
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

MULTITASKING APPLICATION ON
MICROCONTROLLERS

MASTER THESIS

Student: Majdi Rasmi Khalil Tibi (20033596)

..
Supervisor: PROF.DR.DOGAN IBRAHIM

Nicosia - 2005

.. __ . -·- --- --- ~ --,c-

Majdi Tibi:

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakhraddin Mamedov
Director

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

Assoc. Prof. Dr. Rahib Abiye
Engineering'l

Assist. Prof. Dr. Kadri Buruncuk, Committee Member, Computer
Engineeriv,e~~-rtı71t, NEU

Assist. Prof. Dr. Adil An1¢a~mittee Member, Computer
Engineering Department, NEU

Mr. Kaan Uyar, ~?-7~omputer
Engineer~ı;~:~~nt, NEU
. /,0~ }~

Prof. Dr. Doğan Ibrahim, 5'upervisor,Chairman of Computer
Engineering Department, NEU

<Dedicated to my (parents,

Sisters, (J3rotliers, Uncles

;4.ncfmy Tiancee

..

l

ACKNOWLEDGEMENTS

Firstly, I would like to present my special appreciation to my supervisor Prof Dr.

Doğan Ibrahim, without whom it would have not been possible for me to complete my

thesis. His trust in my work and me and his priceless awareness for the project has

made me do my work with full interest. His friendly behavior with me and his words of

encouragement kept me doing my thesis.

Secondly, I offer special thanks to my uncle Dr. Jawad Tibi, who encouraged me in

every field of life and tried to help whenever I needed. He enhanced my confidence in

myself to make me able to face every difficulty easily. I am also grateful to my sisters,

brothers and my fiancee, And because of them I am able to complete my work.

Finally, I would also like to pay my special thanks to all of my friends who helped

me and encouraged me for doing my work. Their continuous encouragement and

friendly environment has helped me to complete this thesis successfully. I wish to

express my sincere thanks to them as they spent their time and provided very helpful -

suggestions to me.

..

11

---------===-----=--==-=,...... ...,,....,,,.....,...,. ----·-- ______,,...~...,..,.

ABSTRACT

A microcontroller is a single chip computer which contains the CPU, data and program

memory, serial and parallel I/0, timers, and interrupt logic. About 40% of microcontroller

applications are in office automation, such as PCs, laser printers, fax machines, intelligent

telephones, and so forth. About one-third of microcontrollers are found in consumer

electronics goods. Products like CD players, hi-fi equipment, video games, washing

machines, cookers and so on fall into this category. The communications market,

automotive market, and the military share the rest of the microcontroller application areas.

Basically, a microcontroller executes a user program which is loaded in its program

memory. Under the control of this program, data is received from external devices (input

devices), manipulated, and then sent to external devices (output devices).

Microcontrollers have traditionally been used to control a single device. But as the demand

for complex control operations have increased, the need to control multiple devices at the

same time has also increased. This is known as multitasking where a single microcontroller

is used to control more than one task at the same time.

This thesis describes the various multitasking algorithms and develops simple multitasking

algorithms which can be implemented on low-cost microcontrollers. The PIC family of

microcontrollers is chosen as the target microcontroller in this thesis. PIC is currently one

of the most popular microcontrollers, used extensively by many engineers, students, and

hobbyists. ..

It is shown in the thesis that simple, but effective multitasking algorithms can be developed

on the PIC microcontrollers using the popular PIC Basic language, and the native PIC

assembler language.~

lll

TABLE OF CONTENTS

DEDICATED

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

1. MULTITASKING

11

111

ıv

vııı

X

1 . 1 Overview

1

4

4

4

5

8

9

12

14

14

16

17

18

18

19

20

21

22

22

1 .2 Single Tasking

1 .3 What is Multitasking

1 .3. 1 Comparing between StateMachines and TimeSlicing

1 .4 Deterministic Multitasking

1 .5 How does Multitasking work?

1.6 Types of Multitasking

1 .6. 1 Cooperative Multitasking

1 .6.2 Time Slice Multitasking

1 .6.3 Preemptive Multitasking

1. 7 The concept of tasking

1 . 7. 1 Scheduler

1. 7. 1. 1 First-Come, First-Served (FCFS)..
1.7.1.2 Shortest-Job-First (SJB)

1. 7. 1 .3 Shortest Remaining Time First

1.7.1.4 Round Robin Task Scheduling

1.7.1.5 highest runnable task

1.7.1.6 Priority and Round Robin Tasking

1 .8 Why Multitasking on Microcontrollers is important?

1.9 Summary

23

24

25

ıv

-- - ---- - ----------- - - --

2. MICROCONTROLLERS

2. 1 Overview

2.2 What is a microcontroller?

2.3 Microprocessors and Microcontroller

2.4 Basic elemints of Microcontroller

26

26

26

29

30

30

31

32

2.4.1 Memory Unit

2.4.2 Central Processıng Unit

2.4.3 Bus

2.4.4 Input-Output Unit

2.4.5 Serial Communication

2.4.6 Timer Unit

2.4.7 Watchdog

2.4.8 Analog To Digital Converter

2.5 Embedded Controller

2.6 Microcontroller Applications

2.6. 1 Environmental Applications

2.6.2 Industrial Applications

2.7 PIC Microcontroller

2.7.1 The PIC16F84 Microcontroller

2.7.1.1 Internal Components Of PIC16F84

2.7.2 The PIC16F877 Microcontroller

2.8 Summary

3. MICROCONTROLLER SYSTEM DEVELOPMENT CYCLE..

33
,., "
.J .J

35

35

36

38

3 .2.3 Constants

39

39

40

40

41

42

51

52

53

53

53

53

54

54

55

56

57

3. 1 Overview

3 .2 Basic elements of PIC BASIC language

3.2.l Identifiers

3.2.2 Labels

3.2.4 Variables

3.2.5 Sequences

3.2.6 Modifiers

V

3.2.7 Symbols 57

3 .2.8 Direction Include 57

3.2.9 Comments 58

3 .2.1 O Programming ling with more instructions 59

3.2.11 Transfer of instruction into another line 59

3.2.12 Define 59

3 .2.13 Disable 62

3.2.14 Enable 62

3 .2.15 On Interrupt 63

3 .2. 16 Resume 63

3.3 PIC BASIC Compiler 63

3.4 Writing and Compilation of a BASIC program 64

3 .5 Loading a program into the Microcontroller memory 65

3.6 Running your program 67

3.7 Summary 69

4. MULTITASKING APPLICATION ON PIC MICROCONTROLLER 70

4.1 Overviw 70

4.2 PrograrnmıngLanguages Of Microcontroller 70

4.3 Single Tasks On PIC Microcontroller Using PIC BASIC 71

4.3.1 Led Diode Example 71

4.3.2 Button Example 74

4.3.3 Seven-Segment Displays Example 78

4.3.4 Building Light Control..Example 85

4.4 Multitasking Application On PIC Microcontroller 87

4.4.1 State Machine Multitasking Circuit Block Diagram 87

4.4.2 Analogue Temperature Sensor (LM35) 88

4.4.3 Analogue To Digital Converter (ADC0804) 88

4.4.4 BCD To 7segment Decoder (74LS47) 89

4.4.5 The Circuit Diagram 90

4.4.6 Implementing The State Machine Algorithm 91

4.4.7 Implementing The Time Sliced Multitasking Algorithm 94

vı

4.4.8 Implementing The Cooperative Multitasking Algorithm

4.4.8.lGeneralising To Many Tasks

4.5 Summary

CONCLUSION

REFFERENCES

96

101

109

110

111

..

vıı

LIST OF FIGURES

1.1 Single tasking and multitasking

1.2 First-come, first-served scheduling

1.3 Shortest-job-first scheduling

1.4 Round robin task scheduling.

1.5 Tasks running with this priority.

2.1 Example of simplified model of a memory unit.

2.2 Example of simplified central processing unit with three registers.

2.3 Connecting memory and central processing unit.

2.4 Example of a simplified input-output.

2.5 Serial unit used to send data, but only by three lines.

2.6 Timer unit generates signals in regular time intervals.

2. 7 Watchdog reset.

2.8 Blocks for converting an analogue to a digital form.

2.9 Physical configuration of the interior of a microcontroller.

2.10 Microcontroller outline with its basic elements and internal connections.

2.11 PINs of PIC19F84A.

2.12 Flash program memory.

2.13 Special function registers.

2.14 Block diagram of PIC16F84A.

2.15 Call instruction.

3.1 The PIC BASIC compiler. ..
3.2 The connection between PC, programming device and the microcontroller.

3.3 LM7805 regulator circuit.

3.4 Switching on LED.

4.1 Diagram of LED diode.

4.2 LED diode is turned on by a logical one.

4.3 LED diode is turned on by a logical zero.

4.4 LED diodes are connected to portB and are turned on by a logical one.

4.5 Button with "PULL-UP" resistor.

4.6 Button with "PULL-DOWN" resistor.

vm

13

20

21

22

23

30

31

32

33

34

35

35

36

37

37

42

43

44

45

47

64

67

68

68

72

72

73

73

75

76

4.7 Four buttons connected to the microcontroller using the pull-up resistors. 76

4.8 Seven-Segment digits. 79

4.9 Connecting seven segment displays in multiplex mode with the 79

microcontroller.

4.10 Building light control.

4.11 Block diagram ofmultitasking circuit.

4.12 LM35 Pin configuration.

4.13 ADC0804 Pin configuration.

4.14 74LS47 pin configuration.

4.15 The circuit diagram.

4.16 The Basic program.

4.17 Time sliced multitasking code

4.18 Cooperative multitasking with 2 tasks.

4.19 Screen shot of the simulation.

4.20 Generalised Cooperative multitasking algorithm.

4.21 Multitasking Cooperative n tasks.

4.22 Multitasking Cooperative 5 tasks.

85

88

88

89

89

90

94

96

99

101

102

106

109

••

ıx

1.1 Comparison between state machines and timeslicing.

2.1 Pin descriptions.

2.2 SFR functions.

2.3 Initialization circuits.

2.4 Comparison of some popular rnicrocontrollers.

3.1 The size of the sequence.

3.2 The use of a direction DEFINE.

4.1 Contains corresponding mask values for numbers 0-9.

8

42

45

51

52

56

60

81

LIST OF TABLES

..

X

INTRODUCTION

From microwave ovens to alarm systems to industrial programmable logic controllers

(PLCs) and distributed systems (DCSs), embedded controllers are running our world.

Embedded controllers are used in most items of electronic equipment today. They can

be thought of as intelligent electronic devices used to control and monitor devices

connected to the real world. This can be a PLC, DCS or a smart sensor. These devices

are used in almost every walk of life today. Most automobiles, factories and even

kitchen appliances have embedded controllers in them.

The microcontrollers that are at the heart of these and many more devices are becoming

easier and simpler to use. The sheer volume of embedded controllers used in the world

drives us to understand how they work and then how to troubleshoot and repair them.

The support chips used in these controllers are becoming smarter and easier to use. This

is bringing the design and use of embedded controllers to more and more engineers

hence the need for a good understanding of what embedded controllers are and how to

troubleshoot them.

Microcontrollers are intelligent electronic devices used to control and monitor devices

connected to the real world. This can be a microwave oven, programmable logic

controller, distributed control system, car braking system, cruise missile control system,

or a smart sensor. As time goes on electronic devices get smarter and smaller, the

embedded controller will be in or associated with everything we touch throughout the

day. Early embedded controllers contained a CPU and a multitude of support chips. As

time went on, support chips were included in the CPU chip until it became a

microcontroller. A microcontroller is defined as a CPU plus random access memory

(RAM), electrically erasable programmable read only memory (EEPROM), input-

outputs (I/0), and communication circuits. The embedded controller is a

microcontroller with peripherals such as keypads, displays, and relays connected to it

and , is often connected to other embedded controllers by way of some type of

communications system.

1

The microcontroller is a direct descendent of the CPU, in fact every microcontroller has

a CPU as the heart of the device. It is therefore important to understand the CPU in

order to ultimately understand the microcontroller and embedded controller.

The central processor unit is the brain of the microcontroller. The CPU controls all

functions and uses the program that resides in RAM, EEPROM or EPROM to function.

The program may reside in one or more of these devices at the same time. Part of the

program might be in RAM while another might be in EEPROM. A program is a

sequence of instructions that tell the CPU what to do. These instructions could be

compared to instructions a teacher may give to a student to get a desired result. The

instructions sent to the CPU are very, very simple and it usually takes many instructions

to get the CPU to do what is necessary to accomplish a task.

Microcontrollers have traditionally been programmed using the native assembly

language of the target processor. It is very common nowadays to use high-level

languages such as Basic, Pascal, and C in programming microcontrollers. Assembly

language has the advantage that the execution speed is very fast. On the other hand,

developing an assembly language based program is a complex task. High-level

languages have the advantage that it is much easier to develop and maintain programs

developed using these languages. The main disadvantage of the high-level languages is

that the speed of execution is not as fast as the programs developed using the assembly

language.

Microcontrollers have traditionally been programmed to control a single device and

multi-processors, consisting of several microcontrollers are generally used to control

more than one device at the same time. It is also possible to develop multitasking

algorithms on microcontrollers such that a single microcontroller can be used to control

a number of devices all at the same time.

This thesis is about the use of multitasking algorithms on simple low-cost

microcontrollers, such as the PIC family of microcontrollers. The thesis describes the

development of several multitasking algorithms which can be implemented on PIC

microcontrollers. The PIC16F84 microcontroller is taken as an example in the thesis.

Multitasking algorithms have been developed in the thesis using the Basic high-level

2

programming language and the native assembly language of the PIC microcontrollers.

It is shown in the thesis that the low-cost microcontrollers can be programmed to

operate as multitasking processors.

The thesis consists of the introduction and four chapters:

Chapter 1 presents the principles of multitasking and describes the various multitasking

algorithms used in practice. This chapter also explains the importance of multitasking

when used on microcontrollers.

Chapter 2 provides an introduction to the architecture of the PIC microcontrollers and

describes the important features of the popular PIC16F84 microcontroller.

Chapter 3 describes the microcontroller system development cycle, the use of program

description language, and the important features of the PIC Basic compiler.

Chapter 4 presents the principles of single task operation, and simple practical examples

are provided to demonstrate the single task operation. The principles of multitasking

are also described in this chapter and various simple multitasking algorithms are

developed using the high-level Basic language and the native PIC assembler language.

A conclusion and a list of references are provided at the end of the thesis .

..

3

1. MULTITASKING

1.1 OVERVIEW

For the majorityof embedded systems, a single tasking operating system is too restrictive.

What is required is an operating system that can run multiple applications simultaneously

and provide inter task control and communication. The facilities once only available to

mini and mainframe computer users are now required by 8, 16 and 32 bit microprocessors

and microcontrollers.

Multitasking is the process of letting the operating system perform multiple tasks at what

seems to the user simultaneously. Multitasking enables a complex task to be implemented

by designing separate tasks that operate independently or cooperate with each other. This

Chapterdescribesthe principles of variousmultitasking and schedulingalgorithms.

1.2 SINGLETASKING

The first widely used operating system was CP/M [l 7], developed for the Intel 8080
microprocessor and 8" floppy disk systems. It supported I/O calls by jump tables and

quickly became standard within the industry and a large amount of application software

became available for it. Many of the micro-based business machines of the late 1970sand

early 1980swere based on CP/M. Its ideas even formed the basis of the popular MSDOS

operatingsystem,chosen by IBM for its personal computers.

CP/M is a good example of a single taşking operating system. Only one task or application

can be executed at any one time and therefore it only supports one user at a time. With a

single tasking operating system, it is not possible to run multiple tasks simultaneously.

Large applications have to be run sequentially and can not support concurrent operations.

There is no support for messagepassing or task control, which would enable applications to

be divided into separate entities. If a system needs to take log data and store it on disk and,

at the same time, allow a user to process that data using an online database package, a

single tasking operating system would need everything to be integrated. With a

multitasking operating system, the data logging task can run at the same time as the

4

database. Data can be passed between each element by a common file on disk, and neither

task need have any direct knowledge of the other. With a single tasking system, it is likely

that the database program would have to be written from scratch. With the multitasking

system, a commercially available program can be used, and the logging software interfaced

to it. These restrictions forced many applications to interface directly with the hardware

and therefore lose the hardware independence that the operating system offered. Such

software would need extensive modifications to port it to another configuration.

1.3 WHATIS MULTITASKING?

On a typical microcontroller [1] the CPUusually performs only one task at a time and when

that task is completed the next task can start. This is how the processor performs

operations in a typical real-time application. Most complex processors are designed to

operate in a multi-taskingmanner (e.g. a PC) where the processor can execute a number of

tasks concurrently.

Multitasking is, on single-processor machines, implemented by letting the running process
own the CPU for a while (a timeslice) and when required gets replaced with another

process, which then owns the CPU. The two most common methods for sharing the CPU

time is either cooperativemultitasking or preemptive multitasking.

Multitasking is the capability of performing many functions in a simultaneous or quasi

simultaneous manner. State machines and timeslicing are two popular multitasking

methods with long traditions. State mşchines have been used to design complex systems

with high reliability requirements.

In the early ages of the computers, microprocessorsand microcontrollers were designed so

that they can be used in real-time applications. Each processor was designed so that it

could be used in a single standalone application. The advances in electronic engineering

increased the processing power many times and made it possible to design multitasking

real-time applications. In SMP (symmetricMulti Processor systems) this is the case, since

there are several CPU's to execute programs on - in systems with only a single CPU this is

5

6

done by switching execution very rapidly between each program, thus gıvıng the

impression of simultaneous execution. This process is also known as task switching or

timesharing. Practically all modem operating systems have this ability.

A multitasking operating system works by dividing the processor's time into discrete time
•

slots. Each application or task requires a certain number of time slots to complete its

execution. The operating system kernel decides which task can have the next slot, so

instead of a task executing continuously until completion, its execution is interleaved with

other tasks. This sharing of processor time between tasks gives the illusion to each user

that he is the only one using the processor.

Multitasking operating systems are based around a multitasking kernel which controls the

time slicing mechanisms. A time slice is the time period each task has for execution before

it is stopped and replaced during a context switch. This is periodically triggered by a

hardware interrupt from the system timer. This interrupt may provide the system clock and

several interrupts may be executed and counted before a context switch is performed.

When a context switch is performed, the current task is interrupted, the processor's

registers are saved in a special table for that particular task and the task is placed back on

the ready list to await another time slice. Special tables, often called task control blocks

store all the information the system requires about the task, for example its memory usage,

the priority level within the system and the error handling. It is the context informationthat

is switched when one task is replaced by another. The ready list contains all the tasks and

their status and is used by the scheduler to decide which task is allocated the next time

slice.
..

The scheduling algorithm determines the sequence and takes into account a task's priority

and present status. If a task is waiting for an 1/0 call to complete, it will be held in limbo

until the call is complete. Once a task is selected, the processor registers and status at the

time of its last context switch are loaded back into the processor and the processor is

started. The new task carries on as if nothing had happened until the next context switch

takes place.

The kernel controls memory usage and prevents tasks from corrupting each other. If

required, it also controls memory sharing between tasks, allowing them to share common

program modules, such as runtime libraries. A set of memory tables is maintained, which

is used to decide if a request is accepted or rejected. This means that resources, such as

physical memory and peripheral .devices, can be protected from other tasks without using

memory management provided the task is disciplined enough to use the operating system

and not access the resources directly.

Message passing and control can be implemented in such systems by using the kernel to act

as a message passer and controller between tasks. If task A wants to stop task B, then by

executing a call to the kernel, the status of task B can be changed and its execution halted.

Alternatively, task B can be delayed for a set time period or forced to wait for a message.

With a typical real-time operating system, there are two basic types of messages that the

kernel will deal with:

• Flags that can control but can not carry any implicit information

• Messages which can carry information and control tasks

The kernel maintains the tables required to store this information and is responsible for

ensuring that tasks are controlled and receive the information. With the facility for tasks to

communicate between each other, system call support for accessing 1/0, loading tasks etc

can be achieved by running additional tasks, with a special system status. These system

tasks provide additional facilities and can be included as required ...
Many multitasking operating systems availabletoday are also described as real-time.These

operating systems provide additional facilities allowing applications that would normally

interface directly with the microprocessor architecture to use interrupts and drive

peripherals to do so without the operating systemblocking such activities.

The choice of a scheduler algorithm can play an important role in the design of an

embedded microcontroller and can dramatically affect the underlying design of the

software. There are many different types of scheduler algorithms that can be used, each

7

with either different characteristics or different approaches to solving the same problem of

how to assign priorities to schedule tasks so that correct operation is assured.

1.3.1 COMPARING BETWEEN STATE MACHINES AND TIMESLICING

A state machine requires that the task is split into states. The state machine stays in one

state at a time, and switch to another state when the specified conditions are met. Actions

are performed during the transitions. States represent a situation that is stable for some time

interval. State machines can be implemented on all types of microcontrollers, also on the

smallest microcontrollers.

Timeslicing means that the kernel interrupts each process after some milliseconds and

gives control to another task. Thus, each task is given CPU processing at regular intervals.

This mechanism is general but requires that the kernel can pop and push program addresses

on the stack, and is thus not available on the midrange microcontroller devices.

Designing processes for timeslicing is very similar to designing independent programs.

Programmers find this to be natural and straight forward. State machines are usually more

complex to design than a process.

Table 1. 1 shows a comparison of the state machines and the timeslicing systems.

Table 1.1: Comparison between state machines and timeslicing

ı-ı -

IL -----------
!

tate Machines [I'imeslicing Systems

ıwast response
ı.-··-············-·····-···-···-······--············-····-·

+..
ode readability +

+

+

+

+

+

8

--- - - -- ----

Faster response: The State machines have faster response than a timeslicing system. One

of the reasons for this is that a state machinedoes not require the context to be saved during

a task switch. Timeslicing is done by interrupt and requires that CPU registers, stack and

local workspace are saved before a new task can start execution. The second reason for the

slower response is that each task executes for a predefined time period before control is

given to the next task. So, when many tasks are executing, the delay becomes longer.

Preemptive scheduling may cure much of the slow response and make a timeslicing system

more predictive. Still, state machines are faster because each task is divided into small

fragmentsby the programmer.

Debugging: a timeslicing system can be extremely difficult. State machines are

significantlyeasier to debug. A state machine operates independentlyof interrupts, and the

individual states can be transmitted to the outside world and displayed on a monitor. This

have shown to be very efficient during debugging.

Reliability: The State machines score highest on the reliability issues also. Designing a

RTOS is a very complex task, and RTOS kernel bugs can be a problem. Because of the

interrupt mechanisms, both application and RTOS bugs are often not easily reproduced.

Using the reset button is not satisfactory on a real-time system. A state machine operates

without a RTOS kernel and without the interruptmechanism.

Easier code writing seems to be the only advantage of a timeslicing system over state

machines.

..
1.4 DETERMINISTICMOLTITASKING

The idea of Deterministic Multitasking is to make state machines look more like system

processes. This enhances readability and makes code writing easier. Still, the concept is

fully compatiblewith state machines, and inherits all the advantages.

An example state machine implementation is given below. In this example, the task

ventilationControZO controls ventilation on/off depending on the temperature. The

behaviour of the code is:

9

• Switch ventilation off

• Wait until the temperature is high

• Switch on ventilation

• Wait until the temperature is low

• Delay 100 seconds until stopping ventilation

• Keep ventilation on if the temperature goes high again while waiting

• Go to step 1 (tum off ventilation)

An implementation of the above example as a state machine may look like:

Char state VC;

Void ventilationControl(void)

{

switch (state VC)

{

case O:

ventilation = off;

stateVC = l;

break;

case 1:

if(!highTemperature) break;
••stateVC = 2;

ventilation = on;

case 2:

if(highTemperature)break;

state ve= 3;

start Timer(] 00);

case 3:

10

if(!timeout)

{

if(highTemperature)state VC = 2;

break;

}

stateVC = O;

break;

}

}

11

Note that the state machine is implementedusing a case block and there are no wait loops

in a state machine. At each iteration, a short check is made to determine if it is time to

change state. The iterations are performed by making calls to the functionregularly.

The same code could be implemented as a deterministic multitasking by allowing the task

to be written like a procedure or process. The equivalent deterministic multitasking

implementationis given below:

Task ventilationControl(void)

{

ventilation = off; ..

while(! higHtemperature)waitStateO;

ventilation = on;

VENTILATION ON:

While(highTemperature)waitStateO;

StartTimer(I 00);

While(!timeout)

{

if(highTemperature)goto VENTILATION_ ON;

waitstatet);

}

restartT 'aski);

}

The main difference fromthe state machine definition is the hiding of state informationand

insertion of waitState(). This enables the compiler to selectthe state during compilation.

1.5 HOW DOES MULTITASKING WORK?

The idea of multitasking [2] is to run more than one task "at the same time." In some

sense,we want it to look like we have divided our computer into many (slower) computers.

Each (slower) computer is performing a different task. One important property is that

different tasks can go through their lives without knowing that the other tasks even exist. If

we had separate CPUs, separate memory, separate disks, (separate computers really), this

would be easy. However,we want to be able to run more tasks than we have CPUs. In the

simplest case, we only have one CPU, one memory bank, and one set of disks. Given these

resources,we want to be able to run more than one task.

A conventionalprocessor can only execute a single task at a time, but by rapidly switching

between tasks a multitasking operating•• system can make it appear as if each task is

executing concurrently. This is shown in Figure 1. 1 with three tasks. The upper diagram

shows the three tasks executing on a single tasking kernel where each task runs to

completion before the next one starts. This is the behaviour of most real-time

microcontroller systems. In the lower diagram the multitasking behaviour is shown where

the tasks share the available processor time. In this diagram, each task is given a certain

amount of processor time and the tasks give-up the processor when they use their times.

Although still the processor executes one code at any time, it appears to the user that all the

12

three tasks are running at the same time. I.e. as if there are three processors, each running a

different task.

TASK 1

time

TASK2

TASK3

Running 3 tasks on a single tasking processor

TASK 1 II

••
II

••
TASK2 ••TASK3

time

Running 3 tasks on a multitasking processor

Figure 1.1 Single tasking and multitasking

Multitasking operating systems are based around a multitasking kernel which controls the

time slicing mechanisms. A time slice is the time period each task has for execution before

it is stopped and replaced during a context switch. This is periodically triggered by a

hardware interrupt from the system timer. This interrupt may provide the system clock and

several interrupts may be executed and counted before a context switch is performed.

13

When a context switch is performed, the current task is interrupted, the processor's

registers are saved in a special table for that particular task and the task is placed back on

the "ready" list to await another time slice. Special tables, often called task control blocks,

store all the information the system requires about the task, for example, its memory usage,

its priority level within the system and its error handling. The "ready" list contains all the

tasks and their status is used by the scheduler to decide which task is allocated the next time

slice. The scheduling algorithm determines the sequence and takes into account a task's

priority and present status. If a task is waiting for an I/O to complete, it will be held until

the call is complete. Once a task is selected for execution, the processor registers and status

at the time of its last context switch are loaded back into the processor and the processor is

started. The new task carries on as if nothing had happened until the next context switch

takes place. This is the basic methods behind all multitasking operating systems.

1.6 TYPES OFMULTITASKING

There are many multitasking algorithms [18] available and the choice of a particular

algorithm depends very much on the application. Some of the commonly used multitasking

algorithms are described in this section.

1.6.1 COOPERATIVEMULTITASKING

The simplest form of multitasking [3, 18] is cooperative multitasking. It. lets the programs..
decide when they wish to let other tasks run. This method is not good since it lets one

process to monopolise the CPU and never let other processes run. This way a program may

be reluctant to give away processing power in the fear of another process hogging all CPU

time. Early versions of the MacOS (up till MacOS 8) and versions of Windows earlier than

Win95/WinNT used cooperative multitasking (Win95 when running old applications).

Cooperative multitasking has the advantages that it is very simple to implement and it can

be implemented nearly on all microcontrollers. Since the tasks must all cooperate for

context switching to occur, the scheduler is less dependent on interrupts and can be small.

14

Also, the programmer knows exactly when context switching will occur, and can protect

critical regions of code simply by keeping a context-switching call out of that part of the

code. One disadvantage of the cooperative multitasking is that a task may never give-up

the CPU time and when this happens only one task can run in the system.

Salvo from the Pumpkin systems [19] is a cooperative multitasking kernel developed for

the PIC microcontrollers. This kernel provides support for event and timer services and it

works on a priority basis. Tasks that share the same priority execute in a round-robin

fashion.

The operation of a cooperative multitasking processor is summarized below by using a

programdescription language and by considering 3 simple tasks. In this example, each task

starts and runs independent of each other and they give-up the CPU time whenever they

wish.

TASKJ:

BEGIN

DO FOREVER

Give-up CPU

Give-up CPU ..

END DO

END

TASK2:

BEGIN

DO FOREVER

15

Give-up CPU

Give-up CPU

ENDDO

END

TASK3:

BEGIN

DOFOREYER

Give-up CPU

Give-up CPU

ENDDO

END

1.6.2 TIME SLICEMULTITASKING..
This type of multitasking has been described earlier. Time slicing multitasking works by

making the tasks to switch at regular periodic points in time. This means any task that

needs to run next will have to wait until the current time slice is completed or until the

current task suspends its operation deliberately. Time slicing is usually implemented using

timer interrupts such that a context switching occurs whenever a timer interrupt is

generated. i.e. when a timer interrupt is generated the processor stores the context of the

running task and then selects the next task to run. The choice of which task to run next is

16

determined by the scheduling algorithm and thus is nothing to do with the time slicing

mechanism itself. It just happens that many time slice based systems use a round-robin

scheduler to distribute the time slices across all tasks that need to run. One commonly used

technique when selecting the next task is to use priorities and always select a task with the

highest priority.

For real-time systems where the speed of execution is very critical, the time slice period

plus the context switching time determine the context switch time of the system. With most

time slice periods in the order of milliseconds, it is the dominant factor in the system

response.

1.6.3 PREEMPTIVEMULTITASKING

The alternative to the cooperative multitasking is to use preemption where a currently

running task can be stopped and switched out by a higher priority task. The main

difference between preemptive multitasking and other forms of multitasking is that with the

preemptive multitasking the context switching does not need to wait for the end of a time

slice or for a task to give-up the CPU.

17

Preemptive multitasking moves the control of the CPU to the operating system, letting each

process run for a given amount of time (a timeslice) and then switching to another task.

This method prevents one process from taking complete control of the system and thereby

making it seem as if it has crashed. This method is most common today, implemented by

among others OS/2, Win95/98, WinN.•T, UNIX, Linux, BeOS, QNX, OS9 and most

mainframe operating systems. The assignment of CPU time is taken care of by the

scheduler.

Preemptive multitasking is very stack-intensive. The scheduler maintains a separate stack

for each task so that when a task resumes execution after a context switch, all the stack

values that are unique to the task are properly in place. These would normally be return

addresses from subroutine calls, and parameters and local variables.

Preemptive schedulers are generally quite complex because of the myriad of issues that

must be addressed to properly support context switching at any time. This is especially true

with regard to the handling of interrupts.

1.7 THE CONCEPT OF TASKING

1.7.1 SCHEDULER

The scheduler is the component of the operating system, which is responsible for the

assignment of CPU. time to tasks. It usually implements a priority engine which lets it

assign more CPU time to high priority tasks.

Many different schemes are used to implement the multitasking architecture. The

scheduling algorithm depends on the following factors:

• Fairness: each processor gets its share of the CPU

• Efficiency: CPU utilization

. • Throughput: number of processes/time unit

• Turnaround: time it takes to execute a process from start to finish

• Waiting time: total time spent in the ready queue

• Response time: amount of time it takes to start responding

It is desirable that all tasks get the CPU time they need and to maximize the CPU utilization

and throughput, and to minimize the turnaround time, waiting time, and response time.

Scheduling of preemptive systems is more complex than the scheduling of cooperative or

time slicing systems. Generally in preemptive systems a scheduling is done when one or

more of the following conditions are satisfied:

• A new task is created

• A task is destroyed

• A task waits for I/O

18

time

• A task blocks and waits for some event to happen (e.g. a timer event)

• An I/O or an interrupt occurs

Some of the commonly used scheduling algorithms are given below.

1.7.1.1 FIRST-COME, FIRST-SERVED(FCFS)

In this algorithm, the scheduling depends on the arrival times of the tasks. A task which is

eligible to run first is executed first. In FCFS each task is placed in a single queue, the first

task in the queue is selected, and allowed to run as long as it wants. If the task blocks, the

next task in the queue is selected to run. When a blocked task becomes eligible to run, it is

placed at the end of the queue. This type of scheduling has the disadvantage that it is

difficult to manage the running of the tasks in an orderly manner.

FCFS scheduling has the following drawbacks:

• A pocess that does not perform any I/O can monopolize the CPU

• I/O bound processes have to wait until CPU-bound process completes

Figure 1 .2 shows an example first-come, first-served scheduling. In this example there are

5 tasks and task 1 arrives slightly earlier than the other tasks. In this example it is assumed

that ·all tasks are immediately eligible to run and the execution time is indicated on the x

axis.

Task 1 ..
Task2

Task 3

Task4

Task 5

Before the scheduling

19

time

Task 1

Task2

Task3 D
Task4

Task5

After the scheduling

Figure 1.2 First-come, first-served scheduling

1.7.1.2 SHORTEST-JOB-FIRST(SJB)

In this algorithm, the task with the shortest execution time is run first. The scheduler will

have to know the execution times of the tasks in the system and it then selects the tasks

with the shortest execution times. SIB is simple but it has the disadvantage that the longer

tasks may never be called to run. Also, it is not always possible to predict the shortest job

in advance.

Figure 1.3 shows an example shortest-job-first scheduling with 5 tasks. As shown in this

example, Task 3 is the shortest, then comes Task 2, then Task 4, and the longest task is

Task5. As a result, Task 3 will be executed first, and Task 5 will be executed last.

..
As mentioned earlier, in practice it is very difficult to estimate the execution times of tasks

before or during their lifetimes.

20

Task 1

Task2

Task3

Task4

Task 5

Task 1

Task2

Task3

Task4

Task 5

time

Before the scheduling

After the scheduling

Figure 1.3 Shortest-job-first scheduling

1.7.1.3 SHORTEST REMAINING TIME FIRST

..

This scheduling algorithm is similar to the shortest-job-first. But here, whenever a task

arrives, we choose the one with the shortest remaining time to execute first. In this

algorithm new short jobs get good services. The disadvantage of this algorithm is that it is

not always easy to predict the task with the shortest remaining execution time.

21

22

1.7.1.4 ROUNDROBIN TASK SCHEDULING

This is one of the most commonly used scheduling techniques. The scheduler assigns the

same amount of time to each task that is ready in a ring as shown in Figure 1.4. All tasks

have the samepriority. This is slightly problematic, since one often wish certain tasks to be

put in the background (e.g. printing) while others get more CPU time (like games).

Therefore a priority system must be implemented. Round-robin scheduling is easy to

implement and manage. Round-robin scheduling favors CPU-bound tasks. An I/O bound

task uses the CPU for a time less than the time slice and then is blockedwaiting for I/0.

Figurel.4: Round robin task scheduling

1.7.1.5 IDGHEST RUNNABLE TASK

This is the simplest form of schedulingwith priorities where the idea is to select the process

with the highest priority that is eligible to run. This method is very predictable and yields

satisfactory results.
..

Highest unable task algorithm has the disadvantage that if the tasks with the high priorities

take too much CPU time then the lower priority tasks may never run. This is especially

true if the higher priority task is in a loop and is executing continuously. When this

happens, the lower priority tasks will be denied any CPU time.

23

1.7.1.6 PRIORITY AND ROUND ROBIN TASKING

o

1

2

3

Figure 1.5: Tasks running with this priority

In Figure 1 .5 each task has a priority class and CPU time is assigned to each class

corresponding to its priority level and then within each class the round-robin scheduling is

used. This technique is commonly used by many operating systems. Imagine that a total of

100 timeslices are available and that 2 is the lowest class. Now, if we say that a class-O

task gets 3 times as much time as a class-2 task and twice as much as a class- 1, the division

of slices is 3 :2: 1 for each task. If we imagine all tasks running at class-2, class- I tasks

would be twice in a round and class-O would be 3 times in a round (thus ensuring the

priority). Therefore the total timeslices per round would be 3*3+2*2+1=14 slices/round.

The total slice count was 100 leaving a total of 3*100/14 to a class-O task, 2*100/14 to a

class-I task and 100/14 to a class-2 task. "

If we want to know in which order they are to be executed, it must be something like

(priority-levels): 0-1-0-1-0-2-.

One implementation of this would be that for each class, one has a counter that tells us how

many timeslices a class must be given before the system is reset to standards (in our

example c0:3, cl:2, c2:l). Then, one starts at the highest level, gives one timeslice to cO,

finds the first class below, that earns a slice and gives it, and then going to the top again.

Repeating this would give us a sharing in our example 0-1-0-1-0-2-, making a quite even

24

assignment between priority classes. An alternate method will be starting at cO and run

down the class-list and restarting when reaching the button. This is repeated until all classes

counters is O (this would in our example give 0-1-2-0-1-0-). This algorithm has one

problem - a high-priority task may have to wait quite a while if many tasks are being

multitasked.

1.8 WHY MULTITASKING ON MICROCONTROLLERS IS Il\ılPORTANT?

Multitasking on microcontrollers [4] is an important part of a majority of electronic

applications. They are often termed as "embedded controllers" because they are implanted

in an electronic device and they control the actions or features of this device. Also, as a

result of their compact size, low cost, low power consumption and ease in implementation,

multitasking on microcontroller is extensively used in the current electronic products.

Multitasking on microcontrollers mean that one can make more than one task to run on a

microcontroller at the same time. Most microcontrollers are inexpensive single chip

computers. The microcontroller's ability to store and run unique programs makes it

extremely versatile. For instance, one can program a microcontroller to make decisions

(perform functions) based on predetermined situations (VO-line logic) and selections. The

microcontroller's ability to perform math and logic functions allows it to mimic

sophisticated logic and electronic circuits.

..
Microcontrollers are responsible for the "intelligence" in most smart devices on the

consumer market and the use of multitasking into these devices provides many benefits,

such as cost saving and simplicity in design.

1.9 SUMMARY

Multitasking enables a complex job to be implemented by designing separate tasks that

operate independentlyor cooperate with each other. Each task is usually so simple that it

can be describedby some sequential behavior. Each task is simple, but the total collection

of tasks enables a complex job to be solved relatively easily. In this chapter we have

discussedthe basic concepts of multitasking, and the types of multitasking algorithms.

25

..

26

2. MICROCONTROLLERS

2.1 OVERVIEW

This chapter describes the principles of microcontrollers and also explains the uses and

benefits of microcontroller applications in industrial and environmental fields.

Moreover, it discusses the basic elements and the architecture of a microcontroller. In

this chapter the following topics will be discussed:

• What is a microcontroller?

• Microprocessors and Microcontrollers

• Basic elements of a microcontroller

• Embedded controllers

• Microcontroller applications

• PIC microcontrollers

2.2 WHAT IS A MICROCONTROLLER?

A microcontroller [4,5,7] is a computer on a chip. All computers, whether it is a

microcomputer, a personal computer, a mini computer, or a large mainframe computer

have several things in common:

• All computers have a CPU (central processing unit) that executes

programs. If you are sitting at a desktop computer right now reading this

thesis, the CPU in that machine, is probably executing a program that

implements the Web browser.

• The CPU loads the program from somewhere. On your desktop machine,

the browser program is loaded from the hard disk.

• The computer has some RAM (random-access memory) where it can

store "variables."

• And the computer has some input and output devices so it can talk to the

outside world. On your desktop machine, the keyboard and mouse are

input devices and the monitor and printer are output devices. A hard disk

27

is an I/O device -- it handles both input and output, and it is also a

storage device which stores data.

The desktop computer you are using is a "general purpose computer" that can run any of

thousands of commercially available programs. Microcontrollers are "special purpose

computers." There are a number of other common characteristics that define

microcontrollers. If a computer matches a majority of the following characteristics, then

one can call it a "microcontroller":

• Microcontrollers are generally "embedded" inside some other device

(often a consumer product) so that they can control the features or

actions of the product. Another name for a microcontroller, therefore, is

"embedded controller."

• Microcontrollers are dedicated to one task and run one specific program.

The program is stored in ROM (read-only memory) and generally does

not change.

• Microcontrollers are often low-power devices. A desktop computer is

almost always plugged into a wall socket and might consume 50 watts of

electricity. A battery-operated microcontroller on the other hand might

only consume 50 milliwatts or less.

• A ınicrocontroller has a dedicated input device and often (but not

always) has a small LED or LCD display for output. A microcontroller

also takes input from the device it is controlling and controls the device
••by sending signals to different components within the device. A program

runs on the microcontroller which controls all actions of the

microcontroller at any moment in time.

For example, the microcontroller inside a TV takes inputs from the remote control unit

and displays outputs on the TV screen. The controller controls the channel selector, the

speaker.system and certain adjustments on the picture tube electronics such as tint and

brightness. The engine controller in a car takes inputs from sensors such as the oxygen

and knock sensors and controls things like fuel mix and spark plug timing. A

28

microwave oven controller takes input from a keypad, displays outputs on an LCD

display and controls a relay that turns the microwave generator on and off.

• A microcontroller is often small and low cost. The components are

chosen to minimize size and to be as inexpensive as possible.

• A microcontroller is often, but not always, ruggedized in some way.

The microcontroller controlling a car's engine, for example, has to work in temperature

extremes that a normal computer generally cannot handle. A car's microcontroller in

Alaska has to work fine in -30 degree F (-34 C) weather, while the same microcontroller

in Nevada might be operating at 120 degrees F (49 C). When you add the heat naturally

generated by the engine, the temperature can go as high as 150 or 180 degrees F (65-80

C) in the engine compartment. On the other hand, a microcontroller embedded inside a

VCR need not be ruggedized at all.

The actual processor used to implement a microcontroller can vary widely. For

example, a Digital Cell Phone can contain a Z-80 processor. The Z-80 [6] is an 8-bit

microprocessor developed in the 1970s and originally used in home computers of the

time. The Garmin GPS (Global Positioning System) contains a low-power version of

the Intel 80386. The 80386 was originally used in desktop computers.

In many products, such as microwave ovens, the demand on the CPU is fairly low and

price is an important consideration. In these cases, manufacturers turn to dedicated

microcontroller chips -- chips that were originally designed to be low-cost, small, low

power, embedded CPUs. The Motorola 6811 [15], and Intel 8051 [16] are both good

examples of such chips. There is also a line of popular controllers called "PIC

microcontrollers" created by a company called Microchip [12]. By today's standards,

these CPUs are incredibly minimalistic; but they are extremely inexpensive when

purchased in large quantities and can often meet the needs of a device's designer with

just one chip.

Any microcontroller chip might have X bytes of ROM and Y bytes of RAM on the chip,

along with Z number of VO pins. In large quantities, the cost of these chips can

29

sometimes be just pennies. You certainly are never going to run Microsoft Word on

such a chip -- Microsoft Word requires perhaps 30 megabytes of RAM and a processor

that can run millions of instructions per second. But then, you don't need Microsoft

Word to control a microwave oven, either. With a microcontroller, usually one has a

specific task to accomplish, and low-cost, low-power performance is what is important

in such applications.

2.3 MICROPROCESSORS AND MICROCONTROLLERS

A digital computer [7] typically consists of three major components: the Central

Processing Unit (CPU), program and data memory, and an Input/Output (I/0) system.

The CPU controls the flow of information among the components of the computer. It

also processes the data by performing digital operations. Most of the processing is done

in the Arithmetic Logic Unit (ALU) within the CPU. When the CPU of a computer is

built on a single printed circuit board, the computer is usually called a microprocessor

based computer. A microprocessor is a CPU that is compacted into a single chip

semiconductor device. Microprocessors are general-purpose devices, suitable for many

applications. A computer built around a microprocessor is called a microcomputer. The

choice of I/O and memory devices of a microcomputer depends on the specific

application- for example, most personal computers contain a keyboard and monitor as

standard input and output devices.

A microcontroller is an entire computer manufactured on a single chip. The I/O and

memory subsystems contained in a microcontroller specialize these devices so that they

can be interfaced with hardware and control functions of the applications. Since

microcontrollers are powerful digital processors, the degree of control and

programmability they provide significantly enhances the effectiveness of the

application. Microcontrollers are usually dedicated devices embedded within an

application. For example, microcontrollers are used as engine controllers in automobiles

and as exposure and focus controllers in cameras. In order to serve these applications,

they have a high concentration of on-chip facilities such as serial ports, parallel input

output ports, timers, counters, interrupt control, analog-to-digital converters, random

access memory, and read only memory.

30

Embedded control applications also distinguish the microcontroller from its relative,

the general-purpose microcontroller. Embedded systems often require real-time

operation and multitasking capabilities. Real-time operation refers to the fact that the

embedded controller must be able to receive and process the signals from its

environment when they are available, that is, the environment must not wait for the

controller to become available. Similarly, the controller must perform fast enough to

output control signals to its environment when they are needed. Again, the environment

must not wait for the controller. In other words, the embedded controller should not be a

bottleneck in the operation of the system.

Multitasking is the capability of performing many functions in a simultaneous or

quasi-simultaneous manner. The embedded controller is often responsible for

monitoring several aspects of a system and responding appropriately when the need

an ses.

2.4 BASIC ELEMENTS OF A MICROCONTROLLER

2.4.1 MEMORY UNIT

Memory [8] is part of the microcontroller whose function is to store data.

The easiest way to explain it is to describe it as one big closet with lots of drawers, as

shown in Figure 2.1.

'i:I 'mem:löcation o::,ı~l
'!:f mem~ocation,1 ' ·rn
fü, mem:löcaµom2 ,I;'.:k<t'.. = .,: .. _,

Figure 2.1 Example of simplified model of a memory unit.

31

For a certain input we get the contents of a certain addressed memory location and that's

all. Two new concepts are brought to us: addressing and memory location. Memory

consists of all memory locations, and addressing is nothing but selecting one of them.

This means that we need to select the desired memory location on one hand, and on the

other hand we need to wait for the contents of that location. Besides reading from a

memory location, memory must also provide for writing onto it. This is done by

supplying an additional line called control line. We will designate this line as R/W

(read/write). Control line is used in the following way: if r/w=l, reading is done, and if

opposite is true then writing is done on desired the memory location. Memory is the first

element, and we need a few more components for the operation of our microcontroller.

2.4.2 CENTRAL PROCESSING UNIT

Let's add 3 more memory locations to a specific block (see Figure 2.2) that will have a

built in capability to multiply, divide, subtract, and move its contents from one memory

location onto another. The part we just added in is called "central processing unit"

(CPU). Its memory locations are called registers.

Figure 2.2 Example of simplified central processing unit with three registers.

Registers are therefore memory locations whose role is to help with performing various

mathematical operations or any other operations with data wherever data can be found.

Look at the current situation. We have two independent entities (memory and CPU)

which are interconnected, and thus any exchange of data is hindered, as well as its
(

functionality. If, for example, we wish to add the contents of two memory locations and

return the result again back to memory, we would need a connection between memory

32

and CPU. Simply stated, we must have some "way" through data goes from one block to

another.

2.4.3 BUS

A "Bus" physically represents a group of 8, 16, or more wıres.

As shown in Figure 2.3, there are usually two types of buses: address bus and data bus.

The first one consists of as many lines as the amount of memory we wish to address and

the other one is as wide as data, in our case 8 bits or the connection line. First one serves

to transmit address from CPU memory, and the second to connect all blocks inside the

microcontroller.

~1:il~~.füerri:locati orıHj);:: ,j:ı1\

tıtı:jnern;;location:ı,J,::·· u1ı
l>!fYtn errı:l0cat:i0n1:Q,·,<·f .

Figure 2.3 Connecting memory and Central Processing Unit...
As far as functionality is concerned, the situation has improved, but a new problem has

also appeared: we have a unit that is capable of working by itself, but which does not

have any contact with the outside world, or with us. In order to remove this deficiency,

we can add a block which contains several memory locations whose one end is

connected to the data bus, and the other has connection with the output lines on the

microcontroller which can be seen as pins on the electronic component (see Figure 2.4).
(

33

Figure 2.4 Example of a simplified input-output

2.4.4 INPUT-OUTPUT UNIT

In reference to Figure _2.4, the locations we have just added are called "ports". There are

several types of ports: input, output or bidirectional ports. When working with ports,

first of all it is necessary to choose which port we need to work with, and then to send

data to, or take .the data from the port. Some microcontrollers only have a few ports,

while some others can have 30 or more ports.

When working with it the port acts like a memory location. Something is simply being

written into or read from it, and it could be noticed on the pins of the microcontroller.

Input-output ports are usually used for parallel data transfer where 8 or more wires are

used to transfer data from one device to another device.

2.4.5 SERIAL COMMUNICATION
..

Beside stated above we have added to the already existing unit the possibility of

communication with an outside world. However, this way of communication has its

drawbacks. One of the basic drawbacks is the number of lines which need to be used in

order to transfer data. What if it is being transferred to a distance of several kilometers?

The number of lines times' number of kilometers doesn't promise the economy of the

project. It leaves us having to reduce the number of lines in such a way that we don't

lessen its functionality. Suppose we are working with three lines only, and that one line

is used for sending data, other for receiving, and the third one is used as a reference line

for both the input and the output side. In order for this to work, we need to set the rules

of exchange of data.

34

These rules are known as the protocol. Protocol is therefore defined in advance so there

wouldn't be any misunderstanding between the sides that are communicating with each

other. For example, if one man is speaking in French, and the other in English, it is

highly unlikely that they will quickly and effectively understand each other. Let's

suppose we have the following protocol. The logical unit "l" is set up on the

transmitting line until transfer begins. Once the transfer starts, we lower the

transmission line to logical "O" for a period of time (which we will designate as T), so

the receiving side will know that it is receiving data, and so it will activate its

mechanism for reception. Let's go back now to the transmission side and start putting

logic zeros and ones onto the transmitter line in the order from a bit of the lowest value

to a bit of the highest value. Let each bit stay on line for a time period which is equal to

T, and in the end, or after the 8th bit, let us bring the logical unit "1" back on the line

which will mark the end of the transmission of one data. The protocol we've just

described is called in professional literature NRZ (Non-Return to Zero).

Figure 2.5 Serial unit used to send data, but only by three lines.

As we have separate lines for receiving and sending, it is possible to receive and send

data (information) at the same time. So called full-duplex mode block which enables

this way of communication is called a serial communication block. Unlike the parallel

transmission, data moves here bit by bit, or in a series of bits what defines the term

serial communication comes from. After the reception of data we need to read it from

the receiving location and store it in memory as opposed to sending where the process is

reversed. Data goes from memory through the bus to the sending location, and then to

the receiving unit according to the protocol.

35

2.4.6 TIMER UNIT

Since we have the serial communication capability, we can easily receive, send and

process serial data.

Figure 2.6 Timer unit generates signals in regular time intervals.

However, in order to utilize it in industrial and commercial applications, we need a few

additionally blocks. One of those is the timer block which is significant to us because it

can give us information about time, duration, protocol etc. The basic unit of the timer is

a free-running counter which is in fact a register whose numeric value increments (or

decrements) by one in even intervals, so that by taking its value during periods Tl and

T2 and on the basis of their difference we can determine how much time has elapsed.

This is a very important part of the microcontroller as it establishes the timing of the

microcontroller. The timer unit can also be used to introduce artificial delays to our

programs. i.e. to slow-down the execution speed of a program for example when

displaying data on a LCD or when flashing a LED.

2.4. 7 WATCHDOG

One more thing requınng our attention is the flawless functioning of the

microcontroller during its run-time. To over come the obstacle of some interference

which often does occur in industry we need to introduce one more block called

watchdog.

Figure 2.7 Watchdog reset.

36

This block is in fact another free-run counter (Figure 2.7) where our program needs to

write a zero in every time it executes correctly. In case that program gets "stuck", zero

will not be written in, and counter alone will reset the microcontroller upon achieving

its maximum value. This will result in executing the program again, and correctly this

time around. That is an important element of every program to be reliable without any

external intervention.

2.4.8 ANALOG TO DIGITAL CONVERTER

As the real-world peripheral signals usually are substantially different from the ones that

microcontroller can understand (zero and one), they have to be converted into a pattern

which can be comprehended by a microcontroller. As shown in Figure 2.8, this task is

performed by a block called the analog to digital converter or by an ADC. This block is

responsible for converting an information about some analog value to a binary number

and to send it to a CPU block so that CPU block can further process it.

Figure 2.8 Blocks for converting an analogue to a digital form.

Finally, the microcontroller is now completed, and all we need to do now is to assemble

it into an electronic component where it will access inner blocks through the outside

pins. Figures 2.9 and Figure 2. 1 O below show what a typical microcontroller looks like

inside.

Thin lines which lead from the center towards the sides of the microcontroller represent

wires connecting inner blocks with the pins on the housing of the microcontroller so

called bonding lines. Chart on the following page represents the center section of a

microcontroller.

37

Figure 2.9 Physical configuration of the interior of a microcontroller.

Figure 2.10 Microcontroller outline with its basic elements and internal connections.

38

For a real application, a microcontroller alone is not enough. Beside a microcontroller,

we need a program that would be executed, and a few more elements which are called

the interface logic. The interface logic could be a simple LED, a 7-segment LED

display, a buzzer, a push-button switch, a motor, or some other form of input or output

devices.

2.5 EMBEDDED CONTROLLER

An embedded controller [9] can be defined in many ways. An embedded controller is a

controller that is embedded in a greater system. An embedded controller is a controller

(or computer) that is embedded into some device for some purpose other than to provide

general purpose computing. For example, the television remote control unit contains an

embedded controller which controls all operations of the unit.

A common example of a general purpose computer would be a typical PC clone. The

x86 processor in a typical PC can not really be considered an embedded controller,

since the machine is typically used for general purpose computing. However, what is

general purpose computing? Take this same PC clone, turn it into a multi-media

machine. You have an appliance - much on the order of a microwave oven or

television. Is the x86 processor now considered an embedded controller or, is the PC

clone itself now considered an embedded controller, controlling the multi-media

peripherals?

The difference between an embedded controller and a microcontroller is not much [1 O].

We might be safe by saying that an embedded controller controls something (for

example controlling a device such as a microwave oven, car braking system, or a cruise

missile). With the continuing process of high scale integration continuing at a dizzying

pace, many standard architecture processors are turning up as microcontrollers. A few

such examples are the Motorola 68EC300, Intel 386 EX, and the IBM PowerPC 403GB.

These chips could be called super-microcontrollers.

Embedded controllers adhere to a philosophy similar to that of microcontrollers, high

integration. By including features necessary for the task at hand, an embedded

controller (processor) can be a powerful yet cost effective solution. However, where a

microcontroller is a computer on a chip, an embedded controller might need external

components before it is considered a "computer." This is especially true regarding

RAM. Since including large amounts of RAM (megabytes) on a processor is not really

practical (due to cost and available silicon real estate) and because many embedded

controllers are real powerhouses requiring large amounts of RAM, the RAM is often

external to the processor.

2.6 MICROCONTROLLER APPLICATIONS

•.

:ı

2.6.1 ENVIRONMENTAL APPLICATIONS

Embedded processors and microcontrollers [11] are frequently found in: appliances

(microwave oven, refrigerators, television and VCRs, stereos), computers and computer

equipment (laser printers, modems, disk drives), automobiles (engine control,

diagnostics, climate control), environmental control (greenhouse, factory, home),

instrumentation, aerospace, and thousands of other uses. In many items, more than one

processor can be found.

Microcontrollers are typically used where processing power is not so important.

Although one might find a microwave oven controlled by a Unix system an attractive

idea, controlling a microwave oven is easily accomplished with the smallest of

microcontrollers.

Embedded processors and microcontrollers are used extensively in robotics. In this

application, many specific tasks might be distributed among a large number of

controllers in one system.

Communications between each controller and a central, possibly more powerful

controller (or micro/mini/mainframe) would enable information to be processed by the

central computer, or to be passed around to other controllers in the system.

A special application that microcontrollers are well suited for is data logging. Stick one

of these chips out in the middle of a com field or up in a balloon, and monitor and

39

The automotive market is the most important single driving force in the microcontroller

market, especially at it's high end. Several microcontroller families were developed

specifically for automotive applications and were subsequently modified to serve other

embedded applications. The automotive market is demanding. Electronics must operate

under extreme temperatures and be able to withstand vibration, shock, and EMI. The

electronics must be reliable, because a failure that causes an accident can (and does)

result in multi-million dollar lawsuits. Reliability standards are high - but because these

electronics also compete in the consumer market - they have a low price tag.
:ı

record environmental parameters (temperature, humidity, rain, etc). Small size, low

power consumption, and flexibility make these devices ideal for unattended data

monitoring and recording.

2.6.2 INDUSTRIAL APPLICATIONS

ı.
2.7 PIC MICROCONTROLLER

PIC (Peripheral Interface Controller) [12] is the integrated circuit which was originally

developed to control the peripheral devices, dispersing the function of the main CPU.

When compared to a human being, the brain is the main CPU and the PIC shares the

part which is equivalent to the autonomic nervous system. PIC has the calculation

function and the memory like the CPU, and is controlled by the software.

There are over 150 types of PIC rnicrocontrollers available in the market place. Some

devices are small with only 8-pins, some are bigger with 18 or 24-pins and some

devices have up to 64-pins. All PIC micrôcontrollers are RISC type controllers and

their instruction sets consists of 33 carefully chosen instructions. The small devices in

the family have only a few digital input-output pins and small data and program

memories. Larger devices are equipped with larger amounts of memory, timer circuits,

interrupt facilities, watchdog timers, and internal USART circuitry for serial

communications. Even larger devices have analog-to-digital converter circuits, pulse

width-modulation (PWM) ports, several general purpose timers, several interrupt

sources, and much larger data and program memories. But all different models in the

family have similar instruction sets and are compatible with each other.

40

However, the throughput and the memory capacity are not big. It depends on the kind of

PIC but the maximum operation clock frequency is about 20 MHz and the memory

capacity to write the program is about lK to 4K words. The clock frequency is related

to the speed to read the program and to execute the instruction. Only at the clock

frequency, the throughput can not be judged. It changes with the architecture in the

processing part. As for the same architecture, the one with the higher clock frequency

gives higher throughput. The instruction set of the PIC16F84A microcontroller is

composed of 14 bits. It is 1 x 1,024 x 14 = 14,336bits when converting the IK words to

bits. It is 14,336/(8x 1,024) = 1.75K bytes when converting this to bytes.

The point where the PIC microcontroller is convenient for is that the calculation part,

the memory, the input/output part and so on are all incorporated into the same one piece

of the integrated circuit.
:I:

2.7.1 THE PIC16F84 MICROCONTROLLER

This is the microcontroller used in this thesis. The reason for using the PIC16F84 is

because currently this is one of the most popular microcontrollers available in the

market, used widely in many commercial and industrial applications. The multi-tasking

algorithms developed in the thesis are based on the PIC16F84 microcontroller, but it

should be an easy task to modify these algorithms for other members of the PIC family,

or for other types of microcontrollers.

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but

can also be found in SMD case, which is smaller in size than a DIP. DIP is an..
abbreviation for Dual in Package. SMD is an abbreviation for Surface Mount Devices

suggesting that holes for pins to go through when mounting aren't necessary in soldering

this type of a component. Figure 2.1 1 shows the pin configuration of the PIC16F84

microcontroller.

41

OSCl/CLKIN Oscillator crystal input. External clock source input.

OSC2/CLKOUT Oscillator crystal output. Connects to crystal or resonator in crystal

oscillator mode.

MCLR(inv) Master clear (reset) input. Programming voltage input. This pin is an

active low reset to the device.

RAO-RA3 Bi-directional VO port.

RA4/TOCK.I Bi-directional I/O port. Clock input to the TMROtimer/counter.

RBO/INT Bi-directional VO port. External interrupt pin.

RBI - RB7 Bi-directional I/O port.

Vss Ground.

Voe Positive supply (+2.0V to +5.SV).

RA2 - •,,
-- RAl

RA3 - -- RAO
RA4/TOCKI - ıJ - OSCl /CLK IN

tl'C[R --
•......•

-- OSC2/CLKOUT("')__.
vss -- O) --vooıl

RBO/INT __. co ..,...._. RB7..ı:,..
RBl -

::t> -RBS
RB2 - -- RB5
RB3 - -RB4

TOP VIEW

Figure 2.11 Pin configuration of PIC16F84.

Table 2.1: Pin Descriptions

! :·

The functions of each pin are described in Table 2.1

2.7.1.1 INTERNALCOMPONENTS OF PIC16F84 ·

As we see in the block diagram (Figure 2.14) the PIC 16F84 microcontroller consists

of:-

1. Flash Program Memory

The flash memory (Figure 2.12) is used for the memory which stores the user program.

One word is composed of 14 bits and 1,024 words (the lK words) are installed in this

rnicrocontroller. Even if the power supply is switched off, the content which is stored in

the fl.ash memory do not disappear. The contents of the flash memory can be rewritten

42

1FFFh
2000h

2007h
.,
I

using a suitable programmer device. But, the programming is limited to about 1000

times, after which the device must be replaced.

0000h

0004h

03FFh
0400h

Figure 2.12 Flash program memory.

Reset Vector (0000h)

When the reset is executed by applying power to the microcontroller, or when the reset

button (MCLR) is activated, the user program starts from address O of the program

memory.

Peripheral Interrupt Vector (0004h)

This is the interrupt service routine (ISR) of the microcontroller. When there is time

out interrupt from the timer (TMRO), or when the external interrupt pin (INTO) is

activated, the processor jumps to address "4 of the program memory to handle the

interrupt.

Configuration word (2007h)

The basic operation of the PIC is specified by this memory location. The enable bit of

the Power-up timer, the enable bit of the Watchdog timer, the Oscillator Selection bits

can be set. The configuration word can either be set during the programming of the

device, or as part of the program code.

43

The contents which depend on each bank are managed and there are 16 kinds of

registers in SFR. But, some part of SFR is common to both banks of memory.

When the power supply is switched off, the contents of RAM are lost. There is not

limitation on the number of times to rewrite to the RAM during the running of a

2. RAM (Random Access Memory) File Registers

Figure 2.13 shows the structure of the RAM memory. The memory is 80 bytes long and

is organized in two banks. The first 12 bytes (OOh-OBh) of each bank are called SFR

(Special Function Registers) and are used to record the operating states of the PIC, the

conditions of the input/output ports, the other conditions. Each use is decided.

The 68 bytes (0Ch-4Fh) of the 13th byte are called GPR (General Purpose Registers)

and are possible to make record the results and the conditions on the way which

executes the program temporarily.

program.

SFR Registers

SFR (Special Function Registers) can specify 16 kinds of the registers by the bank

changing. The whole memory capacity is the 160 bytes. But, the contents of the left

arrow are the same on any bank. As for the part of SFR, the contents change with the

bank changing. There are not memories in the gray part.

Address Bank O Bank 1 Address
O Oh 80h
01h
02h 82h
03h 83h
04h 84h
05h 85h
O Sh 86h
07h 87h
08h 88h
09h 89h
O Ah BAh
OBh 8Bh

OCh - 4Fh BCh - CFh

Figure 2.13 Special function registers.

44

change frequencies.

Each SFR has the function as listed in Table 2.2.

Table 2.2: SFR Functions.

INDF Data memory contents by indirect addressing

TMRO Timer counter

PCL Low order 8 bits of the program counter

STATUS Flag of the calculation result

FSR Indirect data memory address pointer

PORTA PORTA DATA VO

PORTB PORTB DATA VO

EEDATA Data for EEPROM

EEADR Address for EEPROM

PCLATH Write buffer for upper 5 bits of the program counter

INTCON Interruption control

OPTIN REG Mode set-
TRISA Mode set for PORTA

TRISB Mode set for PORTB

EECONl Control Register for EEPROM

EECON2 Write protection Register for EEPROM

3. EEPROM (Electrically Erasable Programmable Read Only Memory)

..
This memory is the type which maintains its contents even if the power supply is

switched off (i.e. non-volatile). The contents of this memory can be rewritten by the

program. The memory capacity is the 64 bytes. As for this memory, the rewriting

number of times is limited. It is the about one million time. So, it is not possible to use

to store the data on the processing way and so on. It is used to store the data with few

This memory is said to be able to maintain the memorized contents for the about 40

years.

45

7
l

Di re,::t Addr

~
OSC2/CLKOUT
OSC1/CLKIN

~
MCLR VDD

vss

RA4/TOCKI

I '~
8

1/0 Ports

RBO/INT

.. ~

Figure 2.14 Block diagram of PIC16F84A.

4. Program Counter

..

This is the counter which shows the reading address (Fetch address) of the program

which is written into the flash memory. It is basically a 13 bits up counter. Generally,

the count increments by one every time an instruction is executed and the position of the

following instruction is shown. But, when mMP is executed, the contents of this

counter are rewritten to the jump address.

46

5. Level Stack

The stack is the memory which stores the return address of the program.

For example, when doing the same processing at more than once, it makes the

processing in the form of the subroutine. At the end of the subroutine, the instruction of

RETURN is written. The memory is saved in making the processing the subroutine. As

shown in Figure 2.15, a program which uses a subroutine jumps to the subroutine using

the CALL instruction. At this time, the return address is stored in the stack. This

operation is sometimes called the PUSH. When the processing by the subroutine ends

and the instruction of RETURN is executed, it jumps to the return address which is

written at the stack. This operation is sometimes called the POP. If being in this way,

even if CALL to the subroutine is written at more than one part, the processing can be

returned to the original program which jumped to the subroutine.

The fact that there are eight stacks can do the subroutine the eight times at the serial.

When doing the subroutine the nine times, the return address has been written at the first

stack. Because the contents of the first stack are rewritten, the processing can not be

returned to the original program. The eight times can not be exceeded.

The subroutine must always return the processing to the called original program using

the instruction of RETURN. A JUMP instruction must not be used to return from a

subroutine.

JUMP
;' ..

;'

I

~

JUM JUMP.

Figure 2.15 CALL instructions.

47

48

6. Instruction Register

The instruction of the program which is specified by the program counter is read to this

register. This operation is called the FETCH.

7. Instruction Decode & Control

The instruction which was fetched to the instruction register is analyzed here and the

operation according to the contents is done by the decode and control logic.

8. Multiplexer and Arithmetic Logic Unit

The calculation operation is done by the Multiplexer and the Arithmetic Logic Unit

(ALU). It is not the computer when there are not these.

9. W Register

This is the "work" register, also known as the accumulator register. It is used to keep the

calculation result of the ALU temporarily. For the calculation operation, it is the

indispensable register. The contents of this register are stored in the various register and

are utilized. It is also used for the output control of the input-output port.

10. STATUS Register

This is the register which stores the result of the ALU (Zero, positive or negative), the

time-out condition, the indication of the bank of the file register, so on. This register is

usually used when we wish to test for the zero condition at the end of an ALU operation

(for example, after comparing two values in the ALU).

11. FSR Register

FSR (File Select Register) is used when specifying the address of the RAM file register

by the indirect addressing method. The direct address method is the way of specifying

the address of the register directly by the instruction code. In this case, the addressing

bit can specify the address from O to 127 by the 7 bits. This specification range is for the

one bank. To change the bank, it is necessary to combine with RPO bits of the STATUS

register. Because FSR is the 8 bits, it is possible to be specified at once including the

bank specification. In PIC16F84, the memory is not installed at the address of 80(50h)

to 127(7Fh). It is convenient when using the FSR for the addressing when making the

data area which was continued at the file register. The processing is simplified when

inclement the FSR when doing the writing or the reading continuously.

..

12. Address Multiplexer

It distinguishes the indirect addressing or the direct addressing.

13.EEDATA

This is the register to use when writing or reading the data to or from the EEPROM

memory. Reading or writing to the EEPROM memory is generally a slow process, and

the memory location should be checked after a read or a write to confirm that the

operation has been completed successfully.

14.EEADR

This is the register which specifies the address of the EEPROM. Because it is composed

of 8 bits, the address from O to 255 can be specified. In PIC16F84A, the EEPROM is

only 64 bytes installed. When setting the data of the EEPROM by the source coding, it

specifies 2100h as the memory address. When writing data to the EEPROM by the

processing of a program, it is necessary to do the processing to set 55h and AAh to the

EECON2 register in the order.

15. Timer

PIC16F84A microcontroller has only one timer (TMRO)which is 8 bits wide. It is in the

time-out mode when the count becomes 256 and the TOIF bit of the INTCON register of

SFR becomes ti 1 ti. It is possible to make the interrupt occur when being in the time-out

mode. To make the interrupt occur, the GIF bit and the TOIE bit of the INTCON register

of SFR must be made "1 ti. The timer interrupt is used frequently in microcontroller

applications in order to obtain accurate time delays (e.g. in controlling the bit timing of

a serial communication).

49

18. Initialization circuits ..

16. 1/0 Ports

The input-output architecture of the PIC16F84 ınicrocontroller is very simple. There

are 13 pins with individual direction control. The mode (the input or the output) of each

pin can be set by the program. The 13 pins are divided into the two groups. They are

the five pins as the A port and the eight pins as the B port. There is limitation on the

timing of the control but each of the 13 pins can be controlled. The direction of each

port pin can be controlled by setting a bit in special registers. Port A direction is called

by a register called TRISA, and Port B direction is controlled by a register called

TRISB.

17. Timing Generation

This circuit generates the clock pulse which fixes the operation speed. the oscillation

operation is done by putting the capacitors the crystal(or ceramic) oscillator outside.

When having the oscillation with the high stability, it uses the crystal. Generally, the

circuit becomes simple when using the resonator which incorporated the ceramic and

the capacitors into the one module. The clock pulse can be inputted from outside, too.

The PIC16F84A execute the one instruction (the 1 cycle) by the four clock pulses using

the pipeline architecture. But, in case of the JUMP to change the program address, the 2

cycles are necessary. In the execution time of usual instruction, it is the 200

nanoseconds because the pulse period of 20MHz is 1/(20MHz) = 50 nanoseconds. The

5,000,000 instructions can be executed within the 1 second.

The PIC16F84A ınicrocontroller has various initialization circuits as summarized in

Table 2.3.

50

51

Table 2.3 Initialization circuits

POWON Timer This is the timer to limit the operation until the voltage is stable in ca~-

the turning on.

OSC Start This is the timer to limit the operation until the clock is stable in case of the

Timer turning on.

POWONReset This initializes the inner circuit of the PIC in case of the turning on.

Watchdog This is the timer to watch over the normal operation of the software of PIC.

Timer This timer must be regularly cleared by the software. When the timer does

in the time-out, the PIC returns to the condition immediately after the

turning on. This timer is used to recover the extraordinary operation when

the software has the defect (the bug). Even if it is initialized, the bug

doesn't pass away.

2.7.2 The PIC16F877 MICROCONTROLLER

PIC16F877 is another popular PIC microcontroller with more input-output pins, more

program and data memories, analog-to-digital converter circuit, and USART based

serial communication circuit. Tue architecture of this rnicrocontroller will be discussed

very briefly in this section.

The important features [13] specific to picking a microprocessor are 1) power, 2)

memory size, 3) fast reprogrammability, 4) AID channels, and 5) a 5 volt operating

supply. Table 2.4 compares some of the popular microprocessors on the market. Though

not an 8 bit processor, the Strong Thumb processor was included both because of its

commercial popularity and low power consumption. At the time the Atmel

AT90LS8535 offered the best performance even though newer designs like the

Microchip PIC16F877 offered lower power consumption and greater functionality.

The PIC16F877 is a high-performance FLASH microcontroller that provides engineers

with the highest design flexibility possible. In addition to 8192x14 words of FLASH

program memory, 256 data memory bytes, and 368 bytes of user RAM, PIC16F877 also

features an integrated 8-channel 10-bit Analogue-to-Digital converter. Peripherals

include two 8-bit timers, one 16-bit timer, a Watchdog timer, Brown-Out-Reset (BOR),

In-Circuit-Serial Programming™,.RS-485 type UART for multi-drop data acquisition

applications, and r2c™ or SPI™ communications capability for peripheral expansion.

Precision timing interfaces are accommodated through two CCP modules and two

PWM modules.

..

Table 2.4: Comparison of some popular rnicrocontrollers

AtmelAVR Microchip MC68H(R)C Atmel
AT90LS8535 PIC16F877 908.JL3 AT91M404000

(preliminary) 16/32 bit
Strong Thumb

Flash Memory 4K 8Kx14 4K external
memory

Endurance lk lk 10k NIA
1.25 (min) 1.66 O. 1 (typical) 0.6 MIPS/mA

MIPS/mA (preliminary) (1 .35 mA static
current)

AID channels 8(10bit) 8 (10 bit) 12 (8 bit) o
No Yes Yes Yes

In-application
programming
(IAP)
Operating 2.7-5.5V 2.0-5.5V 2.7-3.3V 2.7V-3.6V
voltage
1/0 pins 35 40 23 100

Further information on the PIC family of rnicrocontrollers can be obtained from the

manufacturer's web site and data sheets [12].

2.8 SUMMARY

Today, microcontrollers are used almost in all electronic system applications either as

stand-alone units, or as embedded controllers.

A microcontroller is a computer on a chip with its CPU, memory, and input-output

circuitry. There are many types of rnicrocontrollers, manufactured by various

companies, with different processing powers.

This chapter has described the architecture and the basic features of the popular

PIC16F84 microcontroller which is used in the following sections of this thesis.

52

3. MICROCONTROLLER SYSTEM DEVELOPMENT CYCLE

3.1 OVERVIEW

3.2.1 IDENTIFIERS •.

'I,

The high-level programming languages make the program development a relatively easy

task. C, PASCAL and BASIC are some of the most commonly used high-level languages

when programming microcontrollers. With high-level languages the development time is

shortened and the possibility of making errors is reduced. As a result, the development

cycle is much shorter when a high-level language is used. In this thesis the popular PIC

BASIC language and the native PIC assembler languages are used during the software

developmentof the multitaskingalgorithms.

3.2 BASICELEMENTSOF PIC BASIC LANGUAGE

A programming language [14] is understood as a set of commands and rules according to

which we write the program and therefore we distinguish various programming languages

such as BASIC, C, PASCAL etc. For the BASIC programming language the existing

literature is pretty extensive and as a result of this, most of the attention in this chapter will

be dedicatedto the part concretelydealing with the programmingof microcontrollers.

A program consists of a sequence of commands of language that our microcontroller

executes one after another. The structure of a BASIC program is explained with more

details in this chapter.

An identifier represents the name of some PIC BASIC element. Identifiers are used in PIC

BASIC in order to assign program lines and the names of various symbols. An identifier

itself could be any string of letters, numbers or even dashes with the limit that it is not

allowed to begin an identifier with a number. In BASIC, identifiers do not distinguish

small and capital letters, so that the strings TASTER and Taster are treated the same way.

The maximum length for such strings is 32 characters.An example is given below.

53

BO= O
button Set,0,255,0,BO, 1,LED_toggle
goto Main

I,,

3.2.2 LABELS

Labels represent .textual signs for some programming lines or respectively some of its

fragments on which the program can jump through some of the instructions used to change

the program flow. It is obligatory to end the label with a colon. Contrary to many old

BASIC versions, PIC BASIC does not allow numerical values as labels. i.e. all labels must

start with a character and terminate with a colon.

symbol Taster= PORTA.O
symbol LED_O = PORTB.o

BO var byte
: -, ~

Main: ' Label Main

LED_toggle: ' Label LED_toggle
toggle LED_O
goto Main
end

3.2.3 CONSTANTS

Constant declarations allow constant values to be assigned to identifiers. For example the

constant minute has the value of 60 seconds, bearing the recollection to the number of

seconds in a minute. Written at whatever program position, minute will be interpreted by

complier as if it had been written 60. There are two very important reasons for such habit in

program writing. The first one is the programmers wish to be more manifest. Good

visibility is achieved by giving to the variables and constants those names that could be

associated with the very function they assume within the program. On the other hand, the

bigger flexibility of the program is obtained as well. It is for an example so that if it

becomes necessary in some future work to use the same code but with a change value of the

54

constant, it is enough make a change in the part for declaration by performing search and

replace throughout the program.

minute con 60 'No. of seconds in a minute
if seconds < minute then minute = minute + 1 ' If the number of seconds is different

'from 60, raise the variable minutes

Constants can equally be written in decimal, hexadecimal and binary form. Decimal

constants are written without any prefix. Hexadecimal constants start with a Dollar sign $

and binary constant start with percent sign %. To make the programming easier, single

letters are converted into their ASCII counterparts. The sign constants must be placed into

the inverted commas and they contain only one letter as a rule (in adverse case they are

string constants).
ıı,••

56
$OF
% 10001100

' 56 decimal
' 15 hexadecimal
' 140 binary
' ASCII value for decimal 65
' AS.CII value for decimal 100

"p,"
"d"

3.2.4 VARIABLES

Variables serve for temporary storing of data and results of various arithmetic and logical

operations. Variables are stored in the microcontrollers RAM locations, which means that

the total numbers of the variables that can be used depend on the size of available RAM.

Variable definition is achieved with the formal word var at the beginning of the program.

PIC BASIC supports variables like bit, byte and word. Variable type is selected with

reference to the expected value that this same variable can assume in the course of the

program run. Therefore the variable of the bit type can take value of O or 1, the variable of

the byte values from O to 256 and finally, word from O to 65535.

Fleg var bit ' Fleg is a variable of the type bit
80 var byte 'BO is a variable of the type byte
WO var word ' WO is a variable of the type word
BO var WO .byteO '80 is a first byte of the word WO
Bl var WO .bytel ' B ı is a second byte of the word WO

55

BYTE 96*

3.2.5 SEQUENCES

Sequences of the variables are defined in a similar way as we have done with the variables.

The number of the elements of the sequence is given through value between "[]". Each

element of the sequence is accessible by an index. Index starts with zero. When we come to

define the number of the elements of the sequence one must always have in mind that the

number of locations in RAM memory on which we intend to store variables is finite. Table

3.1 shows the maximum number of the elements of various types.

Table 3.1: The size of the sequence

BIT 256

WORD 48*

* Depends on microcontroller

Some examples of sequences are given below.

Sequence 1 var byte[1 O] ' the sequence of 1 O elements of the type byte

Sequence 1 [O] represents the first element of the sequence and sequence 1 [9] the last..
element of the sequence "sequence l ".

Sequence2 var byte[8] 'the sequence of 8 elements of the type byte

Sequence2 [O] represents the first element of the sequence and sequence2 [7] the last

element of the sequence "sequence2".

56

3.2.6 MODIFIERS

By means of a modifier it is possible to introduce a new name for a variable already

defined. This direction is used relatively rarely but it ought to be mentioned for the sake of

completeness. It is used in an identical way as a direction for the definition of the variables.

Introduction of a new name is effectuated through the official word var.

AD CResul t var word
HigherB yte var AD Cresult.byteO ' The new name for the higher byte of the

' word AD Cresul t

3.2. 7 SYMBOLS

Symbols are granted the function exactly the same as direction for modifying variables, i.e.

they serve for assigning the new names to the variables and constants. Symbols are

introduced for the compatibility of the programs written for Basic Stamp and cannot be

used for introducing variables.

tl·ı,.,

symbol Taster = PORTA.O
symbol LED_O = PORTB.O

' Taster is a new name for RAO
' LED_O is a new name for RBO

3.2.8 DIRECTION INCLUDE

Direction INCLUDE serves for inserting files or file segments to a BASIC program. In this

manner it is rendered possible to store some general definitions of variables or subroutines

that are being executed as parts of several different programs. The effect achieved is the

same as if at the location on which is placed the direction INCLUDE simultaneously copied..
the contents of whole file.

In the following example, file "modedefs.bas" is included in the main program.

57

Include "rn odedefs.bas" ' The transfer modes that use the
'commands SERIN and SEROUT

symbol so= PORTA.3
symbol SI = PORTB.O
BO var byte

Loop:
serin SI,T2400,BO
serout SO,T2400, [BO]
goto Loop
end

3.2.9 COMMENTS

In the course of program writing it is generally recommended to use comments even if it

may be self-evident what the main purposeof the program is. Although it may well seem as

a shear waste of time, it may play later a crucial role (commentsdon't occupy an additional

memory space in the memory of a microcontroller). Comments should give useful

instructions about all that the program is doing. Comment as Set PinO to I simply explains

the syntax of the language but fails to pinpoint the purpose of the act. Something of a sort

Turn the Relay on may prove itself to be much more useful.

At the beginning of the program the aim of the program should be described together with

the names of the authors and when it was written. Stipulating the information concerning

revision and the exact date may be useful too. Even every concrete statement about..
connection to each pin can be crucial in an effort to memorize the very hardware for which

this program was designed to operate.

58

symbol LED = PORTB, O ' LED diode is connected to RBO

Mairı: ' The beginning of the program

LED= 1
Pause 500
LED= O
Pause 500
goto Main

'Turn on LED
'Pause 500 ms
' Turn off LED
'Pause 500 ms
'Jump to the beginning of program

end ' End of the program

3.2.10 PROGRAMMING LINE wrrn MORE INSTRUCTIONS

Compactness and better visuality of a program can be achieved by logically grouping

instructions by using ":". In that way the block of instructions can be placed all in a single

line, while instructions remain mutually separated with":".

B2=BO

BO=Bl

Bl =B2

The three upper instructions can be written in a single row as:

B2 = BO : BO = B 1 : B 1 = B2

3.2.11 TRANSFER OF INSTRUCTION INTO ANOTHER LINE

In case that an instruction is very long and· can not be fitted into a single line, it must be

continued to the next line. The character " " is used at the end of a line to mark the

continuation of the line.

lookup KeyPress ["l" "4" "7" "*" "2" "5" "8" "O" "3" "6" "9" "#" "N"]' ' ' ' ' ' ' ' ' ' ' ' '

3.2.12 DEFINE

Instructions of the PIC BASIC language can have some parameters from which depend the

exact way the instructions are executed. Those parameters assume some predefined values

59

that appear in most of the cases. A frequency of an oscillator is a good example for that. If

not otherwise stated the tact of the oscillator is taken by default as 4MHz. In case that the

used oscillator is of a different frequency from 4MHz it is necessary using the DEFINE

direction to specify that frequency and communicate it to all the programs that contain

instructions depending on the clock of the microcontroller. One such instruction is for the

serial transfer. In case that the instructions DEFINE is omitted and in gear is 8Mhz instead

of 4Mhz oscillator, all the instructions that depend on the tact of microcontroller will be

executed 2 times quicker. For instance, if the parameter of the speed of transfer amounts to

9600 bauds by using SERIN instruction, the data transfer would be effectuated at the speed

19200. In the same way the instruction pause 1000 the delay realized would be 0.5s instead

of 1 .Os. It is also possible similarly to upgrade the resolution of the instructions. What is

next is the review of the usage for DEFINE direction in case of adjusting of parameters

explained within each particular instruction as shown in Table 3.2.

,,

Table 3.2: The use of a direction DEFINE

I2C HOLD 1 pause 12C transfer while the"I2COUT, I2COUT
tact is on a low level

internal EEPROM in series

I2C INTERNAL 16Cexxx and 12Cxxx of the,ıI2COUT, I2COUT

PIC microcontroller

place of an open collector
serial tact is a bipolar at theııl2CWRITE, I2CREADI2C SCLOUT 1

I2C SLOW 1

for the tact > BMHz OSC

with the devices of allI2CWRITE, I2CREAD

standard velocity

LCD DREG PORTD LCD data port

CD DBIT O Initial bit of a data O or 4

60

ILCD_RSREG PORTD IIRS (Register select) port IILCDOUT, LCDIN
I

ILCD_RSBIT 4 jjRs (Register select) pin IILCDOUT, LCDIN
I

ILCD_EREG PORTD llenable port IILCDOUT, LCDIN I
LCD EBIT 3 !enable bit IILCDOUT, LCDIN I
LCD RWREG PORTD !read/write port IILCDOUT, LCDIN I

ILCD_RWBIT 2 II read/write bit IILCDOUT, LCDIN I
ILCD_LINES 2 ııNo of LCD lines IILCDOUT, LCDIN I

the time of delay of
LCD INSTRUCTIONUS

instruction in microseconds LCDOUT, LCDIN
2000

(us)

ILCD_DATAUS 50
I the time of delay of data in

ILCDOUT, LCDIN
Irnıcroseconds

tact of the oscillator in MHz:
all instructions of the serial

osc 4 3(3.58) 4 8 10 12 16 20 25

32 33 40
transfer and next pause

setting of OSCCAL for

OSCCAL IK 1 PIC12C671/CE673

microcontrollers

I OSCCAL _2K 1 JI the number of data bits
II I

ISER2_B1TS 8 J the slowing of the tact of
SHIFTOUT, SHIFTIN..

transfer

instruction LFSR in 18C:xxx
ILFSR

I
SHIFT PAUSEUS 50

rnicrocontrollers

IBUTTON_PAUSE 10 II BUTTON

ICHAR_PACING 1000 IISEROUT, SERiN

IHSER_BAUD 2400 I IIHSEROUT, HSERIN

IHSER_SPBRG 25
II

IIHSEROUT, HSERIN

61

ı,,.,

IHSER_RCSTA 90h I IIHSEROUT, HSERIN I
IHSRE_TXSTA 20h IIHSEROUT, HSERIN I
IHSER_EVEN 1 I IIHSEROUT, HSERIN

I
IHSER_ODD 1

II
IIHSEROUT, HSERIN I

3.2.13 DISABLE

Before entering the interrupt routine, it is necessary to switch off the interrupts in order to

avoid any new interruption in the course of data processing. The interruptions are forbidden

in a manner that the instruction "DISABLE" reset the bit GIB in the register INTCON.

Disable ' Forbid the i nterrup tions
' Start of an interruption routineISR:

' The end of the interruption routine
Resume
Enable

3.2.14 ENABLE

In the course of execution of the interruption routine, the interrupts must be forbidden by

resetting the bit GIE in the INTCON register. When the interruption processing is finished,

the interruptions must be allowed once again with the instruction "ENABLE" .

Disable ••
ISR: ' Start of the interruption routine

' The end of the interruption routine
Resume
Enable ' Allow interruptions

62

3.2.15 ON INTERRUPT

The "On interrupt" label indicates the start of the program segment where the interrupts are

handled. In the following example, the interrupt service routine is called "ISR" and the

program jumps to this label when an external or an internal interrupt occurs.

On interuupt ISR ' The interruption routine starts from the label ISR

Main: ' Main program
goto Main

Disable
ISR: ı Start of the interruption routine

'The end of the interruption routine
Resume
Enable

3.2.16 RESUME

This statement is used to resume the program execution at the end of an interrupt service

routine. i.e. return from the interrupt routine to the main program.

Disable
ISR: ' Start of the interruption routine

Resume
Enable

' End of the interruption routine
' Exit from the interruption routine

"

3.3 PIC BASIC COMPILER

The compiler program runs on PC and its task is to translate the original BASIC code into

the language of O and 1 understandable to the microcontroller. The process of translation of.

a BASIC program into a HEX code is shown on the Figure 3.1 below. The program written

in PIC BASIC and registered as a file Program.bas is converted into an assembler code

(Program.asın). So obtained assembler code is further translated into executive HEX code

63

which is written to the microcontroller memory by a programmer. (Programmer is a device

used for transferring HEX files from PC to the microcontroller memory)

Program written in PIC
BASIC language

Program translated
into assembler's

o ode

l

Program translated into
HEX code understandable

to miorocontroler

ll
I 8LINK1 lcomrloc > BLINKASM ı~••rble,

i
rogrammıng

Programming device g~RB2
writes HEX code into ı>

thememoıy of RB3
microcontroler

PIC BASIC compiler
converts program into

assembler's code

Assembler converts
ASM code into HEX

code

Figure 3.1 The PIC BASIC compiler.

3.4 WRITING AND COMPILATION OF A BASIC PROGRAM

The first step in the writing of a program code is to use a text editor (for example, the

Windows Notepad text editor). Every written code must be saved on a single file with the

ending .BAS exclusively as ASCII text. An example of one simple BASIC program -

BLINK.BAS is given.

64

RP.1

RP.O

OSC1

OSC2

Vdd

RB7

RB6

RB5

When the original BASIC program is finished and saved as a single file with .BAS ending

it is necessary to start PIC BASIC compiler. The compiling procedure takes place in two

consecutive steps.

Step 1. In the first step compiler will convert BAS file into assembler code and save it as

BLINK.ASM file.

Step 2. In the second step compiler automatically calls assembler, which converts ASM -

type file into an executable HEX code ready for reading into the programming memory of a

microcontroller.

The transition between first and second step is for a user - programmer an invisible one, as

everything happens completely automatically and is thereby wrapped up as an indivisible

process. In case of a syntax error of a program code, the compilation will not be successful

and HEX file will not be created at all. Errors must then be corrected in original BAS file

and repeat the whole compilation process. The best tactics is to write and test small parts of

the program, than write one gigantic of 1000 lines or more and only then embark on error

finding.

After the program is compiled, it can be simulated on a PC using a simulator program. The

simulation process does not require any hardware and enables _the programmer to simulate

the program operation by running the program on a PC in single step mode. Simulation is

very helpful as it enables the programmer to test the program and remove any possible

errors before implements the program on the target hardware.

3.5 LOADING A PROGRAM INTO THE MICROCONTROLLER MEMORY

As a result of a successful compilation of a PIC BASIC program the following files will be

created.

- BLINK.ASM - assembler file

- BLINK.LSI - program listing

65

- BLINK.MAC - file with macros

- BLINK.HEX - executable file which is written into the programming memory

File with the HEX ending is in effect the program that is written into the programming

memory of a microcontroller. The programming device with accessory software installed

on the PC is used for this operation. Programming device is a contrivance in charge of

writing physical contents of a HEX file into the internal memory of a microcontroller. The

PC software reads HEX file and sends to the programming device the information about an

exact location onto which a certain value is to be inscribed in the programming memory.

PIC BASIC creates HEX file in a standard 8-bit Merged Intel HEX format accepted by the

vast majority of the programming software. In the text below the contents of file

BLINK.HEX is given (this file is in Intel format, where a checksum is used at the end of

every line of code).

mooo ooô2sı~;s~H±t~6/ci\~,i§10:~zb:~'&:,~·fucc:Jbô'qg~:}i;;:11::[j,1c:
c ~~:~:ıi6;::!~;b:::~;:;~~~:~.i~~:i~~~b:;::~!,ı:ı::6r 111(
~OÖÔ3,GQDA00i·{64D'0A10iF.fS2H20J.:Hj)E2:8AO:iLÔ222Bi~··'..

:·.ıo'öcfqQ oifo EJ0-022:2808 o o 831'30:3 .l:;3_8 3ı2'64DÔnBOlllB '.
:":fo-öuso tıo0C6.t4·B3±60,6108 :n2tı1:3EJA3 O o F43öoZz öz

. .11§66'69 o ÔÜ'ti\t083 'r6o.;61p·s:3·:;2~;9ot:3,o'.o.rJi~.[9,22~'ı·'
.. 0,600."7D:OD2!;!28630'0$151287;

~:;~··6:ıbı,6:-~~:;:rj~,r~,·:··.:·'.\::·· ,.,, .,.,, .. ,,

Besides reading of a program code into the programming memory, the programming device

serves to set the configurationof a microcontroller.Here belongs the type of the oscillator,

protection of the memory against reading, switching on of a watchdog timer etc. The

connection between PC, programming device and the microcontroller is shown in Figure

3.2.

66

,- -ıSufl•,.er :a
proyrarrı ı rar,re

••'fHOC
I 'I

RA1

RAO·- RAAll'OCKI OSC1

o~LJ
..

"" IACLR PIC OSC2
GIil s
aııt. Vss 16F84 Vdd
Dıu RBO~NT RB7
+fil

RB1 RB6

~ RB2 RB5

RB3

Figure 3.2: The connection betweenPC, programming device and the microcontroller.

The programming software is used exclusively for the communication with the

programming device and is not suitable for any code writing. The one comprising text

editor, software for programming microcontroller and possibly the simulator as an entity

bears the name IDE i.e. Integrated Development Environment. One such environment is a

Microchip's software package MPLAB [12]. MPLAB is a complete microcontroller

development package, including an editor, a simulator, a librarian, and an assembler. The

package is distributed free of charge and can easily be downloaded from the company's

web-site. MPLAB supports all of the company's over 200 models of microcontrollers.

:ı

3.6 RUNNING YOUR PROGRAM

For correct operation of a microcontroller, i.e. correct running of a program it is necessary

to assure the supply of the microcontroller,oscillator and the reset circuit. The supply of the..
microcontroller can be organized with a simple regulator (e.g. LM7805) as shown in the

Figure 3.3 below. The circuit consists of a transformer which converts the 220V mains

voltage to 9V. Then a bridge rectifier circuit is converts the signal into full-wave regulated

signal. This signal is the applied to the LM7805 regulator which generates the required

+5V voltage for the microcontroller.

67

T0-91

!if ô - 7lni

+ ı I
l 2 J

LM780.l 3
+5V

-rr- c:ı . 'R

Transformer

22ov-

Cl= 22µF, cs = lOOnF,
C3 = lOµF, R = lK

Figure 3.3: LM7805 regulator circuit.

The oscillator of the microcontroller can be a 4MHz crystal and two small 22pF capacitors

or a ceramic resonator of the same frequency (ceramic resonator already contains the

mentioned capacitors, but contrary to the oscillator has three termination instead of only

two). The speed at which the microcontroller operates i.e. the speed at which the program

runs depends heavily on this frequency of an oscillator. In the course of an application

development the easiest to do is to use the internal reset circuit in a manner that MCLR pin

is connected to +5V through a 1 OK resistor. In the sequence of text the scheme of a rectifier

with circuit of LM7805 which gives the output of stable +5V, as well as the minimal

configuration relevant for the operation of a PIC microcontroller.

RA1

RAO

OSC2

Vddµ ~ UD f
RB7 •ı

1Z
RB6

RB5

RB4

To see the effect of
BLINK program, the

resistor ar-ıd the LED
diode are cor-ır-ıected to
7th pir, of the port B,

Figure 3.4: Switching on LED.

Note:-Minimal hardware configuration necessary for the operation of PIC microcontroller.

68

After the supply is brought to the circuit designed according to the Figure 3.4, the LED

diode should be twinkling once each second. If the signal is completely missing (LED

diode doesn't twinkle), a check should be done to ascertain if the +5V is present at the

microcontroller VDD pin. Notice that a limiting resistor is used in series with the LED.

This is necessary to limit the current through the LED to about 1 OmA.

3.7SUMMARY

Programming is becoming easier and easier but also very memory hungry. As

microcontrollers become more powerful and have larger amounts of memory on board,

programming will become easier and simpler. For the moment the most efficient way is to

use the assembly language in time-critical sections of the program and to use a high-level

language in other sections of the program. Nowadays, most programmersuse a high-level

language such as Basic or C when programming the microcontrollers. These languages are

easier to develop and also easier to maintain. This means that if for some reason the

microcontrolleror the program needs to be changed, the program can easily be convertedto

run on the new microcontroller.

Development of a microcontroller project requires several hardware and software

development tools like: text editor, a high-level language compiler (e.g. PIC Basic), or a

native PIC assembler, simulator software, chip programmer hardware, and chip

programmer software. In this chapter we have discussed the features of the PIC Basic

languageand the microcontroller developmentenvironment.

..

69

4. MULTITASKING APPLICATION ON PIC MICROCONTROLLERS

4.1 OVERVIEW

The principles of multitasking has been described in detail in Chapter 1. In this Chapter the

author has developed several single tasking and multitasking algorithms for the PIC

microcontrollers. A simple hardware has been developed by the author and some of the

multitasking algorithms have been tested using this hardware. In addition, a

microcontroller simulator has been used to test and evaluate some of the multitasking

algorithms. Both PIC Basic and the native assembler language of the PIC microcontrollers

have been used in the examples. ·:,
,,•I

4.2 PROGRAMMING LANGUAGES OF PIC MICROCONTROLLERS

Programming of a PIC microcontroller can be done in several languages and Assembler, C

and Basic are most commonly used languages. Assembler belongs to lower level languages

that are programmed slowly, but take up the least amount of space in memory and gives the

best results where the speed of program execution is concerned.

Programs in C language are easier to develop, easier to understand, but are slower in

execution compared to assembler programs. Basic is the easiest one to learn and its

instructions are simple, but like C programming language it is also slower than Assembler.

In any case, before you make up your mind. about one of these languages you need to

consider carefully the demands for execution speed, for the size of memory and for the

amount oftime available for its assembly.

After the program is written, we would load the program into the program memory of a

microcontroller and then start the system. But before using a microcontroller we need to

add a few more external components necessary for the operation of a microcontroller. First

we must give life to a microcontroller by connecting it to a power supply (power needed for

operation of all electronic instruments) and an oscillator whose role is similar to the role

that heart plays in a human body. Based on its clocks microcontroller executes instructions

70

4.3.1 LED DIODE EXAMPLE .::r

of a user program. As soon as it receives supply, the microcontroller will perform a small

check up on itself, look up the beginning of the program and start executing it. Execution

normally starts from address zero of the program memory.

4.3 SINGLE TASKS ON PIC MICROCONTROLLER USING PIC BASIC

In this section some single tasking applications are given which demonstrate the principles

of program development and running on a PIC microcontroller. These examples are based

on the popular PIC Basic programming language described in earlier chapters. A

PIC 16F84 microcontroller has been used in these examples since it is very easy to program

and use this microcontroller.

One of the most frequently used components in electronics is the LED diode (LED stands

for Light Emitting Diode). Some common LED diode features include: size, shape, color,

working voltage (voltage across the diode) Ud and electric current Id (current through the

diode). LED diodes, can have round, rectangular or triangular shapes, although

manufacturers of these components can produce any needed shape by order. Size i.e.

diameter of round LED diodes ranges from 3 to 12 mm, with 3 or 5 mm sizes most

commonly used. Color of emitting light can be red, yellow, green, orange, blue, etc.

Working voltage i.e. necessary for LED diode to emit light is 1.7V for red, 2. 1 V for green

and 2.3 for orange color. This voltage can be higher depending on the manufacturer.

Normal current Id through a diode is 10 mA, while maximal current reaches 25 mA. High

current consumption can present problem to devices with battery power supply, so in that

case low current LED diode (Id - 1-2 mA) should be used. For LED diodes to emit light

with maximum capacity it is necessary to connect it properly (see Figure 4. 1), or it might

get damaged by excessive voltage.

71

Ur

+5V

-; ~lid
Ur

R= ! 5- Ud i
R ~ lidId Cathode

~(Q) A n ----- A

K II__)
~~

K

- LED -

Figure 4.1: DiagramofLED diode.

Ud

The positive pole is connected to anode, while ground is connected to cathode. For matter

of differentiatingthe two, cathode is marked by mark on casing and shorter pin. Diode will

emit light only if current flows from anode to cathode; in the other case there will be no

current. Resistor is added serial to LED diode, limiting the maximal current through diode

and protecting it from damage. Resistor value can be calculated from the equation on the

picture above, where Ur represents voltage on resistor. For +5V power supply and 10 mA

currentresistor used should have value of 33012.

"I
,,t

LED diode can be connected to microcontroller in two different ways. One way is to have

microcontroller"turningon" LED diode with logical one (i.e. +5 volts) and the other way is

with logical zero (i.e. ground potential). The first way is not used very frequentlybecause

it requires the microcontroller to be diode current source. The second way works with

higher current LED diodes as shownbellow in Figures 4.2, and 4.3.

Figure 4.2: LED diode is turned on by a logical one.

72

Figure 4.3: LED diode is turned on by a logical zero.

The following application uses instructions High, Low and Pause to tum on and off an LED

diode every half a second. In this example 8 LEDs are connected to Port B of the

microcontroller but only the LED connected to bit 7 of Port B is used (see Figure 4.4) in the

program:

LEO diodes are conected to
port B and are turned on by a
logical one

Reset ıl'
~o-----

R.A2 RA1

RA3

RA41TOCKI

~:
RBO/INT

RB1

RB2

RB3

LED diode is connected to pin
~ +-- RB7 in the sample

LED

LED

ı,og 1'7' LED

Figure 4.4: LED diodes are connected to portB and are turned on by a logical one.

73

,.,.,
·'

Loop:
High PORTB.7
Pause 500
LowPORTB.7
Pause 500
Goto loop
End

The above example is a typical single tasking application where there is only one task and

this task controls the flashing of the LED in an endless loop.

4.3.2 BUTTONEXAMPLE ;·r,,

Button is a mechanical component which connects or disconnects two points A and B over

its contacts. By function, button contacts can be normally open or normally closed.

A

ıl
i

B

Button with normally
open contact

A

~i
B

Button with normally
closed contact

Pressing the button with normally open contact connects the points A and B, while pressing

the button with normally closed contact disconnects A and B. Buttons can be connected to

the microcontroller in one of two ways:

In the first case, button is connected in a way that logical one (+5V) remains on••
microcontroller input pin while button is not pressed. Resistor between a button and power

voltage has role of holding the input pin in defined state when the button is not pressed (in

this case a logical one). This is necessary as a protection from glitch on input pin that might

cause misinterpretation of program, i.e. as if button is pressed when it is not as shown

bellow in Figure 4.5.

74

+5V +5V

~~
cl HAA2

u
RA1~o-- r·ı,,...,,,•.•

m~,
4MHz.--:

OSC1 ı~'Button with T ~
Reset 5

"pull-up"

~

~
PIC OSC2 1Tı~1 +5V

5 "'

resistor Vss 16F84 Vdd
6

RBO/INT RB7

RB6~ -=- ô 11
RB2 RB6

RB3 RB4

·:::
Figure 4.5: Button with "PULL-UP" resistor.

When the button is pressed, input pin is short circuited to the ground (OV) which indicates

change on input pin. Voltage has dropped from 5V to OV. This change is interpreted by

program as if button was pressed and part of program code tied to a button (for example

tum on LED diode) is then executed. This way of defining pin states is called defining with

"pull-up" resistors, associating that the line is held up on the logical one level.

·,.,

In the other case, button is connected in a way that logical zero remains on input pin. Now,

resistor is between input pin and a logical zero, meaning that pressing the button brings

logical one to input pin. Voltage goes up from OV to +5V. Microcontroller program should

recognize change on input pin and execute the specific part of program code. This way of

defining pin states is called defining with "pull-down" resistors, associating that the line is

held down on the logical zero level as shown bellow in Figure 4.6.

75

+5V +5V

T J arı ılRA2 RA1

~o
t-4
Q-ı .--nRA.1

~~, 4MHz

Button with

~~

RM/TOCKI OSC1 filReset 5
"p u II -down"

~
5 MCLR PIC OSC2 I :::.: I I +5V

resistor
,,

16F84 Vdd

RB2

RB3

Figure 4.6: Button with "PULL-DOWN" resistor.

Common way to connect a button is with pull-up resistors, meaning that pressing the button

changes pin state from logical one to logical zero. The Figure 4.7 displays four buttons

connected to the microcontroller using the pull-up resistors.

<6V

i~o ~o ijs

,inJ Tl~\ Rtsıt

' ~ ı : j'- 1-l"'"ı.rı Pl~ vov<ı,ı:--r--"~I ..sıı

Buttons are connected to pins
RAO and RA 1 in the sarrple

11
~ ~i I

LED diode is connected to the
,ıon ::'. LED • pin RBO ın the sample'--~~~~~~~~~
ııoa "'LED /'--~~~~~~~~~

Figure 4.7: Four buttons connected to the microcontroller using the pull-up resistors.

76

One of the problems that may occur when working with buttons is the contact debounce the

moment a button is pressed. Debounce is a consequence of the contact vibration and

heavily depends on the type of button used. One of the ways to solve the contact debounce

problem is given in the following program code:

WaitO:

IfButtonO=O Then WaitO
IfButtonl=O Then Waitl
IfButtonO=O then WaitO
W=W+l
IfButtonO=O then WaitO
W=W-1

'lfButtonO=O, Jump to WaitO
'lfButtonl=O, Jump to Waitl
'If ButtonO=O'Wait until it is
'Released and increase W
'lfButtonl=O' Wait until it is
'Released and decrease W

Waitl:

rı·

Pressing the ButtonO causes the program to jump to address WaitO where it remains in the

loop until the button is released (this achieves that single button push is just once handled in

program). When ButtonO is released program continues executing instructions (in this case

variable W is increased by one). Pressing Buttonl causes the same effect, except that

variable W is decreased by one.

Problems might arise if an interrupt or some other source slows down the program

execution, so that program finds itself on WaitO or Waitl lines after the button is released.

This might cause program blocking until button is pressed again.

PIC Basic provides an instruction called Button which can be used to debounce button

contact problems and to read the status of buttons. In the following program code the

BASIC instruction Button is used which eliminates the contact debounce.

The program reads buttons ButtonO and Buttonl which are connected to the pins RAO and

RAl, respectively. Pressing the button O executes part of program code which turns on

LED diode on pin RBO. Pressing the button 1 executes part of program code which turns

off LED diode on the same pin. The mentioned instruction is among the most complex

instructions of BASIC program language. Besides few arguments that should be defined,

instruction has an argument for setting the delay time between recognition of two different

button pressures (the third argument). Its setting depends on the purpose of the button as

well as mechanical properties of the button. Still, it came clear over time that maximal

77

value of last argument represents the best solution for most applications, because of great

disproportion in human reaction and microcontroller speed.

BO var byte
Symbol ButtonO = PORTA.O
Symbol Buttonl = PORTA.I
Symbol LED = PORTB.O

TRlSA= $FF
TRlSB = $00
PORTB = $00

Main:
BO=O

'Variable used by instruction BUTTON
'Button O is connected to pin RAO
'Button 1 is connected to pin RAl
'LED diode is connected to RBO

'ALL pins of port A are input
'ALL pins of port B are Output
'Turn off all LED diodes at start

'Initialize the variable BO
'If Button O is pressed jump onto Ledün

:::
I ·I"

Button button0,0,255,0,BO, 1 ,Ledün
BO=O

'If Button 1 is pressed jump onto LedOff
Button button0,0,255,0,BO, 1 ,LedOff
GOTO Main 'Jump back to the beginning of the program

Ledün:
LED = 1 'Turn on LED diode
Goto Main

LedOff:
LED=O 'Turn off LED diode
Goto Main
End 'End of program

The above code is another example of single tasking on a microcontroller.

4.3.3 SEVEN-SEGMENTDISPLAYEXAMPLE

Seven-segment displays are frequently used in electronic circuits as indicators. In this

section the controlling of a seven-segment display with a microcontroller is describes as

another example of more complex single tasking.

Most common form of communication between the microcontroller system and a human

being is, of course, the visual communication. The simplest form is the LED diode, while

seven-segment digits represent more advanced form of visual communication. The name

comes from the seven diodes (there is an eighth diode for a dot) arranged to form decimal

78

digits from O to 9. Appearance of a seven-segment digit is given on a Figure 4.8 as shown

below.

Towards the micro controller pin
controlling this segment

gl f

•ldiKicidp

Figure 4.8: Seven-Segment digits.

,!"

Tens
digit

Exampleof comectirç
seven-seı,nent displays
in rTI.Jtlplec mode Wth
the mtcroccntrotıer

:·ı

e

d
C
s
a

Figure 4.9: Connecting seven segment displays in multiplex mode with the microcontroller

..
One of the ways to connect a seven-segment display to the microcontroller is given in

Figure 4.9 above. In this example, the system is connected to use seven-segment digits

with common cathode. This means that segments emit light when logical one is brought to

them, and that output of all segments must be a transistor connected to common cathode, as

shown on the figure. If transistor is in conducting mode any segment with logical one will

emit light, and if not no segment will emit light, regardless of its pin state.

If we use the above circuit diagram, one of the ways to realize the display in BASIC could

be the following program code:

79

Digit var byte
Maska var byte
i var byte
LEDDisl var PORTA.l
LEDDis2 var PORTA.O
TRISA=%00000000
TRISB=%00000000
LEDDis2=0
LEDDisl=l

'Value of number to be displayed
'Mask of number to be displayed
'temporary variable
'Transistor for ones digit
'Transistor for tens digit
'all pins of port A are output
'all pins of port B are output
'Digit on PAI (ones) is off
'Digit on PAO (ones) is on

Main:
For i=O to 9

lookup Digit,[$3F,$06,$5B,$4F,$66,$6D,$7D,$07,$7F,$6f],Maska
PORTB=Maska 'Send mask of a number to port B
Pause 500 'pause allowing to see the change

Next i 'Increase i by one
Goto Main 'Repeat the loop
End 'End of program

, ..

Variables LEDDisl and LEDDis2 are actually pins 1 and O of port A, where bases of

transistors Tl and T2 are connectedto. Setting logical one these pins tum on the transistor,

allowing every segment from "a" to "h", with logical one on it, to emit light. If there is
logical zero on transistor base, none of the segments will emit light, regardless of the pin

state. Tens digit is disabled at the very beginning of program, ahead of label Main

(LEDDis2=0).

:·ı

The purpose of the program is to display figures from O to 9 on the ones digit, with 0.5

secondspause in between. In order to display any number, its mask must be sent to port B.

For example, if we need to display "1 ", segments "b" and "c" must be set to 1 and the rest

must be zero. If (according to the scheme above) segments band care connectedto the first

and the second pin of port B, values 0000 and O 11 O should be set to port B. These values

which are set to port are commonly called "masks". For example, Mask for number "1" is

value 00000110 or $06 (hexadecimal)as shown in Table 4.1. i.e. sending the hexadecimal

number $06 to Port B will show number"l" on the display.

80

Table 4.1: Contains corresponding mask values for numbers 0-9.

1 110![o Ii o :,: o Ii o t_ı il 1 !I oii
__J ___ı!_ (!

olL ı JI o I .. [--T-
!L - ~ __J -- 1.. . .. i -·-°-- JL__ -~-·-· JL___~...,__

o iCı II o ,ı r !cc 1L ..-!~ ı: 1 i-1- 1--!
_J ıJLı :ı o 11 o ıı ı JDIL ıi 1·

~._._JL_ !. _J[_ _ 1 ·11. _ °---· JI 1 !! __ ı ___J[J-- - JI
all 1 II ı il 1 ll 1 ıc· 1 II 0 I ;I!·---'

7 II o il o II __ olL ___ o ___JfoıL_ __ ı ___ [~. _ı __ JL __ ı ____ 1[$01 J ,,ı.,

, ..

uı o il 1 II 1 il 1ll1IL __!_j! l If ı_J $7F~
911 o II 1 II 1

,ı o II 1 il 1 II 1 1 ·11-ı!

The above program uses the instruction Lookup to apply an appropriate mask to numerical

value. Instruction Lookup works very simply - it puts a character from a sequence, its

position defined by numerical value Digit, to variable Mask. For example, Mask will take

value $5B if Digit has value 2. In that manner, we can easily get mask for any decimal

digit.

'.'I

Continual display of Mask (PORTB=Mask) for appropriate value of variable Digit, with

0.5sec pause, will produce an effect of digits rotating from O to 9.

Problem with multiplexing occurs when dispfaying more than one digit is needed on two or

more displays. It is necessary to put one mask on one digit quickly enough and activate it's

transistor, then put the second mask and activate the second transistor (of course, if one of

the transistors is in conducting mode, the other should not work because both digits will

display the same value).

New program differs from the one above in converting 2-digits value to 2 masks, which are

displayed in a way that human eye gets impression of simultaneous existence of both

81

figures (this is the reason for calling it "multiplexing" - only one display actually emits in

any given moment).

Let's say we need to display number 35. First, the number should be separated into tens and

ones (in this case, digits 3 and 5) and their masks sent to port B. This separation can be

done with instruction Dig. For example, Digitl = W dig O will extract ones digit from

variable W and store it into variable Digitl. If O is substituted with 1, tens digit will be

extracted. Following the same logic, 2 extracts number of hundreds, 3 numbers of

thousands, etc.

Digit var byte
Mask Var byte
Wvar byte
LIDDisl var PORTA.1
LIDDis2 var PORTA.O
TRISA=%00000000
TRISB=%00000000
LIDDisl=O
LIDDis2=0

Main:
W=35
Digit=W dig 1
Gosub bin2seg

'Value of number to be displayed
'Mask of number to be displayed
'temporary variable
'Transistor for ones digit
'Transistor for tens digit
'all pins of port A are output
'all pins of port B are output
'ones digit is off in the start
'tens digit is off in the start

:::::·

:·ı

PORTB=Mask
LIDDis2=1
Pause 1
LIDDis2=0
Digit=W dig O
Gosub bin2seg

'Put tens to variable digit
'Call the conversion of binary number
'To a code of appropriate 7seg digit
'Set the mask of a digit to port B
'Print the tens digit
'Hold it printed for 1 ms
'Turn off the tens digit
'Put ones to variable digit
'Çall the conversion of binary number
'To a code of appropriate 7seg digit

PORTB=Digit
LIDDisl=l
Pause 1
LIDDisl=O

'Print the ones digit
'Hold it printed for 1 ms
'Turn off the ones digit

Goto Main 'Again, for achieving the effect that
'Both digits are on simultaneously

bin2seg:
lookup Digit,[$3F ,$06,$5B,$4 F,$66,$6D,$7D,$07 ,$7F,$6:fJ,Mask
Return
End

82

This part of program code prints value 35 on two seven-segment displays. The rest of the

program is very similar to the last example, except for having one transition caused by

displaying one digit after another. This transition can be spotted when LEDDisp 1 is being

turned off and LEDDisp2 turned on with a new mask. Lookup table is still the same and

may be called as a subroutine when needed.

The multiplexing problem is solved for now, but the program doesn't have a sole purpose to

show values on displays. It is commonly just a subroutine for displaying certain

information. However, this kind of solution for showing data on display will make essence

of the program much more complicated. This newly encountered problem may be solved by

moving part of the program for refreshing the digits (part of the program code for handling

the masks and controlling the transistors) to interrupt routine. The following program

shows how to use interrupts for refreshing the display. Main program increases the value of

variable W from O to 99 and that value is printed on displays. After reaching the value of

99, counter begins again.

Digit var byte
Mask Var byte
W var byte
i var byte
LIDDisl var PORTA.I
LIDDis2 var PORTA.O
TRlSA =%00000000
TRlSB=o/oOOOOOOOO
LIDDisl=O
LIDDis2=0
INTCON = %00100000
OPTION REG = o/o 10000000
ON Interrupt goto ISR
INTCON = o/o 1O100000
W=O

Main:
For i=I to 99

W=W+l
Gosub prepare
Pause 500

Next i
Goto Main

'Value of number to be displayed
'Mask of number to be displayed
'temporary variable
'temporary variable
'Transistor for ones digit
'Transistor for tens digit
'all pins of port A are output
'all pins of port B are output
'ones digit is off in the start
'tens digit is off in the start
'Enable interrupt TMRO
'Initialization of presale
'Interrupt vector
'Enable interrupts
'Initialization of variable W
'Beginning of the program
'Print values from O to 99
'Increase variable W
'Prepare value from W to be displayed
'Pause to see the digits

'Print values from O to 99 again

83

Prepare:
Digit=W dig 1
Gosub bin2seg
Mask=Digit
Digit=W dig O
Gosub bin2seg
Mask=Digit
Return

bin2seg:
lookup Digit, [$3F,$06,$5B,$4F ,$66,$6D,$7D,$07 ,$7F,$6:fJ,Mask
Return
Disable

'Value of ones is put to var. Digit
'Conversion digit to mask
'Mask 1 contains the mask of ones

'Conversion digit to mask
'Mask 1 contains the mask of ones
'return from subroutine

'Disable interrupts while ISR is
'Executing

ISR:
PORTB=Mask
LIDDis2=1
Pause 1
LIDDis2=0
PORTB=Mask
LIDDisl=l
Pause 1
LIDDisl=O
INTCON.2 = O
Resume
Enable
End

'Put a mask of tens digit to port B
'Print the ones digit
'Hold it printed for 1 ms
'Turn off the tens digit
'Put a mask of ones digit to port B
'Print the ones digit
'Hold it printed for 1 ms
'Turn off the ones digit
'Clear TOIF flag
'Return to program
'Interrupts are enabled again
'End of program

<I "~ •••ı ..•

Interrupt initialized in this way will generate interrupt every time TMRO timer changes

state from 255 to O. Every time interrupt takes place, interrupt routine will be executed so

that human eye gets impression that both displays print values simultaneously. As can be

seen from the program code, everything tied to displaying digits is moved to interrupt..
routine. However, part of the code for forming the masks to be displayed is in the special

subroutine (Gosub Prepare) in order to make interrupt routine code as short as possible.

Another reason for this kind of organization is also the need to create masks only when

variable Wis changed and not every time interrupt takes place.

In the course of main program, programmer does not have to take care of refreshing the

display nor anything about displays whatsoever. It is only necessary to call subroutine

"Preparation" every time value that will be displayed changes.

84

As 2-digit values do not satisfy most needs, two additional digits are generally used.

Program for realization of 4 seven-segment displays is just an expansion of the program

above. The main difference is in the part for separating values to ones, tens, hundreds and

thousands.

The above program code demonstrates another single tasking application on a

microcontroller.

4.3.4 MORE COMPLEX SINGLETASKINGEXAMPLE

This is a more complex single tasking application showing how a light can be controlled.

Building light control is a very simple device that is realized using the microcontroller

technology. The principle is simple - pressing the button turns on the light in the building

for a time period T. Upon that time, all lights tum off. Variable T is defined with

potentiometer. It is possible to determine for how long the light will be on by reading the

potentiometer as shown in Figure 4.1 O below.

·::::··

Setting the time period on
timer

-zov
50Hz

+12VAdditional button for each
floor o

Building light control Rele

Figure4.10: Building light control.

85

Symbol Buttonü = PORTA.O
Symbol Time_in = PORTA.I

'Button O is connected to pin RAO
'Potentiometer for setting the
'timer
'Output for light
'Output for control LED diode
'Temporary variable used by instr. POT
'Temporary variable used by instr. BUTTON
'Variable in FOR....NEXT instruction
'Pins RAO, 1, 2 input
'Pin RB 7 is output
'Tum off the light
'Tum off the control LED diode
'Beginning of the program

Symbol Light= PORTA.3
Symbol LED= PORTB.7
BO var byte
Bl var byte
i var byte
TRISA = %00000111
TRISB = %01111111
Low Light
Low LED

Main:
BO=O
Pot Time_in,255,BO 'Time period for which the light is

'on
Bl=O
Button buttonü,0,255,0,Bl,1,Lite 'If Button=O

'tum on the light
'50 ms pause
'Jump to beginning

Pause 50
Goto Main

Lite:
High light
High LED
For i=O to 60 + BO
Pause 1000
Nexti
Low light
Low LED
Goto Main
End

'Tum on the light
'Turn on the control LED
'If BO = O light is on for 1 min
'IfBO = 255 light is on for 5 min

'Turn off the light
'Turn off the control LED diode
'Jump to beginning
'End of program

In the above circuit buttons are used to simulate the light switches at each floor of a..
building. These buttons are connected to the supply voltage using pull-up resistors.

Normally pin RAO of the microcontroller is at logic 1. Pressing any button lowers the RAO

voltage to logic O which is then sensed by the program. Port pin RA3 drives an opto

coupler device. Normally the output of the opto-coupler device is at logic O and the light is

OFF. When pin RA3 is raised to logic 1, the opto-coupler output changes to logic 1 and the

relay at the output is activated, turning the light ON. A small LED is connected to port pin

RBI to indicate when the relay is activated. Port pin RAl is connected to a resistor

capacitor circuit. The resistor is in the form of a potentiometer. Normally the capacitor is

86

fully charged and the PIC Basic POT command is used to detect the capacitor discharge

rate and hence the potentiometer setting, without the need of using an analog-to-digital

converter.

4.4 MULTITASKING APPLICATION ON PIC MICROCONTROLLERS

In this section a number of algorithms have been developed for multitasking on a PIC

microcontroller. In the first algorithm, the PIC Basic language is used and a state machine

type multitasking algorithm is implemented on a microcontroller. A PIC microcontroller

system hardware has been developed in order to test the operation of the algorithm. This

hardware consists of the following:
:::::

• PICl 6F84 microcontroller

• Analog-to-digitalconverter

• 7-segmentdecoder

• 2-digit 7-segmentLED display

• Analog temperature sensor

• Relay switches to operate a fan and a heater

• Push-buttonswitches

The circuit basically measures the ambient temperature using an analog temperature sensor

integrated circuit. The temperature is then fed to a PIC16F84 type microcontroller which

shows the temperature on the LED displays. If the temperature is above the required

setting, then the fan is switched on. If on the other hand the temperature is lower than the

requires setting then the heater is switchedon.

4.4.1 STATE MACHINE MULTITASKING CIRCUIT BLOCK DIAGRAM

The block diagram of this multitasking circuit is shown in Figure 4.11. Firstly the

ADC0804 converter receives the analogue signal from temperature sensor LM35. After

87

converting the signal to digital, it is sent to the PIC 16F84A microcontroller. The

microcontroller drives the 7segment displays and the relays.

Figure 4.11: Block diagram of multitasking circuit.
,il

4.4.2 ANALOGUE TEMPERATURE SENSOR (LM35)

The LM35 [22] is an analogue temperature sensor which converts the temperature to an

analogue electrical signal. The LM35 is precision semiconductor temperature sensor gives

an output of 1 OmV per degree Centigrade. The LM35 sensor pin configuration is shown in

Figure 4.12.

1 I VS+ VOUT I 2

oz
(!)

..
Figure 4.12: LM35 Pin configuration.

4.4.3 ANALOGUE TO DIGITAL CONVERTER (ADC0804)

ADC0804 [23] is an 8-bit parallel AID converter. This is 20 pin devices which a conversion

time of 100 microseconds. As shown in Figure 4.13, the pin description is listed bellow:

DBO-DB7

RD

8 data output pins

Read input

88

Vin+

Write input

Interrupt output

Clock control inputs

Positive analogue input

4
18 DBO VI+ I 617
16 D81
15 D82 I 7
14 D83 VI-
13 D84

CLKR I 19
12 D85
11 D86

D87
CLKj 4

~- g VREF I 9
WR

AGND I 8INTR
ADC0804

',I'~

WR

INTR

CLKR/CLKIN

Figure 4.13: ADC0804 Pin configuration.

4.4.4 BCD TO 7SEG1\1ENT DECODER (74LS47)

The circuits [24] accept 4-bit binary-coded-decimal (BCD) and, depending on the state of

the auxiliary inputs, decodes this data to drive a 7-segment display indicator. The chip

offers active LOW, high sink current outputs for driving indicators directly. Seven NAND

gates and one driver are connected in pairs to make BCD data and its complement available

to the seven decoding AND-OR-INVERT gates. In figure 4.14 the 74LS47 BCD to

7segment decoder is shown.

--'-4• 81/RBO
-..;;;.~- RBI OUTA
-~ LT OUTS

OUTC
~ INA QUID

--'-2• INS OUTE
INC OUTF6 IND OUTG

Vcc=pin 16, GND=pin 8

Figure 4.14: 74LS47 pin configuration.

74LS47

89

4.4.5 THE CIRCillT DIAGRAM

The complete circuit diagram is shown in Figure 4. 15. The circuit consists of a number of

integrated circuits, passive components, transistors and push-button switches.

+5v

us

RV1

1k ııruı COHECTPINB&
PilllOGNDt
PIN 20 !O VCC

lM35/TO

U3

AOC0804
: :: .. :
' ,ıtl

C6

"J_ rl1uF w I lIr- c, LO" .~
70 I I I ~

~~~
PIC1SF84 ~

J
~6sm

-=-o

l-=-o

74LS47
PIN B GHO + PIN 16 VCC

In 3 aııd pi~ 6
piıı J aqd pin 8

OSC2/CLKOUT ,J§.
17

RAORA 18 I I I
1 1 11

: 2 I
RA4/TOCKI .1.

RBO/INT 6
RB1 l
RB2 ~
RB3 10
RB4 11
:: 12
RB7...ı_ı_

VCC_+5v

R4

vg:_+Sv300

R6
100

01

~
LEDFLA'iHER_

70

~
_s __ I Fan

RELAY DPOT HE

K2A
~

Heater
RELAY OPDT HE

RS

100

..

Figure 4.15: The circuit diagram

• The temperature sensor LM35 measures the temperature and converts it to analogue

electrical signal.

• The converted signal is sent to AID converter to convert the analogue signal to

digital.

90



• The converted digital signal is sent to the PIC microcontroller as digital input.

• The extracted bits are sent to a 7-segment decoder to convert them so that they can

be displayed in 7segment displays. Port pin RB4 of the microcontroller determines

which digit to tum on at any given time.

• The program controls the "Fan" relay or the "Electrical heater" relay based on the

measured value of the ambient temperature and the temperature setting. For

example, if the temperature is above required value the fan will be turn on.

Similarly, if the temperature is below required value the electrical heater will tum

on.

4.4.6 IMPLEMENTINGTHE STATEMACHINEALGORITHM

In this example we try to keep the temperature between 15°C and 25°C and there are 3

activities, namely:

• Reading, converting, and displaying the ambient temperature (i.e. Task 1)

• Implementing the control algorithm (i.e. Task 2)

• Flashing the LED 10 times if the heater is OFF (i.e. Task 3)

If each activity is configured as an independent task then we have 3 tasks and the following

state-machine multitasking algorithm can be derived (the operation of the algorithm is

shown as a PDL): ..
BEGIN

Current-State = 1
DO FOREVER

IF Current-State = 1
Read temperature from analog sensor
Convert temperature to digital form
Display temperature on 7-segment display
Current-State = 2

ELSE IF Current-State= 2
IF temperature< 15°C

Tum ON heater

91



Tum OFF fan
ELSE IF temperature > 25°C

Tum OFF heater
Tum ON fan

END IF
Current-State = 3

ELSE IF Current-State= 3
DO 10 times

Flash the LED
ENDDO

END IF
Current-State= 1

ENDDO
END

Figure 4.16 shows the actual PIC Basic code developed by the author and used to test the

above algorithm.

'************************************************************* 
'* Name : STATE-MACHINE.BAS
'* Author
'* Date : 2/14/2005
'* Version: I.O
'* Notes : This is an example State-Machine based multitasking code.
'* The code consists of3 tasks called Taskl, Task2 and Task3.
'*

*
*
*
*
*
*
*

'************************************************************* 

TRISA = %00011111
TRISB = $00

' All pins of port A are input
'All Pins of Port Bare output..

Left Var byte
Right var Byte
i var byte
ADC_ In var byte
Digit Var byte
Current_ State Var byte

' Data for the left display
'Data for the right display

' Store the ADC data
' Scale the tremperature data
' State variable

Current State = 1 ' Set initial state to 1

92 



Main:
SELECT CASE Current State
CASE 1

Gosub Taskl
Current State = 2

CASE2
Gosub Task2
Current State =3

CASE3
Gosub Task3
Current State = 1

END SELECT
Goto Main

Taskl:
ADC In=PORTA
Digit= ADC_In & %00001111
Digit = Digit * 2
Right = Digit dig O
PORTB = Right & %00001111
high PORTB.4
pause 1
Left = Digit dig 1
PORTB = Left & %00001111
LOWPORTB.4
pause 1
return 

Task2:
if Digit< 15 then

lowPORTB.7
high PORTB.6

endif

if Digit> 25 then
lowPORTB.6
HIGH PORTB.7

end if
return 

Task3:
ifPORTA.4 = O then

for i = 1 to 10
toggle PORTB.5
pause 10

nexti

' read the temp data
' store and mask The Data From The ADC
'scale the data
' Extract the ones Digit
'Send the nibble to 74ls47
'Activate The Right-Hand 7-segment Display

'extract the tens digit
'send the nibble to 74ls47
'Activate the Left-Hand 7-segment display

' if the temp is less than 15
'switch off Fan
' switch on Heater

..
'if the temp. is greater than 25
' switch off Heater
' Switch on Fan

93

,,,il



endif
return

End

Figure 4.16: The Basic program

The state-machine approach is simple but it has the main disadvantage that each task is

allowed to execute in its entirety which may take too long. This can in general be

prevented by splitting each function into a number of smaller states and executing only one

state each time round the infinite loop.

4.4.7 IMPLEMENTING THE TIME SLICED MULTITASKING ALGORITHM
., ..,.,

ıll,

In this section an algorithm is developed to implement the time sliced multitasking on a

PIC microcontroller. The timer (TMRO) of the microcontroller is set-up to generate

interrupts at regular time intervals and the tasks are scheduled whenever an interrupt

occurs. The algorithm is described below as a PDL for a 3 task system:

BEGIN
Set-up timer interrupts
Counter= 1

DO FOREVER
IF Timer-Expired= True

IF Counter = 1
DO Task 1

ELSE IF Counter = 2
DO Task-2

ELSE IF Counter = 3
DO Task 3
Counter= 1

ENDIF
ENDIF
Timer-Expired = False

ENDDO

INTERRUPT-SERVICE-ROUTINE:
Increment Counter
Re-initialise timer interrupts

RETURN from interrupt

94



END

The actual code is shown in Figure 4. 1 7. In this code the timer TMRO is set to overflow

every time it reaches a count of 255 and a pre-scaler value of 256 is used by setting PSAO,

PSAl, and PSA2 to logic 1. With a 4MHz clock rate, the internal clock rate is 4MHz/ 4 =

1MHz and thus the timer clock period is 1 microsecond. In this example, timer interrupts

will be generated when the timer overflows, which is at time intervals of 256 x 256 = 65535

microseconds, or approximately at every 65ms. Variable Counter is incemented by 1

inside the interrupt service routine and thus, a new task will be scheduled at every 65ms.

The Tasks are same as before and are not shown in the following code.

'************************************************************* 
'* Name : TIME-SLICING.BAS
'* Author :
'* Date : 3/10/2005
'* Version: 1.0
'* Notes : This is an example Time Sliced multitasking code.

The code consists of 3 tasks called Task 1, Task2 and Task3.
and each task receives 65ms of processor time.

'* 

*
*
*
*
*
*
*
*

'*
'*
'************************************************************* 
Counter
Timer_Expired

Var Byte
Var Byte

' Set timer TMRO to interrupt at every 65ms

OPJION_REG = $17
INTCON=$AO
ON INTERRUPT GOTO TIMER INT

'Set PSAO=PSA1=PSA2=1 (prescaler 256)
'Enable TMRO interrupts

Timer_ Expired = O

MAIN:
IF Timer_ Expired = 1

SELECT CASE Counter
CASE 1

Gosub Taskl
CASE2

Gosub Task2
CASE3

95



Gosub Task3
Counter= 1

END SELECT
ENDIF -
Timer_ Expired = O
Goto Main

' Timer interrupt Service Routine

Disable
TIMER INT:

Counter = Counter + 1
Timer_ Expired = 1
INTCON.2=0
Resume
Enable
END

'Disable interrupts

'Point to next task
'Set Timer_Expired flag
'Re-enable Timer interrupt
'Resume normal program
'Re-enable interrupts in general

.. ,
ıJ ı,

Figure 4.17: Time sliced multitasking code.

4.4.8 IMPLEMENTING THE COOPERATIVE MULTITASKING ALGORITHM

In Cooperative multitasking each task releases the CPU whenever it thinks it is the right

time to do so. For example, if an I/O condition is not satisfied the task may decide to

release the CPU for the other tasks in the system. Also, a task does not necessarily run to

its full length before it releases the CPU. The important point in Cooperative multitasking

is that when a task gets back the CPU time, it continues from the point it left just before it

released the CPU. As a result of this, all tasks seem to run as if they are executed..
continuously by different processors.

Because a task has to continue from the point it left before it released the CPU, it is

necessary to save the task return addresses in memory so that the scheduling algorithm

knows how to resume the tasks from the correct addresses.

The Cooperative multitasking algorithm for a 2 task PIC application is given below as a

PDL:

96 



BEGIN
Get Task 1 starting address
Save Task 1 starting address in Context memory
Load Task 2 starting address into W register
Call Exchange
Reserved location for subroutine Return point

Exchange:
Swap W register and Context memory
Load W into Program Counter
Jump to Program Counter address

Task 1:

Return with address of next instruction in W : ·ı •
11 ı,

Goto Task 1

Task 2:

Return with address of next instruction in W

Goto Task2
END

Task 1 and Task 2 can release the CPU whenever they want by issuing a return instruction

with the address of the next instruction (return point within the task) within the task loaded

into the W register. The routine starting with the label Exchange is a tiny scheduler which

swaps the address in the W register with the address in Context memory and then loads W

into the program counter and jumps to this address. The effect of this is a simple context

switching where the CPU is ahsred between the two tasks as the tasks release and then grab

the CPU.

Figure 4. 18 shows the actual PIC assembly language code which implements the above

Cooperative multitasking algorithm for 2 tasks.

97



·************************************************************* ,
;* Name :·coOPERA TIVE.ASM
;* Version : 1.0
;* Notes : This is an example Cooperative multitasking code.
·*,

*
*
*
*

'************************************************************* 

context OxOCequ

switch task MACRO
retlw $+ 1
ENDM

SWAP MACRO reg
xorwfreg,f
xorwfreg,w
xorwfreg,f
ENDM

movlw Taskl
movwf context
movlw Task2

; Scheduling.

call $+2
goto $-1
swap
movwf pcl

Taskl
........
switch task
........
goto Taskl

Task2 ·········.........
switch task
.........
goto Task2

END

; Address of Context memory

; Return with address in W

; Swap W register and reg
: '.t .• ,
I,

;Get Task 1 address
;Save in Context memory
;Get Task 2 address

Swap the contents of W register and Context memory

;Swap W register and Context memory
;Jump to program counter address

.. ;Release CPU

;Release CPU

Figure 4.18 Cooperative multitasking with 2 tasks.

98



At the beginning opf the program the Context memory is assigned address OxOC of the

general purpose memory, which is the first available memory location on PIC16F84

microcontrollers. The switch task macro is then defined which returns from a subroutine

with the address in the W register. The SWAP macro swaps registers Wand the general

purpose register spevifed by its parameter reg. The two tasks are labelled Taskl and Task2

respectively and as shown in the code the tasks release the CPU by calling the macro

switch task.

An example use of the above code is given below where 2 tasks are used and Task 1

increments a variable called counter I starting from 1 and displays the result on Port B.

Similarly, Task 2 increments another variable called counter2 starting from 100 and again

displays the result on Port B. As a result, the following data should be displayed on Port B:

o, 100, 1, 101, 2, 102, .

:ı.;·, .,

;* Name : COOPERATIVE_TEST.ASM
;* Version : 1.0
;* Notes : This is an example Cooperative multitasking code.
;* Two tasks are used. Task 1 increments a variable starting
;* 1 and outputs to Port B. Task 2 increments another variable
;* starting from 100 and again outputs to Port B.
·*'

*
*
*
*
*
*
*

·************************************************************* '

'************************************************************* 
LIST P=16F84
#include "p 16f84.inc"

context
counterl
counter2

equ
equ
equ

OxOC
OxOD
OxOE

•• ; Address of Context memory
; Counter 1 address
; Counter2 address

switch task MACRO
retlw $+ 1
END

; Return with address in W

SWAP MACRO reg
xorwf reg,f
xorwf reg,w
xorwf reg,f
ENDM

; Swap W register and reg

99 



ORGO ;Start of Main code

Main bsf STATUS,5 .Move to Bank 1
clrf TRI SB ;Port B is output port
bcf STATUS,5 ;Move back to Bank O

movlw 1
movwf counterl .Counter l = 1
movlw d' 100' ;W= 100
movwf counter2 ;Counter2 = 100

movlw Taskl ;Get Task 1 address
movwf context ;Save in Context memory
movlw Task2 ;Get Task 2 address

., .. ,
-t •• ı

; Scheduling. Swap the contents of W register and Context memory j ,i

call $+2
goto $-1
swap context
movwf PCL

;Swap W register and Context memory
;Jump to program counter address

;****************** START OF TASKS********************

Taskl incf counter! ,f
movf counter 1,w
movwf PORTB
switch task
goto Taskl

;increment Counter 1
;W = Counter 1
;Send to Port
;Release CPU

Task2 incf counter2,f
movf counter2,w
movwf PORTB
switch task
goto Task2

.. ;increment Counter2
;W = Counter2
;Send to Port
;Release CPU

END

The above code was simulated on a PC using the MPLAB simulation package and the

results were correct.

A screen shot of the simulation is shown in Figure 4.19.

100



ı .,

Figure 4.19: Screen shot of the simulation.

4.4.8.l GENERALISING TO MANY TASJ(S

The Cooperative multitasking algorithm given above is only for 2 tasks but this algorithm

can be generalised to any number of tasks (provided there is enough memory space on the

microcontroller) as described by the PDL in Figure 4.20 below:

BEGIN
DO for all tasks

Get Task i starting address
Save Task i starting address in Context memory

ENDDO

101



'Setpointer to top of Context memory
Call Exchange
Reserved location for subroutine Return point

Exchange:
Swap W register and Context memory pointed to by pointer
Increment pointer
IFpointer points to last task in Context memory

Set pointer to top of Context memory
ENDIF
Load W into Program Counter
Jump to Program Counter address

Task 1:

Return with address of next instruction in W I •Iı ••,

ı ,ı"

Goto Task 1

Task 2:

Return with address of next instruction in W

Goto Task2

Task 3:

Return with address of next instruction in W

Goto Task 3
..

Taskn:

Return with address of next instruction in W

Goto Task n

END
Figure 4.20: Generalised Cooperative multitasking algorithm.

102



The PIC assembly code to implement the algorithm for n Cooperative multitasking tasks is

given in Figure 4.21 below. Several MACROs are used to set-up the multitasking

environment. switch_task macro saves the return address of each task in the W register so

that we can return to each task. swap macro is used to swap the contents of the W register

and any other file register. context macro is called at the beginning of the main program

and this macro creates the memory locations where the return addresses of the tasks are to

be stored. This macro receives the number of tasks and the first available free memory

location and the creates statements of the following format (assuming there are 3 tasks with

the memory start address Ox20):

•! .,.

context 1 equ Ox20

context2 equ Ox21

context3 equ Ox22

init macro is called at the beginning of the main program and this macro loads the task

starting addresses to the context memory locations so that the scheduler can start the tasks.

For example, if there are 3 tasks, the init macro creates the following statement:

movlw Taskl

movwf context 1

movlw Task2

movwf context2

;get address of Taskl

;save in memory address contextl

;get address of Task2

movlw Task3

movwf context3

••
;save in memory address context2

;get address of Task3

;save in memory address context3

ntasks is the numbers of tasks in the system and this variable must be set-up to the correct

value at the beginning of the program.

103



·*************************************************************';* Name : COOPERATIVE TEST.ASM
;* Version : 1.0

*
*

·*'

;* Notes : This is an example Cooperative multitasking code for n tasks *
*

·*************************************************************'

task count

;MACROS

LIST P=l6F84
#include "pl 6f84.inc"

equ OxOC ;task_count

switch task MACRO
retlw $+ 1
ENDM

swap

context

init

; Return with address in W

MACRO reg
xorwfreg,f
xorwfreg,w
xorwf reg,f
ENDM

MACRO ntasks,k
t = 1
m=k
while t <= ntasks
context#v(t) equ OxO#v(m)
t = t + 1
m=m+ 1
endw
ENDM

MACRO ntasks
t = 1
while t <= ntasks
movlw Task#v(t)
movwf context#v(t)
t = t+ 1
endw
ENDM

; Swap W register and reg..

;*********** START OF MAIN CODE**************
ORGO

ntasks equ n ;Number of tasks

104



Main ······························ ;Start of MAIN code

······························
······························
context ntasks, Ox20 ;create context addresses
init ntasks ;load task addresses
movlw ntasks+ 1
movwf task count

'; task scheduler

'movlw context 1
movwf FSR
movf INDF,w
call $+5
swap INDF
incf FSR,f

cont swap INDF
decf task_ count,f
btfsc STATUS,2

1 ,,

goto rst
movwf PCL

rst movlw ntasks+ 1
movwf task count
movlw contextl
movwf FSR
movfINDF,w
goto cont

;************** START OF TASKS****************

Taskl
switch task
goto Taskl

.. ;Release CPU

Task2
switch task
goto Task2

;Release CPU

Task3
switch task
goto Task3

;Release CPU

105



Task4
switch task
goto Task4

;Release CPU

Taskn
switch task
goto Taskn

;Release CPU

END

Figure 4.21 Multitasking Cooperative n tasks.

An example program with 5 tasks is given in Figure 4.22 below. In this program each task

uses an independent counter and the value of the count is sent to Port B for testing the

program. The program was run on the MPLAB simulator in single-stepping mode and

correct results were obtained.

'•ı

·************************************************************* 
;* Name : COOPERATIVE_TEST.ASM
;* Version: I.O
;* Notes : This is an example Cooperative multitasking code.
;* Five tasks are used with each one having its counter.
;* The value of the count is displayed on Port B for testing
·* '

*
*
*
*
*
*

·************************************************************* ' LIST P=16F84
#include "p16f84.inc"

task count equ OxOC
counter! equ OxOD ..
counter2 equ OxOE
counter3 equ OxOF
counter4 equ OxlO
counters equ Oxl 1

switch task MACRO
retlw $+ 1
ENDM

swap MACRO reg
xorwfreg,f
xorwfreg,w

106

; Return with address in W



xorwfreg,f
ENDM

context MACRO ntasks,k
t= 1
m=k
while t <= ntasks
context#v(t) equ OxO#v(m)
t= t + 1
m=m+ 1
endw
ENDM

init MACRO ntasks
t = 1
while t <= ntasks
movlw Task#v(t)
movwf context#v(t)
t = t + 1
endw
ENDM

; Swap W register and reg

ORGO

ntasks equ 5 ;5 tasks in the system

Main bsf STATUS,5 ;Move to Bank 1
clrf TRI SB ;Port B is output port
bcf STATUS,5 ;Move back to Bank O
movlw 1
movwf counter 1 .Counterl = 1
movlw OxOa
movwf counter2 "Counter2 = 1 O
movlw Ox14
movwf counter3 ;Counter3 = 20
movlw Oxle
movwf counter4 ;Counter4 = 30
movlw0x28
movwf counters .Counterô= 40

context ntasks,Ox20
init ntasks
movlw ntasks+ 1
movwf task count

107



; task scheduler

movlw contextl
movwfFSR
movfINDF,w
call $+5
swap INDF
incfFSR,f

cont swap IND F
decf task_ count,f
btfsc STATUS,2
goto rst
movwfPCL

rst movlw ntasks+ 1
movwf task count
movlw contextl
movwfFSR
movfINDF,w
goto cont

;************** START OF TASKS****************

Task!

Task2

Task3

Task4

incf counter 1,f
movf counter 1,w
movwfPORTB
switch task
goto Task!

;increment Counter 1
; W = Counter 1
;Send to Port
;Release CPU

incf counter2,f
Movf counter2, w
MovwfPORTB
switch task
goto Task2

.increment Counter2
;W = Counter2
;Send to Port
;Release CPU

incf counter3,f
movf counter3,w
movwfPORTB
switch task
goto Task3

;increment Counter 1
;W = Counter 1
;Send to Port
;Release CPU

incf counter4,f
Movf counter4,w
MovwfPORTB
switch task

;increment Counter2
; W = Counter2
;Send to Port
;Release CPU

108



goto Task4

Task5 incf counter5,f
Movf counter5,w
MovwfPORTB
switch task
goto Task5

;increment Counter2
; W = Counter2
;Send to Port
;Release CPU

END

Figure 4.22 Multitasking Cooperative 5 tasks.

4.5 SUMMARY

This chapter has described the implementation of various multitasking algorithms on the

PIC microcontroller. In addition, various single tasking aplications have been developed

and tested by the author using a PIC microcontrolelr based hardware, developed by the

author. This hardware consisted of a temperature sensor, analog-to-digital converter, ?

segment decoder and display, and relays. The Cooperative multitasking algorithm was

tested using the MPLABpackage, which is freely available from the Microchipweb-site.

109



CONCLUSION

Traditionally microcontrollers have been used in single tasking mode where a single

microcontroller is used for a given application. As the applications became more

complex the need for multitasking has become a necessity in microcontroller

applications. Multitasking on microcontrollers is becoming an important part of a

majority of the electronic devices today. Also, as a result of their compact size, low

cost, low power consumption and ease in implementation, multitasking on

microcontrollers is currently becoming an important concept.

This thesis has investigated the principles of multitasking and several multitasking

algorithms have been developed for low-cost popular microcontrollers. These

algorithms have been tested using suitable ınicrocontroller simulation packages, such as

the MPLAB form Microchip Inc. It is shown in the thesis that multitasking algorithms

can easily be implemented on microcontrollers which have very limited resources, such

as limited memory and limited VO capabilities.

Chapter 1 of the thesis has described the general principles of multitasking.

Microcontrollers, and their architecture has been outlined in Chapter 2 in detail. In this

Chapter, the popular PIC family of microcontrollers have been used as the example

microcontroller. The reason for choosing PIC was because currently this is one of the

most popular microcontrollers used in industry, commerce, and by the hobby market.

The basic microcontroller development cycle and the microcontroller development

tools, including the microcontroller language tools are summarised in Chapter 3.

Finally, Chapter 4 describes the development of several microcontroller based

multitasking algorithms. These algorithms have been developed and tested by the

author using commercially available simulator packages.

Although the multitasking algorithms developed by the author should be sufficient for

most industrial and commercial applications, they can be extended to include more

complex multitasking algorithms, such as the preemptive multitasking.

110



REFERENCES 

[ 1] "Multitasking Introduction",

http://www.bknd.com/cc5x/multitasking.shtml

[2] CS 110 Handout #33 spring 2001 May 23, 2001 l/0 Announcements

http://www.stanford.edu/class/csl 10/handouts/33 IO.pdf

[3] "Operating Systems - Multitasking"

http://hjem.get2net.dk/rune moeller barnkob/multitasking.html

[4] John Iovine," PIC Microcontroller Project Book", 2000
http://www.amazon.com/exec/obidos/ASIN/0071354794/ref0/o3Dnosim/robotbo
oks-20/002-1409841-1684012

[5] D. Ibrahim, "Microcontroller programming in Cfor the 8051", Butterworth
Heinemann, 2000, London.

[6] D. Ibrahim, "Z80 Programming", Bilesim Yayincilik, 2003, Ankara, Turkey

[7] John Crisp, "Introduction to Microprocessors and Microcontrollers", Second

Edition, Elsevier, 1998-ıoo4, London.

[8] Nebojsa Matic," The PIC Microcontroller", Third Edition, 2003

http://www.microelectronika.com .
..

[9] William H. Payne," Embedded Controller Forth for the 8051 Family", San

Diego, CA, Third Edition, 1990.

[10] William H. Payne," Embedded Controllers Data book", 1992.

[11] Hon-Won Huang, "PIC Microcontroller: An introduction to Software &

Hardware", Thomson Delman Learning, 2004.

[12] "Microchip Data Sheets and Application Notes"

http://www.microchip.com

111



[13] Colin K McCordv," The PICI 6F877 Microcontroller", 2002.

http://www.mccord.plus.com/FYP/4.htm

[14] Nebojsa Matic," BASJCforPICMicrocontroller", 2003-2004

http://www.microelectronika.com.

115] P. Ssasov, "Microcontroller Technology: the 68HC11",

Prentice-Hall Publishing, 1993.

[16] S. Mackenzie, "The 8051 Microcontroller",

Prentice-Hall, 1998.

[17] A. Johnson-Laird, "The Programmers CP/M Handbook",

McGraw-Hill Publishing, 1985.

[18] S. Heath, "Embedded Systems Design",

Newnes, Butterworth-Heinemann, 1999, Oxford

[19] "Salvo User Manual"

www.pumpkin.com

[20] J.R. Tocci, "Microprocessors and Microcomputers",

Prentice-Hall Publishing, 1995.

[21] D. Ibrahim, "PIC Basic: Programming and Projects",..
Newnes, Butterworth-Heinemann, 2003.

[22] Temperature Sensor "LM35"

http://www.hardware.dibe.unige.it/DataSheets/LM3 5 .pdf

[23] Analogue to Digital converter "ADC0804"

http://www.iguanalabs.com/ adc0804.pdf

[24] BCD to 7segment decoder "74LS47"

http://www.ee.washington.edu/stores/DataSheets/74ls/74ls48.odf

112


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 

	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Titles
	. /,0~ }~ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 3
	Page 4
	Titles
	ACKNOWLEDGEMENTS 
	.. 
	---------===-----=--==-=,...... ...,,....,,,.....,...,. ----·-- ______,,...~...,..,. 


	Page 5
	Titles
	.. 
	ABSTRACT 

	Images
	Image 1


	Page 6
	Titles
	TABLE OF CONTENTS 
	.. 


	Page 7
	Titles
	.. 
	,., " 


	Page 8
	Page 9
	Titles
	.. 

	Images
	Image 1


	Page 10
	Titles
	.. 


	Page 11
	Page 12
	Titles
	.. 

	Images
	Image 1


	Page 13
	Titles
	INTRODUCTION 


	Page 14
	Page 15
	Titles
	.. 


	Page 16
	Titles
	1. MULTITASKING 

	Images
	Image 1
	Image 2


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Titles
	.. 

	Images
	Image 1


	Page 19
	Titles
	.. 


	Page 20
	Titles
	+ 
	+ 
	+ 
	+ 
	+ 
	+ 
	.. 
	IL ----------- 

	Images
	Image 1


	Page 21
	Titles
	.. 

	Images
	Image 1


	Page 22
	Titles
	{ 

	Images
	Image 1
	Image 2


	Page 23
	Titles
	} 
	.. 

	Images
	Image 1


	Page 24
	Images
	Image 1


	Page 25
	Titles
	• 

	Images
	Image 1
	Image 2
	Image 3


	Page 26
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 28
	Titles
	END DO 
	END 
	BEGIN 
	END DO 
	END 
	1.6.2 TIME SLICE MULTITASKING 
	.. 

	Images
	Image 1


	Page 29
	Images
	Image 1
	Image 2


	Page 30
	Images
	Image 1
	Image 2


	Page 31
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 32
	Titles
	.. 
	D 

	Images
	Image 1


	Page 33
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 34
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 35
	Titles
	o 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 36
	Titles
	.. 

	Images
	Image 1


	Page 37
	Titles
	.. 

	Images
	Image 1


	Page 38
	Titles
	2. MICROCONTROLLERS 

	Images
	Image 1


	Page 39
	Images
	Image 1


	Page 40
	Images
	Image 1


	Page 41
	Images
	Image 1


	Page 42
	Images
	Image 1
	Image 2


	Page 43
	Images
	Image 1
	Image 2


	Page 44
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 45
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 46
	Images
	Image 1
	Image 2


	Page 47
	Images
	Image 1
	Image 2
	Image 3


	Page 48
	Images
	Image 1
	Image 2


	Page 49
	Images
	Image 1
	Image 2
	Image 3


	Page 50
	Images
	Image 1


	Page 51
	Titles
	•. 

	Images
	Image 1
	Image 2


	Page 52
	Titles
	ı. 

	Images
	Image 1


	Page 53
	Titles
	.. 

	Images
	Image 1
	Image 2
	Image 3


	Page 54
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 55
	Images
	Image 1
	Image 2


	Page 56
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 57
	Titles
	.. 

	Images
	Image 1

	Tables
	Table 1


	Page 58
	Titles
	.. ~ 
	I '~ 
	.. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 59
	Titles
	.. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 60
	Images
	Image 1


	Page 61
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 62
	Titles
	.. 

	Images
	Image 1


	Page 63
	Images
	Image 1

	Tables
	Table 1


	Page 1
	Titles
	.. 

	Images
	Image 1

	Tables
	Table 1


	Page 2
	Titles
	3. MICROCONTROLLER SYSTEM DEVELOPMENT CYCLE 
	•. 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 5
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 7
	Titles
	.. 

	Images
	Image 1


	Page 8
	Titles
	' ' ' ' ' ' ' ' ' ' ' ' ' 

	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1

	Tables
	Table 1


	Page 11
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 12
	Titles
	" 


	Page 13
	Titles
	i 
	l 
	l 
	64 
	l 
	I 8LINK1 lcomrloc > BLINKASM ı~••rble, 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 14
	Images
	Image 1


	Page 15
	Titles
	mooo ooô2sı~;s~H±t~6/ci\~,i§10:~zb:~'&:,~·fucc:Jbô'qg~:}i;;:11::[j,1c: 
	c ~~:~:ıi6;::!~;b:::~;:;~~~:~.i~~:i~~~b:;::~!,ı:ı::6r 111( 
	~:;~··6:ıbı,6:-~~:;:rj~,r~,·:··.:·'.\::·· ,.,, .,.,, .. ,, 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	,- -ı 
	.. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 17
	Titles
	Vddµ ~ UD f 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 18
	Titles
	.. 

	Images
	Image 1


	Page 19
	Titles
	4. MULTITASKING APPLICATION ON PIC MICROCONTROLLERS 
	·:, 

	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 22
	Titles
	,.,., 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1


	Page 23
	Titles
	ıl 
	i 

	Images
	Image 1


	Page 24
	Titles
	·,., 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1


	Page 25
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2


	Page 26
	Page 27
	Images
	Image 1


	Page 28
	Titles
	s 
	.. 

	Images
	Image 1
	Image 2
	Image 3


	Page 29
	Titles
	:·ı 


	Page 30
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 31
	Page 32
	Page 33
	Titles
	.. 


	Page 34
	Titles
	-zov 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 35
	Titles
	.. 

	Images
	Image 1


	Page 36
	Images
	Image 1


	Page 37
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 38
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 39
	Titles
	.. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1
	Table 2


	Page 40
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 41
	Titles
	.. 

	Images
	Image 1


	Page 42
	Titles
	.. 

	Images
	Image 1
	Image 2


	Page 43
	Images
	Image 1


	Page 44
	Titles
	END 
	'************************************************************* 
	'* 
	'************************************************************* 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 45
	Titles
	.. , 
	.. 

	Images
	Image 1
	Image 2


	Page 46
	Titles
	END 

	Images
	Image 1


	Page 47
	Titles
	, 
	, 
	* 
	.. 

	Images
	Image 1

	Tables
	Table 1


	Page 48
	Titles
	·************************************************************* 
	' 
	' 
	'************************************************************* 

	Images
	Image 1
	Image 2


	Page 49
	Titles
	.. 

	Images
	Image 1

	Tables
	Table 1


	Page 50
	Images
	Image 1
	Image 2
	Image 3


	Page 51
	Titles
	.. 
	END 

	Images
	Image 1


	Page 52
	Images
	Image 1
	Image 2


	Page 53
	Titles
	* 
	* 
	' 
	* 
	' 
	.. 

	Images
	Image 1


	Page 54
	Titles
	.. 

	Images
	Image 1

	Tables
	Table 1


	Page 55
	Titles
	·************************************************************* 
	·* 
	' 
	·************************************************************* 

	Images
	Image 1

	Tables
	Table 1


	Page 56
	Images
	Image 1

	Tables
	Table 1


	Page 57
	Images
	Image 1


	Page 58
	Images
	Image 1


	Page 59
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 60
	Titles
	REFERENCES 
	.. 

	Images
	Image 1


	Page 61
	Titles
	.. 

	Images
	Image 1



