
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

MULTITASKING APPLICATION ON
MICROCONTROLLERS

MASTER THESIS

Student: Majdi Rasmi Khalil Tibi (20033596)

..
Supervisor: PROF.DR.DOGAN IBRAHIM

Nicosia - 2005

.. __ . -·- --- --- ~ --,c-

Majdi Tibi:

Approval of the Graduate School of Applied and
Social Sciences

Prof. Dr. Fakhraddin Mamedov
Director

We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

Assoc. Prof. Dr. Rahib Abiye
Engineering'l

Assist. Prof. Dr. Kadri Buruncuk, Committee Member, Computer
Engineeriv,e~~-rtı71t, NEU

Assist. Prof. Dr. Adil An1¢a~mittee Member, Computer
Engineering Department, NEU

Mr. Kaan Uyar, ~?-7~omputer
Engineer~ı;~:~~nt, NEU
. /,0~ }~

Prof. Dr. Doğan Ibrahim, 5'upervisor,Chairman of Computer
Engineering Department, NEU

<Dedicated to my (parents,

Sisters, (J3rotliers, Uncles

;4.ncfmy Tiancee

..

l

ACKNOWLEDGEMENTS

Firstly, I would like to present my special appreciation to my supervisor Prof Dr.

Doğan Ibrahim, without whom it would have not been possible for me to complete my

thesis. His trust in my work and me and his priceless awareness for the project has

made me do my work with full interest. His friendly behavior with me and his words of

encouragement kept me doing my thesis.

Secondly, I offer special thanks to my uncle Dr. Jawad Tibi, who encouraged me in

every field of life and tried to help whenever I needed. He enhanced my confidence in

myself to make me able to face every difficulty easily. I am also grateful to my sisters,

brothers and my fiancee, And because of them I am able to complete my work.

Finally, I would also like to pay my special thanks to all of my friends who helped

me and encouraged me for doing my work. Their continuous encouragement and

friendly environment has helped me to complete this thesis successfully. I wish to

express my sincere thanks to them as they spent their time and provided very helpful -

suggestions to me.

..

11

---------===-----=--==-=,...... ...,,....,,,.....,...,. ----·-- ______,,...~...,..,.

ABSTRACT

A microcontroller is a single chip computer which contains the CPU, data and program

memory, serial and parallel I/0, timers, and interrupt logic. About 40% of microcontroller

applications are in office automation, such as PCs, laser printers, fax machines, intelligent

telephones, and so forth. About one-third of microcontrollers are found in consumer

electronics goods. Products like CD players, hi-fi equipment, video games, washing

machines, cookers and so on fall into this category. The communications market,

automotive market, and the military share the rest of the microcontroller application areas.

Basically, a microcontroller executes a user program which is loaded in its program

memory. Under the control of this program, data is received from external devices (input

devices), manipulated, and then sent to external devices (output devices).

Microcontrollers have traditionally been used to control a single device. But as the demand

for complex control operations have increased, the need to control multiple devices at the

same time has also increased. This is known as multitasking where a single microcontroller

is used to control more than one task at the same time.

This thesis describes the various multitasking algorithms and develops simple multitasking

algorithms which can be implemented on low-cost microcontrollers. The PIC family of

microcontrollers is chosen as the target microcontroller in this thesis. PIC is currently one

of the most popular microcontrollers, used extensively by many engineers, students, and

hobbyists. ..

It is shown in the thesis that simple, but effective multitasking algorithms can be developed

on the PIC microcontrollers using the popular PIC Basic language, and the native PIC

assembler language.~

lll

TABLE OF CONTENTS

DEDICATED

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

1. MULTITASKING

11

111

ıv

vııı

X

1 . 1 Overview

1

4

4

4

5

8

9

12

14

14

16

17

18

18

19

20

21

22

22

1 .2 Single Tasking

1 .3 What is Multitasking

1 .3. 1 Comparing between StateMachines and TimeSlicing

1 .4 Deterministic Multitasking

1 .5 How does Multitasking work?

1.6 Types of Multitasking

1 .6. 1 Cooperative Multitasking

1 .6.2 Time Slice Multitasking

1 .6.3 Preemptive Multitasking

1. 7 The concept of tasking

1 . 7. 1 Scheduler

1. 7. 1. 1 First-Come, First-Served (FCFS)..
1.7.1.2 Shortest-Job-First (SJB)

1. 7. 1 .3 Shortest Remaining Time First

1.7.1.4 Round Robin Task Scheduling

1.7.1.5 highest runnable task

1.7.1.6 Priority and Round Robin Tasking

1 .8 Why Multitasking on Microcontrollers is important?

1.9 Summary

23

24

25

ıv

-- - ---- - ----------- - - --

2. MICROCONTROLLERS

2. 1 Overview

2.2 What is a microcontroller?

2.3 Microprocessors and Microcontroller

2.4 Basic elemints of Microcontroller

26

26

26

29

30

30

31

32

2.4.1 Memory Unit

2.4.2 Central Processıng Unit

2.4.3 Bus

2.4.4 Input-Output Unit

2.4.5 Serial Communication

2.4.6 Timer Unit

2.4.7 Watchdog

2.4.8 Analog To Digital Converter

2.5 Embedded Controller

2.6 Microcontroller Applications

2.6. 1 Environmental Applications

2.6.2 Industrial Applications

2.7 PIC Microcontroller

2.7.1 The PIC16F84 Microcontroller

2.7.1.1 Internal Components Of PIC16F84

2.7.2 The PIC16F877 Microcontroller

2.8 Summary

3. MICROCONTROLLER SYSTEM DEVELOPMENT CYCLE..

33
,., "
.J .J

35

35

36

38

3 .2.3 Constants

39

39

40

40

41

42

51

52

53

53

53

53

54

54

55

56

57

3. 1 Overview

3 .2 Basic elements of PIC BASIC language

3.2.l Identifiers

3.2.2 Labels

3.2.4 Variables

3.2.5 Sequences

3.2.6 Modifiers

V

3.2.7 Symbols 57

3 .2.8 Direction Include 57

3.2.9 Comments 58

3 .2.1 O Programming ling with more instructions 59

3.2.11 Transfer of instruction into another line 59

3.2.12 Define 59

3 .2.13 Disable 62

3.2.14 Enable 62

3 .2.15 On Interrupt 63

3 .2. 16 Resume 63

3.3 PIC BASIC Compiler 63

3.4 Writing and Compilation of a BASIC program 64

3 .5 Loading a program into the Microcontroller memory 65

3.6 Running your program 67

3.7 Summary 69

4. MULTITASKING APPLICATION ON PIC MICROCONTROLLER 70

4.1 Overviw 70

4.2 PrograrnmıngLanguages Of Microcontroller 70

4.3 Single Tasks On PIC Microcontroller Using PIC BASIC 71

4.3.1 Led Diode Example 71

4.3.2 Button Example 74

4.3.3 Seven-Segment Displays Example 78

4.3.4 Building Light Control..Example 85

4.4 Multitasking Application On PIC Microcontroller 87

4.4.1 State Machine Multitasking Circuit Block Diagram 87

4.4.2 Analogue Temperature Sensor (LM35) 88

4.4.3 Analogue To Digital Converter (ADC0804) 88

4.4.4 BCD To 7segment Decoder (74LS47) 89

4.4.5 The Circuit Diagram 90

4.4.6 Implementing The State Machine Algorithm 91

4.4.7 Implementing The Time Sliced Multitasking Algorithm 94

vı

4.4.8 Implementing The Cooperative Multitasking Algorithm

4.4.8.lGeneralising To Many Tasks

4.5 Summary

CONCLUSION

REFFERENCES

96

101

109

110

111

..

vıı

LIST OF FIGURES

1.1 Single tasking and multitasking

1.2 First-come, first-served scheduling

1.3 Shortest-job-first scheduling

1.4 Round robin task scheduling.

1.5 Tasks running with this priority.

2.1 Example of simplified model of a memory unit.

2.2 Example of simplified central processing unit with three registers.

2.3 Connecting memory and central processing unit.

2.4 Example of a simplified input-output.

2.5 Serial unit used to send data, but only by three lines.

2.6 Timer unit generates signals in regular time intervals.

2. 7 Watchdog reset.

2.8 Blocks for converting an analogue to a digital form.

2.9 Physical configuration of the interior of a microcontroller.

2.10 Microcontroller outline with its basic elements and internal connections.

2.11 PINs of PIC19F84A.

2.12 Flash program memory.

2.13 Special function registers.

2.14 Block diagram of PIC16F84A.

2.15 Call instruction.

3.1 The PIC BASIC compiler. ..
3.2 The connection between PC, programming device and the microcontroller.

3.3 LM7805 regulator circuit.

3.4 Switching on LED.

4.1 Diagram of LED diode.

4.2 LED diode is turned on by a logical one.

4.3 LED diode is turned on by a logical zero.

4.4 LED diodes are connected to portB and are turned on by a logical one.

4.5 Button with "PULL-UP" resistor.

4.6 Button with "PULL-DOWN" resistor.

vm

13

20

21

22

23

30

31

32

33

34

35

35

36

37

37

42

43

44

45

47

64

67

68

68

72

72

73

73

75

76

4.7 Four buttons connected to the microcontroller using the pull-up resistors. 76

4.8 Seven-Segment digits. 79

4.9 Connecting seven segment displays in multiplex mode with the 79

microcontroller.

4.10 Building light control.

4.11 Block diagram ofmultitasking circuit.

4.12 LM35 Pin configuration.

4.13 ADC0804 Pin configuration.

4.14 74LS47 pin configuration.

4.15 The circuit diagram.

4.16 The Basic program.

4.17 Time sliced multitasking code

4.18 Cooperative multitasking with 2 tasks.

4.19 Screen shot of the simulation.

4.20 Generalised Cooperative multitasking algorithm.

4.21 Multitasking Cooperative n tasks.

4.22 Multitasking Cooperative 5 tasks.

85

88

88

89

89

90

94

96

99

101

102

106

109

••

ıx

1.1 Comparison between state machines and timeslicing.

2.1 Pin descriptions.

2.2 SFR functions.

2.3 Initialization circuits.

2.4 Comparison of some popular rnicrocontrollers.

3.1 The size of the sequence.

3.2 The use of a direction DEFINE.

4.1 Contains corresponding mask values for numbers 0-9.

8

42

45

51

52

56

60

81

LIST OF TABLES

..

X

INTRODUCTION

From microwave ovens to alarm systems to industrial programmable logic controllers

(PLCs) and distributed systems (DCSs), embedded controllers are running our world.

Embedded controllers are used in most items of electronic equipment today. They can

be thought of as intelligent electronic devices used to control and monitor devices

connected to the real world. This can be a PLC, DCS or a smart sensor. These devices

are used in almost every walk of life today. Most automobiles, factories and even

kitchen appliances have embedded controllers in them.

The microcontrollers that are at the heart of these and many more devices are becoming

easier and simpler to use. The sheer volume of embedded controllers used in the world

drives us to understand how they work and then how to troubleshoot and repair them.

The support chips used in these controllers are becoming smarter and easier to use. This

is bringing the design and use of embedded controllers to more and more engineers

hence the need for a good understanding of what embedded controllers are and how to

troubleshoot them.

Microcontrollers are intelligent electronic devices used to control and monitor devices

connected to the real world. This can be a microwave oven, programmable logic

controller, distributed control system, car braking system, cruise missile control system,

or a smart sensor. As time goes on electronic devices get smarter and smaller, the

embedded controller will be in or associated with everything we touch throughout the

day. Early embedded controllers contained a CPU and a multitude of support chips. As

time went on, support chips were included in the CPU chip until it became a

microcontroller. A microcontroller is defined as a CPU plus random access memory

(RAM), electrically erasable programmable read only memory (EEPROM), input-

outputs (I/0), and communication circuits. The embedded controller is a

microcontroller with peripherals such as keypads, displays, and relays connected to it

and , is often connected to other embedded controllers by way of some type of

communications system.

1

The microcontroller is a direct descendent of the CPU, in fact every microcontroller has

a CPU as the heart of the device. It is therefore important to understand the CPU in

order to ultimately understand the microcontroller and embedded controller.

The central processor unit is the brain of the microcontroller. The CPU controls all

functions and uses the program that resides in RAM, EEPROM or EPROM to function.

The program may reside in one or more of these devices at the same time. Part of the

program might be in RAM while another might be in EEPROM. A program is a

sequence of instructions that tell the CPU what to do. These instructions could be

compared to instructions a teacher may give to a student to get a desired result. The

instructions sent to the CPU are very, very simple and it usually takes many instructions

to get the CPU to do what is necessary to accomplish a task.

Microcontrollers have traditionally been programmed using the native assembly

language of the target processor. It is very common nowadays to use high-level

languages such as Basic, Pascal, and C in programming microcontrollers. Assembly

language has the advantage that the execution speed is very fast. On the other hand,

developing an assembly language based program is a complex task. High-level

languages have the advantage that it is much easier to develop and maintain programs

developed using these languages. The main disadvantage of the high-level languages is

that the speed of execution is not as fast as the programs developed using the assembly

language.

Microcontrollers have traditionally been programmed to control a single device and

multi-processors, consisting of several microcontrollers are generally used to control

more than one device at the same time. It is also possible to develop multitasking

algorithms on microcontrollers such that a single microcontroller can be used to control

a number of devices all at the same time.

This thesis is about the use of multitasking algorithms on simple low-cost

microcontrollers, such as the PIC family of microcontrollers. The thesis describes the

development of several multitasking algorithms which can be implemented on PIC

microcontrollers. The PIC16F84 microcontroller is taken as an example in the thesis.

Multitasking algorithms have been developed in the thesis using the Basic high-level

2

programming language and the native assembly language of the PIC microcontrollers.

It is shown in the thesis that the low-cost microcontrollers can be programmed to

operate as multitasking processors.

The thesis consists of the introduction and four chapters:

Chapter 1 presents the principles of multitasking and describes the various multitasking

algorithms used in practice. This chapter also explains the importance of multitasking

when used on microcontrollers.

Chapter 2 provides an introduction to the architecture of the PIC microcontrollers and

describes the important features of the popular PIC16F84 microcontroller.

Chapter 3 describes the microcontroller system development cycle, the use of program

description language, and the important features of the PIC Basic compiler.

Chapter 4 presents the principles of single task operation, and simple practical examples

are provided to demonstrate the single task operation. The principles of multitasking

are also described in this chapter and various simple multitasking algorithms are

developed using the high-level Basic language and the native PIC assembler language.

A conclusion and a list of references are provided at the end of the thesis .

..

3

1. MULTITASKING

1.1 OVERVIEW

For the majorityof embedded systems, a single tasking operating system is too restrictive.

What is required is an operating system that can run multiple applications simultaneously

and provide inter task control and communication. The facilities once only available to

mini and mainframe computer users are now required by 8, 16 and 32 bit microprocessors

and microcontrollers.

Multitasking is the process of letting the operating system perform multiple tasks at what

seems to the user simultaneously. Multitasking enables a complex task to be implemented

by designing separate tasks that operate independently or cooperate with each other. This

Chapterdescribesthe principles of variousmultitasking and schedulingalgorithms.

1.2 SINGLETASKING

The first widely used operating system was CP/M [l 7], developed for the Intel 8080
microprocessor and 8" floppy disk systems. It supported I/O calls by jump tables and

quickly became standard within the industry and a large amount of application software

became available for it. Many of the micro-based business machines of the late 1970sand

early 1980swere based on CP/M. Its ideas even formed the basis of the popular MSDOS

operatingsystem,chosen by IBM for its personal computers.

CP/M is a good example of a single taşking operating system. Only one task or application

can be executed at any one time and therefore it only supports one user at a time. With a

single tasking operating system, it is not possible to run multiple tasks simultaneously.

Large applications have to be run sequentially and can not support concurrent operations.

There is no support for messagepassing or task control, which would enable applications to

be divided into separate entities. If a system needs to take log data and store it on disk and,

at the same time, allow a user to process that data using an online database package, a

single tasking operating system would need everything to be integrated. With a

multitasking operating system, the data logging task can run at the same time as the

4

database. Data can be passed between each element by a common file on disk, and neither

task need have any direct knowledge of the other. With a single tasking system, it is likely

that the database program would have to be written from scratch. With the multitasking

system, a commercially available program can be used, and the logging software interfaced

to it. These restrictions forced many applications to interface directly with the hardware

and therefore lose the hardware independence that the operating system offered. Such

software would need extensive modifications to port it to another configuration.

1.3 WHATIS MULTITASKING?

On a typical microcontroller [1] the CPUusually performs only one task at a time and when

that task is completed the next task can start. This is how the processor performs

operations in a typical real-time application. Most complex processors are designed to

operate in a multi-taskingmanner (e.g. a PC) where the processor can execute a number of

tasks concurrently.

Multitasking is, on single-processor machines, implemented by letting the running process
own the CPU for a while (a timeslice) and when required gets replaced with another

process, which then owns the CPU. The two most common methods for sharing the CPU

time is either cooperativemultitasking or preemptive multitasking.

Multitasking is the capability of performing many functions in a simultaneous or quasi­

simultaneous manner. State machines and timeslicing are two popular multitasking

methods with long traditions. State mşchines have been used to design complex systems

with high reliability requirements.

In the early ages of the computers, microprocessorsand microcontrollers were designed so

that they can be used in real-time applications. Each processor was designed so that it

could be used in a single standalone application. The advances in electronic engineering

increased the processing power many times and made it possible to design multitasking

real-time applications. In SMP (symmetricMulti Processor systems) this is the case, since

there are several CPU's to execute programs on - in systems with only a single CPU this is

5

6

done by switching execution very rapidly between each program, thus gıvıng the

impression of simultaneous execution. This process is also known as task switching or

timesharing. Practically all modem operating systems have this ability.

A multitasking operating system works by dividing the processor's time into discrete time
•

slots. Each application or task requires a certain number of time slots to complete its

execution. The operating system kernel decides which task can have the next slot, so

instead of a task executing continuously until completion, its execution is interleaved with

other tasks. This sharing of processor time between tasks gives the illusion to each user

that he is the only one using the processor.

Multitasking operating systems are based around a multitasking kernel which controls the

time slicing mechanisms. A time slice is the time period each task has for execution before

it is stopped and replaced during a context switch. This is periodically triggered by a

hardware interrupt from the system timer. This interrupt may provide the system clock and

several interrupts may be executed and counted before a context switch is performed.

When a context switch is performed, the current task is interrupted, the processor's

registers are saved in a special table for that particular task and the task is placed back on

the ready list to await another time slice. Special tables, often called task control blocks

store all the information the system requires about the task, for example its memory usage,

the priority level within the system and the error handling. It is the context informationthat

is switched when one task is replaced by another. The ready list contains all the tasks and

their status and is used by the scheduler to decide which task is allocated the next time

slice.
..

The scheduling algorithm determines the sequence and takes into account a task's priority

and present status. If a task is waiting for an 1/0 call to complete, it will be held in limbo

until the call is complete. Once a task is selected, the processor registers and status at the

time of its last context switch are loaded back into the processor and the processor is

started. The new task carries on as if nothing had happened until the next context switch

takes place.

