bits)

RSA N/A 1088 2048
DSA 2208 1024 160
ECC 481 161 160

clear frorn the fıgure that the systern pararneters and key pairs are shorter for the

C than for either RSA or DSA.

.2.2.3 Bandwidth
three types of systerns have sirnilar bandwidth requirernents when they are used to

rypt or sign long rnessages. However, the case when short rnessages are being

sformed deserves particular attention, because public-key cryptographic systerns

ernployed to transrnit short rnessages - for exarnple to transport session keys

in a symmetric-key cryptographic systern. For the sake of a concrete

parison, suppose that each is being used to sign a 2000-bit rnessage, or to encrypt
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a 100-bit message. Table 3.3 compares the lengths of the signatures and encrypted

messages respectively.

Table 3.3 signature size on longmessagesandsize of encrypted 100-bits messages
Signature size Encrypted message

{bits) _{bits)
RSA 1024 1 1024
DSA 320
ECC 320 321

ElGamal 2048

Therefore ECC offers considerable bandwidth savings over the other types of public­

key cryptographic systems when being usedto transform short messages.

In summary, the ECC provides greater eıficiency than either integer factorization

<mc+Prn~ or discrete logarithm systems, in terms of computational overheads, key

and bandwidth. In implementations, these savings mean higher speeds, lower

consumption, and code size reductions [40].

Comparison bettween ECC and RSA.
· s section compares ECC public key sizes, signature and encryption lengths, and

eed with those of RSA. Typical usage scenarios will be used to describe the effect

ese have on various implementations.

ECC system under consideration will use an odd characteristic 192-bit elliptic

e, which is the default used by the Entrust product line, The RSA system will use

keys, which is also the default in the Entrust product line.

size of an ECC public key, ECDSA signature andan ECIES encryption will be

nriı:ırP.rl with those produced by an RSA system.

.1 Public Key Size
A public key consists of an ordered pair (n, e) where n is a composite number,

the modulus, and e is the public exponent. In a 1024-bit RSA system, n will

bits. A common value for the public exponent is e=216+1. This is the value
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that Entrust uses. Thus, an Entrust RSA public key would require 128 bytes for the

modulus and 3 bytes for the public exponent. The total size is then 131 bytes.

An ECC public key consists ofa point on the elliptic curve. Each point is represented

by an ordered pair of elements (x,y) each with 192 bits. Fora 192-bit elliptic curve,

the public key would then be represented by two 24-byte values, giving a total key

size of 48 bytes.l As can be seen from the numbers above, ECC does provide a

signifıcant reduction in public key size. This reduction can be crucial in many

severely constrained environments where large public keys are not possible. However,

in a PKI using X.509 certifıcates, the effect of using the smaller public keys is

minimal. A typical size foran X.509 .. certifıcate would be about lK (-1000 bytes).

changing a user's public key from<RSAor DSA .to ECC would reduce his/her

certifıcate size by less than 10%.

important point to keep in mind is that each ECC public key is only valid in

context of certain parameters. These parameters must also be specifıed and

,-ı:-,,..,...,,.,-1 with integrity .to the public key recipient (e.g. within an X.509 certifıcate).

there do exist certain curves which can be represented using short identifıers, in

general case, it will require an additional fıve 192-bit (24-byte) quantities to

cify these parameters.Thus, it could tak.eup to llO additional.bytes.. .RSAdoes not

uire any parameters be transferred withthepublie key.

.3.1.2 Signature Size
RSA signature consists of a single 1024 bit value. Thus, it can be represented in

ECDSA signature consists of two 192-bit values. Thus, it can be represented using

24-byte values, for a total signature size of 48 bytes Again, the reduction in

e size is substantial and may be important for many constrained environments.

er, as with public key size, the difference represents less than 10% of the size

.blickey certifıcate. For larger signed messages, the difference would represent

smaller percentage of the overall message.
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This section will compare the difference in size in transporting a 128 bit syınmetric

key using RSA and ECIES. This is the typical scenario when fıles are encrypted, for

example. The encryption algorithm ECIES is specifıed in the ANSI X9.63 draft .

A 128 bit symmetric key encrypted using RSA will consist of one 1024-bit value.,.
Thus, it can be represented using 128 bytes.

A 128 bit symmetric key encrypted using ECIES will consist of an elliptic curve

point, a 128-bit value and a 160-bit value. The elliptic curve point consists of two

192-bit values, so it can be represented using two 24-byte values, or 48 bytes.3 the

128-bit value can be represented using 16 bytes and the 160-bit value can be

represented using 20 bytes. Thus the encrypted symmetric key requires 84 bytes.

ECIES does indeed produce smaller encrypted values than RSA, the difference

not as dramatic as for public keys and signature values. When considering that the

key will then usually be used to encrypt much larger fı.les, the advantage

become inconsequential.

is section will comparethe time•requiredto perfoinıECC signature and encryption

erations with the time required . for RSA signatures and encryption. Absolute

ings for different cryptographic implementations can vary widely. These variations

be caused by a number of factors, including the quality of the implementation, the

fform used, optimizations made which exploit certain special cases, or the use of

prietary or patentedtechniques notavailable to other implementers. For this reason

often be misleading to directly compare any individual timings. It is better to

ider general trends in timings for types of cryptographic systems. That is what we

fust issue to consider is whether the implementation is in software or hardware.

hardware implementation in custom silicon, even characteristic elliptic curves

y allow the fastest implementations. This is due to the fact that the underlying

etic for even characteristic curves can be implemented using fewer gates, and

smaller area, than the arithmetic for odd characteristic curves or for RSA.
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Thus, the advantage these curves have is lost if the implementation is in so:ftware or

firmware on an embedded processor. Odd characteristic elliptic curves and RSA

however can take advantage of the integer mathematics routines that inherently exist

on most computers and therefore they should be used for so:ftware implementations.

The decisi on as to which of these two to use in a software implementation will depend

on the particular environment in which the cryptography will be used. The remainder

of this section will examine some common, general software environments in which

. this choice must be made.

Using a small public exponent value (e.g. e=216+1), the RSA public key operations

can be made very fast.

means that RSA .signature verification•arıd R.SA encryption can be performed up

to 40 times faster than an ECDSA verify or ECIES encryption operation. The RSA

private key operations (i.e. signature generation and decryption) are generally slower

than the public key operations. The ECC private key operations are generally faster

an the public key operations. The situation can be summarized in Table 3.4.

Table 3.4 Generation of Key in ECC and RSA

RSA ECC 
Private Key Operations
(Signature Generation and Decryption)

LESS FAST FAST

Public Key Operations
Si2DatureVerification and Encryption

VERYFAST LESS FAST

consider foür cörnı:tı.ön situations: First, let's consider the question of which

,uı.uuıu would be best för CA>sigrıirığ keys. CA signing keys are used to sign

icates and CRLs. Each certificate and CRL only gets signed once, but is verified

times. In particular, every time that an end user' s signature is verified or

iething is encrypted at least one certificate and CRL must be verified. Thus, it

for CAs to try and minimize the amount of time end users spend on

verification. In this situation, RSA appears to be a berter choice for CA
~,;::~=:=~~:::::,
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Now let's consider end user signing keys. Each signature, regardless of the number of

people to whom it will be sent or the number of times that it will be verifıed, will only

be created once. In the general case however, many different people may potentially

verify it many times. Thus, it makes sense in this situation, again, to try and minimize

the time that signature verifıcation takes. Since signature generation will only be

performed once, we are not as concemed about the amount of time that operation

takes. Thus, again, RSA appears to be a more optimal choice for end user signature

keys.

Let's now look at what happens with end user encryption keys. When encrypting a

document, the actual document will get encrypted with a symmetric algorithm (e.g.

CAST,IDEA)}a.rıdtlıen.thesyının.etric key will be individually encrypted using

the public-key algorithm for each recipieht. 'Ihus, the person encrypting the document

must perform a separate public-key encryption for each recipient and therefore may

to perform many public-key encryptions each time a document is encrypted.

recipient, however, will only need to perform one decryption operation each

access to the document is required.

us, in this situation makes sense to try .and minimize the amount of time the

rson encrypting the docll.1l1c:nt Iriust sperid cllld, therefore, minimize the amount of

e spent on encryption. Again, using RSA seems to make the most sense in this

ly, let's consider a general email application where a user wishesto digitally sign

encrypt an email for one recipient. Digitally signing the email requires one private

operation. Encrypting the email requires one public key operation to encrypt the

etric key, which will be used to encrypt the contents of the email. However,

using the recipient's encryption public key, the sender must fırst validate the

nt's public key certifıcate. Validating the certifıcate will involve verifying the

e on at least one certifıcate and also verifying the signature on at least one

at least three public key operations müst be performed before the email

In this situation, the difference between the time required foran RSA­

and an ECC-based system is very small. Either choice will result in a

plementation [19].
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3.6.4 Possible to attack ECC.
In this section we overview known attacks on the discrete logarithm elliptic curve

discrete logarithm problems and discuss how to avoid them in practice.

3.6.4.1 Naive Approach
The most basic method for solving the ECDLP (or the DLP) is to compute multiples

ofthe generators Q (say, of order n) and store them in a table.

Considering an operation to be an elliptic curve addition, then this method take O(ıı)

time to build the table and O(ıı) space to store it. The following methods are

improvements upon these worst-case bounds [10].

3.6.4.2 Shanks' Method (baby-step, ğia.n.t-step)
An algorithm of Daniel Shanks reduces the running time to O(n112 log n) and the space

o O(n112) points. The elliptic curve version of his algorithm is as follows. Assume that

is a generator of order n, and, given A, we want to compute k such that kQ = A. Let

= 1-J;; 1. Store in a list Lı the pairs G, jmQ) for O :::; j :::; m-l , Sort this list by the

cond element of the pairs.

eate a second list L2 from.thepairs (i, -Q + A) for O:::; i:::; m-I. Sort this list by the

ond element. Search thelists until pairs G; P) e L, and (i; P) e L2 are found. Then

P=jmQ

P = -iQ + A

jmQ =-iQ +A

Gm+i)Q=A

the multiple of Q such that kQ = A is k = jm + i. Of course, A must be a

tiple of Q for this algorithm to work. üne simple way to be certain of this is to

se an elliptic curve with order prime p. Since the order of any element must

e the order of the group, every element must have either order 1, namely the

, or order p. The space requirement is for storage of the two lists, each

osed of n ıı2 points. The time complexity is dominated by the sorting of these n112
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example consider y 2 = x 3 + 2 mod (19). This curve has order 13. Choose asa

;ı;;uı;;ı.mvı. Q = (4, 16) and as the element of unknown index A = (8, 18). Let m =

I= 4. Lists L, and L2 work out as follows.

List 1 = { (1, (9, 3)), (2, (12, 18)), (3, (4, 3))}

List 2 = { (1, (8, 1)), (2, (12, 1)), (3, (9, 3))}

1 in L1 matches item 3 in L2. This indicates that 4Q = -3Q + A or 7Q = A. This is

.4.3 Pohling-Hellman Attack
,hling-Hellman attack is an elliptic curve equivalent of the standard DLP attack. In

isattack the DLP is reduced.to.Dl.P in prime order subgroups and then the result is

dhesized using the Chinese Remainder Theorem.

n = p;1p;2 ... p:r be the prime factorization of the order of the group generator. If

[k]P, then fırst all ki= k mod p;'°(for i = 1, ... , r) has to be determined. Let ki=

Pi+ ... +ki,ei_ı p;'°-1 is the pi-ary representation of ki and yj = ki,o + ki,1 Pi+ ..

a; = [;+: Jw~~ıV1 ~ [i- r/{[p:1 ]pJ

= [K,ı/Ji + + Kı.,,-ıPt1 {[;H H
= [Kl,/p{ + + k,.eı-ıPt1 {[;/ H
= [k. .]Pı,.ı

= [n/pı] P. (The last equality holds since P' has order Pi·) Hence, after

.ting ECDLPs for Q'iJ = [kiJ ] P' for all j from Oto ei - 1 using another method

search), ki= k mod p;'° can be determined. And after obtaining all

(i = 1, ... , r), the solution is computed using the Chinese Remainder

as k= ""°'~ k,.H,.M,.modn, where N, = n/p, and Mi= .ıv,:-1 mod Pi·.L.ıı=ı
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Given the factorization of n, the Pohling-Hellman algorithm needs

a::L~;ı e1(lgn+ .[;;;)) steps to solve an ECDLP.

order to avoid this attack, the order of the group generator must be divisible by a

prime. Preferably, the order should be a prime or a prime multiplied by a small

,.,.o.••.•• Index And Xedni Calculus
method is the most effıcient method known to solve the standard DLP - it runs

sub exponential time. Although most methods for the standard DLP are applicable

also to the ECDLP, fio practical index calculus method has been found for the

CDLP, and there are theôfoticaFas \vell as practical reasons to believe that the

CDLP is not susceptible to this kind ôfattacks.

ere is another attack based on the idea of the index calculus - Xedni calculus

dni is index backwards) -, which rnight be used to solve the ECDLP. this

:thod is applicable also to the standard I>LP as well as tô the integer factorization

blem, and because the main step of the method resisted quantifıcation necessary to

uate its complexity, it seeıned to be a big threat for all nowadays widely used

,fographıcsysterris.Fl'.ôwever, itiUl.'11.eÔ.Ôutlaterthat this method is unpractical [l] .

.5 Special-Purpose Attacks
ugh there is no known general sub-exponential algorithm to solve the ECDLP,

classes of elliptic curves over Fp have special properties, which disqualify them

the cryptographic use at a.11 (they a.fo a1sö ptohibited by all standards considering

1. Supersingular curves. A curve over Fp is super singular if #E(Fp) = p + 1.

There are reduction attacks (Menezes-Okamoto-Vanstone and Frey-Ruck)

which reduce the discrete logarithm problem in these curves to the

standard DLP in an extension fıeld FpB for some B > l, where the sub­

exponential number fıeld sieve algorithm applies. The attacks are only

practical if B is small. Supersingular curves can be excluded by the MOV

condition: For k = l, 2, . . . B verify that n does not divide pk_l . (This
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condition does not exclude only supersingular curves, but all curves

susceptible to the mentioned attacks.) For an implementation, it is

important to choose appropriate value for the constant B. ANSI X9.62

recommends to use B 2:: 20 to ensure resistance against the reduction

attacks.
2. Anomalous curves. A curve over Fp is anomalous if #E(Fp) = p. There are

methods (Semaev, Smart, Satoh-Akari), which solve the ECDLP for these

curves effıciently. They can be excluded by the Anomalous condition:

Verify that #E(Fp)-j p [l].

3.6.4.6 Suggestions to avoid
In order to avoid attacks ınention.ediin this section, the elliptic curve E over a prime

field Fp and the order ıı of the geriefator of tlie group of elliptic curve points on E

should satisfy this properties:

1. The curve is not anomalous, i.e. n-jp.

2. The smallest value of B such that pB = 1 (mod n) is large (at least 20).

3. The group of all points on the curve has a subgroup with a large prime

order [l].

Standards.of the ECC.alğorithnıs.
development of standards is a very ifüpörtarıt point for the use of a cryptosystem.

help ensure security and interoperability of different implementations of

cryptosystem. There are several major organizations that develop standards .

.e most importantforsecurityin information technology are the:

• Intemational Standards Orgaııizatiorı (ISO),

• American National Standards Institute (ANSI),

• Institute of Electrical and Electronics Engineers (IEEE),

• Federal Information Processing Standards (FIPS).

famous ECC algorithm, the ECDSA was accepted •1998 as ISO standard

1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and

(186-2) standard. .Several other standardization efforts are in progress. The most

sis the ANSI X9 .63, which includes dozens of key transport and key agreement
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schemes. Table 3.5 provides an overview of the various standards and the included

algorithms [25].

Standard Schemes

Table 3.5 Standards and algorithms [16].

Status

ANSIX9.62

ANSIX9.63

FIPS 186-2

IEEEP1363

, IEEE P1363A

ISO 14888-3

ISO 15946

ECDSA

ECIES,ECDH,ECMQV

ECDSA

ECDSA,EDDH,ECMQV

ECIES

ECDSA

ECDSA;EDDH;ECMQV

Approved

Draft

Approved

Approved

Draft

Approved

Draft

relationship between these standards is visualized in Figure 3.5.

ıs
IEEE Pl363
ANSIX96.2

SECG

FIPS 186-2

is a company with a certain interest in elliptic curve cryptography, which

ces the integration .. of:ECÇ in several commonly used protocols. We will

some ofthem. For exampleintherecent version ofthe TLS/SSL (Transport

Security/Secure Socket Layer) protocol basically ECC is supported. In its

implementation of this protocol, Certicom has already included this feature.

Figure 3.5 Standards [ 16].

er important application is the Wireless Application Protocol (WAP/WTLS). It

secure wireless communications and includes in its recent version ECC in the

layer. Also in the ATM Security Specifıcation 1.0 ECC is included. They used

d variants of the ANSI algorithms in order to avoid the costly inversion in the

generation [ 16].
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Table3.6 compares the two algorithms.

Table 3.6 ECDSA vs. ECDSA-Like

ECDSA-Like ECDSA

r=.x.lmod r=.x.lmod

s =(h- - (!)d1 s = /f1(e + dı:)

The Secure/Multipurpose Intemet Mail Extensions (S/MIME) standard specifıes

security mechanisms for electronic communications. S/MIME can be applied to all

compatible MIME formats,.such as http for example. The İnternet Draft Elliptic Curve

S/MIME tries to embed ECC in S/MIME [25, 16].

3.7 Elliptic Curve Protocols

.7.1 Elliptic Curve Diffie-Hellman Algorithm (ECDHA)

e fırst public key cryptosystem ever invented was Diffie-Hellman. Because the

mputation behind public key cryptosystems takes a relatively long time when

mpared to classical cryptosystems, public key cryptography is often used in a

difıed role along with a symrnetric cryptosystem to transmit hidden messages. In

6, Diffıe and Hellman provided a detailed method of agreeing upon a key for a

etric system using public key methods, the mathematics of which were basedon

discrete log problem.

ıs section focuses on the elliptic-curve Diffıe-Hellman key exchange as an example

illustrate the differences of elliptic-curve algorithms from integer algorithms. We

:t review the integer version.

Integer Diffie-Hellman key Exchange.

e-Hellman key exchange (DHKE) is used to establish a shared key between two

over a public channel. It is based on the multiplicative group ..ı;, of integers,

is a prime. Figure 3.6 shows how a secret key, K, is agreed upon between

and Bob by exchanging two quantities arand brpublicly. We assume that the
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two parties Alice and Bob have agreed on JJ and a values in advance, where o. is a

primitive element ofthe group z;. [4]

Step Alice Bob

Choose random a Choose random b
1

a E [2, p-2] b E [2, p-2]

2
Compute aT

AT=aamodp

Compute bT

br = abmodp

3
Send aT

Receive br

Send br

Receive aT

4

Compute key K

K= (bTtmodp

=aabmodp

Compute key K

K = (a-)" mod p

= aab modp

Figure 3.6 Diffie-Hellman key exchange (integer) [4].

The security of the integer Diffie-Hellman is based on the Discrete Logarithm

and ar, it is Ô()mputationally infeasible to compute a (for

sufficiently large p). Thetefore, even though. . an eavesdropper may capture the

intermediate values araı1d ~r~sthey are exchanged ever the public channel, neither a

b will be exposed, and therefore .the final key Kremains known only to Alice and

ob.

,7.1.2Elliptic-curve Diffie-Hellman key Exchange.

· s protocol establishes a shared key between two parties. The original Diffie­

ellman algorithm is based ön the multiplicative group modulo JJ, while the elliptic

e Diffie-Hellman (ECDH) protocol is based on the additive elliptic curve group.

iptic-curve Diffie-Hellman key exchange (ECDHKE) is similar to the integer

except that it uses the points on an elliptic-curve rather than integers. We

e that Alice and Bob have previously agreed on a binary fıeld GF(p), a common

i.ptic curve Ewith suitable coeffıcients, anda base point P=(x,y) which lies on E
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To generate a key, fırst Alice chooses a random a E Fp (of high order) which she

keeps secret. Next she calculates aP EEwhich is public and sends it to Bob. Bob

does the same steps, i.e. he chooses a random integer b (secret) and calculates bP,

which is sent to Alice. Their secret common key is then K = abP E R The Figure

3. 7 show the idea in simple word.

Step Alice Bob

Choose random a Choose random b
1

a E [2, n-1] b E [2, n-1]

2
Compute Ar Compute BT

A =Pxa BT=P X b

SendAT AT~ Send BT
3

Receive BT ~BT Receive AT

Compute key K Compute key K

4 K=BTxa K=ATxb

=Pxaxb =Pxaxb

Figure 3.7 Elliptic Curve Diffıe-Hellman key exchange

Alice Bob

Generates k,
Coınputes P = kaQ

Generates kb
Coınputes M = kbQ

Sends P

Sends M

Coınputes Pı = k.M Coınputes P2 = kbP

Usethis computed
point (Pı or P2) as
the shared secret

key

Figure 3.8 Illustration ofElliptic Curve Diffıe-Hellman Protocol [9].
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At the end of the protocol the communicating parties end up with the same value K

that is a point on the curve. Apart of this value can be used asa secret key to a secret­

key encryption algorithm.

The security of the EC-DHKE is based on the elliptic curve Discrete Logarithm

problem: given GF(p), .E, P, Ar, it is computationally infeasible to compute a (for

suffıciently large f- and ıı). Unlike the integer discrete logarithm problem, the elliptic

curve discrete logarithm problem has no known sub-exponential time solutions (for a

well-chosen set of system parameters) [4].

Accordingly, a given .Jevel. of security can be achieved with a f- smaller than the

number of bits requiredJô en.y9<leth~..pinthe .integerDiffıe-Hellman key exchange.

Table 3.7 provides a comparison of thc basic features of 1024-bit integer Diffıe­

Hellman and 160-bit elliptic-curve Diffıe-Hellman key exchanges.

Table 3.7 Comparison of integer Diffıe-Hellman and elliptic curve
Diffıe-Hellman

DHKE EC-DHKE

Group Integers in ~ Points on the elliptic curve E

Base object ae.ı; Elliptic Curve point

PEE

Primary operation
Exponentiation Point multiplication

(aamod p) (P x a)

Key Iength 1024 bits 160 bits

7.2 Digital Signature

e ECDSA is the elliptic curve analog of the DSA. Vanstone fırst proposed ECDSA

1992 in response to NIST's (National Institute of Standards and Technology)

uest for comments on their fırst proposal for DSS. Digital signature schemes are

counterpart to handwritten signatures. A digital signature is a number that depends

the secret key only known by the signer and on the contents of the message being

ed. Signatures must be verifıable without access to the signer's private key.

atures should be existentially unforgeable under chosen-message attacks. This
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asserts that an adversary who is able to obtain Alice's signatures for any messages of

his choice cannot forge Alice signature on a single other message.

3.7.2.1 Digital Signature Algorithm (DSA)
The DSA was proposed in August 1991 by the U.S. National lnstitute of Standards

and Technology (NIST) and became a U.S. Federal Information Processing Standard

(FIPS 186) in 1993. it was the fırst digital signature scheme to be accepted as legally

binding by a government.

Tıie algorithm is a variant of the ElGamal signature scheme. it exploits small

subgroups in Z;, in order to decrease the size of signatures. The key generation,

signature generation, aı:ıd sigriatttre verifıcatioh procedures for DSA [24].

The following fı.gures describe the DSA in details. There are three parameters that are

public and can be common to a group of users. A 160-bit prime number q is chosen.

Next, a prime number pis selected with a length between 512 and 1024 bits such that

q divides (p-1). Finally, g is chosen to be of the form h(p-l)/q mod p, where his an

integer between 1 and (p-1) with the restriction that g must be grater than 1.

With these numbers in hand, each user selects private key and generates a public key.

e private key x must be a number forrı:ı 1 to (q-l ) and should be chosen randomly or

eudorandomly. The public is calculated from the private key as y = gx mod p. the

culation of y given x is relatively straightforward. However, given the public key,

believed to be computationally infeasible to determine x, which is the discrete

arithm of y to the base g, mod p. we summarize the in the following:

Global Public-Key Components
P prime number where 21-1<p<21

for 512<= L <=1024 and L amultiple of64;
i.e bit length ofbetween 512 and 1024 bits
in increment of 64 bits.

q prime divisor of (p-1), where 2159 < p <2160;

i.e bits length of 160 bits.

g =h(p-l)/q mod p;
where h is any integer with 1 < h <(p-1)
such that h(p-l)/q > 1.
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User's Private Key
x random or pseudorandom integer with O <x < q

User's Public Key
y =g'i mod p

User's Per-message Select Number
k random or pseudorandom integer with O <k < q

To create signature, a user calculates two quantities, r and s, that are functions of the

public key components (p, • q, g), · the · user' s · private key (x), the hash code of the

H(M), and additionaF integet k that should be generated randomly or

ı..ı:sc::uuuıuı.ıuuııııy and be unique for each signing.

Signing
r =(gxmod p) mod p

s =[k"1(H(M) + xrj] mod p

signature = (r.s)

e. The receiver generates a quantity v that is a function of the pııblic key

rnponents, the sender's public key, and hash code of the incoming message. If this

tity matches the r components of the signature, then the signature is validated

w
Verifying

ul =[H(M')w] modp

u2 =(r')w mod p

v =[(gu1l2) mod p] mod p

TEST: v=r'
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3.7.2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)
ECDSA is the elliptic curve analogue of the DSA. That is, instead of working in a

subgroup of order q in ,s,, we work in an elliptic curve group .li(Zp). The ECDSA is

currently being standardized within the ANSI X9Fl and IEEE P1363 standards

committees. The following table shows the correspondence between some matlı

notation used in DSA and ECDSA [24].

Table 3.8 Correspondence between DSA and ECDSA notation [24].

DSA notation I ECDSA notation

f2 ı n
G I P 

X I d

y I f2

We next describe the elliptic curve analogue (ECDSA) of the U.S. government digital

signature algorithm (DSA). The ECDSA is an ANSI standard and is also being

considered by the ANSI X9Fl and IEEE P1363 standards committees as a digital

signature standard [25].

Suppose Alice wants to send a digitally signed message to Bob. They fırst choose a

fınite field Fq, an elliptic curve .E, defıned over that fıeld and a base point P with

order n. Alice's key pair is (d,{!), where dis her private and {?is her public key. To

sign a message M Alice does the following:

vcDSA .Key 6eneration. E is an elliptic curve defıned over Fq, and Pis a point of

order n in Erf q) these are system-wide parameters. For simplicity, we shall

ppose that q is a prime, although the construction can easily be adapted to a prime

wer q as well. Each entity A does the following:

1. Select a random integer din the interval [1, n - 1].

2. Compute f2 = dP.

3. A's public key is {2, A's private key is d
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.ECDSA Signature 6eneralion. To sign a rnessage ın, A does the following:

1. Select a randorn integer kin the interval [1, il - 1].

2. Cornpute k-P = (zl , yl) and r = .rl rnod il (where .rl is regarded as an

integer between O and q - 1 ). If r = O then go back to step 1.

3. Cornpute k--1 rnod il.

4. Cornpute s = k- -1 { h(m) + dıj rnod il, where his the Secure Hash

Algorithrn (SHA-1). If s =O, then go back to step 1.

5. The signature for the rnessage ın is the pair of integers (ı:; s).

.ECDSA Signature //eri.ficalion. To verify .A's signature (ı:; s) on ın, .B should do the

following:

1. Obtain an authenticated copyof .A's public key {].

2. Verify that r and s are integers in the interval [ 1, il - 1].

3. Cornpute w = s-1 rnod il and h(m).

4. Cornpute ul = h(m)wmod il and u2 = rwrnod il.

5. Cornpute ulP + u2Q =(.ıO,y)) and v =.ıO rnod il.

6. Accept the signature if and only if v = r: [25].
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Alice Bob

Generates k
Computes P = k G = (x, y)

1
Compute

r=xmodn

Verify r and s are integers in
the range [l, n - 1]

1
e= SHA-l(m)

Yes

SendsP,m u, = e.w and u2 = r.w

w= s-1 modn

No

e= SHA-l(m)

1
Compute

s = k-1 (e + d.*r) mod n

Point X = (xı, Yı) = ujG + u2Q

Yes Reject?

Yes (Is s=O
?

No

No

Signature ofmessage
m is the Pair P= (r, s)

Aeeept Alice's signature ifv = r

Figure 3.8 Illustration of Elliptic Curve Digital Signature Algorithm [9].

only significant difference betwben ECDSA and DSA is in the generation of r:

bSA does this bytakin.gthe random element (ak mod p) and reducing it modulo

obtaining an integer in the interval [1, q- l]. (In the DSA, qis a 160-bit prime

of p - 1, and tı is an element of order q in F*p.) The ECDSA generates the

integer rin the interval [l, n -1] by taking thex-coordinate ofthe random point kPand

educinz it modulo n.

o obtain a security level similar to that of the DSA, the parameter n should have

out 160 bits. If this is the case, then DSA and ECDSA signatures have the same

:length(320 bits).

of using system-wide parameters, we could fix the underlying finite field Fq

all entities, and let each entity select its own elliptic curve .Eand point P E .Etf q).

case, the defining equation for .E, the point P, and the order n of Pmust also be

67



included in the entity' s public key. If the underlying field Fq is fixed, then hardware

or software can be built to optimize computations in that field. At the same time, there

are an enormous number of choices of elliptic curves E over the fixed Fq [25].

Other features ofECDSA
• Since the public key of an individual is not solely determined by the elliptic

curve E(Ln) used, nor on the point P, many users can use the same curve

E(Ln) and point P, and thus an individual's private key consists solely of f2.
This is good as it reduces the size of the public-key.

• Since ECDSA defines • private keys are per-signature values as statistically

unique and uıtpredictable 'rather .than being simply random, as per the DSA

.standard, it is more secure than DSA (as only "non-weak" keys are considered.

• ECDSA makes use of deterministic primality testing, while DSA only requires

probabilistic testing. Thus numbers which are claimed to be prime can verified

to indeed be prime, and thus avoid potential security hazards [2].

Encryption (EIGamalElliptic Curve)

EIGamal Cryptôsystem
is cryptosystem is based on the difficulty of the discrete logarithm problem. Given

andp, it is difficult to find a when: gı:ı =(modp), c in which p is a prime number

ger than two; 1 . <a <» - 1; 2 :'.S a :'.Sp -2; and gis a primitive element ofa group of

bers. Note that al l. In addition, al l, for reasons as mentioned later.

nce a is limited to values less thanp - 2, since by the little Fermat' s theorem g7-1=
od p) is always true if g andp are co-prime. As shown below, having a value of a

s.than2 is of no practical use, as a trapdoor.

public key here is (p, g, a) and it is used in the encryption and decryption

esses. To send the plaintext .z; the sender performs the following operations to

rate the ciphertext (y./, y.2):
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Encryption function: y1=l- (mod p)

y2=x ti (mod p) ;

Decryption function: x = y2 (yl ayı (modp)

which is feasible because y2(yf)-1 = xtl (g~-ı (modp)

= x(ga'l (ga~-ı(modp)

=X,

in which kis a randomly chosen integer?

Thus cannot be equal.to"I ifthe plainte:xtxis to be effectively masked [26].

Security
Breaking ElGamal is believed to be, by most informed observers, generally as

diffıcult as solving the discrete logarithm problem. If the discrete logarithm problem

could be solved effıciently, then ElGamal could be broken. However, it remains

possible that there may be some way to break ElGamal without having to solve that

problem.

3.7.3.2 EIGamalElliptic Curve Cryptosystem
How can we set up a public-key cryptosystem using an elliptic curve? The only

public-key cryptosystem that we've studied so far is the RSA cryptosystem;

unfortunately, there is no analogue ofRSA for elliptic curves!

e original ElGamal cryptosysteiri was developed on the standard discrete logarithm

is algorithm has expansion factor oftwo, i.e. for each plaintext fıeld element, the

rresponding ciphertext consists ofa pair of fıeld elements. An elliptic curve

a.logue ofthe ElGamal cryptosystem hasa message expansion factor of four, i.e. for

eh plaintext fıeld element, the corresponding ciphertext consists of four fıeld

ments. Moreover, the plaintext space has to consist of points on the elliptic curve
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andthere is no known detemıinistic method of generation of points on an elliptic

curve.

Now we describe the ElGamal elliptic curve version in simple words. Bob choose an

elliptic curve E(mod p), where p is a large prime a on E and a secret integer a. he

coinputes
~=a*a (= a+ a+ ... + n).

The points a and ~are public, while a is kept secret. Alice expresses her message as a

point x on E. she choose a random integer k, and computes

yl = k*a and

y2=x+k*~,

and sends the pair PC[Yl, y2] to Bob: Bob decrypts by calculating

X =y2-ayl.

Example: (.E!liptic carve encıyption). ·

Consider the following elliptic curve:

J =} + zzr+ bmod p

J =} -x+ 188 mod 751
is: a= -1, b= 188, andp= 751. The elliptic curve group generated by the above

curve is thenEp(a; Ô) = .ff?sı(-1, 188).

the generator point a = (O, 376). Then the multiples Aa of the generator point a are

1 .sk.5751):

(O, 376) 2a = (1, 376) 3a = (750, 375) 4a = (2, 373)

= (188, 657) 6a = (6, 390) 7a = (667, 571) 8a = (121, 39)

= (582, 736) 10a = (57, 332)

1 a = (565, 312) 762 a = (328, 569) 763 a = (677, 185)

4a=(l96, 681) 765 a = (417, 320) 766 a = (3, 370)

7a=(l,377) 768 a = (O, 375) 769 a = C{point at infınity)

Alice wants to send to Bob the message Mwhich is encoded as the plaintext point x

3, 253) E .ff?sı(-1, 188). She must use Bob public key to encrypt it. Suppose that

ıb secret key is ag= 85, then his public key will be:
jJ= aga = 85(0, 376)
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JJ= (671, 558)

Alice selects a random number .f= 113 and uses Bob's public key JJ= (671, 558) to

encrypt the message point into the ciphertext pair of points:

PC= [(.fa), (x+ kfa]
PC= [113 x (O, 376), (443, 253) + 113 x(671, 558)]

PC= [(34, 633), (443, 253) + (47, 416)]

PC= [(34, 633), (217, 606)]

Upon receiving the ciphertext pair ofpoints, PC= [(34, 633), (217, 606)], Bob uses

his private key, ag= 85, to compute the plaintext point, .r, as follows

(x+ kfa - [aii(.fa)] = (217,606) -[85(34, 633)]

(x+ kfa --[aii(.fa)] == (217, 606) - [(47, 416)]

(x+ k,6) - [a.b{.fcı)] == (217, 606) + [(47, -416)] (since -P= (.xl, -yl))

(x + kfa - [aii(.fa)]== (217, 606) + [(47, 335)]

(since -416 =335 (mod 751))

(x + kjJ) - [aii(ka)] = (443, 253)

then maps the plaintext point PM= (443, 253) back into the original plaintext

message M [27].

3.7.4 Menezes-Vanstone Elliptic Curve Cryptosystem
e Menezes-Vaiıstôrie elliptic curve cfyptôsystem is defined as follows. Let Ebe an

Iliptic curve defı.iıed över ZP (p > 3 p:tiıne), oı' in GF(pn) with n > 1, such that E

ntains a cyclic subgroup H in which the discrete logarithm problem is intractable.

:t P = Z*p X Z*p, C = E X Z*p X Z*p, and define K = {(E; a; a; p): p = ao};

ere o. E E. the values o: and pare public anda is secret. For K = (E, a, a, P), fora

cret) random number kEZiHI, and for x = (xl, x2) E Z*p X Z*p, define eK(x, k) =

Yı, Y2),

ere Yo = ko,

(cı, c2) = kP

Yı = cıxı mod p

Y2 = c2x2 mod p.

a ciphertext y = (yo, yı, Y2), define
dK(Y) = (yıcı-1 mod p, Y2 c2-ı mod p),
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where

ayo = (cı,cz).

The Menezes-Vanstone cryptosystem is a more effıcient variation of the well-known

ElGamal cryptosystem [28].

There are some practical diffıculties in implementing an ElGamal cryptosystem on an

elliptic curve. The ElGamal cryptosystem, when implemented in Zp, has a message

expansion factor of two. An elliptic curve implementation has a message. expansion

factor of (about) four. This happens because there are approximately p plaintexts, but

each ciphertext consists of four .field elements. A more serious problem is thatthe

plaintext space consists of the points on the curve E, and there is no convenient

method known to deterministically generate points on E.

In the Menezes-Vanstone variation of the ElGamal cryptosystem an elliptic curve is

used for masking, and plaintexts and ciphertexts are allowed to be arbitrary ordered

pairs of (nonzero) fıeld elements (i.e. they are not required to be points on E). This

yields amessage expansion factor oftwo, the same as original ElGamal cryptosystem.

In addition, using point cpmpression oan.reduce the message expansion. That is, the

y-coordinate of the point can be recovered . given its x-coordinate and a single bit of

tra information. This yields a message expansion factor of 1.5 [28.]

· s chapter described the Elliptic Curve Cryptography as bellow; the chapter gave

history of elliptic curve, elliptic curve in mathematics side, the problems that

key algorithms depends on and described it in deep, then it study the elliptic

e cryptosystems in more details as showed general idea how elliptic curve

tography works, elliptic curve discrete logarithm problem and how the security if

depends on it, the showed the security and effıciency of ECC compared with

algorithm, then possible attack to ECC and how we can avoid from these ways,

described the ECC protocols and how developed the some algorithm that

wit~out elliptic curve cryptography schema,
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4. IMPLEMENTATION ELGAMAL ECC ENCRYPTION USING

VISUAL C++ 6.0

4.1. Overview

With the rapid growth of the Internet technology and its application especially in

electronic commerce and electronic ınale systems, the need for more secure

communication channel has become critical for surviving in this open world. As we

have mentioned before cryptography systems is the solution for this problem of security

and the Elliptic Curve Cryptography using EIGamal ECC encryption protocol has

helped to fill that need by providing an easy to understand implementationof Public key
encryption.

This chapter is to introduce an application developed to secure transaction over

communication channel and by using public key cryptography and the ElGamal ECC
protocol.

4.2. Program Explanation

What we will introduce here is how to use my application to secure your <lata transfer

over communication channel, this application was developed by using VISUAL C++

6.0 programming language and the source code of this application is found in Appendix
A.

The reason for using VISUALC++ 6.0 programming language is, VISUAL C++ is a

powerful and complex tool for building 23-bit application for Windows 9X and

Windows NT. These applications are much larger and more complex than their

predecessors for 16-bit windows or older program that didn't use a graphical user

interface. Yet, as program size and coınplexity has increased, programmer effort has
decreased, at least for programmers who are using right tools.

Visual C++ 6.0 is one of the right tools. With its code-generating wizards, it can

produce the shell ofa working Windows application in second. The classes Jibrary

include with visual C++, the Microsoft Foundation Classes (MFC), has become the

industry standard for windows software development in a variety of C++ compilers. The
,,'

visual editing tools make Iayout of menus and dialogs and snap. The time you invest in
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learning to use this product wil1 pay for itself on your first windows programnıing

project.

The following :flow chart will explain the step of how work on the application:

MainMenu

Yes (:;"\

~ •.. ~

Yes (';\.
'-.» •• ~

No

Exitbutton

Flgure 4.1 Start Maim Menu

In Figure 4.1 we explain that the program when it start, it contain three steps and the

exit that are 2, 3 and 4 where step 2 explain in Figure 4.2 to illustrated the encryption

operation, step 3 explain in Figure 4.3 to illustrated the Generation public key operation,

and stepa explain in Figure 4.4 to illustrated the decryption operation,
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Encrypt Mode

Enter File Name

Nü 

YES

ENTER: Elliptic Curve,
Prime No, Secret Key,
Based Point, Public Key

YES

YES

Encryption process

send process
STOP

Nü 

Figure 4.2 Encryption operation

In Encryption operation you work as follow, first you enter the file name that you want

to encrypt, if you don't press open you can't do any thing, if press yes the you go to the

step, you enter the Elliptic curve Equation, Prime number, Based Point, and enter the

Public key, after that you face 3 choices encrypt, send file and exit, to encrypt you must

do the last steps, to send file you must encrypt file then send it, and you have exit if you

don't like to any thing and you change your mind.

75



Generate key Menu

ENTER:
Elliptic Curve,Prime No,
Secret Kev.Based Point

No

yes

Output: Public
Key generating

STOP

Figure 4.3 Generation Public key

generation public key you works as follow, you enter the coefficients of elliptic curve

.tion A and B, the prime number, based point, all these you must :first agree on it

other side, and enter your secret key also, then you face 2 choices generate key and

, after you did the last steps and press the generate key you get a public key as a

·,int, ifyou change your mind and don't like to any thing press exit.
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Decrypt Menu

Enter File Name

Nü 

Exit

Decryption Yes

Decryption process

ENTER:
Elliptic Curve, Prime No,
SecretKey

Receive file

Yes Enter IP Address

No

Receiving process
complete

Figure 4.4 Decryption operation

Decryption operation you work as follow, first you enter the file name that you want

to decrypt, if you don't press open you can't do any thing, if press yes the you go to,

enter the Elliptic curve Equation, Prime number, and secret key, after that you face 3

oices decrypt, receive file and exit, to decrypt you must do the last steps, to receive

you must enter the iP ofthe sender, and press connect to do receiving operation, and

u have exit ifyou don't like to any thing and changingyour mind.
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4.3. Design of the program

The usage of the application is very easy and the interface of the application that is

shown in figure 4.5 to figure 4.11, byfollöwing direction stated below the user will be

able to use efficiently. To complete the · e11cryption, transfer and decryption and the

program can be used the following general asks; Generate public key, Encrypt file,

Decrypt file, as you see in figure 4.5.

Flgure 4.5 Main Menu
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4.3.1 Generate publie key

Figure 4.6 Generation Key

In the mode the user generate his public key, to use the other side that will encrypt the

file to him, As we know the public key using to encrypt the message and the private key

use to decrypt the message.

To generate the public key the user must agree with the other side on the following:

1. Elliptic Curve Equation y2::::; x3 + Ax + B,

2. Prime Number.

3. Based Point it belong to Elliptic curve.

The user enters the A and B :from the Equation, the prime number, based point, and his

key, to get the Public Key as point.
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4.3.2 Encrypt file

Figure 4.7 Encryption Mode

In this mode the user will encrypt the file, as following: first of all he will select the text

file that he want to encrypt as you see in figure 4.8, then he will enter the A and B of

elliptic curve equation, the prime nıımber, the based point, the secret key where it is

generate automatically, and the public key.

in this mode there is option to send the file over communication channel, so if you are

connected to networks, press Send to it will appear the figure.4.9 to select the encrypt

file to send, then if the other side receive the file the file the program will give message

"Sending file operation successfully", else it will give you message "Sending file

operation failed".
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Documents and Settings
flowdigram
gs
hosaam
MyMusic
Programı
Program Files
programing

IMQURAN
~thesis
l~WINDOWS

Figure 4.8 Select Text file

Documents and Settings
flowdigram
gs
hosaam
MyMusic
Programı
Program Files

~QURAN
(W~thesis
!CilWINDOWS

Figure 4.9 Select Encrypt file
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4.3.3 Decryption file

Figure 4.10 Decryption Mode

in this mode the user will decrypt the file, as following: first of all he will select the

Encrypt file as you see in :figure 4.9, that he want to decrypt, then he will enter the A

and B of elliptic curve equation, the prime number, the based point, and the secret key.

In this mode there is option to receive file over communication channel, so if you are

connected to networks, press Receive from it will appear the figure 4.11 to add the

address or computer's IP for the other side, then he will press connect to accomplish the

receiving process, then if the file is received the program will give message "Receiving

file operation successfully", else it will give you message "Receiving file operation

failed".
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Ftgure 4.11 Receiving file

4.4. Summary

This chapter has described the how the application works, which is an implementation

of the Elliptic Curve Cryptography in public key cryptography concepts using ElGaınal

ECC algorithrn.
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CONCLUSION
In this thesis, it has given an analysis the most important facts of Elliptic Curve. .

Cryptography and :findings into a board. it also illustrated certain points of this filed. it

has given a detailed view on the protocols ofElliptic Curve cryptography (ECC); it also

has provided a sample program using ElGaınal Elliptic Curve protocol a practical

implementationofthe pervious theoretical background.

Next paragraph the important result obtained from this thesis:

• Basic of cryptography and where it is used, the basics of the cryptography

system and its types, techniques and algorithnıs used by any cryptography

system were discussed in more details, and :finally we talked about modem using

of cryptography and possible ways to attacks.

• Before cryptographic systems, the corresponding mathematical problems

discussed, the difficulty of a problem de:fined. What did it mean for a

mathematicalproblem to be difficult?

• Elliptic Curve Cryptography (ECC) is the next generation techniques of public

key cryptography systems, describe history of ECC, prosperities of ECC using

algebra concepts, describe ECDLP and how the security depend on it, compare

with RSA, describe the protocols ofECC.

• An application developed to secure data transmission over communication

channels using Elliptic Curve Cryptography technology (ECC) implemented

using Visual C++ 6.0.

But we have observed that:

• The usage of this technclogy is grown by time to the interest of the public key

cryptography due to the growing of client/server application and needs more

secure in this filed.
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APP:ENDICES

il ECCD1g.cpp: implementation file
il

#include "stdafx.h''
#include "ECC.h"
#include "ECCDlg.h"
#include "EncrDlg.h"
#include "DecrDlg.h"
#include "GkDlg.h"

#ifdef _DEBUG
#defu1e new DEBUG NEW
#undefTHIS FILE
static char TIIlS_FILE[] = _FILE_;
#endif

////// l / l / l l ///l /l l / l // l / l//// l l l l //// l ///l/ l l/ il// l l l/ l l l // l// l l //// III/ II/I
il CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlg();

il Dialog Data
il{ {AFX__DATA(CAboutDlg)
enum { IDD = IDD _ABOUTBOX } ;
il} }AFX__DATA

il ClassWizard generated virtual function overrides
il{ {AFX_VIR.TUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); il DDXIDDV support
il}}AFX __VIRTUAL

11 lmplementation
protected:

il{ {AFX_MSG(CAboutDlg)
il} }AFX_MSG
DECLARE _MESSAGE _MAP()

) .
J'

CAboutDlg::CAboutDlg(): CDialog(CAboutDlg::IDD)
{

11 { {AFX __DATA _JNIT( CAboutDlg)
11}} AFX_DATA _INIT

}
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void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog: :DoDataExchange(pDX);
il { {AFX_DATA_MAP(CAboutDlg)
//} }AFX_DATA_MAP

}

BEGIN _MESSAGE_MAP( CAboutDlg, CDialog)
//{ {AFX__MSG__MAP(CAboutDlg)

il No message handlers
//} }AFX_MSG_MAP

.. END _MESSAGE _MAP()

l/ lllil illllllllllllllllllllllllllllilill/ l!I I// I /I I // I // l///il/il/lil//// I I I
il CECCDlg dialog

- CECCDlg: :CECCDlg(CWnd* pParenU*=NlJLL*/)
: CDialog(CECCDlg::IDD, pParent)

{
il{ {AFX__DATA_INIT(CECCDlg)

il NOTE: the ClassWizard will add member initialization here
//} }AFX_DATA __INIT
il Note that Loadlcon does not require a subsequent Destroylcon in Vvin32
m_hlcon = AfxGetApp()->Loadicon(IDR_MAINFRAME);

}

void CECCDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
il{ {AFX__DATA_MAP(CECCDlg)

il NOTE: the ClassWizard will add DDX and DDV calls here
il} }AFX_DATA_MAP

}

BEGIN _MESSAGE _MAP(CECCDlg, CDialog)
//{ {AFX_MSG_MAP(CECCDlg)
ON_WM SYSCOMMAND()
ON __WM_PAINT()
ON_WM'---QUERYDRAGICON()
ON_BN __CLICKED(IDC_ENC, OnEnc)
ON_BN _CIJCKED(IDC _DEC, OnDec)
ON_BN_CLICKED(IDC _GK, OnGk)
il} }AFX_MSG_MAP

END _MESSAGE_MAP()

ilil/I ill// l!! / ll/ l!l// l// l/ ll/l// ll//l llll/ ll/ lll//// ll// ll//// ll// lil/l/ lll
il CECCDlg mcssage handlers
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BOOL CECCDlg::OninitDialog()
{

CDialog: :OnlnitDialog();

il Add "About..." menu item to systemmenu.

il IDM __ABOUTBOX must be in the systemcommand range,
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM'-ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(F ALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString(lDS ABOUTBOX);- ,

if (!strAboutMenu.IsEmpty())
{

pSysMenuL>Appeı:ıdMenu(MF _SEPARATOR);
pSysMenit->AppendMenu(MF __STRING, IDM _ABOUTBOX,

strAboutMenu);
}

}

il Set the icon for this dialog. The framework does this automatically
il when the application's main window is nota dialog
Setlcou(m_hlcon, TRUE); il Set big icon
Setlcon(m_hlcon, FALSE); il Set sınall icon

il TODO: Add extra initialization here

CComQIPtr<ISkin> pSkin = GetDlgitem(IDC_SKINl)­
>GetControlUnknown();

pSkin-> ApplySkin( (Jong)m_hWnd);

return TRUE; 11 return TRUE unless you set the focus to a control
}

void CECCDlg::OnSysCornmand(UINT nID, LPARAM ll'aram)
{

if((nID & OxFFFO) == IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;
dlgAbout.DoModal();

}
else
{
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CDialog: :OnSysCommand(nID, Il'aram);
}

}

il Ifyou adda minimize button to your dialog, you will need the code below
il to draw the icon. For MFC applications using the docuınentlview model,
il this is automatically done for you by the :fraınework.

void CECCDlg::OnPaint()
{

if (Islconic())
{

CPaintDC dc(this); il device context for painting

SendMessage(WM _ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), O);

11 Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM __CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect( &rect );
int x = (rect.Width() - cxicon + 1) I 2;
int y = (rect.Height() - cylcon + 1) I 2;

il Draw the icon
dc.Drawlconıx, y, mIılcon);

}
else
{

CDialog: :OnPaint();
}

}

11 The system calls this to obtain the cursor to display while the user drags
11 the rninimized window.
HCURSOR CECCDig: :OnQueryDraglcon()
{

return (HCURSOR) m hlcon;
}

void CECCDlg::OnEnc()
{

il TODO: Add your control notification handler code here
CEncrDlg dlg;
dlg.DoModal();

}

void CECCD1g::OnDec()
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{
il TODO: Add your control notification handler code here
CDecrDlg dlg;
dlg.DoModal();

}

void CECCDlg::OnGk()
{

il TODO: Add your control notification handler code here
CGkDlg dlg;
dlg.DoModal();

l********************************************************************I

il EncrDlg.cpp: implementatiorrfile
ır
#include "stdafx.h"
#include "ECC.h"
#include "EncrDlg.h"
#include "GkDlg.h"

#include <stdlib.h>
#include <stdio.h>
#include <ınath.h>
#include <conio.h>-

#iföef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS _FILE[] = _FILE_;
#endif

llll llllllllllllilllllillillillllll illllll lillllllllllllllllilllilllillllllll
il CEncrDlg dialog

CEncrDlg: :CEncrDlg(CWnd* pParent l*=NULL * I)
: CDialog(CEncrDlg::IDD, pParent)

{
11 { {AFX _DAT AJNIT( CEncrDlg)
m_eeA=O;
m_eeB = O;
mprime = O;
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m_BPX=O;
m_BPY = O;
ın_SK= O;
ın_PKX=O;
m_PKY=O;
menc file = _T('"');
//} }AFX_DATA __JNIT

}

void CEncrDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
//{ {AFX_DATA MAP(CEncrDlg)
DDX_Text(pDX, IDC_EDIT2, m_eeA);
DDX ___Text(pDX, IDC_EDIT3, m_eeB);
DDX_Text(pDX, IDC_EDIT4, mprime);
DDX_Text(pDX, IDC_EDIT6, ın_BPX);
DDX_Text(pDX, IDC_EDIT7, ın_BPY);
DDX_Text(pDX, IDC_EDIT8, m_SK);
DDX_Text(pDX, IDC_EDITlO, m__PKX);
DDX_Text(pDX, IDC_EDITl 1, m_PKY);
DDX _Text(pDX, IDC _EDITl, m_ enc, file);
//} }AFX_DATA MAP

}

BEGIN __MESSAGE _MAP( CEncrDlg, CDialog)
//{ {AFX_MSG __MAP(CEncrDlg)
ON BN_ CLI CKED(IDC _Encrypt, OnEncrypt)
ON_BN _CLICKED(IDC _Sendl, OnSendl)
ON_BN_CLICKED(IDC Brows, OnBrows)
//} }AFX_MSG_MAP

END _MESSAGE_ MAP()

l/!l///// lil///l// l/ll////l ////// l////// I/ I /il I///// I // I //// il Iil//I// I I11II I
il CEncrD1g message handlers

void CEncrD1g: :OnEncrypt()
{
//*************************** Encryption Mode
********************************* 

//Here we are making the encryption operation

CGkDlg D;

FILE *input, *output;
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char eh, eh_ out;
int prime, A;

Assign assign[256],ass;
Point alpha={O,O};
Point beta={O,O};

UpdateData(TRUE);

alpha.x = m_BPX;
alpha.y = m~BPY;

beta.x = m_PKX;
beta. y = rn~PKY;

prime = rn_prime;
A= rn_eeA;

// here k is secret key for Alice uses in ecnryption operation
int k=6;

/*srand(lOO);
do
{

k = rand();
}while (k>2*D.EII k<O);*/

rn_SK = k; UpdateData(FALSE);

//Here clear the buffwhere we put PlainText
for (int i=O; i<256; i++)
{

assign[i] .PT .x=O;
assign[i].PT.y=O;

}

il Here we open :fileto read from
if ((input = fopen(rn_enc_file, "r+")) == NULL)
{

MessageBox(''Cannot open input file");
exit(l);

}
fseekıjnput, SEEK,_SET,O);

CString Save file;

CFileDialogrn IdFile (FALSE,"*.ENC", NULL,
OFN_HIDEREADONLY,"Encrypt files]" .ENC");
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m_ldFile.m __ofü.lpstrlnitialDir = "c:\\";

if (n1:__IdFile.D0Modal()!= IDCANCEL )
{

Save file= m ldFile.GetPatlı1\fame();- -
UpdateData(F ALSE);

}

// Here we open file to write into
if ((output = fopen(Save_file, "w+")) == NULL)

{
MessageBox("Caıınot open output file");
exit(l );

}

char my, rrız;
Encrypt ene;

MessageBox("Y ou now enter thye loop in file");
do
{

/* read a char from the file */
eh= fgetc(input);
eh= CAP (ch);//convetr char to Capetail

putch(ch);

ass.ch = eh;
ass.PT = map(ass.ch);//function converts char to point

ene= encrypt (ass.P'I', alpha, beta, k, prime, A);
ch_out = cmap(enc.x);

fputc(ch_out, output);
fputctenc.y, output);
fputctenc.z, output);

} while (eh != EOF);

folose(input);
fclose( output);

MessageBox("Y our Encryption opertion Successfiıly");

int x = MessageBox("Do You Want To Send The File","Send
File",MB _YESNO);
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if(x == IDYES)
{

MessageBox("Press Send");
GetDlgltem ( IDC_Sendl) -> EnableWindow ( TRUE);

}

if (x == IDNO)
MessageBox("Y ou are offline");

}

char CEncrDlg::CAP(char a)
{

char A;
int aa;

aa= a;

if (aa>=97 && a<=l22)
{

aa=aa-32;
A= aa;

}
else

A=a;
return A;

1
J

Point CEncrDlg::map(char c)
{

char eh;
int ascii;
char str[2];
float num;
double fraction, integer;
Point p={O,O};

eh= c;
ascii = eh;

num = ascii;

num = num/I O;

fraction = modf(num, &integer);
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p.x = integer;
p.y = int(fraction* 10+0.1 );
return p;

}

Encrypt CEncrDlg::encrypt(Point X, Point alpha, Poinı beta, int k, int prime, int A)
{

Point y0={0,0},Cl_ C2={0,0};
int y 1 =0,y2=0;
Encrypt ene;

CGkDlg d;

yO = d.Mult(alpha,A,prime,k);
C 1 C2 = d Mult(beta A prime k) ·- ·• . ' ' ' '

yl = (Cl_C2.x * X.x); yl = fmodtylprime);
y2 = (Cl_C2.y * X.y); y2 = fınod(y2,prime);

enc.x=yO;
enc.y=yl;
enc.z=y2;

return ene;
}

char CEncrDlg::cmap(Point p)
{

int x;
char c;

X = (p.x* 10) + p.y;
C =x;

return c;
}

void CEncrDlg::OnSendl()
{

il TODO: Add your control notification handler code here

SendFile();

IIGetDlgiteın ( IDC_Sendl) -> EnableWindow ( FALSE);

}

void CEncrDlg::SendFile()
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{

#define PORT 34000111 Select any free port you wish

AfxSocketlnit(NULL );

CSocket sockSrvr;
CSocket sockRecv;

sockSrvr.Create(PORT); il Creates our server socket

sockSrvr.Listen(); il Start listening for the client at PORT

if (sockSrvr.Accept(sock:Recv)) il Use another CSocket to accept the cormection
MessageBox("you'r online now ...");

else
MessageBox("you'r ofiline now ...");

11 Select the file to send
CFileDialog ın_IdFile (TRUE,NULL, NULL,

OFN_HIDEREADONL Y,"Encrypt filesl" .ENC");
m__IdFile.m__ofrıJpstrlnitialDir =

11c:\\";

if (m_IdFile.DoModal() != IDCANCEL )
{

m_enc_:file= m,_IdFile.GetPathName();
UpdateData(F ALSE);

}

CFile myFile;
ınyFile.Open(ın __enc_file, CFile::ınodeRead I CFile::typeBinary);

int myFileLength = myFile.GetLength(); // Going to send the correct File Size

sockRecv.Send(&myFileLength, 4); il 4 bytes long

byte" <lata= new byte[myFileLength];

myFile.Ilead( <lata,myFileLength);

sockRecv.Send(data, myFileLength); IISend the whole thing now

myFile.Close();
delete <lata;

sockRecv.Close();
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MessageBox("Sending file operation successfuly");

}

void CEncrDlg::OnBrows()
{

il TODO: Add your corıtrol notification handler code here

CFileDialog m__JdFile (TRUE,NULL, NULL, 01:""'N_HIDEREADONLY,"text
files]" .txt");

ın_IdFile.ın_ofiı.lpstrlnitialDir = "c:\\";

if (m_IdFile.DoModal() != IDCANCEL)
{

m, enc, :file= m_IdFile.GetPathName();
UpdateData(F ALSE);

}

)
.(

BOOL CEncrDlg::OnlnitDialog()
{

CDialog: :OnlnitDialog();

il TODO: Add extra initialization here

CComQIPtr<lSkin> pSkin = GetDlgltem(IDC~SKINl)­
>CietControlUnknown();

pSkin-> ApplySkin( (long)m_h Wnd);

IIGetDlglteın ( IDC_Sendl) -> EnableWindow ( FALSE);

return TRUE; il return TRUE unless you set the focus to a control
il EXCEPTION: OCX Property Pages slıould return FALSE

}

void CEncrDlg::OnOK()
{

il TODO: Add extra validation here

CDialog: :OnOK();
}

l********************************************************************I

il GkDlg.cpp : implementation file
il
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#include "stdafx.h"
#include "ECC.h"
#include "Gk.Dlg.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include "ECCDlg.h"

#ifdef DEBUG
#define new DEBUG NEW
#undefTHIS FILE
static char THIS_FILE[] =_FILE_;
#endif

l/lillll/ilil/ill/lllll/l/ l/// // //// I/I/ I/ilil il//// il///// I/I/// /////// II///
il CGkDlg dialog

/******************************************************************!
CGkDlg::CGkDlg(CWnd* pParent /*=NULL*/)

: CDialog(CGk.Dlg::IDD, pParent)
{

//{ {AFX_DATA'-INIT(CGkDlg)
ın_eeA = O;
m_eeB = O;
nı prime =O;
m__BPX=O;
rn_BPY= O;
m_SK=O;
m__pKX= O;
m__PKY=O;
m_E = O;
//} }AFX__DATA_INIT

}

void CGkDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
//{ {AFX_DATA_MAil(CGkDlg)
DDX __Text(pDX, IDC_ED1T2, m_eeA);
DDX,_Text(pDX, IDC __ED1T3, m_eeB);
DDX_Text(pDX, IDC_EDIT4, m_prime);
DDX_Text(pDX, IDC_EDIT6, ın_BPX);
DDX,_Text(pDX, IDC-'EDIT7, m_BPY);
DDX_Text(pDX, IDC_ED1T8, m_SK);
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DDX_Text(pDX, IDC_EDITlO, m_PKX);
DDX_Text(pDX, IDC_EDITl 1, m_PKY);
DDX_Text(pDX, IDC_EDIT9, m_E);
//} }AFX_DATA_MAP

}

BEGIN_MESSAGE_"'MAP(CGkDlg, CDialog)
//{ {AFX__MSG_MAP(CGkDlg)
ON_ BN_CUCKED(IDC_GenKey, OnGenKey)

//} }AFX__MSG-'MAP
END _MESSAGE_MAP()

// I/////// il/ l il l/// l l/ l l / il il l l// l l l l / l/l l l / l ////il//// il l il// l/// l l/ l il/// l
il CGkDlg message handlers

void CGkDlg::OnGenKey()
{

il TODO: Add your control notification handler code here

UpdateData(TRUE);

int prime, A, B, y 1, y2, tst;
int Nset; il No ofQR elements

int QR[5000], Ysqr[5000];
Point poiut[8000];
Point alpha={O,O}; IIPT={9,1 };// x and y ınust be less than prime
Point beta={O O}· 1/dec={O O) •' ' . ' f,

E=O;

prime = mprime;
A=m __eeA;
B =m_eeB;

1/to test if A and B are multiple of prime or not?
tst = tst__AB(prime,A,B);
if (tst == O)

{
MessageBox("your have wrong equation TRY AGAlN");
EndDialog(O);

}
else

MessageBox("your have right equation");

/************************************************************+**++*+/ 
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N set = (prime-I )12;

for (int i=l; i-c=Nset; i++)
{

QR[i] = (i*i)%prime;
}

il****************************** New Step***********************'~******

int j=O; 11 index of point

for (int x=O; x<prime; x++)
{

Ysqr[x] = ( (x*x*x)+(A*x)+B) % prime;

for (i=L; i<=Nset; i++)
{

if (Ysqr[x] == QR[i])
{

E++;
yl = i;

y2 = prime - i;

po int[j].x=x; point[i]. y=y 1 ;
j++;
pointO].x=x; pointü].y=y2;
j++;

}
}

}

m_E= 2*E;
UpdateData(FALSE);

//* **** * ********************* New Step ************ * * ******* ** -~ *** ** '•· * * *
//test the alpha if it is belonge to elliptic curve or not

int chk = O;
alpha.x = m_BPX ;

alplıa.y = m__BPY;

for (i=O; i<(2*E); i++)
{

if (point[i].x == alpha.x && point[i].y =0= alpha.y)
chk = 1;
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}

//MessageBox("YES alpha

if (chk == O)
{

MessageBox("No alpha is NOT belong to Elliptic curve'');

EndDialog(O);
}

//*************************** New Step*********************************

//Generation key Mode.
//Here I compute beta is public key
//Here Bob make generation public key and give it to Alice

il here a is secret key for Bob and the [a*(alpha)] make the public key
int a=O;
a=ın SK·- '

if (a>2*E+l il a<2)
{ MessageBox("Choose Bobs secret key [a], it mııst 2=< a < Number 01

points");
MessageBox("Try again ... BYE BYE");

EndDialog(O);

}

beta = Mult(alpha A prime a) ·' , . . ' '

ın_PKX = beta.x; UpdateData(FALSE);
m__PKY = beta.y; UpdateData(F ALSE);

}

int CGkDlg::tst __AB(int P, int A, int B)
{

int equation;

equation = (4*A*A* A) + (27*B*B) % P;

if (equation != O)
{

106



return 1;
}
else
{

}
return O;

}

Point CGkDlg: :Mult(Point alpha, int A, int prime, int a)
{

int x3=0, y3=0;
float laında=O.O,Ll =O.O,L2=0.0;
Point Q={O,O};

Ll = (3*alpha.x*alpha.x+A); Ll = finod(Ll,prime);
if (Ll<O)

Ll=prime+Ll;

//cout<<"\nLl is: "<<Ll;

L2 = (2*alpha.y); L2 = frnod(L2,prime);
if (L2<0)

L2=prime+L2;

//cout<<"\nL2 is: "<<L2;

lamda = L 1 * inverse(prime,L2); ;
lamda= fmodtlamda.prime );
if (lamda<O)

lamda=prime+lamda;

//cout<<"\nthe lamda is: "<<lamda<<"\n";

x3 = (lamda*lamda) - 2*alpha.x; x3 = finod(x3,prime);
if(x3<0)

x3=prime+x3;

//cout<<"X3= "<<x3<<endl;

y3 =lamda* (alpha.x - x3) - alpha.y; y3 = finod(y3,prime);
if (y3<0)

y3=prirne+y3;

//cout<<"Y3= "<<y3<<endl;

Q.x=x3;
Q.y=y3;
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if (a>2)
for (int i=l; i<(a-1); i++)
{

L 1 =O;L2=0;x3=0;y3=0;

//cout<<"Now P("<<alpha.x<<","<<alpha.y<<") ";
//cout<<"Q("<<Q.x<<","<<Q.y<<") ";

Ll = (Q.y-alpha.y); Ll = :fmod(Ll,prime);
if (Ll<O)

L 1 =prime+L 1;

//cout<<11\i1Ll is: "<<Ll;

L2 = (Q.x-alpha.x); L2 = fmod(L2,prime);
if(L2<0)

L2=prime+L2;

//cout<<"\nL2 is: "<<L2;

lamda =Ll * inverse(prime,L2);
lamda = fmod(lamda,prime );
if (lamda<O)

lamda=prime+lamda;

//cout<<"\nthe lamda is: "<<lamda<<"\1111;

x3 = (lamda=Iamdaj= alpha.x - Q.x; x3 = :fmod(x3,prime);
if (x3<0)

x3=prime+x3;

//cout<<"X3= "<<x3<<endl;

y3 =lamda* (alpha.x - x3) - alpha.y; y3 = :finod(y3,prime);
if (y3<0)

y3=prime+-y3;

//cout<<"Y3= "<<y3<<endl;

//getch();

Q.x=x3;
Q.y=y3;

}

return Q;
}
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int CGkDlg::inverse(int prime, int B3)
{

int Al=l,A2=0,A3=5;
int Bl=O,B2=1;
int Tl =O,T2=0,T3=0;
floaı Q=O;

A3=prime;
do
{

if (B3 == O)
{

//cout<<" No inverse so A3: "<<A3<<endl;
returnA3;

}

if (B3 == 1)
{

//cout<<" The inverse in it self: "<<B2<<endl;
return B3;

}

Q = A3/B3;
Q = int(Q);

Tl= Al-(Q*Bl);
T2= A2-(Q*B2);
T3= A3-(Q*B3);

Al= Bl;
A2 =B2;
A3 =B3;

Bl = Tl;
B2 = T2;
B3 =T3;

}while (B3 != 1);

if (B2<0)
{

B2 = priıne+B2;
}

//cout<<" The inverse is: "<<B2<<endl;

return B2;
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}

BOOL CGkDlg::OnlnitDialog()
{

CDialo g: :OnlnitDialo g();

il TODO: Add extra initialization here

CComQIPtr<ISkin> pSldn = GetDlgltem(IDC _SKINl )­
>GetControlUnknown();

pSkin-> ApplySkin( (long)m _hWnd);

return TRUE; il return TRUE unless you set the focus to a control
il EXCEPTION: OCX Property Pages should return FALSE

}
. l********************************************************************I
· il ECC.cpp: Defines the class behaviors for the application.
il

#include "stdafx.h"
. #include "ECC.h"
#include "ECCDlg.h"

#ifdef DEBUG
#define new DEBUG~NEW
#undefTHIS FiLE
static char TIIlS_FILE[] = _FiLE_;
#endif

llllllllllllllllllillllilil lllll lllillllilllll illll lllillllll llililililllllll
il CECCApp

BEGIN_ MESSAGE _MAP(CECCApp, CWinApp)
il { { AFX_MSG _MAP(CECCApp)

IINOTE - the ClassWizard will add aııd remove mapping macros here.
il DO NOT EDIT what you see in tlıese blocks of geııerated code!

11}} AFX __MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END _MESSAGE _MAP()

illllllllllllllllll//// l// llll llllllllll/ lllllllilllillilllil/lilllllilllllll
il CECCApp construction

CECCApp::CECCApp()
{

il TODO: add construction code here,
il Place all significant initialization in Initlnstance

}
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lil llllllil ll ll lil llllllllllll il ll lllllllllllil lllllll llllllllil ll il lllllllll
il The one and only CECCApp object

CECCApp theApp;

1111I lf/ lllllllllilllllllllllil illlllililllllllllililllllllllllllilllllllllll
11 CECCApp initialization

BOOL CECCApp::Initlnstance()
{

if ( !AfxSocketlnit())
{

AfxMessageBox(IDP _SOCKETS _INIT_F AILED);
return FALSE;

}

A:lxEnableControlContainer();

11 Standard iııitialization
il Ifyou are not using these features and wish to reduce the size
il ofyour final executable, you should remove from the following
11 the specific initialization routines you do not need.

#ifüef AFXDLL
11 Call this when using MFC in a sharedEnable3dContro Is();

DLL
#else

Enable3dControlsStatic(); il Call this when linking to MFC statically
#endif

CECCDlg dlg;
m_pMainWnd = &dlg;
int nRespouse = dlg.DoModal();
if (nResponse == IDOK)
{

il TODO: Place code here to handle when the dialog is
il dismissed with OK

}
else if(nResponse == IDCANCEL)
{

il TODO: Place code here to handle when the dialog is
11 dismissed with Cancel

}

il Since the dialog has been closed, return FALSE so that we exit the
il application, rather than start the application's message pump.
return FALSE;

}
l***************************************************************+****I 
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il Recive.cpp : impleınentation file
il

#include "stdafk.h"
#include "ECC.h"
#include "Recive.h"
#include "ECCDlg.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif

/ l l / l l / l l l /il/ l l l l l ll / il l l ll / l l/ l l/ l l l l l /il//// ll/l/lllllll/l//l/lll/l/ll/l il '
il CRecive dialog

CRecive::CRecive(CWnd* pParent /*=NULL */)
: CDialog(CRecive::IDD, pParent)

{
//{ {AFX_DATA __INIT(CRecive)
n1:__ip = _T("");
m_dec_file = _T("");
il} }AFX_DATA_INIT

}

void CRecive: :DoDataExchange( CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
il{ {AFX_DATA_MAP(CRecive)
DDX_Text(pDX, IDC_EDITl, m ip);
DDX_Text(pDX, IDC_EDIT2, m dec file);
1/}}AFX_DATA_MAP

}

BEGIN _MESSAGE _MAP(CRecive; CDialog)
11 { {AFX_MSG -'MAP( CRecive)
ON_BN_CLICKED(IDC ....:.RConnect, OnRComıect)
ON_BN_CLICKED(IDC __BUTTONl, OnSave)
il} }AFX_ MSG _MAP

END_MESSAGE_MAP()

ııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııııı
11 CRecive message handlers
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void CRecive::OnRConnect()
{

il TODO: Add your control notification handler code here

ReciveFile();

}

void CRecive: :ReciveFile()
{

int chk=O;

CString x;

#define PORT 34000 /il Select any free port you wish

A1xSocketinit(NULL );

CSocket sockClient;
sockClient. Createt);

il "127 .0.0.1" is the IP to your server, samc port
, UpdateData(TRUE);

ehle= sockClient.Connect(nı;__ip, PORT);

if(chk == O)
MessageBox("You connection faild");

else
MessageBox("Your connection successfuly, you now reciving file");

int dataLength;
sockClient.Receive(&dataLength, 4); //Now we get the File Size first

byte* data = new byte[dataLength];
sockClient.Receive(data, dataLength); //Get the whole thing

OnSave();

CFile destFile(rn _dec_file.Cf'ile: :modeCreate I CFile: :mode Write 1

CFile: :typeBinary );

destFile.Writ:e(data, dataLength); // Write it

destFile.Close();

delete data;
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sockClient. Close();

MessageBox("Reciving Operation Successfly");
}

BOOL CRecive::OnlnitDialog()
{

CDialog::OninitDialog();

il TODO: Add extra initialization here

CComQIPtr<ISkin> pSkin = GetDlgltem(IDC _SKINl )­
>GetControlUnknown();

pSkin-> ApplySkin( (long)m _hWnd);

return TRUE; il return TRUE unless you set the focus to a control
il EXCEPTION: OCX Property Pages should return FALSE

}

void CRecive::OnSave()
{

il TODO: Add your control notification handler code here

CFileDialog m_IdFile (FALSE,"*.ENC", NULL,
OFN_HIDEREADONLY,"Encrypt filesl*.ENC");

IICFileDialog m_IdFile (FALSE,NULL, "*.ENC",
OFN_HIDEREADONL Y,"Encrypt fileslENC");

m_IdFile.m_ofu.lpstrlnitialDir = "c:\\";
if(m_IdFile.DoModal() != IDCANCEL)
{

rn;._ __decfile= m_IdFile.GetPathNarne();
UpdateData(F ALSE);

}

} 
l********************************************************************I

il Send.cpp : implementation file
il

#include "stdafx.h"
#include "ECC.h"
#include "Send.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS_FILE[] = _FILE_;
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#endif

l///////////// l l il llll il l l l l l l/ l l l il lll/ l il l lllllll il lll l l llllllll il il l il il l l
11 CSend dialog

CSend::CSend(CWnd* pParent l*=NULL*I)
: CDialog(CSend::IDD, pParent)

{
il{ {AFX__DATA_INIT(CSend)

11 NOTE: the ClassWizard will add meınber initialization here
il} }AFX_DATA_INIT

}

void CSend: :DoDataExchange( CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
il{ {AFX_DATA_MAP(CSend)

il NOTE: the ClassWizard will add DDX and DDV calls here
ll}}AFX_DATA_MAP

}

BEGIN_ MESSAGE _MAP(CSend, CDialog)
il{ {AFX MSG_MAP(CSend)

il NOTE: tlıe ClassWizard will add ınessage ınap macros here
il} }AFX_MSG_MAP

END _MESSAGE _MAP()

l il//// il l l l l l l l /// l // l / l / il l l / l////// l l l l l// l / l////l / ll/lll / l l ///////l/ l////
11 CSend ınessage handlers
l********************************************************************I

il ECCDlg.h: header file
il

#if
!defined(AFX'-_ECCDLG_H_78BD108D_F35E_ 4023_B80l_34489B80B63F_INCL
UDED_)
#define
AFX ECCDLG H 78BD108D F35E 4023 B801 34489B80B63F INCLUDED- - - - - -

#if MSC VER> l 000- --
#pragına once
#endif 11 MSC VER> 1000- --

#import "actskin-l.ocx" nojmplemenıation rawjnterfacesonly raw nativetypes
using namespace ACTIVESKINLib;
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#include "atlbase.h"

!il ı ı ı ı ıı ıııı ı ı ı ı ı ıııı ııı ıı ıı ı ı ıı ıııııı ı ıı ııı ıııı ı ı ı ı ı ı ı ı ı ıııı ı ı ı ı ı ı ı ı ı ııı ııı
il CECCDlg dialog

class CECCDlg: public CDialog
{
11 Construction
public:

CECCDlg(CWnd* pParent = NULL); 11 standard constructor

il Dialog Data
il{ {AFX_DATA(CECCDlg)
enum { IDD = IDD_ECC_DIALOG };

il NOTE: the ClassWizard will add data members here
il} }AFX_DATA

il ClassWizard generated virtual function overrides
il { {AFX_VlRTUAL(CECCDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);

support
il} }AFX_ VIRTUAL

IIDDXIDDV

11 lmplementation
protected:

. HICON mhlcon;

11 Generated message map fünctions
il{ {AFX_MSG(CECCD1g)
virtual BOOL OnlnitDialog();
afx_msg void OnSysComınand(UlNT nID, LPARAM lParam);
afx._msg void OnPaint();
afx._msg HCURSOR OnQueryDragicon();
afx_msg void OnEnc();
afx_msg void OnDec();
afx msg void OnGk();
il} }AFX_MSG
DECLARE _MESSAGE _MAP()

};

il { {AFX_JNSERT_LOCATION}}
il Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif il
!defined(AFX_ECCDLG-'H_78BD108D_F35E_4023_B80l_34489B80B63F_INCL

UDED_)
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l********************************************************************I 

#if
!defined(AFX_ENCRDLG_H_FC8F4E2D _OAA7_40B0 _8535 _72BlF57 A3B02_JN

CLUDED_)
#define
AFX ENCRDLG H FC8F4E2D OAA7 40BO 8535 72BlF57A3B02 INCLUDED- -- - - - -

#include "GkDlg.h" il Added by ClassView
#include "ECCDlg.h "
#if MSC VER> 1000- -
#pragma once
#endif 11 MSC VER> 1000- -
il EncrDlg.lı: header file
il

llllllillillllllllilll/ lll/ lll // il il//lllll /il il//il/il I JI JJII /// I I //I / I I / I I /
il CEncrDlg dialog

class CEncrDlg: public CDialog
{
// Construction
public:

void SendFile();
char cmap (Point p);
Encrypt encrypt(Point X, Point alpha, Point beta, int k, int prime, int A);
Point map (char c);
char CAP (clıar a);
CEncrDlg(CWnd* pParent = NULL); // standard constructor

il Dialog Data ·
//{ {AFX_DATA(CEncrDlg)
enum { IDD = IDD_ENCRYPTION };
int m eeA- '
int m eeB·- '
int mprime;
int m_BPX;
int m_BPY;
int m_SK;
int m_PKX;
int m_PKY;
CString m_ene_file;
il} }AFX_DATA

11 (jverrides
il ClassWizard generated virtual function overrides
il{ {AFX_VIR.TUAL(CEncrDlg)
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protected:
virtual void DoDataExchange(CDataExchange* pDX); il DDXIDDV support
il}} AFX_VIRTUAL

il Implementation
protected:

11 Generated message map functions
il{ {AFX_MSG(CEncrDlg)
afx_msg void OnEncrypt();
afx msg void OnSendl();
afxrnsg void OnBrows();
virtual BOOL OninitDialog();
virtual void OnOK();
il} }AFX'-_MSG
DECLARE _MESSAGE __MAP()

};

il {{AFX_INSERT _LOCA TION}}
il Microsoft Visual C++ will iıısert additionaldeclarations inımediately before the
previous line.

#endif il
!defined(AFX_ENCRDLG_H __FC8F4E2D_OAA7_ 40B0_8535_72B1F57A3B02 __IN
CLUDED__)
l*******************************************************************•I 

#if
!defined(AFX_ GKDLG_H_60B8FD97 _BE34_4EC3_9184_BD14219AD261_INCL
UDED__)
#define
AFX GKDLG H 60B8FD97 BE34 4EC3 9184 BD142l9AD26l INCLUDED- - - - - -

#if MSC VER> 1000- -
#pragma once
#endif 11 MSC VER > 1000- -
il GkDlg.h: header file
il
I*******************************************************+************** 
******I 

typedef struct
{

float x;
float y;

}Point;

typedef struct
{
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typedef struct
{

char eh;
Point PT;

}Assign;
I**********************************************************************
****,**I
il//// 11/il/l/////// l/// ll// l/////// ll///// ll/ll// ll/il/// II/// II// II/II/// II
il CGkDlg dialog

class CGkDlg : public CDialog
{
il Construction
public:

int E;// to count #E ... No ofpoints on elliptic curve;

Point x;
int y;
int z;

}Encrypt;

int inverse (int prime, int B3);
Point Mult(Point alpha, int A, int prime, int a);
int tst__AB (int P, int A, int B);
CGkDlg(CWnd* pParent = NULL); il standard constructor

il Dia]og Data
//{ {AFX_DATA(CGkDlg)
enurn { IDD = IDD_GENERAT_JCEY };
int rn eeA·-- '
int rn_eeB;
int
int
int
int

m_prııne;
rn_BPX;
m_BPY;
m_SK;

int m_PKX;
int m_PKY;
int m__E;
//} }AFX_DATA

'I Overrides
// ClassWizard generated virtual function overrides
il{ {AFX_VIRTUAL(CGkDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); il DDX/DDV support
//} }AFX __VIRTUAL

~ Implementation
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protected:

11 Generated message map :functions
il{ {AFX_MSG(CGkDlg)
afx_msg void OnGenK.ey();
virtual BOOL OnlnitDialog();
il} }AFX_MSG
DECLARE _MESSAGE _MAP()

};

il{ {AFX_INSERT __LOCATION}}
11 Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif il
!defined(AFX __GKDLG_;H__60B8FD97 __BE34_4EC3_9184_BD142l9AD26l_INCL
UDED_J
l********************************************************************I

11 DecrDlg.cpp : implementation file
il

#include "stdafx.h"
#include "ECC.h"
#include "Decrfrlg.h''
#include "EncrDlg.h"
#include "GkDlg.h"
#include "Recive.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>

#ifdef DEBUG
#define new DEBUG NEW
#undefTHIS FILE
static clıar THIS_FILE[] = _FILE_;
#endif

llllllllll// ll/ll/ll/ il lllil llllllll/llllll// illl/llll/ llllilil/lllllll// ll//
il CDecrDlg dialog

CDecrDlg::CDecrDlg(CWnd* pParent l*=NULL*I)
: CDialog(CDecrDJg::IDD, pParent)

{
il{ {AFX__DATA_INIT(CDecrDlg)
m__eeA = O;
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void CDecrDlg::DoDataExchange(CDataExchange* pDX)
{

m_eeB = O;
m_prime= O;
m_SK=O;
m__dec_file = _T("");
//} }AFX_DATA_INIT

CDialog: :DoDataExchange(pDX);
il { {AFX_DATA _MAP(CDecrDlg)
DDX_Text(pDX, IDC_ED1T2, m_eeA);
DDX_Text(pDX, IDC_EDIT3, m_eeB);
DDX_Text(pDX, IDC_EDIT4, mprime);
DDX Text(pDX, IDC_EDIT8, m__SK);
DDX_Text(pDX, IDC_EDITI, m_dec_:file);
//} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CDecrDlg, CDialog)
//{ {AFX_MSG_MAP(CDecrDlg)
ON__BN_ CLICKED(IDC _Decrypt, OnDecrypt)
ON__BN__CLICKED(IDC_Send2, OnSend2)
ON_ BN_CLICK.ED(IDC _Brows2, OnBrows2)
//}} AFX_MSG __MAP

END _MESSAGE _MAP()

I/////// I/// I/////I I///////// I/////// I// I///// I///////////////////////// II///
il CDecrDlg message handlers

void CDecrDlg::OnDecrypt()
{

il TODO: Add your control notification handler code here

'/*************************** Decryption Mode
*********************************

//Here we are making the decryption operation

FiLE *decryptl;
FiLE *outputl;

CEncrD1g EN;
int A, prime, a;

UpdateData (TRUE);

A=m eeA'- '
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. .pnme = m_pnme;
a = rn'-SK;

if ((outputl = fopen(m_dec_file, "r")) == NULL)
{

MessageBox("Cannot open input fileto reaf:from");
exit(l);

}
foeek(outputl, SEEK_SET; O);

CString Save__file;

CFileDialogm_IdFile (FALSE,''*.txtll,NULL,
O:FN_HIDEREADONLY,"Decıyptfilesl*.txt");

mIdl'ilc.m ofn.lpstrlniriaılrir = "c:\\";

if (m__IdFile.DoModal()!= IDCANCEL)
{

Savefile = m_IdFile.GetPathName();
UpdateData(FALSE);

}

if ((decryptl = fopen(Save_:file,"w+11)) == NULL)
{

MessageBox("Cannot open output :fileto write on");
exit(l);

}

char el, c2, c3, chdec;
Encrypt EneI;

Point dec;

do
{

el= fgetc(outputl);
Encl.x = EN.rnap(cl);

c2 = fgetc(outputl );
Encl.y= c2;

c3 = fgetc(outputl );
Encl.z = c3;
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dec = decrypt (Encl, A, prime, a);

eh__dec = EN.cmap(dec);

putch( ch_dec );

fwrite (&ch_ dec, sizeof( char), 1, decrypt l );

} while (el != EOF);

fclose( outputl );
fclose( decryptl );

MessageBox("Y our Decryption Operation Successfulys");

Point CDecrDlg::decrypt(Encrypt Ene, int A, int prime, int a)
{

Point res={O,O};
Point dec;
int xl,x2;

CGkDlg d;

res = d.Mult(Enc.x,A,prime,a);
getchı);
xl = (d.inverse(prime,res.x) * Enc.y); xl = fi:nod(xl,prime);
x2 = (d.inverse(prime,res.y) * Enc.z); x2 = finod(x2,prime);

dec.x = xl;
dec.y= x2;

return dec;

oid CDecrD1g::OnSend2()

il TODO: Add your control notification handler code here

CRecive recive;
MessageBox("Enter the IP of your friend");

recive.DoModal();

id CDecrD1g::OnBrows2()
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il TODO: Add your control notification handler code here

CFileDialog m_IdFile (TRUE,NULL, NULL, OFN_HIDEREADONLY,"text
filesi" .Ene");

m_.IdFile.m_o:fu.lpstrlnitiaIDir = "c:\\";
if(m_IdFile.DoModal() != IDCANCEL)
{

m__dec_file= m_IdFile.GetPathName();
UpdateData(F ALSE);

}

BOOL CDecrDlg::OnlnitDialog()
{

CDialog: :OninitDialog();

il TODO: Add extra initialization here

CComQIPtr<ISkin> pSkin = GetDlgitem(IDC _SKIN l )­
GetControlUnknown();

pSkin-> ApplySkin( (long)ın _hWnd);

return TRUE; il return TRUE unless you set the focus to a control
il EXCEPTION: OCX Property Pages should return FALSE

********************************************************•********+*I 

efıned(AFX'-RECIVE_H_l728CEAA_CADA_ 450A_A089 __B6B3D8783l67 __ INC
UDED_)
efine
X RECIVE H 1728CEAA CADA 450A A089 B6B3D8783167 INCLUDED- -- - - -

MSC VER> 1000- -
ragma once
ndif il MSC VER> 1000- -
Recive.h : header file

'llllllllllll lil llllll lllllll il llllllll llllllllllll llllllllllllll lll llllll l
CRecive dialog

ss CRecive : public Cfrialo g

onstruction
lic:

void ReciveFile();
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CRecive(CWnd* pParent = NULL); il standard constructor

Dialog Data
il{ {AFX__DATA(CRecive)
enum { IDD = IDD_DIALOGI };
CString m_ip;
CString m_dec_file;
il} }AFX_DATA

Overrides
il ClassWizard generated virtual function overrides
11 { { AFX__vIRTUAL(CRecive)
protected:
virtual void DoDataExchange(CDataExchange* pDX); il DDX/DDV support
il} }AFX_ VIRTUAL

Implementation
otected:

11 Generated message map functions
il{ {AFX_MSG(CRecive)
afx_msg void OnRConnect();
virtual BOOL OnlnitDialog();
afxjnsg void OnSave();
11}} AFX __MSG
DECLARE __MESSAGE_MAP()

{{AFX_INSERT LOCATION}}
Microsoft Visual C-H- will insert additional declarations irnmediately before the

revious line.

/
ndif il
efined(AFX _RECIVE _H_l 728CEAA _CADA_450A _A089 _B6B3D8783167_INC

UDED_J

*******************************************************************I

{ {NO__DEPENDENCIES}}
Microsoft Developer Studio generated include file.
Used by ECC.rc

OxOOlO 
100
101
102

efine IDM ABOUTBOX
efine IDD ABOUTBOX
efine IDS ABOUTBOX
efine IDD ECC DIALOG-· -
efine IDP __SOCKETS _INIT_F AILED
efine IDR MAINFRAME 128

103
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129
130
131 

133 
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1011
1012 
1013
1015
1016
1017 
1018
1019
1020
1023

1024
1025 

1027
1029 

#define IDD ENCRYPTION
#define IDD DECRYPTION
#define IDD GENERAT KEY
#,lefine IDD-DIALOG1 --
#define IDC ENC
#define IOC DEC
#define JDC GK
#.defineIDC__Encrypt
#define IDC Send1
#define IDC EDITl
#define IDC Brows
#.defineIDC_ED1T2
#define IDC EDIT3
#define IDC EDIT4
#define JDC_EDIT6
#define IDC EDIT7- -
#define IDC_EDIT8
#define IDC ED1Tl0
#define IOC EDITl 1
#define IOC_Decrypt
#define IDC Send2
#define IDC Brows2
#define IDC_GenKey
#define IDC RConnect
#define IDC SKINl
#define IDC BUTTONl
#define IOC E
#define IDC EDIT9

// Next default values for new objects
il
#ifdef APSTUDIO INVOKED
#ifndef APSTUDIO READONLY SYMBOLS

1#de:fine_APS_NEXT_RESOURCE_VALUE
#define APS NEXT COMMAND VALUE- - -- -
#define APS NEXT CONTROL VALUE
#define - APS-NEXT--SYMED VALUE- - - -

143
32771

1030
101

#endif
#endifl**************************************************************•*****I 

I I stda:fx.h: include file for standard system inchıde files,
il or project speci:fic include files that are used frequently,but
11 are changed infrequently
il

#if!defined(AFX_STDAFX_H FE507C59_E3CE_49FF__83CA_3B01BDlıA0C85__INC

LUDED_J
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#define
AFX STDAii'X H FE507C59 E3CE 49FF 83CA 3B01BDBA0C85 INCLUDED- -· - - --- - - -

#if _MSC __vER > 1000
#pragma once
#endif // MSC VER> 1000- -

#define VC EXTRALEAN
headers

il Exclude rarely-used stufffroın Windows

#include <afxwin.h> // MFC core and standard coınponents
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC Autoınation classes
#include <afxdtctl.h> // MFC support for Internet Explorer 4 Coınmon Controls
#ifudef _AFX __NO _AFXCMN_SUPPORT
#include <afxcnın.h> // MFC support for Windows Coınmon Controls
#endif // AFX NO • AFXCMN SUPPORT- - - -

#include <afxsock.h> // MFC socket extensions

//{ {AFX_INSERT_LOCATION}}
il Microsoft Visual C++ will insert additional declarations imınediately before the

previous line.

#endif //
!de:fined(AFX_STDAFX_H_FE507C59 _E3CE _49FF_83CA_3B01BDBA0C85_INC

LUDED_)/********************************************************************/ 

#if!defined(AFX_DECRDLG_H_6D8CAF83_8B2A_44FE_B3El_F39804D5AC90_IN

CLUDED_)
#defineAFX __DECRDLG_JI_6D8CAF83_8B2A_ 44FE_B3E1_F39804D5AC90 INCLUDE

D

#include 11GkDlg.h" // Added by ClassView
#include "ECCDlg.h "
#if MSC VER> 1000- -
#pragma once
#endif // MSC VER> l 000- -
il DecrDlg.h: header file
il

ıı ıııııııı ı ı ıı ııı ı ı ııııı ıı ı ı ı ı ıı ı ıııı ııııııı ı ııııııııııııı ı ı ıııı ı ıııı ıı ıııııı
il CDecrDlg dialog

class CDecrDlg: public CDialog
{
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il Construction
public:

Point decrypt (Encrypt Ene, int A, int prime, int a);
CDecrDlg(CWnd* pParent = NULL); il standard constructor

il Dialog Data
il{ {AFX~DATA(CDecrDlg)
enum { IDD = IDD_DECR.YPTION };
int m eek- '
int m_eeB;
int m_priıne;
int m_SK;
CString m_dec_file;
il} }AFX_DATA

11 Overrides
il ClassWizard generated virtual function overrides
il{ {A1'X_VIRTUAL(CDecrD1g)
protected:
virtual void DoDataExchange(CDataExchange* pDX); il DDXIDDV support
il} }AFX_ VIRTUAL

11 Implementation
protected:

11 Generated message map functions
il{ {AFX_MSG(CDecrDlg)
afxmsg void OnDecrypt();
afx_msg void ünSend2();
afx_msg void OnBrows2();
virtual BOOL OninitDialog();
il} }AFX_MSG
DECLARE_ MESSAGE_MAP()

};

il{ {AFX_JNSERT_LOCATION}}
il Microsoft: Visual C++ will insert additional declarations immcdiately before the
previous line.

#endif il
!defined(AFX DECRDLG H 6D8CAF83 8B2A 44FE B3El F39804D5AC90 IN- -- - - - - -
CLUDED_j
l**************************************•*****************************I
11 ECC.h : main header file for the ECC application
il
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#if
!defined(AFX __ECC_H_B19448DB_OE6A'-40FC_9A8E_5ED8B69FA381_INCLUD
ED_J
#define
AFX ECC H Bl9448DB OE6A 40FC 9A8E 5ED8B69FA381 INCLUDED- - - - - - - -- -

#if MSC VER > 1000- -
#pragma once
#endif // MSC VER > 1000- -

#ifndef AFXWIN H-- - -
#error include 'stdafx:.h' before including this file for PCH

ı #endif

#include "resource.h" il main symbols

illil/lil/lll illllllll ll/llll il /il/il il///I /IIII I/ I//IIII III I/lll llll l/illlll
il CECCApp:
il See ECC.cpp for tlıe implementation ofthis class
il

class CECCApp : public CWinApp
{
public:

CECCApp();

<',

// Overrides
il ClassWizard generated virtual fünction overrides
//{ {AFX'-VIRTUAL(CECCApp)
public:
virtual BOOL Initlnstance();
//} }AFX_ VIRTUAL

ı il Implementation

// { { AFX __MSG( CECCApp)
il NOTE - the ClassWizard will add and remove member functions here.
il DO NOT EDIT what you see in these blocks of generated code !

//} }AFX_MSG
DECLARE _MESSAGE_MAP()

} ;

lll/llllll/illll/llll//// I////////il I I////il I //// ///// I///// I// ililI I/I//// I/

//{ {AFX_INSERT_LOCATION}}
il Microsoft Visual C++ will insert additional declarations immediately before the
previous line.



#endif //
!defined(AFX_ECC_H_B19448DB_OE6A_ 40FC_9A8E_5ED8B69FA381 __:_)NCLUD
ED)
/********************************************************************/ 
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