LIBRARY ESO

EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

the day will be a strong to the series

OUTDOOR ILLIUMINATION OF

ARSENAL TOWER

[T.R.N.C G.MAGOSA]

SUPERVISED BY : PROF.HALDON GURMEN

> PREPARED BY : SAMER EL-REFAI

SPRING 1993

ACKNOWLEDGEMENT

I would like to have a special thanks to my supervisor prof. Haldon GURMEN for providing me all the required documents and directing me through my project .

Also I would like to thank my department and my teachers for all their helps in all my academic years.

PREPHASE:

In this project which is the illumination of the ARSENAL TOWERby using the knowledgment of the outdoor illumination and the flood lighting calculations we succeeded to organise things such that they lead to be acceptable solution.

We have been very careful about sutisfying the illuminance needed by selected the light sources just to be suitable to the color of the wall to be illuminated and its area.

We also were very carful about the arrangement of the light sources so that the illuminance must be satisfied and the people will not be efficiend by the reflection of the regularity coefficient.

CONTENTS

INTRODUCTION

-CHAPTER ONE

-PLANING

-THE FORM OF BUILDING

-CARRYING OUT A FLOOD LIGHTING PROJECT

-SURFACE MATERIAL OF THE FACADE

-SELECTION OF THE LEVEL OF ILLUMINATION

CHAPTER TWO

-EQUIPMENTS USED IN FLOOD LIGHTING -UNITES USED IN ILLUMINATION

CHAPTER THREE

-CALCULATION TECHNIQUES -COMPUTER PROGRAM OF ILLUMINATION -RESULTS -PLAN OF INSTALLATION -COST OF THE PROJECT CONCLUSION

APPENDIX

INTRODUCTION

A second second the shear of the second seco

ALC: NUMBER OF STREET

A DESCRIPTION OF A DESC

the second of board and the second second second

As an introduction to lighting and a review of the entire history of light , from the first uses of sunlight , to the development of candles, down through the oilburner and then to the lamps , would be a book itself . Also the topic is concerned with the use of artificial light as a modern and flexible design medium . Before going through the procedures of this project , a few things to be discussed about the ages of lamp :that the first lamp consisted of a glass bulb containing bamboofiber , that had been reduced to carbon with the production of the first tungsten filament lamp, the efficiency of the lamp was more than doubled.By introducing the fluorescent lamp, i.e, the second age of light , introduction revolutionized the field of lighting when it was demonstrated that a fluorescent lamp produced more light at a lower cost than the incandescent lamp. The approach to lighting began to change by the third age of light , that has been called "AGE of REFINEMENT"it is difficult to comment on a period that it still developing , for this reason a lighting - engineer must followed FOUR simple steps in application

of lighting :

1- Determine the desired level of illumination (usual ly based on a published recommendation) .

2- Select a luminary that will produce this level .3- Calculate the required number of luminaries .

4- Layout the installation for uniformity of illumination .

According to the place to be illuminated as an artificial illumination . It can be divided into two groups as indoor and outdoor illumination.

THE ARSENAL TOWER was chosen for outdoor illumination needs two methods of calculation .

LUMEN METHODE can explain the practical method to determine the number of fittings. The number of fittings can be calculated by dividing the total flux to flux of one fitting only.

The second method which is **DIRECT ILLUMINANCE CALCULA**-**TION METHOD**. By using this method and applying the computer program including the intensity matrix, the illuminance at each point on the surface of the walls were obtained. - OUTDOOR ILLUMIEAT ---

and a link ing installar and period one built the balances and a the link ing installar and period and the balances and a the light mathemat abeald because testiller with off balances to the balance and black because testiller with off balances and the for each of the test offer also bealding to be balance and the balances and the balance testiller balances be balance and the balances in test of the balance of the balances and the balances in the balances and the balances balances and the balances in the balances and the balances balances and the balances in the balances in the balances and the balances balances and the balances in the balances in the balances and the balances

CHAPTER ONE

and the state of the second attention of the second

The fellowing points withdut on the derivation

AN DEPENDING THE PARTY OF

the state of the set o

OUTDOOR ILLUMINATION

:

a) **PLANING**

A flood lighting installation project can only be carried out successfully if a true study has been made of the building concerned. The light engineer should become familiar with all factors relating to lighting installation for the building. It is essential she /he should first study the features of the facade under various conditions and with sunlight falling upon it at different angles in order to decide which are the most attractive features.

b) THE CONTRAST BETWEEN THE FACADE AND THE BACKGROUND :

The contrast between the facade and its background are changes continuously with changes in weather conditions when , for example , the rays of the sun fall directly on the facade and there is a cloudless sky, the facade will be brighter then the background because of the greater reflection . Sunlight falling directly on the building causes hard shadows .

C) CARRYING OUT A FLOOD LIGHTING PROJECT :

The following points should be cosiderd when planing a flood light installation :

i) Direction of view ,

It ought to decide on the main direction from which the building is viewed . Generally there will be several , but often one can be decided upon the main direction of view .

ii) Distance ,

decide on the normal distance the view and the building based on the main direction on the view . Whether one can see all or none of the architectural details on the facadewill depend on the distance chosen .

iii) Surrounding and background ,

It must be obtain a clear idea of the background against which the building will be seen .If the surrounding and the background are dark a relatively small amount of light is needed to make the building lighter then the background .the colors of the light already present in the background of the building, even street lighting , must then be taken into consideration .

iv) Obstacles,

Trees and fences around the building can form a decorative part of an installation . An attractive way of dealing with these is to place the sources of light behind them .Two advantages are gained :

FIRSTLY the light sources are not seen by viewer , and SECONDLY the trees and fences are silhouetted against the light background of the facade .The impression of depth is therefore heightened .

SURFACE MATERIAL OF THE FACADE :

In determining the illumination level needed for a facade , in order to obtain the required brightness ,the reflection factor and way the building surface material reflected the lights are important to borne in mind . The table below indicates the reflection factors of a number of different material .

MATERIAL	STATE	REFLECTION Factor
white marble granite light concrete or stone dark concrete or stone imitation concrete paint white brick yellow brick red brick	fairly clean fairly clean fairly clean fairly clean very dirty clean clean new dirty	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

The total reflection from a facade depends on the following points:

i) The material of the facade

ii) The incident angle of the light

iii)The position of the observer in relation to the reflection material (specular reflections)

The color of the material is also an important factor.

The color of the surface material is accentuated if light of the color is used.

SELECTION OF THE LEVEL OF ILLUMINATION :

The lighting level needed of facade to effect a certain brightness contrast depends upon such factor as the reflection factor of the surface building material , the location of building in relation to its surroundings , the general brightness of this surroundings and the dimension of the building .

The following table presents some recommended illumination level for various surface building material used on building in either poorly lit, well lit or brightly lit surroundings.

TYPES OF SURFACE	STATE	P.L.S	W.L.S	B.L.S
white marble	f.clean	25	50	100
light concrete im- itation concrete paint white brick yellow brick white granite concrete or dark stone red brick concrete	f.clean f.clean f.clean f.clean f.clean f.clean f.clean y.dirty	50 100 20 50 150 75 75 75	100 250 40 100 300 150 150 quires a	600 300 300
red brick	dirty	ree	150 - 3 quires a 150 - 3	t least

the big preterio wol de

CHAPTER TWO

THE EQUIPMENT USED IN FLOODLIGHT a) Low pressure sodium lamps .
b) High pressure sodium vapor lamps .
c) Height pressure mercury vapor lamps

d) Metal hailed lamps .

In this project , the high pressure sodium mapor lamps (SON - T 400 W) were considered . HIGH PRESSURE SODIUM VAPOR LAMPS (SON)

They have played an important role in the expending field of floodlighting. SON lamp is efficient, versatile light sources start with their high luminous capacity means more light for less money -a - feature for often decisive importance where lighting is implored for long periods of time. This plus the pleasing, warm golden white lights make, SON lamps an attractive proposition for a wide range of application both in and cutdoors. Also SON lamps have balanced color rendering, reliable and stable operation excellent lumen maintenance and short re-ignition time.

TYPE OF HIGH PRESSURE SON:

SON lamps : High pressure sodium vapor lamps , for outdoor and indoor use , with assintered aluminum oxide discharge tube enclosed in cater bulb .

ii) SON - T lamps :with centered aluminum oxide discharge tube enclosed in a clear, tubular hard glass outer bulb .

APPLICATION :

=) Floodlightingb) Public lighting .

- c) Industrial lighting .
- Sports lighting .
- e) Airports lighting .
- E Road lighting .

Note : Technical data of this type of lamp were given is appendix .

LIGHTING UNITS AND DEFINITION

CANDELA :

Units of luminous intensity, originally the luminous intensity of a specified candle burning at a specified rate.

CANDELA : (Cod)

unites of luminous intensity . Also called the new international candela . Equal to the luminous intensity of a surface of black - body radiator operated at the temperature of solidifying platinum .

LUMINANCE : (L)

The luminous intensity in a given direction by the area of the surface perpendicular to that direction .

LUMEN : (Lm)

The flux emitted in unit solid angle by a uniform point source of one candela . It is unit of luminous flux .

TIMINANCE : (E)

Luminous flux on a surface element divided by the area of the elements , in lumen per square meter of flux .

LIMINANCE INTENSITY : (symbol: I , unit :cod)

The quantity which describes the light giving power of a source in any particular direction . If F is the luminous flux emitted within a cone of very small angle W , having its apex the source and its axis .

REFLECTION FACTOR : (n)

The reflection factors describes the relationship between the incident luminous flux and the reflected luminous flux . This factor depends upon the reflection properties of the surface of the material to be illuminated .

SALINUM INTENSITY : (I max)

The maximum intensity of the beam is the maximum intensity candela 1000 lumen of the lamp flux .

Collection of Collection

the second of the second state of the second of the second state o

CHAPTER THREE

METHOD OF CALCULATION :

There are two possible ways of calculating the types and numbers of flood lighting needed to achieve the desired illumination , the lumen method and the luminous intensity method . For a large facade the lumen methode should be used . This is upon a certain avarage luminous efficiency . For high and small object church steeples , chimneys ,etc..., the luminous intencity method should be used . This is based on the luminous intencity relation in a certain direction .

THE LUMEN METHOD :

This method consists in caculating the number of lumens to be directed on to facade in order to obtain a certain illumination level . The number of lumens can be calculated by means of formula below :

Where

øt : is the total number of lamp lumens ,i.e. the total luminous flux produced by all lamps . A : is the surface of the facade to be illuminated in m .

E : is the desired illumination in lux , on the facade .

. sbeseî

Where : Where vertical illumination on the

> y E = ------ cos o I 3

In this methode the starting point is the luminous intencity related to the light source in a particular direction . This luminous intensity may be derived from the luminous intensity diagram or from a table . This data can usually be found in the apropriate catalogue and brochures . The calculation is made with the formula as shown below :

LUMINOUSE INTENCITY METHODE :

 $M = ---- \phi$

Once the total number of lumens is known , the number of fitting (N) needed can be calculated by dividig this ammout by the number of lumens installed per fitting :

. zesecí

n : is a factor which takes into account the light efficency of the fitting and the light

I: is the luminous intensity at the angle 0
is the highest of the object above the littings are arranged
also can be said : the distance between the the distance between the of the distance of th

 $\mathbf{\hat{o}}$: Is the angle at which the plane to be

facade illumenated

THE WAY OF USING THE DIRECT METHODE

. betanimulli

Calculation method

BY using intensity approach method , we can calculate the (c) and () angles , as the :

ч / ох	=	, OX	,	, ox < ox
ч / х	=	ı X	1	, X < X
ч / х	=	ı X	1	, x < x

 $\mathbf{u} / \mathbf{O} \mathbf{X} = \mathbf{i} \mathbf{O} \mathbf{X}$ $\mathbf{i} \mathbf{O} \mathbf{X} < ---- \mathbf{O} \mathbf{X}$

муєкє :

ροίπτ at which the projector axis intercept the plane which

XO & YO are the coordinates of the surface of the

X & Y reprecent the coordinates of the point at the calculating of the illuminance needed.

BROCEDURE :

i) Substituting these pointes into related formula ,
 given in the appendix .

ii) By runing the related programe it can be obtained the angles , intensities per 1000 lumen and illuminances at each point on the surface .

DEF, DOLK, INTR, DOLT, INCL. INCL.

20,3021,73

CONS. 5, 51, 52, ALPA1, ALFA, A, A1, C, C1, GANAI, TO NA, FACYOR

AATTON INTON' OWA, TALWARDS, NO. ...

GRATH LATA 740 ENTL.

PI SATER THEN AND THEY !

USING COMPUTER PROGRAMING

INTEGER X, Y

REAL XMIN, XMAX, YMIN, YMAX, INCX, INCY, H

REAL XO, YOX1, Y1

```
REAL CUBE, B, D1, D2, ALFA1, ALFA, A, A1, C, C1, GAMA1, GAMA, FACTOR
```

OPEN (3, FILE='ILLUM.DAT', STATUS='NEW')

WRITE (*,*)'ENTER XMIN AND XMAX'

READ (*,*)XMIN, XMAX

WRITE (*,*)'ENTER YMIN AND YMAX '

READ (*,*)YMIN,YMAX

WRITE (*,*)'INCREAMENT FOR X AND Y'

READ (*,*) INCX, INCY

WRITE (*,*)'INTER XO AND YO'

WRITE (*,*)'INTER H'

READ (*,*)H

IIO=XO/H

IIO=YO/H

WRITE (3,100) XO,YO,H

FORMAT (21X, 'XO=', F4.1, 8X, 'YO=', F4.1, 8X, 'H=', F4.1//

\$16X, 'X', 6X, 'Y', 9X, 'C', 9X, 'GAMA', 8X, 'COS CUBE', 5X, 'FACTOR'/

\$14X,65('-'))

DO 7 Y=YMAX, YMIN, -INCY

DO 7 X=XMIN, XMAX, INCX

I1=X/H

Il=Y/H

CUBE=1/(((1+X1*X1+Y1*Y1))**(1.5))

 $= 1 + X1 \times X10 + Y1 \times Y1 ((1 + X10 \times X10) / (1 + X1 \times X10))$

LIBRARY ESO

EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

the day will be a strong to the series

OUTDOOR ILLIUMINATION OF

ARSENAL TOWER

[T.R.N.C G.MAGOSA]

SUPERVISED BY : PROF.HALDON GURMEN

> PREPARED BY : SAMER EL-REFAI

SPRING 1993

ACKNOWLEDGEMENT

I would like to have a special thanks to my supervisor prof. Haldon GURMEN for providing me all the required documents and directing me through my project .

Also I would like to thank my department and my teachers for all their helps in all my academic years.

PREPHASE:

In this project which is the illumination of the ARSENAL TOWERby using the knowledgment of the outdoor illumination and the flood lighting calculations we succeeded to organise things such that they lead to be acceptable solution.

We have been very careful about sutisfying the illuminance needed by selected the light sources just to be suitable to the color of the wall to be illuminated and its area.

We also were very carful about the arrangement of the light sources so that the illuminance must be satisfied and the people will not be efficiend by the reflection of the regularity coefficient.

CONTENTS

INTRODUCTION

-CHAPTER ONE

-PLANING

-THE FORM OF BUILDING

-CARRYING OUT A FLOOD LIGHTING PROJECT

-SURFACE MATERIAL OF THE FACADE

-SELECTION OF THE LEVEL OF ILLUMINATION

CHAPTER TWO

-EQUIPMENTS USED IN FLOOD LIGHTING -UNITES USED IN ILLUMINATION

CHAPTER THREE

-CALCULATION TECHNIQUES -COMPUTER PROGRAM OF ILLUMINATION -RESULTS -PLAN OF INSTALLATION -COST OF THE PROJECT CONCLUSION

APPENDIX

INTRODUCTION

A second second the shear of the second seco

ALC: NUMBER OF STREET

A DESCRIPTION OF A DESC

the second of board and the second second second

As an introduction to lighting and a review of the entire history of light , from the first uses of sunlight , to the development of candles, down through the oilburner and then to the lamps , would be a book itself . Also the topic is concerned with the use of artificial light as a modern and flexible design medium . Before going through the procedures of this project , a few things to be discussed about the ages of lamp :that the first lamp consisted of a glass bulb containing bamboofiber , that had been reduced to carbon with the production of the first tungsten filament lamp, the efficiency of the lamp was more than doubled.By introducing the fluorescent lamp, i.e, the second age of light , introduction revolutionized the field of lighting when it was demonstrated that a fluorescent lamp produced more light at a lower cost than the incandescent lamp. The approach to lighting began to change by the third age of light , that has been called "AGE of REFINEMENT"it is difficult to comment on a period that it still developing , for this reason a lighting - engineer must followed FOUR simple steps in application

of lighting :

1- Determine the desired level of illumination (usual ly based on a published recommendation) .

2- Select a luminary that will produce this level .3- Calculate the required number of luminaries .

4- Layout the installation for uniformity of illumination .

According to the place to be illuminated as an artificial illumination . It can be divided into two groups as indoor and outdoor illumination.

THE ARSENAL TOWER was chosen for outdoor illumination needs two methods of calculation .

LUMEN METHODE can explain the practical method to determine the number of fittings. The number of fittings can be calculated by dividing the total flux to flux of one fitting only.

The second method which is **DIRECT ILLUMINANCE CALCULA**-**TION METHOD**. By using this method and applying the computer program including the intensity matrix, the illuminance at each point on the surface of the walls were obtained. - OUTDOOR ILLUMIEAT ---

and a link ing installar and period one built the balances and a the link ing installar and period and the balances and a the light mathemat abeald because testiller with off balances to the balance and black because testiller with off balances and the for each of the test offer also bealding to be balance and the balances and the balance testiller balances be balance and the balances in test of the balance of the balances and the balances in the balances and the balances balances and the balances in the balances and the balances balances and the balances in the balances in the balances and the balances balances and the balances in the balances in the balances and the balances

CHAPTER ONE

and the state of the second attention of the second

The fellowing points withdut on the derivation

AN DEPENDING THE PARTY OF

the state of the set o

OUTDOOR ILLUMINATION

:

a) **PLANING**

A flood lighting installation project can only be carried out successfully if a true study has been made of the building concerned. The light engineer should become familiar with all factors relating to lighting installation for the building. It is essential she /he should first study the features of the facade under various conditions and with sunlight falling upon it at different angles in order to decide which are the most attractive features.

b) THE CONTRAST BETWEEN THE FACADE AND THE BACKGROUND :

The contrast between the facade and its background are changes continuously with changes in weather conditions when , for example , the rays of the sun fall directly on the facade and there is a cloudless sky, the facade will be brighter then the background because of the greater reflection . Sunlight falling directly on the building causes hard shadows .

C) CARRYING OUT A FLOOD LIGHTING PROJECT :

The following points should be cosiderd when planing a flood light installation :

i) Direction of view ,

It ought to decide on the main direction from which the building is viewed . Generally there will be several , but often one can be decided upon the main direction of view .

ii) Distance ,

decide on the normal distance the view and the building based on the main direction on the view . Whether one can see all or none of the architectural details on the facadewill depend on the distance chosen .

iii) Surrounding and background ,

It must be obtain a clear idea of the background against which the building will be seen .If the surrounding and the background are dark a relatively small amount of light is needed to make the building lighter then the background .the colors of the light already present in the background of the building, even street lighting , must then be taken into consideration .

iv) Obstacles,

Trees and fences around the building can form a decorative part of an installation . An attractive way of dealing with these is to place the sources of light behind them .Two advantages are gained :

FIRSTLY the light sources are not seen by viewer , and SECONDLY the trees and fences are silhouetted against the light background of the facade .The impression of depth is therefore heightened .

SURFACE MATERIAL OF THE FACADE :

In determining the illumination level needed for a facade , in order to obtain the required brightness ,the reflection factor and way the building surface material reflected the lights are important to borne in mind . The table below indicates the reflection factors of a number of different material .

MATERIAL	STATE	REFLECTION Factor
white marble granite light concrete or stone dark concrete or stone imitation concrete paint white brick yellow brick red brick	fairly clean fairly clean fairly clean fairly clean very dirty clean clean new dirty	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

The total reflection from a facade depends on the following points:

i) The material of the facade

ii) The incident angle of the light

iii)The position of the observer in relation to the reflection material (specular reflections)

The color of the material is also an important factor.

The color of the surface material is accentuated if light of the color is used.

SELECTION OF THE LEVEL OF ILLUMINATION :

The lighting level needed of facade to effect a certain brightness contrast depends upon such factor as the reflection factor of the surface building material , the location of building in relation to its surroundings , the general brightness of this surroundings and the dimension of the building .

The following table presents some recommended illumination level for various surface building material used on building in either poorly lit, well lit or brightly lit surroundings.

TYPES OF SURFACE	STATE	P.L.S	W.L.S	B.L.S
white marble	f.clean	25	50	100
light concrete im- itation concrete paint white brick yellow brick white granite concrete or dark stone red brick concrete	f.clean f.clean f.clean f.clean f.clean f.clean f.clean y.dirty	50 100 20 50 150 75 75 75	100 250 40 100 300 150 150 quires a	600 300 300
red brick	dirty	ree	150 - 3 quires a 150 - 3	t least

the big preterio wol de

CHAPTER TWO

THE EQUIPMENT USED IN FLOODLIGHT a) Low pressure sodium lamps .
b) High pressure sodium vapor lamps .
c) Height pressure mercury vapor lamps

d) Metal hailed lamps .

In this project , the high pressure sodium mapor lamps (SON - T 400 W) were considered . HIGH PRESSURE SODIUM VAPOR LAMPS (SON)

They have played an important role in the expending field of floodlighting. SON lamp is efficient, versatile light sources start with their high luminous capacity means more light for less money -a - feature for often decisive importance where lighting is implored for long periods of time. This plus the pleasing, warm golden white lights make, SON lamps an attractive proposition for a wide range of application both in and cutdoors. Also SON lamps have balanced color rendering, reliable and stable operation excellent lumen maintenance and short re-ignition time.

TYPE OF HIGH PRESSURE SON:

SON lamps : High pressure sodium vapor lamps , for outdoor and indoor use , with assintered aluminum oxide discharge tube enclosed in cater bulb .

ii) SON - T lamps :with centered aluminum oxide discharge tube enclosed in a clear, tubular hard glass outer bulb .

APPLICATION :

=) Floodlightingb) Public lighting .

- c) Industrial lighting .
- Sports lighting .
- e) Airports lighting .
- E Road lighting .

Note : Technical data of this type of lamp were given is appendix .

LIGHTING UNITS AND DEFINITION

CANDELA :

Units of luminous intensity, originally the luminous intensity of a specified candle burning at a specified rate.

CANDELA : (Cod)

unites of luminous intensity . Also called the new international candela . Equal to the luminous intensity of a surface of black - body radiator operated at the temperature of solidifying platinum .

LUMINANCE : (L)

The luminous intensity in a given direction by the area of the surface perpendicular to that direction .

LUMEN : (Lm)

The flux emitted in unit solid angle by a uniform point source of one candela . It is unit of luminous flux .

TIMINANCE : (E)

Luminous flux on a surface element divided by the area of the elements , in lumen per square meter of flux .

LIMINANCE INTENSITY : (symbol: I , unit :cod)

The quantity which describes the light giving power of a source in any particular direction . If F is the luminous flux emitted within a cone of very small angle W , having its apex the source and its axis .

REFLECTION FACTOR : (n)

The reflection factors describes the relationship between the incident luminous flux and the reflected luminous flux . This factor depends upon the reflection properties of the surface of the material to be illuminated .

SALINUM INTENSITY : (I max)

The maximum intensity of the beam is the maximum intensity candela 1000 lumen of the lamp flux .

Collection of Collection

the second of the second state of the second of the second state o

CHAPTER THREE

METHOD OF CALCULATION :

There are two possible ways of calculating the types and numbers of flood lighting needed to achieve the desired illumination , the lumen method and the luminous intensity method . For a large facade the lumen methode should be used . This is upon a certain avarage luminous efficiency . For high and small object church steeples , chimneys ,etc..., the luminous intencity method should be used . This is based on the luminous intencity relation in a certain direction .

THE LUMEN METHOD :

This method consists in caculating the number of lumens to be directed on to facade in order to obtain a certain illumination level . The number of lumens can be calculated by means of formula below :

Where

øt : is the total number of lamp lumens ,i.e. the total luminous flux produced by all lamps . A : is the surface of the facade to be illuminated in m .

E : is the desired illumination in lux , on the facade .

. sbeseî

Where : Where vertical illumination on the

> y E = ------ cos o I 3

In this methode the starting point is the luminous intencity related to the light source in a particular direction . This luminous intensity may be derived from the luminous intensity diagram or from a table . This data can usually be found in the apropriate catalogue and brochures . The calculation is made with the formula as shown below :

LUMINOUSE INTENCITY METHODE :

 $M = ---- \phi$

Once the total number of lumens is known , the number of fitting (N) needed can be calculated by dividig this ammout by the number of lumens installed per fitting :

. zesecí

n : is a factor which takes into account the light efficency of the fitting and the light

I: is the luminous intensity at the angle 0
is the highest of the object above the littings are arranged
also can be said : the distance between the the distance between the of the distance of th

 $\mathbf{\hat{o}}$: Is the angle at which the plane to be

facade illumenated

THE WAY OF USING THE DIRECT METHODE

. betanimulli

Calculation method

BY using intensity approach method , we can calculate the (c) and () angles , as the :

ч / ох	=	, OX	,	, ox < ox
ч / х	=	ı X	1	, X < X
ч / х	=	ı X	1	, x < x

 $\mathbf{u} / \mathbf{O} \mathbf{X} = \mathbf{i} \mathbf{O} \mathbf{X}$ $\mathbf{i} \mathbf{O} \mathbf{X} < ---- \mathbf{O} \mathbf{X}$

муєкє :

ροίπτ at which the projector axis intercept the plane which

XO & YO are the coordinates of the surface of the

X & Y reprecent the coordinates of the point at the calculating of the illuminance needed.

BROCEDURE :

i) Substituting these pointes into related formula ,
 given in the appendix .

ii) By runing the related programe it can be obtained the angles , intensities per 1000 lumen and illuminances at each point on the surface .

DEF, DOLK, INTR, DOLT, INCL. INCL.

20.001.01

CONS. 5, 51, 52, ALPA1, ALFA, A, A1, C, C1, GANAI, TO NA, FACYOR

AATTON INTON' OWA, TALADORA ADDA.

GRATH LATA 740 ENTL.

PI SATER THEN AND THEY !

USING COMPUTER PROGRAMING

INTEGER X, Y

REAL XMIN, XMAX, YMIN, YMAX, INCX, INCY, H

REAL XO, YOX1, Y1

```
REAL CUBE, B, D1, D2, ALFA1, ALFA, A, A1, C, C1, GAMA1, GAMA, FACTOR
```

OPEN (3, FILE='ILLUM.DAT', STATUS='NEW')

WRITE (*,*)'ENTER XMIN AND XMAX'

READ (*,*)XMIN, XMAX

WRITE (*,*)'ENTER YMIN AND YMAX '

READ (*,*)YMIN,YMAX

WRITE (*,*)'INCREAMENT FOR X AND Y'

READ (*,*) INCX, INCY

WRITE (*,*)'INTER XO AND YO'

WRITE (*,*)'INTER H'

READ (*,*)H

IIO=XO/H

IIO=YO/H

WRITE (3,100) XO,YO,H

FORMAT (21X, 'XO=', F4.1, 8X, 'YO=', F4.1, 8X, 'H=', F4.1//

\$16X, 'X', 6X, 'Y', 9X, 'C', 9X, 'GAMA', 8X, 'COS CUBE', 5X, 'FACTOR'/

\$14X,65('-'))

DO 7 Y=YMAX, YMIN, -INCY

DO 7 X=XMIN, XMAX, INCX

I1=X/H

Il=Y/H

CUBE=1/(((1+X1*X1+Y1*Y1))**(1.5))

 $= 1 + X1 \times X10 + Y1 \times Y1 ((1 + X10 \times X10) / (1 + X1 \times X10))$

D1=(1+X1*X1+Y1*Y1)*(1+X10**2+(Y1**2*((1+X10**2)/(1+X10*X1))**2)

D2=SQRT(D1)

ALFA1=ACOS(B/D2)

ALFA=((ALFA*180)/3.145926)

F = SQRT(1 + X10 * *2)

A1=ATAN((Y1*SQRT(1+X10**2))/(1+X10*X1))-ATAN(Y10/F)

A=((A1*180)/3.145926)

C1=ATAN ((TAN(ALFA1*SQRT(1+TAN(A1)*TAN(A1)))/TAN(A1+.00001))

 $C = ((C1 \times 180) / 3.145926)$

```
GAMA1=ATAN (SQRT ( (TAN (ALFA1)) **2*(1+(TAN (A1)) **2)+(TAN (A1)) **2))
```

GAMA=((GAMA1*180)/3.1415926)

IF ((A.LT.O).AND.(X.GT.XO)) C=180-C

IF ((A.LT.O).AND.(X.LT.XO)) C=180+C

IF ((A.GT.O).AND.(X.GT.XO)) C=360-C

IF ((A.GT.O).AND.(X.LT.XO)) C=C

FACTOR=CUBE*27/H**2

WRITE(3,200)X,Y,C,GAMA,CUBE,FACTOR

FORMAT(14X, 13, 4X, 13, 7X, F5.1, 6X, F5.1, 8X, F7.5, 5X, F7.4)

CONTINUE

ENDFILE(3)

CLOSE(3)

STOP

END

Reality etc. and the full humps of the sould be 2

[RESULTS]

		DISTANCES	IN	(m)
		ANGLES	IN	degree
		INTENSITY	IN	(cd/k lm)
		0.349	10.0	
		ILLUMINANCE	IN	(lux)

Results obtained by the computer program :

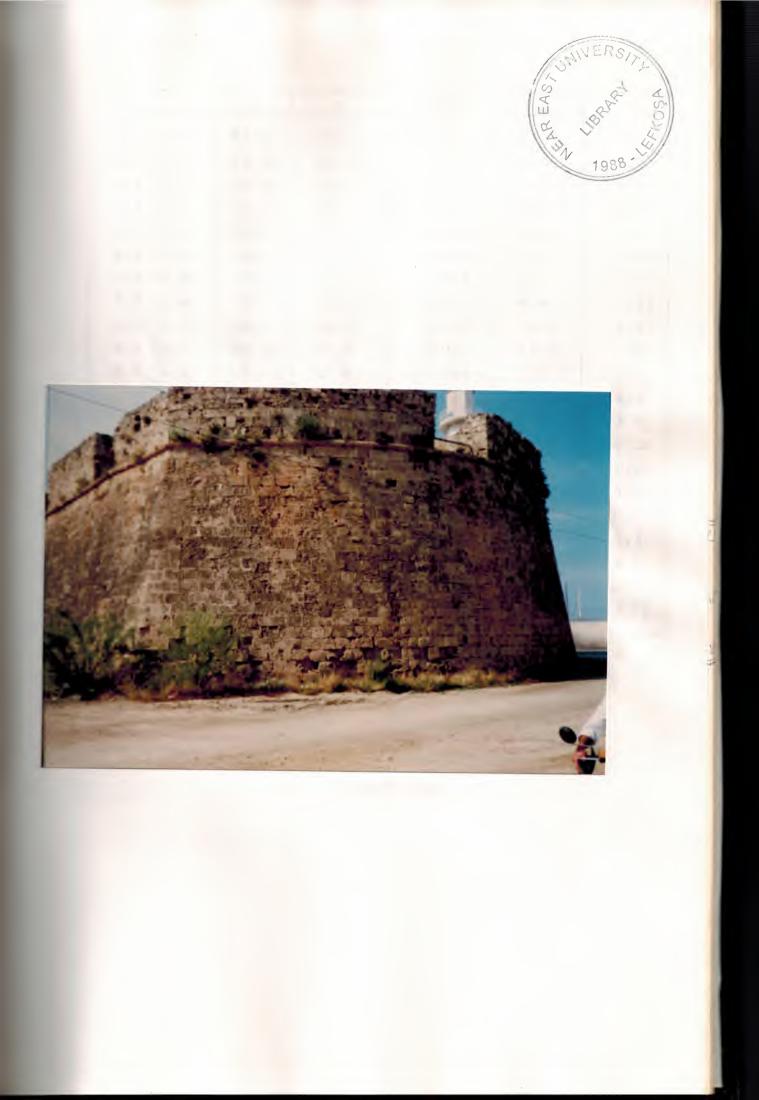
Distances in (m)

Angles in degrees

Light Intensity in (Cd /klm)

Illuminance in (lux) .

X0' = 0.0


Y0 =2.4

h=5

x'	y'	С	Y	$\cos^3 \theta$	I	E
0.0	2.0	180.0	45.58	0.8	55.0	82.72
0.0	4.0	180.0	28.72	0.476	323.5	289.5
0.0	6.0	180.0	17.19	0.262	460.0	226.6
0.0	8.0	180.0	9.4	0.149	590.0	165.3
0.0	10.0	180.0	3.95	0.089	592.7	99.2
0.0	12.0	0.0	0.0	0.0568	612.0	65.4
0.0	14.0	0.0	2.97	0.038	599.0	42.8
0.0	16.0	0.0	5.27	0.0265	584.0	29.1
0.4	0.4	152.5	49.0	0.66	78.0	96.8
0.4	0.8	147.0	33.17	0.414	316.3	246.2
0.4	1.2	139.0	22.26	0.239	44.0	200.4
0.4	1.6	127.5	15.2	0.14	527.0	138.7
0.4	2.0	111.0	10.9	0.085	569.2	90.95
0.4	2.4	90.0	8.75	0.055	583.0	60.3
0.4	2.8	68.9	8.21	0.037	568.2	39.5
0.4	3.2	52.4	8.6	0.026	560.1	14.6
0.8	0.4	133.9	55.8	0.414	55.0	42.8
0.8	0.8	127.56	42.0	0.30	165.5	93.34

400W (SON-T)

x'	Y'	С	y	cos ³ 0	I	Е
			31.76	0.185	303.6	105.6
0.8	1.2	120.0		0.116	409.7	89.34
0.8	1.6	111.0	24.78	0.075	505.2	71.23
0.8	2.0	100.9	20.0	0.075	588.1	55.3
0.8	2.4	90.0	17.1		585.6	37.43
0.8	2.8	97.1	15.34	0.034	566.7	25.6
0.8	3.2	68.95	14.4	0.024		24.3
1.2	0.4	122.65	62.13	0.239	5.4	
1.2	0.8	117.15	50.2	0.185	96.3	33.5
1.2	1.2	111.0	40.72	0.131	137.4	42.7
1.2	1.6	104.4	33.65	0.089	240.9	40.3
1.2	2.0	97.3	28.74	0.061	322.4	37.0
1.2	2.4	90.0	24.78	0.043	403.8	32.6
1.2	2.8	82.7	2.2	0.03	456.2	25.73
1.2	3.2	75.6	20.4	0.022	505.1	20.9
1.6	0.4	115.64	67.0	0.139	5.1	1.33
1.6	0.8	111.0	56.77	0.116	9.3	2.03
1.6	1.2	106.1	48.14	0.089	104.6	17.5
1.6	1.6	100.9	41.2	0.066	161.4	20.0
1.6	2.0	95.5	35.78	0.048	200.3	18.1
1.6	2.4	0.0	31.6	0.035	227.8	15.0
1.6	2.8	84.5	28.4	0.026	324.6	15.9
1.6	3.2	79.0	26.0	0.02	324.8	12.2
2.0	0.4	111.0	70.6	0.085	5.8	1.0
2.0	0.8	107.1	61.8	0.075	6.5	1.0
2.0	1.2	103.0	54.0	0.061	44.6	5.1
2.0	1.6	98.7	47.4	0.048	112.1	10.12
2.0	2.0	94.4	42.0	0.037	149.0	10.36
2.0	2.4	90.0	37.57	0.028	178.2	9.38
2.0	2.8	85.6	34.0	0.022	216.4	8.98
2.0	3.2	81.25	31.2	0.017	271.4	8.7
2.4	0.4	107.8	73.35	0.055	5.2	0.54
2.4	0.8	104.33	65.7	0.05	6.7	0.36
2.4	1.2	100.9	58.65	0.043	17.0	1.4

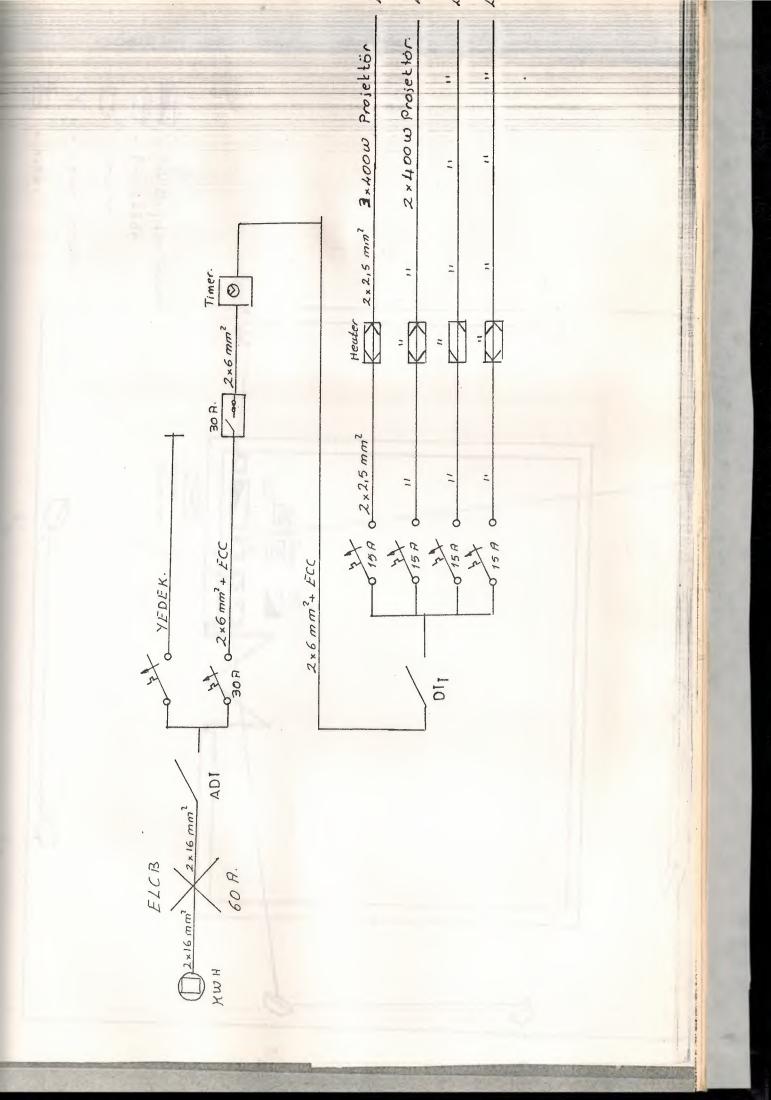
X'	Y'	С	z	$\cos^3\theta$	I	E
2.4	1.6	97.3	52.4	0.035	67.2	4.4
2.4	2.0	93.67	47.16	0.028	109.1	5.7
2.4	2.4	90.0	42.71	0.023	145.2	6.3
2.4	2.8	86.34	39.1	0.018	168.1	5.7
2.4	3.2	82.7	36.0	0.014	197.3	2.8
2.8	0.4	109.9	74.13	0.037	4.7	0.33
2.8	0.8	102.41	68.6	0.034	6.6	0.42
2.8	1.2	99.4	62.22	0.03	4.8	0.27
2.8	1.6	96.3	56.5	0.026	30.0	1.47
2.8	2.0	93.15	51.5	0.022	68.4	2.8
2.8	2.4	90.0	47.12	0.018	113.0	3.8
2.8	2.8	86.85	43.4	0.015	142.3	4.0
2.8	3.2	83.75	40.3	0.012	168.0	3.8
3.2	0.4	103.5	77.1	0.026	3.8	0.19
3.2	0.8	100.9	71.0	0.024	6.0	0.27
3.2	1.2	98.2	65.24	0.022	3.1	1.28
3.2	1.6	95.5	60.0	0.02	8.0	0.3
3.2	2.0	92.76	55.0	0.017	39.2	1.3
3.2	2.4	90.0	51.0	0.014	87.3	2.3
3.2	2.8	87.24	47.2	0.012	109.0	2.45
3.2	3.2	84.2	44.0	0.01	134.2	2.52

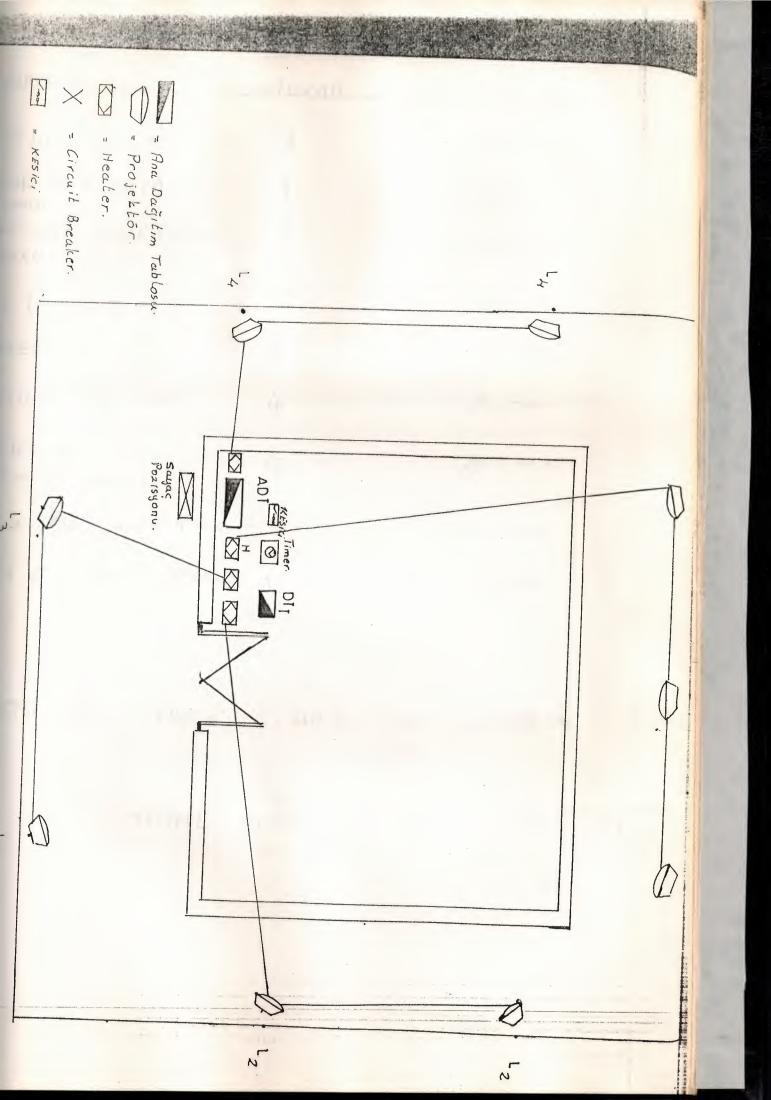
X0 =0 Y0 =1.9 h=5 SON-T 400W

X'	¥'	С	r	$\cos^3\theta$	I	Е
-1.6	0.4	113.6	64.85	0.139	6.2	1.62
-1.6	0.8	107.75	55.0	0.116	17.9	3.9
-1.6	1.2	101.5	47.0	0.089	109.0	18.24
-1.6	1.6	95.0	40.5	0.066	167.0	20.7
-1.6	2.0	88.32	35.6	0.048	198.0	17.87
-1.6	2.4	81.72	32.0	0.035	246.5	16.22
-1.6	2.8	75.33	29.3	0.026	303.7	14.85
-1.2	0.4	120.12	59.5	0.24	7.0	3.2
-1.2	0.8	113.12	48.0	0.19	114.5	41.2
-1.2	1.2	105.2	39.14	0.13	173.0	42.3
-1.2	1.6	96.65	32.71	0.09	243.3	41.2
-1.2	2.0	87.77	28.24	0.06	342.5	38.6
-1.2	2.4	79.0	25.27	0.043	399.0	32.3
-1.2	2.8	70.77	23.4	0.03	456.0	25.7
-0.8	0.4	131.1	52.34	0.414	82.0	63.8
-0.8	0.8	122.6	39.0	0.3	204.0	115.0
-0.8	1.2	112.2	29.5	0.185	320.0	111.3
-0.8	1.6	100.0	23.4	0.116	436.0	95.0
-0.8	2.0	86.7	19.7	0.075	508.2	71.7
-0.8	2.4	73.8	17.8	0.05	555.0	52.17
-0.8	2.8	62.4	17.1	0.034	540.6	34.6
-0.4	0.4	150.2	44.5	0.66	125.0	155.0
-0.4	0.8	142.0	29.0	0.414	363.0	282.5
-0.4	1.2	129.1	18.7	0.24	503.0	227.0
-0.4	1.6	109.2	12.7	0.14	573.0	151.0
-0.4	2.0	83.3	10.2	0.085	578.0	92.4
-0.4	2.4	59.8	10.14	0.055	556.0	57.5
-0.4	2.8	43.67	11.13	0.04	527.0	39.6
0.0	0.4	0.0	40.44	0.8	121.0	182.0
0.0	0.8	0.0	23.58	0.476	395.0	353.5
0.0	1.2	0.0	12.05	0.262	512.0	252.2
0.0	1.6	0.0	4.25	0.149	588.0	164.7

X'	¥'	С	r	cos ³ 0	I	Е
			1 0	0.089	608.0	101.7
0.0	2.0	0.0	1.2		583.0	62.5
0.0	2.4	0.0	5.14	0.057		39.3
0.0	2.8	0.0	8.1	0.038	550.0	
0.4	0.4	150.2	44.5	0.66	125.0	155.0
0.4	0.8	142.0	29.0	0.414	363.0	282.5
0.4	1.2	129.1	18.7	0.24	503.0	227.0
0.4	1.6	109.2	12.7	0.14	573.0	151.0
0.4	2.0	83.3	10.2	0.085	578.0	92.4
0.4	2.4	59.8	10.14	0.055	556.0	57.5
0.4	2.8	43.67	11.13	0.04	527.0	39.6
0.8	0.4	131.1	52.34	0.413	82.0	63.8
0.8	0.8	122.6	39.0	0.3	204.0	115.0
0.8	1.2	112.2	29.5	0.185	320.0	111.3
0.8	1.6	100.0	23.4	0.116	436.0	95.0
0.8	2.0	86.7	19.7	0.075	508.2	71.7
0.8	2.4	73.8	17.8	0.05	555.0	52.17
0.8	2.8	62.4	17.1	0.034	540.6	34.6
1.2	0.4	120.12	59.5	0.24	7.0	3.2
1.2	0.8	113.12	48.0	0.19	114.5	41.2
1.2	1.2	105.2	39.14	0.13	173.0	42.3
1.2	1.6	96.65	32.71	0.09	243.3	41.2
1.2	2.0	87.77	28.24	0.06	342.5	38.6
1.2	2.4	79.0	25.27	0.043	399.0	32.3
1.2	2.8	70.77	23.4	0.03	456.0	25.7
1.6	0.4	113.6	64.85	0.139	6.2	1.62
1.6	0.8	107.75	55.0	0.116	17.9	3.9
1.6	1.2	101.5	47.0	0.089	109.0	18.24
1.6	1.6	95.0	40.5	0.066	167.0	20.7
1.6	2.0	88.32	35.6	0.048	198.0	17.87
1.6	2.4	81.72	32.0	0.035	246.5	
		75.33	29.3	0.026	33.7	14.85
1.6	2.8	13.33	29.5	0.020	55.7	

X0'=0 Y0'=1.56 h=5 (SON-T 400W)





X'	¥ ′	С	ð	$\cos^3 \theta$	I	E
-0.4	0.4	147.4	40.3	0.66	197.1	244.6
-0.4	0.8	135.7	25.3	0.414	412.0	320.7
-0.4	1.2	115.8	16.0	0.239	560.2	251.7
-0.4	1.6	86.9	12.0	0.14	584.4	153.8
-0.4	2.0	59.3	11.8	0.085	553.2	88.4
-0.4	2.4	41.4	13.3	0.055	520.4	27.6
-0.8	0.4	128.0	49.0	0.414	102.3	79.6
-0.8	0.8	117.1	36.5	0.29	231.7	126.3
-0.8	1.2	103.6	28.0	0.184	345.3	120.1
-0.8	1.6	88.5	23.0	0.116	448.7	97.9
-0.8	2.0	73.5	20.6	0.075	501.2	70.7
-0.8	2.4	60.6	19.7	0.05	505.4	47.5
-1.2	0.4	117.5	57.0	0.24	20.3	9.2
-1.2	0.8	109.0	46.3	0.185	123.1	42.8
-1.2	1.2	99.2	38.1	0.131	178.4	43.9
-1.2	1.6	89.0	32.5	0.089	235.1	39.3
-1.2	2.0	78.8	28.8	0.061	377.2	38.7
-1.2	2.4	69.4	26.6	0.043	385.1	31.1
-1.6	0.4	111.0	63.0	0.139	6.8	1.8
-1.6	0.8	104.4	53.7	0.116	41.3	9.0
-1.6	1.2	97.0	46.1	0.089	118.2	19.8
-1.6	1.6	89.2	40.3	0.066	169.2	21.0
-1.6	2.0	81.6	36.0	0.048	198.8	17.9
-1.6	2.4	74.0	33.0	0.035	284.1	18.7
-2.0	0.4	107.4	67.3	0.085	6.4	1.0
-2.0	0.8	101.6	59.3	0.075	12.1	1.7
-2.0	1.2	95.5	52.3	0.061	67.5	7.7
-2.0	1.6	89.4	46.7	0.048	120.2	10.9
-2.0	2.0	83.0	42.2	0.037	148.3	10.3

X'	Y '	С	r	cos ³ θ	I	E
-2.0	2.4	73.3	38.7	0.028	183.1	9.6
-2.4	0.4	104.6	70.5	0.055	5.9	0.6
-2.4	0.8	99.7	63.6	0.050	3.1	0.3
-2.4	1.2	94.6	57.3	0.043	20.5	1.7
-2.4	1.6	89.5	52.0	0.035	71.2	4.7
-2.4	2.0	84.3	47.3	0.028	109.2	5.7
-2.4	2.4	79.4	43.6	0.023	139.8	6.1
-2.8	0.4	102.6	73.0	0.037	5.8	0.4
-2.8	0.8	98.3	66.8	0.034	4.2	0.3
-2.8	1.2	94.0	61.0	0.03	7.4	0.4
-2.8	1.6	89.6	56.0	0.026	34.2	1.7
-2.8	2.0	85.2	51.7	0.022	78.1	3.2
-2.8'	2.4	80.8	48.0	0.018	104.3	3.5
-3.2	0.4	101.1	75.0	0.026	4.9	0.2
-3.2	0.8	97.3	69.4	0.024	5.8	0.3
-3.2	1.2	93.5	64.2	0.022	5.1	0.2
-3.2	1.6	89.6	59.5	0.02	6.3	0.2
-3.2	2.0	85.8	55.3	0.017	39.8	1.3
-3.2	2.4	82.0	51.7	0.014	70.4	1.9
-3.6	0.4	100.0	76.5	0.019	4.6	0.16
-3.6	0.8	96.5	71.5	0.018	5.7	0.19
-3.6	1.2	93.1	66.7	0.017	5.8	0.19
-3.6	1.6	89.7	62.3	0.015	5.0	0.14
-3.6	2.0	86.3	58.4	0.013	12.1	0.3
-3.6	2.4	82.9	54.8	0.011	39.2	0.8

Cast	OF THE	PROJECT	
ERIAL	NOLE	VGTH	PRICE (TL)
AT BREAKER	1		820,000
WAY DISTRIBUTION	v 1		1,000,000
WAY DISTRIBUTION	~ 1		600,000
(CUTTER)	1		550,000
R	1	and says and	600,000
R SWITCH	4		800,000
TCR (400 W)	JD		2000000
2.5 mm2 pv	'c 1		300,000
6 min ² PVC	- 1		150,000

FOF LABOR 40% OF MATERIAL COST

TOTAL COST = 18,368,000 TL/

CONCLUSTION

The most important aim of this project is to improve my knowledge about the outdoor illumination is relevant for my educational studies and the latest improvment in flood lighting calculations was used during the establishment.

I paid attention to some factors ,during the calculation of the flood lighting ,such as the selection of the light source must sutisfy the illuminace needed , the color of light required , the area of the building , etc.... ,should be considered .

The light sources should be arranged so that illuminance must be sutisfied. The coefficient of regularity and reflection from walls of illuminated area will not effect the traffic or people who are working on the street

As aresult, this project is showing me how to organise things such that they lead to acceptable solutions . APPENDIX

Lorputar Attac Mehann Thu E. Sourin, Control Driving 200 - 102 Thursday - 120

ED FORMULAS IN PROJECT

$$A = Tan \left(\frac{-1}{1 + X^{2} + X^{2}} \right) - Tan \left(\frac{-1}{\sqrt{1 + X^{2}}} \right)$$

$$A = Tan \left(\frac{-1}{1 + X^{2} + X^{2}} \right) - Tan \left(\frac{-1}{\sqrt{1 + X^{2}}} \right)$$

$$\alpha = \cos \left[\frac{1 + X^{2} \times 0^{2} + Y^{2} (\frac{1 + X^{2} \times 0^{2}}{1 + X^{2} \times 0^{2}} \right] \frac{(1 + X^{2} \times 0^{2})^{2}}{(1 + X^{2} + Y^{2})(1 + X^{2} + Y^{2})^{2}} \frac{(1 + X^{2} \times 0^{2})^{2}}{(1 + X^{2} \times 0^{2})^{2}} \right]$$

$$B = Tan (Tan \propto J(1+Tan^2A))$$

$$A = Tan^{-1} \begin{bmatrix} Tan A \\ -J(1+Tan^2 \alpha (1+Tan^2 A)) \end{bmatrix}$$
$$-1 \begin{bmatrix} Tan \alpha J(1+Tan^2 A) \\ -1 \end{bmatrix}$$
$$C = Tan^{-1} \begin{bmatrix} Tan \alpha J(1+Tan^2 A) \\ -1 \end{bmatrix}$$

Tan A

$$y = Tan \quad (-i(Tan^2 \alpha (1+Tan^2 A)+Tan^2 A))$$

$$3 \qquad 1$$

$$\cos \theta = \frac{1}{1.5}$$

$$\cos \theta = \frac{1}{5}$$

PS LIGHTING B.V. ing Design and Engineerin er Aided Lighting Design	nd Centre	Computer Ald DATABASE 2.	00 Spring ting B.V.	Design	S
			- May une per une met une san das das autores et en anno el consequencies de facil terreteris e magnetaria anna entre en anno el consequencies de facil terreteris e magnetaria anna entre entre entre entre entre entre entre en		>
aire (INR) number	: 73				22
ring code aire type type	: LVO 4147 : HNF 003-W : SONT 400W				5
lux Flamps per luminaire dissipation	: 47.00 : 1 : 431.00	kluman Watt	н. -		
light output ratio and light output ratio	: 67 : 67	¥ V.,			
actor (Road lighting).	0.00	•	4 1	•	7
um sp <mark>acing/height ratio</mark>	Lengthwise : *	crosswise *		, , , ,	
aire sizes (nm)	Length : O	width o	H0 0	- H90 0	
try code	: 4				1
A 447 141 144	N1 N2 : 62 99	N3 N4 100 100	•		

2 2 -Date 1990700707 PHILIPS LIGHTING B.V. PHILIPS LIGHTING B.V. | Computer Aided Lighting Design Lighting Design and Engineering Centre | DATABASE 2.00 Spring 1990 Computer Aided Lighting Design | Philips Lighting B.V. 0 5 O uminaire (INR) number : 73) leasuring code : LVO 4147 uminaire type : HNF 003-W amo type : SONT 400W 2 I SONT 400W amp typo Ĵ I-Table * ----0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 +----> C-plane. 1. 3 3

87.5 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · 0 · · 0 · · 0 · · 0 • 0. 0

C C 0. 0 0

. 65		
ing 1990		12 612 00 600 80 589 60 589 60 589 60 589 60 510 80 510 80 510 80 477 50 450 80 427 90 410 91 402 55 387 24 360 92 325 14 237 98 104 97 159 98 104 97 56 90 90 97 10 4 5 6 10 21 7 10 21 7 10 4 5 6 2 1 1 1 1 1 1 1 1 1 1 1 1
d Lighting D Spring Ing B.V.		
SE 2,1 s Light		$\begin{array}{c} 6 & 1 \\ 6 & 0 \\ 2 \\ 5 & 0 \\ 5 \\ 5 & 0 \\ 4 \\ 5 & 0 \\ 5 \\ 0 \\ 1 \\ 5 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$
Philip		6 12 5 9 9 5 8 6 5 8 5 5 9 7 4 8 5 4 5 7 4 2 6 4 0 1 3 8 3 3 5 0 3 0 6 2 6 4 2 2 1 1 7 8 1 3 3 0 9 6 9 4 9 3 7 2 5 1 6 1 0 8 5 3 2 2 1 1
cre		612 500 565 533 508 400 423 399 361 355 324 292 254 214 168 127 89 63 49 35 20 10 7 4
	: 73 : L.VO : HNE : SONT	612 601 509 565 536 477 450 427 410 402 327 325 237 194 153 119 00 70 56 411 211 10 5 22 32 104 153 119 00 70 56 411 211 10 5 221 10 10 5 221 10 10 5 211 10 10 5 211 10
noerir Design		612 602 590 564 539 515 409 471 462 446 388 362 320 287 246 208
d Engi	nber	612 603 587 566 526 526 520 511 486 417 381 344 308 273 233 196 166 141 118 99 82 68 44 12
sin an	,	6 2 6 () 4 5 () 9 5 () 9 5 () 6 5 () 9 5 () 6 5 4 () 6 () 6 5 3 7
S LIGHT ng Des er Aide	re (IN ng cod re typ pe le *	$\begin{array}{c} 1 & 1 & 0 \\ 6 & 1 & 2 \\ 6 & 0 & 6 \\ 5 & 0 & 9 \\ 5 & 7 & 4 \\ 5 & 7 & 3 \\ 5 & 7 & 3 \\ 5 & 7 & 3 \\ 5 & 7 & 3 \\ 5 & 5 & 2 \\ 5 & 0 & 3 & 4 \\ 4 & 0 & 8 \\ 4 & 0 & 8 \\ 4 & 0 & 8 \\ 1 & 0 & 3 \\ 1 & 1 & 6 \\ 9 & 2 \\ 4 & 5 \\ 1 & 0 \\ 9 \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$

ngle

for a new second second

ł

e (INR) number g code g typs e	gineering Centre DATABASE 3 Design Philips Lic : 73 : LVO 4.14.7 : HNF 003-W : SONT 4.00W 250.0 260.0 270.0 200.0 200.0	, 1997 1997 1997 1997 1997 1997 1997 199	ai i u i uav i us
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Uint Dannun Cadium Inna

o of the followtal halido lamp sercury vapour or 400 W high-

d rear cover: rugged all-cast aluminium construction low copper-content for excellent corrosion-resis-in constal and industrial areas versions, as different reflectors are available:

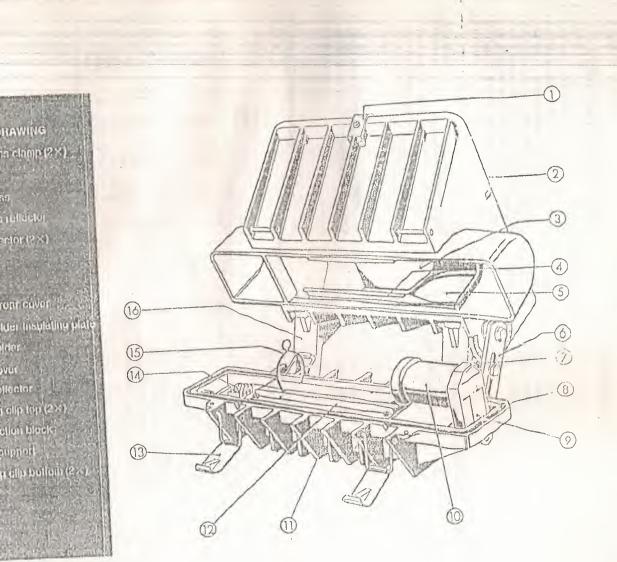
HPI/T 375 W		
and HP/T 400 W 2 × 7° 2 × 27°	SON/T 250 W 2 × 7° 2 × 27°	80N/T 400 V 2×7° 2×27°

aluminium reflectors for accurate beam control comont is effected by removing the rear-cover, thus servicing erate stainless steet clips on rear-cover; to be closed of opened by using a simple tool. The floodlight can-lly opened by unauthorized persons.

-Cast-on beam-aiming sight and protractor scale for quick day

light adjustment - Ozone-realstant ethylene-propylane rubber gasket for jetproc and dustproof sealing of front glass; 2 oxtra safety etamps.

APPLICATIONS

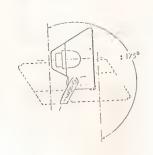

Sports grounds Floodlight of buildings Marshalling yards Car parks Skaling rinks Michaest lighting

- High-mast lighting
 Sports halls
 Shipyards

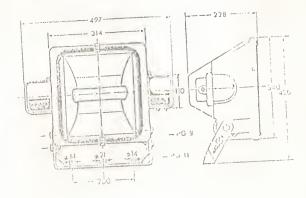
		public sector of second sectors at a second s	CONTRACTOR CONTRACTOR STATES AND TREES AND T	18183.d+ ⊂ 15.c+21.Pub 325.b+20 in norman dedectore	a saila salamatan sel kanar a
ORDERING DATA	AND ALL MILL TALL STAR STAR	CATURA PARTER INTO A PROPERTY AND A PARTY AND A	Cidoring number*	·	
		For humps	Harrow-boain lype	W.do-boam 1, (.v	V/orght Ng
		1× SON/T 250 W	9112702300	01/2702:301.	9,10
		1× 11P/T 450 W	9112 762 410	9112702421	9,10
	HHF 603	1× SCHIT 400 11 UL	9112702422	9112 702 423	5,10
		X SOUT NOT OF	UT12702 426		and a second of the face bases

the standard in the standard is not the standard protocol in the standard · Complete floodlight.

FLOODLIGHT FOR METAL HALIDE LAMPS, MERCURY VAPOUR LAMPS OR HIGH-PRESSURE SODIUM LAMPS


OOL

lass is provided with type of gaskot. To o glass, a special ertion tool can be sisting of a handle


660

with three romovable clips to suit the different fleedlights. Ordering number for complete set 9119 260 005..

ADJUSTMENT POSSIBILITIES

DILIENSIONS

	1000	2:00 2:00 3:157/360 at 3:10 3:10/360 at 3:60 4:00 6:00 6:00	50 750 750	Varuge N	T ai	3. Caps GES (E40) ES (E2 R12.5s silver pla ceramic hood.	2. Vibration GEC Solarcolour I withstand conditu extreme cases. h recommended	1. Ambient Temperature The light output of the l adversely affected in the 100°C. However, in the the guide lines of IEC66 so that radiant heat rays reflected by the luminai	HIGH PRESS
	200 34 110 15		100 15 10 100 15 10 100 15 10	Nominal Supply Voltage 2 Current	teristics	Caps GES (E40) ES (E27) Nickel plated brass R12.5s silver plated copper surrounded by a ceramic hood.	Vibration GEC Solarcolour lamps are designed to withstand conditions of severe vibration. In withstand conditions of severe vibration. In extreme cases, however, vertical cap-up is recommended.	Ambient Temperature The light output of the lamp will not be adversely affected in the range -40°C to adversely affected in the range -40°C to adversely affected in the range of lowed 100°C. However, in the design of lowing 100°C. However, in the design of lowed the guide lines of IEC662 should be followed the guide lines of IEC662 should be followed to the followed the lowing the lower and the reflected by the lowing the lower of the lower of the reflected by the lowing the lower of the lower of the lower of the reflected by the lower of the lo	HIGH PRESSURE SODIUM
	10.3 Extension periods of use when the point volucion is more than 5% above the point nationaly sector signational shortening of lamp and control guar life.		076 Lumens + 18% - 4% 10 Arc current + 3% - 4% 10 Arc current + 20% - 22% 10 Arc current + 20% - 22%	0.0	Percent change at 110% and 90% of	 Bun-up time 82% Light output in 3 minutes. 100% Light output in 6 minutes. 	 5. Hot Restrike time (a) Lamps with electronic starter - 30-60 seconds (b) Lamps with internal starter - 15-20 minutes 	4. Outer builds SON-E. SON-T SOW Remainder SON-L SON-L	
Colour rendering 23 25 70 Indices Ra	Standard Plus De Live Internative	100- 0 200 500 600 700 800 300 400 500 600 700 800 U.V.A. V. B. G. V. R. 1.R. Wyvelength - nanometros	200- 200- 150-	400-	SON-T and SONP-T Spectral power distribution per 1000 lumens mW/5nm	60 2000 4000 6000 8000 Emin	100 100 80 80	100 2000 4000 600 Burnie neurs	tra typicat lumen maintenance
50	approarty officialization boars Sphere to perform the time.	SOO 600 700 800 B G Y. R In Wavelength - nanometers	7		Spectral power distribution per 1000 mens	6 Krist		2000 - 20	HIGH PRESSURE SODIUM

Chromaticity x 0.525 0.534 0.506

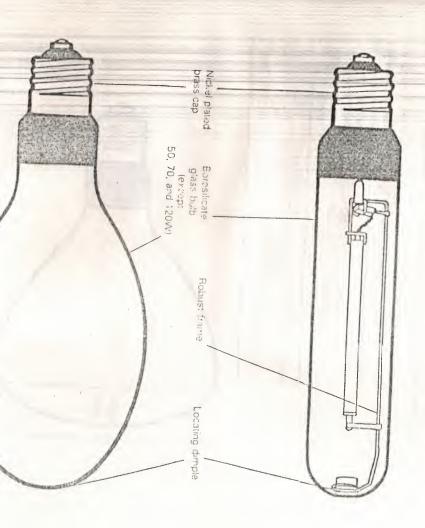
120

representation of the second s

SOLARCOLOUR

High Pressure Sodium Lamps

HIGH PRESSURE SODIUM (SON)


SOLARCOLOUR

The most extensive range of high pressure sodium lamps available from one manufacturer.

Solarcolour lamps are available in four shapes each with its own function, for use in

There are two colours (Standard and De Luxe). De Luxe for areas where better colour rendering is required, e.g. offices and shops etc.

equivalent, but maintains its light output better, and in addition Plus lamps last longer. The unique Plus range now not only offers between 10 to 20% more light than its standard

Clear Tubular SON-T High Pressure Sodium Lanips

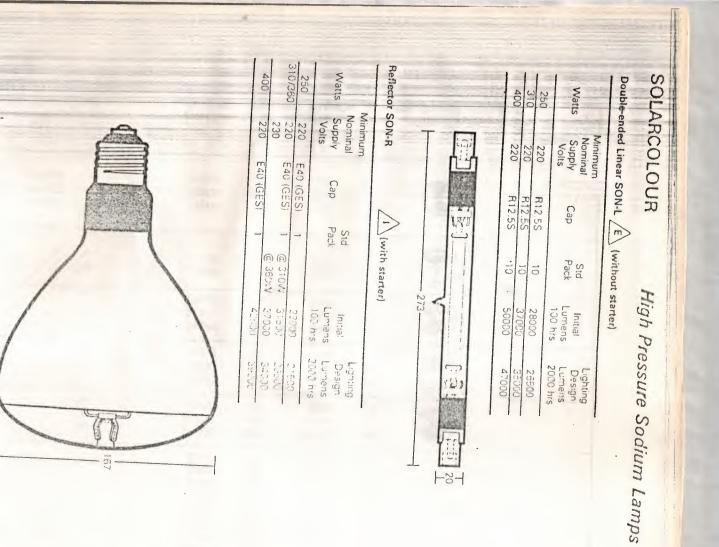
C02/015 1000 Watts 400 600 150 250 120 200 Minimum Nominal Supply Volts 080 080 220 220 220 230 520 520 E40 (GES) E40 (15ES) E40 IGES E40 (GEG) E40 (GES E40 IGES E27 (ES) Cap Pack iii D õ ö 5 @ 350-V @ 350-V 135000 Initial Lumens 100 hrs 37000 23: 0 01061 Lumens 2000 rirs Lighting 4000 650 4.50 6500 10000 2700

Clear Tubular SON-T / / Invitt

	152000	31	£40 (6±S)	077	00
	00522	5:	E40 IGES.	1077	1000
0.7 480. 1	5000	10	121010121	212	
	28.00	10	E40 (GES)	077	A-1-0
00 1521	0009 t	10	E40 (GES)	220	100

220	Elliptical Diffused SON-E	0.7	2.50	0.07360 220		2.2	212	1. L.O	0.77	220
E40 (GES) E40 (GES)	F	E40 (GES)		ELO (GES)	Ed 7 VGES.	E40 %E8.	SEE/ Ora	E27 (ES)	E27 (ES)	(S3) 433
53.5	(without starter)	<i>c.</i>	A. 635 3	10 @ 31012	1	5	- 1	10	15	07
19750		43000	42325	36000	17032	15373		10:02	0,009	3500
11501		40500	1000-1	51.10	1357			10000	5553	018

TUL


SON-T. SOUP-T. SONDL-T

1

SOLARCOLOUR

This international common a

SON-E, SOMPLE,

High Pressure Sodium Lamps

SOLARCOLOUR

•••

•

SOLARCOLOUR PLUS LAMPS

standard high pressure sodium lamps of the same wattage Longer life and in provestions in namenance are also featured of these second generation SON lamps. Suitable evitorial structure in Between 10 and 20% fewer luminaires would be required when using Solarcolour Plus, complete the

Clear Tubular SONP-T (E) (without starter)

250 370 400	Walts 150
220 220 220	Minimum Nominat Supply Volts
E10 (GES) E10 (GES)	
0000	Std Pack
17322 3200 47000	Initial Lumens 100 hrs
	Ligning Des pr Linnong 2006 ms

Elliptical Diffused SONP-E (without starter)

	310	250	150
077	122	220	000
Ead (Ges)	E-10 1025)	E-10 (015)	
10			
20.10	5 T 10	0.531	
47 C	3.0.0	12	

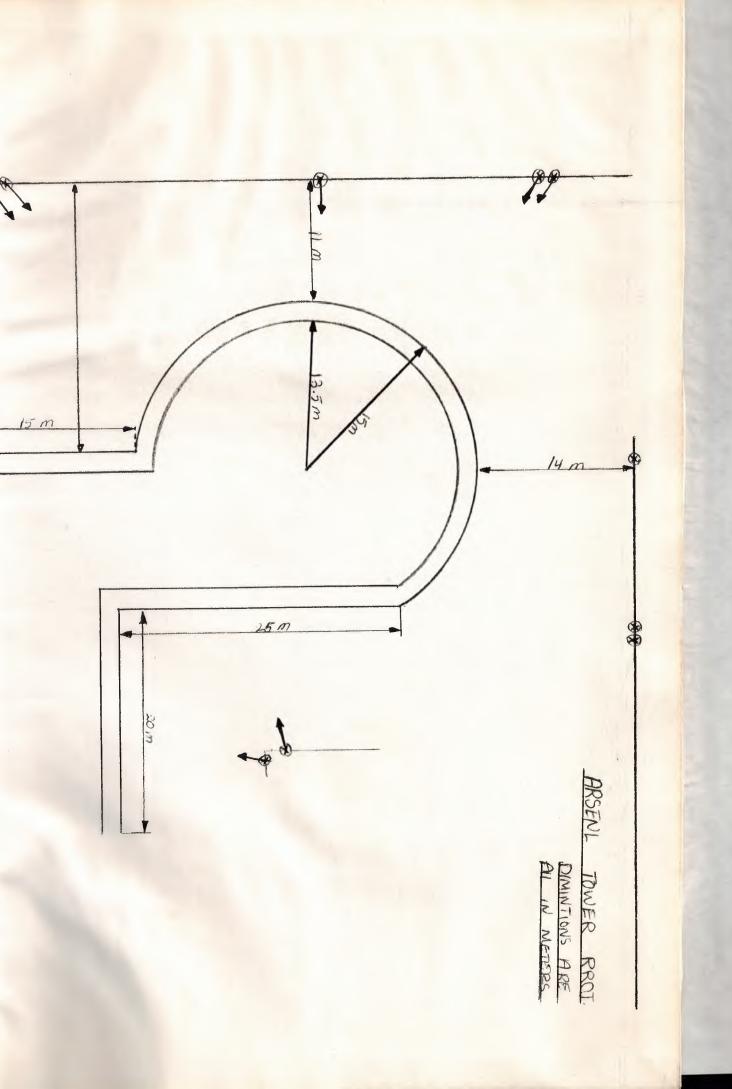
SOLARCOLOUR DE LUXE LAMPS

of the spectrum Insproved colour rendering is the main benefit of De Luve lenges with increase fuction pressure compared with standard lamps, some of the vallow rad anonis dow enter live and the instantiation of the will be on us

Watts	Clear Tub
Nominal Supply Volts	Clear Tubular SONDL-T
Cap	E
Std	(without starter)
Initial Lumens	arter)

4:51

140 (uts)


150

220 2.20

> E4C (GES) 111111

5 Ľ

> 2002 h-s Des gn Luna Cutton?

