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ABSTRACT 

Attempting to endow a computer with the ability to recognize characters requires the 

deployment of an artificial neural network, a system modeled on the function and 

behavior of the human brain. If successful, the computer will 'think" for itself, 

meaning that it acquired some level of artificial intelligence throughout learning. 

Thus, when presented with a distorted version of a pattern, the network will correctly 

classify it. 

The work within this thesis presents research into developing a neural network that 

can recognize alphabetical characters regardless of various degrees of pattern 

corruption (noise). 

The objective of this work is to endow the reader with a stronger concept of the 

processes in character recognition by giving insight into its predecessor, image 

processing. In addition, to project the simplicity by which neural networks may be 

used for basic character recognition and to demonstrate how a simple pattern 

recognition can be designed implementing the back-propagation algorithm. 

This thesis forms a base for further research of character recognition such as optical 

character recognition applied to scanners and faxes. These applications of character 

recognition must learn to deal with noise of imperfect data due to encountered 

problems with transmitting data. 
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INTRODUCTION 

Neural networks are becoming more popular as a technique to perform image processing 

and character recognition due to reported high recognition accuracy. They are also 

capable of providing good recognition with the presence of noise in which other methods 

normally fail. Neural networks with various architectures and training algorithms have 

been successfully applied for image processing and character recognition. 

Chapter 1 introduces the idea that an intelligent, human-like machine dawned over a 

century ago. This marked the conception of the present-day artificial neural network. A 

neural network contains an arrangement of neurons arranged into layers, and weights in 

which the learning process stores acquired knowledge. Many learning processes evolved, 
including back-propagation, memory-based learning, Hebbian learning, competitive 

learning, and Boltzmann learning. 

The second chapter presents image analysis as a process of discovering, identifying, and 

understanding patterns relevant to the performance of an image-based task. One of the 

principal goals of image analysis by computer involves endowing a machine with the 

capability to approximate the same ability in human beings. An automated image 

analysis system should attain the capability of exhibiting various degrees of intelligence. 

The concept of intelligence appears vague with reference to a machine because it cannot 

acquire the extent present in humans. However, the machine may learn basic 

characteristics of intelligent behavior. Even with these characteristics, image analysis 

systems may only perform for limited operational environments. Currently, endowing 

these systems with a level of intelligence close to that found in humans appears far­ 

fetched; however, research in biological and computational systems continually uncovers 

new and promising theories. 

Chapter 3 shows the widespread use of neural networks in image processing. The mid­ 

eighties introduced the back-propagation learning algorithm for neural networks, making 

vii 



it feasible for the first time to train a non-linear network equipped with layers of hidden 

nodes. Since then, neural networks with one or more hidden layers can, in theory, train to 

perform virtually any task. In their 1993 review article on image segmentation, Pal and 

Pal predicted that neural networks would become widely applied in image processing [5]. 

This prediction proved correct. 

In chapter 4, character recognition itselfis also applied to neural networks. For character 

recognition, created matrices representing the letters of the alphabet form the input 

presented together with the target vector into a multi-layer, feed-forward, back­ 

propagation neural network. The network trains with and without noise, and learns to 

produce a correct output by making error-based adjustments to the weights which 

includes a sigmoid transfer function. Large matrices may be manually compressed in 

order to decrease the size of total data, and idea of similar import employed in image 

processing. 

Lastly, chapter 5 practically applies neural networks to the character recognition problem 

by using MatLab. A 2-layer, log-sigmoid neural network with an architecture of 400 

input, 52 hidden, and 26 output nodes initialize the MatLab program. Two copies of the 

network are trained; the first on just ideal, and the second on both ideal and noisy vectors. 

Afterwards, both networks are tested on variant levels of noise and their degrees of 

accuracy when recalling characters is compared. 

This thesis presents work aimed at: 

• Exploring the applications of neural networks and image processing for character 

recognition 

• Developing a character recognition system based on using neural networks 

• Simulating the above neural network system using MatLab 

viii 



Artificial Neural Networks 

1. ARTIFICIAL NEURAL NETWORKS 

1.1 Overview 

This chapter presents a general introduction to neural networks. History, definitions, 

common algorithms with emphasis on back-propagation, learning tasks, activation 

functions, and the neural network analogy to the brain will be discussed. 

1.2 Neural Network Definition 

More properly defined as an "artificial neural network" (ANN), a neural network 

represents an artificial prototype of the biological neural network known as the 

human brain. Biological neural networks function a great deal more complex than 

the mathematical model; however, referring to them simply as neural networks 

nowadays appears customary. 

A neural network indicates an information-processing paradigm inspired by the way 

biological nervous systems, such as the brain, process information. The novel 

structure of the information processing system constitutes the key element of this 

paradigm. The structures consist of a large number of highly-interconnected 

processing elements, called neurons, working in unison to solve specific problems. 

Neural networks, like people, learn by example. A learning process configures the 

network for a specific application, such as pattern recognition or data classification. 

Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons; true of the artificial neural networks as well. 

• Definition: 

A machine designed to model the way in which the brain preferences a 

particular taste or function. The neural network usually implements using 

electronic components or simulates as software. 



Artificial Neural Networks 

• Simulated: 

A mathematical model of the human brain that consists of many simple, 

highly interconnected processing elements organized into layers and 

operating in parallel devoid of central control. Processing units attain neural 

propensity for storing experiential knowledge and making it available for use 

through connections between the units, which store numeric weights in 

which the learning element modifies. 

It resembles the brain in two respects: 

1. The network acquires knowledge from its environment through a 

learning process. 
2. Acquired knowledge stores as the inter-neuron connection strength, 

known as synaptic weights. 

Neural networks go by many aliases as shown in figure 1.1 below: 

• Parallel Distributed Processing Models 
• Connectives I Connectionism Models 
• Adaptive Systems 
• Self-Organizing Systems 
• Neurocomputing 
• Neuromorphic Systems 

Figure 1.1 Neural Network Aliases 

All the above names refer to this new form of information processing. The general 

and most commonly used term, "neural network", shall define the broad classes of 

artificial neural systems. 

2 



Artificial Neural Networks 

1.3 History of Neural Ne 
Neural networks boast a broad ~ory spanning from the present day all the way 
back to the 18th century. Out oft e desire for human beings to create a machine 

which can mimic certain intelligibl abilities of human beings, artificial neural 

networks originated. Table 1.1 ~l~ shows the neural network development 

history: 

Present 

Late Infancy 

Stunted Growth 

Excessive Hype 

Early Infancy 

Birth 

' 

J 
I 

Mid 1960's 

50's-60's 

I 1956 

terest explodes with conferences, articles, 
simulation, new companies, and 
government funded research 

vast development in the training and 
learning of neural networks 

funding c~s to neural network research as a 
r,esult of excessive hype 

f neural networks publicly 
exaggerated 

new neural netwdrks created and applied to 
real-life problems 

group project of the Dtst in the field held in 
order to attempt to\create intelligent 

Age of Computer ,.... 
Neural Network termini 

simple neural network mode1'f reated, 
researchers began to look to anatomy and 

physiology for clues about cr~ating 
intelligent machines \ 

1950's 

1890 - 1949 

Table 1.1 Neural Network Development History l 
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Artificial Neural Networks 

1.4 Analogy to the Brain 
The human nervous system may recJ~ notice as a three stage system, as depicted 

in figure 1.2. 

Figure 1.2 Block Diaglam of thd 

Receptors Effectors 
Response ~ Stimulus ._1 

L 

The neural network denotes the central element tp the system, the brain, which 

continually receives information, p¢rceives, and es appropriate decisions. The 

above block diagram shows two t= of arrows. Those pointing from left to right 

indicate the forward transmission/ of information-bear~g signals through the system. 

The receptors convert stimuli frf m the human body o: \he external environment into 

electrical impulses which con{ey information to the bi~logical neural network, the 

brain. 

discernible responses as system outputs. 

impulses by\ the neural network into 

1.4.1 Natural Neuron 

A neuron imitates a 9/rve cell with all of its processes. The~ cells make distinction 

between animal jd plant matter, as plants lack nerve cells. Furthermore, the 

various classes of neurons in humans range up to one hundred. 

microscopic, fut some neurons in the legs span as long as three meters. 

shows the type of neuron found in the retina. 

I 
generally seem relates to how/ restrictively a class receives definition. 

Figure 1.3 
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Artificial Neural Networks 

A bi-polar neuron forms o e example. Its name · plies two processes. The cell 

body contains the nucleus d one or more dendrites eading into the nucleus. These 

branching, tapering proq sses of the nerve cell, as a le, conduct impulses toward 

the cell body. The , n corresponds to the nerve ce process that conducts the 

impulse type of neu ons. This gives humans the 

needed to make anaj gies. 

s by copying the simplest element: the neuron. :\t is also referred to 
as an artificial neuron, , a processing element, or PE for short. Additionally, the 

word "node" also represents this simple building block, which a c· cle in figure 1.4 

signifies/ 

I 

5 
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Artificial Neural Networks 

Inputs 

I~ 

-----•• Outputs 

n 

Figure 1.4 Artificial Neuron 

The artificial neuron handles several basic functions: (1) evaluating the input signals 

and determining the strength of each one, (2) calculating the total for the combined 

input signals and comparing that total to some threshold level, and (3) determining 

the output. 

Input and Output 
Just as many inputs to a neuron exist, so many input signals should as well. All of 

them should meet simultaneously at the neuron. In response, a neuron either "fires", 

or "does not fire" depending on some threshold level. The artificial neuron only 

allows a single output signal, just as present in a biological neuron. The network 

possesses many inputs, yet only one output. 

Weighting Factors 
Each input receives a relative weight which affects its impact. Figure 1.5 presents 

an artificial neuron containing a single-node with weighted inputs. 

6 



Artificial Neural Networks 

Inputs 

Outputs= Sum of Inputs* Weights 
------1111l>~ Note: Many inputs one output 

Figure 1.5 A Single-Node Artificial Neuron 

This compares to the varying synaptic strengths of the biological neurons. Some 

inputs become more important than others in the way that they combine to produce 

an impulse. 

1.5 Model of a Neuron 
The neuron represents the basic processor in neural networks. Each neuron gives 

one output, which generally relates to the state of the neuron, meaning its activation, 

which may fan out to several other neurons. Each neuron receiyes several inputs 

over these connections, called synapses. The inputs signify the activations of the 

neuron. This computes by applying a threshold function to this product. Figure 1.6 

shows an abstract model of a neuron. 

Incomming Activation 

e 
threshol. 

Outgoing 
activation 

Figure 1.6 Diagram of Abstract Neuron Model 
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Artificial Neural Networks 

1.6 Back-Propagation 
Back-propagation holds the title for most popular method' for learning of the multi­ 

layer network. First developed in 1886 by Rumelhart Hinton and Williams, 

received little notice for a few years. The reason may correlate to the computational 

requirements of the algorithm on non-trivial problems. 

The back-propagation learning algorithm works well on multi-layer, feed-forward 

networks, using gradient descent in weight space to minimize the output error. It 

converges to a locally optimal solution, and proves successful in a variety of 

applications. As with all hill-climbing techniques, however, no guarantee assures 

that it will find a global solution. Furthermore, its convergence often proves slow. 

1.6.1 Back-Propagation Learning 

Suppose a problem requires the constructing of a network, a two-layer network will 

constitute as the starting point. Ten attributes describe each example, thus requiring 

ten input units. Figure I. 7 shows a network with four hidden units, which proves 

useful for the particular problem. 

Input Units: I i 

Output Units: ~ 

Input-Layer Weights: Wkj 

Hidden Units: H; 

Hidden-Layer Weights: Wj,i 

Figure 1.7 A Two-Layer Feed-Forward Network 
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Artificial Neural Networks 

Example inputs present into the network, and if the network computes an output 

vector that matches the target, no additional steps take place. If an error appears, 

indicating a difference between the output and target, then weights adjust to reduce 

this error. The trick of back-propagation consists of assessing the blame for an error 

and dividing it among the contributing weights. In multi-layer networks, many 

weights connect each input to an output and each of these weights contributes to 

more than one output. 

The network attempts to minimize the error between each target output and the 

output actually computed. At the output layer, the weight update rule compares to 

the rule for the perceptron, however, with the exception of two differences: the 

activation of the hidden unit aj replaces the input value and the rule contains a term 

for the gradient of the activation function. If Em represents the error (Tj-Oi) at the 

output node, then the weight update rule for the link from unit j to unit i calculates 

by: 

(1.1) 

where g' = the derivative of the activation g, it then becomes convenient to define a 

new error term /),.; for which /),.; = Err;g'(in;) defines the output node. The update 

rule then becomes: 

(1.2) 

For updating the connections between the input and the hidden units, it becomes 

necessary to define a quantity analogous to the error term for output node. The 

propagation rule: 

(1.3) 

9 



Artificial Neural Networks 

Now the weight update rule for the weights between the inputs and the hidden layer 

almost matches to the update rule for the output layer: 

(1.4) 

Function Back-Prop-UPDATE (network, examples, a) returns a network with 
modified weights. 
Inputs: network, a multi-layer network 
Examples, asset of input/output pairs a, the learning rate. 
Repeat 
For each e in example do 
0 ~ TUN -NETWORK(network,r) 
Erre ~Te -0 
W .. ~ W . +axa. » Err' xg'(in) JJ JJ J l I 

For each subsequent layer in network do 
L\ . ~ g'(in ) "\:' W .L\ . 

J J L,...; j,l j 

wk,j ~ wk,j + a X I k X L\ j 
end 
end 
until network converges 
return network 

Figure 1.8 Back-Propagation Algorithm for Updating Weights 

Back-propagation provides a way of dividing the calculation of the gradient among 

the unit to calculate the change in each weight by the unit to the attached weight 

using only local information. 

The sum of squared errors over the output values used: 

(1.5) 

10 
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where Oi, is a function of the weights for general two-layer network, written as 

follows: 

E(W) = ~ ~)I'; - g(L W1,ia ))2 
I J 

(1.6) 

E(W) = 1 IC'f; -g(LWJ,ig(IWk,/k)))2 
I } 

(1.2) 

1. 7 Learning Processes 
Leaming presents a process by which the free parameters of a neural network adapt 

through a process of stimulation by the environment embedded in the network. 

Determining the type of learning depends on the manner in which the parameter 

change takes place. 

This definition of the learning process implies the following sequence of events: 

• An environment simulates a neural network. 

• The neural network undergoes changes in its parameters as a result of this 

stimulation. 

• The neural network responds in a new way to the environment because of the 

occurred changes in its internal structure. 

A learning algorithm defines a prescribed set of well-defined rules for the solution 

of a learning problem. 

Basically, learning algorithms differ from each other in the way in which the 

adjustment to a synaptic weight of neurons formulates. Another factor to consider 

includes the manner in which a neural network comprises a set of interconnected 

11 
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neurons. A learning paradigm refers to a model of the environment in which the 

neural network operates. 

1.7.1 Memory-Based Learning 

In memory-based learning, a large memory of correctly classified input-output 

examples explicitly stores all or most of the past experiences. The formula results as 

follows: 

(1.8) 

where X; denotes an input vector and d, denotes the corresponding desired response. 

1.7.2 Hebbian Learning 

When an axon of cell A approaches close enough to excite a cell B, it repeatedly or 

persistently takes part in firing it. Some growth processes, or metabolic changes 

take place in one or both cells: 

1. If two neurons on either side of a synapse selectively activate 

simultaneously, then the strength of that synapse increases. 

2. If two neurons on either side of a synapse activate asynchronously, then that 

synapse either weakens or becomes eliminated. 

The following constitute four key mechanisms that characterize a Hebbian synapse: 

1. Time-dependent mechanism. This mechanism refers to the fact that the 

modification in a Hebbian synapse depends on the exact time occurrence of 

the presynaptic and postsynaptic signals. 

2. Local mechanism. By its nature a synapse acts as the transmission site 

where information-bearing signals, which represent ongoing activity in the 

presynaptic and postsynaptic units, exist in spatiotemporal contiguity. 

12 
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3. Interactive mechanism. The occurrence of a change in the Hebbian synapse 

depends on signals on both sides of the synapse. 

4. Conjunctional or co-relational mechanism. One interpretation of Hebb's 

postulate of learning comments that the condition for a change in synaptic 

efficiency presents the conjunction of presynaptic and posynaptic signals. 

1.7.2.1 Synaptic Enhancement and Depression 

The conception of a Hebbian modification recognizes that positively correlated 

activity produces synaptic weakening; synaptic for depression may also exist as a 

non-interactive type. The classification of modifications such as Hebbian, anti­ 

Hebbian, and non-Hebbian, according to this scheme, increases its strength when 

these signals either uncorrelate or negatively correlate. 

1.7.2.2 Mathematical Models of Hebbian Modifications 

To formulate Hebbian learning in mathematical terms, consider a synaptic weight 

Wki of neuron k with presynaptic and postsynaptic signals denoted by xi and y« 

respectively. The adjustment applied to the synaptic weight W1g, at time step n, 

expressed in the general form: 

AwkJ(n) = f(y (n),x/n)) (1.9) 

where the signals xj(n) and Yk(n) often treated as dimensionless. 

1. 7.2.3 Hebbian Hypothesis 

The simplest form of Hebbian learning: 

(1.10) 

where 17 represents a positive constant that determine the rate of learning, it clearly 

emphasizes the co-relational nature of a Hebbian synapse, sometimes referred to as 

the activity product rule (see figure 1.9). 

13 
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0 

Hebb's Hypothesis 

ce Hypothesis 

Postsvnantic Activitv Vv 

-17(x1 - x)y 
Maximum Depression 

Point 

Figure 1.9 Illustration ofHebb's Hypothesis and the Covariance Hypothesis. 

With the change 8wlg' plotted versus the output signal Yk, exponential growth finally 

drives the synaptic connection into saturation. At that point no information will 

store in the synapse and becomes selectivity lost. 

Covariance hypothesis: One way of overcoming the limitation of Hebb's hypothesis 

includes using covariance hypothesis introduced by Sejnowski. In this hypothesis, 

the departure of presynaptic and postsynaptic signals from their respective values 
- 

over a certain time interval replaces the presynaptic and postsynaptic. Let x and y 

denote the time average values of the presynaptic signal x1, and postsynaptic signal 

Yk r~spectively according to the covariance hypothesis. The adjustment applied to 

the synaptic weight w1g: 

- 
8wlg' = 17(x1 -x)(Yk -y) (1.11) 

where 17 represents the learning rate parameter and the average values x and y 

constitute presynaptic and postsynaptic thresholds. This determines the sign of 

synaptic modification. 

14 
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1.7.3 Competitive Learning 
In competitive learning, as the name implies, the output neurons of a neural network 

compete among themselves to become active and :fire. The several output neurons 

may activate simultaneously in completive learning; yet only a signal output neuron 

remains active at any time. These features classify a set of input patterns. The three 

basic elements to a competitive learning rule include: 

• A set of identical neurons except for some randomly distributed synaptic 

weight and which therefore respond differently to a given set of input 

patterns 

• A limit imposed on the strength of each neuron. 

• A mechanism that permits the neurons to compete for the right to respond to 

a given subset of input. 

In the simplest form of competitive learning, the neural network contains a single 

layer of output neurons, each of which fully connects to the input nodes. The 

network may include feed-back connection among the neurons as indicated in figure 

1.10. 

Single layer of 
output neurons Layer of source node 

Figure 1.10 Feed-back Connections among the Neurons 

15 
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For a neuron k to act as the winning neuron, it induces local field Vk for a specified 

input pattern. X must denote the largest among all the neurons in the network. The 

output signal Yk of winning neurons k sets equal to one. The output signals of all the 

neurons that lose the competition set equal to zero. Thus: 

-{1 ifak > v1forallj,j -:t= k 
Yk - 

o otherwise 
(1.12) 

The induced local field Vk represents the combined action of all the forward and 

feedback inputs to neuron k. 

Let WkJ denote the synaptic weight connecting input node j to neuron k. Suppose that 

each neuron allots a fixed amount of synaptic weight, which distributes among its 

input node as the following: 

L W1g = 1 For all k 
j 

(1.13) 

The change ~wkJ applied to synaptic weight wkJ: 

w = {17 ( x 1 - w lq )if neuron k wins the competition 
kJ O if neuron k loses the competition 

(1.14) 

where 17 represents the learning rate parameter which creates the overall effect of 

moving the synaptic weight vector Wk of winning neurons k toward the input pattern 

x. 

16 
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1. 7 .4 Boltzmann Learning 

The Boltzmann learning rule a stochastic learning algorithm derived from ideas 

rooted in statistical mechanics, received its name in honor of Ludwig Boltzmann. In 

a Boltzmann machine, the neurons constitute a recurrent structure and operate in a 

binary manner since they either hold an on-state denoted by + 1, or an off state 

determined by the particular states occupied by the individual neurons of the 

machine as shown by: 

(1.15) 

where x1 constitutes the state of neuron j and WkJ signifies the synaptic weight 

connecting neuron j to neuron k, the fact that j -:t:- k means simply that none of the 

neurons in the machine possess self feed-back. The machine operates by choosing a 

neuron at random, for example neuron k at some step of the learning process then 

flipping the state of neuron k from state Xk at some temperature T with probability: 

(1.16) 

where Mk indicates the energy change resulting from such a flip, notice that T 

designates not physical temperature but rather a pseudo temperature. 

The neurons of a Boltzmann machine partition into two functional groups: visible 

and hidden. The visible neurons provide an interface between the network and the 

environment in which it operates, whereas the hidden neurons always operate freely. 

Two modes of operation to consider: 

• Clamped condition in which the visible neurons all clamp onto specific states 

determined by the environment. 

17 



Artificial Neural Networks 

• Free running condition in which all the neurons, visible and hidden, operate 

freely. 

According to the Boltzmann learning rule, the change ~wkJ applied to the synaptic 

weight w kJ from neuron j to neuron k by: 

~w1g· =1J(P+ -p_), je k 
kj kj 

(1.17) 

where 1J identifies a learning rate parameter, note that both p + and p _ range in 
kj kj 

value from-I to +l. 

1.8 Learning Tasks 
Identification of six learning tasks that apply to the use of the neural network in 

different forms shall take place. 

a. Pattern Association 

An associative memory presents a brain-like, distributed memory that learns· by 

association. Acknowledged as a prominent feature of human memory, even 

Aristotle used association for basic operations. The operation of an associative 

memory involves two phases: 

• Storage phase, which refers to the training of the network m 

accordance with X1c ~ Y1c. k = 1,2,3 .... .q 

• Recall phase, which involves the retrieval of a memorized pattern in 

response to the presentation of a noisy or distorted version of a key 

pattern to the network. 
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b. Pattern Recognition 

Humans own the capability for pattern recognition. They receive data from 

the world around via senses and possess the ability to recognize the source of 

the data. Pattern recognition gained a formal definition as the process 

whereby a received pattern/signal receives designation to one of a prescribed 

number of classes or categories. 

c. Function Approximation 

The third learning task of interest-function approximation. 

d. Control 

Another learning task, the control of a plant, may process within a neural 

network. A process or critical art of a system requiring maintenance in a 

controlled condition defines a plant. 

e. Filtering 

The term filter often refers to an algorithm device used to extract information 

about a prescribed quantity of interest from a set of noisy data. 

f. Beam-forming 

The term Beam-forming characterizes a spatial form of filtering and employs 

to distinguish between the spatial properties of a target signal and 

background noise. A beam-former identifies a device used to do beam­ 

forming. 

1.9 Activation Functions 

Generally, some form of non-linear function correlates to the threshold function. 

One simple non-linear function, the step function, proves one of the most suitable 

for discrete neural networks. One variant of the step function: 
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-1 

Figure 1.11 Step Function 

f (x) = {~1 (x) 
-1 

x>O 

x=O 
x<O 

(1.18) 

where f' (x) refers to the previous value off(x) in which the activation of the neuron 

will not change and x specifies the summation over all the incoming neuron) of the 

product of the incoming neuron's activation, and the connection: 

(1.19) 

_ for which A indicates the vector of incoming neurons and w the vector of synaptic 

weights connecting the incoming neurons to the examined neurons. One more 

appropriate to analog includes the sigmoid, or squashing, :function; illustrated in 

figure 1.12. 

20 



Artificial Neural Networks 

Figure 1.12 Sigmoid Functions 

1 
f(x)=~e (1.20) 

Another popular alternative: 

f (x) = tanh(x) (1.21) 

A non-linear activation function deems very important, especially when employing a 

multi-layer network because non-linear activation functions applied to multi-layer 

networks compute identical to single-layer networks. 

1.9.1 Artificial Neural Network 

Synapses store all of the knowledge that a neural network possesses. Figure 1.13 

shows the weights of the connections between the neurons. 
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Figure 1.13 Diagram of Synapse Layer Model 

However, the network acquires that knowledge during training during which pattern 

associations presents to the network in sequence, and the weights adjust to capture 

this knowledge. This weight adjustment scheme designates as the learning law. 

Hebbian learning became one of the first learning methods formulated. 

Donald Hebb, in his organization of behavior formulated the concept of correlation 

learning. This formed the idea that the weight of a connection adjusts based on the 

values of the neurons it connects: 

(1.22) 

were a represents the learning rate, a, indicates the activation of the "i"th neuron in 

one neuron layer, a1 denotes the activation of the "i"th neuron in another layer, and 

Wy symbolizes the connection strength between the two neurons. The signal 

Hebbian Law identifies a variant of this learning rule: 

(1.23) 

where s indicates a sigmoid function 
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1.9.2 Unsupervised Learning 
\ 

The unsupervised learning method presents one method of learning. In general, 

unsupervised learning methods do not adjust weights based on comparison with 

some target output, or a teaching signal fed into the weight adjustments. 

1.9.3 Supervised Learning 

In many models, learning takes the form of supervised training. Input pattern one 

after the other present to the neural network, and the recalled output pattern 

compares with the desired result. It needs some way of adjusting the weights which 

takes into account any error in the output pattern. An example of a supervised 

learning law-the Error Correction Law: 

(1.24) 

where a indicates the learning rate, a, the activation of the "i''th neuron, bj the 
activation of the "i"th neuron in the recalled pattern, and Cj the deired activation of 

the "i''th neuron. 

1.9.4 Reinforcement Leaming 

Another learning method, known as reinforcenmet learing, fits into the general 

category of supervised learning. However, its formula differs from the error 

correction formula just presented. This type of learning corresponds to supervised 

learning except that each ouput neuron gets an error value. Only one error value 

computes for each ouput neuron. Thus, the weight adjustment formula: 

(1.25) 

where a represents the learning rate, v the single value indicting the total error of 
the output pattern, and e the threshold value for the "i"th output neuron. It 

becomes necessary to spread out this generalized error for the "i"th output neuron to 

each of the incoming i neurons, a value representing the eligibility of the weight for 

updating. This computes as: 
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(1.26) 

where gi denotes the probability of the correct output given the input from the "i"th 

mcommg neuron. The probability function results from a heuristic estimate and 

manifests itself differently from specific model to specific model. 

1.10 Back-Propagation Model 

The back-propagation model applies to a wide class of problems and now holds the 

title of the most pre-dominant supervised training algorithm. Supervised learning 

requires the availability of a set of good pattern associations to train with. Figure 

1.14 presents the back-propagation model. 

0 output 
layer 
neurons 

W2weight 
matrix 

hHidden­ 
layer neurons 

WI 
Weight 

I input layer 
neurons 

Figure 1.14 Diagram of Back-Propagation Topology 

It comprises two layers of neurons: an input layer considered only as interface as it 

requires no caculation, a hidden layer, and an output layer. In addition, there are 

two layers of synaptic weights. There includes a learning rate term, a, in the 
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subsequent formulas indicating how much of the weight changed to effect on each 

pass-typically a number between O and 1. Also, a momentum term, 0 , indicating 

how much a previous weight change should influence the current weight change. 

Finally, a term indicating the amount of tolerable error. 

1.10.1 Back-Propagation Algorithm 

Random values between -1 and + 1 assign to the weghts between the input and 
hidden layers, the weights between the hidden and output layers, and the threshold 

for the hidden layer and output layer neurons train the network by preforming the 

following procedure for all pattern pairs: 

Forward Pass 

1. Compute the hidden layer neuron activations: 

h=F(iWl) (1.27) 

where h represents the vector of hidden layer neurons, t the vector of input 

layer neurons, and WI the weight matrix between the input and hidden 

layers. 

2. Compute the output layer neuron activation: 

O=F(hW2) (1.28) 

where o represents the output layer, h the hidden layer, W2 the matrix of 

synapses connecting the hidden and output layers, and F a sigmoid activation 

function=-the logistic function is given by equation 1.20. 

Backward Pass 

3. Compute the output layer error (the difference between the target and the 
observed output): 

25 



Artificial Neural Networks 

d=O(I-0)(0-t) (1.29) 

where d corresponds to the vector of errors for each output neuron, o the 

output layer, and t the target correct activation of the output layer. 

4. Compute the hidden layer error: 

e = h(I- h)W2d (1.30) 

where e symbolizes the vector of errors for each hidden layer neuron. 

5. Adjust the weights for the second layer of synapses: 

W2=W2+~W2 (1.31) 

where ~W2 indicates a matrix representing the change in matrixW2, 

computed as follows: 

(1.32) 

where a indicates the learning rate and e the momentum factor used to 

allow the previous weight change to influence the weight change in this time 

period. This does not mean that time incorporates into the mode. It only 

indicates the adjustment of weights. 

6. Adjust the weights for the first layer of synapses: 

WI=WI+Wit (1.33) 

WI1 = aie + E>~Wl1_1 (1.34) 

Repeat steps 1 through 6 on all pattern pairs until the output layer error 

(vector d) contains a value within the specified tolerance for each pattern and 

for each neuron. 
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Recall 

Present this input to the input layer of neurons of the back-propagation net: 

• Compute the hidden layer activation: 

h = F(Wli) (1.35) 

• Compute the output layer: 

0=F(W2h) (1.36) 

where vector o denotes the recalled pattern 

1.10.2 Strengths and Weaknesses 

The back-propagation network boasts the ability to learn any arbitrarily complex, 

and non-linear mapping due to the introduction of the hidden layer. It also possesses 

a capacity much grater than the dimensionality of its input and output layers, 

however, not always true of all neural network models. 

However, back-propagation may involve extremely long and potentially infinite 

training time. If there a strong relationship exists between input and outputs, and 

results within a relatively acceptable time, then this algorithm proves ideal. 

1.11 Summary 
This chapter provides the reader with a brief introduction to neural networks. 

Various learning algorithms, learning tasks, activation functions, models, and 

definitions were presented. 
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2. IMAGE PROCESSING 

2.1 Overview 
This chapter presents insight into basic image processing outlined by image analysis, 

pattern classes, error matrices, classifying image data, discrete wavelet transform of an 

image, and quantization. In addition object recognition and optical recognition are 

introduced. 

2.2 Elements of Image Analysis 
The spectrum of techniques in image analysis divides into three basic areas: (1) low­ 

level processing, (2) intermediate-level processing, and (3) high-level processing. 

Although these sub-divisions enclose no real or definite boundaries, they do provide a 
useful framework for categorizing the various processes of an autonomous image 

analysis system. Figure 2.1 illustrates these concepts, with the overlapping dashed 

lines indicating that clear-cut boundaries between processes do not really exist. 

Low-level processing deals with functions viewed as automatic reactions that require 

no intelligence on the part of the image analysis system, including image acquisition 

and preprocessing. This classification encompasses activities from the image 

formation process itself to compensations, such as noise reduction or image de­ 

blurring. Low-level functions compare to the sensing and adaptation processes that a 

person goes through when trying to find a seat immediately after entering a dark theater 

from bright sunlight. The intelligent process of finding an unoccupied seat cannot 

begin until the availability of a suitable image. The process followed by the brain in 

adapting the visual system to produce an image indicates an automatic, unconscious 

reaction. 
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Intermediate-level processing deals with the task of extracting and characterizing 

components in an image resulting from a low-level process. As figure 2.1 indicates; 

intermediate-level processes encompass segmentation and description, using 

techniques. Flexible segmentation procedures must build some capabilities for 

intelligent behavior. For example, bridging small gaps in a segmented boundary 

involves more sophisticated elements of problem solving than mere low-level 

automatic reactions. 
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'----------------------------------~ 
Low-Level Processing 

High-Level Processing 

Figure 2.1 Elements of Image Analysis 

Finally, high-level processing involves recognition and interpretation. These two 

processes grasp a stronger resemblance to the term intelligent cognition. The majority 

of techniques used for low and intermediate-level processing encompass a reasonably 
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well-defined set of theoretic formulations. However, venturing into recognition and 

interpretation requires that knowledge and understanding of fundamental principles 

become more speculative. This relative lack of understanding ultimately results in a 

formulation of constraints and idealizations intended to reduce task complexity to a 

manageable level. The final product consists of a system with highly specialized 

operational capabilities. 

2.3 Pattern Classes 
A fundamental step in image analysis includes the ability to perform pattern 

recognition. A pattern indicates a quantitative or structural description of an object, or 

some other entity of interest in an image. In general, one or more descriptors, also 

known as features, form a pattern. Thus, an arrangement of features defines a pattern. 

A pattern class indicates a family of patterns that share some common properties. The 

symbols co1, CO2, ••• COM denote pattern classes, where M represents the number of 

classes. Pattern recognition by machine involves techniques for assigning patterns to 

the irrespective classes automatically and with as little human intervention as possible. 

2.4 Error Matrices 
Two of the error matrices used to compare the various image compression techniques 

includes the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR). 

The mean squared error uses the cumulative squared error between the compressed and 

the original image, whereas PSNR measures the peak error. 

l M N [ ]2 MSE=-LL I(x,y)-f(x,y) 
MN y=I x=I 

(2.1) 

PSNR = 20 * loglO (255 I sqrt(MSE)) 
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where I(x,y) represents the original image, I'(x,y) the approximated version (in actually 

the decompressed image), and Mand N the dimensions of the images. 

A lower value for MSE indicates less error, and a higher value of PSNR indicates a 

higher ratio of signal to noise, making it preferred. Here, the signal denotes the 

original image, and the noise the error in reconstruction. So, a lower MSE and a high 

PSNR indicates a decent compression scheme. 

2.5 The Outline 
Take a close look at compressing grey scale images. The algorithms explained can 

easily extend to color images, either by processing each of the color planes separately, 

or by transforming the image from RGB representation to other convenient 

representations. 

The usual steps involved in compressing an image include: 

1. Specifying the rate, bits available, and distortion, tolerable error, parameters for 

the target image. 
2. Dividing the image data into various classes based on their importance. 

3. Dividing the available bit budget among these classes with minimum distortion. 

4. Quantize each class separately using the bit allocation information derived in 

step three. 
5. Encode each class separately using an entropy coder and write to the file. 

Reconstructing the image from the compressed data usually takes less time than 

compression. The steps consist of: 

1. Reading in the quantized data from the file using an entropy decoder. (Reverse 

of Step 5) 
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2. De-quantize the data. (Reverse of step 4). 

3. Rebuild the image. (Reverse of step 2). 

2.5.1 Classifying Image Data 

A two-dimensional array of coefficients represents an image, each coefficient 

representing the brightness level in that point Most natural images consist of smooth 

color variations, with the fine details represented as sharp edges in between the smooth 

variations. Smooth variations in color define as low-frequency components, and the 

sharp variations as high-frequency components. 

The low-frequency components constitute the base of an image, and the high-frequency 

components add upon them to refine the image, thereby giving a detailed image. 

Hence, the smooth variations demand more importance than the sharp variations. 

2.5.2 The Discrete Wavelet Transform (DWT) of an Image 

Select a low and a high-pass filter, called the Analysis Filter Pair, such that they 

exactly half the :frequency range between themselves. First, the low-pass filter applies 

on each row of data, thereby getting the low-frequency components of the row. But as 

a half band filter, the output data contains frequencies only in the first half of the 

original frequency range. So, by Shannon's Sampling Theorem, they become sub­ 

sampled by two, so that the output data now contains only half the original number of 

samples. Now, the high-pass filter applies on the same row of data, and similarly the 
high-pass components separate and placed along side of the low-pass components. 

This procedure repeats for all rows. 

Next, the filtering occurs for each column of the intermediate data. The resulting two­ 

dimensional array of coefficients contains four bands of data, each labeled as either LL 

(low-low), HL (high-low), LH (low-high), or HH (high-high). The LL band 

decomposes once again in the same manner, thereby producing more sub-bands. This 
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may take pace up to any level, thereby resulting in a pyramidal decomposition as figure 

2.2 demonstrates. 

LL HL 
HL 

LH HH 

LH HH 

LL I HL 

LH I HH 

(a) Single Level Decomposition (b) Two Level Decomposition 

LL HL 
HL 

LH HH HL 
LH HH 

LH HH 

(c) Three Level Decomposition 

Figure 2.2 Pyramidal Decomposition of an Image 

The low-low band at the highest level classifies as most important, and the other detail 

bands classify as lesser importance, with the degree of importance decreasing from the 

top of the pyramid to the bands at the bottom. 
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Figure 2.3 Three-Layer Decomposition of an Image 

2.6 The Inverse Discrete Wavelet Transform (DWT) of an Image 
Just as a forward transform separates the image data into various classes of importance, 

a reverse transform reassembles the various classes of data into a reconstructed image. 

Here, the pair of high and low-pass filters defines as the Synthesis Filter Pair. The 

filtering procedure starts from the topmost level, applies the filters column and row­ 

wise, and proceeds to the next level until the first level. 

2.6.1 Bit Allocation 

The first step in compressing an image consists of segregating the image data into 

different classes. Depending on the importance of the data it contains, each class 

receives an allocated portion of the total bit budget in order to minimize possible 

distortion within a compressed image. 

The Rate-Distortion theory solves the problem of allocating bits to a set of classes, or 

for bit-rate control in general. This theory aims at reducing the distortion for a given 

target bit-rate by optimally allocating bits to the various classes of data. One approach 
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to solve the problem of Optimal Bit Allocation using the Rate-Distortion theory 

includes: 

1. Initially, all classes allocate a predefined maximum number of bits. 

2. For each class, one bit reduces from its quota of allocated bits, and the 

distortion due to the reduction of that 1 bit calculates. 

3. Of all the classes, the class with minimum distortion for a reduction of 1 bit 

receives notation, and 1 bit reduces from its quota of bits. 

4. The total distortion for all classes D calculates. 

5. The total rate for all the classes calculates as: R = p(i) * B(i) W Where: p 

indicates the Probability and B the Bit Allocation for each class. 

6. Compare the target rate and distortion specifications with the values obtained 

above. If not optimal, go to step 2. 

In the approach explained above, one bit at a time reduces until the achievement of 

optimality either in distortion or target rate, or both. An alternate approach involves 

starting with zero bits allocated for all classes, and to find the class most benefited by 

getting an additional bit. The benefit of a class defines as the decrease in distortion for 

that class. 
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Figure 2.4 Decrease in Distortion Due to Receiving a Bit 
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2.6.2 Quantization 

Quantization refers to the process of approximating the continuous set of values in the 

image data with a finite set of values. The original data forms the input to a quantizer, 

and the output always gives one among a finite number of levels. The quantizer 

process approximates, and a good quantizer represents the original signal with 

minimum loss or distortion. 

Quantization includes two types: Scalar Quantization and Vector Quantization. In 

scalar quantization, each input symbol treats as separate in producing the output, while 
in vector quantization the input symbols club together in groups called vectors and 

process to give the output. This clubbing of data and treating them as a single unit 

increases the optimality of the vector quantizer; however, at the cost of increased 

computational complexity. 

A quantizer categorizes by its input partitions and output levels, also called 

reproduction points. A uniform quantizer divides the input range into levels of equal 

spacing, yet a non-uniform quantizer does not. Implementing a uniform quantizer, 

presented in figure 2.5, proves easier than a non-uniform quantizer. If the input falls 

between n*r and (n+ 1 )*r, the quantizer outputs the symbol n. 

n-2 n-I n n+l n+2 <--- Output 
I II I II II I II I II 

(n-2)r (n-l)r nr (n+l)r (n+2)r (n+3)r <---Input 

Figure 2.5 A Uniform Quantizer 
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Just the same way a quantizer partitions its input and outputs discrete levels, a de­ 

quantizer receives the output levels of a quantizer and converts them into normal data 

by translating each level into a reproduction point in the actual range of data. The 

optimum quantizer, or encoder, and optimum de-quantizer, or decoder, must satisfy the 
following conditions. 

• Centroid condition. Given the output levels or partitions of the encoder, the 

best decoder puts the reproduction points x' on the centers of mass of the 
partitions. 

• Nearest neighbor condition. Given the reproduction points of the decoder, the 

best encoder puts the partition boundaries exactly in the middle of the 

reproduction points. In other words, each x translates to its nearest . 
reproduction point. 

The quantization error (x - x') denotes a measure of the optimality of the quantizer and 
de-quantizer. 

2.7 Object Recognition 

Object recognition consists oflocating the positions, orientations, and scales of objects 

in an image. This may also assign a class label to a detected object. In most 
applications, artificial neural networks trained to locate individual objects based 

direction pixel data. Another less frequently used approach maps the contents of a 
window onto a feature space provided as input to a neural classifier. 

2.7.1 Optical Character Recognition (OCR) 

Optical Character Recognition refers to the recognition of handwritten or printed text 

by computer. Dynamic OCR comes into play when the input device, such as a digitizer 

tablet and other methods of pen-based computing, transmits the signal in real time or 

includes timing information together with pen position, as in signature capture. It also 
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includes other methods of human-computer interaction, such as speech recognition. 

Image-based OCR employs when the input device captures the position of digital ink, 
as with a still camera or scanner. 

Static OCR encompasses a range of problems that contain no counterpart in the 

recognition of spoken or signed language, usually collected under the heading of page 

decomposition or layout analysis. These include both the separation of linguistic 

material from photos, line drawings, and other non-linguistic information, establishing 

the local horizontal and vertical axes, and the appropriate grouping of titles, headers, 

footers, and other material set in a font different from the main body of the text. 

Another optical character recognition problem arises within different scripts, such as 

Kanji and Kana, or Cyrillic and Latin, in the same running text. 

While the early experimental optical character recognition systems operated rule-based, 

by the eighties systems based on statistical pattern recognition replaced these. For 

clearly segmented printed materials, such techniques offer virtually error-free character 

recognition for the most important alphabetic systems including variants of the Latin, 

Greek, Cyrillic, and Hebrew alphabets. However, when an alphabet contains a large 

number of symbols, as in the Chinese or Korean writing systems, or the symbols 

connect to one another, as in Arabic or Devanagari print, these systems still cannot 

achieve the error rates of human readers. The gap between the two becomes more 

evident with the compromise of the quality of the image, such as by fax transmission. 

Until the resolution of these problems, optical character recognition can not play the 

pivotal role in the transmission of cultural heritage to the digital age. 

2.8 Summary 
This chapter provided basic information about image processing. Processing an image 

by analysis, forming pattern classes, classifying data, quantization, and performing the 
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discrete wavelet transform was discussed. Object recognition and optical character 

recognition were accordingly presented. 
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3. IMAGE PROCESSING AND NEURAL NETWORKS 

• 
3.1 Overview 

This chapter discusses neural networks when applied to image processing through the 

image processing algorithm, data reduction and feature extraction, image segregation, 

and real-life applications of neural networks. 

3.2 Image Processing Algorithms 
Traditional techniques from statistical pattern recognition, like the Bayesian 

discriminate and the Parzen windows, experienced popularity until the beginning of the 

1990s. Since then, neural networks became an increasingly used as an alternative to 

classic pattern classifiers and clustering techniques. Non-parametric, feed-forward 

neural networks quickly became attractive, trainable machines for feature-based 

segmentation and object recognition. With the unavailability of a gold standard, the 

self-organizing feature map (SOM) constitutes an interesting alternative to supervised 

techniques. It may learn to discriminate, for example different textures, when provided 

with powerful features. The current use of neural networks in image processing 
exceeds the aforementioned traditional applications. The role of feed-forward neural 

networks and the self-organizing feature map extended to encompass also low-level 

image processing tasks, such as noise suppression and image enhancement. Hopfield 

neural networks received introduction as a tool for finding satisfactory solutions to 

complex optimization problems. This makes them an interesting alternative to 

traditional optimization algorithms for image processing tasks that can formulate as 

optimization problems. The deferent problems addressed in the field of digital image 

processing organize into the image processing chain. Figure 3 .1 presents the 

distinctions in the processing steps within the image processing chain. 

,II 
:ill 
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Noise Suppression 
De-blurring Image Compression Texture Segregation Template Matching Scene Analysis 

Enhancement Edge Feature Color Recognition Feature-Based Object 

Detection Extraction Clustering Recognition Arrangement 

Preprocessing Data Object Image 
Reduction Segmentation Recognition Understanding 

Optimization 

Figure 3.1 Image Processing Chain 

The image processing chain includes the five different tasks: preprocessing, data 

reduction, segmentation, object recognition and image understanding. Optimization 

techniques act as a set of auxiliary tools that makes itself available in all steps of the 

image processing chain. 

1. Preprocessing and filtering. Operations that give as a result a modified image 

with the same dimensions as the original image such as contrast enhancement 

and noise reduction. 
2. Data reduction and feature extraction. Any operation that extracts significant 

components from an image or window. The number of pixels in the input 

window generally exceeds the number of extracted features. 
3. Segmentation. Any operation that partitions an image into regions coherent with 

respect to some criterion. One example includes the segregation of deferent 

textures. 
4. Object detection and recognition. Determining the position and, possibly, also 

the orientation and scale of specific objects in an image, and classifying these 

objects. 
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5. Image understanding. Obtaining high level (semantic) knowledge of what an 

image shows. 
6. Optimization. Minimization of a criterion function used for graph matching or 

object delineation. 

Optimization techniques do not form a separate step in the image processing chain, but 
as a set of auxiliary techniques that support other steps. Besides the actual task 

performed by an algorithm, its processing capabilities partly determine by the 

abstraction level of the input data. The following abstraction levels distinguish as: 

A. Pixel level. The intensities of individual pixels provide input to the algorithm. 

B. Local feature level. A set of derived, pixel-based features constitutes the input. 

C. Structure or edge level. The relative location of one or more perceptual features 

such as edges, comers, junctions, surfaces, etc. 

D. Object level. Properties of individual objects. 

E. Object set level. The mutual order and relative location of detected objects. 
F. Scene characterization. A complete description of the scene possibly including 

lighting conditions, context, etc. 

3.3 Neural Networks in Image Processing 
Neural networks often apply to the various preprocessing procedures in the image 

processing chain rule. Such include image reconstruction, image restoration, and image 

enhancement. 

3.3.1 Preprocessing 
The first step in the image processing chain involves preprocessing. Loosely defined, 

preprocessing includes any operation of which the input consists of sensor data, and 

which outputs a full image. Preprocessing operations generally fall into one of three 
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categories: image reconstruction that reconstructs an image from a number of sensor 

measurements, image restoration which removes any aberrations introduced by the 

sensor such as noise, and image enhancement that accentuates certain desired features 

which may facilitate later processing steps such as segmentation or object recognition. 

3.3.2 Image Reconstruction 

Image reconstruction problems often require quite complex computations and a unique 

approach for each application. An Adaptive Linear Element (ADALINE) network 

trains in order to perform an Electrical Impedance Tomography (EIT) reconstruction for 

the reconstruction of a 2-dimential image based on measurement on the circumference 

of the image. Srinivasan [9] trained a modified Hopfield network to perform the 

inverse radon transform for reconstruction of computerized tomography images. The 

Hopfield network contained summation layers to avoid having to interconnect all units. 
Meyer and Heindl [10] used regression feed-forward networks that learn the mapping 

E(yjx), with x the vector of input variables and y the desired output vector, to 

reconstruct images from electron holograms. Wang and Wahl trained a Hopfield 

network for reconstruction of 2-dimential images from pixel data obtained from 

projections [11 ]. 

:' ,, 

,, 
!I 

3.3.3 Image Restoration 

The majority of applications of neural networks in preprocessing originate in image 

restoration. In general, one wants to restore a distorted image by the physical 

measurement system. The system might introduce noise, motion blur, out-of-focus 

blur, distortion caused by low resolution, etc. Restoration uses all information about the 

nature of the distortions introduced by the system. The restoration problem appears ill­ 

posed because conflicting criteria requires fulfillment: resolution versus smoothness. 
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In the most basic image restoration approach, simple filtering removes noise from an 

image. Greenhill and Davies [18] used a regression feed-forward network in a 

convolution-like way to suppress noise with a 5 x 5 pixel window as input and one 

output node. De Ridder built a modular feed-forward network approach that mimics the 

behavior of the Kuwahara filter, an edge-preserving smoothing filter [16]. Their 

experiments showed that the mean squared error used in network training may not 
representative of the problem at hand. Furthermore, unconstrained feed-forward 

networks often ended up in a linear approximation to the Kuwahara filter. 

Chua and Yang [14, 15] used Cellular Neural Networks (CNN) for image processing. 

A system with locally connected nodes defines a cellular network. Each node contains 

a feedback and a control template, which to a large extent determine the functionality of 

the network. For noise suppression, the templates implement an averaging function; for 
edge detection, a Laplacian operator. The system operates locally, but multiple 

iterations allow it to distribute global information throughout the nodes. 

Although quite fast in application, the parameters influencing the network behavior, the 

feedback and control templates, require hand setting. 

Others proposed methods for training cellular networks such as using gradient descent 

or genetic algorithms grey-value images, proposed by Zamparelli. Cellular neural 

networks also applied for restoration of color images by Lee and Degyvez. 

Another interesting neural network architecture includes the Generalized Adaptive 

Neural Filter (GANF) used for noise suppression. This consists of a set of neural 

operators based on stack a filter that uses binary decompositions of grey-value data. 

Finally, image restoration also applied fuzzy networks and neurochips. Traditional 

methods for more complex restoration problems, such as de-blurring and diminishing 
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out-of-focus defects, include at maximum a posteriori estimation (MAP) and 

regularization. Utilizing these techniques entails solving high dimensional convex 

optimization tasks. The objective functions of the regularization problem can both map 

onto the energy function of the Hopfield network. Often, the network architectures 

require modification when mapping the problem proves difficult. 

Image restoration also applied to other types of networks. Qian developed a hybrid 

system consisting of order statistic filters for noise removal and a Hopfield network for 

de-blurring by optimizing a criterion function. The modulation transfer function 

required measurement in advance. Guan developed a so-called network-of-networks 

for image restoration. The system consists of loosely coupled modules, where each 

module makes a separate network. Phoha and Oldham proposed a layered, competitive 

network to reconstruct a distorted image. 

3.3.4 Image Enhancement 

The goal of image enhancement consists ofamplify specific perceptual features. Among 

the applications of neural networks developed for image enhancement, one would 

expect most applications to base on regression networks. However, several 

enhancement approaches rely on a classifier, typically resulting in a binary output 

image. The most well-known enhancement problem became edge detection. Pugmire 

reported a straightforward application of regression feed-forward networks trained to 

behave like edge detectors. Chandresakaran used a novel, feed-forward architecture to 

classify an input window as either containing an edge or not containing an edge. The 

weights of this network set manually instead of obtained from training. Formulating 

edge detection as an optimization problem made it possible for Tsai to train a Hopfield 

network for enhancement of endocardiac borders. Some enhancement approaches 

utilize other types of networks. Shih applied a new network for binary image 

enhancement. Moh and Shih describe a general approach for implementation of 
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morphological image operations by a modified feed-forward networks using shunting 

mechanisms, such as neurons acting as switches. Waxman considered the application 

of a center-surround, shunting feed-forward network, initially proposed by Grossberg, 

for contrast enhancement and color night vision. 

3.3.5 Applicability of Neural Networks in Preprocessing 

Preprocessing contains three types of problems that require the application of neural 

networks: 

• Optimization of an objective function defined by a traditional preprocessing 

problem. 

• Approximation of a mathematical transformation used for image reconstruction 

by regression. 

• Mapping by network trained to perform a certain task, usually based directly on 

pixel data, such as neighborhood input and pixel output. 

To solve the first type of problem, a Hopfield network may replace traditional methods 

for optimization of some objective function. 

For the approximation task, regression feed-forward neural networks apply. Although 

for some applications such networks proved successful, it would seem that these 

applications call for more traditional mathematical techniques, since processing needs a 

guaranteed worst-case performance. 

In several other applications, regression, calculation, or mapping networks trained to 

perform image restoration or enhancement directly from pixel data. Preprocessing often 

used non-adaptive networks, such as cellular neural networks. 
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Secondly, with adaptive networks, their architectures usually differed much from those 

of the standard networks. Designing networks applied for image restoration or 

enhancement, those using shunting mechanisms to force a feed-forward network to 

make binary decisions required prior knowledge about the problem. The interest in 

non-adaptive networks indicates that the fast operation and the ease in which the 

network can embed in hardware presents important criteria when choosing for a neural 
implementation of a specific preprocessing operation. However, the ability to learn 

from data holds less importance in preprocessing. While constructing a linear filter 

with certain desired behavior by specifying its :frequency profile seems easy, obtaining a 

large enough data set to teach the optimal function as a high-dimensional regression 

proves difficult. This holds especially when the desired network behavior only 

becomes critical for a small subset of all possible input patterns such as in edge 

detection. Moreover, choosing a suitable error measure for supervised training proves 
un-trivial, as simply minimizing the mean squared error might give undesirable results 

in an image processing setting. 

The network parameters most likely tum to one type of image, such as a specific sensor, 

scene setting, scale, etc., this limits the applicability of the trained network. When the 

underlying conditional probability distributions p(xjwj) or p(yjx), change, the 

classification or regression network-like all statistical models requires re-training. 

3.4 Data Reduction and Feature Extraction 
Two of the most important applications of data reduction include image compression 

and feature extraction. In general, an image compression algorithm, used for storing 

and transmitting images, contain two steps: encoding and decoding. Both these steps 

employ artificial neural networks. Subsequent segmentation or object recognition uses 

feature extraction. The kind of features one wants to extract often correspond to 
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particular geometric or perceptual characteristics in an image, for instance, edges, 

comers and junctions, or application dependent ones, such as facial features. 

3.4.1 Feature Extraction Applications 

Feature extraction gives the impression of a special kind of data reduction that finds a 

subset of informative variables based on image data. Naturally high-dimensional, 

feature extraction for image data constitutes a necessary step for successful 

segmentation or object recognition. Besides lowering the computational cost, feature 

extraction indicates another means for controlling the so-called curse of dimensionality. 
When used as input for a subsequent segmentation algorithm, one wants to extract those 

features that preserve the class reparability well. There exists a wide class of neural 

networks able to receive training to perform mappings to a lower-dimensional space. A 

well-known feature-extraction network includes Oja's neural implementation of a one­ 
dimensional Principal Component Analysis (PCA), later extended to multiple 

dimensions. Baldi and Hornik proved that training three-layer auto-associator networks 

correspond to applying principal component analysis to the input data. Later, auto­ 

associator networks with five layers obtained the ability to perform non-linear 

dimensionality reduction, such as finding principal surfaces. A mixture of linear 

subspaces to approximate a non-linear subspace includes another possibility. Another 

approach to feature extraction clusters the high-dimensional data and then uses the 

cluster centers as prototypes for the entire cluster. Among the networks trained to 

perform feature extraction, most applications use feed-forward networks. 

Most of the networks trained for feature extractions obtain pixel data as input. Neural­ 

network feature extraction performed for: 

• Subsequent automatic target recognition in remote sensing accounting for 

orientation and character recognition. 
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• Subsequent segmentation of food images and of Magnetic Resonance (MR) 

images. 

• Finding the orientation of objects by coping with rotation. 

• Finding control points of deformable models. 

• Clustering low-level features found by the Gabor filters in face recognition and 

wood defect detection. 

• Subsequent stereo matching. 

• Clustering the local content of an image before encoding. 

In most applications, segmentation, image matching, or object recognition employed the 

extracted features. For anisotropic objects occurring at the same scale, rotation causes 

the largest amount of intra-class variation. Some feature extraction approaches 

designed to cope explicitly with changes in orientation of objects. Feature extraction 

requires the distinction between application of supervised and unsupervised networks. 

For a supervised auto-associator network, the information loss implied by the data 

reduction measures directly on the predicted output variables, however, not the case for 

unsupervised feature extraction. Both supervised and unsupervised network feature 

extraction methods contain advantages compared to traditional techniques. Feed­ 

forward networks with several hidden layers can train to perform non-linear feature 

extraction, but lack a formal, statistical basis. 

3.5 Image Segmentation 
Segmentation includes the partitioning of an image into coherent parts according to 

some criterion. When considered as a classification task, segmentation assigns labels to 

individual pixels. Some neural-based approaches perform segmentation on the pixel 

data, obtained either from a convolution window, or the provided information to a 

neural classifier in the form oflocal features. 
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3.5.1 Image Segmentation Based on Pixel Data 

Many neural network approaches segment images directly from the pixel data. Several 

deferent types of networks trained to perform pixel-based segmentation. Some include 

feed-forward networks, cellular networks, Hopfield networks, probabilistic networks, 

radical bias function networks, constraint satisfaction networks, etc. Also, the 

occurrence of biologically inspired neural-network approaches such as: the perception 
model developed by Grossberg, able to segment images from surfaces and their 

shading, and the brain-like networks proposed by Opara and Worgotter. Hierarchical 

segmentation approaches designed to combine networks on deferent abstraction levels. 

The guiding principles behind hierarchical approaches include specialization and 

bottom-up processing in which one or more networks dedicated to low-level feature 

extraction or segmentation, and their results combined at a higher abstraction level. 

There another neural classifier performs the final image segmentation. Reddick 
developed a pixel-based two-stage approach where a network trained to segment multi­ 

spectral images. The segments subsequently classify into white matter, grey matter, 

etc., by a feed-forward network. Non-hierarchical, modular approaches also developed. 

In general, pixel-based networks trained to classify the image content based on: 

• Texture 

• A combination of texture and local shape 

Pre and post-processing steps in relation to segmentation developed networks for: 

• Delineation of contours 

• Connecting edge pixels 

• Identification of surfaces 

• Deciding whether a pixel occurs inside or outside a segment 
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• De-fuzzying the segmented image 

• Clustering of pixels 

• Motion segmentation 

In most applications, neural networks trained as supervised classifiers to perform the 

desired segmentation. One feature that most pixel-based segmentation approaches lack 

includes a structured way of coping with variations in rotation and scale. This 

shortcoming may deteriorate the segmentation result. 

3.6 Real-Life Applications of Neural Networks 
Neural networks gradually found their way into a large range of commercial 

applications. Unfortunately, commercial and other considerations often impede 

publication of scientific and technical aspects of such systems, Some research 

programs gave an overview of commercial applications of neural networks, and one of 

its applications includes character recognition. 

3.6.1. Character Recognition 

Two essential components in a character recognition algorithm include the feature 

extractor and the classifier. Feature analysis determines the descriptors, or feature set, 

used to describe all characters, Given a character image, the feature extractor derives 

the features in the character, The derived features then become the input to the 

character classifier. 

One of the most common classification methods embraces template matching, or matrix 

matching. Template matching uses individual image pixels as features. Classification 

performs by comparing an input character image with a set of templates from each 

character class. Each comparison results in a similarity measure between the input 

character and the template. One measure increases the amount of similarity when a 
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pixel in the observed character matches the same pixel in the template image. If the 

pixels differ, the measure of similarity may decrease. After all templates compare with 

the observed character image, the character's identity assigns as the identity of the most 

similar template. 

Template matching involves a trainable process because template characters may 

change. In many commercial systems, programmable read-only memories (PROMs) 

store templates containing single fonts. To retrain the algorithm, memories containing 

images of new font replace the current. Thus, if a suitable memory exists for a font, 

then template matching can train to recognize that font. The similarity measure of 

template matching may also modify, but commercial optical character recognition 

systems typically do not allow this. 

Structural classification methods utilize structural features and decision rules to classify 

characters. Structural features defined either in terms of character strokes, character 

holes, or other character attributes such as concavities. For instance, the letter P 

describes as a vertical stroke with a hole attached on the upper right side. For a 

character image input, extraction of the structural features takes place and a rule-based 

system applies to classify the character. Another trainable method, structural methods, 

construct of a good feature set and a rule-base. However, this method consumes more 

time. 

Character localization and segmentation then occurs. After the location of the 

document, the relative image portion quantizes into binary values according to an 
adaptive threshold established directly through a two-class clustering of tones. The 

characters segment by finding white areas between columns with higher density of 

black pixels, as illustrated in figure 3.2 and 3.3. 

52 



Image Processing and Neural Networks 

Figure 3.2 Character Localization 

Figure 3.3 Character Segmentation 

Isolated black pixels wipe out and the character resizes to the standard measure of 10 by 

6 pixels after a factor-of-two decimation, as figure 3.4 shows. 

Figure 3.4 B Extracted and Digitized 
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3.7 Summary 
This chapter presented the image processing algorithm, data reduction and feature 

extraction, image segmentation, and real-life applications of neural networks when 

applied to image processing. 
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4. THE CHARACTER RECOGNITION SYSTEM 

USING THE ARTIFICIAL NEURAL NETWORK 

4.1 Overview 
This chapter delves into the character recognition system that describes the 

processes in which to design character matrices and the network structure. In 

addition, the feed-forward and back-propagation algorithms are described, followed 

by compression of the character matrices. 

4.2 Creating the Character Recognition System 
The user must first create the character recognition system in order to prepare it for 

presentation into MatLab. Creating the matrices of each letter of the alphabet, along 

with the network structure, must first take place. In addition, one must understand 

how to separate the binary input code from the matrix, and how to create the binary 

target code, which the network requires for learning. 

4.2.1 Character Matrices 
An array of black and white pixels form a character matrix; the vector of one 

represented by a black pixel, and zero by a white pixel. Each character matrix 

represents a single character. The user creates them manually, in whatever size, 

font, or combination of fonts possible. 

4.2.2 Creating a Character Matrix 
Creating the character matrices first involve choosing an appropriate matrix size. 

With very small matrices, creating all the desired characters may not take place, 

especially when using more than one font. On the other hand, with large matrices, a 

few problems may arise: Despite the fact that the speed of computers double every 

third year, the network may not run in real time due to lack of processing power. 

Training may take days, and results may take hours. In addition, the computer's 
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memory may not handle enough neurons in the hidden layer( s) needed to efficient 

and accurately process the information. After determining the size, the user fashions 

the matrices by designing the font shape from imagination. The vectors containing 

character information become shaded and receive a value of one, and all others take 

on a value of zero. Through these steps, two fonts containing twenty-six 20 x 20 

matrices took shape. Figure 4.1 below shows two fonts of character A, Appendix I 

provides the complete list of the characters in dual fonts, and Appendix II presents 

the various fonts used for training in MatLab. 

First Font Second Font 
Character Matrix A 00000000000000000000 00000000000000000000 

00000000011000000000 00111111111111111100 
0000000011i100000000 00111111111111111100 
00000001111110000000 00111111111111111100 
00000011111111000000 00111000000000011100 
00000111000011100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 

- 00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000000000 

Figure 4.1 Dual Fonts of Character A 

4.2.3 Choosing a Suitable Network Structure 

A neural network contains an input, hidden(s), and output layer. The number of 

neurons inside each layer decided corresponds to the particular matrix and criteria of 

information to process. In this case, a 400-52-26 network-400 inputs, 52 hidden 

neurons, 26 outputs-formed based on 20 x 20 matrices of upper case letters of the 
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English alphabet. Figure 4.2 illustrates the structure of this particular neural 

network. 

Bias Unit Bias Unit 

Input Layer Hidden Layer Output Layer 

Figure 4.2 Network Structure with Bias Unit 

Input Layer 

The nodes of the input layer depend on the size of the character matrix, for example, 

a character matrix of20 x 20 results in 400 neurons within the input layer. 
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Hidden Layer 
Two factors come into play regarding the hidden layer: (1) how many hidden layers 

to include inside of the network, and (2) the number of neurons within each of those 

layers. 

Neural networks may consist of none, one, or two hidden layers. Currently no 

theoretical reason to use more than two took place. Networks with no hidden layers 

suffer from limited capabilities of computing very small and simple data with only 

two possible outputs, such as yes and no questions. A network employed 99% of 

the time uses one hidden layer, idea for basic and practical problems. Problems that 

require two hidden layers within a neural network rarely surface. Figure 4.3 gives 

basic insight into determining the number of hidden layers to use. 

Number of Hidden Layers Result 

0 
Only capable of representing linear 
separable functions or decisions 

Can approximate any functions which 

1 
contain a continuous mapping from one 

finite space to another 

Represent an arbitrary decision boundary 

2 
to arbitrary accuracy with rational 

activation functions and can approximate 
any smooth mapping to any accuracy 

Figure 4.3 Determining the Number of Hidden Layers 

Character recognition requires only one hidden layer, but the number of neurons 

inside depends on the size of the matrices and result from experimentation. Using 

too few neurons in the hidden layer may result in under-fitting. This occurs when 

the hidden layer( s) contain too few neurons to detect the signals, or weights, in a 

complicated data set. On the other hand, using too many may result in several 

problems: Over-fitting occurs when the neural network boasts so much information 
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processing capacity that the limited amount of information contained in the training 

set cannot train all of the neurons in the hidden layer(s). This results in useless 

neurons containing weighted connections of zero, in which removing them becomes 

necessary. A second problem may occur even with the presence of sufficient 

training data; an inordinately large number may increase the time it takes to train the 

neural network enough that training the network becomes impossible. Obviously, 

some compromise between too few and too many neurons must take place. 

A few rule-of-thumb-methods evolved for determining the correct number of hidden 

nodes to use. The number· of hidden neurons, generally, should range between the 

size of the input layer and the size of the output layer. This also applies to very 

large matrices, with the addition of factoring in the network and the computer's 

memory and processing capabilities. For very small matrices, such as 5 x 7, the 

number of hidden layer nodes should bear a smaller amount than twice the size of 

the input layer. 

Although these methods help to consume less time, ultimately the selection of the 

architecture of the hidden layer must result from trial and error. Two trial and error 

approaches further the experimentation process, called the "forward" and 

"backward" selection methods. The forward selection method begins by selecting a 

smaller number of hidden neurons, and then training and testing of the network 

occurs. The numbers of hidden neurons are slowly increased, and the process 

repeats until the overall results discontinue improving. Figure 4.4 demonstrates this 

process. 
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Start 

Select a Small Number 
of Hidden Neurons 

Train and Evaluate 
Performance 

Is performance 
acceptable? NO Adda hidden 

neuron 

Stop 

Figure 4.4 Forward Selection Method 

The second method, the backward selection method, begins by using a large number 

of neurons. This process behaves in the same manor as the first; the user repeatedly 

trains and tests the network, each time subtracting a neuron, however, so long as the 

overall results continue to improve. Figure 4.5 exhibits the backward selection 

method. 
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Start 

Select a Large Number 
of Hidden Neurons 

Train and Evaluate 
Performance 

Is performance 
acceptable? NO Subtract, a hidden 

neuron 

Stop 

Figure 4.5 Backward Selection Method 

An additional step may employ after conducting any method of selecting hidden 

layer neurons - pruning. Pruning in its simplest form evaluates the weighted 

connections between the layers. The user manually deletes any hidden neurons that 

contain weights of zero within the network. This solves the condition of over-fitting 

as previously discussed. 
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Output Layer 
The number of nodes in the output layer results from the amount of information 

received. For example, if recognizing characters based on the English alphabet, the 

network will encompass 26 output nodes; 25 of which result as O's, and a single 1 in 

place of the letter in the alphabet, shown in figure 4.6. All output values combined, 

known'as the binary target code, tells the computer which output corresponds to a 

particular input. Figure 4. 7 shows the binary target code for each character. 

Output Layer Neurons 

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

A l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

K 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 0 

p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 0 

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 0 0 0 0 

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 0 0 

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 

y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 

z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 

Figure 4.6 Outputs for Each Character 
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Character Binary Target Code 

A 10000000000000000000000000 

B 01000000000000000000000000 

C 00100000000000000000000000 

D 00010000000000000000000000 

E 00001000000000000000000000 

F 00000100000000000000000000 

G 00000010000000000000000000 

H 00000001000000000000000000 

I 00000000100000000000000000 

J 00000000010000000000000000 

K 00000000001000000000000000 

L 00000000000100000000000000 

M 00000000000010000000000000 

N 00000000000001000000000000 

0 00000000000000100000000000 

p 00000000000000010000000000 

Q 00000000000000001000000000 

R 00000000000000000100000000 

s 00000000000000000010000000 

T 00000000000000000001000000 

u 00000000000000000000100000 

V 00000000000000000000010000 

w 00000000000000000000001000 

X 00000000000000000000000100 

y 00000000000000000000000010 

z 00000000000000000000000001 

Figure 4.7 Binary Target Code for Each Character 
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Four hundred inputs, one for each vector of the 20 x 20 matrix, comprises the input 

layer. After completing the steps above, 52 hidden nodes within a single hidden 

layer proved most suitable. As previously explained, the output layer contains 26 

neurons, one for each letter of the alphabet. This constitutes a two-layer network, 

excluding the input layer as a layer since no calculations take place. Refer back to 

figure 4.2. 

4.2.4 Deriving the Input from a Character Matrix 

For humans, the general overview of the matrix with its black and white pixels 

forms the input that results in recognition. Nevertheless, computers use the array of 

zeroes and ones, known as the binary input code. Therefore, simply separate the 

numerical information contained within each vector to form a single code; for 

example, a 20 x 20 matrix will boast a 400-digit binary code, such as in figure 4.8. 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 I 1 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 0 0 

0 0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 0 0 

0 0 I 1 1 0 0 0 0 0 0 0 0 0 0 1 1 I 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 I 1 0 0 0 0 0 0 0 0 0 0 I 1 l 0 0 

0 0 1 1 11 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 1 I 1 0 0 

0 0 I I I 0 0 0 0 0 0 0 0 0 0 I I I 0 0 

0 0 I I I 0 0 0 0 0 0 0 0 0 0 1 I I 0 0 

={0000000000000000000000000000011000000000000000001111000000000000000111111000000 

000000011111111000000000001110000111000000000111000000111000000011100000000111000 

001110000000000111000011100000000001110000111000000000011100001111111111111111000 

011111111111111110000111000000000011100001110000000000111000011100000000001110000 

111000000000011100001110000000000111000011100000000001110000111000000000011100} 

Figure 4.8 Binary Input Code for Character A 
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4.3 The Feed-Forward Algorithm 
The multi-layer, feed-forward neural network characterizes the most commonly used 

network architecture. The term, "feed-forward" descnbes how the neural network 

processes and recalls a pattern. When using a feed-forward neural network, the 

neurons of each layer include restrictions of only forward connections. Each layer 

of the neural network contains only connectionism to the next layer; more 

specifically, each node from a layer will connect to all nodes of the next layer. 

These "links" connect the input to the hidden layer, and hidden to the output layer. 

No connections may exist between neurons and those in the previous layers, nor 

between neurons and themselves. Additionally, neurons may not connect to those 

beyond the next layer as figure 4.9 displays. Therefore, the layers of a feed-forward 

neural network only receive inputs from previous layers. ,' 
,t 

1: .. 

The input layer's nodes assert output functions that deliver data to the hidden layer's 

nodes. The actual computation begins in the hidden layer, Each node in a hidden 

layer computes a sum based on its input from the input layer, the input-layer 

weights, and the bias. Their sum equals the overall unit activation value. This sum 

then becomes "compacted" by a sigmoid function, which squeezes the sum into a 

more a limited and manageable range. If the unit activation value exceeds the 

threshold, or bias, value; then the neuron passes on its data. This output sum from 

the hidden layer passes on to the final processing layer where again calculation takes 

place, in much the same way. This layer outputs the final network result. 
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where R1 represents the number of inputs into the interface layer, S2 the number of neurons in the 
first layer, and S3 the number of neurons in the second layer 

AND 
where superscripts indicate the layer number and subscripts the node number in a layer 

Figure 4.9 Multi-Layer Feed-Forward Network Topology 
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4.3.1 Input ( Pa) 
Input P represents the binary input matrix. Defined as the number of inputs, PR thus 
becomes P400 concerning a 20 x 20 matrix. Calculation does not take place in the 

input layer, thus serving only as an interface to the external environment 

4.3.2 Weights ( iw , lw ) 
Weights refer to the connection strength of a link between two neurons in a network. 

The strength, or weight, determines the effect that neurons hold on each other. 

These weights store a value of that strength. The first superscript indicates the 

destination layer, and the second identifies the source layer. Additionally the first 

subscript shows the destination node and the second the source neuron. For 

example, iw2'\1 represents an input-layer weight. The superscripts indicate that the 

weight connects to the hidden layer, represented by the number 2, and originates 
from the input layer, represented by the number 1. Furthermore, the subscripts 

indicate a connection to the first node in the hidden layer from the first node in the 

input layer. 

A two-layer network contains two sets of weights: input layer weights ( iw ) that 

connect the input to the hidden layer, and hidden layer weights ( lw) that connect 

the hidden to the output layer. These two types of weights model the "memory" of 

the neural network because initial weights first generate randomly as a value 

between zero and one; and then go through updating during back-propagation as 

explained later in section 4.4. 

4.3.3 Bias Unit ( b) 

A neuron parameter summed with the neuron's weighted inputs and passed through 

the neuron's transfer function to generate the neuron's output summarizes the 

purpose of the bias unit. Most networks employ a bias as part of every layer but the 

input layer, and this unit holds an initial activation value at one. Each bias neuron 

connects to all units in the next higher layer and provides a constant term in the 
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weighted sum of the units. The back-propagation process refers to the bias as the 

node threshold. 

4.3.4 Sum Function ( I ) 
The individual input elements p1, p2, ···PR multiplied by weights w1.1. w1.2 .... w1,R form 

the sum Wp. The weighted values fed into the sum function and added together with 

the bias form the net input n. 

The sum function ( I ), when specifically applied in the hidden layer equals the sum 

of the product of the input and the input layer weight plus the bias. When applied to 

the output layer, it equals the sum of the product of the output of the first layer and 

the hidden layer weights plus the bias. These equations written in mathematical 

form: 

Hidden Layer Sum Function 

I= [ Input( PR1) * Input Layer Weights( iw2'1s2,R1)] + Bias Unit( b2 s2) 

Simplified: I = ( iw ) ( p ) + b 

Output Layer Sum Function 

I= [ Hidden Layer Output( a\2 )* Hidden Layer Weights( 1w3,2s3i ) ] + 

Bias Unit( b3s3 ) 

Simplified: I = ( lw ) ( p ) + b 

4.3.5 Net Input ( n ) 
Basically, the value of the sum function constitutes the net input ( n ) and represents 

the overall unit activation value. Each neuron owns a bias b, which summed together 

with the weighted inputs forms n. This sum, n, makes up the argument of the 

transfer function/ 

Net Input Equation 

n = w1,1 P1 + W1,2 P2 + ... + w1,R PR+ b 
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4.3.6 Transfer Function ( f ) 
Multi-layer networks, especially those employing the character recognition system, 

often use the log-sigmoid transfer function. As a non-linear function constraining 

all numbers from negative to positive infinity to produce simply a zero or one, the 

sigmoid function works well with the character recognition problem. This occurs 

because the log-sigmoid transfer function actually behaves as the step function in 

figure 4.1 O; all numbers less than zero take on a value of zero, and those zero and 

above take on a value of one. However, only the neuron with the greatest activation 

receives a non-zero value. 

The transfer function ( f ) accepts the net input ( n ) and outputs zeroes for all 
neurons except for the "winner", who receives a value of one. The function 

designates the neuron associated with the most positive element as the winner. 

Sigmoid Function Equation 
1 

f(x) = Loiwi 

l+ei=I 

(4.1) 

F(x) 

1t ,---- 
Step 

Function 

0 
-5 

X 

0 

Figure 4.10 Sigmoid Function's Behavior as Step Function 
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4.3. 7 Output ( a ) 
Output a represents the result of all calculations by the sigmoid as previously 

indicated in figure 4.9. The hidden layer output becomes the input for the neurons 

of the next layer, and the output layer's output denotes the final network result. 

4.4 The Back-Propagation Algorithm 
Back-propagation rose to become the most commonly used training algorithm in 

combination with feed-forward neural networks. Back-propagation refers to a 

specific type of supervised learning in which errors propagate backwards through 

the network and distribute evenly to the weights. 

As a supervised learning algorithm, it becomes mandatory for the programmer to 

give the network examples of inputs and their target output so that the network may 

compare what it outputted against what it should output. If the actual output does 

not match the target output, then weights automatically adjust to minimize the error 

and to produce the desired output. Initially, the network produces random and 

incorrect responses. When the neural network produces an incorrect decision, the 

connections within the network weaken so as not to produce that answer again. 

Similarly, when a network produces a correct decision, the connections inside the 

network strengthen so that it will become more likely to produce that answer. 

Through many iterations, or epochs, of this process and by giving the network many 

examples, the n~twork will eventually learn to classify all characters presented. A 

trained neural network will not only obtain the capability to identify and classify 

previously encountered data, but will also generalize similar data not yet presented, 

such as distorted and noisy characters. Figure 4.11 summarizes the back­ 

propagation process. 
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2 0 0 Select a set 
__ _ of inputs and outputs 

(A, B, C, D.~ X, Y) 

B 
J '--.,/ '-...... 
t t r 

Apply Inputs 

4 Compare 
[ X , Y ] ~ [ X' , Y' ] 
Targeted Actual 

5 

Adjust 
Weights 

6 Return to step 2 until all 1/0 
pairs have been presented. 

This completes an Epoch. 
Repeat as many epochs as needed 

where an epoch signifies a complete training cycle of all 26 training patterns 

Note: Step 5 also includes adjusting node thresholds 

Figure 4.11 The Back-Propagation Process 
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4.4.1 Training 
Before use, the network requires training. The network begins with random weight 

and node threshold values between zero and one. The network learns the initial 

behavior through exposure to training data presented into the input layer together 

with known output data, known as patterns, During a forward pass through the 

network, steps 3 and 4 in figure 4.11; the nodes in the network accumulate the 

necessary changes in weight and error calculates between the actual output of the 

network and the output specified in the training set. On the backward pass phase, 

step 5, each connection weight amends to adjust the behavior of the network. The 

forward and backward pass phase repeat for a predefined number either of epochs or 

until the learning starts to saturate. Through this careful adjustment of weights, the 

network learns. 

The first step consists of training the network until it correctly recognizes the inputs 

within a single epoch, which may take up to 500 epochs of training to reach. 

Second, each epoch should present randomly ordered inputs. This will take more 

epochs to learn in this manor, however, the error will decrease. The third step 

involves totaling the error for each epoch and running it until that error precedes a 

desired threshold as subsequently explained in Chapter 5. This may take up to 2000 

epochs. At this point, the network owns adequate training and may even recognize 

imperfect data, such as distorted and noisy characters. 

Over-training 
If the network suffers from more than enough training, it may of just memorized 

already presented patterns. When this occurs, the network may not handle noise or 

distorted data. To prevent the occurrence of over-training, employ one font only for 

training and one only for testing. If the network seems unable to recognize the 

second font, then over-training occurred and re-initialization must take place. 
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4.4.2 Computing Error 

The degree in which the output from the neural network matches the anticipated 

output, as specified in the training patterns, defines the error. The trick of back­ 

propagation consists of assessing the blame for an error and dividing it among the 

contributing weights. Weight updating occurs during each iteration, and the 

network learns while iterating repeatedly until a achieving a net minimum error 

value. The error shown during the learning procedure inflicts the greatest error of 

all the patterns. 

Output Unit Error 

~o= ao(l- ao)( To- ao) 
where T0 represents the target Output Activation and a; the actual Output Activation 

at output unit o 

Hidden Unit Error 

~h=ah(l- ah) I s, 
where J0 stands for the Error at unit o (output layer) to which a connection points 

from hidden unit h. 

Network Error Using Sum Square Error 

J=(T-r)2 

where J specifies the Error, Tthe Target, and r the Responsive Value 

4.4.3 Adjusting Weights 

Modifying weights begins at the output layer and works backwards to the hidden 

layer. The following iterations repeat until convergence in terms of the selected 

error criterion. An iteration includes presenting an instance by submitting training 

patterns to the network, calculating activations, and adjusting weights. 
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Calculation of Activation 
An instance or training set, presented to the network determines the activation level. 

The activation corresponds directly to the node threshold, whose initial set value 

changes. The idea urges teaching the network when to pass on the data to the next 

layer by adjusting its value during back-propagation, because only when the 

activation reaches the threshold value data passes on. 

The below formulas for the level of activation match those defined as the sum 

function above, with the exception of a node threshold negative in this case. This 

results from experimentation, which found the results of the later to yield less error. 

Hidden Layer Activation Level----------------------------------------------------------­ 

Hidden Layer Output( a\2) = Hidden Layer Sigmoid Function( f2) {Sum Function( 

I.) [ Input-Layer Weight( iw2'1/R1) * Input( PR1) - Hidden Layer Node Threshold( 

eh) J } 
Simplified: ah= f { L [( iw) ( p )- eh]} 
where subscript 'V' refers to the hidden layer 

Adjusting the Hidden Layer Node Threshold 

eh= eh + ( a )Oh ) 
where Oh symbolizes the Hidden Layer Node Threshold, a the Learning Rate as 

later discussed in Chapter 5, and bh the Hidden Layer Error 

Output Layer Activation Level----------------------------------------------------------­ 

Output( a3 s 3 ) = Function( :f ) { Sum Function( I. ) [ Hidden-Layer Weight( w3'2 s 3 s 2 ) 

* Hidden Layer Output( a2 s 2) - Output Layer Node Threshold( 80) ] } 

Simplified: ao=f { I. [ ( lw) ( ah) - eh]} 
where subscript 'V' refers to the hidden layer and subscript "o" to the output layer 

Adjusting the Output Layer Node Threshold 

80 = 80 + ( a )( Do) 
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where 80 signifies the Output Layer Node Threshold, a the Learning Rate, and t5o 

the Output Layer Error 

4.4.4 Weight Modifications 

Input Weight A(ijustment-----------------------------------------------"'---------­ 

iw ( t + I ) = iw ( t ) + Aiw 
where iw represents the input weight at time t, or the "f'th epoch; and 6iw the input 

weight change 

Input Weight Change 
Input Weight Change( .6.iw ) = Learning Rate( a ) * Hidden Layer Error( oh) * 
Input( PR1) 

Simplified: .6.iw = a oh p 

Hidden Layer Weight A(ijustment---------------------------------------------------­ 

lw ( t + 1 ) = lw ( t ) + 61w 
where lw represents the hidden-layer weight at time t. or the ''t"th epoch; and 61w 

the hidden-layer weight change 

Hidden Layer Weight Change 

Hidden Layer Weight Change( .6.lw) = Learning Rate( a ) * 
Output Layer Error( 00) * Hidden Layer Output( a2s2) 
Simplified: .6.lw = a ooaii 

4.5 Manual Compression 
A large matrix size may not train and run in real time due to limited memory. To 

solve this problem, pre-processing in order to cut down the size of the vectors must 

take place in order to help generalization. 
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4.5.1 Creating Sub-Matrices 
The character matrices brake down into equal-sized sub-matrices. For example, a 

20 x 20 matrix brakes down into sixteen 5 x ~ sub-matrices as shown in figure 4.12. 

Additionally, figure 4.13 shows the number of each sub-matrix. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
. 

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

0 0 1 1 1 0 0 o d 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 0 0 

0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 I 1 1 0 0 

0 0 I 1 I 0 0 0 0 0 0 0 0 0 0 1 I 1 0 0 

0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 I 1 1 0 0 

0 0 1 1 1 0 0 o' 0 0 0 0 0 0 0 ,} 1 1 0 0 

0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 I I 1 0 0 

0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 I I 1 0 0 0 0 0 0 0 0 0 0 I 1 1 0 0 

F 

Figure 4.12 Character A Divided into equal Sub-Matrices 
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1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 
Figure 4.13 Sub-Matrix Number 

4.5.2 Generalizing Features within Each Sub-Matrix 

To generalize the matrices, it becomes important to note the features inside each 

sub-matrix. These combined create a compressed binary code. The features to look 

for include horizontal, vertical, and diagonal lines as shown in figure 4.14. 

1 
1 
1 

1 1 1 
1 

1 
1 

1 
1 

1 

4.5.3 Compressed Binary Input Code 

To create the compressed binary input code, begin by looking for each of the four 

features within each of the 16 regions. Then those features present record as a one, 

and those absent as a zero. For example, region 2 of the character A matrix in figure 

4.13 contains only a right-slanted diagonal feature. Thus, the sequence code for 

vector 2 becomes (0,0,0,1) as shown in figure 4.15. This search process repeats for 

all 16 regions. 

Figure 4.14 Features 
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Sub-Matrix No. 1 2 3 4 5 6 7 8 

Feature I-\/ 1-\/ I - \/ I-\ I I-\/ I - \ I 1-\ I I - \ I 

Code Sequence 0000 0001 0010 0000 1001 0001 0010 1010 

, Sub-Matrix No. 9 10 11 12 13 14 15 16 

Feature I - \ I I-\/ I - \ I I-\ I I - \ I L-\/ I-\ I I - \/ 

Code Sequence 1000 0100 0100 1000 1000 0000 0000 1000 

Figure 4.15 Code Sequence for each Sub-Matrix within Character A 

The combined code sequences of each sub-matrix creates the compressed binary 

input code, and replaces the 400-input vector derived from the original non­ 

compressed matrices. Hence, 16 sub-matrices multiplied by 4 features results in a 

64-bit compressed binary code 
0000000100100000100100010010101010000100010010001000000000001000 

Slightly distorted letters still map into the same feature-based binary code, thus 

revealing the caliber of this technique. For example, the following distortion of 

character A creates the same 64-vector input code: 
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Figure 4.16 Distorted A 

4.6 Summary 
This chapter explained all necessary steps to design and implement a character 

recognition system by creating character matrices and network topology. The feed­ 

forward and back-propagation algorithms in addition to training using a compression 

scheme were also discussed. 
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5. PRACTICAL CONSIDERATION USING MATLAB 

5.1 Overview 
This chapter practically applies a neural network implemented in Matl.ab to the 

character recognition problem. The neural network's architecture, training with and 

without noise, and system performance is discussed in addition to the presentation of 

the MatLab program. 

5.2 Problem Statement 
To design a network to recognize 26, upper-case letters of the English alphabet; and to 

give perfect classification of ideal input vectors, and reasonably accurate classification 

of noisy vectors. 

5.3 Neural Network 
The network receives the values within the 20 x 20 character matrix as a 400-element 

input vector defined as pl for A, p2 for B, and so on. This presents together with the 

target vector called targets. Each target comprises 26 elements with a one in the 
position of the letter it represents, and zeroes everywhere else. For example, the target 

for the letter A contains a 1 in the first element, as A constitutes as the first letter of the 

alphabet, and O's in elements two through twenty-six. After the networks trains, the 

output passes through the competitive transfer function compet. This makes sure that 

the output corresponding to the letter most like the noisy input vector takes on a value 

of 1, and all others receive a value of 0. The network should respond with the correct 

character matrix, with and without noise. 
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5.4 Architecture 
The neural network consists of 400 inputs and 26 neurons in its output layer to identify 

the letters. The network constitutes a two-layer, log-sigmoid network with 52 hidden 

nodes. Selecting the non-linear log-sigmoid transfer function proved ideal for 

character recognition, especially when training with noise, because it limits outputs of 

the network to a small range whereas linear neurons can output any value. Figure 5.1 

illustrates the network topology; refer to the previous chapter for full explanation of all 

variables. 

Input 

~ 

Hidden Layer Output Layer 

aJ 

pl 0 
26x52 

26xl iw2,l 
400xl .___ _ _. 

52x400 

1--E}-f 
52xl 

1-. 
26xl 

26 
400 52 

a2=Iogsig (iw2'1 p1 + b2) 

Figure 5.1 Neural Network Architecture 

5.5 Initialization 
The command newff creates a new feed-forward network. In addition, R indicates the 

number of inputs, SI the hidden layer neurons, S2 and Q the nodes in the output layer 
which the initial script file prprob defines. The function 'traingdx' employs fast back­ 

propagation with a momentum term that speeds up the calculation of error. 

Sl = 52; 

[R,Q] = size(pl); 
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[S2,Q] = size(targets ); 

P=pl; 
net= newff(minmax(P),[S 1 S2], {'logsig' 'logsig'} ,'traingdx'); 

5.6 Training 
To teach a network to handle noisy input vectors, the network receives training on both 

ideal and noisy vectors. To do this, the network first trains on ideal vectors until it 

reaches a low sum-squared error. Then, the network trains on 10 sets of ideal and 

noisy vectors. Finally, the network again trains on just ideal vectors to ensure perfect 

response to ideal letters. All training uses back-propagation with momentum under the 

function 'traingdx '. 

5.6.1 Training without Noise 

The network initially trains without noise for a maximum of 5000 epochs, or until the 

network sum-squared error falls beneath a goal of 0.1. The sum-square error difference 

employs to adjust the connection weights of the neurons. During training, the network 

generates an output pattern which then compares with the target pattern. Depending on 

the difference between output and target, the sum-square error value computes. A 

learning rate of 0.003 multiplies by the negative of the error gradient to control the 

changes to the weights and biases, and a momentum constant of0.85 is added to make 

calculation faster. 

P=pl; 
T = targets; 

net.performf'cn = 'sse'; 

net.trainParam.goal = 0.1; 

Sum-squared error performance function 

net.trainParam.show = 20; 

net.trainParam.epochs = 5000; 

net.trainParam.mc = 0.85; 

Sum-squared error goal. 
Frequency of progress displays in epochs. 

Maximum number of epochs to train 

Momentum constant 
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net.trainl'aram.lr = 0.003; 
[net,tr] = train(net,P,T); 

Learning rate 

5.6.2 Training with Noise 
To obtain a network not sensitive to noise, training occurs on two ideal copies and two 

noisy copies of the vectors in pl. The target vectors consist of four copies of the 

vectors in targets. The noisy vectors contain noise of mean 0.1 and 0.2 added to them. 

This forces the neuron to learn how to properly identify noisy letters, while requiring 

that it still respond well to ideal vectors. To train with noise, the maximum number of 

epochs reduces to 300 and the error goal increases to 0.6, reflecting the expectation of a 

higher error due to the presentation of more vectors. 

netn = net; 

netn.trainParam.goal = 0.6; 

netn.trainPararn.epochs = 300; 
T = [targets targets targets targets]; 

for pass = 1 : 10 
P=[pl,pl, ... 

(pl+ randn(RQ)*O.l), ... 

(pl+ randn(R,Q)*0.2)]; 

[netn,tr] = train(netn,P,T); 

end 

5. 7 System Performance 
The reliability of the neural network pattern recognition system measures by testing the 

network with many input vectors with varying quantities of noise. Noise with a mean 

of O and a standard deviation from Oto 0.5, adds to input vectors. At each noise level, 

each letter receives 100 presentations of different noisy versions. 
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5.8 MatLab Program 
MatLab used the following program to train and test the network. Figure 5.2 displays 

the performance goal, and figure 5.3 the percentage of recognition errors of two 

networks trained on various levels of noise. Notice that Network 1, trained without 

noise, contains slightly more errors resulting from noise than does Network 2, which 

trained with noise. 

5.8.1 Defining and Initialization 
The number of layers and nodes within each layer will be defined in the network in 

addition with the input, target, activation function, and learning algorithm. The script 

file proprob defines a matrix alphabet which contains the bit maps of the 26 letters of 

the alphabet, and target vectors targets for each letter. 

%DEFINING THE MODEL PROBLEM 

[ alphabet,targets] = prprob; 

[R,Q] = size(alphabet); 

[S2,Q] = size(targets); 

% DEFINING THE NETWORK 

Sl = 52; 
net= newff(minmax(alphabet),[S 1 S2], {'logsig' 'logsig'} ,'traingdx'); 

net.LW{2,1} = net.LW{2,1 }*0.01; 

net.b{2} = net.b{2}*0.01; 

5.8.2 Training the Initial Network without Noise 
The initial network will train on ideal character until it reaches the error goal and 

produces figure 5.2 which shows the time, or number of epochs, that it took the 

network to reach the error goal. 
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net.perform.Fen= 'sse'; 

net.trainParam.goal = 0.1; 

net.trainParam.show = 20; 
net.trainParam.epochs = 5000; 
net.trainParam.mc = 0.85; 
net.trainParam.lr = 0.003; 

P = alphabet; 

T = targets; 

[net.tr] = train(net,P,T); 

% Produces figu.re5.2 

% Sum-squared error performance function. 

% Sum-squared error goal. 

% Frequency of progress displays (in epochs). 

% Maximum number of epochs to train. 

% Momentum constant. 

% Learning rate. 

3 
Performance is 0.0984454, Goal is 0.1 

10 

10·2 .__ __ ....__ __ ....,_ __ --.1.. __ ___. .__ __ _.__ _ __. 

0 20 -40 60 00 100 120 
136 Epochs 

Figure 5.2 Training Performance 
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5.8.3 Training Network 2 with Noise 
A copy of the initial network, called Network 2, will train with 10 noisy examples of 

the letters of the alphabet. The original initial network trained only on ideal vectors is 

called Network 1. 

netn = net; 
netn.trainParam.goal = 0.6; % Mean-squared error goal. 

netn.trainParam.epochs = 300; % Maximum number of epochs to train. 

T = [targets targets targets targets]; 

for pass = 1 : 10 

fprintf('Pass = %.Of\n',pass); 

P = [alphabet, alphabet, ... 
(alphabet+ randn(R,Q)*O.l), ... 
(alphabet+ randn(R,Q)*0.2)]; 

[netn,tr] = train(netn,P,T); 

end 
% The network trains 

5.8.4 Re-Training Network 2 without Noise 
Network 2 is re-trained on ideal characters, as it was first trained without noise in the 

initial network, to ensure that it did not learn to classify noisy vectors at the expense of 

ideal ones. 

netn.trainParam.goal = 0.1; 

netn.trainParam.epochs = 500; 

net.trainParam.show= 5; 

P = alphabet; 

T = targets; 

% Mean-squared error goal. 
% Maximum number of epochs to train. 

% Frequency of progress displays (in epochs). 

87 



Practical Consideration Using MatLab 

[netn,tr] = train(netn,P,T); 

% The network trains 

5.8.5 Testing Network 1 and 2 on Various Levels of Noise 
Both networks, Network 1 trained only on ideal vectors, and Network 2 trained on 

ideal and noisy vectors, are tested to compare how well they perform when presented 

with various levels of noise. Figure 5 .3 displays the results. 

% SET TESTING PARAMETERS 

noise_range = 0:.05:.5; 

max_test = 100; 

networkl = []; 

network2 = []; 
T = targets; 

% INITIALIZE TESTING 

for noiselevel = noise_ range 
fprintf('Testing networks with noise level of %.2f.\n',noiselevel); 

% Defines the various levels of noise 

errorsl =O; 
errors2 = O; 

for i= 1 :max test 
P = alphabet+ randn( 400,26)*noiselevel; 

% TEST NETWORK 1 

A = sim(net,P); 

AA= compet(A); 
errorsl = errorsl + sum(sum(abs(AA-T)))/2; 

% TEST NETWORK 2 

An= sim(netn,P); 

AAn = compet(An); 
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errors2 = errors2 + sum(sum(abs(AAn-T)))/2; 

end 

% AVERAGE ERRORS FOR 100 SETS OF 26 T AROET VECTORS. 

Networkl = [networkl errorsl/26/100]; 

network2 = [network2 errors2/26/100]; 
end 

% DISPLAY RESULTS 

elf 

plot(noise _ range.networkl * 100, '-',noise_ range,network2* l 00); 

title('Percentage of Recognition Errors'); 

xlabel('Noise Level'); 

ylabel('Network 1 - - Network 2 -- '); 

% Produces figure 5.3 

Percentage of Recognition Errors 

0.9 

0.8 

0.7 
N ,: ! 0.6 
a, z 

0.5 
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! 
~ 0.3 

0.2 

0.1 

~ 
I; 

Noise Level 

0'--~.1..-~-'-~.J_~-l 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Figure 5.3 Percentages of Recognition Errors for Networks with and without Noise 
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5.8.6 Displaying Characters 
After training and testing, the network is asked to answer with ideal and noisy 

characters as defined by the user. When the program examined it has been noted that 

when the noise level is given bigger than the maximum level the answer of the program 

is wrong recognition. To overcome this problem the following small mfile is added to 

compare the entered noise level with the maximum noise value. And if the noise level 

entered bigger than the maximum range (k) it will give a warning that the NOISE 

LEVEL IS TOO HIGH. 

% CHARACTER A WITH NOISE 

k=0.5 
i(k>0.5) 
disp('Noise Is Too High') 

else 

1
-::~: ••o • :<:>:•:• 

" • " • " • D a • o • . - .. . .. .. . " 
• • • • • "D • • o 

O• co"" •t.J0D" o •0 
0 • 0 • " • • <> 0 " <I • • " 

a oO •• · o · · 
<> • • Cl O '" <> 0 0 D • 0 • 
• 0 • <> ll • 0 0 " • 0 " • • • 
., ,, • •• o ,-, •• o a • 

Figure 5.4 Character A with Noise 

noisyA = alphabet(:,l)+randn(400,l)*k; 

plotchar(noisy A); 
% Produces figure 5. 4 

% CHARACTER A WITHOUT NOISE 

figure; 
A2 = sim(net,noisyA); 

answer= find(compet(A2) == 1 ); 

plotchar( alphabet( :,answer)); 

end 
% Produces figure 5.5 

Figure S.5 Character A without Noise 
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% CHARACTER Z WITH NOISE 

k=0.5 

if{k>0.5) 

disp('Noise Is Too High') 

else 

noisyZ = alphabet( :,26)+randn( 400, 1 )*k ; 
plotchar(noisyZ); 

% Produces figure 5. 6 

Figure 5.6 Character Z with Noise 

% CHARACTER Z WITHOUT NOISE 

figure; 

A?, = sim(net,noisyZ); 

answer= find(compet(A2) == l); 

plotchar(alphabet( :,answer)); 

end 

% Produces figure 5. 7 Figure 5. 7 Character Z without Noise 

5.9 Neural Network Final Parameters and the Leaming Rate 
The performance of the algorithm 'traingdx' is very sensitive to the proper setting of 

the learning rate. Table 5.1 shows particular final parameters as a result of the set 

learning rate. If the learning rate is set too high, the algorithm may become unstable. 

In this case, learning stops abruptly without reaching the maximum number of epochs 
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nor the error goal. On the other hand; if the learning rate is too small, the algorithm 

will either take too long to converge or not converge at all - possibly exceeding the 

maximum number of epochs before the error goal has been reached. It is not practical 

to determine the optimal setting for the learning rate before training, several training 

sessions with different learning rate settings must first take place in order to determine 

the best to use. For this particular program, a learning rate of 0.003 proved best due to 

its fastest convergence to the error goal in the least epochs. 

Input Hidden Output Momentum Learning Error Epochs Result 

Layer Layer Layer Rate Rate Value 

400 52 26 0.85 0.03 26 35 Unstable 

400 52 26 0.85 0.006 0.095 145 OK 
~ - 400 52 26 0.85 0.003 0.098 -~ "'."Optimal 

----- -- --- - _.._ .. __ -·- ,...----- 
400 52 26 0.85 0.0001 0.096 207 OK 

400 52 26 0.85 0 168 5000 Does Not 

Converge 

Table 5.1 Learning Rate Dependent Neural Network Final Parameters 

5.10 Summary 
This chapter presented a general MatLab program to train and recognize character with 

and without noise. The architecture, training, and system performance of the particular 

neural network was discussed. 
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CONCLUSION 

In this thesis, character recognition has been studied and implemented by developing a 

MatLab program for all training, testing, and plotting functions. A suitable neural 

network topology was designed for the particular character recognition problem 

employing 20 x 20 matrices designed to represent the English alphabet in multiple fonts. 

A 2-layer, feed-forward network designed in the Matl.ab software trained using back­ 

propagation of errors to recognize the 26 upper-case, alpha characters of the English 

alphabet. The network topology consisted of 400 input nodes, one hidden layer with 52 

nodes, and an output layer with 26 nodes. The squashing function 'logsig' applied 

because it produces either a O or 1 for all values between negative and positive infinity. 

Due its high performance, fast convergence, and use of the back-propagation algorithm, 

'traingdx' defined the training function. 

The neural network was trained with and without noise by using the back-propagation 

algorithm in order to teach the neural network to correctly classify ideal and noisy 

characters. The neural network trained and learne<l' to correctly classify characters with 

and without noise. After defining the network and model problem, the network initially 

gave random and incorrect answers. During learning, this dissolved as the network 

''taught" itself to give the desired output by internally adjusting its weights and biases. 

Thus, endowing the computer with some sort of brain-like function proved successful. 

The performance was compared between a network trained on only ideal vectors, and that 

trained on both ideal and noisy vectors. Network 1 trained only on ideal vectors, whereas 

Network 2 trained on both ideal and noisy vectors in order to compare performance 

results when presented with noise. Although not significantly different, Network 2 

performed slightly better. This indicates that the network acquired the ability to estimate 

when classifying characters. 
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Teaching a machine to recognize characters when presented with noise may additionally 

be applied to future applications and developments of character recognition, such as 

Optical Character Recognition in scanners and faxes. Scanners and faxes must deal with 

noisy or distorted data since transmission leaves documents often blurry or out of line. 

This requires some level of tolerance of imperfect characters on part of these systems. 
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APPENDIX I 

First Font Second Font 

Character A 00000000000000000000 00000000000000000000 
00000000011000000000 00111111111111111100 
00000000111100000000 00111111111111111100 
00000001111110000000 00111111111111111100 
00000011111111000000 00111000000000011100 
00000111000011100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
001110000000000111-00 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000000000 

Character B 00000000000000000000 00000000000000000000 
00111111111111000000 00111111111111000000 
00111111111111100000 00111111111111110000 
00111111111111110000 00111000000111111000 
00111000000000111000 00111000000011111100 
00111000000000011100 001i1000000001111100 
00111000000000111000 00111000000000111100 
00111000000000110000 001110000000001 fl 100 
00111111111111100000 00111111111111111100 
00111111111111000000 00111111111111111100 
00111111111111100000 00111000000000011100 
00111000000001110000 00111000000000011100 
00111000000000111000 00111000000000011100 
00111000000000011100 00111000000000011100 

· 00111000000000111000 00111000000000111100 
00111000000000110000 00111000000001111100 
00111000000001110000 00111000000011111000 
00111111111111100000 00111111111111110000 
00111111111111000000 00111111111111100000 
00000000000000000000 00000000000000000000 
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First Font Second Font 

Character C 00000000000000000000 00000000000000000000 
00000001111110000000 00111111111111111100 
00000011111111000000 00111111111111111100 
00000111111111100000 00111000000000011100 
00001110000001111000 00111000000000011100 
00011100000000111100 00111000000000011100 
00111000000000001100 00111000000000011100 
00111000000000000100 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000100 00111000000000011100 
00111000000000001100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000001111000 00111000000000011100 
00111111111111111000 00111111111111111100 
00111111111111110000 00111111111111111100 
00000000000000000000 00000000000000000000 

Character D 00000000000000000000 00000000000000000000 
00111111111000000000 00111111111111100000 
00111111111100000000 00111111111111110000 
00111111111110000000 00111111111111111000 
00111000000111000000 00111000000011111100 
00111000000011100000 00111000000001111100 
00111000000001110000 00111000000000111100 
00'111000000000111000 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000111100 
00111000000000001110 00111000000001111100 
00111000000000011100 00111000000011111100 
00111000000000111000 00111111111111111000 
00111000000001110000 00111111111111110000 
00111111111111100000 00111111111111100000 
00111111111111000000 00000000000000000000 
00111111111100000000 00000000000000000000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character E 00000000000000000000 00000000000000000000 

00111111111111111100 00111111111111111100 
00111111111111111110 00111111111111111100 
00111111111111111100 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111100000000 00111000000000000000 
00111111111110000000 00111111111111111100 
00111111111100000000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111111100000 00111111111111111100 
00111111111111110000 00111111111111111100 
00111111111111100000 00111111111111111100 
00000000000000000000 00000000000000000000 

Character F 00000000000000000000 00000000000000000000 
00111111111111111000 00111111111111111100 
00111111111111111100 00111111111111111100 
00111111111111111000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111111000000 00111000000000000000 
00111111111111100000 00111111111111111100 
00111111111111000000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00010000000000000000 00111000000000000000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character G 00000000000000000000 00000000000000000000 

00000001111110000000 00111111111111111100 
00000011111111000000 00111111111111111100 
00000111111111100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000111000 00111000000000011100 
00111000000000111000 00111000000000000000 
00111000000000010000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000111111000 00111000000000000000 
00111000000111111000 00111000000011111100 
00111100000000111000 00111000000011111100 
00011111000000111000 00111000000000011100 
00011111111111110000 00111000000000011100 
00000111111111000000 00111111111111111100 
00000011111110000000 00111111111111111100 
00000000000000000000 00000000000000000000 

Character H 00000000000000000000 00000000000000000000 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000011100 
00111000000000011100 00000000000000011100 
00111000000000011100 00000000000000011100 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character I 00000000000000000000 00000000000000000000 

00000111111111000000 00000000111000000000 
00000111111111000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 · 
00000111111111000000 00000111111111000000 
00000111111111000000 00000111111111000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

Character J 00000000000000000000 00000000000000000000 
00000111111111000000 00000111111111000000 
00000111111111000000 00000111111111000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00010000111000000000 00000000111000000000 
00111000111000000000 00000000111000000000 
00011111111000000000 00111111111000000000 
00001111111000000000 00111111111000000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

,i' 
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First Font Second Font 
Character K 00000000000000000000 00000000000000000000 

00111000000011110000 00111000000001111100 
00111000000111100000 00111000000011111100 
00111000001110000000 00111000000111000000 
00111000011100000000 00111000001110000000 
00111000111000000000 00111000011100000000 
00111001110000000000 00111000111000000000 
00111011100000000000 00111001110000000000 
00111111000000000000 00111111110000000000 
00111111100000000000 00111111110000000000 
00111111110000000000 00111111110000000000 
00111001111000000000 00111000111100000000 
00111000111000000000 00111000011100000000 
00111000011100000000 00111000001110000000 
00111000001110000000 00111000000111000000 
00111000000111000000 00111000000011100000 
00111000000011100000 00111000000001110000 
00111000000001110000 00111000000000111110 
00111000000000111000 00111000000000011110 
00000000000000000000 00000000000000000000 

Character I 00000000000000000000 00000000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000110 00111000000000000000 
00111111111111111100 00111000000000000000 
00111111111111111000 00111111111111111110 
00111111111111110000 00111111111111111110 
00000000000000000000 00000000000000000000 

,jff 
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First Font Second Foot 
CharacterM 00000000000000000000 00000000000000000000 

00111100000000011110 00111100000000011110 
00111110000000111110 00111100000000011110 
00111111000001111110 00111111000001111110 
00111011100011101110 00111011000001101110 
00111001110111001110 00111011100011101110 
00111000111110001110 00111001110011001110 
0011}000011100001110 00111001111111001110 
00111000001000001110 00111000111110001110 
00111000000000001110 00111000011100001110 
00111000000000001110 00111000001000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

CharacterN 00000000000000000000 00000000000000000000 
00111000000000001110 00111111000000001110 
00111100000000001110 00111111000000001110 
00111110000000001110 00111111100000001110 
00111110000000001110 00111011100000001110 
00111011100000001110 00111001110000001110 
00111001110000001110 00111001110000001110 
00111001110000001110 00111000111000001110 
00111oooi11000001110 00111000111000001110 
00111000111000001110 00111000011100001110 
00111000011100001110 00111000011100001110 
00111000001110001110 00111000000111001110 
00111000000111001110 00111000000111001110 
00111000000111001110 00111000000011101110 
00111000000011101110 00111000000011101110 
00111000000001111110 00111000000001111110 
00111000000001111110 00111000000001111110 
00111000000000111110 00111000000000111110 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character Q 00000000000000000000 00000000000000000000 

00000111111111110000 00111111111111111100 
00001111111111111000 00111111111111111100 
00011111111111111100 00111000000000011100 
00111111000001111110 00111000000000011100 
00111110000000111110 00111000000000011100 
00111100000000011110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111100001100001110 00111100001100011100 
00111110000111111110 00111110000111011100 
00111111000111111110 00111111000011111100 
00011111111111111100 00111111111111111100 
00001111111111111110 00111111111111111110 
00000111111100001111 00000000000000001111 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

Character R 00000000000000000000 00000000000000000000 
00111111111111111100 00111111111111100000 
00111111111111111100 00111111111111110000 
00111111111111111100 00111111111111111000 
00111000000000011100 00111000000011111100 
00111000000000011100 00111000000001111100 
00111000000000011100 00111000000000111100 
00111000000000011100 00111000000001111100 
00111000000000011100 00111000000011111000 
00111111111111111100 00111111111111110000 
00111111111111111100 00111111111111100000 
00111111000000000000 00111111000000000000 
00111011100000000000 00111011100000000000 
00111001110000000000 00111001110000000000 
00111000111000000000 00111000111000000000 
00111000011100000000 00111000011100000000 
00111000001110000000 00111000001110000000 
00111000000111000000 00111000000111110000 
00111000000011100000 00111000000011110000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character S 00000000000000000000 00000000000000000000 

00000000000000000000 00000000000000000000 
00000011111111110000 00111111111111111100 
00000111111111111000 00111111111111111100 
00001110000000011100 00111110000000011100 
00011100000000001000 00011100000000001000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111100000000000000 00111100000000000000 
00011111111111100000 00111111111111111100 
00001111111111111000 00111111111111111100 
00000000000000011100 00000000000000011100 
00000000000000001110 00000000000000011100 
00000000000000011100 00000000000000011100 
00010000000000111000 00010000000000011100 
00111000000001110000 00111000000000011100 
00111111111111100000 00111111111111111100 
00011111111111000000 00111111111111111100 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

Character T 00000000000000000000 00000000000000000000 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00000000111000000000 00110000111000001100 
00000000111000000000 00110000111000001100 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000111111111000000 
00000000000000000000 00000111111111000000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character U 00000000000000000000 00000000000000000000 

00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111100000000111100 
00111000000000011100 00111110000001111100 
00111000000000011100 00011111000011111000 
00111111111111111100 00001111111111110000 
00111111111111111100 00000111111111100000 
00000000000000000000 00000000000000000000 

Character V 00000000000000000000 00000000000000000000 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00011100000000011100 00111100000000011110 
00011100000000011100 00111100000000011110 
00001110000000111000 00011100000000011110 
00001110000000111000 00011110000000111110 
00000111000001110000 00011110000000111100 
00000111000001110000 00011110000000111100 
00000011100011100000 00011110000000111000 
00000011100011100000 00001111000001111000 
00000001110111000000 00001111000001111000 
00000001111111000000 00001111100011110000 
00000000111110000000 00000111100011100000 
00000000111110000000 00000011110111100000 
00000000011100000000 00000011111111000000 
DOOOOOOOOlllOOOOOOOO 00000001111110000000 
00000000001000000000 00000000011000000000 
00000000000000000000 00000000000000000000 
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First Font Second Font 
Character W 00000000000000000000 00000000000000000000 

01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
00110000111100001100 01110000111100001110 
00110000111100001100 00111000111100011100 
00110000111100001100 00111000111100011100 
00110000111100001100 00111000111100011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011111100111111000 00111111100111111100 
00001111000011110000 00011111000011111000 
00000110000001100000 00001110000001110000 
00000110000001100000 00001110000001100000 
00000000000000000000 00000100000000000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

Character X 00000000000000000000 00000000000000000000 
00111000000000001110 00111000000000001110 
00011100000000011100 00011100000000011100 
00001110000000111000 00001110000000111000 
00000111000001110000 00000111000001110000 
00000011100011100000 00000011100011100000 
00000001111111000000 00000001110111000000 
00000000111110000000 00000000111110000000 
00000000111110000000 00000000011100000000 
00000000111110000000 00000000111110000000 
00000001111111000000 00000001110111000000 
00000011100011100000 00000011100011100000 
00000111000001110000 00000111000001110000 
00001110000000111000 00001110000000111000 
00011100000000011100 00011100000000011100 
0011l000000000001110 00111000000000001110 
01110000000000000110 01110000000000000111 
01110000000000000000 01110000000000000111 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

106 



Appendix! 

First Font Second Font 
Character Y 00111100000000011110 00000000000000000000 

00011110000000011110 00111000000000001110 
00001111000000011110 00011100000000011100 
00000111100000011100 00001110000000111000 
00000011110001111000 00000111000001110000 
00000001111011111000 00000011100011100000 
00000000111111110000 00000011111111000000 
00000000011111100000 00000001111110000000 
00000000011111000000 00000000111100000000 
00000000011111000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000000000000000 00000000111100000000 
00000000000000000000 00000000111100000000 
00000000000000000000 00000000000000000000 

Character Z 00000000000000000000 00000000000000000000 
00111111111111111110 00011111111111111110 
00111111111111111110 00111111111111111110 
00111111111111111110 00011111111111111110 
00000000000000011110 00000000000000111110 
00000000000000111000 00000000000001111000 
00000000000001110000 00000000000011110000 
00000000000011100000 00000000000111100000 
00000000000111000000 00000000001111000000 
00000000001110000000 00000000011110000000 
00000000011100000000 00000000111100000000 
00000000111000000000 00000001111000000000 
00000001110000000000 00000011110000000000 
00000011100000000000 00000111100000000000 
00000111000000000000 00001111000000000000 
00001110000000000000 00111110000000000000 
00111111111111111110 00111111111111111100 
00111111111111111110 00111111111111111110 
00111111111111111110 00111111111111111100 
00000000000000000000 00000000000000000000 
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Character Target Vector 
A 10000000000000000000000000 
B 01000000000000000000000000 
C 00100000000000000000000000 
D 00010000000000000000000000 
E 00001000000000000000000000 
F 00000100000000000000000000 
G 00000010000000000000000000 
H 00000001000000000000000000 
I 00000000100000000000000000 
J 00000000010000000000000000 
K 00000000001000000000000000 
L 00000000000100000000000000 
M 00000000000010000000000000 
N 00000000000001000000000000 
0 00000000000000100000000000 
p 00000000000000010000000000 
Q 00000000000000001000000000 
R 00000000000000000100000000 
s 00000000000000000010000000 
T 00000000000000000001000000 
u 00000000000000000000100000 
V 00000000000000000000010000 
w 00000000000000000000001000 
X 00000000000000000000000100 
y 00000000000000000000000010 
z o.0000000000000000000000001 
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APPENDIX III 

%== 

% DEFINING THE MODEL PROBLEM 
%==- 

[ alphabet.targets] = prprob; 
[R,Q] = size(alphabet); 
[S2,Q] = size(targets ); 

% DEFINING THE NETWORK 

Sl = 52; 
net = newffiminmaxt alphabet ),[S 1 S2], { 'logsig' 'logsig'} .traingdx'); 

net.LW{2,1} = net.LW{2,l }*0.01; 

net.b{2} =net.b{2}*0.0l; 

% 
% TRAINING INITIAL NETWORJ( WITHOUT NOISE 

%== 

net.performf'cn = 'sse'; 

net.trainParam.goal = 0.1; 
net.trainl'aram.show = 20; 

net.trainl'aram.epochs = 5000; 
net.trainParam.mc = 0.85; 

net.trainl'aram.lr = 0.003; 

P = alphabet; 
T = targets; 
[net,tr] = train(net,P,T); 
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%~= 

% TRAINING NETWORK 2 WITH NOISE 

%==========--================================================= 

netn = net; 

netn.trainParam.goal = 0.6; 

netn.trainParam.epochs = 300; 

T = [targets targets targets targets]; 

for pass = 1 : 10 
fprintfi'Pass = %.Of\n',pass); 

P = [alphabet, alphabet, ... 

(alphabet+ randn(R,Q)*0.1), ... 

(alphabet+ randn(R,Q)*0.2)]; 

[netn,tr] = train(netn,P,T); 

end 

% 
% RE-TRAINING NETWORK 2 WITHOUT NOISE 

% 

netn.trainParam.goal = 0.1; 

netn.trainParam.epochs = 500; 

net.trainParam.show = 5; 

P = alphabet; 

T = targets; 
[netn,tr] = train(netn,P,T); 

% 
% TESTING NETWORK 1 AND 2 WITH VARIOUS LEVELS OF NOISE 

%======================================---------------------- 

% SET TESTING PARAMETERS 

k = 0:.05:.5; 

max_test = 100; 
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networkl = []; 
network2 = []; 

T = targets; 

% INITIAl-,IZE TESTING 

for noiselevel = k 

fprintf('Testing networks with noise level of%.2£\n',noiselevel); 

errors! = O; 

errors2 = O; 

for i=l .maxtest 

P =alphabet+ randn(400,26)*noiselevel; 

% TEST NETWORK 1 

A = simmet.P); 

AA= compet(A); 

errorsl = errorsl + sum(sum(abs(AA-T)))/2; 

% TEST NETWORK 2 

An = sim(netn,P); 

AAn = compet(An); 

errorsz = errors2 + sum(sum(abs(AAn-T)))/2; 

end 

% AVERAGE ERRORS FOR 100 SETS OF 26 TARGET VECTORS. 

networkl = [networkl errorsl/26/100]; 

network2 = [network2 errors2/26/100]~ 
end 

% DISPLAY RESULTS 

elf 

plot(k,networkl * 100,'-',k,network2* 100); 

title(Percentage of Recognition Errors'); 

xlabel('Noise Level'); 

ylabel('Network 1 - - Network 2 ---'); 
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% 

% DISPLAY CHARACTERS 
%--========================~--==--===========--------------- 

% CHARACTER A WITH NOISE 

k=0.5 

iflk>0.5) 
disp('Noise Is Too High') 

else 
noisyA = alphabet(:,l)+randn(400,l)*k; 

plotchar(noisy A); 

% CHARACTER A WITHOUT NOISE 

figure; 
A2 = sim(net,noisyA); 

answer= find( compet(A2) == 1 ); 

plotchar( alphabet( :,answer)); 

emd 
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