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ABSTRACT 

Increasing complexity of technological processes, uncertainty of environment leeds to 

complication the model of control system. For these processes controller developing on the 

base of traditional approach are very complex and their implementation is difficult. In 

addition frequently changing environmental conditions of the technological processes force 

to apply artificial intelligence methodologies with selftraining and adapting ability. 

One of these technology that allow to solve above mentioned problem is neural network, 
that has such property as parallel processing, vitality, self-training capability. These 

abilities of artificial neural network allow represent non-linear processes, make control 

system a powerful tool for process modelling and control. 

In this thesis the development of neural controller for control of dynamic plant is 

considered. The structures of industrial neural controllers for technological processes 

control are represented. The functions of main blocks of neural control system and learning 

methods are discussed. The main block of neural controllers is neural network. The 

different models of neurons, which organize neural networks, structure of neural networks 

and their learning algorithms are described. The development of the control system and its 

learning algorithms are represented. The simulation of intellectual neural control system for 

technological process is given. 
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INTRODUCTION 

The model of control system becomes very complicated by increasing complexity of the 

technological processes, uncertainty of an environment where technological processes 

take place. For these object the control algorithm developing on base of traditional 

approach are complex and their implementations are difficult. In addition, the frequently 

changing of the environmental conditions in the form of unusually disturbance forces to 

apply artificial intelligence methodologies with self-training and adapting capability. 

One of these technologies is a neural network. Application of the neural network for 

constructing control system allows us to increase their computation speed, validity, self 

training and adapting capability. 

Neural networks, especially in nonlinear system identification and control applications, 

are typically considered to be blackboxes which are difficult to analyze and understand 

mathematically. Due to this reason, an indepth mathematical analysis offering insight 

into the different neural network transformation layers based on a theoretical 

transformation scheme is desired, but up to now neither available nor known. In 

previous works it has been shown how proven engineering methods such as 

dimensional analysis and the Laplace transform may be used to construct a neural 

network controller topology for time invariant systems. Using the knowledge of neural 

correspondencies of these two classical methods, the internal nodes of the network 

could also be successfully interpreted after training. 

The objective of this research is to produce an interactive procedure for control system 

modeling, analysis, synthesis, and design by integrating available classical as well as 

modern tools such as fuzzy logic, and neural networks. The problem of model free 

controller design addressed. One approach is to analyze controller design for systems 

with different nonlinearities and develop a criterion for selecting the appropriate 

controller. For an unknown system, system classification and identify the system type 

carried out. Then a controller will be selected based on the analysis. The controller 

should be capable of self adjustment if the system parameters change. 
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The application of neural networks has attracted significant attention in several 

disciplines, such as signal processing, identification and control. The success of neural 

networks is mainly attributed to their uniqe features: 

(1) Parallel structures with distributed storage and processing of massive amounts of 

information. 

(2) Leaming ability made possible by adjusting the network interconnection weights 

and biases based on certain learning algorithms. 

The first feature enables neural networks to process large amounts of dimensional 

information in real-time (e.g. matrix computations), hundreds of times faster than the 

numerically serial computation performed by a computer. The implication of the second 

feature is that the nonlinear dynamics of a system can be learned and identified directly 

by an artificial neural network. The network can also adapt to changes in the 

environment and make decisions despite uncertainty in operating conditions. 

Recent advances in a variety of technologies and applications call for improved 

performance and reliability, while exacerbating the complexity and uncertainty of 

systems and their surroundings. In many instances, the operation of systems and devices 

can be modified and, possibly, optimized by the intervention of a control system, that is, 

an additional mechanism comprised of several components, such as sensors, computers, 

and actuators that act upon an available input. 

The dynamic characteristics and physical properties of the system to be controlled (the 

plant) can be exploited to design automatic control systems. Some of the main 

difficulties to be overcome by the designer are the nonlinear plant dynamics and the 

uncertainties caused by differences between actual and assumed dynamic models. A 

fixed control design whose performance remains satisfactory in the presence of 

uncertainty is said to be robust. A controller whose parameters vary on line during 

operation is considered to be adaptive and can be expected to accommodate for a higher 

degree of uncertainty than a fixed control structure. If it is capable of adapting to system 
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failures that are reflected by the state of the plant, then the controller also is 

reconfigurable. 

To develop a novel approach for the design of adaptive control systems that are both 

robust and reconfigurable, and that apply to plants modeled by nonlinear ordinary 

differential equations. The potential brought about by using postmodern computational 

paradigms, such as neural networks, in conjunction with conventional control 

techniques has been recognized. In some cases, a global controller was obtained by 

training a neural network to approximate the linear gains provided by linear 

multivariable control. 

The aim of the thesis is the development of neural controller for control of technological 

processes. Thesis consists of introduction, four chapters and conclusion. 

In chapter one a review on neural controllers for technological process control is 

discussed. Introductory remarks on classical, adaptive, non-linear and neural controls 

are given. The differences of control system based on traditional controllers and neural 

controller are discussed. A number of research works about neural control systems are 

briefly described. Problem statement of neural control system is represented. 

In chapter two most common types of industrial neural controllers are given. The 

architecture of neural network based control systems, particularly the structures of the 

PD, PI, and PID-like neural controllers are presented. 

In chapter three, Neural Network structure, its mathematical model and learning of 

neural control system are represented. The description of backpropagation learning is 

given. Common transfer functions, supervised and unsupervised learning are explained 

in details, The Backpropagation algorithm is used for, neural control system learning. 
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In final chapter the development of neural control system is described. Synthesis of 

direct neural controller are illustrated, analysis of obtained result are represented. 

Simulations of neural system have been performed. 

Conclusion contains the important results obtained from the thesis. 
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CHAPTER ONE : A REVIEW ON NEURAL CONTROLLERS FOR 

TECHNOLOGICAL PROCESS CONTROL 

1.1 Overview 
This chapter describes a brief introduction about application of neural networks m 

control systems. The characteristics of classical control are given. 

Neural Network application of control systems are described. Breif analysis of each 

research work is given. The main steps for the development of neural network control 

system are described. 

1.2 Neural correspondencies to classical control theory 

Classical Control is based on the use of transfer functions to represent linear differential 

equations. The classical methods are, however, not readily generalized to multivariable 

plants, and they do not handle the problem of simultaneously achieving good 

performance against disturbances as well as robustness against model uncertainties. 

Classical control methods enabled the systematic design of early stability augmentation 

systems, while modem control and robust multi-variable control are critical in all of 

today's modem flight systems 

Basic used classic controllers in industries are P (proportional), PD (proportional 

derivative), PI (proportional-integral) and PID (proportional-integral) is a simple 

general-purpose automatic controller that is useful for controlling simple processes. 

Proportional -Integral-Derivative (PID) controllers are the most widely used controllers 

in industries today 90% controllers in industries are PID or PID type of controllers. 

However, PID has significant limitations: 

1. PID works for the process that is basically linear and time-invariant and cannot 

effectively control complex processes that are nonlinear, time-variant, coupled, 

and have large time delays, majors disturbances, and uncertainties. Industrial 
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processes with changing fuels and operating conditions are complex processes 

for which PID control is insufficient. 

2. PID parameters have to be turned properly. If the process dynamics vary due to 

fuel changes or load changes, PID needs to be re-turned. Tuning PID is often a 

frustrating and time-consuming experience. 

3. PID is a fixed controller, which cannot be used as the the core for a smart 

control system. 

To avoid from these deficiencies, the artificial intelligence ideas are used for 

constructing controllers, one of them is NN (neural network). 

Neural Control is the main interest in neural networks is currently concentrated on the 

use in adaptive and nonlinear control problems. The need for NNs arises when dealing 

with non-linear systems for which the linear controllers and models do not satisfy and 

the use of structures provided by classical control theory seems a straightforward 

strategy. 

Higher demands on the efficiency of processes and technical equipment have introduced 

a number of applications where classical tuning methods are not sufficient for good 

performance. At the same time, the availability of inexpensive computing power has 

made the application of more complex controllers feasible in practice. This 

development has given rise to a number of new highly challenging application areas for 

control. In order to give an appreciation of the type of applications involved. 

Neural networks' ability to approximate unknown nonlinear mappings with high 

dimensional input spaces and their potential for on-line learning make them excellent 

candidates for use in adaptive control systems. Extensive numerical studies have shown 

that they are capable of dealing with those difficulties typically associated with complex 

control applications, such as nonlinearity and uncertainty. However, practical 

applications also call for a better understanding of the theoretical principles involved. In 

particular, there is no simple way to apply the insights afforded by classical control 

design methods to the specification and preliminary design of neural network 

controllers. 
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Many engineering solutions are tailored to suit linear problems. Generally linear 

systems pose therefore no unsurmountable problems. In the last years neural networks 

have mainly been used to model nonlinear systems in control. ANNs (artificial neural 

networks) can find simple suboptimal solutions to control problems and can be applied 

to systems where classical approaches based on system linearization do not work. Yet, 

ANNs lack methods for determining control stability or the possibility to interpret the 

results analytically. Various approaches and applications of neural control exist in the 

literature. 

Neural control (as well as fuzzy control) was developed in part as a reaction by 

practitioners to the perceived excessive mathematical intensity and formalism of 

"classical" control. Although neural control techniques have been inappropriately used 

in the past, the field of neural control is now starting to mature. 

Classical control theory utilizes a number of engineering principles that could be or are 

partly already applied to neural control. Preliminary studies done have concentrated on 

neural correspondences of engineering principles used in control and how these 

principles could be coded into a neural network scheme. It is found that some 

realizations are clearly straightforward whereas others require more sophisticated 

procedures which can still be improved. 

In the following some of these principles will be explained in brief. Naturally, this list is 

far from being complete and should only indicate that neural correspondencies to 

classical engineering principles exist due to the equivalence between a neural topology 

and a mathematical formulation. These engineering principles are: 

• Dimensional analysis. 

• The Laplace transform can be used to transform linear differential equations into 

algebraic equations and though is helpful for the analysis of dynamic systems. It is 

found that this transformation scheme can be transferred to a neural topology. However, 

the Laplace transform is only applicable to linear systems. 
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input-output linearization scheme has already been applied to neural control. The basic 

is to identify a feedback which linearizes nonlinear behavior of the system. This way a 

can be constructed which can be controlled like a linear system by using the standard 

cb:ssical approaches. 

onsequent combination of the above three principles results in a network with 

fined layers that do some sort of data pre- and post-processing for a core network that 

still be regarded as a black-box and which is the only part to be learned. 

... e 1.1 shows exemplary a schematic diagram of this neural structure. It can be described 

etwork with a butterry topology which indicates that the information processed by the 

network is smaller than the original given data due to an intelligent selection of a data 

formation sequence. The modular neural network shown in Figure 1.1 consists of the Pi 

form layers (TI and its inverse n-1), the Laplace layers (L and its inverse L-1), and the 

ut-output linearization layers (I/0) that encapsulate a core neural network. It should be 

ed that this structure is not a standard feed-forward network, because the Pi-transform uses 

ortcuts from the first to the last layer and the linearization requires feedback connections. 

· s structure is found to be suitable for the identification of a dynamic system, which is a 

is for many neural control applications. 

X --+ 

Figure 1.1. Modular neural representation of a nonlinear dynamic system. The buttery 

iagrarn: a core network encapsulated by transformation layers. From the inside: core neural 

work as black-box, input-output linearization layer (I/0), Laplace transform layer, and Pi- 

form layer. 
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Some thoughts should be given to common concepts in control such as the PID 

controller and the method of gain scheduling. This method provides a linear controller 

for several linearized states or operational points of a system. It is straightforward to 

implement gain scheduling in neural networks because the feedback gain coefficient 

matrices usually are represented as look-up-tables and could as well be stored in neural 

networks. Even complex designs such as LQR (Linear Quadratic Regulation) or LQG 

(Linear Quadratic Gaussian) controllers can be implemented most readily into a neural 

control scheme. 

1.3 State of Application Problem of Neural Network Controllers For 

Technological processes control 

Control theory offers powerful tools from linear algebra to be used for system analysis 

and control as long as the system behaves linearly. Assumptions of system linearity 

have been made for this reason to develop a control theory on a solid mathematical 

basis. Control design from system linearization is a widely applied technique in 

industry. However, in reality most systems are nonlinear. It is the ability of neural 

networks to model nonlinear systems which is the feature most readily exploited in the 

synthesis of nonlinear controllers. 

Dynamic systems are in general complex and nonlinear. Some systems are simplified in 

order to be modeled easily while there are systems which are difficult to model such as 

a process planning or product control. Conventional control methods are in general 

based on mathematical models that describe the system response as a function of its 

inputs. Even if a relatively accurate model of a dynamic system can be developed, it is 

often too complex to be used in controller development. Thus, model free controllers, 

specifically PIDs are widely used in practice. The usual approach to optimize the 

system performance controlled by a PID is to tune the PID coefficients. This approach 

may be acceptable as long as the system parameters are not varying or do not display 

nonlinearities. Some robust control methods, such as H-infinity, have been developed to 

deal with parametric uncertainties and disturbances. But they still require a low order of 

the system and knowledge of the disturbance variations, and they are computationally 
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demanding. An alternative approach to control complex, nonlinear, and ill-defined 

systems is the use of modem tools such as fuzzy logic, and neural networks 

The first application of neural networks to control systems was developed in the mid- 

1980s. Models of dynamic systems and their inverses have immediate utility in control. 

In the literature on neural networks, architectures for the control and indentification of 

a large number of control structures have been proposed and used [l]. Some of the well 

established and well-analyzed structures which have been applied in guidance and 

control designs are described below. Note that some network schemes have not been 

applied in this field but do possess potential are also introduced in the follows. 

Neural control techniques have successfully been applied to problems in robotics and 

other highly nonlinear systems. A growing number of different neural control schemes 

exist that are fitted only for certain problems. However, the usage of neural networks in 

nonlinear control does not make sense per se. There are still many open research topics, 

such as the characterization of theoretical properties such as stability, controllability and 

observability or even the system identifiability. 

It is not intended to give a survey on neural control methods here, since many of the 

basic principles are shown in the reports by Hunt [2] or Narendra [1]. The idea of a 

neural network structural compiler originates from the (re- )use of existing control 

theory applications, which intends the construction of mathematical controllers 

designed after classical theories and their representation in the form of neural networks. 

Therefore it is claimed that it will be possible to design neural controllers at least as 

good as the classical ones. However, by providing the network with additional degrees 

of freedom and applying training algorithms common in neural network computation, 

even an improved adaption could be achieved. Adaptivity is an important feature 

because the real world environment of the controller can be expected to be different 

from the simplified linearized model used for the controller design. 

Analogous approaches to the idea promoted here already exist in techniques 

summarized under the term of intelligent control which represents an attempt to bring 
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together artificial intelligence techniques and control theory. Controllers are put 

together from predefines components in a structured design approach with a knowledge 

based expert system as integration tool. 

This is realized for instance in the neuro-fuzzy control scheme. A structure is provided 

by the fuzzy logic approach which builds up control laws from linguistic rules. Then the 

scheme is implemented in a neural network. The structure is determined after a simple 

algorithm from modules. Finally, the learning ability of the neural network is used to 

adapt the controller to the specific control situation by learning the controller's 

parameter values. 

There are number of research and work about development control system on the base 

of neural networks: 

In [3], classical and neural control systems are synthesized to combine the most 

effective elements of old and new design concepts with the promise of producing better 

control systems. The novel approach to nonlinear control design retains the 

characteristics of stability and robustness of classical, linear control laws, while 

capitalizing on the broader capabilities of a so-called adaptive critic neural network. 

First, the neural control system's architecture and parameters are determined from the 

initial specification of the control law by solving algebraic linear systems of equations 

during a so-called pretraining phase. Secondly, the neural parameters are modified 

during an on-line training phase to account for uncertainties that were not captured in 

the linearizations, such as nonlinear effects, control failures, and parameter variations. 

In [4], the development of neural controllers for control of dynamic plants by using 

recurrent neural network is considered. The structure and learning algorithm of the 

recurrent neural network are described. Using learning algorithm and desired time 

response characteristics of the system the synthesis of neural controller for 

technological process control is carried out. 

Also using fuzzy models of the control object and desired time response characteristic 

of system the synthesis of fuzzy neural controller is carried out. The learning of fuzzy 
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neural controller is performed by using ex - level procedure and interval arithmetic. The 

simulation of fuzzy control system is performed and result of simulation are described. 

In [ 5] provided a quick overview of neural networks and to explain how they can be 

used in control systems. Then introduced the multilayer perceptron neural network and 

describe how it can be used for function approximation. 

The backpropagation algorithm (including its variations) is the principal procedure for 

training multilayer perceptrons; it is briefly described here. Care must be taken, when 

training perceptron networks, to ensure that they do not overfit the training data and 

then fail to generalize well in new situations. Several techniques for improving 

generalization are discussed. Three control architectures are presented: model reference 

adaptive control, model predictive control, and feedback linearization control. These 

controllers demonstrate the variety of ways in which multilayer perceptron neural 

networks can be used as basic building blocks. Next demonstrated the practical 

implementation of these controllers on three applications: a continuous stirred tank 

reactor, a robot arm, and a magnetic levitation system. 

Dynamical control problems and the application of artificial neural networks to solve 

optimization are discussed in [6], A general framework for artificial neural networks 

models is introduced first. Then the main feedforward and feedback models are 

presented. The IAC (Interactive Activation and Competition) feedback network is 

analyzed in detail. It is shown that the IAC network, like the Hopfield network, can be 

used to solve quadratic optimization problems. 

A method that speeds up the training of feedforward artificial neural networks by 

constraining the location of the decision surfaces defined by the weights arriving at the 

hidden units is developed [ 6]. 

The problem of training artificial neural networks to be fault tolerant to loss of hidden 

units is mathematically analyzed. It is shown that by considering the network fault 

tolerance the above problem is regularized, that is the number of local minima is 

reduced. It is also shown that in some cases there is a unique set of weights that 
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mmmuzes a cost function. The BPS algorithm, a network training algorithm that 

switches the hidden units on and off, is developed and it is shown that its use results in 

t tolerant neural networks. 

A novel non-standard artificial neural network model is then proposed to solve the 

extremum control problem for static systems that have an asymmetric performance 

ex. An algorithm to train such a network is developed and it is shown that the 

oposed network structure can also be applied to the multi-input case. 

A control structure that integrates feedback control and a feedforward artificial neural 

network to perform nonlinear control is proposed. It is shown that such a structure 

performs closed-loop identification of the inverse dynamical system. The technique of 

adapting the gains of the feedback controller during training is then introduced. Finally 

it is shown that the BPS algorithm can also be used in this case to increase the fault 
tolerance of the neural controller in relation to loss of hidden units. Computer 

simulations are used throughout to illustrate the results. 

In [7 ] addressed two neural network based control systems. The first is a neural network 

based predictive controller. System identification and controller design are discussed. The 

second is a direct neural network controller. Parameter choice and training methods are 

discussed. Both controllers are tested on two divergent plants. Problems regarding 

implementations are discussed. First the neural network based predictive controller is 

introduced as an extension to the generalised predictive controller (GPC) to allow control of 

nonlinear plant. The controller design includes the GPC parameters, but prediction is done 

explicitly by using a neural network model of the plant. 

System identification is discussed. Two control systems are constructed for two divergent 

plants: A coupled tank system and an inverse pendulum. This shows how implementation 

aspects such as plant excitation during system identification are handled. Limitations of the 

controller type are discussed and shown on the two implementations. 

In the second part of [7], the direct neural network controller is discussed. An output 

feedback controller is constructed around a neural network. Controller parameters are 

determined using system simulations. 
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The control system is applied as a single step ahead controller to two different plants. One 

of them is a path following problem in connection with a reversing trailer truck. This 

system illustrates an approach with stepwise increasing controller complexity to handle the 

unstable control object. The second plant is a coupled tank system. Comparison is made 

with the first controller. Both controllers are shown to work. But for the neural network 

based predictive controller, construction of a neural network model of high accuracy is 

critical - especially when long prediction horizons are needed. This limits application to 

plants that can be modelled to sufficient accuracy. 

The direct neural network controller does not need a model. Instead the controller is trained 

on simulation runs of the plant. This requires careful selection of training scenarios, as these 

scenarios have impact on the performance of the controller. 

As a further extension to these works, [8] describes the latest results of a theoretical 

interpretation framework describing the neural network transformation sequences in 

nonlinear system identification and control. This can be achieved by incorporation of 

the method of exact input-output linearization in the above mentioned two 

transformation sequences of dimensional analysis and the Laplace transformation. 

Based on these three theoretical considerations neural network topologies may be 

designed in special situations by a pure translation in the sense of a structural 

compilation of the known classical solutions into their correspondent neural topology. 

Based on known exemplary results, in [8] a structural compiler for neural networks is 

proposed. This structural compiler for neural networks is intended to automatically 

convert classical control formulations into their equivalent neural network structure 

based on the principles of equivalence between formula and operator, and operator and 

structure which are discussed in detail in this work. 

In [9] proposed a learning scheme for a neuro control system with a Control Network 

and an Identification Network. For the Identification Network, the learning scheme is 

the popular backpropagation. For the Control Network, the Plant Information is 

calculated on-line and fed along with other inputs to train the network On-line 
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simulation studies and experimental results for selected process with the proposed 

control are presented and discussed. 

A systematic approach is developed for designing adaptive and reconfigurable nonlinear 

control systems that are applicable to plants modeled by ordinary differential equations. 

The nonlinear controller comprising a network of neural networks is taught using a two 

phase learning procedure realized through novel techniques for initialization, on-line 

training, and adaptive critic design. A critical observation is that the gradients of the 

functions defined by the neural networks must equal corresponding linear gain matrices 

at chosen operating points. On-line training is based on a dual heuristic adaptive critic 

architecture that improves control for large, coupled motions by accounting for actual 

plant dynamics and nonlinear effects. An action network computes the optimal control 

law; a critic network predicts the derivative of the cost-to-go with respect to the state. 

Both networks are algebraically initialized based on prior knowledge of satisfactory 

pointwise linear controllers and continue to adapt on line during full-scale simulations 

of the plant. 

On-line training takes place sequentially over discrete periods of time and involves 

several numerical procedures. A backpropagating algorithm called Resilient 

Backpropagation is modified and successfully implemented to meet these objectives, 

without excessive computational expense. This adaptive controller is as conservative as 

the linear designs and as effective as a global nonlinear controller. The method is 

successfully implemented for the full-envelope control of a six-degree-of-freedom 

aircraft simulation. The results show that the on-line adaptation brings about improved 

performance with respect to the initialization phase during aircraft maneuvers that 

involve large-angle and coupled dynamics, and parameter variations. 

In [10] some novel applications of neural networks in process control presented. Four 

different approaches utilizing neural networks are presented as case studies of nonlinear 

chemical processes. It is concluded that the hybrid methods utilizing neural networks 

are very promising for the control of nonlinear and/or Multi-Input Multi-Output systems 

which can not be controlled successfully by conventional techniques. 
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In [11], linear and non-linear analysis of rectangular plates has been presented via 

artificial intelligence techniques and numerical examples are solved by means of the 

developed program. The back-propagation neural network has been used in the solution. 

The thickness of plates has been normalized by the use of the fuzzy triangular 

membership function. The center point moments and deflection have been obtained for 

the numerical applications. It has been emphasized that the artificial intelligence 

technique is an alternative method that can be used in structural engineering. 

In [12], the development oflntellectual Systems for Technological Processes Control is 

considered. The application of Artificial Neural Systems for solving control problems is 

given. The main blocks of Neural Control Systems are analyzed; their structure and 

learning methods are discussed. The different models of neurons, which organize 

Neural Networks, structure of Neural Networks and their learning algorithms, are 

described. The development of the control system on the base of Recurrent Neural 

Networks is shown and its learning algorithms are widely described on the base of 

"Back Propagation", such as Back Propagation for fully Recurrent Neural Network, 

Back Propagation for Multilayered Recurrent Neural Networks or Back Propagation in 

time. Using described learning algorithms, the structure of intellectual Neural Control 

Systems for Technological Process is given. The synthesis and modeling of this system 

are described. 

A mobile robot whose behavior is controlled by a structured hierarchical email network 

and its teaming algorithm is presented [13]. The robot has four wheels and moves about 

freely with two motors. Twelve or more sensors are used to monitor internal conditions 

and environmental changes. These sentimental are presented to the input layer of the 

network, and the output is used as motor control signals. The network model is divided 

into two sub-networks connected to each other by short-term memory units used to 

process time-dependent data. A robot can be taught behaviors by changing the patterns 

presented to it. For example, a group of robots were taught to play a cops-and-robbers 

web. Through training, the robots learned them such as capture and escape. Similarly, 

other types of robots are used to work as a housewife, like for example working in the 

kitchen, washing dishes, cooking food, etc. These robots learn by looking at the 
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examples and feeding them in their memory. Thus, by this way their characteristics are 

similar to the human beings. 

Neural networks can be used effectively for the identification and control of nonlinear 

dynamical systems. The emphasis of the part is on models for both identification and 

control. Static and dynamic back-propagation methods for the adjustment of parameters 

are discussed. In the models that are introduced, multilayer and recurrent networks are 

interconnected in novel configurations and hence there is a real need to study them in an 

unfilled fashion. Simulation results reveal that the identification and adaptive control 

schemes suggested are practically feasible. Basic concepts and definitions are 

introduced and theoretical questions, which have to be addressed, are also described 

[14]. 

In a medical ultrasound imaging system the control parameters for the beam former are 

usually designed based on a constant sound velocity for the tissue. The velocity in the 

intervening tissues (the body wall) can vary by as much as 8%, leading to a spurious 

echo delay noise across the array. This has a detrimental effect on the image quality. 

Since the delay noise is not deterministic, its effects can not be pre-compensated in the 

beam former subsystem. Degradation of image quality caused by delay noise can be 

quantified in terms of the changes in the imaging point-spread-function (PSF). A major 

engineering challenge in medical ultrasound, which remains, is the conception of a re~l,.. 

time, adaptive technique for delay noise removal to improve the image quality. Flax and 

O'Donnell have reported a method based on the cross correlation of A-lines for adaptive 

image restoration. Nock Efal, have described a method which utilizes the speckle 

brightness as a quality factor feedback for adaptive changing of the relative delays 

between channels. Fink of al., has recently described a time reversal method based on 

ideas from adaptive optics [ 15]. 

Artificial neural network (ANN) approaches to electric load forecasting is given in [16]. 

The ANN is used to learn the relationship among past, current and future temperatures 

and loads. In order to provide the forecasted load, the ANN interpolates among the load 

and temperature data in a training data set. The average absolute errors of the one-hour 

and 24-hour ahead forecasts in our test on actual utility data are shown to be 1.40% and 

2.06%, respectively. This compares with an average error of 4.22% for 24-hour ahead 
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forecasts with a currently used forecasting technique applied to the same data. Various 

techniques for power system load forecasting have been proposed in the last few 

decades. Load forecasting with lead-times, from a few minutes to several days, helps 

the system operator to efficiently schedule spinning serve allocation. In addition, load 

forecasting can provide information, which can be used, for possible energy interchange 

with other utilities. In addition to these economical reasons, load forecasting is also 

useful for system security. If applied to the system security assessment problem, it can 

provide valuable information to detect many vulnerable situations in advance [16]. 

An Artificial Neural Network has been Implemented In the Explosives Detection 

Systems fielded at various airports [17]. Tests of the on-line performance of the Neural 

Network (NN) confirmed its superiority over standard statistical techniques, and the NN 

was installed as the decision algorithm. Analysis of the mass of data being produced is 

still underway; but preliminary conclusions are presented [ 1 7]. 

The Neural Network technique was applied to the same features used by the 

discriminant analysis. These features were combinations of the signals from the detector 

array, such as the total nitrogen content of the bag, maximum intensity in the 

reconstructed three dimensional image, et al. These features have different statistical 

properties, and different amounts of information about the presence or absence of 

explosives in the bag. Combinations of these features provide the discriminant value, 

which is used to decide whether or not there is a threat in the bag. Because of the 

success of the standard analysis, the problem is known to be solvable; and, in fact, there 

is a target to be beat. 

Automatic speech recognizers currently perform poorly in the presence of noise. 

Humans, on the other hand, often compensate for noise degradation by extracting 

speech information from alternative sources and then integrating this information with 

the acoustical signal. Visual signals from the speaker's face are one source of 

supplemental speech information. It is demonstrated that multiple sources of speech 

information can be integrated at a sub symbolic level to improve vowel recognition. 

Feedforward and recurrent neural networks are trained to estimate the acoustic 

characteristics; of the vocal tract from images of the speaker's mouth. These estimates 
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are then combined with the noise-degraded acoustic information, effectively increasing 

the signal-to-noise ratio and improving the recognition of these noise-degraded signals. 

Alternative symbolic strategies, such as direct categorization of the visual signals into 

vowels, are also presented. The performances of these neural networks compared 

favorably with human performance and with other pattern-matching and estimation 

techniques [ 18]. 

Communication by using the acoustic speech signal alone is possible, but often 

communication also involves visible gestures from the speaker's face and body. in 

situations where environmental noise is present or the listener is hearing impaired, these 
' visual sources of information become crucial to understanding what has been said. Our 

ability to comprehend speech with relative ease under a wide range of environmental 

circumstances is due largely to our ability to fuse multiple sources of information in real 

time. 

Loss of information in the acoustic signal can be compensated by using information 

about speech articulation from the movements around the mouth. This work was 

supported by using semantic information conveyed by facial expressions and other 

gestures. At the same time, the listener can use knowledge of linguistic constraints to 

further compensate for ambiguities remaining in the received speech signals [ 18]. 

1.4 Problem Statement 

The application of NN for controlling of technological processes allows to increase the 

quality of the control. To develop neural control system the following have been carried 

out within this thesis: 

1. To Develop Structure of Neural Control System. 

2. Describe Leaming of Neural Control System 

3. Develop Neural Control System 

4. Computer (simulation) modeling Neural Control System 
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1.5 Summary 

There are many different approaches of using neural networks in control systems. 

Result of analysis different research works about neural control system shows that they 

have good performance for adaptive controlling. Neural network control system is 

applied to different non-linear dynamic processes to improve accuracy of the control. 

For this reason the development of neural network control system for non-linear process 

began actual. The applications areas of NN and state of art of neural control system are 

given. 
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CHAPTER TWO: ARCHITECTURE OF NEURAL NETWORK BASED 

CONTROL SYSTEM 

2.1 Overview 

Application of neural network for constructing control system allows to increase their 

computation speed, validity, self-training and adapting capability. 

In this chapter the development of controllers based on Neural Networks are 

considered. The structures of PD, PI and PID like neural controllers are given. The 

functions of their main block have been explained. 

2.2 Components of Industrial controller 

The more used controllers in industries are PD, PI and PID like controller. PID stands 

for Proportional, Integral, Derivative. Controllers are designed to eliminate the need for 

continuous operator attention. Cruise control in a car and a house thermostat are 

common examples of how controllers are used automatically adjust some variable to 

hold the measurement (or process variable) at the set-point. Error is defined as the 

difference between set-point and measurement. (error) = (set-point) - (measurement). 

The variable being adjusted is called the manipulated variable which usually is equal to 

the output of the controller. The output of PID controllers will change in response to a 

change in measurement or set-point. Manufacturers of PID controllers use different 

names to identify the three modes. These equations show the relationships: 

p 
I 
D 

Proportional Band 
Integral 

Derivative 

100/gain 
1/reset 
rate= pre-act 

(units of time) 
(units of time) 

Depending on the manufacturer, integral or reset action is set in either time/repeat or 

repeat/time. One is just the reciprocal of the other. Note that manufacturers are not 

consistent and often use reset in units of time/repeat or integral in units of repeats/time. 
Derivative and rate are the same. 
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With proportional band, the controller output is proportional to the error or a change in 

measurement (depending on the controller). 

( controller output) = ( error)* 100/(proportional band) 

With a proportional controller offset (deviation from set-point) is present. Increasing 

the controller gain will make the loop go unstable. Integral action was included in 

controllers to eliminate this offset. 

With integral action, the controller output is proportional to the amount of time the 

error is present. Integral action eliminates offset. 

CONTROLLER OUTPUT= (1/INTEGRAL) (Integral of) e(t) d(t) 

Notice that the offset (deviation from set-point) in the time response plots is now gone. 

Integral action has eliminated the offset. The response is somewhat oscillatory and can 

be stabilized some by adding derivative action. 

Integral action gives the controller a large gain at low frequencies that results in 

eliminating offset and "beating down" loa? disturbances. The controller phase starts out 

at -90 degrees and increases to near O degrees at the break frequency. This additional 

phase lag is what we give up by adding integral action. Derivative action adds phase 

lead and is used to compensate for the lag introduced by integral action. 

With derivative action,the controller output is proportional to the rate of change of the 

measurement or error. The controller output is calculated by the rate of change of the 

measurement with time. 

drn 
CONTROLLER OUTPUT DERIVATIVE 

dt 

Where m is the measurement at time t. 

Some manufacturers use the term rate or pre-act instead of derivative. Derivative, rate, 

and pre-act are the same thing. 

DERIVATIVE= RATE= PRE ACT 
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Derivative action can compensate for a changing measurement. Thus derivative takes 

action to inhibit more rapid changes of the measurement than proportional action. 

When a load or set-point change occurs, the derivative action causes the controller gain 

to move the "wrong" way when the measurement gets near the set-point. Derivative is 

often used to avoid overshoot. 

Derivative action can stabilize loops since it adds phase lead. Generally, if you use 

derivative action, more controller gain and reset can be used. 

With a PID controller the amplitude ratio now has a dip near the center of the frequency 

response. Integral action gives the controller high gain at low frequencies, and 

derivative action causes the gain to start rising after the "dip". At higher frequencies the 

filter on derivative action limits the derivative action. At very high frequencies (above 

314 radians/time; the Nyquist frequency) the controller phase and amplitude ratio 

increase and decrease quite a bit because of discrete sampling. If the controller had no 

filter the controller amplitude ratio would steadily increase at high frequencies up to the 

Nyquist frequency (1/2 the sampling frequency). The controller phase now has a hump 

due to the derivative lead action and filtering. 

The time response is less oscillatory than with the PI controller. Derivative action has 

helped stabilize the loop. 

It is important to keep in mind that understanding the process is fundamental to getting 

a well designed control loop. Sensors must be in appropriate locations and valves must 

be sized correctly with appropriate trim. 

In general, for the tightest loop control, the dynamic controller gain should be as high 

as possible without causing the loop to be unstable. 

P is in units of proportional band. I is in units of time/repeat. So increasing P or I, 

decreases their action in the picture. 
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2.3 Structure of the PD-Like Controller 

Even though at present traditional P, PD, PI, PID controls are still widely used in 

industrial control systems, their ability to cope with some complex process properties 

such as non-linearities, time-varying parameters and long time delays are known to be 

very poor. Systems based on neural network one of tolls that could deal with these 

problems. 

In Figure 2.1 the structure of neural PD control system is shown. The output signal of 

the control object y(t) is compared with the target signal G(t) of the system and the 

value of the error signal e(t) is passed to the differentiator D. The output signal of 

differentiator e'(t) and error signal e(t) after multiplying to the scaling coefficients ke 

and ke' are entered to the neural network input. These coming input signals after 

processing the output of neural network scaled and output control action is tranfered to 

the input of control object. 

The synthesis of neural network controller includes the determination of the scale 

coefficients and parameters of the neural network (NN). In the controller synthesis 

processes the main problem is learning of the NN coefficients. Assume there is target 
I 

behaviour for the constructed control system. It is necessary to determine the values of 

parameters- weights matrix Wij and scale coefficient k., ke·, k, using of which in control 

system for object (2.1) would allow to achive time response which provides target step 

response of the system 

e(t) 

Control 
Object 

X(t) •.. NEURAL 
NETWORK 

D 
L_______J e'(t) 

Figure 2.1 Structure of PD control system 
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2.4 Structure of the PI-Like Controller 

The structure of the neural PI-like controller is shown in Figure 2.2. The output signal 

of control object is compared with the target signal G(t) in the comparator. In the result 

of comparision the value of error between target and current signals of control object is 

determined. This signal e(t) is passed to integrator f and the integral value of error is 
determined. The error signal e(t) and the integral value of error f e(t) after multiplying 

to the scaling coefficients k, and kJ are entered to the scaling block, where after scaling 

they are entered to the input of neural network. 

e(I) 

NEURAL 
NETWORK 

Control 
Object 

X(I) 

f kf 

Figure 2.2 Structure of PI control system 

Using neural network block the output of the controller is determined. This output 

signal after scaling is entered to the plant input 

2.5 Structure of The PID-Like Controller 

The PIO-Like controler is a combination of PD-Like controller and PI-Like controler. 

The structure of neural PIO-Like controller is shown in figure 2.3. In the result of the 

comparison of the output signal of control object with target signal of control system 

the value of error is determined. The signal e(t) is passed to the integrator and 

differentiator. On the output of integrator and differentiator the integral value of error 

and change of error are determined. 

The error signal e(t), velocity e' (t) and the integral value of error fe(t) after multiplying 

to the scaling coefficients ke, ke' and kJ are entered to the neural network block. Using 
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neural network block the output of the controller is determined. This output signal after 

scaling is entered to the plant input. 

e(t) 
I I 

ke 

D 

~~ 

~ Control 

NEURAL 

X(t) 

rn~' 

NETWORK 

Object 

f 

Figure 2.3 Structure of PID control system 

2.6 Summary 
In this chapter, the structure of PD, PI, PID Controllers and their operation principles 

are given. The structures of PI, PD, PID Like Neuro Controllers and their functions are 

explained, 
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CHAPTER THREE: LEARNING OF NEURAL CONTROL SYSTEM 

3.1 Overview 

This chapter concentrates on neural network architectures and their mathematical 

models. The backpropagation is briefly described. This algorithm is a procedure for 

training neural network. Care must be taken, when training neural networks, to ensure 

that they do not overfit the training data and then fail to generalize well in new 

situations. 

The purpose of the learning function is to modify the connection weights on the inputs 

of each processing element according to some neural based algorithm. This process of 

changing the weights of the input connections to achieve some desired result can also be 

called the adaption function, as well as the learning mode. 

There are two types of learning: supervised and unsupervised. They are discussed in 

detail in this chapter. 

3.2 Neural Network Structure and Its Mathematical Model 

Neural Network consists of set of neurons. In Figure 3.1 the mathematical model of 

neuron that have multi-input is shown. 

The scalar inputs are multiplied by the scalar weight to form, one of the terms that is 

sent to the summer. The other input, 1, is multiplied by a bias and then passed to the 

summer. The summer output, often referred to as the net input, goes into a transfer 

function, which produces the scalar neuron output. 

Typically, a neuron has more than one input. A neuron with inputs R is shown in Figure 

3 .1 The individual inputs P: pz, ... ,PR are each weighted by corresponding elements of 

'w1,1.w1,2 w1, R the weight matrix W 
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Input Multi-Input Neuron 
r-\ ( \ 

Where ... 

R = number ot 
elements in 
input vector 

\_}\, 1 ) 
a= fi.'\Vp +b) 

Figure 3.1 Multi-Input Neuron 

The neuron has a bias b, which is summed with the weighted inputs to form the net 
input: n 

This expression can be written in matrix form: 
n = Wp+b, 

where the matrix W for the single neuron case has only one row. Now the neuron output 
can be written as 

a= f(Wp+b). 

Figure 3.2 represents the neuron in matrix form. 

lnp ut ' Multiple-Input Neuron r=. ( "\ 
Where ... 

R= number ot 
elements in 
input vector 

a =it'"Vp +b) 
Figure 3.2 Neuron R with Inputs, Matrix Notation 

Note that w and b are both adjustable scalar parameters of the neuron. Typically the 

transfer functions are chosen by the designer, and then the parameters are adjusted by 

some learning rule so that the neuron input/output relationship meets some specific 

goal. 
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The transfer function in Figure 3 .2 may be a linear or a nonlinear function of n. One of 

the most commonly used functions is the log-sigmoid transfer function, which is shown 

in Figure 3.3 

a 

+1 

- co co 

Figure 3.3 Log-Sigmoid Transfer Function 

This transfer function takes the input (which may have any value between plus and 

minus infinity) and squashes the output into the range O to 1, according to the 

expression: 

a= __j__ 
1 +e-n 

The log-sigmoid transfer function is commonly used in multilayer networks that are 

trained using the backpropagation algorithm, in part because this function is 

differentiable. 

3.3 Common Activation Functions 

As mentioned before, the basic operation of an artificial neuron involves summing its 

weighted input signal and applying an output, or activation function. For the input units, 

this function is the identity function. Typically, the same activation function is used for 

all neurons in any particular layer of a neural net, although this is not required. In most 

cases, a nonlinear activation function is used. In order to achieve the advantages of 

multilayer nets, compared with the limited capabilities of single-layer nets, nonlinear 

functions are required (since the results of feeding a signal through two or more layers 
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of linear processing elements-i.e. , elements with linear activation functions are no 

different from what can be obtained using a single layer). 

( i ) Identity function: 
f(x) =x for all x. 

Single-layer nets often use a step function to convert the net input, which is a 

continuously valued variable, to an output unit that is a binary (1 or 0) or bipolar (1 or - 

1) signal. The use of a threshold in this regard is discussed. The binary step function is 

also known as the threshold function or Heaviside function.(Figure 3.4) 

~ .~· - •'1 •. 

Figure 3.4 Identity function. 

( ii ) Binary step function ( with threshold B ): 

f(x) = {l.. if .. x ~ O 
O if .. x < B 

Sigmoid functions (S-shaped curves) are useful activation functions. The logistic 

function and the hyperbolic tangent functions are the most common. They are especially 

advantageous for use in neural nets trained by backpropagation, because the simple 

relationship between the value of the function at a point and the value of the derivative 

at that point reduces the computational burden during training.(Figure 3.5) 
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'""'"""''''""- ' X 
4 '.3 -1 

Figure 3.5 Binary step function 

The logistic function, a sigmoid function with range from O to 1, is often used as the 

activation function for neural nets in which the desired output values either are binary or 

are in the interval between O and 1. To emphasize the range of the function, we will call 

it the binary sigmoid; it is also called the logistic sigmoid 

(iii) Binary sigmoid: 

1 
f(x)=--- 

1 + exp(ox) 

f'(x) = cif(x)[l- f(x)] 
As the logistic sigmoid function can be scaled to have any range of values that is 

appropriate for a given problem. The most common range is from - 1 to 1, we call this 

sigmoid the bipolar sigmoid. It is illustrated in Figure 3 .6 for CJ= 1. ? 

(iv) Bipolar sigmoid: 

2 -1 
g(x) = 2/(x)-l = 1 + exp(-ox) 

_ 1- exp(-ox) 
1 + exp(-ox) 

g'(x) = CJ [1 + g(x)][l- g(x)]. 
2 ~ 
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and that the weight matrix now has rows. The layer includes the weight matrix, the 

summers, the bias vector, the transfer function boxes and the output vector. Some 

authors refer to the inputs as another layer, but we will not do that here. It is common 

for the number of inputs to a layer to be different from the number of neurons 

Input Layer oi Neurons 

r=. r ' 
Where ... 

R = number ot 
elements in 
input vector 

S = number ot 
neurons in layer 

1 I 
\ J ' ' 
"--' a= .f (l'1P + b) 

Figure 3.7 Layer of SNeurons 

The S-neuron, R-input, one-layer network also can be drawn in matrix notation, as 

shown in Figure 3.8. 

l!nput layer of s r,Jeuro,ns 
~r " 

f 
(' 
i.J N 

LJ \._ J 

Figure 3.8 Layer S of Neurons, Matrix Notation 
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3.4.1 Multiple Layers of Neurons 

Now consider a network with several layers. Each layer has its own weight matrix , its 

own bias vector, a net input vector and an output vector . We need to introduce some 

additional notation to distinguish between these layers. We will use superscripts to 

identify the layers. Thus, the weight matrix for the first layer is written as W1, and the 

weight matrix for the second layer is written as W2. This notation is used in the three 

layer network shown in Figure 3 .10 As shown, there are R inputs, S 1 neurons in the. first 

layer, S2 neurons in the second layer, etc. As noted, different layers can have different 

numbers of neurons. 

Connections 
Hidden Layers 

Input Layer 

Figure 3.9 Multilayer Neural Network 

The outputs of layers one and two are the inputs for layers two and three. Thus layer 2 

can be viewed as a one-layer network with R=S1inputs, S=S2 neurons, and an S2xS1 

weight matrix W2. The input to layer 2 is a 1, and the output is a2 

A layer whose output is the network output is called an output layer. The other layers 

are called hidden layers. The network shown in Figure 3.10 has an output layer (layer 3) 

and two hidden layers (layers 1 and 2). 
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f3 

Figure 3.10 Three-Layer Network 

3.5 Neural network Learning 

The brain basically learns from experience. Neural networks are sometimes called 

machine-learning algorithms, because changing of its connection weights (training) 

causes the network to learn the solution to a problem. The strength of connection 

between the neurons is stored as a weight-value for the specific connection. The system 

learns new knowledge by adjusting these connection weights. 

The learning ability of a neural network is determined by its architecture and by the 

algorithmic method chosen for training. 

The training method usually consists of one of three schemes: 

3.5.1 Unsupervised Learning in Neural Networks 

Training algorithms that adjust the weights in a neural network by reference to a 

training data set including input variables only. Unsupervised learning algorithms 

attempt to locate clusters in the input data. 

The hidden neurons must find a way to organize themselves without help from the 

outside. In this approach, no sample outputs are provided to the network against which 

it can measure its predictive performance for a given vector of inputs. This is learning 

by doing. 
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Here the outcome variable of interest is not (and perhaps cannot be) directly observed. 

Instead, we want to detect some "structure" or clusters in the data that may not be 

trivially observable. For example, you may have a database of customers with various 

demographic indicators and variables potentially relevant to future purchasing 

behaviour. Your goal would be to find market segments, i.e., groups of observations 

that are relatively similar to each other on certain variables; once identified, you could 

then determine how best to reach one or more clusters by providing certain goods or 

services you think may have some special utility or appeal to individuals in that 

segment (cluster). This type of task calls for an unsupervised learning algorithm, 

because learning (fitting of models) in this case cannot be guided by previously known 

classifications. Only after identifying certain clusters you can begin to assign labels, for 

example, based on subsequent research ( e.g., after identifying one group of customers 

as "young risk takers"). 

Unsupervised learning is the great promise of the future. It shouts that computers could 

someday learn on their own in a true robotic sense. Currently, this learning method is 

limited to networks known as selforganizing maps. These kinds of networks are not in 

widespread use. They are basically an academic novelty. Yet, they have shown they can 

provide a solution in a few instances, proving that their promise is not groundless. They 

have been proven to be more effective than many algorithmic techniques for numerical 

aerodynamic flow calculations. They are also being used in the lab where they are split 

into a front-end network that recognizes short, phoneme-like fragments of speech which 

are then passed on to a backend network. The second artificial network recognizes these 

strings of fragments as words. 

This promising field of unsupervised learning is sometimes called selfsupervised 

learning. These networks use no external influences to adjust their weights. Instead, 

they internally monitor their performance. These networks look for regularities or trends 

in the input signals, and makes adaptations according to the function of the network. 

Even without being told whether it's right or wrong, the network still must have some 

information about how to organize itself. This information is built into the network 

topology and learning rules. 
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An unsupervised learning algorithm might emphasize cooperation among clusters of 

processing elements. In such a scheme, the clusters would work together. If some 

external input activated any node in the cluster, the cluster's activity as a whole could be 

increased. Likewise, if external input to nodes in the cluster was decreased, that could 

have an inhibitory effect on the entire cluster. 

Competition between processing elements could also form a basis for learning. Training 

of competitive clusters could amplify the responses of specific groups to specific 

stimuli. As such, it would associate those groups with each other and with a specific 

appropriate response. Normally, when competition for learning is in effect, only the 

weights belonging to the winning processing element will be updated. 

At the present state of the art, unsupervised learning is not well understood and is still 

the subject of research. This research is currently of interest to the government because 

military situations often do not have a data set available to train a network until a 

conflict arises. 

3.5.2. Supervised Learning in Neural Network 

This method works on reinforcement from the outside. The connections among the 

neurons in the hidden layer are randomly arranged, then reshuffled as the network is 

told how close it is to solving the problem. Reinforcement learning is also called 

supervised learning, because it requires a teacher. The teacher may be a training set of 

data or an observer who grades the performance of the network results. 

The term "supervised" learning is usually applied to cases in which a particular 

classification is already observed and recorded in a training sample, and you want to 

build a model to predict those classifications (in a new testing sample). For example, 

you may have a data set that contains information about who from among a list of 

customers targeted for a special promotion responded to that offer. The purpose of the 

classification analysis would be to build a model to predict who (from a different list of 

new potential customers) is likely to respond to the same (or a similar) offer in the 

future. 
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The vast majority of artificial neural network solutions have been trained with 

supervision. In this mode, the actual output of a neural network is compared to the 

desired output. Weights, which are usually randomly set to begin with, are then adjusted 

by the network so that the next iteration, or cycle, will produce a closer match between 

the desired and the actual output. The learning method tries to minimize the current 

errors of all processing elements. This global error reduction is created over time by 

continuously modifying the input weights until an acceptable network accuracy is 

reached. 

With supervised learning, the artificial neural network must be trained before it 

becomes useful. Training consists of presenting input and output data to the network. 

This data is often referred to as the training set. That is, for each input set provided to 

the system, the corresponding desired output set is provided as well. In most 

applications, actual data must be used. This training phase can consume a lot of time. In 

prototype systems, with inadequate processing power, learning can take weeks. This 

training is considered complete when the neural network reaches an user defined 

performance level. This level signifies that the network has achieved the desired 

statistical accuracy as it produces the required outputs for a given sequence of inputs. 

When no further learning is necessary, the weights are typically frozen for the 

application. Some network types allow continual training, at a much slower rate, while 

in operation. This helps a network to adapt to gradually changing conditions. 

Training sets need to be fairly large to contain all the needed information if the network 

is to learn the features and relationships that are important. Not only do the sets have to 

be large but the training sessions must include a wide variety of data. If the network is 

trained just one example at a time, all the weights set so meticulously for one fact could 

be drastically altered in learning the next fact. The previous facts could be forgotten in 

learning something new. As a result, the system has to learn everything together, 

finding the best weight settings for the total set of facts. 
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For example, in teaching a system to recognize pixel patterns for the ten digits, if there 

were twenty examples of each digit, all the examples of the digit seven should not be 

presented at the same time. 

How the input and output data is represented, or encoded, is a major component to 

successfully instructing a network. Artificial networks only deal with numeric input 

data. Therefore, the raw data must often be converted from the external environment. 

Additionally, it is usually necessary to scale the data, or normalize it to the network's 

paradigm. This pre-processing of real-world stimuli, be they cameras or sensors, into 

machine readable format is already common for standard computers. Many conditioning 

techniques which directly apply to artificial neural network implementations are readily 

available. It is then up to the network designer to find the best data format and matching 

network architecture for a given application. 

After a supervised network performs well on the training data, then it is important to see 

what it can do with data it has not seen before. If a system does not give reasonable 

outputs for this test set, the training period is not over. Indeed, this testing is critical to 

insure that the network has not simply memorized a given set of data but has learned the 

general patterns involved within an application. 

Both unsupervised and reinforcement suffers from relative slowness and inefficiency 

relying on a random shuffling to find the proper connection weights. 

3.5.3 Back-propagation Training Algorithm 

The back-propagation algorithm is perhaps the most widely used training algorithm for 

multi-layered feed-forward networks. However, many people find it quite difficult to 

construct multilayer feed-forward networks and training algorithms, whether it is 

because of the difficulty of the math or the difficulty involved with the actual coding of 

the network and training algorithm. 

Multilayer feed-forward networks normally consist of three or four layers, there is 

always one input layer and one output layer and usually one hidden layer, although in 
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some classification problems two hidden layers may be necessary, this case is rare 

however. The term input layer neurons are a misnomer, no sigmoid unit is applied to the 

value of each of these neurons. Their raw values are fed into the input layer. Once the 

neurons for the hidden layer are computed, their activations are then fed to the next 

layer, until all the activations finally reach the output layer, in which each output layer 

neuron is associated with a specific classification category. In a fully connected 

multilayer feed-forward network (See Figure 3 .11 ), each neuron in one layer is 

connected by a weight to every neuron in the previous layer. A bias is also associated 

with each of these weighted sums. Thus in computing the value of each neuron in the 

hidden and output layers one must first take the sum of the weighted sums and the bias 

and then apply f(sum) (the sigmoid function) to calculate the neuron's activation. 

Figure 3.11 Multilayer Feed-Forward Network 

3.5.3.1 Feed forward Phase 

The feed-forward phase can be described through three steps: input (I), hidden (H), and 

output layer (0). 

• Input layer (I): The output of the input layer is equal to the input of the input layer as 

shown in Figure 3 .11. 

Output 1 = Input 1 
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• Hidden Layer (H): The input of the hidden layer is equal to the sum of multiplying 

all the input layer output by the corresponding weight that connect between the two 

layers as shown in Figure 3 .11. 

Input H = L wieghtm; * output, 

The output of the hidden layer is the result of the sigmoid transfer function of the 

hidden layer input. 

1 
Outnut H = -111p11111 r 1 +e 

• Output layer (0): The input of the Output layer is equal to the sum of multiplying all 

the hidden layer output by the corresponding weight that connect between the two 

layers as shown in Figure 3.11. 

Inpui ; = '\' wieght HOJ * output H 
j 

The output of the output layer is the result of the sigmoid transfer function of the output 

layer input. 

Output a 
1 

1 + e-Jnpulo 

3.5.3.2 Backpropagation Phase 

After the feed-forward phase the output of the output layer (Outputo), is compared with 

the target value of the neural net (Target), the result is the network error (errorn). 

error0 =Target- Ouput., 

The purpose of the back-propagation training is to minimize the error of all training 

pattern by adjusting the weights values, the new value of the hidden-output layer weight 

is updated according to the following equation. 
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Generally, several factors besides time have to be considered when discussing the off 

line training task, which is often described as "tiresome." Network complexity, size, 

paradigm selection, architecture, type of learning rule or rules employed, and desired 

accuracy must all be considered. These factors play a significant role in determining 

how long it will take to train a network. Changing any one of these factors may either 

extend the training time to an unreasonable length or even result in an unacceptable 

accuracy. 

Most learning functions have some provision for a learning rate, or learning constant. 

Usually this term is positive and between zero and one. If the learning rate is greater 

than one, it is easy for the learning algorithm to overshoot in correcting the weights, and 

the network will oscillate. Small values of the learning rate will not correct the current 

error as quickly, but if small steps are taken in correcting errors, there is a good chance 

of arriving at the best minimum convergence. 

3.5.5. Learning laws 

There are a variety of learning laws, which are in common use. These laws are 

mathematical algorithms used to update the connection weights. Most of these laws are 

some sorts of variation of the best-known and oldest learning law, Hebb's Rule. Man's 

understanding of how neural processing actually works is very limited. Some 

researchers have the modeling of biological learning as their main objective. 

Others are experimenting with adaptations of their perceptions of how nature handles 

learning. Either way, man's understanding of how neural processing actually works is 

very limited. Learning is certainly more complex than the simplification represented by 

the learning laws currently developed. Research into different learning functions 

continues as new ideas routinely show up in trade publications etc. A few of the major 

laws are given as examples below. 
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3.5.5.1.Hebb's Rule 

The first and the best known learning rule was introduced by Donald Hebb. The 

Hebbian Leaming Rule is a learning rule that specifies how much the weight of the 

connection between two units should be increased or decreased in proportion to the 

product of their activation. The rule builds on Hebbs's 1949 learning rule, which, states 

that the connections between two neurons might be strengthened if the neurons fire 

simultaneously. 

The Hebbian Rule works well as long as all the input patterns are orthogonal or 

uncorrelated. The requirement of orthogonal places serious limitations on the Hebbian 

Leaming Rule. 

3.5.5.2 Hopfield Law 

This law is similar to Hebb's Rule with the exception that it specifies the magnitude of 

the strengthening or weakening. It states, "if the desired output and the input are both 

active or both inactive, increment the connection weight by the learning rate, otherwise 

decrement the weight by the learning rate." (Most learning functions have some 

provision for a learning rate, or a learning constant. Usually this term is positive and 

between zero and one.) 

3.5.5.3 The Delta Rule 

The Delta Rule is a further variation of Hebb's Rule, and it is one of the most 

commonly used. This rule is based on the idea of continuously modifying the strengths 

of the input connections to reduce the difference (the delta) between the desired output 

value and the actual output of a neuron. This rule changes the connection weights in the 

way that minimizes the mean squared error of the network. The error is back propagated 

into previous layers one layer at a time. The process of back-propagating the network 

errors continues until the first layer is reached. The network type called Feed forward, 

Back-propagation derives its name from this method of computing the error term.This 
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rule is also referred to as the Windrow-Hoff Learning Rule and the Least Mean Square 

Learning Rule. 

3.5.5.4 The Gradient Descent Rule: 

This rule is similar to the Delta Rule in that the derivative of the transfer function is 

still used to modify the delta error before it is applied to the connection weights. Here, 

however, an additional proportional constant tied to the learning rate is appended to the 

final modifying factor acting upon the weight. This rule is commonly used, even though 

it converges to a point of stability very slowly. 

It has been shown that different learning rates for different layers of a network help the 

learning process converge faster. In these tests, the learning rates for those layers close 

to the output were set lower than those layers near the input. This is especially 

important for applications where the input data is not derived from a strong underlying 

model. 

3.5.5.5 Kohonen's Learning Law 

This procedure, developed by Teuvo Kohonen, was inspired by learning in biological 

systems. In this procedure, the neurons compete for the opportunity to learn, or to 

update their weights. The processing neuron with the largest output is declared the 

winner and has the capability of inhibiting its competitors as well as exciting its 

neighbours. Only the winner is permitted output, and only the winner plus its 

neighbours are allowed to update their connection weights. 

The Kohonen rule does not require desired output. Therefore it is implemented in the 

unsupervised methods of learning. Kohonen has used this rule combined with the on 
centre/off-surround intra- layer connection ( discussed earlier) to create the self 

organizing neural network, which has an unsupervised learning method. 
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3.6 Summary 

In this chapter, the structures of the neural network are given, the mathematical model 

of NN and their adjustable parameters starting from single neuron with many inputs to 

multilayer neural network, and then most common used activation functions such as 

Log-Sigmoid, Identity function, Binary step function are described. 

Training of Neural Network is discussed in detail. Supervised, unsupervised and error 

backpropagation methods and differences among them are considered. 

The brief introduction to learning algorithms, such as Hebb's Rule, Hopfield Law, The 

Delta Rule are given. 
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CHAPTER FOUR. DEVELOPMENT OF NEURAL CONTROL SYSTEM 

4.1 Overview 

The traditional algorithms and artificial intelligence methods do not always adequately 

describe some processes for complex objects that are characterized nonlinearities. An 

effective method for development of control system is using the artificial intelligence 

ideas, such as neural technology for developing the control systems. NN allows to 

improve the quality of the systems by paralleling computational processes, improve 

flexibility of systems by means of learning and adaptation abilities. 

The use of neural networks control to solve the problem of controlling nonlinear 

dynamic systems has received attention from many researchers due to their potential in 

dealing with complex and nonlinear mappings. Neural networks can map complex 

relations without an explicit set of rules and has a very good learning ability. 

The complexity of a number of technological processes and the pressing regime of their 

functioning require the use of more qualitative control algorithms for regime 

parameters that provide possibility of learning and adaptation to changes in the 

environment. However the algorithms developing on the base of traditional approach 

are complex and their implementation is difficult. 

One of effective method for development of control system is using the artificial 

intelligence ideas. However, the traditional algorithms and artificial intelligence 

methods do not always adequately describe some processes for complex objects. 

In this condition it is advisable to use neural technology for developing of the control 

systems. Using it allows to improve the quality of systems by paralleling computational 

processes. The ability of learning and adaptation improve flexibility of the systems. 

In this chapter, the development of direct and inverse controllers based on neural 

network is considered. 
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4.2 The Development of Neural Control Systems 

4.2.1 Supervisory Control 

The neural controller in the system is utilized as an inverse system model as shown in 

Fig. 4.1. The inverse model is simply cascaded with the controlled system such that the 

system produces an identity mapping between the desired response (i.e., the network 

input r) and controlled system output y. This control scheme is very common in 

robotics applications and is appropriate for guidance law and autopilot designs. Success 

with this model clearly depends on the fidelity of the inverse model used as the 

controller. 

r 
Plant 

y u 

Figure 4.1. Supervisory control scheme 

4.2.2 Synthesis of direct neural controller 

The structure of inverse neural controller is shown in figure 4.2. The inputs for the 

neural controller are one and two- step delayed outputs of the plant, one step delayed 

output of neural controller and the reference signal. These signals are given to the 

neural network input, after processing in neural network block the output control signal 

of network is entered to the plant input. Plant outputs are input for the controller. 
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Figure 4.2 Structure of inverse controller 

The main problem here is constructing neural controller. For this reason the result of 

inverse identification is used. The weight coefficients obtained from inverse 

identification are used in inverse neural controller to control plant. The structure of 

inverse identifier is shown in fig. 4.3. Here input signals of neural network are control 

object output signals. Those signals enter to NN, are processed and the derived signals 

on the output of network are compared with object input. In the result of comparison 

the value of error E=U(k)-UN(k) is calculated. This error corrects the value of synaptic 

weights of NN to minimise error. In the result of learning the correction of weight 

coefficients is performed and in NN the inverse plant model is derived. Leaming 

processes is continued until the value of error attains to minimum. In the result of 

learning the derived model on NN is taken as object model. 

For learning of NN the 'backpropagation' algorithms is used. In the NN the following 

activation function is used. 

(4.1) 

Using feedforward neural network the construction of the neural controllers is 

described in [20]. 
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Figure 4.3 Structure of inverse identification 

The program performing inverse identification processes and controlling object is 

developed. The system is implemented using Turbo Pascal and a computer IBM PC/AT 

In fig. 4.4 the simulation result that demonstrates time response of the system with 

inverse neural controller is shown. Although the inverse identification of the object and 

use of their results in the inverse neural controller require certain time. 

1 

0 n 

Figure 4.4. Time response of control system 

4.3 Development Neural Control System 

Assume that control object is described by the following differential equation 
n m L a0_iy(i) (t) + ccp(y(t)) = L bm-ju<D(t) (4.2) 
i=l j=l 
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Where a, (i=l,n) and bj G=l-:m) are unknown parameters of control object, dis delay; c 

is unknown non-linear parameter, m<n. 

The problem consists in constructing the controller for control of object ( 4.2) that 

would provide the target characteristic of system. 

At first the development of PD- neural controller for control of regime parameters of 

control object is considered. In figure 4.5 the structure of PD- neural controller is 

shown. 

CONTROL I y(t) 
OBJECT • 

Fig.4.5. Structure of neural PD- controller. 

The synthesis of neural controller includes the determination of the scale coefficients 

and parameters of the neural network (NN). In the controller synthesis processes the 

main problem is learning of the NN coefficients. 

The architecture of the network is chosen to be feed forward consisting of three layers: 

input, hidden and output layer. The problem of control system synthesis on the base of 

NN is the following: 

Assume there is target behavior for the constructed control system. It is necessary to 

determine the values of parameters- weight matrix wu and scale coefficients using of 
which in control system for object (4.2) would allow achieving time response, which 

provides target step response of the system. 

..y''· .· ·1. /~-.,.- 



The input signals error e, and error derivative e' after scaling with coefficients ke, ke' 

are entered to neural network. The functioning of neural network is performed by using 

activation function. 

U=Y/(A+\YI). Here Y=XW. (4.3) 

For synthesis of neural controller the NN learning is performed by using 'back 

propagation' algorithm. The NN learning is performed in the closed control system, i.e. 

for learning NN error between target characteristic of control system and current output 

value of implemented system (output of control object) ~(y, t)=ke(g (t)-y(t)) is used. 

That error is used for correction NN parameters for adjusting of controller. 

Developed Neural will be used for control of top temperature of column of oil refinery 

plant. An oil refinery consists of a series of distillation towers and furnaces (Appendix 

D). Crude oil is piped through hot furnaces and resulting liquids and vapors are 

discharged into distillation towers to be separated into components or fractions by 

weight and boiling point. Gasoline, liquid petroleum gas, kerosene, diesel oil, and 

intermediate streams are produced. The effective control of the parameters such as 

temperature, pressure in the column define the quality of these products. In the thesis 

the controlling top temperature of of columun is considered. The simulation of control 

system for control top temperature have been carried out. For the simulation the models 

of control object are chosen by using following differential equations: 

(4.4) 

here y(t)- regulation parameter of object, u(t)- neural controller's output, where ao= 

0.072 min", a1=0.56 min, a2=1, b0=60 °C/(kgf/cm2), d=0.15 min is delay. 

The neural controllers development for given control objects are performed. In the 

result of learning corresponding values of neural network coefficients are determined. 

The Program that simulates neural control system is given in appendix A At first stage 

using generalization button the initial values of weight coefficients of neural control 
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randomly generalized. Second picture of appendix A demonstrate value of weight 

coefficients. 

Using learning button the learning of neural control is carried out (Appendix B). In 

figure 4.6 learning progress of neural control system is given. Using "saving 

parameters" button, the learned parameters values of neural control are stored in file. 

Test button stage is used for control of dynamic plant. 

Confirm IBJ 
Contn.Je - res Ext - No? 

Set-Poirt [10 

Figure 4.6 Leaming process of neural control system 

After learning using founded weight coefficients of neural controller the online control 

of plant (4.4) have been carried out. In figure 4.7 the values of founded weight 

coefficients are shown. 
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Generalization of Network 

w[13] 0.00 
w[14] 0.00 
w[15] 0.16 
w[16] 0.04 
w[17] 0.04 
w[18] 0.12 
w[19] 0.06 
w[110] 0.02 
w[111] 0.06 
w[112] 0.08 
w[113) 0.00 
w[114) 0.08 
w[115] 000 
w[116) 0.16 
w[l 17] 0.00 
w[23) 0.04 
w[24) 0.18 
w[25] 0.06 
w[26] 0.14 
w[27] 0.06 
w[28] 0.12 
w{29) 0.16 
w[210) 0.14 
w[211] 0.06 
w{212] 0.02 
w[213] 0.06 
w(214] 0.08 
w[215] 0.04 

f •••••• - •. » •. - •• ·-···-·'I L ... CLOSI_ ! 

Figure 4.7 Weight coefficients ofNeural Controller. 

In figure 4. 8 the time response characteristic of neural control system is given. 
-,Cl It~ Neuu,Controllei ~ _ _ " -~-. - , 

Conlum £3 

? Coriirue · Yes Eiat · No? 

Figure 4.8 Automatic control systems with neural controller 
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The graphical presentation of control system with traditional PD controller for plant 

(4.4) is taken from [20]. Also using traditional PD controller the control of plant (4.4) is 

carried out [20]. In figure 4.9 the time responses of PD controller for control object 

( 4 .4) is shown. 

PD Controller- 
X 

T•0.1S1n1ln 
t 

Figure 4.9 Time response characteristics of control system with PD controller 

4.4. Analysis of obtained results 

Then the results of simulation of neural controllers for technological processes control 

are compared with simulation results of the traditional PD controller. When optimal 

value of tuning parameters of PD- controller amplifying coefficient 

kp=0.08[(kgf/cm2)!°C] and differentiation time Td=0.15 min., then transient process in 

the control system oscillates with 18% of transient overshoot. Where settling time 

t=l.3-1.5 min, static error est(t)=0.15 where t> 9t, and value of squared integral control 

quality index J=276.4. Such value of static error is not satisfactory. 

One can see from transient object operation mode of automatic control system with 

neural PD-controller that static error (es1~0) is almost absent, transient overshoot is 

almost 8.6%, settling time t=0.9 min., J=152.7 (Table 4.1). In figure 4.10 comparative 

+result of time response characteristic of conventional PD and neural PD controllers is 

given. 
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Table 4.1 Comparison Results of PD and Neural PD Controllers 

Neural Controller PD Controller 

J=152.7 J=276.4 

est= 0 est= 0.15 

Overshoot= 0.086 Overshoot= 0 .18 

ts=0.9 ts=l.3-1.5 

X al Controller 

110, 0111' fl - - 
T-0.1Smln 

Figure 4.10 Comparison between Traditional PD- and Neural Controller 

The graphical presentation of control system with traditional PD controller for plant 

(4.4) is taken from [20]. Comparison results show that neural control system is more 

efficient. 

4.5 Summary 

The development of neural control system has been performed. Using Delphi 

programming the modeling of neural controller is carried out. The simulation result of 

implemented system is compared with result of traditional system. The obtained results 

demonstrate the efficiency of neural technology in control system development. 
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CONCLUSION 

Analyses of technological processes show that the traditional controllers do not give 

desired results during controlling complicated process characterizing non-linearity. For 

these processes it is advisable to use controller based on neural network. 

To develop neural controller for these processes in the thesis the following have been 

performed. 

The structures of neural controllers for technological process control and the functions 

of their main blocks are given. 

The mathematical model of construction of neural controller is presented. The structure 

and learning algorithm of neural network are represented. 

The development of neural controller for control of technological process is carried out. 

The simulation of neural control system is performed. The result of simulation is given 

The results of simulation of neural control system have been compared with the 

simulation results of traditional control system. Comparative results demonstrate the 

improvement of accuracy of control of system based on neural controller. 
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APPENDIX A 

w[l3J 
w[14J 
w[15l 
w[16] 
w!17] 
wI1Bl 
w[19J 
w[l 10] 
w[111] 
w[112) 
w[113] 
w[114J 
w[115) 
w[116] 
w[117J 
w[23] 
w[241 
w[25) 
w[26) 
w[27} 
w[28] 
w(29J 
w[210] 
w[211] 

2) 
3) 

w[214J 
w[215] 

0.00 
0.00 
0.16 
0.04 
0.04 
0.12 
0.06 
O.D2 
0.06 
O.OB 
0.00 
0.08 
0.00 
0.16 
0.00 
0.04 
0.18 
0.06 
0.14 
0.06 
0.12 
0.16 
OJ4 
0.06 
0.02 
1106 
1108 
0.04 
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APPENDIXB 

Confirm El 

Ct) Continue· Yes Exit· No? 
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APPENDIX C 

unit Unitl; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, ExtDlgs, ExtCtrls, Mask, Buttons; 

con st 
nl=2; n2=17; m=l8; 11=1000; 
kx=lO; 

type 
u=array [l .. n2,l .. m]of real; 
r=array[l .. nl] of real; 
q=array[l .. m] of real; 
c=file of q; 
ul=array [O .. 11] of real; 
uul=array [0 .. 11] of integer; 
vv=file of u; 
TForml = class(TForm) 

Labell: TLabel; 
Imagel: Timage; 
Timerl: TTimer; 
Panell: TPanel; 
MaskEditl: TMaskEdit; 
StaticTextl: TStaticText; 
MaskEdit2: TMaskEdit; 
StaticText2: TStaticText; 
CheckBoxl: TCheckBox; 
BitBtnl: TBitBtn; 
BitBtn2: TBitBtn; 
Image2: Timage; 
GroupBoxl: TGroupBox; 
Buttonl: TButton; 
Button2: TButton; 
Button3: TButton; 
Button4: TButton; 
Buttons: TButton; 

procedure FormCreate(Sender: TObject); 
procedure ButtonSClick(Sender: TObject); 
procedure ButtonlClick(Sender: TObject); 
procedure Button2Click(Sender: TObject); 
procedure BitBtnlClick(Sender: TObject); 
procedure BitBtn2Click(Sender: TObject); 
procedure Button3Click(Sender: TObject); 
procedure Button4Click(Sender: TObject); 

//procedure TimerlTimer(Sender: TObject); 
private 
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g,xO,rc:real; 
xl,yl,code:integer; 
shl:string; 

Private declarations 
public 

{ Public declarations 
end; 

procedure randwl; 
procedure cons; 

var 
Forml: TForml; 
rc:real; 
w:u; 
i,j,k,l,len:integer; 
x,z:r; xx,xxx:ul; 
y,yp,h,tt,net:q; d2,g,uu,dy,jj:real; 
e:vv; f:c; ch,chl,ch2,key:char; 
a0,al,a2,ft,kl,k2,k3,t,aa,aal,aa2,bbl,bb2,x0:real; 

{graph} 
//xl,yl,x2,y2,gg,kg,kx:integer; 
//ii,yll,xl2,yl2,yl3:uul; 

implementation 

uses Unit2; 

{$R *.dfm} 
Procedure funk(x:r;var y,net:q); 
var 
i,k:integer; 
BEGIN 
for i:=l to nl do y[il :=x[il; 
for k:=nl+l to n2 do 
begin 
net [kl :=0; 
for i:=l to nl do 

net [ kl : =net [ k] +y [ i l *w [ i, kl ; 
net[kl :=net[kl+w[nl+l,kl*y[ml; 

y[kl :=1/ (l+exp (-net [kl)); 
end; 

for k:=n2+1 tom do 
begin 
net [kl :=0; 
for i:=nl+l to n2 do 

net[kl :=net[kl+y[il*w[i,kl; 
y [ kl : =l I ( l+exp (-net [ kl ) ) ; 
end; 

END; 
Procedure Train; 

var 
i,k,j:integer; 

begin 
for k:=n2+1 tom do 
h [kl : =d y * ( 1-y [kl ) * y [ k] ; 
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for i:=nl+l to n2 do 
for k:=n2+1 tom do 
begin 
w[i,k] :=w[i,k]+d2*h[k]*y[i]; 

end; 

for i:=nl+l to n2 do 
begin 
tt[i]:=0; 
for k:=n2+1 tom do 

h[i] :=(1-y[i] )*y[i]*tt[i]; 
end; 

for j:=1 to nl do 
for i:=nl+l to n2 do 

W [ j t i l : =w [ j t i l +d2 * h [ i l * y [ j l i 
end; 

Procedure rrrl; 
var 
i,j:integer; 

begin 

for i:=1 to nl do 
for j:=nl+l to n2 do 
begin 

if (w[i,j]>l) or (w[i,j]<-1) then w[i,j] :=random; 
end; 

for i:=nl+l to n2 do 
for j:=n2+1 tom do 
begin 

if (w[i,j]>l) or (w[i,j]<-1) then w[i,j] :=random; 
end; 

end; 

procedure randwl; 
var 
i,j:integer; 
begin 
for i:=1 to nl do 
for j:=nl+l to n2 do 
w[i,j] :=rc*random(lO); 

for i:=nl+l to n2 do 
for j:=n2+1 tom do 
w[i, j J :=rc*random(lO); 

end; 

procedure cons; 
begin 
aal:=(a0*2+al*t)/(a0+al*t+a2*t*t); 
aa2:=-a0/(a0+al*t+a2*t*t); 
bbl:=(ft*t*t)/(a0+al*t+a2*t*t); 
bb2:=0; 
//form2.Memol.Text:=form2.Memol.Text+'al=',aal:9:6, 'a2=', 'bl',aa2:9:6); 
end; 
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procedure TForml.FormCreate(Sender: TObject); 

begin 
labell.Font.Color:=clnavy; 
labell.Font.Size:=20; 

labell.Caption:=' Neural Control System '+#13#10+ 
For Dynamic Applications'; 

end; 

{ procedure TForml.TimerlTimer(Sender: TObject); 

var 
x:integer; 
begin 
x:=0; 
while x<3 do 
begin 
imagel.Picture.LoadFromFile('F:\Neural Network\untitled2.bmp'); 

sleep(500); 
imagel.Picture.LoadFromFile('F:\Neural Network\untitled.bmp'); 

sleep(500); 
x:=x+l; if x=3 then x:=0; 
end; 
end; 

procedure TForml.Button5Click(Sender: TObject); 
begin 
Halt; 
end; 

procedure TForml.ButtonlClick(Sender: TObject); 

var 
i,j:integer; 
chl,ch3:string; 
begin 
assignfile (e, 'D: \abidin2. dat'); 
//if ioresult<> 0 then rewrite(e); 
rewrite(e); 

for i:=1 to nl do 
for j:=nl+l to n2 do 
begin 
rc:=0.02; 
w[i,j] :=rc*random(lO); 
st r ( w [ i, j J : 10 : 2, ch 1 ) ; 
form2.Show; 
form2.memol.Text:=form2.memol.Text+'w['+inttostr(i) 
+inttostr (j) +' J '+chl+#l3#10; 
II listboxl.Additem(chl,w[i,j] ); 
end; 
form2.Show; 
for i:=nl+l to n2 do 
for j:=n2+1 tom do 
begin 
w[i,j] :=rc*random(lO); 
str(w[i,j] :10:2,ch3); 
form2.memol.Text:=form2.memol.text+'w['+inttostr(i) 
+inttostr ( j) +' J '+ch3+#13#10; 
end; 
seek(e,filesize(e)); 
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write(e,w); 
closefile(e); 
end; 

procedure TForml.Button2Click(Sender: TObject); 

var 
i,j:integer; 
chl,ch2:string; 
begin 
panell.Visible:=true; 

val(maskeditl.Text,g,code); 
val(maskeditl.Text,xO,code); 
rc:=0.02; 

end; 

procedure TForml.BitBtnlClick(Sender: TObject); 
label 11,13,quitl; 
var 
i,j:integer; 
chl,ch2:string; 
begin 
panell.visible:=false; 
Groupboxl.visible:=false; 
imagel.visible:=false; 
image2.Align:=alclient; 
xl:=0; yl:=round(image2.Height/2); 
if checkboxl.Checked then 
begin 

assignfile ( e, 'd: \abidin2. dat') ; 
reset(e); 
read(e,w); 
form2.Show; 
for i:=l to nl do 
for j:=nl+l to n2 do 
begin 
str(w[i,j] :10:2,chl); 

form2.memol.Text:=form2.memol.text+'w['+inttostr(i) 
+inttostr (j) +' J '+chl+#l3#10; 

end; 
for i:=nl+l to n2 do 
for j:=n2+1 tom do 
begin 
str(w[i,j] :10:2,ch2); 
form2.Show; 
form2.memol.Text:=form2.memol.text+'w['+inttostr(i) 
+inttostr (j) +'] '+ch2+#13#10; 

end; 
end 

else 
randwl; 

d2:=0.0002; 
l:=2; ~:=:.:2; aa:=l; 
20:=:.:-:; a::=0.56; a2:=l; ft:=60; 
20:==-=~=; a::=0.072; a2:=l; ft:=60; 
k . - - - - - .. k3 1 [ ] 0 _: =- _; .~: =- _; : = ; y m : = ; 
xx:::-:: :=:;:-:...---=::-l] :=0; xx[l] :=0; 
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xxx[l-2] :=xO; xxx[l-1] :=xxx[l-2]; xxx[l] :=xxx[l-1]; 

cons; jj:=0; 
showmessage('Click a key'); 
form2.Visible:=false; 
image2.Visible:=true; 
image2.Canvas.Moveto(xl,yl); 
image2.Canvas.Lineto(xl+image2.Width,yl+Round(kx*g)); 
image2.canvas.MoveTo(O,O); 

11: while l<=image2.width do begin 
z [ 1 J : =g-xxx [ 1 J ; 
z [ 2 J : = ( XXX [ 1 J -xxx [ 1-1 J ) It; j j : =j j + z [ 1 J * z [ 1 J ; 
x[l] :=kl*z[l]; x[2] :=k2*z[2]; 
funk(x,y,net); 
uu:=k3*y[m]; 
l:=1+1; 

xx[l] :=(uu*bbl+aal*xx[l-l]+aa2*xx[l-2]); 
wr i teln ( 1, '=l' , z [ 1 J : 8: 4, '=z=' , z [ 2 J : 8: 4, ' uu=' , uu: 8: 4, ' xx=' , xx [ 1 J : 8: 4, ' 

jj=',jj:8:4); readln;} 
xxx[l] :=xO+xx[l]; 

image2.Canvas.LineTo(xl+l,yl+Round(kx*xxx[l])); 
if l=image2.Width-2 then 
begin 

Exi t-Esc?', 
mrYes then 

if MessageDlg(' Continue -Enter 
mtConfirmation, [mbYes, mbNo], 0) 
begin 

II showmasege('Click a keyyyyyy'); 
image2.Canvas.Fil1Rect(Rect(O,O,image2.Width,image2.Height)); 
xx [ 0 J : =xx [ 1- 2 J ; xx [ 1 J : =xx [ 1-1 J ; xx [ 2 J : =xx [ l J ; 
xxx [ 0 J : =xxx [ 1- 2] ; xxx [ 1 J : =xxx [ 1-1 J ; xxx [ 2 J : =xxx [ l] ; 
l:=2; 
image2.Canvas.MoveTo(xl+l,yl+Round(kx*xxx[l])); 
end 
else 
goto quitl; 

end; 
II if len=2 then goto 14; 
if (z[l]>0.004) or (z[l]<-0.004) then 

begin 
dy:=z[l]lkl; 

train; 
rrrl; 
II if imagel. then goto 14; 
goto 11; end else 
begin 

cons; 
end; 

end; 
quitl: image2.7isible:=false; 

:or::i:.7~s~ble:=true; 
g~o~?box:.visible:=true; 

end; 
procedure ~~c~l.3~rarn2Click(Sender: TObject); 
begin 
forml.Visib~e:=~~~e; 
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cons; jj:=O; 
editl.Text:=floattostr(g); 

showrnessage('Click a key'); 
form2.Visible:=false; 
image2.visible:=true; 
image2.Canvas.Fil1Rect(Rect(O,O,image2.Width,image2.Height)); 

image2.Canvas.Moveto(xl,yl); 
image2.Canvas.Lineto(xl+image2.Width,yl); 
image2.canvas.MoveTo(xl,yl-Round(kx*g)); 
image2.Canvas.Lineto(xl+image2.Width,yl-Round(kx*g)); 

image2.Canvas.Moveto(xl,yl); 
11: while l<=image2.width do begin 

z[l] :=g-xxx[l]; 
z [ 2] : = ( xxx [ l] -xxx [ 1-1] ) It; j j : =j j +z [ 1] * z [ 1] ; 
x[l] :=kl*z[l]; x[2] :=k2*z[2]; 
funk(x,y,net); 
uu:=k3*y[m]; 
l:=l+l; 

xx[l] :=(uu*bbl+aal*xx[l-l]+aa2*xx[l-2]); 
writeln(l, '=l' ,z[l] :8:4, '=z=' ,z[2] :8:4,' uu=' ,uu:8:4,' xx=' ,xx[l] :8:4,' 

jj=',jj:8:4); readln;} 
xxx[l] :=xO+xx[l]; 
z [ 1] : = ( g-xxx [ 1] ) ; 
image2.Canvas.LineTo(xl+l,yl-Round(kx*xxx[l])); 
if l=image2.Width-2 then 
begin 

if MessageDlg(' Continue - Yes Exit - No?', 
mtConfirmation, [mbYes, mbNo], 0) = mrYes then 

begin 

II showrnasege('Click a keyyyyyy'); 
image2.Canvas.Fil1Rect(Rect(O,O,image2.Width,image2.Height)); 
xx[O] :=xx[l-2]; xx[l] :=xx[l-1]; xx[2] :=xx[l]; 
xxx[O] :=xxx[l-2]; xxx[l] :=xxx[l-1]; xxx[2] :=xxx[l]; 

l:=2; 
image2.Canvas.Moveto(xl,yl); 
image2.Canvas.Lineto(xl+image2.Width,yl); 
image2.canvas.MoveTo(xl,yl-Round(kx*g)); 
image2.Canvas.Lineto(xl+image2.Width,yl-Round(kx*g)); 

image2.Canvas.MoveTo(xl+l,yl-Round(kx*xxx[l])); 

end 
else 
goto guitl; 

end; 
II if len=2 then goto 14; 
if (z[l]>0.004) or (z[l]<-0.004) then 

begin 
dy:=z[l]lkl; 

train; 
rrrl; 
II if imagel. then goto 14; 
goto 11; end else 
begin 

{ 14: if forml.KeyPress(ord(var key:char)) then 

begin 
Ch:= ReadKey; 
if Ch= #59 then 
begin 
Ch:= ReadKey; 



xxx [ 0 J : =xxx [ 1- 2 J ; xxx [ 1 J : =xxx [ 1-1 J ; xxx [ 2 J : =xxx [ l J ; 
l:=2; 
image2.Canvas.MoveTo(xl+l,yl+Round(kx*xxx[l])); 

end 
else goto quitl; 

end; 
begin 

{ Ch := ReadKey; 
{ WriteLn(' Enter set-point value '); 

readln (g); 
end; 

end; 
quitl: image2.visible:=false; 

forml.visible:=true; 
groupboxl.Visible:=true; 

end; 

procedure TForml.Button4Click(Sender: TObject); 
begin 
assignfile (e, 'd: \abidin2. dat'); 
rewrite(e); 
write(e,w); 
closefile(e); 
end; 

end. 
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APPENDIXD 

--..........__ . Petroleum 
120oC 'Gas 

150°c 

Lubricating 
oil, paraffin 
wax and 

MA:£ .Asphalt 

Crude oil 

Furnace 

Figure Dl Structure of Oil Refinery 

Gasoline 
(petrol) 

Kerosene 

Diesel 

Industrial 
fuel oil 
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