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ABSTRACT 

In industry, under real time conditions, describing the state of production in a finite time 

interval often requires processing of great volume of information. This requires 

developing a system that would process the coming information in parallel and high 

level of reliability. One of the approaches that meet the above requirements is Neural 

Networks. 

In this thesis the development of quality prediction system for Crude Distillation Unit 

(CDU) products is considered. The analysis and technological description of CDU is 

given. Quality of the products depends on many parameters. The main technological 

parameters that influence to the output products of CDU have been observed. Artificial 

Neural Network is used to predict product quality in the CDU technological process. 

The mathematical models of Neural Network and its learning algorithm are given. 

Using Neural Network structure the development of the quality prediction is carried out. 

For prediction the Naphtha 95 % Cut Point property is chosen. 

Using statistical data taken from technological process and implementing the back 

propagation learning algorithm, product quality prediction for naphtha 95 % Cut Point 

has been performed. Development of the system is realized using Neuroshell software 

package and NNinExcell software package and results of simulation with both packages 

are analyzed. 
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INTRODUCTION 

In response to demand for increasing oil production levels and more stringent product 

quality specifications, the intensity and complexity of process operations at oil 

refineries have been exponentially increasing during the last three decades. To reduce 

the operating requirements associated with these rising demands, plant designers and 

engineers are increasingly relying upon automatic control systems. It is well known that 

model based control systems are relatively effective for making local process changes 

within the specific range of operation. However, the existence of highly nonlinear 

relationships between the process variables (inputs) and product stream properties 

(outputs) have bogged down all efforts to come up with reliable mathematical models 

for large scale crude fractionation sections of an oil refinery. The implementation of 

intelligent control technology based on soft computing methodologies such as neural 

network (NN) can remarkably enhance the regulatory and advance control capabilities 

of various industrial processes such as oil refineries. 

Presently, in the majority of oil refineries (such as Tupras Refinery, in izmit, Turkey), 

product samples are collected once or twice a day according to the type of analysis to be 

performed and supplied to the laboratory for analysis. If the laboratory results do not 

satisfy the specification within the acceptable tolerance, the product has to be 

reprocessed to meet the required specification. This process is costly in terms of time 

and money. In order to solve this problem in a timely fashion, a continuous on-line 

method for predicting product stream properties and consistency with and pertinence to 

column operation of the oil refinery are needed. 

In general, on-line analyzers can be strategically placed along the process vessels to 

supply the required product quality information to multivariable controllers for fine 

tuning of the process. However, on-line analyzers are very costly and maintenance 

intensive, To minimize the cost and free maintenance resources, alternative methods ~. 
should be considered. 
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In this thesis, the utilization of artificial neural network (ANN) technology for the 

inferential analysis of crude fractionation section of Tupras Refinery, in izmit , Turkey 

is presented. The implementation of several neural network models using back 

propagation algorithm based on collection of real-time data for a four months operation 

of a plant is presented. The proposed neural network architecture can accurately predict 

various properties associated with crude oil production. The result of the proposed 

work can ultimately enhance the on-line prediction of crude oil product quality 

parameters for the crude distillation ( fractionation) processes of various oil refineries. 

The thesis consists of four chapters and a conclusion. First two chapters give an 

introduction about the background of this work; technological process described 

focusing on Crude Distillation Unit and Neural Networks learning and the last two 

chapters explain the work done. 

In Chapter 1, description of the refinery process including basics of crude oil as raw 

material of refinery process and major refinery products are presented. Since this thesis 

will be focused on the process of the Crude Distillation Unit, which is the starting point 

for all refinery operations, complete process description of the Crude Distillation Unit 

will be given. 

In Chapter 2, an introduction about the neural networks, development of neural 

networks, structure of neural networks that is included biological neural networks, 

artificial models and components of artificial neuron are presented. Also classification 

of neural network learning as supervised and unsupervised will be described. Finally, 

back propagation and its algorithm will be explained in details. 

In Chapter 3, development of neural network system of product quality prediction is 

described. A structure of neural network system to predict product quality will be 

presented. Selection of process variables that have influence to product quality is 

determined. The main steps for development of neural network system to predict ..•.. 
naphtha cJi point will be explained in details. 
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In Chapter 4, the neural network learning structure and the training procedures as well 

as the results of the modelling for naphtha 95 % cut point will be analyzed. 

In the Conclusion, the results of this work will be explained. 
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1. TECHNOLOGICAL PROCESS DESCRIPTION 

1.1 Overview 

This chapter gives description of the refinery process including basics of crude oil as 

raw material of refinery process and major refinery products. Since this thesis will be 

focused on process of the Crude Distillation Unit that is the starting point for all refinery 

operations, complete process description of the Crude Distillation Unit will be given. 

1.2 Description of the Refinery Process 

The petroleum industry began with the successful drilling of the first commercial oil 

well in 1859, and the opening of the first refinery two years later to process the crude 

into kerosene. The evolution of petroleum refining from simple distillation to today's 

sophisticated processes has created a need for technological improvement. To those 

unfamiliar with the industry, petroleum refineries may appear to be complex and 

confusing places. Refining is the processing of one complex mixture of hydrocarbons 

into a number of other complex mixtures of hydrocarbons. Petroleum refining has 

evolved continuously in response to changing consumer demand for better and different 

products. The original requirement was to produce kerosene as a cheaper and better 

source of light than whale oil. The development of the internal combustion engine led to 

the production of gasoline and diesel fuels. The evolution of the airplane created a need 

first for high-octane aviation gasoline and then for jet fuel, a sophistic~ted form of the 

original product, kerosene. Present-day refineries produce a variety of products 

including many required as feedstock for the petrochemical industry [ 1]. Although here 

description of refinery process is given, attention will be focused on Crude Distillation 
Unit operation. 
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1.3 Crude Oil 

1.3.1 Basics of Crude Oil 

Crude oils are complex mixtures containing many different hydrocarbon compounds 

that vary in appearance and composition from one oil field to another. Crude oils range 

in consistency from water to tar-like solids, and in color from clear to black. An 

"average" crude oil contains about 84% carbon, 14% hydrogen, 1 %-3% sulfur, and less 

than 1 % each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified 

as paraffinic, naphthenic, or aromatic, based on the predominant proportion of similar 

hydrocarbon molecules. Mixed-base crude has varying amounts of each type of 

hydrocarbon. Refinery crude base stocks usually consist of mixtures of two or more 

different crude oils. 

Crude oils are defined in terms of API (American Petroleum Institute) gravity. The 

higher the API gravity, the lighter the crude. For example, light crude oils have high 

API gravities and low specific gravities. Crude oils with low carbon, high hydrogen, 

and high API gravity are usually rich in paraffins and tend to yield greater proportions 

of gasoline and light petroleum products; those with high carbon, low hydrogen, and 

low API gravities are usually rich in aromatics. 

Crude oils that contain appreciable quantities of hydrogen sulfide or other reactive 

sulfur compounds are called "sour." Those with less sulfur are called "sweet." Some 

exceptions to this rule are West Texas crude, which are always considered "sour" 

regardless of their H2S content, and Arabian high-sulfur crude, which are not considered 

"sour" because their sulfur compounds are not highly reactive [l]. 

1.3.2 Major Refinery Products 

• Gasoline: The most important refinery product is motor gasoline, a blend of 

hydrocarbons with boiling ranges from ambient temperatures to about 400 °F. The 

important qualities for gasoline are octane number (antiknock), volatility (starting 

and vapor loe~), and vapor pressure (environmental control). Additives are often 

2 
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used to enhance performance and provide protection against oxidation and rust 

formation. 

• Kerosene: Kerosene is a refined middle-distillate petroleum product that finds 

considerable use as a jet fuel and around the world in cooking and space heating. 

When used as a jet fuel, some of the critical qualities are freeze point, flash point, 

and smoke point. Commercial jet fuel has a boiling range of about 375°-525 °F, and 

military jet fuel 130°-550 °F. Kerosene, with less-critical specifications, is used for 

lighting, heating, solvents, and blending into diesel fuel. 

• Liquified Petroleum Gas (LPG): LPG, which consists principally of propane 

and butane, is produced for use as fuel and is an intermediate material in the 

manufacture of petrochemicals. The important specifications for proper performance 

include vapor pressure and control of contaminants. 

• Distillate Fuels: Diesel fuels and domestic heating oils have boiling ranges of 

about 400°-700 °F. The desirable qualities required for distillate fuels include 

controlled flash and pour points, clean burning, no deposit formation in storage 

tanks, and a proper diesel fuel cetane rating for good starting and combustion. 

• Residual Fuels: Many marine vessels, power plants, commercial buildings and 

industrial facilities use residual fuels or combinations of residual and distillate fuels 

for heating and processing. The two most critical specifications of residual fuels are 

viscosity and low sulfur content for environmental control. 

• Coke and Asphalt: Coke is almost pure carbon with a variety. of uses from 

electrodes to charcoal briquettes. Asphalt, used for roads and roofing materials, must 

be inert to most chemicals and weather conditions. 

• Solvents: A variety of products, whose boiling points and hydrocarbon 

composition are closely controlled, are produced for use as solvents. These include 

benzene, toluene, and xylene. 
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• Petrochemicals: Many products derived from crude oil refining, such as 

ethylene, propylene, butylenes, and isobutylene, are primarily intended for use as 

petrochemical feedstock in the production of plastics, synthetic fibers, synthetic 

rubbers, and other products. 

• Lubricants: Special refining processes produce lubricating oil base stocks. 

Additives such as demulsifiers, antioxidants, and viscosity improvers are blended 

into the base stocks to provide the characteristics required for motor oils, industrial 

greases, lubricants, and cutting oils. The most critical quality for lubricating-oil base 

stock is a high viscosity index, which provides for greater consistency under varying 

temperatures [ 1]. 

1.4 Petroleum Refining Process 

Petroleum refining begins with the distillation, or fractionation, of crude oils into 

separate hydrocarbon groups. The resultant products are directly related to the 

characteristics of the crude processed. Most distillation products are further converted 

into more usable products by changing the size and structure of the hydrocarbon 

molecules through cracking, reforming, and other conversion processes as discussed in 

this chapter. These converted products are then subjected to various treatment and 

separation processes such as extraction, hydro treating, and sweetening to remove 

undesirable constituents and improve product quality. Integrated refineries incorporate 

fractionation, conversion, treatment, and blending operations and may also include 

petrochemical processing. 

1.4.1 Refining Operations 

Petroleum refining processes and operations can be separated into five basic areas: 

• Fractionation ( distillation) is the separation of crude oil in atmospheric and 

vacuum distillation towers into groups of hydrocarbon compounds of differing 

boiling-point i'!nges called "fractions" or "cuts." 
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• Conversion processes change the size and/or structure of hydrocarbon 

molecules. These processes include: 

Decomposition ( dividing) by thermal and catalytic cracking; 

Unification ( combining) through alkylation and polymerization; and 

Alteration (rearranging) with isomerization and catalytic reforming. 

• Treatment processes are intended to prepare hydrocarbon streams for additional 

processing and to prepare finished products. Treatment may include the removal or 

separation of aromatics and naphthenes as well as impurities and undesirable 

contaminants. Treatment may involve chemical or physical separation such as 

dissolving, absorption, or precipitation using a variety and combination of processes 

including desalting, drying, hydrodesulfurizing, solvent refining, sweetening, 

solvent extraction, and solvent dewaxing. 

• Formulating and Blending is the process of mixing and combining hydrocarbon 

fractions, additives, and other components to produce finished products with specific 

performance properties. 

• Other Refining Operations include: light-ends recovery; sour-water stripping; 

solid waste and wastewater treatment; process-water treatment and cooling; storage 

and handling; product movement; hydrogen production; acid and tail-gas treatment; 

and sulfur recovery. 

Auxiliary operations and facilities include: steam and power generation; process and 

fire water systems; flares and relief systems; furnaces and heaters; pumps and valves; 
' 

supply of steam, air, nitrogen, and other plant gases; alarms and sensors; noise and 

pollution controls; sampling, testing, and inspecting; and laboratory, control room, 

maintenance, and administrative facilities [ 1]. 

5 
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Figure 1.1 Refinery process chart 

1.5 Crude Oil Distillation Process 

1.5.1 Description 

The crude distillation unit (CDU) is the starting point for all refinery operations. The 

first step in the refining process is the separation of crude oil into various fractions or 

straight-run cuts by distillation in atmospheric and vacuum towers. The .separation of 

crude oil into raw products is accomplished in the crude unit by fractional distillation in 

fractionating columns, based on their distillation range. The process does not involve 

any chemical changes. The main fractions or "cuts" obtained have specific boiling-point 

ranges a~. can be classified in order of decreasing volatility into gases, light distillates, 

middle distillates, gas oils, and residuum. 
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1.5.2 Atmospheric Distillation Tower 

A schematic representation of the crude oil and product flow is presented in Fig 1.2. 

Gas Gas 
+ 
Gasoline(light naphtha) 

Heavy Naphtha 
GAS 

SEPARATOR 

Light gas oil 

Gasoline Kerosene 

Heavy gas oil 

DESALTER 

Crude oil Residium Furnace 

Pump 

Figure 1.2 Atmospheric Distillation Unit 

The crude feed pump, located near the crude storage tanks, supplies the feed to the unit. 

The feed to the unit is passed through a desalter where the chlorides of calcium, 

magnesium and sodium are removed. These salts form corrosive acids during process­ 

ing and therefore are detrimental to process equipments. By injecting water to the crude 

oil stream these salts are dissolved in the water and the solution is separated from the 

rude by means of an electrostatic separator in a large vessel. The electrically charged 

grids coalesces the water and aids separation from the crude. After desalting the crude 

is heated through a series of heat exchangers and then by a furnace to a temperature of 

00°F anlradmitted to the flash zone of the atmospheric distillation tower [2]. 
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The desalted crude feedstock is preheated using recovered process heat. The feedstock 

then flows to a direct-fired crude charge heater where it is fed into the vertical 

distillation column just above the bottom, at pressures slightly above atmospheric and at 

temperatures ranging from 650° to 700° F (heating crude oil above these temperatures 

may cause undesirable thermal cracking). All but the heaviest fractions flash into 

vapour. As the hot vapour rises in the tower, its temperature is reduced. Heavy fuel oil 

or asphalt residue is taken from the bottom. At successively higher points on the tower, 

the various major products including lubricating oil, heating oil, kerosene, gasoline, and 

uncondensed gases (which condense at lower temperatures) are drawn off. 

The fractionating tower, a steel cylinder about 35 m high, contains horizontal steel trays 

for separating and collecting the liquids. At each tray, vapours from below enter 

perforations and bubble caps. They permit the vapours to bubble through the liquid on 

the tray, causing some condensation at the temperature of that tray. An overflow pipe 

drains the condensed liquids from each tray back to the tray below, where the higher 

temperature causes re-evaporation. The evaporation, condensing, and scrubbing 

operation is repeated many times until the desired degree of product purity is reached. 

Then side streams from certain trays are taken off to obtain the desired fractions. 

Products ranging from uncondensed fixed gases at the top to heavy fuel oils at the 

bottom can be taken continuously from a fractionating tower. Steam is often used in 

towers to lower the vapour pressure and create a partial vacuum. The distillation process 

separates the major constituents of crude oil into so-called straight-run products. 

Sometimes crude oil is "topped" by distilling off only the lighter fractions, leaving a 

heavy residue that is often distilled further under high vacuum [ 1]. 

Four fractions are separated in the atmospheric tower. The overhead vapours are . 
condensed in a two stage system. The condensed liquid from the first stage is used as 

reflux to the tower. The second stage liquid together with the compressed and 

condensed vapours from the second stage is collected in the stabilizer feed accumulator. 

The liquid in the stabilizer feed accumulator is the feed to the Vapour Recovery unit. 
'J, 

The uncondensed vapours from the stabilizer feed accumulator is routed to fuel gas 

system after removal of H2S in the sulphur plant. The other three products separated are 

heavy naphtha, ~rosene and diesel. The heavy naphtha is drawn from the next tray and 
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is steam stripped to improve flash. The majority of this product is line blended with 

diesel from HSD (High Speed Diesel oil) desulphurisation unit and raw diesel to make 

finished high speed diesel oil. A small amount of the heavy naphtha is sent to Merox 

treater. This treater oxidises mercaptans to disulphides thereby eliminating the 

unpleasant odour. Kerosene drawn from the lower tray is steam stripped and is charged 

hot to kerosene hydro-desulphuriser plant. When this unit is shut down, kerosene is 

cooled and sent to intermediate storage tank through the kerosene product cooler. 

Diesel oil is drawn from the next plate. Approximately 50% of the diesel oil is routed to 

HSD desulphurisation unit after heat exchange with crude and the balance is cooled and 

blended with the desulphurised diesel oil to produce HSD product. The stripped 

overhead liquid streams from kerosene hydrode-sulphuriser, HSD desulphuriser and 

lube oil hydrofinisher are sent to the atmospheric distillation tower after separating the 

water in a dewatering drum. 

The hot reduced crude from the bottom of atmospheric distillation tower is further 

fractionated in the two stage vacuum distillation section. The vacuum maintained in 

these fractionators makes it possible to fractionate the reduced crude at much lower 

temperatures. But for this vacuum, the higher temperatures required to fractionate 

reduced crude will result in cracking of the products. 

The reduced crude from atmospheric tower bottoms is further heated in presence of 

steam in the first stage vacuum heater and introduced into the first stage vacuum tower. 

Three side-stream products spindle oil, light neutral and intermediate neutral and an 

overhead product-gas oil are separated in the first stage vacuum tower. Spindle oil, 

light neutral and intermediate neutral are sent to the Lube Oil Extractioi: .plants as feed 

stock or to storage. The bottoms product from first stage vacuum tower is reheated 

along with steam and fractionated to yield heavy neutral stream. Flash zone vapours of 

the second stage vacuum tower pass through a demister pad to prevent entrainment of 

asphaltenes into the heavy neutral stream [2]. ,, 

9 



1.6 Summary 
Since in this thesis neural network system is applied to predict product quality on 

process of the Crude Distillation Unit that is the starting point for all refinery 

operations, complete process description of the Crude Distillation Unit was given in this 

chapter. 
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2. NEURAL NETWORKS 

2.1 Overview 

This chapter presents an introduction about the neural networks, structure of neural 

networks including artificial models and components of artificial neuron. Also 

classification of neural network learning as supervised and unsupervised will be 

described. Finally, back propagation learning and its algorithm will be explained in 

details. 

2.2 Introduction to Neural Networks 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition 

or data classification, through a learning process. Leaming in biological systems 

involves adjustments to the synaptic connections that exist between the neurons. This is 

true of ANNs as well. Neural networks, with their remarkable ability to derive meaning 

from complicated or imprecise data, can be used to extract patterns and detect trends 

that are too complex to be noticed by either humans or other computer techniques. A 

trained neural network can be thought of as an "expert" in the category of information it 

has been given to analyze. This expert can then be used to provide projections 

given new situations of interest and answer "what if' questions. 

Other advantages include: 
~- 

• Adaptive learning: An ability to learn how to do tasks based on the data given 

for training or initial experience. 
~" 
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• Self-Organization: An ANN can create its own organization or representation of 

the information it receives during learning time. 

• Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 

advantage of this capability. 

• Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, some 

network capabilities may be retained even with major network damage. 

2.3 An Artificial Neuron 

The fundamental processing element of a neural network is a neuron. This building 

block of human awareness encompasses a few general capabilities. Basically, a 

biological neuron receives inputs from other sources, combines them in some way, 

performs a generally nonlinear operation on the result, and then outputs the final result. 

Biological neurons are structurally more complex than the existing artificial neurons 

that are built into today's artificial neural networks. As biology provides a better 

understanding of neurons, and as technology advances, network designers can continue 

to improve their systems by building upon man's understanding of the biological brain. 

But currently, the goal of artificial neural networks is not the grandiose recreation of the 

brain. On the contrary, neural network researchers are seeking an understanding of 

nature's capabilities for which people can engineer solutions to problems-that have not 

been solved by traditional computing. To do this, the basic unit of neural networks, the 

artificial neurons, simulates the four basic functions of natural neurons. 

In Figur~ 2.1, various inputs to the network are represented by the mathematical ~ 
symbol, x.; Each of these inputs are multiplied by a connection weight. These weights 

are represented by Win· In the simplest case, these products are simply summed, fed 

through a transfesfunction to generate a result, and then output. This process lends itself 
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to physical implementation on a large scale in a small package. This electronic 

implementation is still possible with other network structures which utilize different 

summing functions as well as different transfer functions. 

W;1 

x, 

L I t 
x, --vx~ 

Processing 
Element /'-../ 

Xn 

Inputs X,1 Weights W;11 

Output 
Path 

Figure 2.1 A Basic Artificial Neuron. 

2.3.1 Major Components of an Artificial Neuron 

This section describes the seven major components which make up an artificial neuron 

[ 4]. These components are valid whether the neuron is used for input, output, or is in 
one of the hidden layers. 

2.3.1.1. Weighting Factors 

A neuron usually receives many simultaneous inputs. Each input has its own relative 

weight which gives the input the impact that it needs on the processing element's 

summation function. These weights perform the same type of function as do the varying 

synaptic strengths of biological neurons. In both cases, some inputs are made more 

important than others so that they have a greater effect on the processing element as 

they combtne to produce a neural response. Weights are adaptive coefficients within the 

network that determine the intensity of the input signal as registered by the artificial 

neuron. They are a .measure of an input's connection strength. These strengths can be .. w,; 
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modified in response to various training sets and according to a network's specific 

topology or through its learning rules. 

2.3.1.2. Summation Function 

The first step in a processing element's operation is to compute the weighted sum of all 

of the inputs. Mathematically, the inputs and the corresponding weights are vectors 

which can be represented as (x1, x2, ... Xn) and (w., w2 ... wn). The total input signal is 

the dot, or inner, product of these two vectors. This simplistic summation function is 

found by multiplying each component of the x vector by the corresponding component 

of thew vector and then adding up all the products. Input, = x1 * w1, input, = x2 * w2, 
etc., are added as input. + input- + ... + input; The result is a single number, not a 

multi-element vector. 

The summation function can be more complex than just the simple input and weight 

sum of products. The input and weighting coefficients can be combined in many 

different ways before passing on to the transfer function. In addition to a simple product 

summing, the summation function can select the minimum, maximum, majority, 

product, or several normalizing algorithms. The specific algorithm for combining neural 

inputs is determined by the chosen network architecture and paradigm. 

Some summation functions have an additional process applied to the result before it is 

passed on to the transfer function. This process is sometimes called the activation 

function. The purpose of utilizing an activation function is to allow the summation 

output to vary with respect to time. Activation functions currently are pretty much 

confined to research. Most of the current network implementations use an "identity" 

activation function, which is equivalent to not having one. Additionally, such a function 
-: 

is likely to be a component of the network as a whole rather than of each individual 

processing element component. 

2.3.1.3. Transfer Function 

The res1~'"t of the summation function, almost always the weighted sum, is transformed 

to a working output through an algorithmic process known as the transfer function. In 

the transfer funq~on the summation total can be compared with some threshold to 
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determine the neural output. If the sum is greater than the threshold value, the 

processing element generates a signal. If the sum of the input and weight products is 

less than the threshold, no signal ( or some inhibitory signal) is generated. Both types of 

response are significant. The threshold, or transfer function, is generally non-linear. 

Linear (straight-line) functions are limited because the output is simply proportional to 

the input. Linear functions are not very useful. 

Output value 

Transfer function= 
1/(l+Exp[-sum]) 

-1 -0. 5 0.5 

Figure 2.2 Sigmoid Transfer Function. 

Figure 2.2 represents sigmoid curve. That curve approaches a minimum and maximum 

value at the asymptotes. It is common for this curve to be called a sigmoid when it 

ranges between O and 1, and a hyperbolic tangent when it ranges between -1 and 1. 

Mathematically, the exciting feature of these curves is that both the function and its 

derivatives are continuous. This option works fairly well and is often the transfer 

function of choice. 

Prior to applying the transfer function, uniformly distributed random noise may be 

added. The source and amount of this noise is determined by the learning mode of a 

given network paradigm. 

2.3.1.4. Scaling and Limiting 
After th6i,processing element's transfer function, the result can pass through additional 

processes which scale and limit. This scaling simply multiplies a scale factor times the 

transfer value, and then adds an offset. Limiting is the mechanism which insures that the 

scaled result doefhot exceed an upper or lower bound. This limiting is in addition to the 
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hard limits that the original transfer function may have performed. This type of scaling 

and limiting is mainly used in topologies to test biological neuron models. 

2.3.1.5. Output Function (Competition) 

Each processing element is allowed one output signal which it may output to hundreds 

of other neurons. This is just like the biological neuron, where there are many inputs 

and only one output action. Normally, the output is directly equivalent to the transfer 

function's result. Some network topologies, however, modify the transfer result to 

incorporate competition among neighbouring processing elements. Neurons are allowed 

to compete with each other, inhibiting processing elements unless they have great 

strength. Competition can occur at one or both of two levels. First, competition 

determines which artificial neuron will be active, or provides an output. Second, 

competitive inputs help determine which processing element will participate in the 

learning or adaptation process. 

2.3.1.6. Error Function and Back-Propagated Value 

In most learning networks the difference between the current output and the desired 

output is calculated. This raw error is then transformed by the error function to match 

particular network architecture. The most basic architectures use this error directly, but 

some square the error while retaining its sign, some cube the error, and other paradigms 

modify the raw error to fit their specific purposes. The artificial neuron's error is then 

typically propagated into the learning function of another processing element. This error 

term is sometimes called the current error. The current error is typically propagated 

backwards to a previous layer. Yet, this back-propagated value can be either the current 

error, the current error scaled in some manner ( often by the derivative of the transfer 

function), or some other desired output depending on the network type. Normally, this 

back-propagated value, after being scaled by the learning function, is multiplied against 

each of the incoming connection weights to modify them before the next learning cycle. 

2.3.1. 7. Learning Function 

The pur'tose of the learning function is to modify the variable connection weights on the 

inputs of each processing element according to some neural based algorithm. This 

process of chang~g the weights of the input connections to achieve some desired result 
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can also be called the adoption function, as well as the learning mode. There are two 

types of learning: supervised and unsupervised. Supervised learning requires a teacher. 

The teacher may be a training set of data or an observer who grades the performance of 

the network results. Either way, having a teacher is learning by reinforcement. When 

there is no external teacher, the system must organize itself by some internal criteria 

designed into the network. This is learning by doing. 

2.3.2 Electronic Implementation of Artificial Neurons 

In currently available software packages these artificial neurons are called "processing 

elements" and have many more capabilities than the simple artificial neuron described 

above .. Figure 2.3 is a more detailed schematic of this still simplistic artificial neuron. 

Summation 
Function 

Transfer 
Function 

Innuts 

Sum 

Max 

Min 
Hyperbolic 
Tangent 

Sigmoid Average Outputs 

Or Sine 

And etc. 

etc. 

Learning and 
Recall Schedula 

.__ Learning Cycle 

Figure 2.3 A Model of a "Processing Element" 
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Inputs enter into the processing element from the upper left. The first step is for each of 

these inputs to be multiplied by their respective weighting factor (wn), Then these 

modified inputs are fed into the summing function, which usually just sums these 

products. Yet, many different types of operations can be selected. These operations 

could produce a number of different values which are then propagated forward; values 

such as the average, the largest, the smallest, the ORed values, the ANDed values, etc. 

Furthermore, most commercial development products allow software engineers to 

create their own summing functions via routines coded in a higher level language (C is 

commonly supported). Sometimes the summing function is further complicated by the 

addition of an activation function which enables the summing function to operate in a 

time sensitive way. 

Either way, the output of the summing function is then sent into a transfer function. This 

function then turns this number into a real output via some algorithm. It is this 

algorithm that takes the input and turns it into a zero or a one, a minus one or a one, or 

some other number. 

The transfer functions that are commonly supported are sigmoid, sine, hyperbolic 

tangent, etc. This transfer function also can scale the output or control its value via 

thresholds. The result of the transfer function is usually the direct output of the 

processing element. Sigmoid transfer function takes the value from the summation 

function and turns it into a value between zero and one. 

Finally, the processing element is ready to output the result of its transfer function. This 

output is then input into other processing elements, or to an outside connection, as 

dictated by the structure of the network. 

All artificial neural networks are constructed from this basic building block - the 

processing element or the artificial neuron. It is variety and the fundamental differences 

in these building blocks which partially cause the implementing of neural networks to 
~ 

be an "art." 
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2.4 Neural Network Learning 

The brain basically learns from experience. Neural networks are sometimes called 

machine-learning algorithms, because changing of its connection weights (training) 

causes the network to learn the solution to a problem [ 4]. The strength of connection 

between the neurons is stored as a weight-value for the specific connection. The system 

learns new knowledge by adjusting these connection weights. The learning ability of a 

neural network is determined by its architecture and by the algorithmic method chosen 
for training. 

2.4.1 Definition of Learning 

In as much as a great variety of human experience can be described as learning, the term 

machine learning is sometimes obscure. A somewhat more focused definition suggested 

by Herbert Simon (1983) is based on the notion of change: 

Learning denotes changes in the system that are adaptive in the sense 

that they enable the system to do the same task or tasks drawn from 

the same population more efficiently and more effectively the next 
time [5]. 

Learning can refer to either acquiring new knowledge or enhancing or fining skills. 

Learning new knowledge includes acquisition of significant concepts, understanding of 

their meanings and relationships to each other and the domain concerned. The new 

knowledge should be assimilated and put a mentally usable form before it can be called 

"learned." Thus, knowledge acquisition is defined as learning new symbolic information 

combined with the ability to use that information effectively. 

2.4.2 Classifications of Neural Network Learning 

~ 
Once a network has been structured for a particular application, that network is ready to 

be trained. To start this process the initial weights are chosen randomly. Then, the 
training, or learningebegins. 
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There are two approaches to learning - supervised and unsupervised. Supervised 

learning involves a mechanism of providing the network with the desired output either 

by manually "grading" the network's performance or by providing the desired outputs 

with the inputs. Unsupervised learning is where the network has to make sense of the 

inputs without outside help. 

2.4.2.1 Supervised Learning 

Supervised learning algorithms utilize the information on the class membership of each 

training instance. This information allows supervised learning algorithms to detect 

pattern misclassifications as a feedback to themselves. Error information contributes to 

the learning process by rewarding accurate classifications and/or punishing 

misclassifications-a process known as credit and blame assignment. It also helps 

eliminate implausible hypothesis [3]. In supervised learning, the network updates itself 

by repeatedly comparing a given correct input until it gets the feature of that input. 

Like: Perception, Back propagation, Hopfield, etc. 

The vast majority of artificial neural network solutions have been trained with 

supervision. In this mode, the actual output of a neural network is compared to the 

desired output. Weights, which are usually randomly set to begin with, are then adjusted 

by the network so that the next iteration, or cycle, will produce a closer match between 

the desired and the actual output. The learning method tries to minimize the current 

errors of all processing elements. This global error reduction is created over time by 

continuously modifying the input weights until acceptable network accuracy is reached. 

With supervised learning, the artificial neural network must be trained before it 

becomes useful. Training consists of presenting input and output data to the network. 

This data is often referred to as the training set. That is, for each input set provided to 

the system, the corresponding desired output set is provided as well. In most 

applications, actual data must be used. This training phase can consume a lot of time. In 

prototype systems, with inadequate processing power, learning can take weeks. This 

training "fs considered complete when the neural network reaches an user defined 

performance level. This level signifies that the network has achieved the desired 

statistical accura~ as it produces the required outputs for a given sequence of inputs. 
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When no further learning is necessary, the weights are typically frozen for the 

application. Some network types allow continual training, at a much slower rate, while 

in operation. This helps a network to adapt to gradually changing conditions [ 4]. 

After a supervised network performs well on the training data, then it is important to see 

what it can do with data it has not seen before. If a system does not give reasonable 

outputs for this test set, the training period is not over. Indeed, this testing is critical to 

insure that the network has not simply memorized a given set of data but has learned the 

general patterns involved within an application. 

2.4.2.2 Unsupervised Learning 

Unsupervised learning algorithms use unlabeled instances. They blindly or heuristically 

process them. Unsupervised learning algorithms often have less computational 

complexity and less accuracy than supervised learning algorithms. Unsupervised 

learning algorithms can be designed to learn rapidly. This makes unsupervised learning 

practical in many high-speed, real-time environments, where we may not have enough 

time and information to apply supervised techniques. Unsupervised learning has also 

been used for scientific discovery. In this application, the learner should focus its 

attention on interesting concepts, and the value of interestingness is determined in a 

heuristic manner [3]. In unsupervised learning, the network learns by "rules" rather than 

by inputs. Like: Kohenen's, Competitive learning, ART, etc. 

Unsupervised learning is the great promise of the future. It shouts that computers could 

someday learn on their own in a true robotic sense [ 4]. This promising field of 

unsupervised learning is sometimes called self-supervised learning. These networks use 

no external influences to adjust their weights. Instead, they internally monitor their 

performance. These networks look for regularities or trends in the input signals, and 

makes adaptations according to the function of the network. Even without being told 

whether it's right or wrong, the network still must have some information about how to 

organize itself. This information is built into the network topology and learning rules. 
·~ 

An unsupervised learning algorithm might emphasize cooperation among clusters of 

processing elements. In such a scheme, the clusters would work together. If some 

external input activ%ied any node in the cluster, the cluster's activity as a whole could be 
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increased. Competition between processing elements could also form a basis for 

learning. Training of competitive clusters could amplify the responses of specific 

groups to specific stimuli. As such, it would associate those groups with each other and 

with a specific appropriate response. Normally, when competition for learning is in 

effect, only the weights belonging to the winning processing element will be updated. 

At the present state of the art, unsupervised learning is not well understood and is still 

the subject of research. This research is currently of interest to the government because 

military situations often do not have a data set available to train a network until a 

conflict arises. 

2.4.3 Learning Rates 

The rate at which ANNs learn depends upon several controllable factors. In selecting 

the approach there are many trade-offs to consider. Obviously, a slower rate means a lot 

more time is spent in accomplishing the off-line learning to produce an adequately 

trained system. With the faster learning rates, however, the network may not be able to 

make the fine discriminations possible with a system that learns more slowly. 

Researchers are working on producing the best of both worlds. 

Generally, several factors besides time have to be considered when discussing the off­ 

line training task, which is often described as "tiresome." Network complexity, size, 

paradigm selection, architecture, type of learning rule or rules employed, and desired 

accuracy must all be considered. These factors play a significant role in determining 

how long it will take to train a network. Changing any one of these factors may either 

extend the training time to an unreasonable length or even result in an unacceptable 

accuracy. 

Most learning functions have some provision for a learning rate, or learning constant. 

Usually this term is positive and between zero and one. If the learning rate is greater 

than one, it is easy for the learning algorithm to overshoot in correcting the weights, and 
~ 

the network will oscillate. Small values of the learning rate will not correct the current 

error as quickly, but if small steps are taken in correcting errors, there is a good chance 

of arriving at the q~st minimum convergence [ 4]. 
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2.4.4 Learning Laws 

Many learning laws are in common use. Most of these laws are some sort of variation of 

the best known and oldest learning law, Hebb's Rule [ 4]. Research into different 

learning functions continues as new ideas routinely show up in trade publications. Some 

researchers have the modeling of biological learning as their main objective. Others are 

experimenting with adaptations of their perceptions of how nature handles learning. 

Either way, man's understanding of how neural processing actually works is very 

limited. Leaming is certainly more complex than the simplifications represented by the 

learning laws currently developed. A few of the major laws are presented as examples. 

• Hebb's Rule: The first, and undoubtedly the best known, learning rule was 

introduced by Donald Hebb. The description appeared in his book The Organization 

of Behavior in 1949. His basic rule is: If a neuron receives an input from another 

neuron and if both are highly active (mathematically have the same sign), the weight 

between the neurons should be strengthened. 

• Hopfield Law: It is similar to Hebb's rule with the exception that it specifies the 

magnitude of the strengthening or weakening. It states, "if the desired output and the 

input are both active or both inactive, increment the connection weight by the 

learning rate, otherwise decrement the weight by the learning rate." 

• The Delta Rule: This rule is a further variation of Hebb's Rule. It is one of the 

most commonly used. This rule is based on the simple idea of continuously 

modifying the strengths of the input connections to reduce the difference (the delta) 

between the desired output value and the actual output of a processing element. This 

rule changes the synaptic weights in the way that minimizes the mean squared error 

of the network. This rule is also referred to as the Widrow-Hoff Leaming Rule and 

the Least Mean Square (LMS) Leaming Rule. 

The way that the Delta Rule works is that the delta error in the output layer is 
=t;, 

transformed by the derivative of the transfer function and is then used in the 

previous neural layer to adjust input connection weights. In other words, this error is 

back-propagat~ into previous layers one layer at a time. The process of back- 
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propagating the network errors continues until the first layer is reached. The network 

type called Feedforward, Back-propagation derives its name from this method of 

computing the error term. 

When using the delta rule, it is important to ensure that the input data set is well 

randomized. Well ordered or structured presentation of the training set can lead to a 

network which can not converge to the desired accuracy. If that happens, then the 

network is incapable of learning the problem. 

• The Gradient Descent Rule: This rule is similar to the Delta Rule in that the 

derivative of the transfer function is still used to modify the delta error before it is 

applied to the connection weights. Here, however, an additional proportional 

constant tied to the learning rate is appended to the final modifying factor acting 

upon the weight. This rule is commonly used, even though it converges to a point of 

stability very slowly. It has been shown that different learning rates for different 

layers of a network help the learning process converge faster. In these tests, the 

learning rates for those layers close to the output were set lower than those layers 
I 

near the input. This is especially important for applications where the input data is 

not derived from a strong underlying model. 

• Kohonen's Learning Law: This procedure, developed by Teuvo Kohonen, was 

inspired by learning in biological systems. In this procedure, the processing 

elements compete for the opportunity to learn, or update their weights. The 

processing element with the largest output is declared the winner and has the 

capability of inhibiting its competitors as well as exciting its neighbours. Only the 

winner is permitted an output, and only the winner plus its neighbours are allowed to 

adjust their connection weights. 

Further, the size of the neighbourhoods can vary during the training period. The 

usual paradigm is to start with a larger definition of the neighbourhoods, and narrow 

in as the training process proceeds. Because the winning element is defined as the 

one that has the closest match to the input pattern, Kohonen networks model the 
;~ 

distribution of the inputs. This is good for statistical or topological modelling of the 

data and is sometimes referred to as self-organizing maps or self-organizing 

topologies. ·~ 
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2.5 Back Propagation 

The feed forward, back-propagation architecture was developed in the early 1970s by 

several independent sources (Werbor; Parker; Rumelhart, Hinton and Williams). This 

independent co-development was the result of a proliferation of articles and talks at 

various conferences that stimulated the entire industry. Currently, this synergistically 

developed back-propagation architecture is the most popular, effective, and easy to 

learn model for complex, multi-layered networks. This network is used more than all 

other combined. It is used in many different types of applications. This architecture has 

spawned a large class of network types with many different topologies and training 

methods. Its greatest strength is in non-linear solutions to ill-defined problems [3]. 

The back propagation network is probably the most well known and widely used among 

the current types of neural network systems available. In contrast to earlier work on 

perceptron, the back propagation network is a multilayer feed forward network with a 

different transfer function in the artificial neuron and a more powerful learning rule. 

The learning rule is known as back propagation, which is a kind of gradient descent 

technique with backward error (gradient) propagation, as depicted in Figure 2.4. The 

training instance set for the network must be presented many times in order for the 

interconnection weights between the neurons to settle into a state for correct 

classification of input patterns. While the network can recognize patterns similar to 

those they have learned, they do not have the ability to recognize new patterns. This is 

true for all supervised learning networks. In order to recognize new patterns, the 

network needs to be retrained with these patterns along with previously known patterns. 

If only new patterns are provided for retraining, then old patterns may be forgotten. In 

this way, learning is not incremental over time. This is a major limitation for supervised 

learning networks. Another limitation is that the back propagation network is prone to 

local minima, i.e., the error becomes smaller then larger then smaller and so forth, at 

one locton, just like any other gradient descent algorithm, also the training time is 

long [3]. 
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Figure 2.4 The backpropagation network 

The typical back propagation network has an input layer, an output layer, and at least 

one hidden layer. There is no theoretical limit on the number of hidden layers but 

typically there is just one or two. The in and out layers indicate the flow of information 

during recall. Recall is the process of putting input data into a trained network and 

receiving the answer. Back propagation is not used during recall, but only when the 

network is learning a training set [ 4]. The number of layers and the number of 

processing element per layer are important decisions. These parameters to a feed 

forward, back propagation topology are also the most ethereal. They are the art of the 

network designer. There is no quantifiable, best answer to the layout of the network for 

any particular application. There are only general rules picked up over time and 

followed by most researchers and engineers applying this architecture of their problems. 
t •• 
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• Rule One: As the complexity in the relationship between the input data and the 

desired output increases, then the number of the processing elements in the 

hidden layer should also increase. 

• Rule Two: If the process being modeled is separable into multiple stages, then 

additional hidden layer(s) may be required. If the process is not separable into 

stages, then additional layers may simply enable memorization and not a true 

general solution. 

• Rule Three: The amount of training data available sets an upper bound for the 

number of processing elements in the hidden layers. To calculate this upper 

bound, use the number of input output pair examples in the training set and 

divide that number by the total number of input and output processing elements 

in the network. Then divide that result again by a scaling factor between five and 

ten. Larger scaling factors are used for relatively noisy data. Extremely noisy 

data may require a factor of twenty or even fifty, while very clean input data 

with an exact relationship to the output might drop the factor to around two. It is 

important that the hidden layers have few processing elements. Too many 

artificial neurons and the training set will be memorized. If that happens then no 

generalization of the data trends will occur, making the network useless on new 

data sets. 

It 

Once the above rules have been used to create a network, the process of teaching 

begins. This teaching process for a feed forward network normally uses some variant of 

the Delta Rule, which starts with the calculated difference between the actual outputs 

and the desired outputs. Using this error, connection weights are increased in proportion 

to the error times a scaling factor for global accuracy. Doing this for an individual node 

means that the inputs, the output, and the desired output all have to be present at the 

same processing element. The complex part of this learning mechanism is for the 

system to determine which input contributed the most to an incorrect output and how 
~ does that element get changed to correct the error. An inactive node would not 

contribute to the error and would have no need to change its weights. To solve this 

problem, training inputs are applied to the input layer of the network, and desired 
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outputs are compared at the output layer. During the learning process, a forward sweep 

is made through the network, and the output of each element is computed layer by layer. 

The difference between the output of the final layer and the desired output is back­ 

propagated to the previous layer(s), usually modified by the derivative of the transfer 

function, and the connection weights are normally adjusted using the Delta Rule. This 

process proceeds for the previous layer(s) until the input layer is reached. 

There are many variations to the learning rules for back-propagation network. Different 

error functions, transfer functions, and even the modifying method of the derivative of 

the transfer function can be used. The concept of momentum error was introduced to 

allow for more prompt learning while minimizing unstable behavior. Here, the error 

function, or delta weight equation, is modified so that a portion of the previous delta 

weight is fed through to the current delta weight. This acts, in engineering terms, as a 

low-pass filter on the delta weight terms since general trends are reinforced whereas 

oscillatory behaviour is cancelled out. This allows a low, normally slower, learning 

coefficient to be used, but creates faster learning. 

Another technique that has an effect on convergence speed is to only update the weights 

after many pairs of inputs and their desired outputs are presented to the network, rather 

than after every presentation. This is referred to as cumulative back-propagation 

I 

because the delta weights are not accumulated until the complete set of pairs is 

presented. The number of input-output pairs that are presented during the accumulation 

is referred to as an epoch. This epoch may correspond either to the complete set of 

training pairs or to a subset [ 4]. 

2.5.1 The Back Propagation Algorithm 

The back propagation network consists of one input layer, one output layer, and one or 

more hidden layers. If n bits or n values describe the input pattern, then there should be 

n input units to accommodate it. The number of output units, is likewise determined by 
·~ 

how many bits or values are involved in the output pattern. Theoretical guidance 

exists (31 for determining the numbers of hidden layers and hidden units. They can be 

recruited or pruned .as indicated by the network performance. Typically, the network is 
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fully connected between and only between adjacent layers as shown Figure 2.5. The 

back propagation algorithm (Rumelhart, Hinton, and Williams 1986) is formulated 

below. 

This is the simple three layer back propagation model. Each neuron is represented by a 

circle and each interconnection, with its associated weight, by arrow. The neurons 

labelled b are biased neurons. Normalization of the input data prior to training is 

necessary. The values of the input data into the input layer must be in the range (0-1). 

The stages of the feed forward calculations can be described according to the layers. 

The suffixes i, h, j are used for input, hidden and output respectively. 

Input I 

Input 2 

Input 3 

Input n, 

Bias Weights 

Output 2 

Output ni 

INPUT 
LAYER 

HIDDEN 
LAYER 

OUTPUT 
LAYER 

Figure 2.5 Back Propagation Network Structure 

n, ---+ !umber of input layer nodes 

nh---+ number of hidden layer nodes 

nj ---+ number ~~ output layer nodes 
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• Weight Initialization 

Set all weights and node thresholds to small random numbers. Note that the node 

threshold is the negative of the weight from the bias unit (whose activation level is fixed 

at 1). 

• Calculation of Activation 

1. The activation level of an input unit is determined by the instance presented to the 

network. 

2. The activation level OJ of a hidden and Ok of an output unit can be determined by 

O·=Ft'°'w .. o.-e.) c22) } \Li jl l } . 

o, = F(IwkJoJ -ed (2.2a) 

where Wji is the weight from an input Oi, BJ is the node threshold, and F is a sigmoid 

function: 

• Weight Training 

1. Start at the output units and work backward to the hidden layers recursively. Adjust 

weights by 

w . (t + 1) = w .. (t) + ~w .. jl jl jl 
(2.3) 

where Wji(t) is the weight from unit i to unit j at time t ( or the iteration) and ~ Wji. is the 

weight adjustment. 

2. The weight change is computed by 

~w .. = 778 .O, jl } l 
(2.4) 

where 17 is a trial-independent learning rate (0 < 17 < 1, e.g., 0.3) and 6J is the error 

gradient at unit j. Convergence is sometimes faster by adding a momentµm term (a), 

also to avoid local minima: 
(2.5) 

where O < a < 1. 
3. The errbr gradient is given by: 

For the output units: 

8 · = 0 · (1- 0 · )(T · - 0 ·) } } } } } 
(2.6) 
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3. PREDICTION OF PRODUCT QUALITY 

USING NEURAL NETWORKS 

3.1 Overview 

In this chapter, development of neural network system of product quality prediction is 

described. A structure of neural network system to predict product quality will be 

presented. Selection of process variables that have influence to product quality is 

determined. The main steps for development of neural network system to predict 

naphtha cut point will be explained in details. 

3.2 Analysis of Technological Process 

Petroleum industry is one of the most prolific and dynamic industries of the modem 

civilization. Because of a highly competitive market and stringent environmental laws, 

strict quality control of refinery products is a must. Crude distillation unit (CDU) is one 

through which entire crude entering a refinery must be processed. So a close monitoring 

and control of CDU product properties will help us in controlling the properties of final 

refinery products. 

I: 

A typical distillation column processes about hundred tons of materials per hour, 

complying with severe specifications on the purity of the distillate, irrespective of the 

quality of the raw product. Because of the very long time constants involved in the 

operation of such processes, the early fault detection is an important problem: a 

malfunction which is not detected very shortly after its inception may result in wasting 

tens of hours of operation. Fault detection means prediction of product quality. The 

difficulty of prediction of product quality arises from the fact that the number of 

measured v:r.iables is usually small as compared to the number of state variables, that 

they are noisy, and that trends observed in the measurements are often ambiguous. 
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The yield and properties or qualities of the fractions are determined by the Final Boiling 

Point or Cut Point settings used to operate the crude distillation unit (CDU). The 

relationships between the set of Cut Points and properties of the resulting fractions are 

extremely non-linear [6]. The existence of highly nonlinear relationships between the 

process variables (inputs) and the product stream properties (outputs) have been stuck 

all efforts to come up with reliable mathematical models for large scale CDU of an oil 

refinery. In order to solve this problem in a timely fashion, a continuous on-line method 

for predicting product stream properties and pertinence to column operation of the oil 

refinery are needed. The proposed neural network architectures using back propagation 

algorithm can accurately predict various properties associated with crude oil production. 

3.3 Structure of Neural Networks System for the Prediction of 

Naphtha Cut Points 

The mathematical algorithms developed to model neurons can be adapted for many 

useful predictions in processing plants. The complexity of the pattern to be recognized 

dictates the complexity of the required algorithm [6]. Some very useful predictions can 

be constructed in processing plants using algorithms whose coefficients are discovered 

through training. Figure 3 .1 is a graphical representation of the artificial neural network 

structure. A neural network predictor is built by discovering the weights. W1K1 through 

W1Kn are the corresponding weights of the first neuron. The output Qp is the predicted 

inferred process stream property (95%, 90% cut-point, etc.). 

The coefficients of the model are discovered by training a neural network program 

using back propagation algorithms. The input of the neural network consist 'of plant data 

such as density (API), temperature and flow rate where, the respective product quality is 

considered as desired output of the program model. The neural network program will be 

trained by adjusting the weight coefficients until the difference between the predicted 

product qYlality and the measured product quality is within acceptable limits. When the 

coefficients· have been determined, they should be tested by comparing the predicted 

quality to the measured quality for data sets which were not used in finding the 
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coefficients. The process of finding the artificial neural network coefficients is training 

the network [8]. 

INPUT LAYER 

SCALE 
(0 to 1.0) 

SCALE 
(0 to 1.0) 

SCALE 
(0 to 1.0) 

SCALE 
(0 to 1.0) 

HIDDEN LAYER OUTPUT LA YER 

Predicted 
Quality 

Figure 3.1 Graphical representation of ANN structure 

3.3.1 Defining Training Data Set 

Neural networks will not be an accurate predictor if the operating input/output data are 

outside of their training data range. Therefore, the training data set should possess 

sufficient operational range including the maximum and minimum values for both 

input/output variables. 

A mimmum of two valid data sets is required for each coefficient in the training 

algorithm:;sA large number of valid data sets provide much better accuracy in the 

prediction phase. However, some training data sets are not valid either due to the 
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dynamic nature of the process or as the result of inaccuracies in data acquisition 

techniques. A large data set will average out various inaccuracies within a system. 

The least intrusive technique for obtaining the training data set is to take data during the 

course of normal operations. This procedure probably will not satisfy the required 

variations in some process variables. However, plant tests can be accomplished by 

varying the process variables within the region of the interest to complete the gaps 

within the required data. 

3.3.2 Selecting Process Variables 

Initial process variable selection is not critical; almost anything upstream of the 

measurement point could be useful. As many process variables should be included as 

can be handled. The training process will automatically determine which are important 

and which can be deleted from the calculation. 

INPUT LA YER I HIDDEN LA YER I OUTPUT LA YER 

C: I CRUDE DENSITY ! I CRUDE TEMPERATURE 
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:'.J J GAS FLOW RA TE 
~ >--< 
f-< / TOP TEMPERATURE 
[/] 
>-< 
Cl KEROSENE DENSITY 1 
~ I 5 KER. PUMP AROUND F. i 
~ I 
U I 

I 

Figure 3.2 Process Variable Selection in Crude Distillation Unit 

Figure 3.2 shows the selected process variables to predict 95% Naphtha Cut-point in 

crude distillation unit. Density of crude oil and kerosene, flow rates of crude oil, gas 
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and kerosene pump around, top temperature and temperature of crude oil are chosen as 

process variables. If those process variables chosen initially do not give the required 

accuracy of prediction, less important variables should be dropped and other parameters 

added. 

All identified process parameters do not necessarily have an effect on each of the 

product quality. The important point in selecting process variables is to identify the 

most important process parameters that have a significant effect on the inferred analysis 

and eliminate those parameters which have little or no effect. Two methods can be used 

to perform the elimination process. The first is using engineering judgment to realize 

which process parameters can have little or no effect on the model. 

The second method is to utilize the neural network model itself. The neural network 

program can generate an analysis of the final weights given to each of the process 

parameters to fit the data. This method of elimination, however, is not as 

straightforward as one might expect. The neural network model relies more on process 

parameters with large degree of variance. It is possible that the most important 

parameter that affects a particular product quality keeps the same value in all generated 

data sets. The neural network program will ignore such a parameter. Thus elimination 

should not include variables which, from engineering point of view, should have a 

contribution on the inferred analysis. 

3.4 Development of Neural Networks System for the Prediction of 

Naphtha Cut Points 

The major steps that are involved in implementing the ANN predictor are shown in 

Figure 3.3. 

3.4.1 Identifying Application 

The first step for construction of a neural network system is the appropriate 

identification of a potential application. Crude oil as well as all the CDU products is 
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complex mixtures of hydrocarbons, so it is not convenient to characterize them in terms 

of individual components. Moreover, it is often sufficient to characterize refinery 

products in terms of certain gross properties such as Cut Point for fractionation of all 

products, Reid Vapor Pressure for volatile products, Flash Point for light distillate, Pour 

Point for heavy distillate, etc [9]. 

Start 

Identify the Application 

Identify Inputs to Model 

Define Range of Variables 

Collect Plant Data 

Run Training Program 

Display Training Results 

Model Results 

Not Enough Data 

l Model OK 

Yes 
No Online 

Application 
? 

Excel 
Spreadsheet 

On-Line CS 
Program 

Figure 3.3 Major Steps for Implementing of ANN in the CDU Process 
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So a close monitoring and control of CDU product properties will help in controlling 

the properties of final refinery products. The qualities and properties of the fractions are 

determined by Cut Point settings used to operate CDU. The relationships between the 

set of Cut Points and properties of the resulting fractions are extremely non-linear. The 

existence of highly nonlinear relationships between the process variables (inputs) and 

the product stream properties (outputs) have been stuck all efforts to come up with 

reliable mathematical models for large scale CDU of an oil refinery. In order to solve 

this problem in a timely fashion, a continuous on-line method for predicting product 

stream properties of the CDU is needed. The proposed neural network architectures 

using back propagation algorithm can accurately predict various properties associated 

with crude oil production. 

In this thesis crude distillation unit of Tupras Refinery, in Izmit, Turkey is chosen as 

target to predict Naphtha 95% Cut-point. Once Naphtha Cut-point is predicted 

successfully, model could be applied prediction of other product stream properties. 

3.4.2 Model Inputs Identification 

The neural network will not match a random number set. For prediction model to work 

there must be some relationships between input/output variables [ 1 OJ. Training will 
quantify such a relationship. If a neural network will not train with a good data set, a 

significant variable may not have been included in the data set. If a ngorous 

mathematical equation can be written between the inputs and the output, a neural 

network is unnecessary [ 11]. 

Density of crude oil and kerosene, flow rates of crude oil, gas and kerosene pump 

around, top temperature and temperature of crude oil are chosen as input variables to 

predict 95% Naphtha Cut-point in CDU of Tupras Refinery, in izmit, Turkey. If the 

plant data include significant variation in each of these process variables and the neural 

network coefficients for a process variable are very small, that process variable can be 
~:, 

dropped from the model. If the network will not train, and other conditions are met, 

other process variables based on engineering experience should be included in the 

model. 
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3.4.3 Range of Process Variables 

The range of the process variables in the training data set should include the entire 

operating range. The data set should include data for each process variable, evenly 

distributed throughout the range for which prediction is desired. 

3.4.4 Predictor Model Training 

For the naphtha 95 % cut point stream properties in CDU of Tupras Refinery [12], in 

izmit, Turkey, the plant data, including the stream quality desired to predict, are 

collected in a Microsoft Excel™ spreadsheet for four month period to facilitate data 

manipulation (Appendix I). 

The spreadsheet file is loaded into the Neuroshell™ neural network package and NN­ 

pred in Microsoft Excel™ software package. Both software programs use a back 

propagation training algorithm to adjust the weights of the network in order to minimize 

the sum-squared error of the network. This is done by continually changing the values 

of the network weights in the direction of steepest descent with respect to the error. The 

change in weight is proportional to that element's effect on the sum-squared error of the 

network. 

Initially, one hidden layer with eight neurons is built (additional neurons and/or layers 

can be added if necessary) and all weights are randomly initialized to small numbers. 

Next, training parameters are defined. These parameters include the following; 

maximum number of training iterations and acceptable error between desired and 

predicted values. 

The neural network program using backpropagation training algorithm starts training 

and through this process it will look for the specified error on multidimensional surface 

[14]. By selecting the minimum error to be a very small number (like 10-3) the program 

will end up in one of the following states: 
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• Minimum error goal is matched before exceeding the limit on maximum allowed 

iterations. In this case, the objective of the training is successfully met. 

• Program cannot achieve this minimum error but, in the process, it locates the 

global minimum ( optimum solution). In this case, the number of hidden neurons 

and/or the number of hidden layers can be increased to achieve the desired 

mmimum error. 

• Training diverges. The error increases as the training process continues 

(Training data sets are not valid). In this case it is necessary to construct valid 

data sets. 

After training, the test of developed system is carried out. For this reason the statistical 

data taken from the process is used. The result of training and test are monitoring on­ 

line. In case of satisfactory in obtained test results, the results of modeling of prediction 

system could be used in on-line application in oil refinery process for predicting 

naphtha cut points and other product properties 

3.5 Summary 

The purpose of this chapter was to develop a neural network system for predicting 

product quality of crude distillation unit, namely naphtha 95 % cut point. To do this, a 

systematic procedure to construct a neural network model is presented. Selection of 

appropriate data sets as well as data analysis procedure was discussed. Various steps in 

the implementation phase of neural network model in the crude oil fractionation process 

were devoted. 
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4. MODELLING OF NEURAL NETWORK FOR PREDICTING 

QUALITY OF NAPHTHA CUT-POINTS 

4.1 Overview 

In this chapter, the neural network learning structure and the training procedures as well 

as the results of the modelling for naphtha 95 % cut point will be analyzed. 

4.2 Algorithmic Description of Neural Network System for Predicting 

Naphtha 95 °/o Cut Point 

The increasing quality of technological processes needs the development of efficient 

control system. The development of such control systems has great importance in the 

production where great volume of information describing the state of processes to be 

processed on the finite time interval. This requires developing the system that would 

process the coming information in parallel and with high level of reliability. The 

research work shows the systems based on neural networks meet the above 

requirements. 

The objective of the proposed work is to eliminate the dependency on laboratory and/or 

on-line sample analyzers for sampling of product qualities. The goal can be achieved by 

the construction of neural networks to predict those particular product qualities to meet 

the more stringent market specifications. In doing so, the neural network model, from a 

practical viewpoint, should adhere to two constraints: The optimization of process 

control and the reduction on the cost of maintenance and operations, which would 

ultimately results in an increase in profit. 

First, the neural network model accuracy of prediction should be consistent and within 

the defined acceptable tolerance of the desired product quality it is set to predict. It is 

highly crucial to have a neural network that provides accurate predictions. It is a plant 
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requirement to have the neural network predicted output fed as one of the inputs to a 

multi variable controller. This will provide the controller with the knowledge of the final 

product quality, and how close to or far from the desired set point it is. With the aid of 

this knowledge, the controller will act promptly to keep the process in its target path, 

thus eliminating any off-specs product from taking place. 

Secondly, it is a requirement to have the neural network running on-line with fast 

execution time during both training and prediction phases. The multivariable controller 

is gathering information about the process and at the same time it is looking at the 

neural network to provide its prediction. The controller will perform its tight control 

actions as long as the neural network prediction is made available to the controller at the 

right moment, not a couple of minutes late. Also, operational objectives often change to 

meet market needs and in doing so the desired process set points have to change as well 

to provide the desired product specifications. Retraining the neural network on the new 

sets of process variables and desired product properties is inevitable. The faster the 

neural network program predicts after retraining, the faster it provides its output to the 

controller. 

In the work, back propagation neural network algorithm is used to predict the product 

quality of crude distillation unit. The naphtha 95 % cut point property is chosen to 

predict. The main parameters which have considerable influence to the naphtha cut 

points are selected as inputs for neural prediction system and tabulated in Table 4.1. 

Table 4.1 Selected Process Variables for Predicting Naphtha 95 % Cut Point 

Selected Inputs Tae Ranee 

Crude Densitv (API) DC 30.5-37.0 

Crude Flow Rate (m3/day) Fe 11500-13100 

Crude Temperature ( °C) Tc 320-330 

Gas Flow Rate (m3/day) Fe 7500-10500 

Too Temperature ( 0C) Tr 135-165 

Kerosene Density (API) DK 43.5-46.5 

Kerosene Pumparound F. (mvday) FK 1100-1800 
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Table 4.2 shows the fragment of statistical data taken from CDU of Tupras Refinery and 

characterising relation between selected inputs and naphtha 95% cut point. 

(:::]I INPUTS 11 OUTPUT I 

I Tc II De II Fe II FG II TT II DK II FK II TK (95%) I 

01.04.2002 321 35,6 11600 9141 145 45,4 1450 195 

02.04.2002 323 35,4 11700 8998 155 45,5 1250 197 

03.04.2002 324 35,3 11700 8500 145 45,6 1100 198 

04.04.2002 322 35,2 12100 9391 147 45,8 1100 196 

05.04.2002 323 35,2 12200 9450 153 45,6 1400 195 

06.04.2002 324 34,9 12400 9560 159 44,6 1350 205 

07.04.2002 323 34,8 12500 8890 152 44,6 1400 205 

08.04.2002 326 34,8 12500 9133 159 44,5 1450 205 

09.04.2002 325 36,2 12100 9513 163 44,5 1750 205 

10.04.2002 324 36,6 12000 10359 157 44,9 1700 204 

11.04.2002 323 36,6 12100 10271 149 45, 1 1500 203 

12.04.2002 325 35,4 12200 9661 148 44,9 1400 208 

13.04.2002 324 36,4 11900 9670 144 45,1 1500 205 

14.04.2002 325 36,2 11900 9800 157 44,5 1500 205 

15.04.2002 326 36,2 11900 9850 152 44,6 1600 204 

16.04.2002 322 32,1 12400 8873 143 44 1400 202 

17.04.2002 326 32,1 12500 8923 152 44,3 1400 205 

18.04.2002 325 32,1 12500 9190 153 44 1350 207 

19.04.2002 329 31,3 12500 9181 153 43,9 1350 207 

20.04.2002 326 31, 1 12400 8876 154 44,4 1500 206 

Table 4.2 Fragment of Statistical Data of Crude Distillation Unit 

This set in statistical data is the knowledge base for the neural system. Using these 

input-output data sets (Appendix 1), the learning of neural system is carried out. In 

Figure 4.1 the neural network learning structure is shown. 

Initial values of synaptic weight values in model are generated by random generator 

with uniform distribution within the interval from O to 1. These weights are used to 

generate three layer neural networks. The values of selected input parameters of the 

technological process are entered to the neural network input. These signals are 

processed by the network and its output compared with the target signals describing 

naphtha cut points and deviation is calculated. The value of deviation is used by 

learning algorithm for correction weight parameters of neural networks. 
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Figure 4.1 The Neural Network Leaming Structure 

In the model the back propagation algorithm is used for learning parameters of neural 

system. This process is repeated for all input data. The learning is continued until the 

value of deviation will be acceptable small for all input-output training pairs. 

The trained parameter values are used in controller for predicting naphtha cut point 

quality. 

4.3 Analysis of Obtained Results 

Modelling of the Naphtha 95% cut point property was carried out using a back 

propagation neural network algorithm. Various configurations, in terms of the number 

of hidden layers and the number of hidden neurons, have been tested. For the 

application presented here, three-layer networks consisting of a input layer, a single 

hidden layer and an output layer have proved to be adequate. 

To demonstrate the modelling capability of a back propagation network, 120 data sets 

were analyzed. Each data set consisted of seven process variables as inputs to the model 

and one product quality (Naphtha 95% cut point) as an output. A total of 90 data sets 

were used in training phase and 30 data sets were used in verification phase. 
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While developing neural prediction system, two different software package were used; 

the Neuroshell software package and the NN-pred, a Microsoft Excel™ software 

package. Modelling by these two packages will be presented below. 

4.3.1 Prediction of Naphtha 95 % Cut Point Property Using Neuroshell 

Figure 4.2 illustrates the menu of neuroshell system. First, characteristics of the system 

defined as seven process variables as input to model and one product quality as an 

output. Then each characteristic is loaded to package as sample cases. Out of 120 data 

sets, 90 data sets were utilized for training. 

Figure 4.2 The Menu ofNeuroshell Software Package 

Various number of hidden neuron in a single hidden layer has been tested. For each 

different number of hidden neuron, learning option was chosen from main menu and 

was trained. Figure 4.3 illustrates fragment oflearning process in neuroshell package. 

Leaming events completed when system achieved maximum error goal for testing 

phase. If maximum error obtained is not acceptable, learning process will be restarted 

using the random weight of previous mode. 
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Figure 4.3 A Fragment of Leaming Process in Neuroshell Software Package 

The most significant results obtained in training modes with eight, ten, twelve and 

twenty hidden neurons. In all variations, learning rate and momentum values were kept 

constant as 0.6 and 0.9 respectively. Results of verification phase for 30 data sets are 

shown in Table 4.3. 

Starting with a single hidden layer consisting of eight neurons as a first case, number of 

hidden neuron was increased to achieve the desired error goal of 0.01. A typical value 

used for laboratory repeatability for the naphtha 95 % cut point is 1.7 °C. This should be 

the maximum error for good accuracy [12]. Table 4.4 summarizes the simulation 

results. 

Model with eight hidden neuron achieved very good result in terms of duration of the 

learning event that is completed within only 90s, the shortest time. But it could not 

achieve the good result in terms of maximum error value that was 2.52 °C. Although the 

learning event consumed more time by increasing the number of hidden neurons, 

maximum error value of training modes decreased. This does not indicate that 

increasing the number of hidden neurons causes decreasing maximum error value and 

increasing duration of learning process. 
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Table 4.3 Results Obtained in Verification Phase Using Neuroshell 

20 Neuron 12 Neuron 10 Neuron 8 Neuron 

Actual Predicted Value Predicted Value Predicted Value Predicted Value 

Value(0C) (°C) MSE ,·o MSE ,·c) MSE r0c) MSE 

205 204,94 0,06 205,03 0,03 205,27 0,26 204,8 0,20 

205 204,93 0,07 204,98 0,02 205,05 0,05 205,03 0,03 

204 203,73 0,26 203,99 0,01 204,07 0,07 203,95 0,05 

205 204,76 0,23 204,84 0,16 205,08 0,08 204,97 O,Q3 

204 203,89 0,11 204 0,00 204,07 0,07 204,02 0,02 

205 205,03 0,03 204,95 0,05 205,05 0,05 205,17 0,17 

207 206,96 0,04 206,99 0,01 207,07 0,07 207,02 0,02 

206 205,92 0,08 206,06 0,06 206,08 0,08 205,9 0,10 

208 207,97 0,03 208,07 0,07 208,03 0,03 208,1 0,10 

202 201,94 0,06 202,03 0,03 202,06 0,06 202,1 0,10 

205 204,91 0,09 204,85 0,15 205,11 0, 11 205,03 0,03 

200 199,9 0,10 199,95 0,05 200,13 0,13 199,96 0,04 

202 201,91 0,09 201,91 0,09 202,05 0,05 202,02 0,02 

202 201,91 0,09 202,01 0,01 202,06 0,06 201,97 0,03 

203 202,95 0,05 203,02 0,02 203,06 0,06 203,01 0,01 

201 200,88 0,12 201 0,00 201,06 0,06 201,1 0,10 

196 195,84 0,16 195,87 0,13 196,07 0,07 196,07 0,07 

194 193,69 0,32 193,83 0,18 194,07 0,07 194,05 0,05 

196 195,83 0,17 195,82 0,18 196,09 0,09 196,06 0,06 

196 195,83 0,17 195,7 0,31 196,1 0,10 196,05 0,05 

193 193,24 0.24 193,34 0,35 194,24 1,29 195,51 2,62 

202 201,52 0,47 201,15 0,84 199,39 2,57 200,04 1,93 

208 208,6 0,58 206,83 1,12 208,07 0,07 206,15 1,77 

207 206,95 0,05 205,51 1.43 205,39 1,55 204,86 2,06 

205 205,59 0,58 206,15 1,12 206,55 1,51 206,55 1,51 

199 200,12 1.12 201,1 2,11 200,68 1,70 202,13 3,20 

195 194,68 0,33 194,66 0,35 195,07 0,07 194,95 0,05 

198 197,66 0,34 197,5 0,50 198,15 0,15 198 0,00 

196 195,66 0,35 195,53 0,48 196, 15 0,15 195,98 0,02 

205 204,78 0,21 204,72 0,27 205,09 0,09 204,96 0,04 

Table 4.4 Simulation Results for Naphtha 95 % Cut Point Using Neuroshell 

Hidden Training Phase 

Neuron Iteration Duration Final Max. 
( x103) (sec) MSE (%) Error(°C) 

8 505 90 0.62 2.52 

10 2,200 430 0.60 2.61 

12 2,350 510 0.55 2.10 

20 920 360 0.33 1.12 
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The best model architecture (in terms of better prediction in testing mode) consists of 20 

neurons in one hidden layer. When the acceptable error value is 1.7°C for naphtha 95 % 

cut point, the model gave with twenty neurons 1.12°C error value for training sets. In 

this model architecture also consumption time for learning process is decreased, 

compared to the previous architectures. 

4.3.2 Prediction of Naphtha 95 % Cut Point Property Using NNinExcell 

Again characteristics of the system defined as seven process variables as input to model 

and one product quality that is naphtha 95 % cut point as an output. Then data sets were 

loaded in The Data worksheet, 90 data sets were utilized for training and 30 data sets for 

verifying. 

By filling the model parameters in the User Input Page, building model was initialized. 

A neural network model is basically a set of weights between the layers of the net. At 

the end of the each run, the final set of weights was saved in the Cale sheet (see 

Appendix II). The output page of this file showed the values of MSE- Mean Squared 

error and ARE- Absolute Relative error on the training and validation set (Appendix 

III). 
Starting with a single hidden layer consisting of eight neurons as a first case, number of 

hidden neuron was increased to achieve the desired error goal of 0.01. The results of 

modelling were obtained with eight, ten, twelve and twenty hidden neurons in a single 

hidden layer. In all variations learning rate, momentum and initial weights were kept 

constant as 0.1, 0.3 and 0.5 respectively. Results of verification phase for 30 data sets 

are shown in Table 4.5. 

The best model architecture (in terms of better prediction in both training and 

verification modes) consists of ten neurons in one hidden layer. Model results for 

training and verification phase will be given in Appendix IV. All model architectures 

were able to achieve an acceptable error in training phase but failed to achieve 

comparable results in the verification phase except the model that consists of ten 

neurons where the maximum absolute error was 1.56 °C. It can be noticed that in the 

training phase the models performed well, however, in the verification phase all the 

48 



tested models could not predict with enough accuracy, it was suspected that the neural 

network models were memorizing the relationship between the inputs and the output 

since they were trying to adhere to a very small error goal in the training phase. Table 

4.6 summarizes the simulation results. 

Table 4.5 Results Obtained in Verification Phase Using NNinExcell 

8 Neurons 10 Neurons 12 Neurons 20 Neurons 

Actual Predicted Predicted Predicted Predicted 

Naphtha 95 % Naphtha 95 % Naphtha 95 % Naphtha 95 % Naphtha 95 % 

193 195,245 195,254 195,375 195,432 

202 202,381 202,266 202,355 202,332 

208 206,717 206,740 206,866 206,937 

207 206,338 206,391 206,472 206,648 

205 205,586 205,588 205,654 205,834 

199 200,073 200,088 200,128 200,253 

195 196,408 196,387 196,421 196,367 

198 200,812 200,750 200,925 200,882 

196 197,949 197,970 197,954 197,983 

205 204,691 204,689 204,715 204,798 

205 206,075 206,077 206,155 206,297 

205 206,151 206,124 206,259 206,256 

204 204,338 204,296 204,386 204,344 

205 205,066 205,028 205,120 205,120 

204 204,925 204,890 204,996 205,057 

205 205,216 205,214 205,275 205,400 

207 206,565 206,593 206,681 206,819 

206 205,760 205,758 205,843 205,898 

208 205,738 205,741 205,831 205,895 

202 202,645 202,648 202,612 202,637 

205 202,969 203,013 202,946 203,028 

200 202,031 201,993 201,918 201,799 

202 201,894 201,902 201,903 201,952 

202 203,102 203,058 203,134 203,!89 

203 204,071 204,054 204,100 204', 199 

201 199,238 199,225 199,304 199,393 

196 196,833 196,869 196,988 197,222 

194 194,278 194,351 194,334 194,446 

196 195,397 195,464 195,558 195,744 

196 196,450 196,466 196,662 196,726 
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Table 4.6 Simulation Results for Naphtha 95 % Cut Point Using NNinExcel 

Hidden Training Phase Verification Phase 
Neurons Final Max. Final Max. 

Epoch MSE (%) Error(°C) MSE (%) Error(0C) 
100 1.050 1.23 1.5631 2.03 

8 250 0.932 1.21 1.5358 2.13 
100 1.063 1.27 1.5297 1.56 

10 250 0.957 1.18 1.5452 1.61 
100 1.079 1.32 1.5952 1,78 

12 250 0.948 1.26 1.6135 2.01 
100 1.145 1.27 1.6031 2.16 

20 250 0.998 1.24 1.5701 2.34 

It is important to prevent the neural network model from memorizing the input/output 

relationship. A neural network with enough hidden neurons given enough iterations and 

a very small error goal will actually memorize a given relationship between model 

inputs and outputs. In other words, a network memorizes relationship between outputs 

and inputs when the model building points are allowed to conform to a degree much 

less than lab repeatability. It means that an acceptable error goal in the training phase 

should generate a degree of accuracy very close to lab repeatability. A typical value for 

lab repeatability for the naphtha 95 % cut point is 1.7 °C. If one insists on achieving a 

degree of accuracy greater than lab repeatability, the network memorizes the 

relationship during the training process; this is known as overfitting. When overfitting 

occurs, each data point during the training is fit perfectly but the network is not able to 

predict with the same accuracy during the verification phase. 

Table 4.7 shows final results for the best models in both software packages Neuroshell 

and NNinExcel. It is obvious that Neuroshell software package is more improved than 

NNinExcel in terms of its capability. Although there was a limitation in NNinExcel that 

was number of hidden neurons cannot exceed more than twenty, the performance of this 

package was successful. To achieve best model within the short operation time, model 

parameters that are learning rate and momentum was different in both. While the best 

model was achieved in Neuroshell by reaching desired error goal, in NNinExcel that 

was obtained by reaching maximum epoch. 

50 



'" 

Table 4.7 The Best Models in Neuroshell and NNinExcel 

Neuroshell NNinExcel 

No. of Hidden Neurons 20 10 

Learning Rate 0.6 0.1 

Momentum 0.9 0.3 

Iteration 920x103 100 

Max. Error in Testing 
1.12 1.56 

Phase (°C) 

4.4 Summary 

In this chapter, the training procedures as well as the results of the modelling for 

naphtha 95 % cut point was analyzed. It was shown that the proposed neural network 

models predict product quality well within the specified error goals in both training and 

verification phases. 
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5. CONCLUSION 

In the thesis, back propagation neural network algorithm was used to predict the product 

quality of crude distillation unit in oil refinery. The naphtha 95 % cut point property is 

chosen for prediction. 

The objective of the proposed work was to eliminate the dependency on laboratory 

and/or on-line sample analyzers for sampling of product qualities. The goal can be 

achieved by the construction of neural network to predict those particular product 

qualities to meet the more stringent market specifications. The neural network model, 

from a practical viewpoint, should adhere to two constraints: The optimization of 

process control and the reduction on the cost of maintenance and operations, which 

would ultimately results in an increase in profit. 

Various neural network architectures were proposed for the prediction of product 

quality of a crude distillation unit. The important parameters involved in acquiring valid 

data sets were considered. Close attention is paid to the proper selection of the input 

data. Finally, product quality property, namely, naphtha 95 % cut point was successfully 

modelled using neural network. 

After the generation of the neural network models, the central processing computer 

system of an oil refinery may use them on-line. Using the NN model on-line is 

straightforward except for one point of caution. The network was trained within a 

specific range of the different process variables as inputs and product quality as an 

output. It is important to realize that while neural network models are excellent 

interpolators, they can be bad extrapolators due to the non-linearity of the correlation 

generated. It is, therefore, important to check process parameters used in the prediction 

and to make sure that these parameters used fall within the range that was used to create 

the model. If parameters fall out of range, then the product quality value is questionable 

and it can be used to further expand the window of operation of the neural network 

model. As the variability in plant operation increases, and the network window expands, 

the generation models can be more and more reliable. 
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APPENDIX I 

Collected Statistical Data ( Tupras Oil Refinery, in Izmir, Turkey) 

INPUTS OUTPUT 

Tc c:iJ Fe Fa Ct]~ FK TN 
DATE (OC) (m3/day) (m3/day) (API) (m3/day) (°C) ) 

01.01.2002 321 34,1 13000 11493 140 45,9 1400 194 

02.01.2002 321 35,2 12200 9661 145 45,6 1400 196 

03.01.2002 321 35,6 11600 9141 137 45,4 1450 193 

04.01.2002 320 35,2 12200 9450 135 45,6 1400 192 

05.01.2002 323 34,8 12500 8923 151 44,6 1400 201 

06.01.2002 323 31, 1 12800 7940 144 44,4 1200 199 

07.01.2002 322 36,2 11500 10399 143 44,6 1450 195 

08.01.2002 321 35,4 11700 8500 143 44,9 1100 195 

09.01.2002 320 31,3 12500 9190 135 43,9 1350 192 

10.01.2002 320 30,6 12400 8873 136 44,3 1400 193 

11.01.2002 326 34,8 12500 9181 159 44,6 1350 206 

12.01.2002 325 32,1 12500 8590 163 44,3 1600 206 

13.01.2002 324 34,9 12400 8876 159 44,6 1500 205 

14.01.2002 327 30,6 12400 8898 151 44,3 1550 205 

15.01.2002 324 35,4 12200 9450 145 45,5 1400 199 

16.01.2002 320 34,8 12500 8590 137 44,6 1600 193 

17.01.2002 326 36,2 11900 9670 152 46,1 1500 204 

18.01.2002 327 31,7 12350 8736 154 44,4 1500 208 

19.01.2002 321 34,8 12500 9870 143 44,5 1300 195 

20.01.2002 322 31, 1 12300 8876 145 44,2 1350 199 

21.01.2002 321 35,6 11700 8500 139 45,4 1100 194 

22.01.2002 320 33,3 12500 9783 141 44,8 1650 195 

23.01.2002 324 32,5 12400 8898 145 44,2 1550 199 

24.01.2002 326 34,8 12400 9358 157 44,5 1450 206 

25.01.2002 320 35,3 11700 8500 137 45,6 1100 192 

26.01.2002 320 31,6 12400 8876 136 44,7 1500 194 

27.01.2002 325 33,8 12000 9672 146 44,6 1650 202 

28.01.2002 323 34,8 12500 8590 148 44,5 1600 201 

29.01.2002 321 35,6 11600 9141 136 45,4 1450 193 

30.01.2002 328 34,8 12400 8898 155 44,6 1550 206 

31.01.2002 328 34 12500 9783 154 45,7 1650 207 

01.02.2002 321 34,1 12500 9885 140 45,9 1600' 196 

02.02.2002 320 35,2 12200 9450 135 45,6 1400 193 

03.02.2002 320 34,8 12400 8876 136 44,6 1500 193 

04.02.2002 329 33,3 12500 9783 155 44,8 1650 207 

05.02.2002 321 35,3 11700 8500 138 45,6 1100 195 

06.02.2002 325 31,7 12350 8736 157 44,4 1500 204 

07.02.2002 324 36,4 11900 9670 145 45,1 1500 201 

08.02.2002 321 35,6 11600 9141 144 45,4 1400 196 

09.02.2002 323 34,8 12500 9885 153 44,5 1600 202 

10.02.2002 320 31,6 12400 8898 136 44,7 1550 192 

11.02.2002 327 30,6 12400 9358 150 44,3 1450 208 

12.02.2002 326 36,6 _12100 9391 154 45,1 1100 205 
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13.02.2002 323 35,4 11700 8998 151 44,9 1250 
14.02.2002 324 31,6 12400 9560 148 44,7 1350 
15.02.2002 322 35,2 12500 9133 144 45,6 1450 
16.02.2002 321 35,6 11600 9141 141 45,4 1450 
17.02.2002 320 35,7 12500 9133 140 45,4 1450 
18.02.2002 325 36,6 12000 10359 163 44,9 1700 
19.02.2002 326 30,8 12500 9190 157 44,9 1350 
20.02.2002 327 30,8 12600 9808 153 44,9 1400 
21.02.2002 322 36,2 12100 9513 143 46,1 1750 
22.02.2002 326 36,4 11900 9800 152 45,1 1600 
23.02.2002 320 32,1 12400 8898 141 44,3 1550 
24.02.2002 321 36,2 11500 10399 142 44,6 1450 
25.02.2002 320. 34,8 12500 9870 137 44,5 1300 
26.02.2002 323 35,2 12100 9391 146 45,8 1100 

27.02.2002 325 31, 1 12400 9358 158 43,9 1450 

28.02.2002 324 32 12400 9560 154 45,3 1350 
01.03.2002 326 36,2 11900 9850 153 45,5 1600 
02.03.2002 329 32,5 12500 9783 153 44,2 1650 
03.03.2002 322 31, 1 12800 7940 146 44,2 1200 
04.03.2002 321 36,6 12000 9672 143 45,1 1650 

05.03.2002 320 36,6 12000 9672 137 44,9 1650 
06.03.2002 325 33,3 12500 9885 151 44,8 1600 
07.03.2002 326 34 13000 11493 156 45,7 1400 
08.03.2002 328 35,2 12200 9450 153 45,6 1400 
09.03.2002 321 33,8 12500 8890 145 44,7 1400 
10.03.2002 325 33,8 12000 10359 160 44,7 1700 
11.03.2002 326 34,9 12500 8923 158 44,6 1400 
12.03.2002 322 30,8 12600 9808 145 44,9 1400 
13.03.2002 323 35,7 12500 9190 151 45,4 1350 
14.03.2002 323 35,4 12200 9661 154 44,9 1400 
15.03.2002 321 30,8 12400 9358 136 44,9 1450 
16.03.2002 320 31,7 12350 8776 138 44,4 1500 
17.03.2002 324 35,2 12100 9513 144 45,8 1750 

18.03.2002 324 36,4 11500 10400 145 45,1 1450 

19.03.2002 327 30,6 12400 8873 153 44,3 1400 

20.03.2002 325 36,2 12100 10271 149 45,5 1750 

21.03.2002 324 32,5 12500 9870 149 44,2 1300 
22.03.2002 321 30,6 12500 9783 141 44,3 1650 
23.03.2002 322 35,2 12400 8898 147 45,6 1550 
24.03.2002 320 31,3 12500 9885 139 43,9 1600 
25.03.2002 326 34,1 13000 11493 158 45,9 1700 
26.03.2002 323 31, 1 12800 7900 152 44,2 1200, 
27.03.2002 323 35,2 12100 9391 151 45,8 1100 
28.03.2002 325 31,7 12400 9560 147 44,4 1350 
29.03.2002 324 35,6 11600 9141 145 45,4 1450 

30.03.2002 321 33,3 12400 8873 144 44,8 1400 

31.03.2002 325 36,2 11900 9800 154 44,6 1500 

01.04.2002 321 33,8 12400 8876 142 44,7 1500 

02.04.2002 323 36,6 12000 9672 153 45,1 1650 
03.04.2002 329 31,3 12300 9840 156 43,9 1400 
04.04.2002 328 33,3 12500 9133 153 44,8 1450 
05.04.2002 326 34,8 12500 9190 156 44,5 1350 
06.04.2002 324 32,5 12400 9358 144 44,2 1450 

56 

,,.,.·;,-" ,,~'/'! .· .. 
§.' c '\ U I', I. t: <_, ,r, _.;,:i .. ,'.'• ~'Z\ 

·r .•. ,,. t/\ .,.. \ \ 
CJ:. "' ..,t.l 
<( R' 

.\ l.',l \ 1\}\1..~' 
1\ _., -~~ \ ,~ .'if 

· .. /~· ;,,•. I, 
2;0'0:;§ • l~;--:Y 
198 -=;;.,,-y 

196 
194 
195 
205 
206 
207 
199 
205 
194 
194 
192 
199 
207 
204 
205 
207 
199 
196 
193 
205 
203 
205 
195 
205 
205 
198 
201 
203 
193 
192 
201 
200 
208 
202 
202 
195 
199 
193 
205 
201 
202 
204 
202 
195 
204 
193 
202 
208 
207 
205 
199 



07.04.2002 321 35,6 11600 9141 145 45,4 1450 195 
08.04.2002 324 35,3 11700 8500 145 45,6 1100 198 
09.04.2002 322 35,2 12100 9391 147 45,8 1100 196 
10.04.2002 324 34,9 12400 9560 159 44,6 1350 205 
11.04.2002 326 34,8 12500 9133 159 44,5 1450 205 
12.04.2002 325 36,2 12100 9513 163 44,5 1750 205 
13.04.2002 324 36,6 12000 10359 157 44,9 1700 204 
14.04.2002 325 36,2 11900 9800 157 44,5 1500 205 
15.04.2002 326 36,2 11900 9850 152 44,6 1600 204 
16.04.2002 326 32,1 12500 8923 152 44,3 1400 205 
17.04.2002 329 31,3 12500 9181 153 43,9 1350 207 
18.04.2002 326 31, 1 12400 8876 154 44,4 1500 206 
19.04.2002 327 30,6 12400 8998 150 44,3 1550 208 
20.04.2002 324 31,6 12400 9358 149 44,7 1450 202 
21.04.2002 324 32,5 12500 9870 153 44,2 1300 205 
22.04.2002 323 31, 1 12300 9889 153 43,9 1400 200 
23.04.2002 324 32 12300 8876 146 45,3 1350 202 
24.04.2002 325 31,7 12350 8736 146 44,4 1500 202 
25.04.2002 325 33,8 12500 9783 151 44,6 1650 203 
26.04.2002 324 33,8 12000 9672 141 44,7 1650 201 
27.04.2002 323 35,7 12500 9885 140 45,4 1600 196 
28.04.2002 321 34,1 13000 11493 141 45,9 1400 194 
29.04.2002 322 34 13050 9839 140 45,7 1350 196 
30.04.2002 322 31,1 12800 7940 142 44,2 1200 196 
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APPENDIX II 

Model results in NNinExcel for 10 neurons in single hidden layer 

Neural Nerworx Model for Prediction 

Transformed Input 
Hdn1 _bi 
Hdn1_N 
Hdn1_N 
Hdn1_N 
Hdn1_N 
Hdn1_Nr 
Hdn1_Nr 
Hdn1_Nr 
Hdn1 _Nr 
Hdn1_Nr 
Hdn1_Nr 

0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

.o,535g 0,5546 0,2333 -0,4e29 -0,2062 ·0,1225 -0,2810 0,5294 

0,1827 ·1,1270 0,44e5 0,5780 0,4744 -0,9146 0,34e1 ·0,5055 

-0,3331 ·0,61e8 0,0631 ·0,1587 0,5217 ·0,4849 -0,3123 -0,2134 

-0,6024 1,3975 ·0,5890 ·0,3848 -0.3381 1,2977 -0,3777 -0,4471 

0,2580 -0,5661 0,2856 ·0,4606 -0,1310 -0,0363 -0,3138 0,0174 

0,1821 ·1,4602 -0.3215 -0,4739 0,44e3 -0.9447 -0,3884 -0,2217 

0,102B 0,4792 0,0791 0,2475 -0,2329 -0,0359 0,3924 .Q,0343 

0,7012 -1.7219 .Q,1074 -0,1305 -0,2937 -1,9870 .Q,5337 ·0,6667 

-0,0719 -1,0238 ·0,2946 -0,4608 0,3963 -0,8882 -0.5048 0,1365 

·0,2156 1,6436 -0,2615 -0,2978 -0,0926 1,4475 0,4740 -0,0040 

Created On 12-May-05 

1.5462 

Cont Cont Cont Cont 
de FoV1ias Oil Flo1Top Temprosene De,rosene Flow 
0,0006 0,0003 0,0357 0,4646 Q,0015 

Gas Oil Kerosene 
Bias Density Crude Fow 

-5,1000 -7,4194 
Flow Top Temp. Dens. Kerosene Flo 
-2,1987 -4,8214 ·19,Q54e -1,6923 

Temp. 
-35,5556 

1,0000 0,0000 1,0000 1,0000 0.0000 1,0000 1,0000 0,0000 

Op_bJas O,DDDD D,DDDD D,DDDD D,0000 D,0000 0,00£)0 O,f/0.00 0,0000 
Op_Nrn1 0,0010 0,4468 ·1,8721 -0,9107 2,1307 -0,4229 -1,7630 0,2717 

1,0000 0,0001 

Cont 

Enler your Inputs in lhe 
range AG115:AM115 • 
!he cells marked in 
green. 

-41,6521 
28,9646 
68,6003 
-2B,2616 
85,4898 
54,4317 
-71,3400 
1,0000 1,0000 0,0000 

0,0000 O,DODD 0,0000 
-2,7243 -1,2301 2,1551 
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APPENDIX III 

Simulation Results for Neural Network Model in NNinExcel 

with 10 Neurons in one Hidden Layer 

Avg. error per Input (Original 
Scale) 

(Training Set) 

Avg. error per Input (Original 
Scale) 

(Validation Set) 

1 26,982 2,31% 20,593 2,02% 
2 25,531 2,25% 19,615 1,97% 
3 23,815 2,17% 18,398 1,91% 
4 21,645 2,07% 16,815 1,83% 
5 18,988 1,93% 14,848 1,73% 
6 15,997 1,77% 12,605 1,59% 
7 12,968 1,59% 10,301 1,44% 
8 10,225 1,41% 8,193 1,28% 
9 7,973 1,24% 6,460 1,13% 
10 6,252 1,09% 5,150 0,99% 
11 4,988 0,96% 4,210 0,87% 
12 4,076 0,86% 3,552 0,77% 
13 3,419 0,77% 3,095 0,70% 
14 2,941 0,71% 2,776 0,65% 
15 2,590 0,66% 2,551 0,62% 
16 2,328 0,62% 2,388 0,60% 
17 2,130 0,59% 2,270 0,59% 
18 1,977 0,57% 2,181 0,58% 
19 1,857 0,55% 2,113 0,57% 
20 1,762 0,53% 2,060 0,57% 
21 1,685 0,52% 2,017 0,57% 
22 1,622 0,51% 1,983 0,57% 
23 1,571 0,50% 1,954 0,57% 
24 1,527 0,50% 1,929 0,57% 
25 1,490 0,49% 1,908 0,57% 
26 1,458 0,49% 1,889 0,57% 
27 1,430 0,48% 1,872 0,57% 
28 1,406 0,48% 1,857 0,57% 
29 1,384 0,47% 1,843 0,56% 
30 1,365 0,47% 1,829 0,56% 
31 1,347 0,47% 1,817 0,56% 
32 1,331 0,46% 1,805 0,56% 
33 1,317 0,46% 1,795 0,56% 
34 1,303 0,46% 1,784 0,56% 
35 1,291 0,46% 1,774 0,56% 
36 1,280 0,45% 1,765 0,55% 
37 1,269 0,45% 1,756 0,55% 
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38 1,259 0,45% 1,747 0,55% 
39 1,250 0,45% 1,739 0,55% 
40 1,242 0,44% 1,731 0,55% 
41 1,233 0,44% 1,723 0,55% 
42 1,226 0,44% 1,716 0,55% 
43 1,218 0,44% 1,709 0,55% 
44 1,212 0,44% 1,702 0,54% 
45 1,205 0,43% 1,696 0,54% 
46 1,199 0,43% 1,690 0,54% 
47 1,193 0,43% 1,684 0,54% 
48 1,188 0,43% 1,678 0,54% 
49 1,182 0,43% 1,673 0,54% 
50 1,177 0,43% 1,667 0,54% 
51 1,172 0,42% 1,662 0,53% 
52 1,168 0,42% 1,658 0,53% 
53 1,163 0,42% 1,653 0,53% 
54 1,159 0,42% 1,649 0,53% 
55 1,155 0,42% 1,644 0,53% 
56 1,151 0,42% 1,640 0,53% 
57 1,148 0,42% 1,636 0,53% 
58 1,144 0,41% 1,632 0,53% 
59 1,141 0,41% 1,629 0,53% 
60 1,137 0,41% 1,625 0,52% 
61 1,134 0,41% 1,622 0,52% 
62 1,131 0,41% 1,619 0,52% 
63 1,128 0,41% 1,616 0,52% 
64 1,125 0,41% 1,613 0,52% 
65 1,123 0,41% 1,610 0,52% 
66 1,120 0,41% 1,607 0,52% 
67 1,118 0,41% 1,605 0,52% 
68 1,115 0,41% 1,602 0,52% 
69 1,113 0,41% 1,600 0,52% 
70 1,110 0,40% 1,597 0,52% 
71 1,108 0,40% 1,595 0,52% 
72 1,106 0,40% 1,593 0,52% 
73 1,104 0,40% 1,591 0,52% 
74 1,102 0,40% 1,587 0,51% 
75 1,100 0,40% 1,585 0,51% 
76 1,098 0,40% 1,582 0,51% 
77 1,096 0,40% 1,580 0,51% 
78 1,094 0,40% 1,579 0,51% 
79 1,092 0,40% 1,575 0,51% 
80 1,091 0,40% 1,571 0,51% 
81 1,089 0,40% 1,570 0,51% 
82 1,087 0,40% 1,568 0,51% 
83 1,086 0,40% 1,565 0,51% 
84 1,084 0,40% 1,563 0,51% 
85 1,083 0,40% 1,563 0,51% 
86 1,081 0,40% 1,560 0,51% 
87 1,080 0,40% 1,559 0,51% 
88 1,078 0,40% 1,557 0,51% 
89 1,077 0,40% 1,557 0,51% 
90 1,075 0,40% 1,555 0,51% 
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91 1,074 0,40% 1,551 0,51% 
92 1,072 0,40% 1,549 0,51% 
93 1,071 0,40% 1,547 0,51% 
94 1,070 0,40% 1,543 0,51% 
95 1,069 0,40% 1,537 0,50% 
96 1,067 0,40% 1,533 0,50% 
97 1,066 0,39% 1,531 0,50% 
98 1,065 0,39% 1,531 0,50% 
99 1,064 0,39% 1,530 0,49% 
100 1,063 0,39% 1,529 0,49% 

MSE (Training) 

30,000 

5,000 

25,000 

20 ,ODO 

15,000 

10,000 

0,000 
0 20 40 60 

Epoch 

BO 100 120 

rvlSE (Validation) 

25,000 

20,000 

15 ,ODO 

10,000 

5,000 

0,000 
D 20 40 60 

Epoch 

BO 100 120 
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APPENDIX IV 

Training and Verification Results of Neural Network Using NNinExcel 

(The best model architecture with 10 neurons in single hidden layer) 

Cont Cont Cont Cont Cont Cont Cont 

194 321 34,1 13000 11493 140 45,9 1400 194,2736 

2 196 321 35,2 12200 9661 145 45,6 1400 196,2115 

3 193 321 35,6 11600 9141 137 45,4 1450 194,0851 

4 192 320 35,2 12200 9450 135 45,6 1400 193,0749 

5 201 323 34,8 12500 8923 151 44,6 1400 201,3146 

6 199 323 31, 1 12800 7940 144 44,4 1200 198,998 

7 195 322 36,2 11500 10399 143 44,6 1450 195,7518 

8 195 321 35,4 11700 8500 143 44,9 1100 194,9353 

9 192 320 31,3 12500 9190 135 43,9 1350 192,6914 

10 193 320 30,6 12400 8873 136 44,3 1400 193,02 

11 206 326 34,8 12500 9181 159 44,6 1350 206,0169 

12 206 325 32,1 12500 8590 163 44,3 1600 206,5603 

13 205 324 34,9 12400 8876 159 44,6 1500 205,0416 

14 205 327 30,6 12400 8898 151 44,3 1550 206,1703 

15 199 324 35,4 12200 9450 145 45,5 1400 200,5706 

16 193 320 34,8 12500 8590 137 44,6 1600 193,3568 

17 204 326 36,2 11900 9670 152 46, 1 1500 204,9627 

18 208 327 31,7 12350 8736 154 44,4 1500 206,4378 

19 195 321 34,8 12500 9870 143 44,5 1300 194,4635 

20 199 322 31, 1 12300 8876 145 44,2 1350 197,6479 

21 194 321 35,6 11700 8500 139 45,4 1100 194, 1159 

22 195 320 33,3 12500 9783 141 44,8 1650 194,0831 

23 199 324 32,5 12400 8898 145 44,2 1550 201, 1415 

24 206 326 34,8 12400 9358 157 44,5 1450 205,7763 

25 192 320 35,3 11700 8500 137 45,6 1100 193,1841 

26 194 320 31,6 12400 8876 136 44,7 1500 193,2187 

27 202 325 33,8 12000 9672 146 44,6 1650 202,768 

28 201 323 34,8 12500 8590 148 44,5 1600 200,7042 

29 193 321 35,6 11600 9141 136 45,4 1450' 193,8643 

30 206 328 34,8 12400 8898 155 44,6 1550 206,5662 

31 207 328 34 12500 9783 154 45,7 1650 206,3591 

32 196 321 34,1 12500 9885 140 45,9 1600 195,2686 

33 193 320 35,2 12200 9450 135 45,6 1400 193,0749 

34 193 320 34,8 12400 8876 136 44,6 1500 193,0526 

35 207 329 33,3 12500 9783 155 44,8 1650 206,8209 

36 195 321 35,3 11700 8500 138 45,6 1100 194,0199 

37 204 325 31,7 12350 8736 157 44,4 1500 205,8881 

38 201 324 36,4 11900 9670 145 45, 1 1500 200,3221 

39 196 321 35,6 11600 9141 144 45,4 1400 196,0828 

40 202 323 34,8 12500 9885 153 44,5 1600 201,7525 
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41 192 320 31,6 12400 8898 136 44,7 1550 193,2736 
42 208 327 30,6 12400 9358 150 44,3 1450 205,8429 
43 205 326 36,6 12100 9391 154 45, 1 1100 204,856 
44 200 323 35,4 11700 8998 151 44,9 1250 201,4788 
45 198 324 31,6 12400 9560 148 44,7 1350 202,0461 
46 196 322 35,2 12500 9133 144 45,6 1450 197,4933 
47 194 321 35,6 11600 9141 141 45,4 1450 195, 1779 
48 195 320 35,7 12500 9133 140 45,4 1450 193,8885 
49 205 325 36,6 12000 10359 163 44,9 1700 205,7776 
50 206 326 30,8 12500 9190 157 44,9 1350 206,272 
51 207 327 30,8 12600 9808 153 44,9 1400 206,0752 
52 199 322 36,2 12100 9513 143 46, 1 1750 198,0521 
53 205 326 36,4 11900 9800 152 45, 1 1600 204,8549 
54 194 320 32,1 12400 8898 141 44,3 1550 194,014 
55 194 321 36,2 11500 10399 142 44,6 1450 194,356 
56 192 320 34,8 12500 9870 137 44,5 1300 192,8147 
57 199 323 35,2 12100 9391 146 45,8 1100 199,0869 
58 207 325 31, 1 12400 9358 158 43,9 1450 205,7965 
59 204 324 32 12400 9560 154 45,3 1350 204,157 
60 205 326 36,2 11900 9850 153 45,5 1600 205, 1008 
61 207 329 32,5 12500 9783 153 44,2 1650 206,7367 
62 199 322 31, 1 12800 7940 146 44,2 1200 198,0663 
63 196 321 36,6 12000 9672 143 45, 1 1650 195,5921 
64 193 320 36,6 12000 9672 137 44,9 1650 193,2762 
65 205 325 33,3 12500 9885 151 44,8 1600 203,9854 
66 203 326 34 13000 11493 156 45,7 1400 204,6291 
67 205 328 35,2 12200 9450 153 45,6 1400 206,2206 
68 195 321 33,8 12500 8890 145 44,7 1400 196,0433 
69 205 325 33,8 12000 10359 160 44,7 1700 205,7573 
70 205 326 34,9 12500 8923 158 44,6 1400 205,9738 
71 198 322 30,8 12600 9808 145 44,9 1400 197,7053 
72 201 323 35,7 12500 9190 151 45,4 1350 201, 1994 
73 203 323 35,4° 12200 9661 154 44,9 1400 202, 1432 
74 193 321 30,8 12400 9358 136 44,9 1450 193,8136 
75 192 320 31,7 12350 8776 138 44,4 1500 193,4408 
76 201 324 35,2 12100 9513 144 45,8 1750 201,2248 
77 200 324 36,4 11500 10400 145 45, 1 1450 199,9025 
78 208 327 30,6 12400 8873 153 44,3 1400 206,339 
79 202 325 36,2 12100 10271 149 45,5 1750 203, 1449 
80 202 324 32,5 12500 9870 149 44,2 1300 201,5067 
81 195 321 30,6 12500 9783 141 44,3 1650 194,9927 
82 199 322 35,2 12400 8898 147 45,6 1 550. 199, 1691 
83 193 320 31,3 12500 9885 139 43,9 1600 193,2939 
84 205 326 34,1 13000 11493 158 45,9 1700 205, 1467 
85 201 323 31, 1 12800 7900 152 44,2 1200 202,5703 
86 202 323 35,2 12100 9391 151 45,8 1100 201, 1709 
87 204 325 31,7 12400 9560 147 44,4 1350 202,8615 
88 202 324 35,6 11600 9141 145 45,4 1450 201,1877 
89 195 321 33,3 12400 8873 144 44,8 1400 195,881 
90 204 325 36,2 11900 9800 154 44,6 1500 204,3318 
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