
- , '('~
-,,. \

..L..

NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED
AND SOCIAL SCIENCES

Software Development for Minutiae-Based
Fingerprint Detection

Nehad Hammad

Master Thesis

Department of Computer Engineering

Nicosia - 2005

Nehad Hammad: Software Development for Minutiae-Based
Fingerprint Detection

Approval of the Graduate School of Applied and
Social Sciences

Prof. Drr'Fakhraddin Mamedov
Director

/
We certify this thesis is satisfactory for the award of the
Degree of Master of Science in Computer Engineering

Examining Committee in charge:

l)~~
Prof. Dr. D'oğan Ibrahim, Chairman of Committee, Computer

Engineering Department, NEU

ahib Abiyev, Member, Computer Engineering
Department, NEU

~ff :;:.--1 &~ .
Assist. Prdf. lf.~ktanır, Member, Electrical and Electronic

Engineering Department, NEU

rof. Dr. Adnan Khashman, Supervisor, Electrical and
Electronic Engineering Department,
NEU

ACKNOWLEDGEMENT

First, I would like to thank my supervisor Assoc. Prof. Dr. Adnan Khashman for his
invaluable advice and belief in my work and myself over the course of this MSc.

Degree.

Second, I would like to thank my family for their constant encouragement and support
during the preparation of this thesis.

Finally, I would also like to thank all my friends for their advice and support specially
Mr. Hakki Shalan.

11

ABSTRACT

Many Automatic Fingerprint Identification Systems (AFiS) are based on

minutiae matching. Minutiae are the terminations and bifurcations of the ridge lines in a

fingerprint image. A fingerprint image that has undergone binarization, followed by

thinning, in order to extract the minutiae, contains hundreds of minutiae, all of which

are not so vivid and obvious in the original image. Thus, the set of minutiae that is well­

defined and more prominent than the rest should have given higher relevance and

importance in the process of minutiae matching.

The work presented within this thesis introduces the technique to detecting

fingerprints that is based on calculating distances and angles between consecutive

minutiae and thus solves common problems with existing techniques; this technique

will be realized using the Delphi software language.

Real life application will also be presented using this novel technique.

111

CONTENTS

ACKNOWLEDGEMENT

ABSTRACT ıı

CONTENTS IV

INTRODUCTION 1

1. FINGERPRINT DETECTION TECHNIQUES 3

1.1. Overview

1.2. Fingerprint Characteristics 3

1.3. Fingerprint Classifications 3

1.4. Fingerprints Matching 4

1.5. Summary 10

2. MINUTIAE-BASED FINGERPRINT DETECTION 11

2.1. Overview 11

2.2. Obstacles in Fingerprint Matching 11

2.3. Fingerprint Minutiae Extraction 12

2.3.1. Introduction of minutiae extraction 12

2.3.1. Fingerprints feature 12

2.4. Feature Extraction 13

2.5. Minutiae Classification 15

2.6. Fingerprints Matching Using Chain Coded 16

2.6.1. Introduction in Chain Coded Method 16

2.6.2. Minutiae Extraction Using Chain Code 17

2.7. Summary 18

3. IMPLEMENTATION OF FINGERPRINT DETECHTION ALGORITHM 19

3.1. Overview 19

3 .2. Introduction 19

3 .3 Type of minutiae 19

3.4. Developed Algorithm 21

IV

3 .4. I. Scan fingerprints image

3.4.2. Fingerprints Binarization

3.4.3. Ridge Thinning

3.4.4. Minutiae Extraction

3.4.4.1 Minutiae Marking

3.4.4.2 False Minutiae Removal

3.4.4.3 Minutiae Matching

3.5. Summary

4. REAL-LIFE IMPLEMENTATION

4.1. Overview

4.2. The Fingerprints

4.3. Fingerprint Detection Using New Technique

4.4. Results

4.4.1. Algorithm results

4.4.2. Efficiency

4.4.3. Time Cost

4.4.4. Analysis

4.5. Summary

5. SOFTWARE DEVELOPMENT

5 .1. Overview

5.2. Software Environment

5.3. System Requirements

5.4. Software Specifications

5.5. Summary

CONCLUSION

REFERENCES

APPENDIX A

APPENDIXB

V

21

22

23

24

24

26

27

32

33

33

33

36

42

42

46

46

47

49

50

50

50

51

51

53

54

57

59

69

INTRODUCTION

The use of one's fingerprints as a mean of identification had existed long before its

common usage today in the field of criminal investigation. Prior to the nineteenth

century, fingerprints were primarily used only as a signature for indicating authorship or

ownership. Other applications were not acknowledged until about 1860 when William

Hershel was regularly imprinting the handprints of those engaged in his contracts. It

was not until 1881 when Henry Faulds recognized that fingerprints found at crime

scenes may be used to identify the perpetrator. Further exploration into fingerprints

followed when Sir Francis Galton began his research in the field and authored the first

textbook on fingerprinting in 1892. As a result of the work of these individuals,

fingerprinting was soon accepted by Scotland Yard and finally by the United States in

1910.

Today, fingerprints are perhaps the primary means of personal identification

although there are many other unique characteristics of an individual that can be

used. They include voiceprints, dental impressions, DNA, retinal patterns, and even the

shape of the ear lobes. Although these other characteristics are as much unique to the

individual as are fingerprints, they lack many advantages which fingerprints have

especially for the criminal investigator and forensic scientist. Common to the other

distinctive attributes, fingerprints are universal and unique. In other words, everyone

has them and no two have ever been found to be identical. Fingerprints are also

unchangeable. They are formed before birth and remain until decomposition of the skin

occurs some time after death. Although some deformities may result from aging,

manual labor, or scarring, the overall pattern always remains distinguishable. What

make fingerprints preferable are that they can be easily attained, quickly classified, and

are very likely to be found at crime scenes. Not only can they identify criminals but

also casualties of disasters such as plane crashes. Another common application is in

maintaining access control.

Many fingerprint classification methods, rely on point patterns in fingerprints

which form ridges and bifurcations unique for each person. Point patterns belong to

either the Wirbel class (whorl and twin loop) or the Lasso class (arch, tented arch, left

loop, and right loop). It is useful in deciding when two fingerprints do not match.

1

Fingerprint images are not perfect every time they are acquired, which can

negatively affect their matching integrity. Some of the factors that may contribute to

this include smudging, dirt, cuts and bruises, angular variance, and differences in

pressure applied to the acquisition device. These factors depend on other factors as well,

like which method you will use to acquire your images. Some acquisition methods are

more susceptible to problems than others.

The most common problem in any fingerprints detection technique is fingerprint

rotation because the minutiae direction will be change when we rotate fingerprint but

the newly developed fingerprints detection technique solves this problem by using

distances and angles between minutiae because the distance and angle between any

sequential minutiae do not change when the fingerprint orientation changes.

The aims of the work presented within this thesis are to:

• Develop a fingerprint detection method that solves problems with the

existing techniques (e.g. rotation, fingerprint damage ... etc).

• Develop software that simulates the new technique using Delphi.

• Realize the efficiency of the new technique via real life application

(fingerprint detection of five persons).

Chapter one describes some characteristic of fingerprints and types of

fingerprints. Fingerprints detection techniques that are commonly used will also be

presented. Detection technique challenges and difficulties when you design new

fingerprints detection techniques will be described.

Chapter two describes a minutiae-based method to detect fingerprints. The

minutiae-based method technique depends mainly on minutiae structures, so each

minutiae have different characteristics and shape. Most common fingerprint detection

techniques depend on ridge ending and ridge bifurcation to catch minutiae.

Chapter three describes the original work of the author, where two fingerprint

detection techniques will be developed.

Chapter four describes the real-life application of the newly developed technique

by author for fingerprint detection technique represented using fingerprints of five

persons to verify the effectiveness of the new technique.

Chapter five represents the software development for the fingerprints detection

system. The most advantage of Borland Delphi? will describe also contain the main

steps for any one will using fingerprint software.

2

CHAPTER ONE

FINGERPRINT DETECTION TECHNIQUES

1.1. Overview

This chapter is a background chapter that describes some characteristic of

fingerprints and types of fingerprint. Fingerprints detection techniques that are

commonly used will also be presented. Detection technique challenges and difficulties

when you design new fingerprints detection techniques will be described.

1.2. Fingerprint Characteristics

Fingerprint based identification is the oldest method which has been successfully used

in numerous applications. Everyone is known to have unique immutable fingerprints. A

fingerprint is made of a series of ridges and furrows on the surface of the finger. The

uniqueness of a fingerprint can be determined by the pattern of ridges and furrows as

well as the minutiae points. Minutiae points are local ridge characteristics that occur at

either a ridge bifurcation or a ridge ending [1] (See Figure 1.1).

1.3. Fingerprint Classifications

Fingerprints can be classified into three categories based on their major central pattern.

These patterns are the arch, loop, and whorl, which are shown in (Figure 1.2) [2].

~

R'idge . · . ·
Endin~s ~~

SihıreaHon

Figure 1.1 Minutiae examples [2].

3

Arch Loop Whorl

Figurel.2 Three major fingerprint classifiers [2].

1.4. Fingerprints Matching

Fingerprint matching techniques can be placed into three categories: minutiae-based,

correlation-based and ridge feature-based Minutiae-based techniques first find

minutiae points and then map their relative placement on the finger. However, there are

some difficulties when using this approach. It is difficult to extract the minutiae points

accurately when the fingerprint is of low quality. Also this method does not take into

account the global pattern of ridges and furrows. The correlation-based method is able

to overcome some of the difficulties of the minutiae-based approach. However, it has

some of its own shortcomings. Correlation-based techniques require the precise location

of a registration point and are affected by image translation and rotation.

Figure 1.3 Minutiae extraction [6].

4

Figure 1.4 Matching fingerprints [6].

Fingerprint matching based on minutiae has problems in matching different sized

minutiae patterns. Local ridge structures can not be completely characterized by

minutiae [1].

In correlation-based matching, the input image is superimposed upon the

template image, and the difference amongst the pixels is calculated for different

alignments. At the optimum alignment in the x, y and e coordinates (Where xis x-axis

coordinate and y is y-axis coordinate and e is angle), the best difference image is

obtained, and if the intensity of the difference image is within a certain threshold, a

match can be verified.

The minutiae of the fingerprint are small distinguishing characteristics that vary

in location, orientation and types from finger to finger. The types of minutiae that can

be identified are ridge endings, ridge bifurcations, lakes, independent ridges, islands,

spurs and crossovers. Minutiae-based matching is the most commonly used form of

matching, likely because this is the type of matching that has been performed by

examiners years before automated biometric analysis existed. The two most easily

identifiable and important types of minutiae are shown below as ridge endings and ridge

bifurcations. The other forms of minutiae are not as reliable because some are harder to

detect, and others are the type of minutiae than can be created falsely in the image

processing stage.

After the minutiae points are found, their locations (x, y, e) are stored. The input

image is then aligned to the template image to the maximum number of minutiae pairs.

If the two images have above a certain amount of minutiae that are matched, the user's

identification is verified.

5

: :,ı a - ıa -sJ?E:=.:
Ridge Ending Ridge Bifurcation

Figure 1.5 These two pictures show the common minutiae that identified during the
minutiae detection stage [3].

The easiest way to implement this is using a thinned binary image that can be made in

the pre-processing stage. Another way to utilize this system is not to match the minutiae

of the input to the template.

The most recent method for fingerprint matching is the ridge feature-based

method, the most efficient type of matching technique for low quality fingerprints. This

procedure includes finding the more easily detectable (larger) features of a fingerprint,

which are ridge pattern, orientation, ridge frequency, ridge shape, and texture

information.

A lot was said concerning the alignment of the image. One method for aligning

the image is to find the center point and to move it to the center of the image space. This

provides a good amount of accuracy for the x and y coordinate matching, and after

aligning the e coordinate, the two images should be aligned in a relatively precise to

exact manner. Aligning the image allows for easy comparison of the stored input

minutiae location against the template data [3].

The representation is minutiae-based and each minutiae is described by its

location (x, y) coordinates. In this case, the fingerprint verification problem may be

reduced to a point pattern matching (minutiae pattern matching) problem. In the ideal

case, if the correspondence between the template minutiae pattern and input minutiae

pattern is known, there are no deformations such as translations, rotations and others,

and each minutiae present in a fingerprint image is exactly localized, then fingerprint

verification is only a trivial task of counting the number of spatially matching pairs

between the two images. Determining whether two representations of a finger extracted

from two impressions of it's possibly separated by a long duration of time, are indeed

representing the same finger is an extremely difficult problem.

6

Figure 1.6 Two different fingerprints impressions of the same finger [7].

(Figure 1 .6) illustrates the difficulty with an example of two images of the same finger.

In particular,

a) The finger may be placed at different locations on the glass platen resulting in a

translation of the minutiae from the test representation with respect to those in

the reference representation.

b) The finger may be placed with different orientations on the glass platen resulting

in a rotation of the minutiae from the test representation with respect to those of

the reference representation.

c) The finger may exert a different downward normal pressure on the glass platen

resulting in a spatial scaling of the minutiae from the test representation with

respect to those in the reference representation.

d) Spurious minutiae may be present in both the reference as well as the test

representations. (Manual work, accidents etc. inflict injuries to the finger,

thereby changing the ridge structure of the finger, either permanently or semi­

permanently).

e) Genuine minutiae may be absent in the reference or test representations. (Skin

disease, sweat, dirt, humidity in the air all confound the situation resulting in a

non-ideal contact situation).

A matcher may rely on one or more of the above, resulting in a wide spectrum of

behavior. At the one end of the spectrum, we have the Euclidean matcher, who allows

only rigid transformations among the test and reference representations. At the other

extreme, we have the topological matcher, who may allow the most general

transformations [4].

7

The purpose of fingerprint image processing is to extract a condensed representation of

the image. This representation (referred to as a template) is used for fingerprint

matching. From the ridge flow pattern is extracted the minutiae detail that makes a

fingerprint different from other prints. A first part of the detail that is usually used

in fingerprint representations is the set of endings and ridge bifurcations in the flow

pattern.

The convention (corresponding to the reality of inked cards and FTIR

(Frustrated Total Internal Reflection) images) that ridges appear black and valleys

between ridges are white, so B represents a ridge ending and A represents a bifurcation.

We further follow the intuitive convention that ridges have high values and valleys have

low values, although this leads us to have white pixels having low values and black

pixels having high values.

Note that the minutiae in (Figure 1.7) are of exceptional quality. In many cases,

the presence of minutiae is much less clear-cut. Often, for example, it is difficult to

distinguish between a ridge ending and a ridge bifurcation since differences in

pressure while acquiring the fingerprint image can join a ridge ending to an adjacent

ridge, producing a bifurcation and vice versa.

The minutiae extraction process typically consists of ridge extraction,

followed by ridge thinning and minutiae extraction. Ridge extraction, or ridge

segmentation, is essentially the step of binarizing the fingerprint image. That is,

somehow the fingerprint image I: (x, y) ~ [O, 255] is converted to B: (x, y) ~ [O, 1]

, where the value O corresponds to valleys and 1 to ridges. One way of accomplishing

this is to select a global threshold T and converting the image I (x, y) to a binary image

as

{
ı'

B(x, y) = o,
J(x,y) ~ T}
I(x,y)<T

Due to the poor quality of many fingerprint images, this approach is most often

inadequate for extracting minutiae. In areas of the finger that are dry, no ridges may be

detected, while in areas where the finger is wet, no valleys may be detected. The typical

solution is to use a threshold T(x, y), which is a function of the spatial location.

8

A

B

Figure 1.7 Ridge ending (B) and ridge bifurcation (A) [5].

Virtually every published method of feature extraction computes the orientation field of

the fingerprint image, which reflects the local ridge direction at every pixel.

(Figure 1.8) gives a simple description of this technique as it is applied in.

The local direction p of the ridges is determined by computing gradients ın

small blocks and averaging these in larger image blocks. Now, consider an image

block around a pixel and its projection parallel to the gradient direction onto the q axis

in (Figure 1 .8). The projected profile is then of the form shown in (Figure 1 .8 (b)). The

pixel along line q that has maximum intensity value and a few pixels on either

side are set to '1' (white) the remaining pixels are set to 'O' (black).

At this point, a binary image has been computed which moreorless

faithfully represents the original image. The ridges will have width that will vary over

the fıngerprint images. The next processing steps are typically composed of a sequence

of image operations: Directional smoothing, Thinning, Morphological filtering and

Minutiae pruning (post-processing). These types of operations may be performed in

different order [5].

a b

Figure 1.8 Local thresholding based on expected image function [5].

9

1.5. Summary

An introduction to fingerprints and their characteristics was presented in this chapter.

Common techniques of fingerprint detection were also described. These include

minutiae-based, correlation-based and ridge feature-based advantages and

disadvantages of these techniques were also presented.

The next chapter will provide more details on fingerprint recognition techniques

using minutiae-based method.

10

CHAPTER TWO

MINUTIAE-BASED FINGERPRINT DETECTION

2.1. Overview

This chapter describes a minutiae-based method to detect fingerprints. The

minutiae-based method technique depends mainly on minutiae structures, so each

minutiae have different characteristics and shape. Most common fingerprint detection

techniques depend on ridge ending and ridge bifurcation to catch minutiae.

2.2. Obstacles in Fingerprint Matching

Fingerprint matching using the minutiae is really a simple problem of determining

whether the minutiae on two prints match. However, there are several issues that add to

the problem's complexity. First of all, there is the unknown rotation, scale and

translation of the prints that may cause the minutiae not to line up [8]. Because people

are not likely to place their finger onto the scanner in exactly the same position every

time, the prints and thus the minutiae will never line up exactly [9]. There is also the

problem of plastic distortion that arises because of the pressure that is put on the finger

when it is pressed against a surface. The distortion is not equal every time a fingerprint

is taken, therefore this too can cause differences between the two prints from the same

finger [11]. Because of these problems, preprocessing must be done on the prints in

order to eliminate some of the differences between the two fingerprints [13].

The quality of the prints can also affect the matching algorithm's performance.

When using a scanner, poor quality prints can be produced if person's hands are wet,

dirty or too dry. These conditions can cause a scanner to pick up false minutiae and not

pick up some true minutiae [12]. Either case would adversely affect the matching

algorithm. Scars or cuts across a finger can lead to a host of ridge endings that were not

in both the print that was stored and the one being matched against [8]. Different scans

of the same fingerprint will not have the same minutiae on them [10].

When using ink and paper to initially capture the prints, the problems mentioned

above still apply. There are also the additional problems of over inking and smudges in

the ink. Poor quality prints are also a possible when one is working with latent prints

from a crime scene or from prints used at police department, where the people

submitting the prints are less then willing. Because getting identically matching images

11

of the same fingerprint is impossible [11], a matching algorithm cannot just match each

minutiae and declare that there is a match only when all of them can be lined up.

There is no upon standard that defines matching [9]. In the Netherlands 12

minutiae must match for fingerprints to legally be declared as matching. Seven are

needed in South Africa and the United States leaves it up to experts in individual cases.

The fingerprint matching program's strictness is determined by the program's

application. In government security systems the program is likely to be stricter than

those used for access to one's home desktop [13].

2.3. Fingerprint Minutiae Extraction

2.3.1. Introduction of minutiae extraction

The smaller minutiae are particulars of a person's ridges and valleys. Features like

bifurcation ridge ends, islands, lakes, and dots are formed by the placement of the

ridges and valley along the finger [13]. There are about 60 to 80 minutiae can be found

in a good print [15]. The minutiae can be used to match fingerprints as everyone has a

unique arrangement of these features. Usually only bifurcation and ends are used in

automated fingerprint matching systems [16].

2.3.2. Fingerprints feature

The human fingerprint is comprised of various types of ridge patterns, traditionally

classified according to the decades-old Henry system: left loop, right loop, arch, whorl,

and tented arch. Loops make up nearly 2/3 of all fingerprints, whorls are nearly 1/3, and

perhaps 5-10% is arches. These classifications are relevant in many large scale forensic

applications, but are rarely used in biometric authentication.

Minutiae, the discontinuities that interrupt the otherwise smooth flow of ridges,

are the basis for most fingerprint authentication. Codified in the late 1800's as Galton

features, minutiae are at their most rudimentary ridge endings, the points at which a

ridge stops, and bifurcations, the point at which one ridge divides into two. Many types

of minutiae exist, including dots (very small ridges), islands (ridges slightly longer than

dots, occupying a middle space between two temporarily divergent ridges), ponds or

lakes

12

crossover

core

bifurcation

ridge ending

island

delta

pore

Figure 2.1 Fingerprint structure [17].

Empty spaces between two bridges (small ridges joining two longer adjacent ridges),

and crossovers (two ridges which cross each other).

Other features are essential to fingerprint authentication. The core is the inner

point, normally in the middle of the print, around which swirls, loops, or arches center.

It is frequently characterized by a ridge ending and several acutely curved ridges. Deltas

are the points, normally at the lower left and right hand of the fingerprint, around which

a triangular series of ridges center [17].

2.4. Feature Extraction

Minutiae extraction refers to the process by which the minutiae points are detected in a

fingerprint image. Each minutiae is characterized by its (x; y) location in the image, and

the orientation of the ridge on which it is detected. The ridge information in a 64x64

region around the (x; y) point is associated with every minutiae which is useful when

two minutiae sets are being matched. The minutiae extraction scheme (Figure 2.2) can

be broadly classified into the following stages:

1. Orientation field estimation: The orientation of the fingerprint image is

computed in non-overlapping blocks by examining the gradients of pixel

intensities in the x and y directions within the block.

2. Ridge detection: The ridges present in the fingerprint image are identified by

applying masks that are capable of accentuating the local maximum gray level

values along the normal direction of the local ridge direction.

13

Extracted Ridges

Input Image Orientation Field

Minutiae Points Thinned Ridges

Figure 2.2 Flowchart of the minutiae extraction [18].

3. Ridge thinning: The ridge map constructed in the earlier stage is used to obtain a

thinned ridge image.

4. Minutiae detection: A set of rules is applied to the thinned ridges to label

minutiae points (ridge endings and ridge bifurcations). As a post processing step,

a refinement algorithm is applied to remove spurious minutiae points.

Minutiae matching involve a point matching operation on the two minutiae sets. An

elastic string matching technique is employed to compare the two minutiae sets.

The output of the matching process is a matching score that indicates the

similarity of the two sets being compared, and a correspondence map that indicates

pairing of minutiae points from the two sets. The correspondence map is used to

compute the transformation parameters necessary to align the two fingerprint images

[18].

14

2.5. Minutiae Classification

The most minutiae categories are ridge ending and bifurcation (See Figure 2.3). Several

of the fingerprint matching algorithms reported in the literature do not use minutiae type

information because of the difficulty in designing a robust classifier to identify minutiae

type. We use a rule-based minutiae classification scheme and show that the resulting

classification of minutiae can indeed improve the overall matching accuracy. In

minutiae extraction algorithm, if a pixel in the thinned image has more than two

neighbors, then the minutiae is classified as a bifurcation, and if a pixel has only one

neighbor, then the minutiae is classified as an ending (See figure 2.4).

termination
~ ,...• ~~~;,:,
~~"-~'k•ı.:-~: •••....• ~ ~..

,;:,,..'""'"'~~ ır~~:;·
~

bifurcation

lake
independent
ridge

dot or island-
spur

::::z: crossover

Figure 2.3 (a) Different minutiae types, (b) Ridge ending & Bifurcation [20].

Bifurcations Non-Bifurcations

Figure 2.4 Set of 8 neighbors (21].

15

Note classification of minutiae does not affect any other part of the feature extraction

stage. In our experience, there is significantly more number of minutiae endings present

in a typical fingerprint than bifurcations; the probability of occurrence of a ridge ending

is greater than the probability of occurrence of a ridge bifurcation [19].

2.6. Fingerprints Matching Using Chain Coded

2.6.1 Introduction in Chain Coded Method

The chain code representation is procedurally described as follows. Given a binary

image, it is scanned from top to bottom and right to left, and transitions from white

(background) to black (foreground) are detected. The contour is then traced

counterclockwise (clockwise for interior contours) and expressed as an array of contour

elements (Figure 2.5(a)). Each contour element represents a pixel on the contour,

contains fields for 'the x, y coordinates of the pixel, the slope or direction of the contour

into the pixel, and auxiliary information such as curvature. The slope convention used

by the algorithms described is as shown in (Figure 2.5(b)).

o,r __....
~'L ~x

~~A ,,

CHAIN_CODED
CONTOUR

START

SWPE CONVENTION

1 ') 3-
o .4

'7 6 5

y
X I Y

SLOPE I STATUS
MODE !CURVATURE

(a) (b)

Figure 2.5 Chain code contour representations: (a) contour element, (b) slope
convention. Data field in the array contains positional and slope information of each

component of the traced contour. Properties stored in the information fields are:
coordinates of bounding box of a contour, number of components in the corresponding
data fields, area of the closed contour, and a flag which indicates whether the contour is

interior or exterior[22].

16

2.6.2. Minutiae Extraction Using Chain Code

Most of the fingerprint minutiae extraction methods are thinning-based by which the

skeletonization process converts each ridge contour to one pixel wide. The minutiae

points are detected by tracing the thin ridge contours. When the trace stops, an end point

is marked. Bifurcation points are those with more than two neighbors. In practice,

thinning methods have been found to be sensitive to noise and the skeleton structure

does not match up with the intuitive expectation.

The alternate method of using chain coded contours is presented here. The

direction field estimated from chain code gives the orientation of the ridges and

information on any structural imperfections such as breaks in ridges, spurious ridges

and holes. The standard deviation of the orientation distribution in a block is used to

determine the quality of the ridges in that block.

We have used contour tracing in other handwriting recognition applications. We

consistently trace the ridge contours of the fingerprint images in a counter-clock-wise

fashion. When we arrive at a point where we have to make a sharp left turn we mark a

candidate for a ridge ending point. Similarly when we arrive at a sharp right turn, the

turning location marks a bifurcation point (Figure 2.6 (a)).

To determine the significant left and right turning contour points from among

the candidates marked during the trace, we compute vectors Pin leading in to the

candidate point P from its several previous neighboring contour points and Pout going

out of P to several subsequent contour points. These vectors are normalized and placed

in a Cartesian coordinate system with Pin along the x-axis (Figure 2.6 (b)). The turning

direction is determined by the sign of

P_out(x2, y2) Thresholding line
/
(x1,y1)

P_in I (x1,y1)
I
I
'P_out(x2,Y2)

(~ left tum (ii) right turn
(b)

Figure 2.6 (a) Minutiae location in chain code contours, (b) the distance between the
thresholding line and the y-axis gives a threshold for determining a significant turn [22].

17

S(Pm; Pout)= XıYı- XıYı

S(Pin; Pout) > O indicates a left turn and S(Pm; Pout) < O indicates a right turn. A threshold

T is then selected such that any significant turn satisfies the conditions:

XıYı + XıYı <T

Since the threshold Tis the x-coordinate of the thresholding line in Figure 2.6(b), it can

be empirically determined to be a number close to zero. This ensures that the angle

made by Pin and Pout is close to or less than 90°.

The turning point locations are typically made of several contour points. We

define the location of minutiae as the center point of the small group of turning pixels.

The minutiae density per unit area is not allowed to exceed a certain value. If we

consider groups of candidate minutiae forming clusters, all the candidate minutiae in a

cluster whose density exceeds this value are replaced by a single minutiae point located

at the center of the cluster.

A feature extraction method using the Chain code representation of fingerprint

ridge contours is presented for use by Automatic Fingerprint Identification Systems

(AFiS). The representation allows efficient image quality enhancement and detection of

fine feature points called minutiae. The low quality fingerprint image detection is a

disadvantage of this method [22].

2.6. Summary

Toe minutiae-based method is the most common in fingerprints detections technique

because it depends on minutiae; fingerprints detection methods have a lot of steps; these

were presented within this chapter.

Next chapter introduces the used technique and how to solve most of

fingerprints detection technique problems.

18

CHAPTER THREE

IMPLEMENTATION OF FINGERPRINT DETECTION

ALGORITHM

3.1 Overview

In this chapter the fingerprint detection technique will be described. Types of

minutiae and their extraction will be explained. Steps and algorithms for minutiae

extraction will be presented.

3.2 Introduction

Fingerprint matching algorithms can be grouped into two categories: core-based match

algorithms and structure based match algorithms. Most of the structure based matching

algorithms are time consuming, therefore they are not suitable for real application, core­

based matching algorithm is more efficient than the structure-based matching algorithm,

but it highly depends on core point detection.

Most automatic fingerprint identification systems (AFIS) are based on local

ridge features, such as ridge endings and ridge bifurcations.

The used algorithm is based on structure-based matching algorithms, It will be able to

solve problems like translation, rotation and does not depend on core point. The

developed technique has some advantages in processing speed, rotation angle and noise

tolerance.

3.3 Type of minutiae

In this technique two types of minutiae are used; first is the ridge ending, second is the

ridge bifurcation. This technique uses 8-nighbors to catch minutiae ,it made by using

image pixels if a pixel in the thinned image has more than two neighbors, then the

minutiae is classified as a bifurcation, and if a pixel has only one neighbor, then the

minutiae is classified as an ending as following:

19

1 o 1 o 1 o o 1 o o 1 o
o 1 o 1 1 1 o 1 1 o 1 1
o 1 o o o o 1 o o o 1 o

(1) (2) (3) (4)

o o 1 o o o 1 o o o 1 o
1 1 o 1 1 1 o 1 1 1 1 o
o o 1 o 1 o o 1 o o 1 o

(5) (6) (7) (8)

o 1 o 1 o 1 o o 1 1 o o
o 1 o o 1 o 1 1 o o 1 o
1 o 1 o o 1 o 1 o 1 o 1

(9) (10) (11) (12)

1 o o 1 o 1 o 1 o o o 1
o 1 1 o 1 o 1 1 o o 1 o
1 o o 1 o o o o 1 1 o 1

(13) (14) (15) (16)

Figure 3 .1 Set of ridge bifurcation 8-neighbors.

20

1 o o o 1 o o o 1 o o o
o 1 o o 1 o o 1 o o 1 1
o o o o o o o o o o o -O

(1) (2) (3) (4)

o o o o o o o o o o o o
o 1 o o 1 o o 1 o 1 1 o
o o 1 o 1 o 1 o o o o o

(5) (6) (7) (8)

Figure 3.2 Set of ridge ending 8-neighbors.

ll
Thinned Ridges Minutiae ExtractionInput image Bi narization

Figure 3 .3 Block diagram of minutiae extraction.

3.4. Developed Algorithm

3.4.1. Scan fingerprints image

The fingerprint acquisition technique is divided in two techniques:

a) Manual technique, the oldest and most known fingerprint acquisition technique is

the "ink technique", that is, pressing the finger against a card after spreading the

finger skin with ink; this technique is nowadays still largely used by the police in

AFIS. The cards are converted into digital form by means of scanners identical to

those normally employed for general purpose paper documents. The default

resolution is 300 dpi. This technique can produce images including regions

21

air

lens

lı/·~
Figure 3.4 Frustrated Total Internal Reflections (FTIR) based fingerprint sensor [23]

Which miss some information, due to excessive inkiness or to ink deficiency, and is

obviously limited to forensic applications.

b) The Frustrated Total Internal Reflection (FTIR) is the most used and mature live­

scan sensing technique. The finger is illuminated from one side of a glass prism with

a LED, while the other side transmits the image through a lens to a CDD/CMOS

sensing element which converts light into digital information. The lack of reflection

caused by the presence of water particles where the ridges touch the prism allows

ridges to be discriminated from valleys.

3.4.2. Fingerprints Binarization

Fingerprint Image Binarization is to transform the 8-bit Gray fingerprint image to a 1-

bit image with O-valuefor ridges and I-value for furrows. After the operation, ridges in

the fingerprint are highlighted with black color while furrows are white.

A locally adaptive binarization method is performed to binarize the fingerprint

image. Such a named method comes from the mechanism of transforming a pixel value

to 1 if the value is larger than the mean intensity value (Figure 3 .5).

22

Figure 3.5 The fingerprint image after adaptive binarization
Binarized image (left), Enhanced gray image (right). [23]

3.4.3. Ridge Thinning

The thinning method is adapted from morphological method. We thin the ridge from the

contour points, pixels with value 1 having at least one ridge pixel in the 8-neigbborhood

as depicted below

P9 P2 P3

P8 Pl p4

P7 P6 PS

The Various morphological operations are performed on binarized image. The most

important of them include thinning and spur removal. A thinned fingerprint image is

one in which each ridge is one pixel in width. Thinning is achieved by successive

deletion of pixels from all sides of the image. Each of the four sides are eroded away

(Figure 3.6) according to some set template.

If the image matches with template, the middle pixel is removed. Initially the

two north images are processed, and then the other compass points are overlaid. Once

all eight matrices have been sampled on the entire image, the process is repeated again

on the newly formed image.

23

North South East West

o o o 1 1 X o X 1 X X o
X 1 X X 1 X o 1 1 1 1 o
X 1 1 o o o o X X 1 X o
X O o X 1 X o o X X 1 X

1 1 o o 1 1 o 1 1 1 1 o
X 1 X o o X X 1 X X O o

Figure 3.6 Eight matrices based thinning method.

C• C· :::, C• ::, C• c C, o C· C• C• :::, c C• C-
::, C• ::• C• ::,c, Ç• C· C• C• C• C<C• C· C• C·

C· IID o C· C· C•C·OC•C.C•C-C•C
::, C• ::, a C· C• ::, C• C• C• C• C· 0 C· O C,
C• C:• C• a o C• C· C• C• o C• O C1 C· C• C·
::, C• C· a ::, C• C• 1111 C• C• C· 0 C· C• C·
{ C• C• DDIIII C· C· D C• C C• C• o (,
:'.:, C• o a::, C· C· C· C· II C· C• C· C• C·
C· o C• a C• o C· C· C· C· C• Do C• o (•
t, C• Q D:::, C· C· C· O C· C lie, C• C·
CC• lie· C• C• C· C, C· C· C• C· lie· o C·
c,c,Dc·C·t· C· C· C· C· II C· C• C·
C· C• II C· C• C· C•C C·C• C·C•IIC·C

o De, o C· o o o o o C· o lie· c
;: C· ::, DIIII C• o C• C· C• C· C• C· C• C·
c C• C· C• (• C· C• C· C• C• C• C•C• C· C• C·

Figure 3.7 Thinning ridge.

Processing only stops when no more pixels can be deleted. Similarly spur operation is

performed on thinned image to remove false bifurcations and ends caused by thinning.

This removes some real end points from their original locations too. (Block scheme of

thinning algorithm is given in appendix 1)

3.4.4. Minutiae Extraction

3.4.4.1 Minutiae marking

After the fingerprint ridge thinning, marking minutiae points is relatively easy. But it is

still not a trivial task as most literatures declared because at least one special case

evokes my caution during the minutiae marking stage.

24

o 1 o
o 1 o
1 o 1

o o o
o 1 o
o o 1

Figure 3.8.1 Bifurcation Figure 3.8.2 Termination

o 1 o
o 1 1
1 o o

Figure 3.8.3 Triple counting branch

In general, for each 3x3 window, if the central pixel is 1 and has exactly 3 one-value

neighbors, then the central pixel is a ridge branch (Figure 3.8.1). If the central pixel is 1

and has only 1 one-value neighbor, then the central pixel is a ridge ending (Figure3.8.2).

Figure 3.8.3 illustrates a special case that a genuine branch is triple counted.

Suppose both the uppermost pixel with value 1 and the rightmost pixel with value 1

have another neighbor outside the 3x3 window, so the two pixels will be marked as

branches too. But actually only one branch is located in the small region. So a check

routine requiring that none of the neighbors of a branch are branches is added.

Also the average inter-ridge width D is estimated at this stage. The average inter­

ridge width refers to the average distance between two neighboring ridges. The way to

approximate the D value is simple. Scan a row of the thinned ridge image and sum up

all pixels in the row whose value is one. Then divide the row length with the above

summation to get an inter-ridge width. For more accuracy, such kind of row scan is

performed upon several other rows and column scans are also conducted, finally all the

inter-ridge widths are averaged to get the D.

25

ml m2 m3

[]
m7

Figure 3.9 False minutiae structures. ml is a spike piercing into a valley. In the m2 case
a spike falsely connects two ridges. m3 has two near bifurcations located in the same

ridge. The two ridge broken points in the m4 case have nearly the same orientation and
a short distance. m5 is alike the m4 case with the exception that one part of the broken
ridge is so short that another termination is generated. m6 extends the m4 case but with
the extra property that a third ridge is found in the middle of the two parts of the broken

ridge. m7 has only one short ridge found in the threshold window.[25].

3.4.4.2 False minutiae removal

The preprocessing stage does not totally heal the fingerprint image. For example, false

ridge breaks due to insufficient amount of ink and ridge cross-connections due to over

inking are not totally eliminated. Actually all the earlier stages themselves occasionally

introduce some artifacts which later lead to spurious minutiae. These false minutiae will

significantly affect the accuracy of matching if they are simply regarded as genuine

minutiae. So some mechanisms of removing false minutiae are essential to keep the

fingerprint verification system effective.

Only handles the case m1, m4, m5 and m6 have not false minutiae removal by

simply assuming the image quality is fairly good. Has not a systematic healing method

to remove those spurious minutiae although it lists all types of false minutiae shown in

(Figure 3.9) except the m3 case.

The procedures in removing false minutiae are:

1. If the distance between one bifurcation and one termination is less than D and the

two minutiae are in the same ridge (ml case). Remove both of them. Where Dis

the average inter-ridge width representing the average distance between two

parallel neighboring ridges.

26

2. If the distance between two bifurcations is less than D and they are in the same

ridge, remove the two bifurcations. (m2, m3 cases).

3. If two terminations are within a distance D and their directions are coincident with

a small angle variation. And they suffice the condition that no any other

termination is located between the two terminations. Then the two terminations are

regarded as false minutiae derived from a broken ridge and are removed. (case

m4,m5, m6).

4. If two terminations are located in a short ridge with length less than D, remove the

two terminations (m7).

The procedures in removing false minutiae have two advantages. One is that the

ridge ID is used to distinguish minutiae and the seven types of false minutiae are strictly

defined comparing with those loosely defined by other methods. The second advantage

is that the order of removal procedures is well considered to reduce the computation

complexity. It surpasses the way adopted by that does not utilize the relations among the

false minutiae types.

3.4.4.3 Minutiae matching

The algorithm aim to match between two fingerprint by uses short time and more

efficient, this algorithm solve every old algorithm problems also we can determine any

fingerprint by table of number only without keep original fingerprint image because

every fingerprint structure has saved as set of numbers (distances and angles). This

algorithm depends on the distance between every sequence point (minutiae) and angle

between them (Figure 3.1 O).

1. Take the horizontal line and check to find the first point Pı(xı,Yı) in fingerprint

image after that we check the next point P2 (x2,Y2),wherexi, x2 is X-axis

coordinate and Yı, Y: is y-axis coordinate.

Calculate the distance between every sequence two points by:

a. Calculate the horizontal distance X axis by using this equation

27

Dx • .Pıw

Figure 3.10 Triangle shape.

Dx=IX1-X21 3.1

b. Calculate the vertical distance Y axis by using this equation

Dy=I Yl-Y2 I
c. By using Pythagorean theorem

3.2

Dxy = ~Dx2 +Dy2 3.3

Where Dxy is distance between two sequence points

d. By using triangular angle calculation we calculate the angle Q

Sin90° SinQ b . 900 _1 3 4---=-- ut sın - .
Dxy Dy '

1 SinQ
-=--
Dxy Dy

SinQ= Dy
Dxy

3.5

3.6

3.7

2. Create array to store every point's records, the record have the distance between

two points and the angle (See Table 3.1).

3. Compare the distance between two fingerprints sequence records tables, the

technique match fingerprints when its find five sequence point the distance in

two table has same but if the angles are different, calculate fıngerprint rotate

angle for every point because every point have a same rotate angle.

28

Table 3.1 Array of point's record

Index Distance (pixels) Angle (Q)

1 20 50

2 60 30

3 70 75

. . .

. . .

. . .

y

Figure 3.11 Sequence minutiae

--

Figure 3. 12 Rotate fingerprint image

The matching algorithm verifies any rotated fingerprint. The distance between

sequential points are very important to matching fingerprints, so the algorithm uses

rotation angles to verify matching by using rotation angles between every sequential

points (Figure 3.11).

29

The aim of Algorithm is to keep every information about any fingerprint inside the

array. Using array for matching is easier and faster than using bitmap images. The array

contains two important factors, first the distance between sequential points, second is

the angle between sequential points on the X-axis.

The distance between adjacent points does not change when the fingerprint is

rotated. However the angle between adjacent points could change if the orientation of

the fingerprint changes (Figure 3.12).

30

Start

Scan fingerprint
ımage

Test the image and drop damaged
part and create array records

While j <>Iınage.heightQ

While i<>Iınage.widthO

Calculate the distance and angle
between sequences of two minutiae

Store the distance and angle in array
of record

Compare between two fingerprints
array if sequence records has same
the fingerprint matching

END

Figure 3.13 Developed algorithm flowcharts.

31

3.5. Summary

This chapter presents the algorithm for fingerprint detection techniques. This algorithm

matches fingerprints as follows:

1. Fingerprint image binarization.

2. Fingerprint image enhancement.

3. Fingerprint thinning ridges.

4. Fingerprint minutiae extraction.

The aim of this technique is to solve the rotation and orientation problems in

fingerprint detection techniques.

32

I

CHAPTER FOUR

REAL-LIFE IMPLEMENTATION

4.1 Overview

This chapter describes the real-life application of fıngerprint detection technique.

This real-life application will be based on using fingerprints of five persons to

verify the effectiveness of the developed technique.

4.2 The Fingerprints

This section present the application of the developed technique using fingerprint of

different persons; there persons have different fingerprints type to extract the efficiency

of new technique by try to enter all fingerprints image and take the processing time and

efficiency. Each person record has the name of person, age, the way to get fıngerprint

image, type of fingerprint and fıngerprint image.

1. Person 1

o Name: Mehmet Aliem

o Age: 26

o Way: ink and paper

o Type of fingerprint: Loop

Figure 4.1 Person 1 fingerprint image

33

Figure 4.2 Person 2 fingerprint image

2. Person 2

o Name: YousifFaruok

o Age: 26

o Way: ink and paper

o Type of fingerprint: Whorl

3. Person 3

o Name: John Adam

o Age: 24

o Way: ink and paper

o Type of fingerprint: Loop

._..,,.,,.,.. __

Figure 4.3 Person 3 fingerprint image.

34

Figure 4.4 Person 4 fingerprint image

4. Person 4

o Name: Hakki Ahmet

o Age: 44

o Way: ink and paper

o Type of fingerprint: Loop

5. Person 5

o Name: Sami Hassan

o Age: 28

o Way: ink and paper.

o Type of fingerprint: Loop.

Figure 4.5 Person 5 fingerprint image.

35

4.3 Fingerprint Detection Using New Algorithm

Each fingerprint is passing in system steps before extract real result the most five steps

important in system as following:

• Fingerprint image scanning.

• Fingerprint binarization.

• Fingerprint enhancement.

• Fingerprint ridge thinning.

• Minutiae extraction.

The developed system uses the algorithms shown in chapter three to generate the

fingerprint records table.

The minutiae extraction steps for all persons will be shown next in Figure 4.6 -

Figure 4.10.

Original fingerprints are obtained via scanner (300dpi).

36

~ Person 1

a) Fingerprint scan. b) Fingerprint binarization.

c) Fingerprint Enhancement d) Fingerprint ridge thinning

e) Fingerprint minutiae extraction

Figure 4.6 Person 1 minutiae extraction steps.

37

~ Person 2

a) Fingerprint scan.

c) Fingerprint Enhancement

b) Fingerprint binarization.

d) Fingerprint ridge thinning

e) Fingerprint minutiae extraction

Figure 4.7 Person 2 minutiae extraction steps.

38

}:>, Person 3

a) Fingerprint scan. b) Fingerprint binarization.

c) Fingerprint Enhancement d) Fingerprint ridge thinning

e) Fingerprint minutiae extraction

Figure 4.8 Person 3 minutiae extraction steps.

39

)- Person 4

a) Fingerprint scan. b) Fingerprint binarization.

c) Fingerprint Enhancement d) Fingerprint ridge thinning

e) Fingerprint minutiae extraction

Figure 4.9 Person 4 minutiae extraction steps.

40

};>, Person 5

a) Fingerprint scan.

c) Fingerprint Enhancement

b) Fingerprint binarization.

d) Fingerprint ridge thinning

e) Fingerprint minutiae extraction

Figure 4.1O Person 5 minutiae extraction steps.

41

4.4 Results

4.4.1. Algorithm results

The aim of this technique is verify any two fingerprint; this way it will be by converting

each fingerprint image to array ofrecords (distances and angles).

The main steps running on fingerprints before converting are:

1 - Fingerprint image scanning.

Scan fingerprint image by manual technique (ink and paper) resolution is 300 dpi.

2- Fingerprint binarization.

Binarization meaning is convert fingerprint image to binary image (black & white) but

depend on density of gray levels.

The main idea is generate factor M to convert color by determined color level if color

level bigger than M the color is white else the color is black.

Figure 4.11 Fingerprint image scanning.

42

Figure 4.12 Fingerprint image binarization.

3- Fingerprint enhancement.

The goal of fingerprint enhancement to fill any white color space between black color

on ridges before thinning image to add more efficiency for thinning algorithm without

change any thing in fingerprint main structure.

43

Figure 4.13 Fingerprint image enhancements.

4- Fingerprint image thinning.

The steps to thinning any fingerprint image has describe in Chapter 3.

Figure 4.14 Fingerprint image Thinning.

44

Figure 4.15 Fingerprint image minutiae extraction.

Figure 4. 16 Fingerprint image minutiae extraction.

5- Fingerprint image minutiae extractions.

The algorithm depend on minutiae to matching fingerprints the (figure 4.16) explain

how the algorithm generate array of records for each fingerprints.

Each record contains three fields:

a) Index

b) Distance between two horizontally sequential minutiae.

c) Angle on the X-axis between two horizontally sequential minutiae.

Before creating the table of record, the algorithm calculates for every sequential

minutiae the distances and angles.

For example in this case (Figure 4.16) have four minutiae Pn,Pn+ı,Pn+2andPn+3

The algorithm using equations in Chapter three to calculates distances and angles.

45

Table 4. I Table of Minutiae records

Index Distance (inch) Angle

1 - -

2 - -

- -

- -

N 0.1936 12.52
o

N+l 0.2908 4.34
o

N+2 0.2781 5.16
o

- -

- -

4.4.2. Efficiency

The efficiency of any fingerprint detection system is calculated by many factors the

most important is the results of this system and the kind of fingerprint the system has

matching.

Also another important factor the time consumption the system is fast detect or

need a lot of time to complete detection process.

The distances and angles between minutiae will add power in detection system

because it's impossible to find two sequence minutiae have same distance and angle in

any different fingerprints.

4.4.3. Time Cost

The times for each process of developed fingerprint detection system on P4 Celeron

processor 2.4 GHZ and 128 MB of RAM included in table 4.2.

46

Table 4.2 Time consumption for five steps for person 1

Process Name Time

Scan Fingerprint -

Fingerprint binarization 2s

Fingerprintenhancenıent 2.5 s

Fingerprint ridge thinning 4.5 s

Fingerprint nıinutiae extraction 3.2 s

Total 12.2 s

4.4.4. Analysis

The developed fingerprint detection technique results depend on quality of fingerprint,

the nıethod for take fingerprints is very important to get a good results.

Main important point in developed fingerprint detection technique is resolution of

fingerprint must be 300 dpi.

Number of minutiae in fingerprint depend on number of bifurcation ridges and

end ridges approximately any fingerprint have between 40 to 60 nıinutiae but the

number of minutiae is not important in developed fingerprint matching technique

because the result depend on distances and angles.

In developed fingerprint detections system three levels of tolerance

1. Low (L)

2. Mid (M)

3. High (H)

First tolerance level verifies just any two sequential nıinutiae in any two fingerprints

have a same distance and angle, second tolerance level verifies four nıinutiae ,the third

and last level needs to verifies six nıinutiae to nıach any two fingerprints.

47

Table 4.3 Person 1 tolerance levels and matching time cost.

Tolerance No of Minutiae Recognition Time

""O

L 2 Yes 2.lsnı
"1zı::,
::ı M 4 Yes 2.2s~

H 6 Yes 2.3s

Table 4.4 Person 2 tolerance levels and matching time cost.

Tolerance No of Minutiae Recognition Time
""O

L 2 Yes 1.7snı
"1zı::,
::ı M 4 Yes 1.8s
IV

H 6 Yes 1.9s

Table 4.5 Person 3 tolerance levels and matching time cost.

Tolerance No of Minutiae Recognition Time
""O

L 2 Yes 2snı
"1zı::,
::ı M 4 Yes 2.ls
".>)

H 6 Yes 2.2s

Table 4.6 Person 4 tolerance levels and matching time cost.

Tolerance No of Minutiae Recognition Time

""O

L 2 Yes 2.lsnı
"1zı::,
::ı M 4 Yes 2.2s~

H 6 Yes 2.3s

48

Table 4.7 Person 5 tolerance levels and matching time cost.

Tolerance No of Minutiae Recognition Time

""d L 2 Yes 1.6sCl)
"'1..,,
::>:s M 4 Yes 1.7sJI

H 6 Yes 1.8s

4.5. Summary

This chapter presented a real-life application of the fingerprint detection technique.

This system was applied to five different fingerprints for five different persons

to verify the system ability and efficiency.

The important thing in any fingerprint detection system is the result of this

system being true or false.

49

CHAPTER FIVE

SOFTWARE DEVELOPMENT

5.1 Overview

This chapter presents the software development for the fingerprints detection system.

The advantage of using Borland Delphi? software will be described in this chapter. A

guide to using the completed software will also be presented to provide a user-friendly

interface for end users.

5.1 Software Environment

Fingerprints detection software built on Borland Delphi?; Delphi? Studio is a cross­

platform rapid application development (RAD) environment that integrates modeling,

development, and deployment of Windows-based business and E-Commerce solutions

that fully supports new and emerging Web Services. This product also feature full

support for new and emerging Web Services, integrated model driven development, and

preview capabilities for the Microsoft.NET Framework. Delphi 7 supports a first true

model driven architecture with new UML solutions bundled in, updated cross-platform

testing capabilities and Linux support with Kylix 3.

Borland is the first to deliver the independent path to .NET with Delphi 7

Studio, a cross-platform rapid application development (RAD) environment for the

Windows platform. Delphi 7 Studio also features enterprise application design and

deployment allowing developers to take advantage of enterprise application

development from concept to production faster with the new UML designer and Model

Driven Architecture (MDA) technology.

Features and benefits ofBorland Delphi 7:

• Enterprise Application MDA Development: Speeds the development process by

allowing developers to take an application from design to deployment while

radically reducing the amount of code and development time required.

• RAD Visual Web Development: Allows developers to visually build Web

applications within the Delphi 7 Studio environment and eliminates common

server side development tasks with its Application Mode framework to handle

session management transparently. ~

50

• Enterprise Class Reporting Capabilities: Allows developers to create cross­

platform reports that help determine the efficiency of application performance.

• Royalty-Free DataSnap Multi-tier Application Deployment (formerly MIDAS):

New Delphi 7 Studio DataSnap licensing allows developers to .seamlessly scale

single-tier and client/server applications to multi-tier without additional runtime

fee requirements.

• Built-in Cross-Platform Support for Linux. Delphi 7 Studio will be shipped with

the Delphi language version of Borland Kylix 3, the first high-performance,

visual integrated development environment (IDE) for rapidly creating database,

GUI, Web, and Web Services applications for the Linux operating system.

• Windows XP Applications: Delphi 7 Studio includes Windows XP Theme

support, allowing developers to create applications that take advantage of

Windows XP User Interface themes.

5.3 System Requirements

• Intel® Pentium® 233 MHz or higher.

• Microsoft Windows XP, 2000, 98.

• 64 MB RAM (128 MB recommended).

• 450 MB hard disk space for full install.

• SVGA or higher resolution monitor.

• Mouse or other pointing device.

5.4 Software Specifications

1. Load button

Load button used to load fingerprint from machine to system.

2. Binarization button

Binarization button used to convert gray fingerprint image to {black & white}

image, thinning step depend on binarization.

3. Filling button

Filling button used to fill any white space between black color on ridges before

thinning image.

4. Thinning button

Thinning button used to thinning fingerprint ridges to just 1 pixel width.

51

7' Forın1 GJ@J~m
L M H

Load

Reset

Exit

Minutiae Numbers

Rotation angle

Figure 5.1 System Graphical User Interface (GUI).

5. Linking button

Linking button used to connect cutting ridges in fingerprint.

6. Matching button

Matching button is the last step used to verify two fingerprints and give the result

ofmatching.

7. Reset button

Reset button used to reset system and clear last application to usıng new

application again.

8. Exit button

Exit button used to shutdown system and exit.

9. Track bar

Track bar is used to choice security level and determine tolerance by using three

levels of tolerance High (H), Mid (M), Low (L).

Figure 5.2 display the result of developed fıngerprint detection system when the used

loaded two fingerprints and make matching between any two fıngerprints.

52

L
load I M H

__!:_oad J

Rotation angle 125.0

5.5 Summary

Figure 5.2 System result.

This chapter presented the software development for the fingerprints detection system.

Also described the advantage of using Borland Delphi7 software. A guide to using the

completed software will also be presented to provide a user-friendly interface for end

users.

53

CONCLUSION

Most of Fingerprint detection techniques depend on minutiae extraction method;

humans have unique fingerprints which can be classified into three types: arch, loop and

whorl.

The fingerprint matching techniques can be placed into three categories

minutiae-based, correlation-based and ridge feature-based.

There are some difficulties when using minutiae-based method. It is difficult to

extract the minutiae points accurately when the fingerprint is low quality; also

fingerprint matching based on minutiae has problems in matching different sized

minutiae patterns.

There are two ways to get fingerprints image by using inked cards or FTIR

(Frustrated Total Internal Reflection) device, most of fingerprint detection systems use

gray fingerprint image.

Before extracting minutiae there is a need to convert gray fingerprint image to

binary image (black and white) by generate factor to convert color to determined color

level if color level is larger than color factor the color is white else the color is black.

The thinning ridge width to one pixel idea use 3x3 window to make thinning operation

and change binary image ridges width to one.

The developed technique uses 8-nighbors to catch minutiae; this is done by

using image pixels, if a pixel in the thinned image has more than two neighbors, then

the minutiae is classified as a bifurcation, and if a pixel has only one neighbor, then the

minutiae is classified as an ending.

The developed fingerprint detection technique creates tables of minutiae records

contain distance and angels between horizontal sequential minutiae and fill records in

fıngerprinttable.

The matching fıngerprints process will be between two fingerprint tables by

check every record inside tables. The developed technique is able to match rotate

fingerprint and damaged fıngerprint its not important using FTIR device or ink card.

Distances and angles added efficiency in detection system because no sequential

minutiae have same distance and angle in any different fingerprints.

The system matching time cost depends on the number of pixels that the

fıngerprint has. Small fingerprints need less time than bigger fingerprint but our

54

developed fingerprint detection technique is approximately faster than the other

techniques because it detects just two parameters (distances and angles).

The developed fingerprint detection technique may be used to monitor employer

may wish to automate timecard clock-ins and clock-outs for employees to ensure that

they are working the requisite number of hours and not billing the company for hours

they have not spent at work, also we used in criminal justice fingerprint identification

system provides the ability to scan a ten print card and capture the fingerprint images

from the card or from a live fingerprint scan device. The purpose of entering the ten

fingers and other data to the system is to determine if the person represented by the

fingerprints has had prior contact with the criminal justice.

The main goal of developed fingerprint scheme is to solve common fingerprint

problems with the existing techniques (e.g. rotation, fingerprint damage ... etc), and to

develop software that simulates the new technique using Delphi program language.

The developed technique realized the efficiency of the new technique via real

life application (fingerprint detection of five persons).

An introduction to fingerprints and their characteristics was presented in chapter

one. Common techniques of fingerprint detection were also described. These include

minutiae-based, correlation-based and ridge feature-based advantages and

disadvantages of these techniques were also presented.

The minutiae-based method is the most common in fingerprints detections

technique because it depends on minutiae; fingerprint detection methods have a lot of

steps; these were presented within chapter two.

Chapter three contains developed algorithm match fingerprint by some

steps ,first before doing any thing must convert fingerprint image to binary image,

second enhance fingerprint image and drop damaged part, third thinning ridges ,fourth

step is minutiae extraction .

The real-life application of the fingerprint detection technique represented in

chapter four.

This system used five different fingerprints for five different persons to verify

the system ability and efficiency.

The important thing in any fingerprint detection system is the result of this

system is being true or false.

55

Chapter five for end user because have a lot of important steps for any one need

to use fingerprint detection system, Also described which program language the system

has built in and the advantage of program language.

56

REFERENCES

[1] www.frndbiometrics.com/Pages/fıngerprint_ articles/fıngerprint_ 4.html.

[2] www.cis.rit.edu/researcb/thesis/bs/1999/chang/thesis.html.

[3] http://eprint.iacr.org/2004/021. pd£.

[4] Jain, K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system

using fingerprints. In: Proc. of IEEE. Volume 85. (1997) 1365{1388

[5] N.K. Ratha, S. Chen and A.K. Jain, "Adaptive flow orientation-based feature

extraction in fingerprint images," Pattern Recognition, Vol. 28, No. 11, pp. 1657-

1672, 1995.

[6] http://biometrics.cse.msu.edu/fıngerprint.html

[7] Jain, K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system

using fıngerprints. In: Proc. of IEEE. Volume 85. (1997) 1365{1388

[8] http://www.cse.msu.edu/cgi-user/web/tech/document

[9] R. Hopkins, An Introduction to Biometrics and Large Scale Civilian Identification,

International Review of Law, Computers and Technology, Vol.13, Issue 3,

December 1999.

[10] A. Jain, L. Hong and R. Bolle, On-Line Fingerprint Verification, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 4, April

1997.

[11) N. Ratha, K. Kam, S. Chen, and A. Jain, A Real-Time Matching System For Large

fıngerprint Databases, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 18, No. 8, August 1996.

[12] Microsystems for Biometrics FingerTIP CMOS Chip and System Data book 3.1,

Infineon Technologies AG, CC Applications Group, Minchin, 1999.

[13] M. Hanson, Fingerprint-Based forensics Identify Argentines Desaperecidos,

Retrieved October 2000, http://www.computer.org/cga/articles/fıngerprints.htm,

2000.

[14) N. Ratha, K. Karu, S. Chen, and A. Jain, A Real-Time Matching System For Large

fingerprint Databases, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 18, No. 8, August 1996.

[15] A. Jain, S. Prbhakar, L. Hong and s. Pankanti, Filterbank-Based Fingerprint

Matching, IEEE Transactions On Image Processing, Vol. 9, No. 5, May 2000.

57

1. Binarization Flowchart

APPENDEXA

Start

Select gray image
Generate Factor M

For i:=O to image.height

For j:=Oto image.width

Read pixel P(ij)

P(ij)=l

END

59

P(ij)=O
NO .___ __,

2. Thinning Flowchart

Start

Select image

For i:=O to image.height

For j:=O to image.width

Read 8-neighbors for the
pixel P(i,j)

YES

YES

YES

NO

NO

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (1)

60

Start

Select image

For i:=O to image.height

For j :=O to image. width

Read 8-neighbors for the
pixel P(ij)

YES

YES

YES

NO

NO

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (2)

61

Start

Select image

For i:=O to image.height

For j :=O to image.width

Read 8-neighbors for the
pixel P(ij)

NO

NO

YES

YES

YES

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (3)

62

Start

Select image

For i :=O to image.height

For j :=O to image. width

Read 8-neighbors for the
pixel P(ij)

NO

NO

YES

YES

YES

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (4)

63

Start

Select image

For i:=O to image.height

For j:=O to image.width

Read 8-neighbors for the
pixel P(ij)

YES

NO

NO

NO

NO

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (5)

64

Start

Select image

For i:=O to image.height

For j:=O to image.width

Read 8-neighbors for the
pixel P(ij)

YES

YES

NO

NO

YES

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (6)

65

Start

Select image

For i:=O to image.height

For j :=O to image. width

Read 8-neighbors for the
pixel P(ij)

YES

YES

YES

NO

NO

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (7)

66

Start

Select image

For i:=O to image.height

For j:=Oto image.width

Read 8-neigbbors for the
pixel P(ij)

NO

YES

YES

YES

NO

Remove Pl
Pl=l

END

Thinning ridge algorithm Flowchart sample (8)

67

;<

3. Matching Flowchart

Start

Select thinning image

For i:=O to image.height

For j:=Oto image.width

Read 8-nighbors for P(ij)

Calculate the distances and angles
between every points in the array A

Store the distances and angle in
another array B

Compare sequential
distances and angles
between two array

END

68

APPENDIXB

1. Load Button

procedure TForml.Button4Click(Sender: TObject);

begin

fın_sourcel := TBitmap.Create;

if openpicturedialog I .Execute then

begin

fin_ sourcel .LoadFromFile(openpicturedialogl .FileName) ;

imagel .Picture.Assign(fın _sourcel);

end;

end;

2. Binarization

procedure TForml.Button3Click(Sender: TObject);
var

ij :integer;
s:string;

begin
for i:=O to fın sourcel. Width do
for j :=O to fın_source I.Height do

begin
if fin_source 1.Canvas.Pixels[ij]>8388607 then

fin_ source 1.canvas.Pixels[ij] :=16777215
else

fin_ source 1 .Canvas.Pixels[ij] :=O ;
end;

for i:=O to fin source2.Width do
for j :=O to fin_ source2.Height do

begin
if fın_source2.Canvas.Pixels[ij]>83 88607 then

fin_ source2.canvas.Pixels[ij] :=16777215
else
fin_ source2.Canvas.Pixels[ij] :=O ;

end;
image 1 .Picture.Assign(fın _source 1);
image2.Picture.Assign(fın _source2);

end;

69

3. Filling Button
procedure TForml.ButtonlClick(Sender: TObject);

var
ij :integer;
np,pl,p2,p3,p4,p5,p6,p7,p8,p9,pl O,pl 1 ,p12,p 13,p 14,p 15,pl 6,pl 7,pl 8,p19,p20,p
21,p22,p23,p24:longint;
begin
with fin sourcel do
for j :=O to fin_ source I .Height do
for i:=O to fin source 1.Width do

begin
pl :=Canvas.Pixels[i-2j-2];
p2 :=Canvas.Pixels[i-1 j-2];
p3 :=Canvas.Pixels[ij-2];
p4:=Canvas.Pixels[i+ 1 j-2];
p5 :=Canvas.Pixels[i+ 2j-2];
p6:=Canvas.Pixels[i+ 2j-1];
p7:=Canvas.Pixels[i+2j];
p8 :=Canvas.Pixels[i+ 2j+ 1];
p9:=Canvas.Pixels[i+ 2j+ 2];
p 1 O:=Canvas.Pixels[i+ 1 j+ 2];
pl 1 :=Canvas.Pixels[ij+2];
p12:=Canvas.Pixels[i-1 j+2];
pl3:=Canvas.Pixels[i-2j+2];
pl4:=Canvas.Pixels[i-2j+ 1];
p15:=Canvas.Pixels[i-2j];
p 16:=Canvas.Pixels[i-2j-1];
p 17 :=Canvas.Pixels[ij-1];
p 18:=Canvas.Pixels[i+ 1 j-1];
p 19:=Canvas.Pixels[i+ 1 j];
p20:=Canvas.Pixels[i+ 1 j+ 1];
p21 :=Canvas.Pixels[ij+ 1];
p22:=Canvas.Pixels[i-1 .i+ 1];
p23 :=Canvas.Pixels[i-1 j];
p24:=Canvas.Pixels[i-lj-1];

if ((p 1 =O)and(p2=0)and(p3=0)and(p4=0)and
(p5=0)and(p6=0)and(p7=0)and(p8=0)and(p9=0)and

(p 1 O=O)and(p1 1 =O)and(p 12=0)and(p 13=0)and(p 14=0)and
(p15=0)and(p16=0)) or ((pl 7=0)and(pl8=0)and(pl9=0)and(p20=0)and
(p21=O)and(p22=0)and(p23=0)and(p24=0)) then

begin
Canvas.Pixelsfij-I] :=O;
Canvas.Pixels[i+ lj-1]:=0;
Canvas.Pixels[i+ 1 j] :=O;
Canvas.Pixels[i+ 1 .i+ 1] :=O;
Canvas.Pixelslij+ 1]:=O;
Canvas.Pixels[i-1 j+ 1] :=O;
Canvas.Pixels[i-1 .il :=O;
Canvas.Pixelsji-I j-1]:=O;

70

Canvas.Pixels[i,j] :=O;
end;

end;
with fin source2 do

for j :=O to fin_ source2.Height do
for i:=O to fin source2. Width do
begin
p 1 :=Canvas.Pixels[i-2,j-2];
p2:=Canvas.Pixels[i-1,j-2];
p3:=Canvas.Pixels[i,j-2];
p4:=Canvas.Pixels[i+ 1,j-2];
p5:=Canvas.Pixels[i+2,j-2];
p6:=Canvas.Pixels[i+2,j-1];
p7 :=Canvas.Pixels[i+ 2,j];
p8:=Canvas.Pixels[i+ 2,j+ 1];
p9:=Canvas.Pixels[i+ 2,j+2];
pl O:=Canvas.Pixels[i+ 1,j+2];
pl 1 :=Canvas.Pixels[i,j+2];
p 12:=Canvas.Pixels[i- 1 ,j+2];
p 13 :=Canvas.Pixels[i-2,j+ 2];
p14:=Canvas.Pixels[i-2,j+ 1];
p 15 :=Canvas.Pixels[i-2,j];
p 16:=Canvas.Pixels[i-2,j-1];
p 1 7 :=Canvas.Pixels[i,j- 1];
p 18 :=Canvas.Pixels[i+ 1 ,j- 1];
p19:=Canvas.Pixels[i+ 1 ,j];
p20 :=Canvas.Pixels[i+ 1 ,j+ 1];
p21 :=Canvas.Pixels[i,j+ 1];
p22:=Canvas.Pixels[i- 1 ,j+ 1];
p23 :=Canvas.Pixels[i- 1 ,j];
p24 :=Canvas.Pixels[i-1,j- 1];
if ((p 1 =O)and(p2=0)and(p3=0)and(p4=0)and
(p5=0)and(p6=0)and(p 7=0)and(p8=0)and(p9=0)and
(p 1O=O)and(p11=O)and(p12=0)and(p 13=0)and(p 14=0)and
(p 15=0)and(p 16=0)) or ((p17=0)and(p 18=0)and(p 19=0)and(p20=0)and
(p21 =O)and(p22=0)and(p23=0)and(p24=0)) then

begin
Canvas.Pixels[i,j-1] :=O;
Canvas.Pixels[i+ 1 ,j-1] :=O;
Canvas.Pixels[i+ 1 ,j] :=O;
Canvas.Pixels[i+ l ,j+ 1] :=O;
Canvas.Pixels[i,j+ 1]:=O;
Canvas.Pixels[i-1 ,j+ 1] :=O;
Canvas.Pixels[i- 1 ,j] :=O;
Canvas.Pixels[i-1 ,j-1] :=O;
Canvas.Pixels[i,j] :=O;

end;
end;
image2.Picture.Assign(fın _sourceZ);

71

image! .Picture.Assign(fın _source 1);
end;

4. Thinning Button
procedure TForml.Button7Click(Sender: TObject);
var
iJ ,k,l:integer;
p:longint;
np,p 1,p2,p3,p4,p5,p6,p7 ,p8,p9 ,p 1 O,p 1 1,p12,p 13 ,p 14,p 15,p 16,p 17,p 18,p 19,p20,p21 ,p22,
p23 ,p24 :longint;
begin

with fin source! do
for j:=O to fın_sourcel.Height do

for i:=O to fin sourcel .Width do
begin
p2:=Canvas.Pixels[iJ- 1];
p3 :=Canvas.Pixels[i+ 1 J-1];
p4:=Canvas.Pixels[i+ 1 J];
p5 :=Canvas.Pixels[i+ 1 J+ 1];
p6:=Canvas.Pixels[iJ+ 1];
p7:=Canvas.Pixels[i-1J+ l];
p8:=Canvas.Pixels[i- 1 J];
p9:=Canvas.Pixels[i-1 J-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;
begin
if (((p9<>0) and (p2<>0)) and (((p3<>0) and (p5=0)) and (p6=0))) then
canvas.Pixels[iJ]:=16777215;
if (((p9=0) and (p2=0)) and (((p5<>0) and (p6<>0)) and (p7<>0))) then
canvas.Pixels[iJ] :=16777215;
if (((p9<>0) and (p8<>0)) and (((p7<>0) and (p3=0)) and (p4=0))) then
canvas.Pixels[iJ] :=16777215;
if (((p3<>0) and (p4<>0)) and (((p5<>0) and (p7=0)) and (p8=0))) then
canvas.Pixels[iJ] :=16777215;
if (((p2<>0) and (p3<>0)) and (((p4<>0) and (p6=0)) and (p8=0))) then
canvas.Pixels[iJ] :=16777215;
if (((p6<>0) and (p7<>0)) and (((p8<>0) and (p2=0)) and (p4=0))) then
canvas.Pixels [iJ] :=16777215;
if (((p8<>0) and (p9<>0)) and (((p2<>0) and (p4=0)) and (p6=0))) then
canvas.Pixels[iJ] :=16777215;
if (((p4<>0) and (p5<>0)) and (((p6<>0) and (p8=0)) and (p2=0))) then
canvas.Pixels[iJ] :=16777215;

end;
end;

with fin source 1 do
for i:=l to width do
for j := 1 to height do

begin
p:=Canvas.Pixels[i-1 J-1]+Canvas.Pixels[i-1 J]

+Canvas.Pixels[i-1 J+ 1]+Canvas.Pixels[iJ+ 1]

72

+Canvas.Pixels[i+ 1 ,j+ 1]+Canvas.Pixels[i+ 1,j]
+Canvas.Pixels[i+ 1,j-1]+canvas.Pixels[i,j-1];

if (((canvas.Pixels[i,j-1]=O)
and (canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i,j+ 1]=O))

or ((canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i-1 ,j]=O))

or ((canvas.Pixels[i+ 1 ,j-1]=O)
and (canvas.Pixels[i+ 1 ,j]=O)
and (canvas.Pixels[i+ 1 ,j+ 1]=O))

or ((canvas.Pixels[i-1 ,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1 ,j+ 1]=O))

or ((canvas.Pixels[i-1,j-1]=O)
and (canvas.Pixels[i-1 ,j]=O)
and (canvas.Pixels[i,j+ 1]=O))
or ((canvas.Pixels[i-1 ,j]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1,j]=O))
or ((canvas.Pixels[i,j-1]=O)
and (canvas.Pixels[i+ 1 ,j-1]=O)
and (canvas.Pixels[i+ 1,j]=O))
or { ((canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i+ l ,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O))
or }((canvas.Pixels[i-1,j]=O)
and (canvas.Pixels[i-1,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O))
or ((canvas.Pixels[i-1,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1,j+1]=0)))

then
canvas.Pixels [i,j] :=16777215;

end;
with fin source! do

for j :=O to fin_ source I.Height do
for i:=O to fin sourcel ,Width do
begin
p2:=Canvas.Pixels[i,j-1];
p3 :=Canvas.Pixels[i+ 1 ,j-1];
p4:=Canvas.Pixels[i+ 1,j];
p5 :=Canvas.Pixels[i+ 1,j+1];
p6 :=Canvas.Pixels[i,j+ 1];
p7:=Canvas.Pixels[i-1,j+ 1];
p8:=Canvas.Pixels[i-1,j];
p9:=Canvas.Pixels[i-1,j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;
begin

73

if (((p9<>0) and (p2<>0)) and (((p3<>0) and (p5=0)) and (p6=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p9=0) and (p2=0)) and (((p5<>0) and (p6<>0)) and (p7<>0))) then
canvas.Pixels[i,j] :=16777215;
if (((p9<>0) and (p8<>0)) and (((p7<>0) and (p3=0)) and (p4=0))) then
canvas.Pixels[i,j]:=16777215;
if (((p3<>0) and (p4<>0)) and (((p5<>0) and (p7=0)) and (p8=0))) then
canvas.Pixels [i,j] :=16777215;
if (((p2<>0) and (p3<>0)) and (((p4<>0) and (p6=0)) and (p8=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p6<>0) and (p7<>0)) and (((p8<>0) and (p2=0)) and (p4=0))) then
canvas.Pixels[i,j]:=16777215;
if (((p8<>0) and (p9<>0)) and (((p2<>0) and (p4=0)) and (p6=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p4<>0) and (p5<>0)) and (((p6<>0) and (p8=0)) and (p2=0))) then
canvas.Pixels[i,j] :=16777215;

end;
end;

with fin sourcel do
for j:=O to fın_sourcel.Height do
for i:=O to fin source 1. Width do
begin
pl :=Canvas.Pixels[i-2,j-2];
p2:=Canvas.Pixels[i-1 ,j-2];
p3 :=Canvas.Pixels[i,j-2];
p4 :=Canvas.Pixels[i+ 1 ,j-2];
p5:=Canvas.Pixels[i+2,j-2];
p6:=Canvas.Pixels[i+2,j-1];
p7 :=Canvas.Pixels[i+ 2,j];
p8 :=Canvas.Pixels[i+ 2,j+ 1];
p9:=Canvas.Pixels[i+2,j+2];
p 1 O:=Canvas.Pixels[i+ 1 ,j+2];
pl 1 :=Canvas.Pixels[i,j+2];
p12:=Canvas.Pixels[i-1,j+2];
p13:=Canvas.Pixels[i-2,j+2];
pl4:=Canvas.Pixels[i-2,j+ 1];
p 15:=Canvas.Pixels[i-2,j];
p16:=Canvas.Pixels[i-2,j-1];
pl 7:=Canvas.Pixels[i,j-1];
p 18 :=Canvas.Pixels[i+ 1,j-1];
pl 9:=Canvas.Pixels[i+ 1,j];
p20:=Canvas.Pixels[i+ 1,j+ 1];
p21 :=Canvas.Pixels[i,j+ 1];
p22:=Canvas.Pixels[i-l ,j+ 1];
p23 :=Canvas.Pixels[i- 1 ,j];
p24 :=Canvas.Pixels[i-1,j- l];
if ((p 1 <>O)and(p2<>0)and(p3<>0)and(p4<>0)and
(p5<>0)and(p6<>0)and(p7<>0)and(p8<>0)and(p9<>0)and
(p 1 O<>O)and(p1 1<>O)and(p12 <>O)and(p 13 <>O)and(p 14<>0)and

74

(p15<>0)and(p16<>0)) or
((p 17<>O)and(p18<>0)and(p 19<>0)and(p20<>0)and
(p21 <>O)and(p22<>0)and(p23<>0)and(p24<>0))
then

begin
Canvas.Pixels[i,j-1]:=16777215;
Canvas.Pixels[i+ 1,j-1] :=16777215;
Canvas.Pixels[i+ 1,j]:=16777215;
Canvas.Pixels[i+ 1,j+ 1] :=16777215;
Canvas.Pixels[i,j+ 1] :=16777215;
Canvas.Pixels[i-1,j+ 1]:=16777215;
Canvas.Pixels[i-1,j] :=16777215;
Canvas.Pixels[i- 1 ,j- 1] :=16777215;
Canvas.Pixels[i,j] :=16777215;

end;
end;

image I .Picture.Assign(fin_ source 1);
with fin source2 do
for j:=O to fın_source2.Height do

for i:=O to fin source2.Width do
begin
p2 :=Canvas.Pixels[i,j- 1];
p3 :=Canvas.Pixels[i+ 1,j-1];
p4 :=Canvas.Pixels[i+ 1,j];
p5 :=Canvas.Pixels[i+ l ,j+ 1];
p6:=Canvas.Pixels[i,j+ 1];
p7:=Canvas.Pixels[i-1,j+ 1];
p8:=Canvas.Pixels[i-1,j];
p9:=Canvas.Pixels[i-1,j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;

begin
if (((p9<>0) and (p2<>0)) and (((p3<>0) and (p5=0)) and (p6=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p9=0) and (p2=0)) and (((p5<>0) and (p6<>0)) and (p7<>0))) then
canvas.Pixels[i,j] :=16777215;
if (((p9<>0) and (p8<>0)) and (((p7<>0) and (p3=0)) and (p4=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p3<>0) and (p4<>0)) and (((p5<>0) and (p7=0)) and (p8=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p2<>0) and (p3<>0)) and (((p4<>0) and (p6=0)) and (p8=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p6<>0) and (p7<>0)) and (((p8<>0) and (p2=0)) and (p4=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p8<>0) and (p9<>0)) and (((p2<>0) and (p4=0)) and (p6=0))) then
canvas.Pixels[i,j] :=16777215;
if (((p4<>0) and (p5<>0)) and (((p6<>0) and (p8=0)) and (p2=0))) then
canvas.Pixels[i,j] :=16777215;

end;
end;

75

with fin source2 do
for i:= 1 to width do
for j:=1 to height do

begin
p:=Canvas.Pixels[i-1 ,j-1]+Canvas.Pixels[i-1 ,j]

+Canvas.Pixels[i-1,j+ 1]+Canvas.Pixels[i,j+ 1]
+Canvas.Pixels[i+ l ,j+ 1]+Canvas.Pixels[i+ 1,j]
+Canvas.Pixels[i+ 1,j-1]+Canvas.Pixels[i,j-1];

if (((canvas.Pixels[i,j-1]=O)
and (canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i,j+ l]=O))

or ((canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i-1,j]=O))

or ((canvas.Pixels[i+ 1,j-1]=O)
and (canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i+l,j+l]=O))

or ((canvas.Pixels[i-1,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1,j+ 1]=O))

or ((canvas.Pixels[i-1 ,j-1]=O)
and (canvas.Pixels[i-1,j]=O)
and (canvas.Pixels[i,j+ 1]=O))
or ((canvas.Pixels[i-1 ,j]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1,j]=O))
or ((canvas.Pixels[i,j-1]=O)
and (canvas.Pixels[i+ 1,j-1]=O)
and (canvas.Pixels[i+ 1,j]=O))
or { ((canvas.Pixels[i+ 1,j]=O)
and (canvas.Pixels[i+ l ,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O))
or }((canvas.Pixels[i- 1 ,j]=O)
and (canvas.Pixels[i-1,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O))
or ((canvas.Pixels[i-1,j+ 1]=O)
and (canvas.Pixels[i,j+ 1]=O)
and (canvas.Pixels[i+ 1,j+ 1]=O)))

then
canvas.Pixels [i,j] :=16777215;

end;
with fin source2 do

for j:=O to fin_source2.Height do
for i:=O to fin source2.Width do
begin
p2:=Canvas.Pixels[i,j- 1];
p3 :=Canvas.Pixels[i+ 1,j-1];
p4 :=Canvas.Pixels[i+ 1,j];
p5 :=Canvas.Pixels[i+ 1,j +1];

76

p6:=Canvas.Pixels[ij+ 1];
p7:=Canvas.Pixels[i-lj+ 1];
p8:=Canvas.Pixels[i-lj];
p9:=Canvas.Pixels[i-1 j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;
begin
if (((p9<>0) and (p2<>0)) and (((p3<>0) and (p5=0)) and (p6=0))) then
canvas.Pixels[ij] :=16777215;
if (((p9=0) and (p2=0)) and (((p5<>0) and (p6<>0)) and (p7<>0))) then
canvas.Pixels[ij] :=16777215;
if (((p9<>0) and (p8<>0)) and (((p7<>0) and (p3=0)) and (p4=0))) then
canvas.Pixels[ij] :=16777215;
if (((p3<>0) and (p4<>0)) and (((p5<>0) and (p7=0)) and (p8=0))) then
canvas.Pixels [ij] :=16777215;
if (((p2<>0) and (p3<>0)) and (((p4<>0) and (p6=0)) and (p8=0))) then
canvas.Pixels[ij] :=16777215;
if (((p6<>0) and (p7<>0)) and (((p8<>0) and (p2=0)) and (p4=0))) then
canvas.Pixels[ij] :=16777215;
if (((p8<>0) and (p9<>0)) and (((p2<>0) and (p4=0)) and (p6=0))) then
canvas.Pixels[ij] :=16777215;
if (((p4<>0) and (p5<>0)) and (((p6<>0) and (p8=0)) and (p2=0))) then
canvas.Pixels[ij] :=16777215;

end;
end;

with fin source2 do
for j:=O to fın_source2.Height do
for i:=O to fin source2.Width do
begin
pl :=Canvas.Pixels[i-2j-2];
p2:=Canvas.Pixels[i-1 j-2];
p3:=Canvas.Pixels[ij-2];
p4:=Canvas.Pixels[i+ lj-2];
p5 :=Canvas.Pixels[i+ 2j-2];
p6:=Canvas.Pixels[i+ 2j-1];
p7 :=Canvas.Pixels[i+ 2j];
p8:=Canvas.Pixels[i+ 2j+ 1];
p9:=Canvas.Pixels[i+ 2j+ 2];
plO:=Canvas.Pixels[i+ lj+2];
pl 1 :=Canvas.Pixels[ij+2];
p 12:=Canvas.Pixels[i-1 j+ 2];
p 13 :=Canvas.Pixels[i-2j+ 2];
pl 4:=Canvas.Pixels[i-2j+ 1];
p 15:=Canvas.Pixels[i-2j];
p 16:=Canvas.Pixels[i-2j-1];
p17 :=Canvas.Pixels[ij-1];
p18 :=Canvas.Pixels[i+ 1 j-1];
p 19:=Canvas.Pixels[i+ 1 j];
p20:=Canvas.Pixels[i+ 1 j+ 1];

77

p21 :=Canvas.Pixels[ij+ 1];
p22:=Canvas.Pixels[i-1 j+ 1];
p23:=Canvas.Pixels[i-lj];
p24 :=Canvas.Pixels[i- 1 j- 1];
if ((pl <>O)and(p2<>0)and(p3<>0)and(p4<>0)and
(p5<>0)and(p6<>0)and(p7<>0)and(p8<>0)and(p9<>0)and
(p 1 O<>O)and(p1 1<>O)and(p12<>0)and(p 13 <>O)and(p 14<>0)and
(pl5<>0)and(p16<>0)) or
((p 1 7<>O)and(p 18<>0)and(p 19<>0)and(p20<>0)and
(p21 <>O)and(p22<>0)and(p23<>0)and(p24<>0))
then

begin
Canvas.Pixels[ij-1] :=16777215;
Canvas.Pixels[i+ 1 j-1] :=16777215;
Canvas.Pixels[i+ 1 .il :=16777215;
Canvas.Pixels[i+ 1 j+ 1] :=16777215;
Canvas.Pixels[ij+ 1] :=16777215;
Canvas.Pixels[i-1 j+ 1] :=16777215;
Canvas.Pixels[i-1 j] :=16777215;
Canvas.Pixels[i- 1 j- 1] :=16777215;
Canvas.Pixels[ij] :=16777215;

end;
end;
image2 .Picture.Assign(fin_ source2);
end;

5.Linking Button
procedure TForml.Button12Click(Sender: TObject);
type
link=record
x,y:integer;
key:boolean;
end;
max=record
x,y:integer;
d:extended;
end;
var
ar:array[0 ..2000] of link;
ij ,cont,k,l,k 1,11 :integer;
m,pos:max;
dx,dy,d:extended;
turn:boolean;
np,p2,p3 ,p4,p5 ,p6,p 7,p8,p9:longint;
begin
cont:=O;
with fin source 1 do
for j:=O to fin_sourcel.Height do
for i:=O to fin sourcel.Width do

78

begin
p2:=Canvas.Pixels[ij-1];
p3 :=Canvas.Pixels[i+ 1 j-1];
p4:=Canvas.Pixels[i+ 1 j];
p5 :=Canvas.Pixels[i+ 1 J+1];
p6:=Canvas.Pixels[ij+ 1];
p7:=Canvas.Pixels[i-lj+ 1];
p8:=Canvas.Pixels[i-1 j];
p9:=Canvas.Pixels[i- 1 j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;

if canvas.Pixels[ij]=O then
begin
if (((p2=0) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9= 16777215))

or ((p2=16777215) and (p3=0)and
(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
2 l 5)and(p9= 16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8= 16777215)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5=0)and(p6= 16777215)and(p7= 16777215)and(p8= 167772 l 5)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8=0)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p 7= 16777215)and(p8= 16777
215)and(p9=0)))

then
begin

ar[cont] .x:=i;
ar[cont].y:=j;
ar[cont] .key:=false;
cont:=cont+ 1 ;

end;
end;

end;
for i:=O to cont do

begin
m.d:=4;
for j :=i+ 1 to cont do

79

begin
dx:=abs(ar[i].x-ar[j].x);
dY:=abs(ar[i].Y-arü].Y);
d:=sqrt((sqr(dx)+sqr(dy)));
if d<m.d then
begin
m.x:=ar[j] .x;
m.y.=arjjj.y;
m.d:=d;
pos.x:=j;
turn:=true;

end; I I I for2
if (m.d<4) and (turn=true)and (ar[i].key=false) and (ar[pos.x].key =false) then

begin
fin_ source I .canvas.MoveTo(ar[i].x,ar[i].y);
fın_sourcel.canvas.LineTo(m.x,m.y);
turn:=false;
ar[i] .key:=true;
ar[pos.x].key :=true;

end;
end;

cont:=O;
with fin source2 do
for j:=O to fın_source2.Heigbt do
for i:=O to fin source2.Width do
begin
p2:=Canvas.Pixels[i,j-1];
p3 :=Canvas.Pixels[i+ l ,j-1];
p4 :=Canvas.Pixels[i+ 1,j];
p5 :=Canvas.Pixels[i+ 1,j+ 1];
p6 :=Canvas. Pixels[i,j+ I];
p7:=Canvas.Pixels[i- 1 ,j+ 1];
p8 :=Canvas.Pixels[i- 1 ,j];
p9:=Canvas.Pixels[i-l ,j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;

if canvas.Pixels[i,j]=O then
begin
if (((p2=0) and (p3=16777215)and

(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8= 16777
215)and(p9= 16777215))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9= 16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8= 16777215)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5=0)and(p6= 16777215)and(p7= 167772 l 5)and(p8= 167772 l 5)and(
p9= 16777215))

80

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5= 16777215)and(p6=0)and(p7= 16777215)and(p8= 1677721 S)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p7=0)and(p8= 1677721 S)and(
p9=16777215))

or ((p2=16777215) and (p3=16777215)and
(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8=0)and(
p9= 16777215))

or ((p2=16777215) and (p3=16777215)and
(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9=0)))

then
begin

ar[cont] .x:=i;
ar[cont].y:=j;
ar[cont] .key:=false;
cont:=cont+ 1;

end;
end;

end;
for i :=O to cont do

begin
m.d:=4;
for j :=i+ 1 to cont do

begin
dx:=abs(ar[i].x-ar[i].x);
dY:=abs(ar[i].Y-ar[i].Y);
d:=sqrt((sqr(dx)+sqr(dy)));
if d<m.d then
begin
m.x:=ar[i] .x;
m.y:=ar[i]. y;
m.d:=d;
pos.x.=j;
tum.=true;
end;

end; /// for2
if (m.d<4) and (turn=true)and (ar[i].key=false) and (ar[pos.x].key =false) then

begin
fin_source2.canvas.MoveTo(ar[i].x,ar[i].y);
fin_ source2.canvas.LineTo(m.x,m.y);
turn:=false;
ar[i] .key:=true;
ar[pos.x].key :=true;
end;

end; ////for
image 1 .Picture.Assign(fin_ source 1);
image2.Picture.Assign(fin_source2);

81

Button8.Click;
end;

6. Matching Button
procedure TFomıl .Button6Click(Sender: TObject);
type
Fin table=record

dist:real;
angle:real;
end;

min_pos=record
x,y:integer;
end;

var
fınl_axis,fın2_axis:array[l ..200]of min_pos;
fınl ,fın2:array[l ..200]of fin_table;
temp:tbitmap;
off,match:boolean;
st:string;
ij ,k,l,x,y,step1,step2,step3,step4,step5,step6,step7,step8,sp,sp2,fcount1,fcount2:integer;
p:longint;
dx,dy,d:extended;
angle:real;
np,p2,p3,p4,p5,p6,p7,p8,p9:longint;
p21,p31,p41,p51,p61,p71,p81,p91:longint;
begin
button6.Enabled :=false;
temp:=fın_source1;
/Ill image I
with fin source1 do
for j:=Oto fın_sourcel.Height do
for i:=O to fin sourcel. Width do
begin
p2:=Canvas.Pixels[ij-1];
p3:=Canvas.Pixels[i+1 j-1];
p4:=Canvas.Pixels[i+ 1 j];
p5:=Canvas.Pixels[i+1 .i+ 1];
p6:=Canvas.Pixels[ij+ 1];
p7:=Canvas.Pixels[i-lj+ 1];
p8:=Canvas.Pixels[i-1j];
p9:=Canvas.Pixels[i-1j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;
Ill bufurication

if canvas.Pixels[ij]=O then
begin
if (((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(
p9=0))

82

or ((p2=0) and (p3=16777215)and
(p4=0)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8=0)and(p9= 1677
7215))
or ((p2=0) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6= 16777215)and(p7=0)and(p8= 16777215)and(p9= 1677
7215))
or ((p2=0) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6=0)and(p7= 16777215)and(p8= 16777215)and(p9= 1677
7215))
or ((p2=16777215) and (p3=0)and

(p4= 16777215)and(p5=0)and(p6= 16777215)and(p7= 16777215)and(p8=0)and(p9= 1677
7215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6=0)and(p7= 16777215)and(p8=0)and(p9= 16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6=0)and(p 7= 16777215)and(p8= 16777215)and(p9=0))
or ((p2=0) and (p3=16777215)and

(p4= 167772 l 5)and(p5= 167772 l 5)and(p6=0)and(p7= 16777215)and(p8=0)and(p9= 1677
7215))
or ((p2=0) and (p3=16777215)and

(p4= 16777215)and(p5=0)and(p6= 167772 l 5)and(p7=0)and(p8=16777215)and(p9=1677
7215))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=16777215)and(
p9=0))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=16777215) and (p3=16777215)and

(p4=167772l 5)and(p5=0)and(p6=167772l 5)and(p7=0)and(p8=16777215)and(p9=0))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=167772l 5)and(p7=0)and(p8=16777215)and(p9=0))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(
p9=0))
or ((p2=0) and (p3=16777215)and

(p4=167772l 5)and(p5=0)and(p6=167772l 5)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=0)and(p8=16777215)and(p9=1677
7215)))
then
begin
II temp.Canvas.MoveTo(ij);
II temp.Canvas.Rectangle(ij,i+3j+3);
fın_sourcel .Canvas.Pixels[ij] :=clred;
end;
Ill ridge ending

83

if (((p2=0) and (p3=16777215)and
(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9= 16777215))

or ((p2=16777215) and (p3=0)and
(p4= 16777215)and(p5= 16777215)and(p6= 16777215)and(p7= 167772 l 5)and(p8= 16777
215)and(p9= 16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5= 16777215)and(p6= 16777215)and(p7= 16777215)and(p8= 167772 l 5)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=167772l 5)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=167772l 5)and(p8=0)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9=0)))
then
fin_sourcel .Canvas.Pixels[ij] :=clyellow ;

end;
end;
II false minutiea deletion
stepl:=O;
step2:=0;
step3:=0;
step4:=0;
step5:=0;
step6:=0;
step7:=0;
step8:=0;
sp:=5;

with fin source! do
for j:=O to fin_sourcel.Height do
for i:=O to fin sourcel.Width do
begin
if fin_source1.Canvas.Pixels[ij]=clred then

begin
stepl :=O;

step2:=0;
step3:=0;
step4:=0;
step5:=0;

84

step6:=0;
step7:=0;
step8:=0;

k:=i;
l:=j;

II while (fin_sourcel .Canvas.Pixels[k,l]<>clgreen)do
begin
p2:=Canvas.Pixels[k,l-1];
p3 :=Canvas.Pixels[k+ 1,1-1];
p4 :=Canvas.Pixels[k+ 1,1];
p5 :=Canvas.Pixels[k+ 1,1+ 1];
p6:=Canvas.Pixels[k,l+ I];
p7:=Canvas.Pixels[k-1,l+ 1];
p8 :=Canvas.Pixels[k-1,l];
p9:=Canvas.Pixels[k-1,l-1];
ifp2=0 then
begin
x:=k;
y:=1-1;
while(off<>true) do

begin
step 1 :=step 1 + 1 ;
if step 1 =sp then
off:=true;

fin_ source 1.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x.y-l];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1 ,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x- 1 ,y- 1];
ifp21=0 then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

85

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+ 1;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end; //if p2
if p3=0 then

begin
x:=k+l;
y:=l-1;
while(off<>true)do

begin
step2:=step2+ 1;
if step2=sp then
off:=true;
fin_ source 1. Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x.y-I];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];

86

p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-Ly-I];
if p21 =O then

begin
y.=y-l ;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x.=x-l ;
y:=y+l;
end
else

ifp81=0 then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2

87

off:=false;
k:=i;
l:=j;

end; //if p3
ifp4=0 then

begin
x:=k+l;

y:=l;
while(off<>true) do

begin
step3 :=step3+ 1;
if step3=sp then

off:=true;
fin_ source 1. Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ l ,y-1];
p41 :=Canvas.Pixels[x+ l ,y];
p5 l :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x- 1 ,y-1];
ifp21=0 then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

88

if p71=0 then
begin
x.=x-l ;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off.=true;

end; //while p2
off:=false;
k.=i:
l:=j;

end;
ifp5=0 then

begin
x:=k+l;
y:=l+l;

while(off<>true) do
begin

step4 :=step4+ 1;
if step4=sp then
off:=true;

fin_ source 1.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1 ,y];
p51 :=Canvas.Pixels[x+ 1 ,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-1,y-1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;

89

y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
o:ff:=false;
k:=i;
l:=j;

end;
ifp6=0 then

begin
xr=k;

y:=l+l;
while(o:ff<>true) do

begin
step5 :=step5+ 1 ;

90

if step5=sp then
off:=true;

fin_ source I .Canvas.Pixels[x,y] :=clgreen;
p2 l :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ I];
p61 :=Canvas.Pixels[x,y+ I];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-1,y-1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

if p71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p8 l =O then
begin
x:=x-1;
end
else

91

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end;
ifp7=0 then

begin
x.=k-I;

y:=l+l;
while(off<>true) do

begin
step6:=step6+ 1;
if step6=sp then
off:=true;
fin_ source 1.Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x,y- 1];
p31 :=Canvas.Pixels[x+ 1s- 1];
p41 :=Canvas.Pixels[x+ 1 ,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x- 1 ,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x-Ly- 1];
if p21=O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

ifp41=0 then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;

92

y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x.=x-I;
y:=y+l;
end
else

if p81 =O then
begin
x.=x-l ;
end
else

if p91 =O then
begin
x.=x-l ;
y.=y-I;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l.=j;

end;
ifp8=0 then

begin
x.=k-I;

y:=l;
while(off<>true) do

begin
step7:=step7+ 1;
if step7=sp then
off:=true;
fin_ source 1. Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x.y-l];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x- 1 ,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];

93

p91 :=Canvas.Pixels[x-1,y- 1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+I;
y:=y+l;
end
else

if p6 l =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;

94

k:=i;
1:=j;

end;
ifp9=0 then
begin
x:=k-1;
y:=1-1;

while(off<>true) do
begin
step8:=step8+ 1;
if step8=sp then
off:=true;
fın_source 1.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p5 l :=Canvas.Pixels[x+ 1 ,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1 ,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x-1,y-1];
if p2 l =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then

95

begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2-
off:=false;
k:=i;
l:=j;

end; //if p9
end;
if step 1 +step2+step3+step4+step5+step6+step7+step8=sp*3 then
fin_ source 1 .canvas.Pixels[ij] :=clblue;

end;
end;
// clear red and green 16240293

with fin source 1 do
for j :=O to fın_sourceI .Height do
for i:=O to fın sourceI .Width do

begin
if (fin_sourcel.Canvas.Pixels[iJ]<>clred) and
(fın_sourcel.Canvas.Pixels[ij]<>clwhite) and
(fin_sourcel .Canvas.Pixels[ij]<>clyellow) and
(fin_sourcel .Canvas.Pixels[ij]<> 16240293) and
(fin_sourcel .Canvas.Pixels[ij]<>clblue) then

fin_sourcel .Canvas.Pixels[ij]:=O;
end;

//// test ridge ending
sp2:=10;
off:=false;
stepl:=O;

with fın sourcel do
for j :=O to fin_sourceI .Height do
for i:=O to fin sourcel.Width do

begin
if Canvas.Pixels[ij]=clyellow then

begin

96

stepl:=O;
x:=ı;
y:=J;
while(off<>true) do

begin
step 1 :=step 1 + 1;
if step 1 =sp2 then
off:=true;

fin_source 1.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y- 1];
p31 :=Canvas.Pixels[x+ 1 ,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x-1,y- 1];
if p21 =O then

begin
y:=y-1;
end
else

if p3 1 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51=O then
begin
x:=x+l;
y:=y+ 1;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end

97

else
if p81 =O then

begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

if ((p21 =clred) or (p21=clblue)) or ((p31 =clred) or (p31 =clblue)) or
((p41=clred) or (p41=clblue)) or ((p51=clred) or (p5l=clblue)) or
((p61 =clred) or (p61=clblue)) or ((p71 =clred) or (p71 =clblue)) or
((p81=clred) or (p8l=clblue)) or ((p9l=clred) or (p91=clblue)) then
begin
off:=true;
stepl:=O;
end;

end; //while p2
off:=false;
if step 1 =sp2 then
fin_ source 1 .Canvas.Pixels[i,j] :=clblue;

end; //if p2
end;

// clear red and green 16240293
with fin source 1 do
for j:=O to fın_sourcel.Height do
for i:=O to fin sourcel.Width do

begin
if (fın_sourcel .Canvas.Pixels[i,j]<>clwhite) and
(fin_ source 1.Canvas.Pixels[i,j]<>16240293) and
(fin_sourcel .Canvas.Pixels[i,j]<>clblue) then

fin_ source 1 .Canvas.Pixels[i,j] :=O;
end;

image 1 .Picture.Assign(fın_source 1);
with fin source2 do
for j :=O to fın_source2.Height do
for i:=O to fin source2. Width do
begin
p2:=Canvas.Pixels[i,j-1];
p3 :=Canvas.Pixels[i+ 1,j- 1];
p4 :=Canvas.Pixels(i+ 1 ,j];
p5 :=Canvas.Pixels[i+ 1 ,j+ 1];
p6:=Canvas.Pixels[i,j+ 1];
p7:=Canvas.Pixels[i-l ,j+ 1];

98

p8:=Canvas.Pixels[i-1 Jl:
p9:=Canvas.Pixels[i-1j-1];
np:=p2+p3+p4+p5+p6+p7+p8+p9;
Ill bu:furication

if canvas.Pixels[ij]=O then
begin
if (((p2=16777215) and (p3=0)and

(p4=167772l 5)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(
p9=0))
or ((p2=0) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=0) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(p9=1677
7215))
or ((p2=0) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=0)and(p7=167772l 5)and(p8=16777215)and(p9=1677
7215))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=0)and(p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(p9=0))
or ((p2=0) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=0) and (p3=16777215)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=0)and(p8=16777215)and(p9=1677
7215))
or ((p2=16777215) and (p3=0)and

(p4=167772l 5)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=16777215)and(
p9=0))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=0)and(p9=1677
7215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=0)and(p8=167772l 5)and(p9=0))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(p9=0))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=0)and(p8=16777215)and(
p9=0))
or ((p2=0) and (p3=16777215)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=0)and(p9=1677
7215))

99

~"t \wı..=\.\)""\""\""\ı..\."::ı") ~~ w~=~~~
(p4=16777215)and(p5=0)and(p6=167772l 5)and(p7=0)and(p8=16777215)and(p9=1677
7215)))
then
begin
II temp.Canvas.MoveTo(i,j);
II temp.Canvas.Rectangle(i,j,i+3,j+3);
fin_source2.Canvas.Pixels[i,j]:=clred;
end;
I I I ridge ending

if (((p2=0) and (p3=16777215)and
(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
2 l 5)and(p9=16777215))
or ((p2=16777215) and (p3=0)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=0)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=0)and(p6=16777215)and(p7=16777215)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=0)and(p7=16777215)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=167772l 5)and(p7=0)and(p8=16777215)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=0)and(
p9=16777215))
or ((p2=16777215) and (p3=16777215)and

(p4=16777215)and(p5=16777215)and(p6=16777215)and(p7=16777215)and(p8=16777
215)and(p9=0)))
then
fin_source2.Canvas.Pixels[i,j]:=clyellow ;

end;
end;
I I false minutiea deletion
stepl:=O;
step2:=0;
step3:=0;
step4:=0;
step5:=0;
step6:=0;
step7:=0;
step8:=0;
sp:=5;

with fin source2 do

100

for j:=O to fin_source2.Height do
for i:=O to fin source2. Width do
begin
if fin_ source2.Canvas.Pixels[ij]=clred then

begin
stepl ı=O;

step2:=0;
step3:=0;
step4:=0;
step5:=0;
step6:=0;
step7:=0;
step8:=0;

k.=i;
l:=j;

II while (fin_sourcel.Canvas.Pixels[k,l]<>clgreen)do
begin

p2:=Canvas.Pixels[k,l-1];
p3 :=Canvas.Pixels[k+ I ,1- I];
p4:=Canvas.Pixels[k+ 1,1];
p5:=Canvas.Pixels[k+ 1,1+ 1];
p6:=Canvas.Pixels[k,l+ 1];
p7:=Canvas.Pixels[k-l,l+ 1];
p8 :=Canvas.Pixels[k-1,1];
p9 :=Canvas.Pixels[k- 1 ,1-1];
ifp2=0 then
begin
x.=k;
y:=1-1;
while(off<>true) do

begin
step 1 :=step 1 + 1;
if step 1 =sp then

off:=true;
fin_ source2.Canvas.Pixels[x,y] .=clgreen;
p21 :=Canvas.Pixels[x.y-I];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1 ,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,Y];
p91 :=Canvas.Pixels[x-1,y-1];
if p21 =O then

begin
y:=y-1;
end
else

101

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end; //if p2
ifp3=0 then

begin
x:=k+l;
y:=l-1;

102

while(off<>true)do
begin

step2:=step2+ 1;
if step2=sp then
o:ff:=true;
fin_ source2. Canvas.Pixels [x,y] :=clgreen;

p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-1,y-1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

ifp51=0 then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin

103

x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end; //if p3
ifp4=0 then

begin
x:=k+l;

y:=l;
while(off<>true) do

begin
step3 :=step3+ 1 ;
if step3=sp then
off:=true;
fin_ source2. Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p7 l :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-1,y-1];
ifp21=0 then

begin
y:=y-1;
end
else

if p31=O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

104

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+ 1;
end
else

if p71 =O then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end;
ifp5=0 then

begin
x:=k+l;
y:=l+l;

while(off<>true) do
begin

step4 :=step4+ 1;
if step4=sp then
off:=true;
fın_source2.Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];

105

p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x- 1 ,y-1];
if p2 l =O then

begin
y:=y-1;
end
else

if p3 l =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

106

end; //while p2
off:=false;
k:=i;
l:=j;

end;
ifp6=0 then

begin
x:=k;

y:=l+ 1;
while(off<>true) do

begin
step5:=step5+ 1;
if step5=sp then
off:=true;

fın_source2. Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y- 1];
p31 :=Canvas.Pixels[x+ 1 ,y- 1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-1,y- 1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

ifp61=0 then
begin
y:=y+l;
end

107

else
ifp71=0 then

begin
x.=x-I;
y:=y+l;
end
else

if p81=O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x.=x-l ;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end;
if p7=0 then

begin
x.=k-l ;

y:=l+l;
while(off<>true) do

begin
step6 :=step6+ 1;
if step6=sp then

off:=true;
fın_source2. Canvas.Pixels [x,y] :=clgreen;

p21 :=Canvas.Pixels[x.y-1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1 ,y];
p51 :=Canvas.Pixels[x+ 1 ,y+ 1];
p6 l :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x-1,y-1];
ifp21=0 then

begin
y:=y-1;
end
else

if p3 1 =O then
begin

108

x.=x+l ;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+ 1;
end
else

if p61 =O then
begin
y:=y+ 1;
end
else

if p71 =O then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end;
ifp8=0 then

begin
x:=k-1;

y:=l;
while(off<>true) do

begin

109

step7:=step7+ 1;
if step7=sp then
off:=true;
fın_source2.Canvas.Pixels[x,y] :=clgreen;

p21 :=Canvas.Pixels[x.y-I];
p31 :=Canvas.Pixels[x+ 1 ,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p51 :=Canvas.Pixels[x+ 1,y+1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x-Ly-I];
if p21 =O then

begin
y:=y-1;
end
else

if p3 1 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+ 1;
end
else

if p71 =O then
begin
x.=x-L;
y:=y+l;
end
else

if p81 =O then
begin
x.=x-I;
end

110

else
if p91 =O then

begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2
off:=false;
k:=i;
l:=j;

end;
ifp9=0 then
begin
x:=k-1;
y:=1-1;

while(off<>true) do
begin
step8:=step8+ 1;
if step8=sp then
off:=true;
fin_source2.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y- 1];
p31 :=Canvas.Pixels[x+ 1,y-1];
p41 :=Canvas.Pixels[x+ 1 ,y];
p51 :=Canvas.Pixels[x+ 1 ,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x- 1 ,y];
p91 :=Canvas.Pixels[x- 1 ,y- 1];
if p21 =O then

begin
y:=y-1;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin

111

x:=x+l;
y:=y+l;
end
else

if p61 =O then
begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81=O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

end; //while p2-
off:=false;
k:=i;
l:=j;

end; //ifp9
end;
if step 1 +step2+step3+step4+step5+step6+step7+step8=sp* 3 then
fin_ source2.canvas.Pixels[ij] .=clblue;

end;
end;
II clear red and green 16240293

with fin source2 do
for j:=O to fin_source2.Height do
for i:=O to fin source2.Width do

begin
if (fin_source2.Canvas.Pixels[ij]<>clred) and
(fin_source2.Canvas.Pixels[ij]<>clwhite) and
(fın_source2.Canvas.Pixels[ij]<>clyellow) and
(fin_source2.Canvas.Pixels[ij]<> 16240293) and
(fin_source2.Canvas.Pixels[ij]<>clblue) then

fin_source2.Canvas.Pixels[ij] :=O;
end;

112

sp2:=10;
off:=false;
stepl:=0;

with fin source2 do
for j :=O to fin_ source2.Height do
for i:=O to fin source2. Width do

begin
if Canvas.Pixels[ij]=clyellow then

begin
stepl:=O;
x:=ı;
y:=J;
while(off<>true) do

begin
step 1 :=step 1 +I;
if step 1 =sp2 then
off:=true;

fin_ source2.Canvas.Pixels[x,y] :=clgreen;
p21 :=Canvas.Pixels[x,y-1];
p31 :=Canvas.Pixels[x+ l,y-1];
p41 :=Canvas.Pixels[x+ 1,y];
p5 l :=Canvas.Pixels[x+ 1,y+ 1];
p61 :=Canvas.Pixels[x,y+ 1];
p71 :=Canvas.Pixels[x-1,y+ 1];
p81 :=Canvas.Pixels[x-1,y];
p91 :=Canvas.Pixels[x-Ly-I];
if p21 =O then

begin
y.=y-l ;
end
else

if p31 =O then
begin
x:=x+l;
y:=y-1;
end
else

if p41 =O then
begin
x:=x+l;
end
else

if p51 =O then
begin
x:=x+l;
y:=y+l;
end
else

if p6 l =O then

113

begin
y:=y+l;
end
else

ifp71=0 then
begin
x:=x-1;
y:=y+l;
end
else

if p81 =O then
begin
x:=x-1;
end
else

if p91 =O then
begin
x:=x-1;
y:=y-1;
end
else
off:=true;

if ((p21 =clred) or (p21 =clblue)) or ((p31 =clred) or (p31 =clblue)) or
((p41=clred) or (p41=clblue)) or ((p51=clred) or (p51=clblue)) or
((p61=clred) or (p61=clblue)) or ((p71=clred) or (p71=clblue)) or
((p8l=clred) or (p81=clblue)) or ((p9l=clred) or (p9l=clblue)) then
begin
off:=true;
stepl:=O;
end;

end; //while p2
off:=false;
if step 1 =sp2 then
fin_ source2.Canvas.Pixels[ij] :=clblue;

end; //if p2
end;

with fin source2 do
for j :=O to fın_source2.Height do
for i:=O to fın source2.Width do

begin
if (fin_source2.Canvas.Pixels[ij]<>clwhite) and
(fin_source2.Canvas.Pixels[ij]<>l6240293) and
(fin_source2.Canvas.Pixels[ij]<>clblue) then

fın_source2.Canvas.Pixels[ij]:=O;
end;

image2.Picture.Assign(fın_source2);
fcountl :=O;
fcount2:=0;

114

with fin source 1 do
for j :=O to fin_ source I .Height do
for i:=O to fin sourcel.Width do
begin
if fın_sourcel .Canvas.Pixels[ij]=clblue then

begin
fcountl :=fcount 1 +1;
finl _axis[fcountl] .x:=i;
finl_axis[fcountl].y:=j;
end;

end;
str(fcountl ,st);
edit2.Text :=st;
Ill number ofminutiea fınger2
with fin source2 do

for j:=Oto fin_source2.Height do
for i:=O to fın source2.Width do
begin
if fin_source2.Canvas.Pixels[ij]=clblue then

begin
fcount2:=fcount2+1;
fın2_axis[fcount2].x:=i;
fın2_axis[fcount2].y:=j;
end;

end;
str(fcount2,st);
edit3.Text :=st;

for i:=1 to fcountl-1 do
begin

dx:=abs(finl _axis[i].x-fınl _axis[i+ 1].x);
dY:=abs(finl_axis[i].Y-fınl_axis[i].Y);
d:=sqrt((sqr(dx)+sqr(dy)));

angle:= arcsin(dyld);
fınl [i].dist:=d;
fınl [i].angle:=angle;

end;
for i:=l to fcount2-1 do
begin

dx:=abs(fin2_axis[i].x-fın2_axis[i+ 1].x);
dY:=abs(fin2_axis[i].Y-fın2_axis[i].Y);
d:=sqrt((sqr(dx)+sqr(dy)));
angle:= arcsin(dyld);
fın2[i].dist:=d;
fın2[i].angle:=angle;

end;
match:=false;
stepl:=0;

for i:=1 to fcountl do
for j :=1 to fcount2 do

115

begin
if((finl[i].dist<=fın2[j].dist+3) and (finl[i].dist>=fin2[j].dist-3)) and (match=false)

then
begin
k:=i;
l:=j;

while (stepl<>tol-1) and ((finl[k].dist<=fin2[1].dist+3) and
(finl [k].dist>=fin2[1].dist-3))do

begin
k:=k+l;
l:=l+ l;
step 1 :=step 1 + 1;
if (finl [k].dist<=fin2[1].dist+ 3) and (finl [k].dist>=fin2[1].dist-3 ı tb
match:=true
else
match:=false;

end;
end;

end;
if match=true then

editl.Text :='MATCHING'
else
editl.Text :='NOT MATCHING'

end;

116

	Page 1
	Titles
	NEAR EAST UNIVERSITY

	Images
	Image 1
	Image 2

	Page 1
	Titles
	/
	l)~~
	~ff :;:.--1 &~ .

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	CONTENTS

	Page 5
	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Page 7
	Titles
	2

	Page 8
	Titles
	CHAPTER ONE
	R'idge . · . ·
	Endin~s ~~
	SihıreaHon

	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Tables
	Table 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	{ı'

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Page 16
	Titles
	CHAPTER TWO

	Images
	Image 1

	Page 17
	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	..
	,;:,,..'""'"'~~ ır
	-
	::::z:

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Titles
	(b)
	(a)
	y
	o,r __....
	~'L ~x
	,,

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Page 24
	Images
	Image 1

	Page 25
	Tables
	Table 1

	Page 26
	Titles
	ll

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 27
	Titles
	lı/

	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 29
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 30
	Tables
	Table 1
	Table 2
	Table 3

	Page 31
	Titles
	[]

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 32
	Page 33
	Titles
	Dxy = ~Dx2 +Dy2
	Dy=I Yl-Y2 I

	Images
	Image 1
	Image 2
	Image 3

	Page 34
	Titles
	y
	--
	29

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 35
	Images
	Image 1

	Page 36
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Titles
	I

	Images
	Image 1

	Page 2
	Titles
	CHAPTER FOUR

	Images
	Image 1
	Image 2

	Page 3
	Titles
	.

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Images
	Image 1

	Tables
	Table 1

	Page 17
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3
	Table 4

	Page 18
	Images
	Image 1

	Tables
	Table 1

	Page 19
	Titles
	CHAPTER FIVE

	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Titles
	m

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 23
	Titles
	CONCLUSION

	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Titles
	REFERENCES

	Images
	Image 1

	Page 27
	Titles
	APPENDEXA
	Start
	END

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 28
	Titles
	END
	Start

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 29
	Titles
	NO
	NO
	END
	Start

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 30
	Titles
	NO
	NO
	END
	Start

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 31
	Titles
	NO
	NO
	END
	Start

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 32
	Titles
	Start
	END

	Images
	Image 1
	Image 2

	Page 33
	Titles
	Start
	END

	Images
	Image 1
	Image 2
	Image 3

	Page 34
	Titles
	NO
	NO
	END
	Start

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 35
	Titles
	Start
	END

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Titles
	Start
	END

	Images
	Image 1
	Image 2

	Page 37
	Titles
	APPENDIXB

	Images
	Image 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1
	Image 2

	Page 51
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	~"t \wı..=\.\)""\""\""\ı..\."::ı") ~~ w~=~~~

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

