
NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED
AND SOCIAL SCIENCES

OPTIMUM EDGE DETECTION

EMAD ADNAN AALIAN

Master Thesis

Department of Computer Engineering

Nicosia 2004

'

Emad Adnan Aalian : Optimum Edge Detection

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakhraddin Mamedov
Director

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

iyev, Committee Chairman, Chairman of
Computer Engineering Department, NEU

Assist. Prof. Dr. Firudin Muradov, Committee Member, Computer
c:f:,-~ Engineering Department, NEU

Assoc. Prof. Dr. Sameer Ikhdair, Committee Member, Electrical &
Electronic Engineering Department, NEU

Assoc. Prof. Dr. Adnan?ashman, Supervisor, Chairman of Electrical &
~ Elect~gineering Department, NEU

ACKNOWLEDGEMENTS

I would like to express my greatful thanks to my supervisor Assoc. Prof Dr. Adnan

KHASHMAN for his guidance and encourgmerıt through my thesis preparation.

I would like to thank my family, specially my father and mother for their moral and

financial support and patience, and also my brother Alaa who help me very much to finish

my thesis.

I would like to thank my friend Marwan, Obid, Ahmad, Guven, and for all friends

that i met in North Cyprus.

Also I would to thank my family-in-law in Cyprus specially my mother-in-law

Shadye and to Selma for her moral support.

I would like to thank my work friends egemen ltd family Attilla, Ayla, Erkan,

Ibrahim, Nasir, Sercan, Inci, Meltem, Serkan, Izzet, Vahbi, Nulifer, Nazaket, Hasan, Akin

and to Ozcanlar in Famagusta

I would to thank Mr. Tayseer SHANABLAH for his support in solving the

problems that I faced during my both undergraduate and postgraduate studies.

Finally, I would like to thank Near East University, its whole staff, students, and

every one that I mel there.

TABLE OF CONTENTS

ACKN"OWLEDGMENTS.. i

TABLE OF CONTENTS.. II

i\.13~".rllt\.C'J'.. iv

IN'TRODUCTJON 1

1. IMAGE PROCESSING TECHNIQUES... 5

1.1. Overview.. 5

1.2. Human visual Perception... .. 5

1.2.1. The Human Visual System... 6

1.2.2. Image Representation.. 7

1.2.2.1. Binary Images............ .. 8

1.2.2.2. Gray-scale Images.. 8

l.2.2.3. Color Images.. 9

1.2.2.4.Multispectral images.. 10

1.3. Computer imaging... 11

1.3 .1. Computer Vision... ... 12

1.3.2. Image processing... 12

1.4. Computer imaging system.. 15

1.5. Summary... 16

2. EDGE DETECTION OPEllt\.TORS...........•• • •• • •• • •• • • •• • . • •• . .. • •• • •• . • . • •• • •... 17

2.1. Overview . 17

2.2. Edge Detectors... 17

2.2.1. Laplacian of Gaussian... 20

2.2.2. Roberts Cross Edge Detector... 24

2.2.3. Sobel Edge Detector... 27

2.2.4. Prewitt Edge Detector.. 29

2.3. Summary... 32

11

3. THE DEVELOPED SOFTWARE APPLICATION................................ 33

3.1. Overview... 33

3.2. Software Specifications... 33

3.3. Program Flowchart... 35

3.4. The Program Interfaces... 36

3.5. Summary... 40

4. RESULTS AND COMPA.RISON... 41

4.1. Overview.. 41

4.2. Image capturing enviroment.. 41

4.3. Cameradetails... 42

4.4. Applying the developed software to the images.. 43

4.5. Optimum edge detector criteria... 46

4.5.1. Continuity of the edges... 46

4.5.2. Noise reduction... 46

4.5.3. Lighting :.. 47

4.5.4. Contrast... 47

4.5.5. convolution speed... 47

4.6 Comparison and Analysis... 48

4.7. Additional Example for Edge Detection... 51

4.7.l. Results Analysis.. 54

4.8 Summary... 56

CONCLUSION.. 57
REFERE.NC.ES.. 58

APPEND.IX. A 59

ı\.J>J>l:NDJ:.~ 11... 68

111

ABSTACT

Receiving and organizing the visual sensory data into patterns is an important part

of human perception. Very often there is homogeneity between regions within these

patterns with respect to the data. This homogeneity is coming from that these regions have

constant or nearly constant gray level. Also it may result from textural properties of regions

within the all image. In both cases it might be possible to segment the image according to a

definable homogeneic characteristic. For example, in thresholding, an effort is made to

separate the image into object and background by choosing the appropriate threshold value.

Through this process we have to consider the degree of darkness, in a bi-level sense, as a

measure of homogeneity. If an image happens to contain two objects both are darker the

background, the operator can detect both of them, on the other hand, if one of them is

lighter than background, it will be impossible for it to be detected.

After assigning the threshold the objects within images can simply be recognized

by their crude outlines or edges. Thus, edge detection is considered as a low-level process

in image recognition as it applied prior to other image processing techniques.

ıv

INTRODUCTION

A commonly held belief that edge detection is the first step in vision processing

has fueled a long search for a good edge detection algorithm. Edge detection refers to

the process of identifying and locating sharp discontinuities in an image. Edges are

defined as discontinuities in the image intensity due to changes in scene structure. These

discontinuities originate from different scene features and can describe the information

that an image of the external world contains. Enhancement and smoothing attempt to

make these discontinuities apparent to the detector, so that desirable edges can be

extracted.

Edge detectors, where ground truth not available, are evaluated by their ability

to produce edges that provide for the quick and accurate recognition, as judged by

humans, of a three dimensional object from a grayscale image of the object in its natural

setting. From a complete evaluation methodology was determined that a statistically

significant difference exists in the relative performance of edge detection algorithms.

The relative performance depends on the method used for selecting the input

parameters, as significantly better performance was attained by the edge detectors when

the parameters of each were optimized individually for each image than when a single

set of parameters was optimized for the entire set of images.

Edge Detection Important For Feature Extraction and Subsequent Vision Tasks:

Texture Analysis, Motion Detection/ Estimation, Stereopsis and Recognition in both

Machine and Biological Vision Systems.

From 1960 to 1975 the discrete gradients (Roberts 1965, prewitt 1970, Sobel

1970, Kirsch 1971) and laplacians where invented and used as edge detectors. It

considered an edge is a jump in intensity. The cross section of an edge has the shape of

a ramp. An ideal edge is a discontinuity (i.e., a ramp with an infinite slope). The first

derivative assumes a local maximum at an edge. For a continuous image, where x and y

are the row and column coordinates respectively, we typically consider the two

directional derivatives and. Of particular interest in edge detection are two functions

that can be expressed in terms of these directional derivatives: the gradient magnitude

and the gradient orientation.

1

In 1980 Marr & Hildreth invented their new edge detector. in the Marr-Hildreth

operator a maximum of the first derivative will occur at a zero crossing of the second

derivative. to get both horizontal and vertical edges we look at second derivatives in

both the x and y directions. The laplacian is linear and rotationally symmetric. Thus,

we search for the zero crossings of the image that is first smoothed with a Gaussian

mask and then the second derivative is calculated; or we can convolve the image with

the Laplacian of the Gaussian, also known as the LoG operator.

The Marr-Hildreth operator became widely used for the following reasons:

• Marr had considerable reputation.

• Researchers found receptive fields in the eyes of animals (usually cats and

macaque monkeys) that behaved just like this operator.

• The operator is symmetric. Edges are found in all orientations, unlike the first

derivative operators which are directional.

• Zero crossings of the second derivative are simpler to determine than are

maxima in the first derivative; all that needs to be done is to look for a sign

change in the signal.

During I 983 John Canny did his Masters degree at MIT. He treated edge

detection as a signal processing problem and aimed to design the 'optimal' edge

detector. He formally specified an objective function to be optimized and used this to

design the operator.

The objective function was designed to achieve the following optimization constraints:

• Maximize the signal to noise ratio to give good detection This favors the

marking of true positives.

• Achieve good localization to accurately mark edges.

• Minimize the number of responses to a single edge. This favors the

identification of true negatives, that is, non-edges are not marked.

Note a difference-of-boxes operator will maximize the signal to noise ratio, but

will give several responses to a single edge.

2

After some complicated analysis Canny came up with a function that was the

sum of 4 exponential terms. However, this function looked very much like a first

derivative of a Gaussian! So this is what ended up being used.

Between 1979 - 1987 Morphological Gradient & Laplacian where discovered.

Beucher (1979) showed that with the use of mathematical morphology's dilation and

erosion we can have a morphological gradient. Lee, Haralick & Sapiro (1987) used a

linear smoothing operator and derived to better results.

Edge detection for gray-level image by morphological gradient method has

better results than the conventional edge detection methods. The reason is that the

morphological approaches eliminated the isolated points, which we often consider as

noise. Vliet, Young and Beckers (1989), approached the second deritive (laplacian with

a morphological laplacian).

Since 1985 till the present time the linear & non-linear scale-space is the newest

method for edge detection A vision system for handling objects of different sizes and

at different distances needs a way to control the scale(s) at which the world is observed.

Why should one represent a signal at multiple scales when all information is present in

the original data anyway? The major reason for this is to explicitly represent the multi

scale aspect of real world images. Another aim is to simplify further processing by

removing unnecessary and disturbing details.

In this project a software application were developed which integrate the

common edges detectors. Five detectors were included in the program. I

Chapter one has a general information and some basic definitions were

discussed in order to supply the reader with enough knoweldege that can help in

understanding the rest of the chapters. The human vision preception and human vision

system were expliaııed breitly. After that it shows the image is represented. It make a

list of image types that will be considered. The importance of computer imaging and its

two types, computer vision and image processing, were discussed ..

Chapter two explains the edge detection idea. It shows the types of edge detector

in general. Such as Laplacian of the Gaussian, Roberts Cross, Sobel, and Prewitt. The

3

common names of detectors, Brief description, how it works, and guidelines for use

were explianed.

Chapter three shows the developed software application It explians the software

specifications with showing the way that detectors work and their masks. program

interface which consist mainly from three buttons as open, save and reset were

explained. the program flowchart made it easy for the reader to follow the mechanism

of the program and how it works.

Chapter four contains the extract of the whole thesis. It starts with showing the

box where our two images were captured. Then it lists the details of the camera which

had been used to capture the images. Later on it shows the result of applying each of the

five operators on the two captured images. A comparison and analysis is made between

these results to determine the optimum edge detector after explianing the criteria of

choosing the optimum edge detector.

The objectives of the work presented within this thesis are:

• Develop a software application that integrate the common edge detectors

• Provide a userfriendly GUI for further uses

• To compare & analyse the edge operators using own captured unique images.

• To create a criteria for optimum edge detector

4

CHAPTER 1: IMAGE PROCESSING TECHNIQUES

1.1. Overview

Computer imaging becomes one of the important things in the human life as it

allowed us to be in touch with the whole world by sending and receiving data It can be

purely computerized or it can involve human being in its loop.

For the computer vision it will not involve any human and the decision will be

taken just by the computer by analyzing and comparing. It involves many topics like

image analysis, which involve other topics under it.

For the human vision or image processing, it will be different, as it will involve

human being in its stages for examining. It involves many topics too like image

restoration, image enhancement, image compression, and image segmentation So in

order to know how these processes apply we have to know first how the human visual

system works and the image representation in the human eyes.

This chapter presents the basic information for the way the human visual system

works in order in addition to an introduction to computer vision.

1.2. Human visual Perception

Human visual perception is something most of us take for granted. We do not

think about how the makeup of the physiological systems affects what we see and how

we see it. Although human visual perception encompasses both physiological and

physiological components, we will focus primarily on the physiological aspects, which

are more easily quantifiable, using the current models available for understanding the

systems.

We have briefly discussed the need to understand how we perceive visual

information in order to design compression algorithms that compact the data as much as

possible but still retain all the necessary visual information. This is desired for both

transmission and storage e economy. Images are often transmitted over the airwaves and

will be transmitted more frequently via the World Wide Web (internet), but people do

5

not want to wait minutes or hours for the images. Additionally, the storage requirements

can become overwhelming without compression. For example, an 8-bit monochrome

image, with a resolution of 512 pixels wide by 512 pixels high, requires one quarter of a

megabyte of data If we make this a color image, it requires three quarters of a

megabyte of data (one quarter for each of three colors bands-red, green, and blue). With

many applications requiring the capability to process thousands of images in relatively

short periods of time, the need to reduce data is apparent. For the development of image

enhancement algorithms, we also have the need to understand how the human visual

system works. We need to know the types of operations that are likely to improve an

image visually, and this can be achieved only by understanding how the information is

perceived.

1.2.1. The Human Visual System

System has two primary components-the eye and the brain, which are connected

by the optic nerve. The structure that we know the most about is the image receiving

sensor the human eye. The brain can be thought of as being an information processing

unit, analogous to the computer in our computer imaging system. These two are

connected by the optic nerve, which is really a bundle of nerves that contains the

pathways for the visual information to travel from the receiving sensor (the eye) to the

processor (the brain). The way the human visual system works follows:

1) Light energy is focused by the lens of the eye onto the sensors on the retina,

2) These sensors respond to this light energy by an electrochemical reaction that sends

an electrical signal down tie optic nerve to the brain,

3) The brain uses these nerve signals to create neurological patterns that we perceive as

images. The visible light energy corresponds to an electromagnetic wave that falls

into the wavelength range of about 380 to 825 Manometers, although the response

above 700 manometers is minimal.

In imaging systems the spectrum is often divided into various spectral bands,

where each band is denned by a range on the wavelengths (or frequency). For example,

we can divide the visible spectrum into roughly three bands corresponding to blue (400

to 500 run), and green (500 to 600 run), and Red (600 to 700 nm). The eye has two

6

primary type of light energy receptors, or photoreceptive, which respond to the

incoming light energy and convert it into electrical energy via a complex

electrochemical process. These two types of sensor are called rods and cones. The

sensors are distributed across the retina, the inner backside of the eye where the light

energy falls after being focused by the lens. The cones are primarily used for daylight

vision, are sensitive to color, are concentrated in the central region of the eye, and have

a high resolution capability. The rods are used in night vision, see only brightness (not

color), are distributed across the retina, and have medium to low level resolution

1 .2.2. Image Representation

We have seen that the human visual system receives an input image as a

collection of spatially distributed light energy; this form is called an optical image.

Optical images are the types we deal with everyday cameras capture them, monitors

display them, and we see them. We know that these optical images are represented as

video information in the form of analog electrical signals and have seen how these are

sampled to generate the digital image. J(r,c)

The digital image is represented as a two-dimensional array of data, where each

pixel value corresponds to the brightness of the image at the point (r, c). In linear

algebra terms, a two-dimensional array like our image model /(r, c) is referred to as a

matrix, and one row (or colunın) is called a vector. This image model is for mono

chrome (one-color, this is what we normally refer to as black and white) image data, but

we have other types of image data that require extensions or modifications to this

model. Typically, these are multiband images (color, multispectral), and they can be

modeled by a different Itr, c) function corresponding to each operate band of brightness

information. The image types we will consider are:

l) Binary images.

2) Gray-scale images.

3) Color images.

4) Multispectral images.

7

1.2.2.1. Binary Images

Binary images are the simplest type of images and can take on two values,

typically black and white, or 'O' and 'I.' A binary image is referred to as a I bit/pixel

image because it takes only 1 binary digit to represent each pixel. These types of images

are most frequently used in computer vision applications where the only information

required for the task is general shape, or outline, information. For example, to position a

robotic gripper to grasp an object, to check a manufactured object for deformations, for

facsimile (FAX) images, or in optical character recognition (OCR). Binary images are

often created from Gray-scale images via a threshold operation, where every pixel

above the threshold value is turned white ('I'), and those below it are turned black ('O').

1.2.2.2. Gray-scale Images

Gray-scale images are referred to as monochrome, or one-color, images. They

contain brightness information only, no color information The number of bits used for

each pixel determines the number of different brightness levels available. The typical

image contains 8 bits/pixel data, which allows us to have 256 (0-255) different

brightness (gray) levels. This representation provides more than adequate brightness

resolution, in terms of the human visual system's requirements, and provides a incise

margins by allowing for approximately twice as many gray levels as required. This

noise margin is useful in real-world applications because of the many different types of

noise (false information in the signal) inherent in real systems. Additionally, the 8-bit

representation is typical due to the fact that the byte, which corresponds to 8-bits of

data, is the standard small unit in the world of digital computers.

In certain applications, such as medical imaging or astronomy, 12 or 16

bits/pixel representations are used. These extra brightness levels become useful only

when the image is "blown-up," that is when a small section of the image is made much

larger. In this case we may be able to discern details that would be missing without this

additional brightness resolution. Of course, to be useful, this also requires a higher level

of spatial resolution (number of pixels). If we go beyond these levels of brightness

resolution, we typically divide the light energy into different bands, where each band

refers to a specific subsection of the visible image spectrum.

8

1.2.2.3. Color Images

Color images can be modeled as three-band monochrome image data, where

each band of data corresponds to a different color. The actual information stored in the

digital image data is the brightness information in each spectral band. When the image

is displayed, the corresponding brightness information is displayed on the screen by

picture elements that emit light energy corresponding to that particular color. Typical

color images are represented as red, green, and blue, or RGB images. Using the 8-bit

monochrome standard as a model, the corresponding color image would have 24 bits/

pixel-f-bits for each of the three color bands (red, green, and blue).

For many applications, RGB color information is transformed into a

mathematical space that decouples the brightness information from the color

information. After this is done, the image information consists of a one-dimensional

brightness, or luminance, spate and a two dimensional color space. Now the two

dimensional color space does not contain any brightness informative, but it typically

contains information regarding the relative amounts of the different colors. An

additional benefit of modeling the color information in this manner is that it creates a

more people-oriented way of describing the colors.

For example, the hue/saturation/lightness (HSL) color transform allows us to

describe colors in terms that we can more readily understand (see Figure 1.1). The

lightness is the brightness of the color, and the hue is what we normally think of as

"color" ('for example green, blue, or orange). The saturation is a measure of how much

white if in the color (for example, pink is red with more white, so it is less saturated

than a pure red). Most people can relate to this method of describing colon For example,

"A deep, bright oranges would a have a large intensity ("bright"), a hue of orange and a

high value of saturation (deep). We can picture this color in our minds but if we defined

this color in terms of its RGB component's, R = 245, G = 11 O, and B = 20, most people

would have no idea low this color appears. Because the HSL color space was developed

based on heuristics relating to human perception, various methods are available to

transform RGB pixel values into the HSL color space. Most of these are algorithmic in

nature and are geometric approximations to mapping the RGB color cube into some

HSL-type color space.

9

I

HSL color Space

White
Lightness

(Shades of gray)

/

Zero

Saturation Hue__... ·-·-·-·-·-L._, /
·-r- -·-·-.

'·

Green
.-------·-·-·- -·.,.

/
/

I

'
I

/
\

..... ·- /.,·-.R~l -·-·- _-·-·--·Blue·- -·-·-

Black

Figurel.1. HSL Color Space

1.2.2.4. Multispectral images

Multispectral images typically contain information outside the normal human

perceptual rang. This may include infrared, ultraviolet, X-ray, acoustic or radar data

These are not images in the usual sense because the information represented is not

directly visible by the human system

Source for these types of images include satellite systems, underwater sonar systems,

various types of airborne radar, infrared imaging systems, and medical diagnostic

imaging systems. The number of bands into which the data are divided is strictly a

function of the sensitivity of the imaging sensors used to capture the images.

10

For example even the visible spectrum can be divided into many more than three

bands; three are used because this mimics our visual system. Most of the satellites

currently in orbit collect image information in tow to seven spectral bands, typically one

to three are in the visible spectrum, one or more are in the infrared region, and some

have sensors the operate in the radar range. The newest satellites have sensors that

collect image information in 30 or more bands.

As the amount of data that needs to be transmitted, stored, and processed

ıncreases, the importance of topics such as compression becomes more and more

apparent.

1.3.Computer imaging

Computer imaging is a fascinating and exciting area to be involved in today.

The advert of the information superhighway, with its ease of use via the World Wide

Web, combined with the advances in computer power have brought the world into our

offices and into our homes. One of the most interesting aspects of this information

revolution is the ability to send and receive complex data that transcend ordinary written

text.

Computer Imaging

ImageComputer
vision

Figure 1.2 Computer Imaging

11

1.3.1. Computer Vision

Computer vision is the computer imaging where the application does not involve

human being in the visual loop. In other words, the image are examined and acted upon

by a computer. One of the major topics within the field of computer vision is image

analysis.

Image analysis involves the examination of the image data to facilitate solving a

vision problem. The image analysis process involves two other topics feature extraction

and pattern classification. Feature extraction is the process of acquiring higher level

image information, such as shape or color information, and pattern classification is the

act of taking this higher-level information and identifying objects within the image.

Computer vision systems are used in many and various types of environments

from manufacturing plants to hospital surgical suites to the surface of mars.

1.3.2. Image processing

Image processing is the computer imaging where the application involves a

human being in the visual loop. In other word, the image is to be examined and acted

upon by people. For these types of applications, we require some understanding of how

the human visual system operates. The major topics within the files of image processing

include image restoration, image enhancement, and image compression.

Image restoration is the process of taking an image with some known, or

estimated, degradation, and restorating it to its original appearance. Image restoration is

often used in the field of photography or publishing where an image somehow degraded

but needs to be improved before it can be printed. For this type of application, we need

to know something about the degradation process in order to develop a model for the

distortion When we have a model for the degradation process, we can apply the inverse

process to the image to restore it to its original form.

Image enhancement involves taking an image and improving it visually,

typically by tanking advantage of the human visual system's response. One of the

simplest and often most dramatic enhancement techniques is to simple stretch the

12

contrast of an image. Enhancement methods tend to be problem specific. For example a

method that is used to enhance satellite image may not be suitable for enhancing

medical images. Although enhancement and restoration are similar in aim, to make an

image look better, they differ in how they approach the problem. Restoration methods

attempt to model the distortion to the image and reverse this degradation, whereas

enhancement method uses knowledge of the human visual system's response to improve

an image visually.

Image compression involves reducing the typically massive amount of data

needed to represent an image. This is done by eliminating data that are visually

unnecessary and by tanking advantages of the redundancy that is inherent in most

images. Although image compression is used in computer vision systems.

Image segmentation is important in many computer vision and image processing

applications. The goal of image segmentation is to find region that represent objects or

meaningful parts of objects. Division of the image into region corresponding to objects

of interest is necessary before any processing can be done at a level higher than that of

the pixel. Identifying real objects, pseudo-objects, and shadows or actually finding any

thing of interest within the image requires some form of segmentation.

Image segmentation methods look for objects that either have some measure of

homogeneity within them selves or have some measure of contest with the objects on

their border. Most image segmentations algorithms are modifications, extensions, or

combinations of these two basic concepts. The homogeneity and contrast measures can

include features such as gray level, color, and texture. After we have performed some

preliminary segmentation, we may incorporate higher-level object properties, such as

perimeter and shape into the segmentation process.

Also we have to consider some problems associated with image segmentation.

The major problems are result of noise in the image and digitization of the continuous

image. Noise is typically caused by the camera, the lenses, the lighting, or the signals

path and can be reduced by the use of the preprocessing methods previously discussed.

13

Spatial digitization can be cause problems regarding connectivity of objects. These

problems can be resolved with careful connectivity definition and heuristics applicable

to the specific domain.

Connectivity refers to the way in which we define an object. After we have

segmented an image. We must define which of the surrounding pixels are considered to

be neighboring pixels. A pixel has eight possible neighbors: Two horizontal neighbors.

Two vertical neighbors, And four diagonal neighbors.

We can define connectivity in three different ways:

1. Four-connectivity.

2. Eight-connectivity.

3. Six-connectivity.

Figure 1.3 illustrates these three definitions.

a. Four-connectivity b. Eight-connectivity

c. Six-connectivity NW/SE d. Six-connectivity NE/SW.

Figure 1.3. Connectivity

14

We can divide image segmentation techniques into three main categories:

1. Region growing and shrinking.

2. Clustering methods.

3. Boundary detection

1.4. Computer imaging system

Computer imaging systems are comprised of two primary component types,

hardware and software. The hardware components can be divided into the image

acquisition subsystem, the computer itself, and the display devices.

The software allows us to manipulate the image and perform any desired

processing on the image data. Additionally, we may also use software to control the

image acquisition and storage process.

(Image Acquisition like: Camera, Scanner, Video player...).

(Image Display like: Monitor, Printer, Film, Video Recorder ...).

Feature Extraction

Image RepresentationHigh Level Operations

Feature/objects

Transforms
Segmentation

Edge detection ~~~~~~~~~

Spectrum
segmentation
edge/lines

Preprocessing neighborhood/
Sub image

Raw Image data Pixel

Low Level

Figure 1.4.Toe Hierarchical Image Pyramid

15

1.5. Summary

This chapter tries to give a small view about the image processing and its

importance in our life beginning with the computer imaging which involve computer

vision and image processing. It explained briefly the both parts of computer imagining,

Computer vision and Image processing and there differences.

This chapter also tries to show the mechanism of the human visual system, its

main components, and its image types. Next chapter will focus in the techniques used to

detect the objects' edges.

16

CHAPTER 2: EDGE DETECTION OPERATORS

2.1. Overview

Objects within images can simply be recognized by their crude outlines or

edges. Thus, edge detection is considered as alow-level process in image recognition as

it applied prior to other image processing techniques.

Edge detection operators are based on the idea that edge information in any

image is found bu looking at the relationship a pixel has with its neighbors. If a pixel's

gray-level value is similar to those around it, there is probably not an edge at that point.

However, if a pixel has neighbours with widly varying gray levels, it may present an

edge point. In other words, an edge is defined by a discountinuity in gray-level values.

Ideally, an edge separates two distinct objects. In practice, apparent edges are cuasedby

changes in color or texture or by the specific lighting conditions present during the

image acquisition process.

This chapter presents some of the most commonly used operator in edge

detection, such as Roberts operator, Prewitt operator, Sobel oprator, and Laplacian of

the Gaussian operator. It gives a brief description about each operator , how they work,

and guidelines for use.

2.2. Edge Detectors

Edges are places in the image with strong intensity contrast. Since edges often

occur at image locations representing object boundaries, edge detection is extensively

used in image segmentation when we want to divide the image into areas corresponding

to different objects. Representing an image by its edges has the further advantage that

the amount of data is reduced significantly while retaining most of the image

information.

Since edges consist of mainly high frequencies, we can, in theory, detect edges

by applying a high pass frequency filter in the Fourier domain or by convolving the

image with an appropriate kernel in the spatial domain. In practice, edge detection is

17

performed in the spatial domain, because it is computationally less expensive and often

yields better results.

Since edges correspond to strong illumination gradients, we can highlight them

by calculating the derivatives of the image. This is illustrated for the one-dimensional

case in Figure 2.1.

Function

1 stderiyative

2iıd.de.ri\iative

Figure 2.1 1st and 2nd derivative of an edge illustrated in one dimension.

We can see that the position of the edge can be estimated with the maximum of

the 1st derivative or with the zero-crossing of the 2nd derivative. Therefore we want to

find a technique to calculate the derivative of a two-dimensional image. For a discrete

one-dimensional functionf(ı}, the first derivative can be approximated by

df(i) = f(i + 1)- f(i)
d(i)

(2.1)

Calculating this formula is equivalent to convolving the function with [-1 I]. Similarly

the 2nd derivative can be estimated by convolvingf(i} with [I -2 I].

18

() = arctan(Gy I Gx)- 3~ I 4 (2.4)

Different edge detection kernels which are based on the above formula enable us

to calculate either the 1 st or the 2nd derivative of a two-dimensional image. There are

two common approaches to estimate the 1 st derivative in a two-dimensional image,

Prewitt compass edge detection and gradient edge detection.

Prewitt compass edge detection involves convolving the image with set of

(usually 8) kernels, each of which is sensitive to a different edge orientation. The kernel

producing the maximum response at a pixel location determines the edge magnitude and

orientation. Different sets of kernels might be used: examples include Prewitt, Sobel,

Kirsch and Robinson kernels.

Gradient edge detection is the second and more widely used technique. Here, the

image is convolved with only two kernels, one estimating the gradient in the x-direction,

Gx, the other the gradient in the y-direction, Gy. The absolute gradient magnitude is

then given by

JGI = ~Gx2 + Gyı (2.2)

and is often approximated with

IGI = JGxl + IGyJ (2.3)

In many implementations, the gradient magnitude is the only output of a gradient edge

detector, however the edge orientation might be calculated with the most common

kernels used for the gradient edge detector are the Sobel, Roberts Cross and Prewitt

operators.

After having calculated the magnitude of the 1 st derivative, we now have to

identify those pixels corresponding to an edge. The easiest way is to threshold the

gradient image, assuming that all pixels having a local gradient above the threshold

must represent an edge. An alternative technique is to look for local maxima in the

gradient image, thus producing one pixel wide edges. A more sophisticated technique is

19

An operator based on the 2nd derivative of an image is the Marr edge detector,

also known as zero crossing detector. Here, the 2nd derivative is calculated using a

Laplacian of Gaussian (LoG) filter. The Laplacian has the advantage that it is an

isotropic measure of the 2nd derivative of an image, i.e. the edge magnitude is obtained

independently from the edge orientation by convolving the image with only one kernel.

The edge positions are then given by the zero-crossings in the LoG image. The scale of

the edges which are to be detected can be controlled by changing the variance of the

Gaussian.

used by the Canny edge detector. It first applies a gradient edge detector to the image

and then finds the edge pixels using non-maximal suppression and hysteretic tracking.

A general problem for edge detection is its sensitivity to noise, the reason being

that calculating the derivative in the spatial domain corresponds to accentuating high

frequencies and hence magnifying noise.

• Common Names

2.2.1. Laplacian of Gaussian

Laplacian of Gaussian, LoG, and Marr Filter

• Brief Description

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an

image. The Laplacian of an image highlights regions of rapid intensity change and is

therefore often used for edge detection (see zero crossing edge detectors).

The Laplacian is often applied to an image that has first been smoothed with

something approximating a Gaussian smoothing filter in order to reduce its sensitivity

to noise, and hence the two variants will be described together here. The operator

normally takes a single gray level image as input and produces another gray level image

as output.

20

• How It Works

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by:

aıı aıı
L(x,y)= ô xı +ayı (2.5)

This can be calculated using a convolution filter. Since the input image is represented as

a set of discrete pixels, we have to find a discrete convolution kernel that can

approximate the second derivatives in the definition of the Laplacian.

Three commonly used small kernels are shown in Figure 2.2.

o 1 o
1 -4 1

o 1 o

1 1 1

1 -8 1

1 1 1

-1 2 -1

2 -4 2

-1 2 -1

Figure 2.2 Three commonly used discrete approximations to the

Laplacian filter. (Note, we have defined the Laplacian using a

negative peak because this is more common; however, it is

equally valid to use the opposite sign convention.)

Using one of these kernels, the Laplacian can be calculated using standard convolution

methods.

Because these kernels are approximating a second derivative measurement on

the image, they are very sensitive to noise. To counter this, the image is often Gaussian

smoothed before applying the Laplacian filter. This pre-processing step reduces the high

frequency noise components prior to the differentiation step.

In fact, since the convolution operation is associative, we can convolve the

Gaussian smoothing filter with the Laplacian filter first of all, and then convolve this

hybrid filter with the image to achieve the required result. Doing things this way has

two advantages:

21

LoG(x,y) =-~1-[ı xı + yı] _x::{ı-
1!0"4 2a2 e

• Since both the Gaussian and the Laplacian kernels are usually much smaller than

the image, this method usually requires far fewer arithmetic operations.

• The LoG (' Laplacian of Gaussian') kernel can be precalculated in advance so

only one convolution needs to be performed at run-time on the image.

The 2-D LoG function centered on zero and with Gaussian standard deviation a has

the form:

and is shown in Figure 2.3.

(2.6)

iK 10«.ı

1 '!
o i
-1 1

i--21
l

-31 ~
I ,,. •• ;~ l ,..,,.,,.,,..,. ~_,.. ~= 4 -,.,NW.~ . •••••••- ...• .-,...•,,--,,..,.~A, _. o

,.. •• !) ·--"---- ----
. -~, j;. o .:... . --------- _, 2

2 ~-4 v
X

Figure 2.3 The 2-D Laplacian of Gaussian (LoG) function. The x and y

axes are marked in standard deviations (a).

A discrete kernel that approximates this function (for a Gaussian a= 1.4) is shown in

Figure 2.4.

22

o 1 1 2 2 2 1 1 o
1 2 4 5 5 5 4 2 1

1 4 5 3 o 3 5 4 1

2 5 3 -12 -24 -12 3 5 2

2 5 o -24 -40 -24 o 5 2

2 5 3 -12 -24 -12 3 5 2

1 4 5 3 o 3 5 4 1

1 2 4 5 5 5 4 2 1

o 1 1 2 2 2 1 1 o

Figure 2.4 Discrete approximation to LoG :functionwith Gaussian o = 1.4

The behavior of the LoG zero crossing edge detector is largely governed by the

standard deviation of the Gaussian used in the LoG filter. The higher this value is set,

the smaller features will be smoothed out of existence, and hence fewer zero crossings

will be produced. Hence, this parameter can be set to remove unwanted detail or noise

as desired. The idea that at different smoothing levels different sized features become

prominent is referred to as 'scale'. The LoG operator calculates the second spatial

derivative of an image. This means that in areas where the image has a constant

intensity (i.e. where the intensity gradient is zero), the LoG response will be zero. In the

vicinity of a change in intensity, however, the LoG response will be positive on the

darker side, and negative on the lighter side. This means that at a reasonably sharp edge

between two regions of uniform but different intensities, the LoG response will be:

Note that as the Gaussian is made increasingly narrow, the LoG kernel becomes

the same as the simple Laplacian kernels shown in Figure 2.1. This is because

smoothing with a very narrow Gaussian (o < 0.5 pixels) on a discrete grid has no effect.

Hence on a discrete grid, the simple Laplacian can be seen as a limiting case of the LoG

for narrow Gaussians.

• Guidelines for Use

• Zero at a long distance from the edge,

• Positive just to one side of the edge,

• Negative just to the other side of the edge,

• Zero at some point in between, on the edge itself

23

,•~ ••••••U•Uou1uuo• ••••OUHO ••:,-uu •• ou•Hoo•••••x•uou •• •••••••H• ı•

ut- 1 l'.lil!15g.,

~
tuır ı ~.Qtt

i ~tl~tt
(uır I i { inf,- /::

~t.ı! t- l ; if
I i i I

~Llr l ~(llli:J5t

ij.l i
aı __j -ırnt:l

~
~~.2 -6.{!15.i

(i iO HUI 1ifl 200 f.l tiO iM HfJ ~a

Figure 2.5 Response of 1-D LoG filter to a step edge. The left hand graph shows a 1-

D image, 200 pixels long, containing a step edge. The right hand graph

shows the response of a 1-D LoG filter with Gaussian o = 3 pixels.

By itself, the effect of the filter is to highlight edges in an image.

2.2.2. Roberts Cross Edge Detector

• Common Names: Roberts Cross

• Brief Description

The Roberts Cross operator performs a simple, quick to compute, 2-D spatial

gradient measurement on an image. It thus highlights regions of high spatial frequency,

which often correspond to edges. In its most common usage, the input to the operator is

a grayscale image, as is the output. Pixel values at each point in the output represent the

estimated absolute magnitude of the spatial gradient of the input image at that point.

• How It Works

In theory, the operator consists of a pair of 2x2 convolution kernels as shown in

Figure 2.6. One kernel is simply the other rotated by 90°. This is very similar to the

Sobel operator.

24

o - 1 -1 o

+1 o o +1

Gx Gy

Figure 2.6 Roberts Cross convolution kernels

These kernels are designed to respond maximally to edges running at 45° to the

pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be

applied separately to the input image, to produce separate measurements of the gradient

component in each orientation (call these Gx and Gy). These can then be combined

together to find the absolute magnitude of the gradient at each point and the orientation

of that gradient. The gradient magnitude is given by:

IGI = Jaxı + Gyı (2.7)

() = arctan(Gy I Gx)- 3n I 4 (2.9)

Although typically, an approximate magnitude is computed using:

IGI = IGxl + IGYI (2.8)

This is much faster to compute.

The angle of orientation of the edge giving rise to the spatial gradient (relative to the

pixel grid orientation) is given by:

In this case, orientation O is taken to mean that the direction of maximum

contrast from black to white runs from left to right on the image, and other angles are

measured clockwise from this.

25

Often, the absolute magnitude is the only output the user sees --- the two

components of the gradient are conveniently computed and added in a single pass over

the input image using the pseudo-convolution operator shown in the figure below

p3 p4

Pı P2

Figure 2.7 Pseudo-convolution kernels used to quickly compute

approximate gradient magnitude

Using this kernel the approximate magnitude is given by:

ıaı =IPı -P4l+IP2 -~I (2.10)

• Guidelines for Use

The main reason for using the Roberts Cross operator is that it is very quick to

compute. Only four input pixels need to be examined to determine the value of each

output pixel, and only subtractions and additions are used in the calculation. In addition

there are no parameters to set. Its main disadvantages are that since it uses such a small

kernel, it is very sensitive to noise. It also produces very weak responses to genuine

edges unless they are very sharp. The Sobel operator performs much better in this

respect.

26

2.2.3. Sobel Edge Detector

• Common Names: Sobel, also related is Prewitt Gradient Edge Detector.

• Brief Description

The Sobel operator performs a 2-D spatial gradient measurement on an image

and so emphasizes regions of high spatial frequency that correspond to edges. Typically

it is used to find the approximate absolute gradient magnitude at each point in an input

grayscale image.

• How It Works

In theory at least, the operator consists of a pair of 3x3 convolution kernels as

shown in the following figure. One kernel is simply the other rotated by 90°. This is

very similar to the Roberts Cross operator.

- 1 o +1

-2 o +2

- 1 o +1

+1 +2 +1

o o o

- 1 -2 - 1

Figure 2.8 Sobel convolution kernels

These kernels are designed to respond maximally to edges running vertically and

horizontally relative to the pixel grid, one kernel for each of the two perpendicular

orientations. The kernels can be applied separately to the input image, to produce

separate measurements of the gradient component in each orientation (call these Gx and

Gy). These can then be combined together to find the absolute magnitude of the gradient

at each point and the orientation of that gradient. The gradient magnitude is given by:

IGI = ~Gxı + Gyı (2.11)

27

Typically, an approximate magnitude is computed using:

IGI = IGxl + IGYI (2.12)

() = arctan(Gy I Gx) (2.13)

Which is much faster to compute the angle of orientation of the edge (relative to the

pixel grid) giving rise to the spatial gradient is given by:

In this case, orientation O is taken to mean that the direction of maximum

contrast from black to white runs from left to right on the image, and other angles are

measured anti-clockwise from this.

P1 P2 p3

p4 Ps Ps

P1 Ps p9

Often, this absolute magnitude is the only output the user sees --- the two

components of the gradient are conveniently computed and added in a single pass over

the input image using the pseudo-convolution operator shown in the figure below.

Figure 2.9 Pseudo-convolution kernels used to quickly compute

approximate gradient magnitude

Using this kernel the approximate magnitude is given by:

ıaı =l(Pı +2xP2 +P3)-(P, +2xPg +P9)l+l(P3 +2xP6 +P9)-(P, +2xP4 +P1)I (2.14)

28

Natural edges in images often lead to lines in the output image that are several

pixels wide due to the smoothing effect of the Sobel operator. Some thinning may be

desirable to counter this. Failing that, some sort of hysteretic ridge tracking could be

used as in the canny operator.

• Guidelines for Use

The Sobel operator is slower to compute than the Roberts Cross operator, but its

larger convolution kernel smoothes the input image to a greater extent and so makes the

operator less sensitive to noise. The operator also generally produces considerably

higher output values for similar edges, compared with the Roberts Cross.

As with the Roberts Cross operator, output values from the operator can easily

overflow the maximum allowed pixel value for image types that only support smallish

integer pixel values (e.g. 8-bit integer images). When this happens the standard practice

is to simply set overflowing output pixels to the maximum allowed value. The problem

can be avoided by using an image type that supports pixel values with a larger range.

2.2.4. Prewitt Edge Detector

The Prewitt is similar to the Sobel, but with different mask coefficients.

• Common Names:

Prewitt, Compass edge detector.

• Brief Description

Prewitt Edge Detection is an alternative approach to the differential gradient edge

detection. The operation usually outputs two images, one estimating the local edge

gradient magnitude and one estimating the edge orientation of the input image.

• How It Works

When using Prewitt edge detection the image is convolved with a set of (in

general 8) convolution kernels, each of which is sensitive to edges in a different

29

orientation. For each pixel the local edge gradient magnitude is estimated with the

maximum response of all 8 kernels at this pixel location:

IGI == max(IG;I: i ==Ito n) (2.15)

Where G; is the response of the kernel i at the particular pixel position and n is the

number of convolution kernels. The local edge orientation is estimated with the

orientation of the kernel that yields the maximum response.

Various kernels can be used for this operation; for the following discussion we will use

the Prewitt kernel. Two templates out of the set of 8 are shown in following Figure:

- 1 +1 +1

- 1 -2 +1

-1 +1 +1

+1 +1 +1

- 1 -2 +1

-1 - 1 +1

Figure 2.10 Prewitt edge detecting templates sensitive to edges at 0° and 45°.

The whole set of 8 kernels is produced by taking one of the kernels and rotating

its coefficients circularly. Each of the resulting kernels is sensitive to an edge

orientation ranging from 0° to 315° in steps of 45°, where 0° corresponds to a vertical

edge.

The maximum response IGI for each pixel is the value of the corresponding pixel

in the output magnitude image. The values for the output orientation image lie between

1 and 8, depending on which of the 8 kernels produced the maximum response.

This edge detection method is also called edge template matching, because a set

of edge templates is matched to the image, each representing an edge in a certain

orientation. The edge magnitude and orientation of a pixel is then determined by the

template that matches the local area of the pixel the best.

30

The Prewitt edge detector is an appropriate way to estimate the magnitude and

orientation of an edge. Although differential gradient edge detection needs a rather

time-consuming calculation to estimate the orientation from the magnitudes in the x

and y-directions, the compass edge detection obtains the orientation directly from the

kernel with the maximum response. The compass operator is limited to (here) 8 possible

orientations; however experience shows that most direct orientation estimates are not

much more accurate.

On the other hand, the Privet operator needs (here) 8 convolutions for each

pixel, whereas the gradient operator needs only 2, one kernel being sensitive to edges in

the vertical direction and one to the horizontal direction.

As already mentioned earlier, there are various kernels that can be used for Prewitt Edge

Detection. The most common ones are shown in the following figure.

• Common Variants

o 45

Sobel

-1 o 1

-2 o 2

-1 o 1

o 1 2

-1 o 1

-2 -1 o

Kirsch

-3 -3 5

-3 o 5

-3 -3 5

-3 5 5

-3 o 5

-3 -3 -3

Robinson

-1 o 1

-1 o 1

-1 o 1

o 1 1

-1 o 1

-1 -1 o

Figure 2.11 Some examples for the most common Prewitt edge detecting

kernels, each example showing two kernels out of the set of

eight.

31

For every template, the set of all eight kernels is obtained by shifting the coefficients of

the kernel circularly.

The result for using different templates is similar; the main difference is the

different scale in the magnitude image. The advantage of Sobel and Robinson kernels is

that only 4 out of the 8 magnitude values must be calculated. Since each pair of kernels

rotated about 180° opposite is symmetric, each of the remaining four values can be

generated by inverting the result of the opposite kernel.

2.3. Summary

We can see that every operator has its own parameters or mask coefficients

which use in edge detection. It also differs in the speed of computing which can be one

of the main reasons for using the operator such as Roberts Cross operator. With many of

these operators; noice in the image can create problems. That is why it is best to

preprocess the image to eliminete, or at least minimize , the noise effects. To deal with

noise effects, we must make tradeoffs between the sensitivity and the accurancy of an

edge detector.

This chapter respresented a comparision among the different types of edge

detector. It mentioned its common names, brief discription abiut it. How it works and

guidlines for use. At the end it sowed the common vairent among them.

32

CHAPTER THREE: THE DEVELOPED SOFTWARE

APPLICATION

3.1. Overview

This chapter presents the original work done by the author where common edge

detector are integrated into a software program with user friendly GUI.

The following section has the list of the main program, which has been

developed. It explains the program interface in details such as the operations of the

buttons in the interface, also it contains the results that we achieved by running it using

all the five applied edge detection operators.

The language used in developing this program was Delphi language. The main

reason behind using it is that the Delphi is an object oriented, component based, visual,

rapid development environment for event driven Windows applications, based on the

Pascal language.

3.2. Software Specifications

After pressing the program icon the program interface will appear as in figure

3.2. The first button on the left is responsible about opening new images which can be

used to apply one of the five operators the program have. After applying one of these

operators, either you can save the modified image or you can easily use the rest button

to bring back the original image then again apply new operator. Program has been

modified to be able to deal with the images both with .jpg and .bmp extension.

The small square at the left bottom is showing the mask algorithm of the

operator you choosed to apply on the image. The program contains five operators Sobel,

Priwett, Laplace, Robert, and LoG.

Sobel operator is a square mask with size 3 x 3 which represented by the matrix

[-1 O 1: -2 O 2: -1 O l]. The advantages of Sobel operator that it has less sensitivity to

noise and it has odd size which gives better edge position. The main disadvantage of it

that it is less precise and slower than the other operators like Robert

33

Prewitt operator is another square mask with size 3 x 3 and has the values

[-1 O I: -2 O 2: -1 O 1]. It has the same advantages and disadvantages of Sobel operator.

However, Prewitt operator can introduce a larger mask of size 5 x 5 and due to this it is

slower but more robust and strong with noise.

Laplace operator is another square mask with size 3 x 3 and has the values

[-1 -1 -1: -1 8 -1: -1 -1 -1].

Robert uses a 2 x 2 mask which is convoluted with the image. It has a good

advantages as it has a very fast speed and more precise because of its small size. On the

other hand, it has some problems because it is sensitive to noise and position of edge

maybe lost because of even number.

Laplacian of the Gaussian LOG is a more popular operator that applied first to

filter noise. The amount of noise reduction can be adjusted by changing c standard

deviation of Gaussian. Then a Laplacian edge detector is applied.

Following section explains the program interface in more details.

34

3.3. Program Flowchart

Start

OPEN NEW
IMAGE

APPLY ONE OF
THE OPERATORS

SOBEL PREWIT LAPLAC ROBERTS LoG

DISPLAY
MODIFIE
DIMAGE

IMAGE
RESET

SAVE
MODIFIED

IMAGE

Figure 3.1 the program flawchart

After starting the program new image can be chosen then one of the five

operators can be applied on the image the modified image then will be displayed in the

place of the image itself. Then we will have two options, either save modified image or

make reset to obtain the same image again and apply another operator on it to see the

difference between the results.

35

3.4. The Program Interfaces

The following Figures Shows the interfaces of the application presented in this

thesis. As we see in this figure we have buttons that divided into two groups :

The first one :

• Open image

• Save image

• Image reset

The second one for applying the five operators that we have:

1. Sobel operator

2. Prewitt operator

3. Laplace operator

4. Robert operator

5. LoG operator

l. To open images we want to use

2. To save the images we used

3. To rest the images we used

4. for applying Sobel operator

5. for applying Prewitt operator

6. for applying Laplace operator

7. for applying Robert operator

8. for applying LOG operator

9. Showing the Mask of the operators

Figure 3.2. The main interface of the application

36

To open image
To changing the format

of the image

Figure 3.3. The function of OPEN IMAGE button

To save image
To changing the format

of the image

Figure 3.4. The function of SAVE IMAGE button

37

8£

~::

il~r

II·r
:z:r···r~~h;:ı:~'

::ıı.: .. r,;, ~ 3_,Jsa
Figure 3. 7. Applying Laplacian operator

Figure 3.8. Applying Robert operator

39

························•···
oım 1 _._._._._._._._..,...,y.,. »"•.·.·.·.·.·.·.·.·.· x:u-..Xe>3!"• •:<'A":>.-,L.·· ·.·.'·,·.·@·.:::,:,\.·=.·=.·.'.:.··.·•.·, ".*.' <.

Ill

~.~.)s:.:~~:.:_:::::·

Figure 3.9. Applying LoG operator

3.5. Summary

This chapter presented the development of a software application that allows a

user to apply edge detection using the most commonly edge detectors.

The next chapter will provide a comparison between these five edge detectors

using images captured by the author. This will be followed by an analysis of detection

results and the criteria for optimum edge detection.

40

CHAPTER 4: RESULTS AND COMPARISON

4.1. Overview

This chapter presents practical implementaion of the developed software on

images, we used a grayscale image, we captured the two images then we applied on

both of them each of the five detectors we used in the software.

The images were captured by the auther and there will be a comparison between

the five edge detectors by showing all the resulting images and analysing the detection

results we had form each detectors for the same image.

The optimum edge detector will then be chosen according to the optimum edge

detector creteria

4.2. Image capturing enviroment

The images that we are using here were captured using a special image grabbing

box. It is a box with 60 cm side which is painted black from inside with a hole at the

upper side to settle the camera lens throught it.

Also it has black base from inside which can be moned up and down by two

holders in order to adjust the desired destance of the objects, which are going to be

photographed. The maximum distance between the object which will be on the black

platte and the camera lens is 60 cm and the minimum is 40 cm. See figure 4.1.

The other important factor here is the lighting inside the box. There was two

sources of light which are fixed at the top of the box. It is 240 W 60 V florecent light

which can be used by turning one of them or both of them at once according to desired

lighting.

41

4.3. Camera details

Figure 4.1 The Grabbing Box

The used camera were a BENQ digital camera-I 300 is equipped with the following

features:

Total pixels

EffectivePixels

PC Camera function

1.36M

I.3M

Yes

Digital Camera Function Yes

Image Resolution 1280 * 1024 Pixel, 1024 * 768 Pixel, 640 * 480 Pixel

Lens

Focusing Range

Digital Zoom

Shutter Speed

Flash

White Balance

Exposure

Metering

ViewFinder

Free focus, 50 mm equivalent

Normal: 1.5m - Infinity , Macro: 30-50cm, Text: l l-13cm

No

No

Built-in

Auto (Daylight, Overcast, Cloudy, Tungsten, Fluorescent)

Programmed

Programmed

True Image Optical

42

Burst Mode Yes

Connectivity

Power Source

AVI format (up to 90sec, including audio)

1 O sec. Adjustable

Compressed JPEG

Mini USB

Movie Mode

Self-Timer

File Format

LCD Monitor

2x AAA Alkaline battery

Status LCD

Weight 63 g (with battery)

Dimensions(Wx H x D) 87 mm x 57mm x 26 mm

Battery charge No

SystemRequirements Win98/2000/ME/XP

4.4. Applying the developed software to the images

Here the auther used two images took by the specified camera and he applied the

five detectors on it in order to be able to have more fair comparison between all of the

detectors. The objects he used were a leaf and ring. He chosed a simple two images with

clear edges like in case of the ring and with many edges like the case of the leaf

!:~1 ·.. :.,:•:•.•: ·..·. . ·.. ·.··. ,
:-:::,:,:~s

:l.iifJLn.Jt.RtitltlN j;;:;::::::::::i@

ı·F:ffı!!{·.··.·. ·. mı;·

11::::::::::::::::.a;

a) Original Leaf b) Original Ring

Figure 4.2. The Original Images

43

fw.'•'11 . . ·· ... ·.· . . . ~

liJiliilliJlliiiiiiiiiiliiil~~l nwıw'"

I ,;;,S;i)\~,'.: t,·~(:\.ic ı-,.,..,.,,:.;,s,•,oJ~,~..-.. · ..~'f rr:;f·''/f.:i"r,'i~:t;f' ' ::o;t:' ;\,., I,,: if 'r.:,'ı.;'?t.'../ ;;.1.•,,:,.:,.. ıaı: "·°'>'·

!~:::,::::'.:'.r.ı,j~~::;w' <······· : .~E!
a) Leaf edges after applying Sobel

operator

... ::ll!\li\i~[l!t., •••••••• ;~il~~li~~f~~~[!:\[1!1\\\l[l!iflflfl~!~·····
:ii:i:~i:~~~;i;;:;:::;:
;:;:;:;:;:;:;:;:~~~~~t~~~~~~~~~f::::::;:
:f\{f:~~f~~:::::t

=M~f~;t.

b) Ring edges after applying Sobel

Figure 4.3. Sobel operator

operator

t9.'f'\·.· Mlı~/J.~~,-,.,~~i

a) Leaf edges after applying Prewitt
operator

ı.ııt
;:;

i~~
t
ı::

h.

.:',:;:;:;:;:;:; ,){})

• :11;.i;Riii
ııııııııil!~il[i~~~~~t::::;:!
,::,:,,::::t:::::,:::::,:,Wli/,t:!:::,::::

L :,rı~ı
(. •~-: ..)·· ..,., :.' .
l· ~

: \ : -:
· .. '%,· ••~ .

b) Ring edges after applying Prewitt

operator

Figure 4.4. Prewitt Operator

44

:t.J.:;;;r: :.: : · , , .. ;,,,: :; .,:.:,.,:,:,:,.,:;.,.,.,.,.,: · .· · .· ·;.···rıı

I[•ttJJJJJ111Jli:iiiıtiiiii~::::t•••·•·:•;ı•••••·:••·•:·
ııı:

~

ı
iL.tLliii==· ., 1 ·~~,~~

O
,..

· ..

.·.

operator

b) Ring edges after applying Laplace

operator

Figure 4.5. Laplace Operator

a) Leaf edges after applying Laplace

l!!!!!llfil:lliiill~j~i!i!i!
I ıılı~n

...·.·.·.·.-.-.-.-.-.-.-.-.-·.·.·.·.·.·.·.·.;;;::;:;:~. ~~i#.'

a) Leaf edges after applying Robert

operator

...~:::::~~i}rnııırn

b) Ring edges after applying Robert

operator

Figure 4.6. Robert Operatore

45

l!l!lll:ıı::;;f,ll!!l~~~-~~l[l,lll\lıl:l:1ı:;~;tı)t:ı::'.
::{:1::t~~ı;~:j'}:.

~~C1
:;::,;:,(ııjt!!:iı
~~~~~
,..J'!~f{:=ı
~tl

::···=·niı¥.\@l
ltt!tttffl

iiôf!
a) Leaf edges after applying LoG

operator

b) Ring edges after applying LoG

operator

Figure 4.7. LoG Operatore

4.5. Optimum edge detector criteria

The aim of anaysis is to determine the optimum edge detector out of the five

considered operators. The criteria for detecting the optimum detector is based on visuall

inspection of the result images.

The optimum edege detector criteria includes:

4.5.1. Continuity of the edges

Continuity of the edge mean that there is no cut in some aera along the edge line.

The comparison is considering the detector with less dicontinuity in the edges

4.5.2. Noise reduction

It is comparing which resulting image has less noise around the detected edges or

not. In other words, which detector reduced most of the noise around the edges so the

detected edges clear enough to identify the object.

46



4.5.3. Lighting

Since this system is based on the detection of edges within an image projected from

a 3D object, the lighting of the 3D object is of the utmost importance for the quality of

the resulting images. The default lighting consists of a horizontal and directional light

"behind the user". Such lighting gives good results for most areas of the terrain. For

instance, terrain comprising a lot of objects would appear mostly bright and,

accordingly, the areas of the image corresponding to the objects would be white. In such

a case, the user would have to change the lighting in order to make the features of the

cliffs appear in the resulting images.

4.5.4. Contrast

Is the difference in brightness between two adjacent pixels. So suppose you want to

compute a monotonically-increasing brightness curve that maximizes contrast for a

particular monochrome image.

An optimum detector should care with images of varing contrasts.

4.5.5. convolution speed

the convlolution speed depends mainly on the size of the mask you are using for

detecting the edge. The smaller the mask size is the faster the speed of edge detection.

47



4.6 Comparison and Analysis

This section is making a comparision and analysis between the result of the ring

and leaf images as detected by the five operators using the optimum edge detection

criteria

Continuity of the edges

For Sobel operator, the edges for both ring and leaf images have a lot of

discontinuities on it. It is not appearing as a one line or curve most of the time.

For Prewitt operator, again the edges for both ring and leaf images are full with

discontinuities.

For Laplace operator, the edges appeares more smooth in ring image and there is

almost no discontinuity on it.for leaf image it is full with discountinuities and you can

hardly identify the image.

For Robert operator, the edges are the best here. No discontinuities where detected

at all for ring image. However, for leaf image, the upper side edges of the image is good

but there are some discontiuities on the lower side of the leaf

For LoG operator, we have clear edges for the ring and no discontinuity at all. For

leaf the detecdtion we very poor and leaf edges had alot of discontinuities on it. I

Noise reduction

For Sobel operator, noise reduced inside leaf and ring but it seems noise threshold

was high enough to start cutting the edges themselves.

For Prewitt operator, results were exactly same as for Sobel operator. Noise

reduction was good insde the image but it cut some of the edges.

For Laplace operator, noise didnt reduced inside the ring. Which made the edges

appear more thick.

48



For Robert operator, noise was too much inside the ring.on the other hand, it

reduced in the lower side of the leaf more than its upper side.

For LoG operator, reduced some of the noise and kept the edges define better than

the other operators.

Lighting

There were two light sources inside the grabbing box. If you look carefully at the

images you can see them at the upper and lower side of both objects.The two lights did

not have the same power which make the detection for edges more difficualt in some

operators to detect the objects especially for the lower leaf side.

For Sobel and Prewitt operators, the lighting was strong and it caused high

brightness in the upper side of the ring and lower side of the leaf which let the operator

fail to detect that area.

For Laplace and LoG operators, the problem was again in the lower side of the leaf

which didn't apear nice becusee of the brightness from the lights.

For Robert operator, the lighting was disributed in agood maner that allowed the

operator to detect the images.

Contrast

For Sobel operator, both images had very low contrast. Lines and edges are vey thin

and poorly appear.

For Prewitt operator, images result are too much close to that of sobel operator, low

contrast and very light lines for the edges.

For Laplace operator, ring image had a high contrast and edges appear clearly but on

the other hand the leaf image had extremly low contrast and edges were unclear.

For Robert operator, the two images had very high contrast but it appeared more in

the ring image which had more thick edges and interor lines.

49



For LoG operator, the contrast was fair enough to show the ring clearly. But it

wasn't good in the leaf image because it was again very low and leaded to a light edges.

Convolution speed

Sobel, Prewitt, and Laplace operators use a 3 x 3 mask which makes their detection

speed slower than the other two operators which use a 2 x 2 mask.

Finally we can sum up all these criteria and the comparison between the five

detectors in the following table.

Table 4.1. Comparison and analysis between the five operators

~

Continuity
Noise Convolution

of the Lighting Contrast Result
reduction speed

edges
Operator

Sobel x../ x../ x../ x../ x../ xxxxx../ ../ ../ ../ ../

Prewitt XX XX x../ x../ x../ xxxxxxx../ ../ ../

Laplace x../ x../ x../ x../ x../ X X X X .,/ ../ ../ ../ ../ ../

Robert .,/ .,/ x../ .,/ .,/ x../ .,/ .,/ xxxxx../ ../ ../ ../ ../

LoG x../ .,/ .,/ x../ x../ .,/ .,/ X X X .,/ ../ ../ ../ ../ ../ ../

Key: (x) means insufficient result.

( ../) means sufficient result.

From the table it is clear that Prewitt operator had the insufficient results, while the

optimum edge detector is LoG operator.

50



·.·.·.;.:.;.;.;.:.:-:·:·:;;~:_-:·:•:•:.

11!;\llll"iill
.-~~·:~:. :. ,: ·. ·. .·.... \ .. . ·::t \,·.~~; ..,.. ... 't ··~ ı. \ .

\~i:ı\\'·.~\Vi·~v..K .. • ,·,,~· ··~1.il~"i.f.."f,: .· ·,.; !· I:, ;t;,, .,
'f/~i'.1;"<·',;_,,,J/Jr1f-ıtf.f)', 'J,f_i.. · ff .: v,/.,4.~i'h,, /"'/./;, ı.•lı ! ıı ı/

fl:y.Ff. ltj/ V ::1{;/ıı.
, t· )r- WJ:;~ı:v-·

a) Leaf edges after applying LoG

operator

b) Ring edges after applying LoG

operator

Figure 4.8. Optimum edge detector

4.7. Additional Example for Edge Detection

Figure 4.9. The Original Image

51
\1f LIBRARY

\ ) 
~

,. "Z"
.

c.·, I)',("':, ......,
~ E.°f \~:~/,

;::;."~·



,itJr:;:;;;;;;:::Iı:lllllll!?II:1J§W:~mmlf~ifiliJtitttt
-:_- ••• :· <.::;;-:.::::x::::s::::::::.:.:_:_:_:_:_:_:_:_:_:_:_:::::::.:_-•••.:_:••• >> .... :::::::.:;:_:::.:_:_:_:_:_:_:_:_:_:_:_:.::: .•. ·~.:<<<-.>~•--·.·.·-·.···-<::.:.:·-·-

!f\
:::::!
:ı-

111
,·.·ı:.·;

Ii

Iii

c
I
I

f .

~

'!!:- ··. ·, .. :..
( I

. ~- . l
~- :: !<. [• ı

~-~' c;-.. r.g,
Q,~, •. ~

. ~--(••. 0.
'• / ,.-,~~\ «rı

. ••••:••\'.,:;scc:•,cc••:J.~~-""

Figure 4.10. edges after applying Sobel operator

( ·1
I .
I ,ı I

ı'j. . ,' t"

~: JJ. ~ -A· 1
~(. (ı f

l\•: c,. (.• l
lo. t•· <~i 
~.ı•.. Ol
' (.'•I,,. (...ı

..;.;-;;:::;;;:::;:;:::;::•:•:•············ :•:•:•:•:•:•:•::-:-:-:-:-: •.•. •:.:·.~:·5~f:::-:.::::_:. :Mffi!Mijil.i/ifiin~aıf

Figure 4.11. edges after applying Prewitt operator

52



lıi~!tt~~ıliılllı

Figure 4.12. edges after applying Laplace operator

.,-,::=-~...
ıı \I
'i .,

:: ;l,, 'i
'ı iI. I

!i ;/
•\ ı,•, :~-!;'1:
,--,.:/-'~ :) ...:;,
t-; ..,a,
:) ;;: '.)_1
)·~ ·:;1;. ' llii.;:;:;:;::: :·::;:;:;:;:;:-·····

Figure 4.13. edges after applying Robert operator

53



!
it

4.7.1. Results Analysis

@IttEDllı~;IRılJ!b.&ıl
::.·. : ) ! >;;E:::>ı:::::tiiiit~i

l ~w.i~illj
-~:::·,:;,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:r::::::::

14mlill:
iiıii~

r-~t.
·t'· .... ,
,ıs ·.. ·· ,j~,r I/: ··: .:!!
~t-.·· .. !j.}ı;,.v . h-~·,.- .,,
h:'¥-~~'-\;·/~;
-f?.,~-?Jf
~~t~~j
t~tf'~J.

· 11!1!!!ill!i!irır:·
·········· .. ,,,',',',,,,',',',,',',',',',',',''

Figure 4.14. edges after applying LoG operator

a comparison and analysis between the result of the mobile phone example detected

by the five operators using the optimum edge detection criteria is made again as

follows.

From the five graphs of the operators we can see that the Continuity of the edges

was not enough in Sobel, Roberts and prewitt operators and poor in Laplace operator,

while the best result was in the LoG operator's results.

For Noise reduction, Sobel, Laplace and LoG operators had the bad results while

Roberts and prewitt operators were better.

Lighting was good for bringing good results for LoG operator.

About Contrast, the best results was in LoG operator too while the worst was in

Laplace operator.

In Convolution speed, Sobel, Prewitt, and Laplace operators use a 3 x 3 mask which

makes their detection speed slower than the other two operators which use a 2 x 2 mask

54



So as a result we can summarize that the LoG operator was the best among the five

operators we used in our program according to the optimum edge detector criteria we

mentioned above.

As LoG was selected as the optimum edge detector, another example of three

different mobile types like siemens, Nokia, and Sony Ericsson are shown in figure 4.15

below. The results are respectively shown in figure 4.16.

1/ :'!!!!!!Ilii!~~,1!!!!!!1!!i!t

;;••••••i·•~,;'.~;r_;_;_::••••••••••·

·:·::.:•:·~·h~ii.~:

İ::~$.f>t...;:;.:.·:.... •.. •. •.. . ·.··.·· :.::.:·...·.. :.:.-.-:·:.... ·.· ... . .

: ıt:ic;tğnititt.iıöi J
.·.·.·.·.·.·········.·::::::::::.:.:.:.:.~~:.:_:.:.. ·::.:.·.·.·.·.·.:.·::: .:.:.:.:.::::::.:.:.:.:.:.:....•.•,•,•,•,•,•,•,•,•.•.•.•.•.•.•·.·.·.·.·.·.·.·.·:·:·:····.

:·ıı:..:ı:ı:tjMht:

iliıi1:/,::::}:;;:;}:ljiılı~t:;:;:;:i:\:

~

i]
~3
!l
ill
'j~j

:ı

:;j

l

': il[l]•••ı•:••t:•••t~~ç22i.i~~ı.t.~011.~~:ı ıııı b:

'

Figure 4.15 Three different mobile types (siemens, Nokia, and Sony Ericsson)

55



ı:~iit/ :·,:,:, :.... .. .. . ·· :· . ·. ··..···. ffi'.

i ! !!!!!!!;~[!j~~~£~~~~~ı~~:.l.ii!l!i!l!li;lililili•

ı
:r ft?JiMiiliıı;:

,,;:, _.__.•..•.• ; ,- .,?.+:~·!::~~;
:-::-:..::.
::~~İ·M6'11

.f.~>\::·::·;:•· .. · ...:·.:···.· . .. . ~
···:·:·:·:·:·:·:·:·:·:·:·:·:

l[j cec,~~~ıı
··········•••:~::;ı~!iı•:•:•iiJI

::::

tiI
,J I~_

'ıı·· -
~- ~=:
I · iH1:
f- · •• ~;

1' ···~§ıı
;;--...,_.._- _;;;, ••• !!·····~'''''J'''''·t•••••

i~J~i),:~k#.

Figure 4.16 edges after applying LoG operator on three different mobile types

4.8. Summary

This chapter analyzed the results of the implemented program. It made a

companson between all the images according to the five criteria thathas been

developed. Finally and after check the result of the comparison it is found that the

optimum operator was Robert operator.

The program aim wasn't to discover new thing or to introduce a new method of

deceting edges. The program was simply trying to program some existing detection

methods and put them in a way that you can make edge detection easily and compare

the results to take the best of them using the developed.criteria

56



CONCLUSION

Edges are places in the image with strong intensity contrast. Since edges often

occur at image locations representing object boundaries, edge detection is extensively

used in image segmentation when we want to divide the image into areas corresponding

to different objects. Representing an image by its edges has the further advantage that

the amount of data is reduced significantly while retaining most of the image

information.

Edge detection operators are based on the idea that edge information in any

image is found bu looking at the relationship a pixel has with its neighbors. If a pixel's

gray-level value is similar to those around it, there is probably not an edge at that point.

However, if a pixel has neighbours with widly varying gray levels, it may present an

edge point. In other words, an edge is defined by a discountinuity in gray-level values.

Ideally, an edge separates two distinct objects. In practice, apparent edges are cuasedby

changes in color or texture or by the specific lighting conditions present during the

image acquisition process.

The objectives of the work presented within this thesis are to develop a software

application that integrate the common edge detectors. It collected the most famous

detectors together in one program which make it easy for the one who will work on it to

compare the resulting images. It alsoprovide a userfriendly GUI for further uses and to

assist further work. It is possible to develope the program and make it more complicated

by adding more masks such as Krisch mask and more functions on it such as ability to

open images in format other than jpg, jepg, and bmp, or add new buttons like print and

help buttons.

This thesis compared & analyzed the five edge operators using own captured

unique images, the leaf and the ring images which captured by digital camera using

grabbing box. The comparision criteria for optimum edge detection included edge

continuity, contrast, lighting, noise reduction, and convolution speed. All detectors were

compared and analyzed according to these criteria

57



REFERENCES

[1] E. Dougherty, C. Giardina, Matrix Structured Image Processing, Prentice Hall,

Inc. 1987, New Jersey.

[2] S. Banks, Signal Processing, Image Processing And Pattern Recognition, Prentice

Hall, Inc. 1990, Hertfordshire.

[3) A. Kulkarni, Computer Vision and Fuzzy-Neural Systems, Prentice Hall, Inc.

2001, New Jersey.

[4] A Khashman, Lecture Notes, NEU, Nicosia,

(5) A Rosenfeld, Digital Image Processing, 1982, Academic Press, Orlando

(6) H. Andrews, Computer Techniques In Image Processing, Academic Press,1970,

New York

[7] R Gonzalez, Digital Image Processing, Addison Wesley, 1987, Reading.

[8] R Haralick, Edge and Region Analysis for Digital Image Data, Computer Vision

and Graphics and Image Processing. Vol. 12, 1980.

[9] R Haralic, The Digital Edge. Processing of IEEE Computer Society Conference

On Pattern Recognition And Image Processing, 1981, New York

(10) C. Chittineni, Edge and Line Detection In Multidimensional Noisy Imagery Data.

IEEE Transactions on Geosciences and Remote Sensing. 1983, Vol. 21.

(11) D. Marr, vision : A computer Vision Investigation Into Human Representation

And Processing Of Visual Information, Freeman, New York

(12) Ş. Bektaş, F. Mamedov, A Khashman. Graduate studies: a complete reference,

NEU. 2001, Nicosia.

58



APPENDIX A

The Program Source Code

unit Unitl;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms,

Dialogs, StdCtrls, Buttons, ExtCtrls, ExtDlgs, Grids,jpeg;

type

TForml = class(TForm)

Sobel_btn: TBitBtn;

Imagel: Timage;

Prewitt_btn: TBitBtn;

Laplace_btn: TBitBtn;

BitBtn4: TBitBtn;

OpenPictureDialogl: TOpenPictureDialog;

BitBtnS: TBitBtn;

SavePictureDialogl: TSavePictureDialog;

Robert_btn: TBitBtn;

Labell: TLabel;

Label2: TLabel;

Bevell: TBevel;

Bevel2: TBevel;

Bevel3: TBevel;

StringGridl: TStringGrid;

Label3: TLabel;

BitBtn7: TBitBtn;

Bevel4: TBevel;

LOG_btn: TBitBtn;

procedure Sobel_btnClick(Sender: TObject);

procedure Prewitt_btnClick(Sender: TObject);

procedure Laplace_btnClick(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtnSClick(Sender: TObject);

procedure Robert_btnClick(Sender: TObject);

procedure FormResize(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure BitBtn7Click(Sender: TObject);

59



procedure LOG_btnClick(Sender: TObject);

private

{ Private declarations }

pub1ic

{ Public declarations)

end;

type

tMask.Array=array[0.. 8]of real;

var

Forml: TForml;

mem_resident:tbitmap;

implementation

{ $R * .dfm)

procedure set:Image(var iniimage :tbitmap; srsimage:tbitmap);

begin

iniimage:=tbitmap.create();

iniimage.Height:=srsimage.height;

iniimage.Width:=srsimage.Width;

iniimage.Assign(srsimage);

II** CHANGE IMAGES TO 24 BIT PIXEL

iniimage.HandleType:=bmdib;

iniimage.Pixe1Format:=pf8bit;

end;

function edgedetection(SRSimage:tbitmap) :tbitmap;

var

m:pbytearray;

x,y:integer;

begin

For Y:=O to SRSimage.Height-3 do

begin

m:=SRSimage.ScanLine[Y+l];

x:=3;

60



whi1e (x < SRSimage.Width -3) do

begin

if m[x]=O then m[x):=l;

if (m[x) > 40) then

begin

m[x) :=O;

end

e1se

begin

m[x] : =255;

end;

x:=x+l;

end;

end;

result:=srsimage

end;

function convoıution(image:tbitmap; mask:tmaskarray;

offset,scale:integer):tbitmap;

var

y,x,tno :integer;

m,P,pl,p2 :PByteArray;

temp_image:tbitmap;

begin

setimage(temp_image,image);

For Y:=O to image.Height-3 do

begin

m :=temp_image.ScanLine[Y+l];

p := image.ScanLine[y];

pl:= image.ScanLine[Y+l];

p2:= image.ScanLine[Y+2];

x:=3;

whi1e (x < temp_image.Width -3) do

begin

tno:=round(( mask[O]*p[x-1) + mask[l)*p[x] + mask[2J*p[x+lJ

+
mask[3]*pl[x-l] + mask[4J*pl[x] + mask[5J*pl[x+l)

+

61



mask[6]*p2[x-1] + mask[7]*p2[x] + mask[8]*p2[x+l]

+
offset)/scale);

if tno>255 then begin tno:=255; end 

if tno<O then begin tno:=O end

m[x+2]:=tno;

x:=x+l;

End; 

End; 

result:=temp_image;

end; 

procedure TFoxml..Sobel_btnClick(Sender: TObject);

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[0]:=-1; ray[l]:= O; ray[2]:= 1;

ray[3]:=-2; ray[4]:= O; ray[S] := 2;

ray[6]:=-l; ray[?]:= O; ray[8] := 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells[l,0]:='0';

StringGridl.Cells[2,0]:='1';

StringGridl.Cells[0,1]:='-2';

StringGridl.Cells[l,1]:='0';

StringGridl.Cells[2,1] :='2';

StringGridl.Cells[0,2]:='-1';

StringGridl.Cells[l,21 :='0';

62



StringGridl.Cells[2,2]:='1';

end;

procedure TFoxml.Prewitt_btncıick(Sender: TObject);

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[0]:=-1; ray[l]:= O; ray[2]:= 1;

ray[3}:=-1; ray[4}:= O; ray[S}:= 1;

ray[6):=-1; ray(7]:= O; ray(8] := 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells(l,0]:='0';

StringGridl.Cells(2,0} :='1';

StringGridl.Cells(0,1]:='-1';

StringGridl.Cells[l,1} :='O';

StringGridl.Cells(2,1):='l';

StringGridl.Cells[0,2]:='-1';

StringGridl.Cells(l,2):='0';

StringGridl.Cells[2,2):='1';

end;

procedure TFoxml.Lapıace_btnC1ick(Sender: TObject);

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

63



ray[0]:=-1; ray[l]:= -1; ray[2]:= -1;

ray[3]:=-l; ray[4]:= 8; ray[S]:= -1;

ray[6]:=-l; ray[?]:= -1; ray[8]:= -1;

Iınagel.Picture.Bitmap:=convolution(Irnagel.Picture.Bitrnap,ray,0,1);

Irnagel.Picture.Bitrnap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells[l,0]:='-1';

StringGridl.Cells[2,0]:='-1';

StringGridl.Cells[0,1]:='-1';

StringGridl.Cells{l,1]:='8';

StringGridl.Cells{2,1]:='-1';

StringGridl.Cells[0,2]:='-1';

StringGridl.Cells[l,2]:='-1';

StringGridl.Cells[2,2]:='-1';

end;

procedure TFoı::m1.BitBtn4C1ick(Sender: TObject);

var

jpgirnage:TJPEGimage;

test:tbitrnap;

str:string;

begin

if OpenPictureDialogl.Execute then

begin

str:=OpenPictureDialogl.FileNarne;

irnagel.Picture.LoadFrornFile(str);

if (str[length(str)-2]<>'B') and (str[length(str)-2]<>'b') then

begin

//(-- Converting from Jpg to BMP-

jpgimage:=tjpegimage.Create;

jpgirnage.Assign(irnagel.Picture);

64



test:=tbitmap.Create;

test.Assign(jpgimage);

jpgimage.Destroy;

//------------------------------}
imagel.Picture.Bitmap.Assign(test);

test.Destroy;

end;

setimage(mem_resident,imagel.Picture.Bitmap);

end;

end;

procedure TPoı:m1.BitBtn5C1ick(Sender: TObject);

begin

if SavePictureDialogl.Execute then

begin

imagel.Picture.SaveToFile(SavePictureDialogl.FileName+' .bmp');

end;

end;

procedure TPoı:m1.Robert_btnC1ick(Sender: TObject);

var

y,x :integer;

m,P,pl :PByteArray;

temp_image:tbitmap;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

setimage(temp_image,imagel.Picture.Bitmap);

For Y:=O to temp_image.Height-3 do

begin

m :=temp_image.ScanLine[Y+l];

p := imagel.Picture.Bitmap.ScanLine[y];

pl:= imagel.Picture.Bitmap.ScanLine[Y+l];

x:=1;

whi1e (x < temp_image.Width -1) do

begin

m[x]:=abs(pl[x]-p[x-1)) + abs(pl[x-1]-p[x]);

x:=x+l;

65



end;

end;

imagel.Picture.Bitmap.Assign(temp_image);

Imagel.Picture.Bitrnap:=edgedetection(Imagel.Picture.Bitrnap);

imagel.Refresh;

StringGridl.Cells[O,OJ:=' ';

StringGridl.Cells[l,OJ:=' ';

StringGridl.Cells[2,0] :=' ';

StringGridl.Cells[O,l]:=' ';

StringGridl.Cells[l,l]:=' ';

StringGridl.Cells[2,l]:=' ';

StringGridl.Cells[0,2] :='';

StringGridl.Cells[l,2]:=' ';

StringGridl.Cells[2,2]:='';

end;

procedure TForm1.Foı:mResize(Sender: TObject);

begin

exit;

end;

procedure TForm1.Foı:mCreate(Sender: TObject);

begin

setirnage(mern_resident,Irnagel.Picture.Bitrnap);

end;

procedure TForm1.BitBtn7C1iclt(Sender: TObject);

begin

Imagel.Picture.Bitmap.Assign(rnern_resident) ;

end;

procedure TForm1.LOG_btnC1iclt(Sender: TObject);

var

ray:trnaskarray;

begin

Irnagel.Picture.Bitmap.HandleType:=brndib;

Irnagel.Picture.Bitrnap.Pixe1Forrnat:=pf8bit;

66



ray[O]:= 1; ray[l]:= 2; ray[2]:= 1;

ray[3] := 2; ray[4] := 4; ray[S]:= 2;

ray[6]:= 1; ray[7]:= 2; ray[8] := 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,16);

ray[0]:=-1; ray[l]:= -1; ray[2]:= -1;

ray[3]:=-1; ray[4]:= 8; ray[S]:= -1;

ray[6] :=-1; ray[7]:= -1; ray[8]:= -1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

end; 

end. 

67



Appendix B

How It Works

Set:tmage !'unction

This function prepares the image to be used in edge detection

procedure setimage(var iniimage :tbitmap; srsimage:tbitmap);

begin

iniimage:=tbitmap.create();

iniimage.Height:=srsimage.height;

iniimage.Width:=srsimage.Width;

iniimage.Assign(srsimage);

II** CHANGE IMAGES TO 24 BIT PIXEL

iniimage.HandleType:=bmdib;·

iniimage.Pixe1Format:=pf8bit;

end;

EdgeDetection !'unction

This function uses line-scanning algorithm to detect edges.

function edgedetection(SRSimage:tbitmap) :tbitmap;

var

m:pbytearray;

x,y:integer;

begin

For Y:=O to SRSimage.Height-3 do

begin

m:=SRSimage.ScanLine[Y+l];

x:=3;

whi1e (x < SRSimage.Width -3) do

begin

if m[x]=O then m[x]:=1;

if (m[x] > 40) then

begin

m[x] :=O;

end

eıse

begin

m[x]

'

: =255;

68



end;

x:=x+l;

end;

end;

result:=srsimage

end;

Convoıution Function

This function applies a given mask to the image, with the given offset

and scale.

function convolution(image:tbitmap; mask:tmaskarray;

offset,scale:integer):tbitmap;

var

y,x,tno :integer;

m,P,pl,p2 :PByteArray;

temp_image:tbitmap;

begin

setimage(temp_image,image);

For Y:=O to image.Height-3 do

begin

m :=temp_image.ScanLine[Y+l);

p := image.ScanLine[y];

pl:= image.ScanLine[Y+l];

p2:= image.ScanLine[Y+2];

x:=3;

whiıe (x < temp_image.Width -3) do

begin

tno:=round(( mask[O]*p[x-1) + mask[l]*p[x] + mask[2]*p[x+l)

+
mask[3]*pl[x-1] + mask[4)*pl[x] + mask[S]*pl[x+l]

+
mask[6]*p2[x-1] + mask[7]*p2[x] + mask[8]*p2[x+l]

+
offset)/scale);

if tno>255 then begin tno:=255; end

if tno<O

m[x+2] :=tno;

x:=x+l;

then begin tno:=O end

69



End; 

End; 

result:=teınp_image;

end; 

70



Button Codes 

Code for Button 1:

var

jpgimage:TJPEGiroage;

test:tbitmap;

str:string;

begin

if OpenPictureDialogl.Execute then

begin

str:=OpenPictureDialogl.FileName;

imagel.Picture.LoadFromFile{str);

if (str[length(str)-2]<>'B') and (str[length(str)-2]<>'b') then

begin

//(-- Converting from Jpg to BMP-

jpgiroage:=tjpegimage.Create;

jpgimage.Assign(imagel.Picture);

test:=tbitmap.Create;

test.Assign(jpgimage);

jpgimage.Destroy;

//------------------------------}
imagel.Picture.Bitroap.Assign(test);

test.Destroy;

end;

setimage(mero_resident,iroagel.Picture.Bitmap);

end;

Code for Button 2:

begin

if SavePictureDialogl.Execute then

begin

imagel.Picture.SaveToFile(SavePictureDialogl.FileName+' .brnp');

end;

end;

Code for Button 3:

begin

Imagel.Picture.Bitmap.Assign(mem_resident)

end;

71



Code for Button 4:

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[O] :=-1; ray[l]:= O; ray[2] := 1;

ray[3]:=-2; ray[4]:= O; ray[S] := 2;

ray[6]:=-1; ray[7]:= O; ray[8]:= 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,O,l);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells[l,O] :='O';

StringGridl.Cells[2,0]:='1';

StringGridl.Cells[0,1]:='-2';

StringGridl.Cells{l,l]:='0';

StringGridl.Cells[2,1]:='2';

StringGridl.Cells[0,2]:='-1';

StringGridl.Cells[l,2]:='0';

StringGridl.Cells[2,2]:='1';

end;

Code for Button 5:

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[OJ:=-1; ray[l]:= O; ray[2] := 1;

ray[3]:=-l; ray[4]:= O; ray[S]:= 1;

72



I

ray[6] :=-1; ray[7] := O; ray[8] := 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells[l,0]:='0';

StringGridl.Cells[2,0}:='1';

StringGridl.Cells[O,l}:='-1';

StringGridl.Cells[l,l}:='0';

StringGridl.Cells[2,l] :='l';

StringGridl.Cells[0,2] :='-1';

StringGridl.Cells[l,2}:='0';

StringGridl.Cells[2,2} :='1';

end;

Code for Button 6:

var

ray:tmaskarray;

begin

Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[0}:=-1; ray[l]:= -1; ray[2}:= -1;

ray[3}:=-l; ray[4}:= 8; ray[S}:= -1;

ray[6}:=-l; ray[7}:= -1; ray[8}:= -1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[0,0]:='-1';

StringGridl.Cells[l,OJ:='-1';

StringGridl.Cells[2,0}:='-1';

73



I

StringGridl.Cells(0,1]:='-1';

StringGridl.Cells[l,l]:='8';

StringGridl.Cells[2,1]:='-1';

StringGridl.Cells[0,2] :='-1';

StringGridl.Cells[l,2]:='-1';

StringGridl.Cells[2,2]:='-1';

end;

Code for Button 7:

begin

Iınagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitrnap.Pixe1Format:=pf8bit;

setirnage(temp_image,irnagel.Picture.Bitrnap);

For Y:=O to temp_image.Height-3 do

begin

rn :=temp_image.ScanLine[Y+l];

p := imagel.Picture.Bitrnap.ScanLine[y];

pl:= irnagel.Picture.Bitrnap.ScanLine[Y+l];

x:=l;

whi1e (x < temp_image.Width -1) do

begin

rn[x]:=abs(pl[x]-p[x-1]) + abs(pl[x-1]-p[x]);

x:=x+l;

end;

end;

irnagel.Picture.Bitrnap.Assign(ternp_image);

Irnagel.Picture.Bitrnap:=edgedetection(Irnagel.Picture.Bitmap);

irnagel.Refresh;

I

StringGridl.Cells[O,O}:='';

StringGridl.Cells[l,O]:=' ';

StringGridl.Cells[2,0]:=' ';

StringGridl.Cells[0,1]:=' ';

StringGridl.Cells[l,1]:='';

StringGridl.Cells[2,1] :='';

74



StringGridl.Cells[0,2]:=' ';

StringGridl.Cells[l,2] :=' ';

StringGridl.Cells[2,2J:=' ';

end;

Code for Button 8:

var

ray:tmaskarray;

begin
Imagel.Picture.Bitmap.HandleType:=bmdib;

Imagel.Picture.Bitmap.Pixe1Format:=pf8bit;

ray[OJ:= 1; ray[lJ:= 2; ray[2]:=1;

ray(3J := 2; ray[4J := 4; ray[5] := 2;

ray[6] := 1; ray[7J:= 2; ray[8] := 1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,16);

ray[0]:=-1; ray[lJ:= -1; ray[2] := -1;

ray[3]:=-1; ray[4]:= 8; ray[5]:= -1;

ray[6J:=-1; ray[7]:= -1; ray[8]:= -1;

Imagel.Picture.Bitmap:=convolution(Imagel.Picture.Bitmap,ray,0,1);

Imagel.Picture.Bitmap:=edgedetection(Imagel.Picture.Bitmap);

Imagel.Refresh;

StringGridl.Cells[O,O]:=' ';

StringGridl.Cells[l,0]:=11;

StringGridl.Cells[2,0]:='';

StringGridl.Cells[O,l]:=' ';

StringGridl.Cells[l,1] :='';

StringGridl.Cells[2,1]:=' ';

StringGridl.Cells[0,2] :='';

StringGridl.Cells[l,2] :='';

StringGridl.Cells[2,2]:='';

end;

75


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	' 

	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	ACKNOWLEDGEMENTS 


	Page 3
	Titles
	TABLE OF CONTENTS 
	i\.13~".rllt\.C'J'.................................................................................... iv 
	2. EDGE DETECTION OPEllt\. TORS........... •• • •• • •• • •• • • •• • . • •• . .. • •• • •• . • . • •• • •... 17 


	Page 4
	Page 5
	Titles
	ABSTACT 


	Page 6
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 7
	Page 8
	Titles
	I 


	Page 9
	Page 10
	Titles
	CHAPTER 1: IMAGE PROCESSING TECHNIQUES 

	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Page 13
	Images
	Image 1


	Page 14
	Titles
	I 


	Page 15
	Titles
	' 
	_.-------·-·-·- 
	-· 
	_.,. 
	-. 
	R~l -·-·- 
	__... ·-·-·-·-·-L._, / 
	·- -·-·- 

	Images
	Image 1
	Image 2
	Image 3


	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 21
	Page 22
	Titles
	CHAPTER 2: EDGE DETECTION OPERATORS 

	Images
	Image 1


	Page 23
	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Images
	Image 1


	Page 25
	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 27
	Titles
	1 '! 
	o i 
	-1 1 
	i 
	--21 
	l 
	-31 ~ 
	l ,..,,.,,.,,..,. ~ 
	_,.. ~ 
	. -~, j;. o .:... . --------- _, 2 
	2 ~-4 v 
	X 

	Images
	Image 1
	Image 2


	Page 28
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 29
	Images
	Image 1

	Tables
	Table 1


	Page 30
	Titles
	+1 
	o 
	Gx 
	o 
	- 1 
	o 
	-1 
	Gy 
	+1 
	o 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 31
	Titles
	Pı 
	p3 
	P2 
	p4 
	ıaı =IPı -P4lIP2 -~I 

	Images
	Image 1
	Image 2


	Page 32
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 33
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 34
	Images
	Image 1
	Image 2
	Image 3


	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 2
	Titles
	Sobel 
	Kirsch 
	Robinson 
	o 

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6


	Page 3
	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	CHAPTER THREE: THE DEVELOPED SOFTWARE 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	3.3. Program Flowchart 

	Images
	Image 1


	Page 7
	Titles
	3.4. The Program Interfaces 

	Images
	Image 1
	Image 2


	Page 8
	Titles
	Figure 3.3. The function of OPEN IMAGE button 
	Figure 3.4. The function of SA VE IMAGE button 
	37 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Titles
	II 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 10
	Titles
	::ıı.: .. r,;, ~ 3_,Jsa 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Titles
	Ill 

	Images
	Image 1


	Page 12
	Titles
	CHAPTER 4: RESULTS AND COMPARISON 

	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Titles
	4.4. Applying the developed software to the images 
	11::::::::::::::::.a; 
	:l.iifJLn.Jt.RtitltlN j;;:;::::::::::i@ 

	Images
	Image 1
	Image 2
	Image 3


	Page 15
	Titles
	:ii:i:~i:~~~;i;;:;:::;: 
	... ::ll!\li\i~[l!t., •••••••• ;~il~~li~~f~~~[!:\[1!1\\\l[l!iflflfl~!~····· 
	liJiliilliJlliiiiiiiiiiliiil~~l nwıw'" 
	ic ı-,., .. ,.,,:.;,s,•,oJ~,~ .. - .. · .. ~' 
	!~:::,::::'.:'.r.ı,j~~::;w' <······· : .~E! 
	(. •~-: .. )·· .. 
	,., :.' . 
	l· ~ 
	• :11;.i;Riii 
	L :,rı~ı 
	i~~ 
	h. 
	t9.'f'\ ... ..·. . . . ..· Ml 
	ı~/J.~~,-,.,~~i 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 16
	Titles
	O, .. 
	I[ •ttJJJJJ111Jli:iiiıtiiiii~::::t•••·•·:•;ı•••••·:••·•:· 
	:t.J.:;;;r: :.: : · , , .. ;,,,: :; .,:.:,.,:,:,:,.,:;.,.,.,.,.,: · .· . . .. · .· ·;.···rıı 
	... ~:::::~~i}rnııırn 
	l!!!!!llfil:lliiill~j~i!i!i! 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12
	Image 13
	Image 14


	Page 17
	Titles
	iiôf! 
	l!l!lll:ıı::;;f,ll!!l~~~-~~l[l,lll\lıl:l:1ı:;~;tı)t:ı::'. 
	::{:1::t~~ı;~:j'}:. 
	~~C1 
	:;::,;:,(ııjt!!:iı 
	ltt!tttffl 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1

	Tables
	Table 1


	Page 22
	Titles
	.-~~·:~: 
	· ··~1.il~"i.f.."f,: .· ·,.; !· I:, ;t;,, ., 
	, t· )r- WJ:;~ı:v-· 
	11!;\llll"iill 
	4.7. Additional Example for Edge Detection 
	\1f LIBRARY 
	\ ) 
	~ E.°f \~:~/, 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 23
	Titles
	,itJr:;:;;;;;;:::Iı:lllllll!?II:1J§W:~mmlf~ifiliJtitttt 
	!f \ 
	:! 
	Ii 
	Iii 
	c 
	f . 
	~~\ «rı 
	:Mffi!Mijil.i/ifiin~aıf 
	( ·1 
	ı I 
	ı'j. . ,' t" 
	~: JJ 
	,,. ( ... ı 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 24
	Titles
	lıi~!tt~~ıliılllı 
	,, 'i 
	'ı i 
	!i ;/ 
	•, :~-!;'1: 
	. ' 
	llii 

	Images
	Image 1
	Image 2
	Image 3


	Page 25
	Titles
	· 11!1!!!ill!i!irır:· 
	r-~t. 
	·t'· .... , 
	-~·,.- .,, 
	\;·/~; 
	-f?.,~-?Jf 
	t~tf'~J. 
	@IttEDllı~;IRılJ!b.&ıl 
	::.·. : ) ! >;;E:::>ı:::::tiiiit~i 
	l ~w.i~illj 
	14mlill: 
	iiıii~ 
	it 
	! 
	4. 7 .1. Results Analysis 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 26
	Titles
	:·ıı:..:ı:ı:tjMht: 
	iliıi1 
	l 
	: ıt:ic;tğnititt.iıöi J 
	': il[l]•••ı•:••t:•••t~~ç22i.i~~ı.t.~011.~~:ı ıııı b: 
	' 
	1/ :'!!!!!!Ilii!~~,1!!!!!!1!!i!t 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 27
	Titles
	i ! !!!!!!!;~[!j~~~£~~~~~ı~~:.l.ii!l!i!l!li;lililili• 
	:r ft?JiMiil 
	iıı;: 
	,?.+:~·! 
	::~~; 
	ı 
	••• !!·····~'''''J'''''·t••••• 
	i~J~i),:~k#. 
	I~_ 
	'ıı·· - 
	l[j cec,~~~ıı 
	iiJI 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 28
	Titles
	CONCLUSION 


	Page 29
	Titles
	REFERENCES 


	Page 30
	Titles
	APPENDIX A 
	The Program Source Code 
	59 


	Page 31
	Titles
	60 

	Images
	Image 1


	Page 32
	Titles
	+ 
	+ 

	Images
	Image 1


	Page 33
	Titles
	+ 
	62 


	Page 34
	Titles
	63 


	Page 35
	Page 36
	Titles
	//------------------------------} 
	65 


	Page 37
	Titles
	66 


	Page 38
	Page 39
	Titles
	Appendix B 
	68 
	' 


	Page 40
	Titles
	+ 
	+ 
	+ 
	69 


	Page 41
	Titles
	70 

	Images
	Image 1


	Page 42
	Titles
	//------------------------------} 
	71 

	Images
	Image 1


	Page 43
	Page 44
	Titles
	I 


	Page 45
	Titles
	74 
	I 
	I 


	Page 46
	Images
	Image 1



