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ABSTRACT 

To make accurate decision and improve the efficiency of the complicated system one of the 

effective way is predicting future behavior of these systems and making adequate control 

strategy. It gives us chance to make effective planning and managing of the process. For 

this reason forecasting plays a major role in most of our activities for the future. 

The present work gives consideration of the Forecasting models and Time Series Analysis. 

Analysis of forecasting models and the use of those models in different industrial and non 

industrial areas are considered. As an example of the application of forecasting models to 

World Petroleum Production, Computer Engineering Department students number, and 

Network Traffic is considered. The simulation of these models has been done. Simulation 

results demonstrate that one of effective methodology for forecasting of future is time 

series analysis. The analysis and development of the time series models are considered. 

Using time series analysis the ARIMA models are developed for forecasting world 

petroleum production for year monthly, number of students for 2004-2005 academic year, 

and Network Traffic for a week. The simulations of ARIMA model for these problems 

have been done. By the comparison the results of forecasting by using ARWA model with 

results of other models, demonstrate that first one gives more accurate results. The model 

can make reasonable predictions for one or more years to the future, suggesting that 

ARIMA modeling has great promise as a tool for short or long-range forecasting and 

planning. 
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INTRODUCTION 

Forecasting plays major roles in most of our activities and in all we do concerning the 

future. It is a branch of the anticipatory sciences used for identifying and projecting 

alternative possible futures. It is a conduit leading to plans for the development of "better" 

futures. Forecasted visions of possible futures open our freedom of choice over which 

future to encourage or discourage. In our fast-paced, rapidly changing world, the futures 

that we will experience will tend to be vastly different from our present reality in a growing 

number of ways. Furthermore, because of constant development of new knowledge and 

advances in the scientific (and ensuing technological advances), sociological, political, 

economic, and business areas, our global society has an ever increasing ability to shape (for 

better or worse) the futures we will eventually achieve. 

As a result, society and each institution in it finds that more knowledge about possible 

futures and the consequences of today's decisions and actions is required. Thus, it is 

increasingly imperative that we have better forecasting tools and that we apply them in 

responsible ways. It is more and more important to forecast, ahead of time, with longer lead 

times, the possible futures implied by the changes produced by this new knowledge 

generation. To these ends, forecasting has become an essential tool for all participants in 

society to use in their attempts to decide, plan, design, steer, manage, implement, and 

control change by identifying preferable futures with forecasts. 

In general terms, a forecast is simply a statement, based upon some criteria, concerning the 

future condition of something. A major purpose of forecasting is to give us choice over 

which future, either the trend path we are on, or an alternative, to plan, design, create, and 

to back with our resources. 

Forecasting aids in identifying which futures to bring into fruition (the preferable) and 

which to forestall, or attempt to eliminate (the undesirables). Furthermore, forecasts are 

useful in assisting our intuitions about our plans, outlooks, investments, and so on, 

whenever we would like to have a better idea of the possible or most probable outcome. 
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Information from forecasts relative to: 

• identifying: 

> possible futures 

> probable futures 

> preferable futures 

• providing a basis for understanding the process and dynamics of change; 

• providing notions of where change may take us into the future; 

• providing a systematic methodology, based upon a set of supportive 

assumptions, for the discovery of possible futures. 

Since we know that individuals and society in general have the means and knowledge to 

shape major elements of our future, to grow new opportunities as well to set in motion 

means for avoiding or lessening the impact of negative future threats, forecasting again 

becomes an increasingly important tool for all of us to understand and use. 
jll 

I 
I 
i 

Forecasting has many applications, some of which are to: 

• identify the trend path we are traveling into the future; 

• identify alternative possible futures (alternatives to the trends); 

• provide views of possible futures; 

• raise awareness of possible futures so that we have choice over which future 

we support; 

• generate "future histories" that we can study to determine our role in shaping 

them before they become a reality; 

• provide information about possible futures so that realistic planning can occur; 

• provide information on possible futures to aid decision-making and planning; 

• justify the decisions and plans we make; 

• discover possible breakthroughs; 

• discover possible life, societal, scientific, political, social, technological, and 

institutional future turning points or paradigm shifts; 

• track evolving change and advances; 

, .. 
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• provide managers with information for choosing their organization's vision, mission, 

purpose, goals, objectives, strategies, plans, and tactics; 

• provide information on possible futures for assessment relative to their 

possible future impacts and consequences. 

One of important problem in complex systems such as technical, economical systems is to 

increase the efficiency of used control systems for these systems. Forecasting plays an 

important role in increasing the efficiency of the technological and economical systems. It 

is acquired by the predicting the future conditions of these system and making appropriate 

control decision. 

Forecasting is a highly "noisy" application, because we are typically dealing with systems 

that receive thousands of inputs, which interact in a complex nonlinear fashion. Usually 

with a very small subset of inputs or measurements available from the system, the system 

behavior is to be estimated and extrapolated into the future. 

The aim of this thesis is the analysis of forecasting models and application of time series 

analysis for solving forecasting of economical and technical problems. The use of 

forecasting methods to three different problems is represented. These are forecasting world 

petroleum production, number of registered students in Engineering Department and 

network traffic forecasting. 

Thesis consists of introduction, five chapters, conclusion and appendix. 

Introduction represents the actuality of the problem studied and the brief description of each 

chapter. 

Chapter one gives the review of the usage of forecasting models for different problems. 

Chapter two introduces the description of various forecasting models and calculation of 

forecast accuracy. The fomrnlation and explanation of moving average, regression models, 

exponential smoothing and time series forecasting models are described. 
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In chapter three Box-Jenkins analysis .and forecasting procedure have been represented. 

Auto Regressive Integrated Moving Average model, introduced by Box and Jenkins is 

described. There is explanation of structure and three primer stages in building a Box­ 

Jenkins time series model. The different structure time-series models and their application 

have been analyzed. 

Chapter four is the application of forecasting methods to two problems, world petroleum 

production and number of registered students of Engineering Department in University. 

For this purpose program, which was developed in Delphi has been used. The results and 

comparison of different forecasting methods were given. 

Chapter five is devoted to the development network traffic forecasting by using time series 

analysis. The Autoregressive Integrated Moving Average model is used for forecasting of 

Network traffic. For analysis of the data and modeling of this process S plus package was 

applied. To make forecasting the program written in Delphi programming has been 

developed. The developed program allows to forecast the workload in network traffic and to 

plan capacity requirements of the network. One ARIMA model was chosen, and was used 

for forecasting. 

In conclusion the obtained important results from the thesis are given 

Appendix includes the tables with statistical data, listing of Delphi program and guide to 

program. 
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CHAPTER I 

THE USAGE OF MATHEMATICAL MODELS FOR SOLVING 

INDUSTRIAL PROBLEMS 

1.1. Overview 

Administrators in all organizations make plans to cope with future changes. The planning 

means to make decisions in advance about the future course of action. Obviously, then, 

planning and decision making are based on forecasts or expectations of what the future 

holds. Several applications of forecasting will be considered in this chapter, like a weather 

forecasting and business forecasting. 

1.2. Forecasting Process 

Forecasting process includes the following 

a. Collect appropriate data 

b. Examine data patterns 

c. Choose a forecasting method (model) 

d. Apply the model to past periods (ex post) 

e. Examine the accuracy of model by examining ex post errors 

f. If adequate ( errors random and sufficiently small) use the model to forecast the 

future 

g. Periodically check the accuracy of forecasts with actual experience 

1.3. Forecasting in Engineering 

On the base of statistical data the models for forecasting industrial and non industrial 

process has been created. In the world there a.re many works for solving forecasting 

problems in different fields, like a engineering, industrial, business, management. 
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In [5] there is introduced a methodology to predict when and where link additions/upgrades 

have to take place in an IP backbone network. Using SNMP statistics, collected 

continuously since 1999, aggregate demand is computed between any two adjacent PoPs 

and look at its evolution at time scales larger than one hour. It is shown that IP backbone 

traffic exhibits visible long term trends, strong periodicities, and variability at multiple time 

scales. This methodology relies on the wavelet multiresolution analysis and linear time 

series models. Using wavelet multiresolution analysis, we smooth the collected 

measurements until we identify the overall long-term trend. The fluctuations around the 

obtained trend are further analyzed at multiple time scales. There shown that the largest 

amount of variability in the original signal is due to its fluctuations at the 12 hour time 

scale. We model inter-PoP aggregate demand as a multiple linear regression model, 

consisting of the two identified components. It is shown that this model accounts for 98% 

of the total energy in the original signal, while explaining 90% of its variance. Weekly 

approximations of those components can be accurately modeled with low-order 

AutoRegressive Integrated Moving Average (ARIMA) models. Forecasting the long term 

trend and the fluctuations of the traffic at the 12 hour time scale yields accurate estimates 

for at least six months in the future. 

In [6] non-linear threshold autoregressive models are examined for use in modeling the 

temporal variation in the byte-rate in Ethernet traffic. The model is comprised of a number 

of autoregressive processes each of which is to be used in a specified range of amplitude of 

the byte-rate. The local dynamics within each threshold range are captured by an 

autoregressive process. The switching between each submode} is conditioned on the 

amplitude of a lagged value of the time-series. To develop the model the Bellcore Ethemet 

LAN data is used. It is shown that non-linear threshold autoregressive processes can be 

used to capture the dynamics of Ethernet LAN traffic. This model also provides for both 

short and long term prediction capability and allows us to quantitatively identify the 

sources of long-range-dependence features in the traffic. When the aggregate traffic is 

partitioned into classes based on packet sizes, certain classes of traffic follow deterministic 

cyclical patterns. These periodic components arise from the process switching between 

different amplitude regimes. Superposed on this fundamental period are longer cycles that 
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can be localized either below or above the mean byte-rate. By constructing amplitude 

thresholds associated with a finite set of delay parameters, the dynamics within each 

threshold are captured by locally linear autoregressive processes. The aggregate process is 

globally nonlinear. This model is shown to provide good agreement with the marginal 

distributions and the correlation functions derived from the Ethernet traffic data. In 

addition, simulation experiments demonstrate that the loss statistics observed in finite 

buffer queues agree favorably with those generated by the measurements. 

1.4. Business forecasting 

Business organizations, public organizations, and individuals thus have the common goal of 

allocating available time among competing resources in some optimal manner. This goal is 

accomplished by making forecast of future activities and taking the proper actions as 

suggested by these forecast. 

In business and public administration the organization with both short-term and long-term 

forecasts. The short-term forecast usually looks no more than one year into the future and 

involves forecasting sales, price changes, and customer demand, which, in turn, reflect the 

need for seasonal employment, short-term forecast usually looks from 2 to 10 years into the 

future and is used as planning model for product line and capital investment decisions, as 

indicated by changing demand patterns. 

Naturally, the further a forecast is projected into the future, the more speculative it becomes. 

But since the future is always uncertain, we cannot expect complete accuracy any forecast. 

The time series underlying the process to be forecast is bound to be influenced by many 

causal factors- some forcing the time series up while conflicting factors act to force the 

series down. Nevertheless, business people must make forecasts of future business activity 

in order to budget their time and resources efficiently. They cannot hope to account for 

every possible factor that may cause the response of interest to rise or fall over time. All 

that can be expected is that the benefits gained by forecasting offset the opportunity cost for 

not forecasting. Note that such benefits are not limited to real monetary savings but may 
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imply a sharpening of the businessperson's thinking to consider the interplay of the events 

that affect the movement of the time series. 

1.5. Weather forecasting 

How often do you watch the weather on TV or listen on the radio for the weather 

forecast? The weather affects everything from afternoon swim practice to attacks on 

enemy forces during wars. 

Weather forecasting used to be thought of as witchcraft. Today, we rely on weather 

forecasters to help us plan our days and prepare for life-threatening conditions. 

1.5.1. Forecasting methods 

a. Persistence Method (today equals tomorrow): 
There are several different methods that can be used to create a forecast. The method a 

forecaster chooses depends upon the experience of the forecaster, the amount of 

information available to the forecaster, the level of difficulty that the forecast situation 

presents, and the degree of accuracy or confidence needed in the forecast. 

The first of these methods is the Persistence Method; the simplest way of producing a 

forecast. The persistence method assumes that the conditions at the time of the forecast will 

not change. For example, if it .is sunny and 87 degrees today, the persistence method 

predicts that it will be sunny and 87 degrees tomorrow. If two inches of rain fell today, the 

persistence method would predict two inches ofrain for tomorrow. 

The persistence method works well when weather patterns change very little and features 

on the weather maps move very slowly. It also works well, where summertime weather 

conditions vary little from day to day. However, if weather conditions change significantly 

from day to day, the persistence method usually breaks down and it is not the best 

forecasting method to use. 
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It may also appear that the persistence method would work only for shorter-term forecasts 

(e.g. a forecast for a day or two), but actually one of the most useful roles of the persistence 

forecast is predicting long range weather conditions or making climate forecasts. For 

example, it is often the case that one hot and dry month will be followed by another hot and 

dry month. So, making persistence forecasts for monthly and seasonal weather conditions 

can have some skill. Some of the other forecasting methods, such as numerical weather 

prediction, lose all their skill for forecasts longer than 10 days. This makes persistence a 

"hard to beat" method for forecasting longer time periods. 

b. Trends Method (using mathematics) 

The trends method involves determining the speed and direction of movement for fronts, 

high and low pressure centers, and areas of clouds and precipitation. Using this 

information, the forecaster can predict where he or she expects those features to be at some 

future time. For example, if a storm system is 1000 miles west of your location and moving 

to the east at 250 miles per day, using the trends method you would predict it to arrive in 

your area in 4 days. 

Mathematics 

(1000 miles/ 250 miles per day= 4 days) 

Using the trends method to forecast only a few hours into the future is known as 

"Nowcasting" and this method is frequently used to forecast precipitation. For example, if a 

line of thunderstorms is located 60 miles to your northwest and moving southeast at 30 

miles per hour, you would predict the storms to arrive in your area in 2 hours. 

The trends method works well when systems continue to move at the same speed in the 

same direction for a long period of time. If they slow down, speed up, change intensity, or 

change direction, the trends forecast will probably not work as well. 
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c. Other Forecasting Methods (climatology, analogue and numerical weather prediction) 

Climatology: The Climatology Method is another simple way of producing a forecast. This 

method involves averaging weather statistics accumulated over many years to make the 

forecast. If you were making a forecast for temperature and precipitation, then you would 

use this recorded weather data to compute the averages for temperature and precipitation. 

If these averages were 87 degrees with 0.18 inches of rain, then the weather forecast, using 

the climatology method, would call for a high temperature of 87 degrees with 0.18 inches 

of rain. The climatology method only works well when the weather pattern is similar to that 

expected for the chosen time of year. If the pattern is quite unusual for the given time of 

year, the climatology method will often fail. 

Analog Method 
"' 
t 

The Analog Method is a slightly more complicated method of producing a forecast. It 

involves examining today's forecast scenario and remembering a day in the past when the 

weather scenario looked very similar (an analog). The forecaster would predict that the 

weather in this forecast will behave the same as it did in the past. 

"• "• 

For example, suppose today is very warm, but a cold front is approaching your area. You 

remember similar weather conditions one last week, also a warm day with cold front 

approaching. You also remember how heavy thunderstorms developed in the afternoon as 

the cold front pushed through the area. Therefore, using the analog method, you would 

predict that this cold front will also produce thunderstorms in the afternoon. 

The analog method is difficult to use because it is virtually impossible to find a perfect 

analog. Various weather features rarely align themselves in the same locations they were in 

the previous time. Even small differences between the current time and the analog can lead 

to very different results. However, as time passes and more weather data is archived, the 
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chances of finding a "good match" analog for the current weather situation should improve, 

and so should analog forecasts. 

Numerical Weather Prediction 

Numerical Weather Prediction (NWP) uses the power of computers to malrn a forecast. 

Complex computer programs, also lmown as forecast models, run on supercomputers and 

provide predictions on many atmospheric variables such as temperature, pressure, wind, 

and rainfall. A forecaster examines how the features predicted by the computer will interact 

to produce the day's weather. 

The NWP method is flawed in that the equations used by the models to simulate the 

atmosphere are not precise. This leads to some error in the predictions. In addition, there 

are many gaps in the initial data since we do not receive many weather observations from 

areas in the mountains or over the ocean. If the initial state is not completely known, the 

computer's prediction of how that initial state will evolve will not be entirely accurate. 

.. 
i ,. 

Despite these flaws, the NWP method is probably the best of the five discussed here at 

forecasting the day-to-day weather changes. Very few people, however, have access to the 

computer data. In addition, the beginning forecaster does not have the knowledge to 

interpret the computer forecast, so the simpler forecasting methods, such as the trends or 

analogue method, are recommended for the beginner. 

l.5.2. Example of forecasting temperature 

Effects of Cloud Cover: 

During the day, the earth is heated by the sun. If skies are clear, more heat reaches the 

earth's surface. This leads to warmer temperatures. 

However, if skies are cloudy, some of the sun's rays are reflected off the cloud droplets 

back into space. Therefore, less of the sun's energy is able to reach the earth's surface, 

which causes the earth to heat up more slowly. This leads to cooler temperatures. 
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Forecast Tip 

When forecasting daytime temperatures, if cloudy skies are expected, forecast lower 

temperatures than you would predict if clear skies were expected. At night cloud cover has 

the opposite effect. If skies are clear, heat emitted from the earth's surface freely escapes 

into space, resulting in colder temperatures. However, if clouds are present, some of the 

heat emitted from the earth's surface is trapped by the clouds and reemitted back towards 

the earth. As a result, temperatures decrease more slowly than if the skies were clear. 

When forecasting nighttime temperatures, if cloudy skies are expected, forecast warmer 

temperatures than you would predict if clear skies were expected. 

1.6. Summary 

Chapter gives examples of the usage of forecasting for solving different industrial and non 

industrial problems, like a Network traffic forecasting, business forecasting and weather 

forecasting. 

,u ., 
L 

r' 
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CHAPTER2 

FORECASTING MODELS 

2.1. Overview 

Forecasting models are generally classified as naive models, econometric models and time­ 

series models. An assumption underlying both econometric models and time series models 

is that sample observations from a random process provide reliable evidence of future 

activity. The difference between these two classes of models is that econometric models use 

auxiliary variables as predictors and time series models do not. Time series models are 

"pattern fitters", relying on an extension of inherent components. 

There is no such thing as a single best forecasting model to use in all instances. A 

forecasting model that may be appropriate for estimating future levels of sales for an 

established product may be totally inappropriate for forecasting the sales of a new product 

not yet introduced to the marketplace. Thus, one of the primary tasks associated with 

forecasting is a matching an appropriate forecasting model to the time series to be forecast. 

The forecaster becomes more proficient at this task through experience gained from the 

study of time series behavior and from trial and error in the use of various forecasting 

procedures. 

The purpose throughout this chapter will be explained various forecasting models and 

introduce the concept of forecast accuracy. 

2.2. Naive models 

There are some forecasting models that are very intuitive and easy to apply to any time 

series. These models are usually examined prior to beginning the search for a more 

sophisticated forecasting model. Because of their simplicity, the models we discuss in this 

section are often referred to as naive models. Naive models provide a baseline against 

which we can compare the forecast generated by the more sophisticated models. At least, 
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for example, we would want the forecasting accuracy provided by a more complicated 

model to be substantially better than the accuracy provided by a naive model. We would 

have little justification for using a sophisticated, time-consuming analysis if it did not yield 

better forecast accuracy than a simple, inexpensive model. 

The two of the most commonly used naive models, the no-change and percent-change 

models are presented. 

• No-change forecasting model 

The no-change forecasting model simply uses Yt as the forecast for Yt+1. 

• Percent-change model 

The percent-change model forecasts Yt-t-i will increase or decrease by some percentage of Yt· 

That is Yt-t-1=(1 +k)yt, where k represent the percentage change expressed in decimal form. 

Many industrial companies use these simple models, sometimes without realizing that they 

are doing so. For example, if a company believes next year's productions (sales) ought to be 

about the same as this year's, then the company is implicitly using the no-change 

forecasting model. If the company believes that productions (sales) ought to increase by 

about 10% per year, then it is using a percent-change model with k=O. l 0. 

The no-change forecasting model can be used as a basis of comparison for those time series 

that do not exhibit any long term growth or decline. The percent-change model, on the other 

hand, can be used for evaluating models that grow or decline in an exponential fashion. 

2.3 Econometric forecasting models 

An econometric model is a system of one or more equations that describe the relationship 

among several economic and time series variables and time series variables. Econometric 
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models are probabilistic models and capitalize on the probabilistic relationship that exists 

between a dependent variable representing the time series and any of a number of 

independent variables. 

The primary feature that distinguishes econometric forecasting models from time series 

models is their use of economic and demographic variables that are thought to be causally 

related toy. Econometric models attempt to describe the relationship among such variables 

by use of one or more regression equations, but time series models ignore these causal 

variables and rely on a projection of the time series components inherent in y. 

In building an econometric forecasting model, we usually begin with a large number of 

variables that might be closely related to the response. We then combine these variables to 

form models that are fitted to the sample data by using the method of least squares. 

However, a model that fits past data very well may be insensitive to the uncertainties 

associated with future events and may lead to inaccurate forecasts. Since forecasting is 

concerned with future events, we: should select a forecasting model that demonstrates the 

best ability to forecast the future, not fit the past. 

The linear regression model is a model that sometimes provides a suitable probabilistic 

model for establishing the long-term trend for a time series. For example, a long-term 

upward or downward trend might be isolated to fit the straight line 

y=/30+/31x+&, 

where the independent variable x represent time. A curvilinear long-term trend could be 

modeled by using a second-order function such as 

y = /Jo+ /31x + /32X2 + e 

The corresponding prediction equation could be determined by using the method of least 

squares. 
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The assumption of independence of the random error e associated with successive 

measurements will not usually be satisfied. We would suspect that they would be 

conservative and that knowledge of the actual pattern of correlation would permit more 

accurate estimation and prediction.· If the response is an average over a period of time, the 

correlation of adjacent response measurements will be reduced and will quite possibly 

satisfy adequately the assumption of independence implied in the least squares inferential 

procedures. 

Other regression models can be constructed and fitted to data generated from economic 

time series by using the method of least squares. For example, the yearly production y of 

steel is a function of its price, the price of competitive structural materials, the production of 

competitive products during the preceding year, the amount of steel purchased during the 

immediately preceding years (to measure current inventory), and other variables. A linear 

model relating these independent variables to steel production might be 
I 
,I 

y=/30+ /31x+ /3zx2+ j33X3+ ... +/JkXk+c, 

where 

xz=time 

xz=price of steel 

xs=allowing curvature in the response curve as a function of price) 

XF production of aluminum during previous year 

xs=price of aluminum 

xs=steel of production during previous year 

Xk=x2 xs(an interaction effect between steel and aluminum prices) 

The variable xz= time could be included to capture a possible curvilinear long-term trend. 
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2.4. Forecasting based on time series models 

2.4.1. Introduction to Time Series Analysis 

Definition of Time Series: An ordered sequence of values of a variable at equally spaced 

time intervals. 

Applications: The usage of time series models is twofold: 

• Obtain an understanding of the underlying forces and structure that produced the 

observed data 

• Fit a model and proceed to forecasting, monitoring or even feedback and 

feedforward control. 

Time Series Analysis is used for many applications such as: 

• Economic Forecasting 

• Sales Forecasting 

• Budgetary Analysis 

• Stock Market Analysis 

• Yield Projections 

• Process and Quality Control 

• Inventory Studies 

• Workload Projections 

• Utility Studies 

• Census Analysis 

and many, many more ... 

There are many methods used to model and forecast time series 

Techniques: The fitting of time series models can be an ambitious undertaking. There are 

many methods of model fitting including the following: 

• Box-Jenkins ARIMA models 
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• Box-Jenkins Multivariate Models 

Holt-Winters Exponential Smoothing (single, double, triple) • 

The user's application and preference will decide the selection of the appropriate technique. 

It is beyond the realm and intention of the authors of this handbook to cover all these 

methods. The overview presented here will start by looking at some basic smoothing 

techniques: 

• Averaging Methods 

• Exponential Smoothing Techniques. 

2.4.2. Moving average forecasting models 

Simple (equally-weighted) Moving Average: 

Y(t)= (Y(t-l)+Y(t-2)+ ... +Y(t-k)) 
k 

Here, the forecast equals the simple average of the last k observations. This average is 

"centered" at period t-(k+ 1 )/2, which implies that the estimate of the local mean will tend to 

lag behind the true value of the local mean by about (k+l )/2 periods. Thus, we say the 

average age of the data in the simple moving average is (k+ I )/2 relative to the period for 

which the forecast is computed: this is the amount of time by which forecasts will tend to 

lag behind turning points in the data. For example, if we are averaging the last 5 values, the 

forecasts will be about 3 periods late in responding to turning points. Note that if k= 1, the 

simple moving average (SMA) model is equivalent to the random walk model (without 

growth). If k is very large (comparable to the length of the estimation period), the SMA 

model is equivalent to the mean model. As with any parameter of a forecasting model, you 

should choose the value of k in order to obtain the best "fit" to your data. 

Here is an example of a series which · appears to exhibit random fluctuations around a 

slowly-varying mean. First, let's try to fit it with a random walk model, which is equivalent 

to a simple moving average of 1 term: 
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Figure of Random walk. 

a actual 
- forecast 
- 95.0%, limits 

0 20 40 60 80 100 120 

Figure 2.1. 

The random walk model responds very quickly to changes in the series, but in so doing it 

picks much of the "noise" in the data (the random fluctuations) as well as the "signal" (the 

local mean). If we instead try a simple moving average of 5 terms, we get a smoother­ 

looking set of forecasts: 

Simple moving average of 5 terms 

a actual 
- forecast 
-- 9 5. 0% limits 

Figure 2.2. 
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The 5-tern1 simple moving average yields significantly smaller errors than the random walk 

model in this case. The average age of the data in this forecast is 3=(5+ 1 )/2, so that it tends 

to lag behind turning points by about three periods. (For example, a downturn seems to 

have occurred at period 21, but the forecasts do not tum around until several periods later.) 

Notice that the long-term forecasts from the SMA model are a horizontal straight line, just 

as in the random walk model. Thus, the SMA model assumes that there is no trend in the 

data. However, whereas the forecasts from the random walk model are simply equal to the 

last observed value, the forecasts from the SMA model are equal to a weighted average of 

recent values. 

Interestingly, the confidence limits computed by Statgraphics for the long-term forecasts of 

the simple moving average do not get wider as the forecasting horizon increases. This is 

obviously not correct! Unfortunately, there is no underlying statistical theory that tells us 

how the confidence intervals ought to widen for this model. If you were going to use this 

model in practice, you would be well advised to use an empirical estimate of the confidence 

limits for the longer-horizon forecasts. For example, you could set up a spreadsheet in 

which the SMA model would be used to forecast 2 steps ahead, 3 steps ahead, etc., within 

the historical data sample. You could then compute the sample standard deviations of the 

errors at each forecast horizon, and then construct confidence intervals for longer-term 

forecasts by adding and subtracting multiples of the appropriate standard deviation. 

If we try a 9-term simple moving average, we get even smoother forecasts and more of a 

lagging effect: 

Simple moving average of9 terms 
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• actual 
forecast 

-- 95.0% limits 

Figure 2.3. 

The average age is now 5 periods (=(9+ 1 )/2 ). If we take a 19-term moving average, the 

average age increases to 10: 

Simple moving average of 19 terms 

• actual 
forecast 

--- 95. 0%, limits 

Figure 2.4. 

Notice that, indeed, the forecasts are now lagging behind turning points by about 10 

periods. 

Moving average models, which function to generate a new series by computing moving 

averages of the original series, are oriented primarily toward removing the seasonal and 
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irregular components or isolating the trend-cycle components of a time series. The newly 

generated series is a "smoothed" version of the original series. 

a. The Smoothing Process 

Moving average models function to smooth the original time series by averaging a rolling 

subset of elements of the original series. The subset of the original series consists of an 

arbitrarily selected number of consecutive observations. The subset "rolls" or "moves" 

forward through the series starting from the earliest observation in the series, adding a new 

element at the leading edge while deleting the earliest element at the trailing edge, with 

each successive averaging process. 

The effect of the moving average process is to ameliorate the degree of variation within the 

original series by composing the new smoothed series. It is possible to follow a first 

smoothing of a series with another smoothing of the successor series. The second 

smoothing may be followed by yet other smoothing. The moving average process may be 

used for two purposes, to remove unwanted variation from a time series, and as a 

forecasting model. 

b. Removing Unwanted Variation 

Moving average routines may be designed to remove the seasonal and random noise 

variation within a time series. If the moving average routine is used repeatedly on each 

newly-generated series, it may succeed in removing most of any cyclical variation present. 

What is left of the original series after early smoothing to remove seasonal and random or 

irregular components is a successor series retaining some combination of trend and cyclical 

behavior. If no trend or cyclical behavior are present in the time series, the smoothing may 

leave a successor series which plots as a nearly horizontal line against time on the 

horizontal axis. Assuming the presence of trend and cyclical behavior in the original series, 

the moving average process provides a method of isolating it. 

While successive applications of an efficient moving-average routine may result in filtering 

out all variation other than the trend and cyclical behavior from an original series, this may 
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not be the objective. Rather, the analyst may wish to filter out only the seasonal or only the 

irregular variation. Either may be targeted by judiciously selecting the number of elements 

to be included in the moving average subset, and by designing an appropriate weighting 

system to accomplish his objective. 

An unweighted moving average with a relatively small number of elements (say five to 

seven) will have its smoothing effect without destroying the seasonality present in a series. 

A moving average with a larger number of elements (eleven or more) with weights 

designed to emphasize the elements toward the center of the subset will likely be even more 

efficient in removing the irregular variation, but will tend also to destroy any seasonality 

still present. 

If the analyst's intention is to deseasonalize a time series, a number of moving-average 

elements in the neighborhood of eleven to thirteen is called for. An odd number of elements 

is more easily handled than is an even number due to the need to center the moving 

averages relative to the object series. Also, an appropriately-designed weighting scheme 

applied to the elements of the moving average may serve to improve the efficiency of the 

seasonality removal process. 

c. Unweighted Moving Average Models 

We shall designate all unweighted moving average models with number of elements to be 

specified by the analyst as Class Uk models. The general form of the unweighted, centered 

moving average model with an odd number of subset elements may be specified as, 

Model Uk: MAt = r(yj)/k, 

j from t-((k-1)/2) to t+((k-1)/2), 

where y is an observation in the original series at row t, k is the number of elements in the 

moving average, and j is the subset element counter. 

Subjecttvety-Destgned Weighting Factors 
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To this point we have made only passing references to the possibility of applying weighting 

factors to the elements of the moving average subset. If no explicit weights are used, then 

implicit weights of unity (value 1) are applied to each element in the subset, and the sum of 

the subset values must be divided by the sum of the weights (the number of elements times 

the weight of each) in computing each average. 

The analyst may choose to use subjectively-determined, non-unitary weights to be applied 

to the subset elements in computing the averages. A typical scheme is to design the element 

weighting system so that the sum of the weights is unity (or 100 percent). In this case, each 

element is multiplied by its assigned fractional ( or decimal value) weight, and it is 

unnecessary to divide the sum of the weighted values by the sum of the weights in order to 

compute the average, unless toward the end of the series the number of elements is 

diminishing. 

For our purposes, all weighted moving average (WMA) models where the analyst both 

specifies the number of elements and subjectively determines the weights will be designated 

as Class W.k models. The general format of the Class W.k models may be specified as, 

Model W.k: WMAi = ~(y.iW p)/k, 

j from t-((k-1)/2) to t+((k-1)/2), 

p from 1 to k, 

where W is an element weighting factor applied to the jth element in the moving average, 

and p is the element counter subscript. 

Moving Averages as Forecasting Models 

Any of the moving average routines described in this section may be used as forecasting 

models with a variable forecasting gap (i.e., lag between the value forecasted and the base 

value upon which it is constructed). Using the symbol i for the forecast gap, t for the 

subscript of the observation upon which the forecast is based, y to represent the forecasted 

value of the original series, and MA to represent any of the moving averages described in 

this chapter, the forecast model may be specified as 
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Yt+i = MAt, 

or if seasonality is thought to be present in the series being forecasted, 

Yt+i = MAt+i-12. 

2.4.3. Brown's Simple Exponeptial Smoothing (exponentially weighted moving 

average) 

The simple moving average model described above has the undesirable property that it 

treats the last k observations equally and completely ignores all preceding observations. 

Intuitively, past data should be discounted in a more gradual fashion for example, the most 

recent observation should get a little more weight than 2nd most recent, and the 2nd most 

recent should get a little more weight than the 3rd most recent, and so on. The simple 

exponential smoothing (SES) model accomplishes this. Let a denote a "smoothing 

constant" (a number between O and 1) and let S(t) denote the value of the smoothed series at 

period t. The following formula is used recursively to update the smoothed series as new 

observations are recorded: 

S(t) = ay(t) + (1- a)S(t- l) 

Thus, the current smoothed value is an interpolation between the previous smoothed value 

and the current observation, where ;)), controls the closeness of the interpolated value to the 

most recent observation. The forecast for the next period is simply the current smoothed 

value: 

j1(t + 1) = S(t) 

Equivalently, we can express the next forecast directly in terms of previous forecasts and 

previous observations, in any of the following ways: 

y(t + 1) = ay(t) + (1- a)j;(t) forecast=interpolation between previous forecast and previous 

observation 
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y(t + 1) = y(t) + m,(t) forecast=previousforecast plus fraction c. of previous error, where 

c:(t) = y(t) - y(t) 

y(t + 1) = ajy(t) + (1-a)y(t-1) + ((l-a)2)y(t-2) + ((1-a)3)y(t-3) + ... J 

forecast=exponentially weighted (i.e. discounted) moving average with discount factor 1- a 

The preceding four equations are all mathematically equivalent any one of them can be 

obtained by rearrangement of any of the others. The first equation above is probably the 

easiest to use if you are implementing the model on a spreadsheet: the forecasting formula 

fits in a single cell and contains cell references pointing to the previous forecast, the 

previous observation, and the cell where the value of is stored. 

Note that if a =1, the SES model is equivalent to a random walk model (without growth). If 

a =O, the SES model is equivalent to the mean model, assuming that the first smoothed 

value is set equal to the mean. 

The average age of the data in the simple-exponential-smoothing forecast is 11 a relative to 

the period for which the forecast is computed. (This is not supposed to be obvious, but it 

can easily be shown by evaluating an infinite series.) Hence, the simple moving average 

forecast tends to lag behind turning points by about 11 a periods. For example, when a= 

0.5 the lag is 2 periods; when a= 0.2 the lag is 5 periods; when a= 0.1 the lag is 10 

periods, and so on. 

For a given average age (i.e., amount of lag), the simple exponential smoothing (SES) 

forecast is somewhat superior to the simple moving average (SMA) forecast because it 

places relatively more weight on the most recent observation i.e., it is slightly more 

"responsive" to changes occurring in the recent past. 

Another important advantage of the SES model over the SMA model is that the SES model 

uses a smoothing parameter which is continuously variable, so it can easily optimized by 

using a "solver" algorithm to minimize the mean squared error. The optimal value of a in 

the SES model for this series turns out to be 0.2961, as shown in Figure 2.5. 

30 



Simple exponential smoothing with alpha=0.2961 

• actual 
- forecast 
-- 9 5. 0% limits 

Figure 2.5. SES model 

The average age of the data in this forecast is 1 /0.2961 = 3 .4 periods, which is similar to 

that of a 6-term simple moving average. 

The long-term forecasts from the SES model are a horizontal straight line, as in the SMA 

model and the random walk model without growth. However, note that the confidence 

intervals computed by Statgraphics now diverge in a reasonable-looking fashion, and that 

they are substantially narrower than the confidence intervals for the random walk model. 

The SES model assumes that the series is somewhat "more predictable" than does the 
random walk model. 

An SES model is actually a special case of an ARIMA model, so the statistical theory of 

ARIMA models provides a sound basis for calculating confidence intervals for the SES 

model. In particular, an SES model is an ARIMA model with one nonseasonal difference, 

an MA(l) term, and no constant term, otherwise known as an "ARIMA(0,1,1) model 

without constant". The MA(l) coefficient in the ARIMA model corresponds to the quantity 

1- a in the SES model. 

It is possible to add the assumption of a non-zero constant trend to an SES model. To do 

this in Statgraphics, just specify an ARIMA model with one nonseasonal difference and an 
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MA(l) term with a constant. The long-term forecasts will then have a trend which is equal 

to the average trend observed over the entire estimation period. However, you cannot do 

this in conjunction with seasonal adjustment, because the seasonal adjustment options are 

disabled when the model type is set to ARIMA. 

2.4.4. Brown's Linear (i.e., double) Exponential Smoothing 

If the trend as well as the mean is varying slowly over time, a higher-order smoothing 

model is needed to track the varying trend. The simplest time-varying trend model is 

Brown's linear exponential smoothing (LES) model, which uses two different smoothed 

series that are centered at different points in time. The forecasting formula is based on an 

extrapolation of a line through the two centers. 

The algebraic form of the linear exponential smoothing model, like that of the simple 

exponential smoothing model, can be expressed in a number of different but equivalent 

forms. The "standard" form of this model is usually expressed as follows: Let S' denote the 

singly-smoothed series obtained by applying simple exponential smoothing to series Y. That 

is, the value of S' at period tis given by: 

S'(t) = ay(t) + (1- a)S'(t-1) 

(Recall that, under simple exponential smoothing, we would just let Y(t+ 1) = S'(t) at this 
point.) Then let S" denote the doubly-smoothed series obtained by applying simple 
exponential smoothing (using the same a) to series S': 

S"(t) = aS'(t) + (I -a)S"(t -1) 

Finally, the forecast Jl(t + 1) is given by: 

J1(t + 1) = a(t) + b(t) 

where: 

a(t) = 2S'(t)-S"(t) ... the estimated level at period t 
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b(t) = (a /(1- a))(S'(t)-S"(t)) ... the estimated trend at period t. 

Forecasts with longer lead times made at period t are obtained by adding multiples of the 

trend term. For example, the k-period-ahead forecast (i.e., the forecast for y(t + k) made at 

period t) would be equal to a(t)+kb(t). For purposes of model-fitting (i.e., calculating 

forecasts, residuals, and residual statistics over the estimation period), the model can be 

started up by setting S'(l)=S"(l)= y(l), i.e., set both smoothed series equal to the observed 

value at t= 1. 

A mathematically equivalent form of Brown's linear exponential smoothing model, which 

emphasizes its non-stationary character and is easier to implement on a spreadsheet, is the 

following: 

y(t) = 2y(t-I)- y(t -2)- 2(1-a)e(t -1) + ((l -a)2)e(t - 2) 

or equivalently: 

JJ(t)- y(t -1) = y(t -1)- y(t -2)- 2(1- a)e(t -1) + ((1- a)2)e(t - 2) 

In other words, the predicted difference at period t (namely y(t)- y(t -1)) is equal to the 

previous observed difference (namely Y(t-1) - Y(t-2)) minus a weighted difference of the 
two previous forecast errors. 

Caution: this form of the model is rather tricky to start up at the beginning of the estimation 

period. The following convention is recommended: first set y(l) = y(I), which yields E: (1) 

= 0 (i.e., cheat a bit, and let the first forecast equal the actual first observation), then also set 

j,(2) = y(l) , which yields c(2) = y(2)- y(l) , then continue from this point using the 

equation above. This would yield the same fitted values as the formula based on S' and S" if 

the latter were started up using S'(l) = S"(l) = y(l). 

Once again, you can use your spreadsheet the "solver" or any nonlinear least squares 

algorithm to optimize the value of a. The optimal value of a in the LES model fitted to 

this series by Statgraphics is 0.1607. Note that the long-term forecasts of the LES model for 
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this time series appear to track the local trend observed in the last 10 periods. Also, the 

confidence intervals for the LES model extend faster than those of the SES model. 

Brown linear exp. smoothing with alpha =0.1607 

Figure 2.6. Brown LES model 

2.5. Four common measures of forecast accuracy 

When choosing between competing forecasting models or when evaluating an existing 

model, we need to use measures that summarize the overall accuracy provided by the 

model(s). Generally speaking, the closer the forecasts are to the actual values of the series, 

the more accurate the forecasting model is. Thus, the quality of a model can be evaluated by 

examining the series of forecast errors. All of the measures that follow are based on some 

simple function of the forecast errors. 

The most commonly used measures of forecast accuracy are the mean absolute deviation 

(MAD), the mean square error (MSE), the root mean square error (RMSE), and the mean 

absolute percentage error (MAPE). Formulas for the computation of these measures: 

1 11 

MAD= - LIYt -5111 
n r~1 
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/ 1 n ~ 2 
RMSE= .- L(Yt - Yt) 

n t=1 

MAPE=_!_ f /Yt - yt 1(100%) 
n t=I Yt 

The basic difference between the MAD and the MSE (or RMSE) is that by squaring the 

amount of the error, the MSE (and RMSE) penalizes extreme errors more heavily than does 

the MAD. Thus, the MAD is an appropriate measure of forecast accuracy when the costs of 

forecast error increase linearly with the size of his error. The MSE (and RMSE) is best if 

costs for large errors are disproportionately expensive. 

Since the MAPE is measured as a percentage and is therefore "unitless", it is particularly 

useful for comparing the performance of the model on many different time series. One 

drawback to using the MAPE arises when a series has any extremely small terms since the 

division by those terms will tend to seriously inflate the MAPE. For this reason, it is also 

not wise to use the MAPE as a model selection tool. 

When we use the MAD, MSE, or RMSE to select a good forecasting model, the time series 

data is usually split into two parts. The first part of the data is used to estimate the 

parameters of the particular model. Then with these estimates the model is used to forecast 

the remaining data points. The MAD, MSE, and RMSE are calculated from the forecast 

errors for this second part of the series. 

2.6. Summary 

This chapter presents the classification of forecasting models for three groups: naive 

models, econometric models, time series models, where time series models were considered 

more detailed. Also four common measures of forecast accuracy were considered. 
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CHAPTER3 

THE BOX-JENKINS FORECASTING PROCEDURE 

3.1. Overview 

ARIMA (Auto Regressive Integrated Moving Average) model was introduced by Box and 

Jenkins in 1976 includes three types of parameters: the autoregressive parameters (p), the 

number of differencing passes (d), and moving average parameters (q). In the notation 

introduced by Box and Jenkins, models are summarized as ARIMA (p, d, q). In this 

chapter it will be explained structure and three primer stages in building a Box-Jenkins time 

series model. 

3.2. Stochastic and Deterministic Dynamic Mathematical Models 

The idea of using a mathematical model to describe the behavior of a physical phenomenon 

is well established. fu particular, it is sometimes possible to derive a model based on 

physical laws, which enables us to calculate the value of some time-dependent quantity 

nearly exactly at any instant of time. Thus, we might calculate the trajectory of a missile 

launched in a known direction with known velocity. If exact calculation were possible, such 

a model would be entirely deterministic. 

Probably no phenomenon is totally deterministic, however, because unknown factors can 

occur such as a variable wind velocity that can throw a missile slightly off course. In many 

problems we have to consider a time-dependent phenomenon, such as monthly sales of 

newsprint, in which there are many unknown factors and for which it is not possible to 

write a deterministic model that allows exact calculation of the future behavior of the phe­ 

nomenon. Nevertheless, it may be possible to derive a model that can be used to calculate 

the probability of a future value lying between two specified limits. The models for time 

series that are needed, for example to achieve optimal forecasting and control are in fact 

stochastic models. It is necessary in what follows to distinguish between the probability 
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model or stochastic process, as it is sometimes called, and the observed time series. Thus a 

time series z1, z2 , ... , z,, of N successive observations is regarded as a sample realization 

from an infinite population of such time series that could have been generated by the 

stochastic process. Very often we shall omit the word stochastic from "stochastic process" 

and talk about the "process " 

Stationary and Nonstationary Stochastic Models for Forecasting and Control 

An important class of stochastic models for describing time series, which has received a 

great deal of attention, comprises what are called stationary' models, which assume that the 

process remains in equilibrium about a constant mean level. However, forecasting has been 

of particular importance in industry, business, and economics, where many time series are 

often better represented as nonstationary and, in particular, as having no natural constant 

mean level over time. It is not surprising, therefore, that many of the economic forecasting 

methods originally proposed by Holt, Winters, Brown, and the Id Monograph that used 

exponentially weighted moving averages can be shown to be appropriate for a particular 

type of nonstationary process. Although such methods are too narrow to deal efficiently 

with all time series, the fact that they give the right kind of forecast function supplies a clue 

to the kind of nonstationary model that might be useful in these problems. 

The stochastic model for which the exponentially weighted moving average forecast yields 

minimum mean square error is a member of a class of nonstationary processes called 

autoregressive integrated moving average processes (ARIMA processes). This wider class 

of processes provides a range of models, stationary and nonstationary, that adequately 

represent many of the time series met in practice. Once an appropriate model has been 

determined for the series, the optimal forecasting procedure follows immediately. These 

forecasting procedures include the exponential1y weighted moving average forecast as a 

special case. 

Some simple operators: 
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It should be employed extensively the shift operator B, which is defined by Bz, = z1_1; 

hence B"' z1 = z1_m. The inverse operation is performed by the forward shift operator F 

= B-1 given by Fz1 = zt+1; hence Fm z1 = zt+m. Another important operator is the backward 

difference operator V, which can be written in terms of B, since 

Vz, = z1 - z1_1 = (1-B)z1 

Linear filter model 

The stochastic models we employ are based on the idea that a time series in which 

successive values are highly dependent can frequently be regarded as generated from a 

series of independent "shocks" a., These shocks are random drawings from a fixed distribu- 

tion, usually assumed Normal and having mean zero and variance a·;. Such a sequence of 

random variables a1, a1_1, a1_2 ... is called a white noise process. 

The white noise process a1 is supposed transformed to the process z1 what is called a linear 

filter. The linear filtering operation simply takes a weighted sum of previous random 

shocks a1, so that 

3.3. Box-Jenkins Approach 

The Box-Jenkins' modeling procedure involves identifying an appropriate ARMA model, 

fitting it to the dataset, and using the fitted model for forecasting. One of the attractive 

features of the Box-Jenkins method to forecasting is that ARMA processes are a very rich 

class of possible models and it is usually possible to find a model which provides an 

adequate description for the data. 

The Box-Jenkins' modeling procedure involves iterative steps of model identification, 

parameter estimation, model diagnosis and forecasting. A modified procedure for searching 
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an adequate ARMA model. The modified procedure mainly involves four steps: 

identification, pre-estimation I estimation, diagnosis and forecast. Each of these steps will 

be discussed and illustrated in the sections that follow. 

Pre •. tstim.ation 
f'Vi · • · · ' / 1i.St,nna.t1,r)n. 

Figuu·e 3.1. Block scheme of model construction 

In contrast to other techniques, Box-Jenkins is a procedure, which uses a variable's past 

behavior to select the best forecasting model from a general class of models. It assumes that 

any time series pattern can be represented by one of three categories of models. These 

categories include: 

• Autoregressive models: forecasts of a variable based on linear function of its past values 

• Moving Average models: forecasts based on linear combination of past errors 

• Autoregressive-Moving Average models: combination of the previous two categories 
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Note that one of the key questions is how many past values (the focal variable and/or its 

errors) should be included in the model. 

Generally speaking, there are essentially three stages to a Box-Jenkins procedure: 

1. Identifying the tentative model. Which of the three categories listed above is identified as 

the appropriate category is determined by first making the data stationary (usually by 

differencing the data) and then analyzing the autocorrelations and partial autocorrelations 

of the stationary data. Note that there are theoretical autocorrelation and partial 

autocorrelation profiles for each of the possible models. Therefore, determining the 

appropriate type of model for a specific situation is mainly a matter of matching the 

observed correlations to the theoretical correlations. 

2. Determining the parameters of the model. This is similar to estimating the parameters in 

regression analysis. 

3. Application of the model. 

The Box-Jenkins ARMA model is a combination of the AR and MA models: 

xt = rAxt-1 + ¢2x1-2 + ... + ¢px1-p -fJi1::t-1 -B281-2 - ··· -Bq8t-q 
where the terms in the equation have the same meaning as given for the AR and MA model. 

Autoregressive models 

A stochastic model that can be extremely useful in the representation of certain practically 

occurring series is the autoregressive model. In this model, the current value of the process 

is expressed as a finite, linear aggregate of previous values of the process and a shock. Let 

us denote the values of a process at equally spaced times t, t - 1, t - 2, ... by z1, zt-1, z1_2 ... 

Also let z1, z1_1, z1_2 , •.• be deviations fromµ; for example, z1 = z1 - µ. Then 

(1) 

is called an autoregressive (AR) process of order p. The reason for this name is that a 
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linear model 

z = ¢1x1 + ¢2x2 + ... + ¢pxp + a 
relating a "dependent" variable z to a set of "independent" variables x1, x2 , ... , x P, plus an 

error term a, is often referred to as a regression model, and z is said to be "regressed" on 

x1, x2 , ... , x P. In (1) the variable z is regressed on previous values of itself; the model is 

autoregressive. If an autoregressive operator of order pis de.fined by: 
p 

¢(B) = l-¢1B-¢2B2 - ... -¢PB 

the autoregressive model may be written economically as 

¢(B)zt = a1. 

The model containsp+2 unknown parametersµ, ¢1,¢2, ... ,¢P,<7:, which in practice have to 

be estimated from the data. The additional parameter <7~ is the variance of the white noise 

process «. 

Moving average models 

The autoregressive model (1) expresses the deviation z1 of the process as a finite weighted 

sum of p previous deviations zt-1, z1_2, , ... , zt-p of the process, plus a random shock at. 

Equivalently it expresses z1 as infinite weighted sum of a's. 

Another kind of model, of great practical importance in the representation of observed time 

series, is the finite moving average process. Here z1 linearly dependent on a.finite number 

q of previous a's. Thus 

=1 = at -B1a1-1 -B2ar-2 - ··· - Bqat-q 

is called a moving average (MA) process of order q. The name "moving average" is 

somewhat misleading because the weights 1,- B1 ,-(\ •.• , Bq, which multiply the a's, need 

not total unity nor need they be positive. However, this nomenclature is in common use, 

and there fore we employ it. 
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If we define a moving average operator of order q by 
fJ(B) = I - fJ 1B - fJ 2B2 - ... - fJq BP 

the moving average model may be written economically as 
z1 = fJ (B)a1 

It contains q + 2 unlmown parameters µ,e1, ••. ,eq,a;, which in practice have to be 
estimated from the data. 

Mixed autoregressive-moving average models 

To achieve greater flexibility in fitting of actual time series, it is sometimes advantageous 

to include both autoregressive and moving average terms in the model. This leads to the 

mixed autoregressive-moving average model 

or 
¢(B)z1 = ()(B)a1 

which employsp + q + 2 unknown parameters µ,¢,, ... ,¢P;B1, •.. ,Bq;a}, that are estimated 

from the data. This model may also be written in the form of the linear filter as 

z1 = ¢ -t (B)B(B)a1. In practice, it is frequently true that adequate representation of actually 

occurring stationary time series can be obtained with autoregressive, moving average, or 

mixed models, in which p and q are not greater than 2 and often less than 2. 

Comments on Box-Jenkins Model 

Box-Jenkins model characteristics are 

1. The Box-Jenkins model assumes that the time series is stationary. Box and Jenkins 

recommend differencing non-stationary series one or more times to achieve 

stationarity. Doing so produces an AR.IMA model, with the "I" standing for 

"Integrated". 

2. Some formulations transform the series by subtracting the mean of the series from 

each data point. This yields a series with a mean of zero. Whether you need to do 

this or not is dependent on the software you use to estimate the model. 
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3. Box-Jenkins models can be extended to include seasonal autoregressive and 

seasonal moving average terms. Although this complicates the notation and 

mathematics of the model, the underlying concepts for seasonal autoregressive and 

seasonal moving average terms are similar to the non-seasonal autoregressive and 

moving average terms. 

4. The most general Box-Jenkins model includes difference operators, autoregressive 

terms, moving average terms, seasonal difference operators, seasonal autoregressive 

terms, and seasonal moving average terms. As with modeling in general, however, 

only necessary terms should be included in the model. 

There are three primary stages in building a Box-Jenkins time series model. 

1. Model Identification 

2. Model Estimation 

3. Model Validation. 

The following remarks regarding Box-Jenkins models should be noted. 

1. Box-Jenkins models are quite flexible due to the inclusion of both autoregressive 

and moving average terms. 

2. Based on the World decomposition theorem (not discussed in the Handbook), a 

stationary process can be approximated by an ARMA model. In practice, finding 

that approximation may not be easy. 

3. Chatfield (1996) recommends decomposition methods for series in which the trend 

and seasonal components are dominant. 

4. Building good ARIMA models generally requires more experience than commonly 

used statistical methods such as regression. 

3.4. Box-Jenkins Model Identification 

3.4.1. Stationarity 

A common assumption in many time series techniques is that the data are stationary. 
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A stationary process has the property that the mean, variance and autocorrelation strncture 

do not change over time. Stationarity can be defined in precise mathematical terms, but for 

our purpose we mean a flat looking series, without trend, constant variance over time, a 

constant autocorrelation structure over time and no periodic fluctuations (seasonality). 

For practical purposes, stationarity can usually be determined from a run sequence plot. 

The following plots are from a data set of monthly CO2 concentrations 

Example of Run Sequence Plot 

1 ····· caz t1'>nii!~tmtkiila tar t&tu na loo ~ f',ll;!;'WtV 

300 

~ :l!:"1ii . -~ fl 
.i_. ."'_,. A_· __ h __ t 1 ii!oil' .,t -~i _,f·l, r \? 1 

2_·_. .• . . . . . . . . . _ • .- . ·\-._. __ 1 ~1-_. ti_·.1." H -,, fl ,,f .;., !;r fi. ,,,,,,, A J , I . I ii ¥ 

8 "'·"'"" nJ\IU 
I .. · .... ·. i _',,\ .. _J'I ·.' tj V . I f\lr"~ 

' . . "'' Ji ' '' If 1_1. 
~-_·._, \·· .. t11·,_ 11_,,; ,/ v ' · · . 1 , , •lJ ,.,. 

""'" · ,.· •H f, I 
. __ ,,, ,., ~! 

' ·;_. a -· I 
l I 
i iiO ! 

1
1 1974 ffl7'.f t!!l8il;l_ 1iH3 HHl:~ 1~>! ! 

Tune j 
L._ -~~-"'~-·-- ~"'"'~•~-=•••<,-·•-·•-•'<• e --·-"-,.- ----" ~~ • ••--.·-~ '<' ,,w_ ~><•~-~,- -~·,,,J 

,,,I 

Figure 3.2. 

The initial run sequence plot of the data indicates a rising trend. A visual inspection of this 

plot indicates that a simple linear fit should be sufficient to remove this upward trend. 

If the time series is not stationary, we can often transform it to stationarity with one of the 

following techniques. 

1. We can difference the data. That is, given the series Z1, we create the new series 

44 



The differenced data will contain one less point than the original data. Although you 

can difference the data more than once, one difference is usually sufficient. 

2. If the data contain a trend, we can fit some type of curve to the data and then model 

the residuals from that fit. Since the purpose of the fit is to simply remove long term 

trend, a simple fit, such as a straight line, is typically used. 

3. For non-constant variance, taking the logarithm or square root of the series may 

stabilize the variance. For negative data, you can add a suitable constant to make all 

the data positive before applying the transformation. This constant can then be 

subtracted from the model to obtain predicted (i.e., the fitted) values and forecasts 

for future points. 

The above techniques are intended to generate series with constant location and scale. 

Although seasonality also violates stationarity, this is usually explicitly incorporated into 

the time series model. 

3.4.2. Seasonality 

Many time series display seasonality. By seasonality, we mean periodic fluctuations. For 

example, retail sales tend to peak for the Christmas season and then decline after the 

holidays. So time series of retail sales will typically show increasing sales from September 

through December and declining sales in January and February. 

Seasonality is quite common in economic time series. It is less common in engineering and 

scientific data. 

If seasonality is present, it must be incorporated into the time series model. In this section, 

we discuss techniques for detecting seasonality. 

a. Detecting Seasonality 

The following graphical techniques can be used to detect seasonality. 
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1. A run sequence plot will often show seasonality. 

2. A seasonal subseries plot is a specialized technique for showing seasonality. 

3. Multiple box plots can be used as an alternative to the seasonal subseries plot to 

detect seasonality. 

4. The autocorrelation plot can help identify seasonality. 

The run sequence plot is a recommended first step for analyzing any time series. Although 

seasonality can sometimes be indicated with this plot, seasonality is shown more clearly by 

the seasonal subseries plot or the box plot. The seasonal subseries plot does an excellent job 

of showing both the seasonal differences (between group patterns) and also the within­ 

group patterns. The box plot shows the seasonal difference (between group patterns) quite 

well, but it does not show within group patterns. However, for large data sets, the box plot 

is usually easier to read than the seasonal subseries plot. 

Both the seasonal subseries plot and the box plot assume that the seasonal periods are 

known. In most cases, the analyst will in fact know this. For example, for monthly data, the 

period is 12 since there are 12 months in a year. However, if the period is not known, the 

autocorrelation plot can help. If there is significant seasonality, the autocorrelation plot 

should show spikes at lags equal to the period. 

The first step in developing a Box-Jenkins model is to determine if the series is stationary 

and if there is any significant seasonality that needs to be modeled. 

b. Differencing to achieve stationarity 

Box and Jenkins recommend the differencing approach to achieve stationarity. However, 

fitting a curve and subtracting the fitted values from the original data can also be used in the 

context of Box-Jenkins models. 

c.Seasonal differencing 

At the model identification stage, our goal is to detect seasonality, if it exists, and to 

identify the order for the seasonal autoregressive and seasonal moving average terms. For 

many series, the period is known and a single seasonality term is sufficient. For example, 
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for monthly data we would typically include either a seasonal AR 12 term or a seasonal MA 

12 term. For Box-Jenkins models, we do not explicitly remove seasonality before fitting the 

model. Instead, we include the order of the seasonal terms in the model specification to the 

ARJMA estimation software. However, it may be helpful to apply a seasonal difference to 

the data and regenerate the autocorrelation and partial autocorrelation plots. This may help 

in the model idenfitication of the non-seasonal component of the model. In some cases, the 

seasonal differencing may remove most or all of the seasonality effect. 

d. Identify p and q 

Once stationarity and seasonality have been addressed, the next step is to identify the order 

(i.e., the p and q) of the autoregressive and moving average terms. 

The primary tools for doing this are the autocorrelation plot and the partial autocorrelation 

plot. The sample autocorrelation plot and the sample partial autocorrelation plot are 

compared to the theoretical behavior of these plots when the order is known. 

Order of Autoregressive Process (p) 

Specifically, for an AR(l) process, the sample autocorrelation function should have an 

exponentially decreasing appearance. However, higher-order AR processes are often a 

mixture of exponentially decreasing and damped sinusoidal components. 

For higher-order autoregressive processes, the sample autocorrelation needs to be 

supplemented with a partial autocorrelation plot. The partial autocorrelation of an AR(p) 

process becomes zero at lag p+ 1 and greater, so we examine the sample partial 

autocorrelation function to see if there is evidence of a departure from zero. This is usually 

determined by placing a 95% confidence interval on the sample partial autocorrelation plot 

(most software programs that generate sample autocorrelation plots will also plot this 

confidence interval). If the software program does not generate the confidence band, it is 

approximately ± 2 I .fN , with N denoting the sample size. 
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Order ofMoving Average Process (q) 

The autocorrelation function of a MA(q) process becomes zero at lag q+l and greater, so 

we examine the sample autocorrelation function to see where it essentially becomes zero. 

We do this by placing the 95% confidence interval for the sample autocorrelation function 

on the sample autocorrelation plot. Most software that can generate the autocorrelation plot 

can also generate this confidence interval. 

The autocorrelation function 

The dependence structure of a stationary time series is characterized by the autocorrelation 

function. The autocorrelation function is defined as the correlation between zt and zt+k; 

pk =correlation (zt, zt+k), k is called the time lag. The autocorrelation function is estimated 

by the empirical autocorrelation function: rk = ck I c0, where k=O, 1, 2, ... ; ck are the 

empirical autocovariances . 

The empirical autocorrelation- and cross-correlation functions are the main tools for the 

identification of the ARlMA model. The autocorrelation function of the basic processes has 

a typical shape. The autocorrelation function of the AR(l) process decays exponentially. 

The autocorrelation function of the MA(l) process has only p I nonzero and of the MA(2) 

process only pl and p2 nonzero. 

Autocorrelation plots are a commonly-used tool for checking randomness in a data set. This 

randomness is ascertained by computing autocorrelations for data values at varying time 

lags. If random, such autocorrelations should be near zero for any and all time-lag 

separations. If non-random, then one or more of the autocorrelations will be significantly 

non-zero. 

In addition, autocorrelation plots are used in the model identification stage for Box-Jenkins 

autoregressive, moving average time series models. 
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Autocorrelation plots are formed by 

• Vertical axis: Autocorrelation coefficient 

where c11 is the autocovariance function 

N-n 

c,, = (11 N}Z:(Yt - YXYt+h - y) 
T=! 

and c0 is the variance function 

Note r,, is between -1 and+ 1. 

• Horizontal axis: Time lag n (n = 1, 2, 3, ... ) 

Shape of Autocorrelation Function 

The following table summarizes how we use the sample autocorrelation function for model 

identification. 
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Examples of the autocorrelation plot: 

Autocorrelation Plot for Strong Autocorrelation: 

Figure 3.3. 

We can make the following conclusions from the above plot. 

1. The data come from an underlying autoregressive model with strong positive 
autocorrelation. 

The plot starts with a high autocorrelation at lag 1 (only slightly less than 1) that slowly 

declines. It continues decreasing until it becomes negative and starts showing an incresing 

negative autocorrelation. The decreasing autocorrelation is generally linear with little noise. 

Such a pattern is the autocorrelation plot signature of "strong autocorrelation", which in 

turn provides high predictability if modeled properly. 

The next step would be to estimate the parameters for the autoregressive model: _ 
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Such estimation can be perfonnecl by using least squares linear regression or by fitting a 

Box-Jenkins autoregressive (AR) model. 

Partial Autocorrelation Plot: 

Partial autocorrelation plots are commonly used tool for model identification in Box­ 

Jenkins models. 

The partial autocorrelation at lag k is the autocorrelation between y1 and Yr-k that is not 

accounted for by lags I through k- I. 

There are algorithms for computing the partial autocorrelation based on the sample 

autocorrelations. 

Specifically, partial autocorrelations are useful in identifying the order of an autoregressive 

model. The partial autocorrelation of an AR(p) process is zero at lagp+l and greater. If the 

sample autocorrelation plot indicates that an AR model may be appropriate, then the 

sample partial autocorrelation plot is examined to help identify the order. We look for the 

point on the plot where the partial autocorrelations essentially become zero. Placing a 95% 

confidence interval for statistical significance is helpful for this purpose. 

The approximate 95% confidence interval for the partial autocorrelations are at ± 2/ Jii 
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3.5. Box-Jenkins Model Estimation 

Estimating the parameters for the Box-Jenkins models is a quite complicated nonlinear 

estimation problem. For this reason, the parameter estimation should be left to a high 

quality software program that fits Box-Jenkins models. Fortunately, many commercial 

statistical software programs now fit Box-Jenkins models. 

The main approaches to fitting Box-Jenkins models are non-linear least squares and 

maximum likelihood estimation. 

The main approaches to fitting Box-Jenkins models are non-linear least squares and 

maximum likelihood estimation. 

The identification process having led to a tentative formulation for the model, we then need 

to obtain efficient estimates of the parameters. After the parameters have been estimated, 

the fitted model will be subjected to diagnostic checks and tests of goodness of fit. As 

pointed out by R. A. Fisher, for tests of goodness of fit to be relevant, it is necessary that 

efficient use of the data should have been made in the fitting process. If this is not so, 

inadequacy of fit may simply arise because of the inefficient fitting and not 

because the form of the model is inadequate. 

Likelihood Function 

Suppose that we have a sample of N observations z with which we associate an N­ 

dimensional random variable, whose known probability distribution depends on some 

unlmown parameters s. We use the vectors to denote a general set of parameters and, in 

particular, it could refer to the p + q + 1 parameters (cp, 8, 0) of the AR.IMA model. 

Before the data are available, p(zli';) will associate a density with each different outcome z 

of the experiment, for fixed c;. After the data have come to hand, we are led to contemplate 

the various values of~ that might have given rise to the 'fixed set of observations z actually 
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obtained. The appropriate function for this purpose is the likelihood function L(s /z), which 

is ~/'the same form as p(z/ s), but in which z is now fixed but<; is variable. It is only the 

relative value of L(s lz) which is of interest, so that the likelihood function is usually 

regarded as containing an arbitrary multiplicative constant. 

It is often convenient to work with the log-likelihood function ln[L(s lz) J = l (s /z), which 
contains an arbitrary additive constant. One reason that the likelihood function is 

fundamental importance in estimation theory is because of the "likelihood principle'. This 

principle says that (given that the assumed model is correct) all that the data have to tell us 

about the parameters is contained in the likelihood function, all other aspects of the data 

being irrelevant. From a Bayesian point of view, the likelihood function is equally 

important, since it is the component in the posterior distribution of the parameters which 

comes from the data. 

For a complete understanding of the estimation situation, it is necessary to make a through 

analytical and graphical study of the likelihood function, or in the Bayesian framework, the 

posterior distribution of the parameters, which in the situations we consider, is dominated 

by the likelihood. In many examples, for moderate and large samples, the log-likelihood 

function will be unimodal and can be approximated adequately over a sufficiently extensive 

region near the maximum by a quadratic function. 

In such cases the log-likelihood function can be described by its maximum and its second 

derivatives at the maximum. The values of the parameters that maximize the likelihood 

function, or equivalently the log-likelihood function, are called maximum likelihood (ML) 

estimates. The second derivatives of the log-likelihood function provide measures of 

"spread" of the likelihood function and can be used to calculate approximate standard 

errors for the estimates. 

The limiting properties of maximum likelihood estimates are usually established for 

independent observations, But as was shown by Whittle, they may be extended to cover 

stationary time series. 
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3.6.Box-Jenkins Model Diagnostics 

Model diagnostics for Box-Jenkins models is similar to model validation for non-linear 

least squares fitting. 

That is, the error term At is assumed to follow the assumptions for a stationary univariate 

process. The residuals should be white noise (or independent when their distributions are 

normal) drawings from a fixed distribution with a constant mean and variance. If the Box­ 

Jenkins model is a good model for the data, the residuals should satisfy these assumptions. 

If these assumptions are not satisfied, we need to fit a more appropriate model. That is, we 

go back to the model identification step and try to develop a better model. Hopefully the 

analysis of the residuals can provide some clues as to a more appropriate model. 

3.7. Examples of Forecast Functions and Their Updating 

3.7.1. Forecasting a General IMA(O,d,q) Process 

As an example, consider the process of order (0, 1, 3), 

(1- B )z1+1 = (1- ()1B - ()2B2 - ()3B3 }11+1 

Taking conditional expectations at time we obtain 

zt (2)- zt (1) = -62at -63at-1 

zt (3)- zt (2) = -e3at 
z/I)- z/l -1) = o I= 4,5,6, ... 

Hence z1 (l) = z1 (3) = b~1l for all I >2, as expected, since q-p-d=2. 

3.7.2. Forecasting Autoregressive Process 

Consider a process of order (p, d, 0) 
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The eventual forecast function is the solution of ¢(B)z1 (l) = 0. It applies for all lead times 

and passes through the last p + d available values of the series. 

The best forecast for all future time is very nearly the current value of the stock. The weight 

function for z 1 (/) is a spike at time t and there is no averaging over past history. 

Nonstationary autoregressive models of order (p, d, 0) 

For the model 

¢(B)Vd z1 = a1 

it will be the dth difference of the process that decays back to its mean when projected 

several steps ahead. The mean of Vd z1 will usually be assumed to be zero unless contrary 

evidence is available. When needed, it is possible to introduce a nonzero mean by replacing 

Vd z1 by Vd z1 - µ"' in the model. For example, consider the model 

After substituting t+j fort and taking conditional expectations at origin t, 

Z1(j)-zi(j-l)-µ"" =rp1(z1 -ZH -µ"") 

or <»1 (j)- µw = ¢1 (w1 - µw), where w1 = Vz1, which shows how the forecasted difference 

decays exponentially from the initial value w1 = z1 - z1_1 to its mean value µa,. On 

summing this expression from j = 1 to j = I, that is, using z 1 (l) = <» 1 (/) + ... + cu 1 (I) + z t> we 
obtain the forecast function 

3.8. Summary 

This chapter presents the detailed description of the Box-Jenkins forecasting procedure. 

The explanation of three primary stages in building a Box-Jenkins is given: model 

identification, model estimation, model diagnostic. 
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CHAPTER4 

IMPLEMENTATION OF FORECASTING METHODS 

4.1. Overview 

At the present chapter two examples of implementation of forecasting methods will be 

considered. One of them is prediction of world petroleum production and second is 

prediction of the number of Computer Engineering Department students. For this 
purpose program, which was written in Delphi, is applied. Also all the forecasting 

methods, which were used in program, are have done in Excel with purpose to check 

results. 

4.2. World Petroleum Production 

Central European Bank gives time series for World petroleum production for 8 years 

from 1995 to 2002 monthly. The original time series are shown in the Figure 4.1, 

where x axis is a time, and y axis is Petroleum production monthly in Mb/d. 

Series title: Petroleum Production, World. The part of those data is given below, whole 

set is given in Table 1 in Appendix. 

Year Month Value,(Mb/d) 
2002 1 66.391,57 
2002 2 66.523,81 
2002 3 66.338,93 -- 
2002 4 65.780,53 
2002 5 66.184,34 
2002 6 66.058,17 
2002 7 66.654,99 
2002 8 66.362,88 
2002 9 67.111,00 
2002 10 68.769,01 
2002 11 68.764,28 
2002 12 67.008,72 
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72.000,00 

70.000,00 

68.000,00 

66.000,00 

64.000,00 

62.000,00 

60.000,00 

58.000,00 

56.000,00 

Plot of actual values for World Petroleum Production 

Figure 4.1. 

4.2.1. Forecast for 2002 

Three kind of forecasting methods are applied to present example: Moving average 

forecasting model, an exponential-smoothing forecasting model, Box-Jenkins 

forecasting procedure. Here appeared problem, which model will fit better to the present 

time series, the quality of model can be evaluated by examining the forecast errors. As 

far as actual data for 2003 aren't known, forecast errors can't be calculated, so at first, 

forecasting procedures are applied for 2002 year. 

4.2.1.a. Moving Average Forecasting Model 

One-step-ahead moving average forecast is applied for forecasting petroleum 

production in 2002, let k be equal to 5. 

The results of forecasting which were gotten in Excell are shown below. 
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Implementation of Moving Average Forecasting Model in Excel 

Table 4.1. 

One-step absolute 
Year Month Actual Value,(Mb/d) One-Step Fore cast deviation 

2001 1 68.940,12 
2001 2 68.478,21 
2001 3 69.165,97 
2001 4 68.268,40 
2001 5 67.576,67 
2001 6 66.004,01 
2001 7 67.978,71 
2001 8 68.165,35 
2001 9 67.792,01 
2001 10 67.680,40 
2001 11 67.929,27 
2001 12 67.473,76 
2002 1 66.391,57 67.808,16 1.416,59 

2002 2 66.523,81 67.453,40 929,59 

2002 3 66.338,93 67.199,76 860,83 

2002 4 65.780,53 66.931,47 1.150,94 

2002 5 66.184,34 66.501,72 317 ,38 

2002 6 66 058,17 66.243,84 185,67 

2002 7 66.654,99 66.177,16 477,83 

2002 8 66.362,88 66.203,39 159,49 

2002 9 67.111,00 66.208, 18 902,82 

2002 10 68.769,01 66.474,28 2.294,73 

2002 11 68.764,28 66.991,21 1.773,07 

2002 12 67.008,72 67.532,43 523,71 
1 .617.401,11 10.992,65 

Mean 
absolute 
deviation 916,05 

To check the accuracy of the model in Figure 4.2 are given two graphs: actual values, 

which are known and values, which were gotten by using present method. 
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Plot of forecasts by Moving Average model for 2002 and actual values in Excel 

Forecasts for :zoo2 -+--· actual values 
--lk-· forecasting 
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65.000,00 

64.500,00 

64.000,00 
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Figure 4.2. 

According to the same purpose program gives following result: 

Plot of forecasts by Moving Average model for 2002 and actual values in Delphi 

... .. 

1[14]=67453.00 
1(15]=67199.20 
f[16]=66930.80 
f[17J=665D1 .oo 
1(10]=66243.20 
1[19]=66176.60 
1(20]=68202.80 
1121 ]=66207 .60 
1(22]=66473,80 
f(23J=66990.BO 
1]24]=67532 .. 00 

,114J=S6523:oo 
y(15J=66338.00 
y[16]=657B0.00 
y[17]=66184 .00 
J•[18]=66058,00 
)•(19]-66654.00 
y[20]=66362.00 
,121 ]=67111.00 
y(22]=68769,00 
y(23]"'68764,00 
vl24J=67008.00 

Figure 4.3. 
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Forecasts by Moving Average model for 2002 and actual values in Delphi 

Table 4.2. 

forecast Actual values 

67807 66391 

67453 66523 

67199 66338 

66930 65780 

66501 66184 

66243 66654 

66202 66362 

66207 67111 

66473 68769 

66990 68764 

67532 67008 

4.2.1.b. An Exponential-Smoothing Forecasting Model 

The results of applying Brown's method of multiple smoothing are present by following 

table and Figure 4.4: 

Implementation of Exponential-Smoothing Forecasting Model in Excel 

Table 4.3. 

Ac1ual Value, Forecast, Forecast 
Year Month (Mb/d) St St(2) St(3) T=1, a=0,2 Error 
2002 1 66.391,57 66.391,57 66.391,57 66 391,57 
2002 2 66 523,81 66.418,02 66.396,86 66.392,63 66.391,57 132,24 
2002 3 66.338,93 66.402,20 66.397,93 66.393,69 66470,91 131,98 
2002 4 65.780,53 66.277,87 66.373,92 66.389,73 66.407,59 627,06 
2002 5 66.184,34 66.259,16 66.350,96 66.381,98 66.032,44 151,90 
2002 6 66.058,17 66.218,96 66.324,56 66.370,50 66.049,42 8,75 
2002 7 66.654,99 66.306,17 66.320,89 66.360,57 65.993,73 661,26 
2002 8 66.362,88 66.317,51 66.320,21 66.352,50 66.326,79 36,09 
2002 9 67.111,00 66.476,21 66.351,41 66.352,28 66.360,37 750,63 
2002 10 68.769,01 66.934,77 66.468,08 66.375,44 66.828,57 1.940,44 
2002 11 68.764,28 67.300,67 66.634,60 66.427,27 68 102,58 661,70 
2002 12 67.008,72 67.242,28 66.756,14 66493,05 68.850,05 l.841,33 

801.948,23 6 943,38 
MAD 631,22 

60 



Plot of forecasts by Exponential-Smoothing model for 2002 and actual values in 

Excel 

Forecast for 2002 -+-- actual value 
-Kf-- forecast 

69.500,00 
69.000,00 
68.500,00 
68.000,00 
67.500,00 
67.000,00 
66.500,00 
66.000,00 
65.500,00 
65.000,00 
64.500,00 
64000,00 

Figure 4.4. 

Program gives following results: 

Plot of forecasts by Exponential-Smoothing model for 2002 and actual values in 

Delphi 

Figure 4.5. 
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Forecasts by Exponential-Smoothing model for 2002 and actual values in Delphi 

Table 4.4. 
Forecasts Actual values 
66391 66523 
66470 66338 
66406 65780 
66031 66184 
66048 66058 
65993 66654 
66326 66362 
66359 67111 
66828 68769 

>---- 
68102 68764 
68849 67008 

4.2.1.c.The Box-Jenkins Forecasting Procedure 

As clear from Figure I. there is trend in present data. In order to choose the best ARIMA 

model for given set of data, first it should be removed trend by performing an 

appropriate amount of differencing. After first order differencing trend is removed. See 

Figure 4.6. The order of differencing required is denoted by d. So first-order 

differencing is needed, then d=l. 

First order differencing plot 

first order differencing -+-first order differencing 

3.000,00 

2.000,00 - 

1.000,00 

0,00 

-1.000,00 

-2.000,00 

Figure 4.6. 

After that, the appropriate number p of autoregressive terms and/or the number q of 

moving average terms must be selected. The resulting model is then referred to as an 

ARIMA(p,d,q) model. 
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One of primary tools used in determining the parameters p and q in an ARIMA model is the 

autocorrelation function (act) of the time series. The acf summarize the various 

correlations that a time series has with itself 

The acf was calculated by using the package S-PLUS. Figure 4.7 shows the output of this 

data. 

Autocorrelation plot 

Series : Katia 1 $prod 

=· l 

:"'-~ 

=· 

·1c 
L:::g 

:2C 

Figure 4.7. 

To interpret the acf, is needed the method for testing which of then 's are statistically 

different from zero. 

Figure 4.8 presents the components of pacf 
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Partial autocorrelation plot 

Series : Katia 1 $prod 

u. uo 
c:( C) 

c5 
t 
CT] 
Q_ 

0 5 10 
Lag 

·15 

Figure 4.8. 

As clear from the plot parameter q=O is suitable for creating model, but also q = 1 can be 
checked. 

Test concerning autocorrelation coefficients 

1. Null hypothesis: Ho: pi=O, 

2. Altenative hypothesis: Ha: pk:;t:O, where px is the population autocorrelation 
coefficient oflag k. 

3. Test statistic: ri, the sample autocorrelation coefficient of lag k. 

4.Rejection region: At an approximate significance level of a::::,0,05, 

reject Ho if Irk 1>2/~n. 
In this case n=96, 2/~96=0,2, so Irk J>0,2, (-0,2; 0,2) is interval of confidence. 
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To check which model fits better present data package S-PLUS was used, result are 

presented by following Table 4.5. 

Results of Akaike Diagnostic Test 

Table 4.5. 

Model AIC 
AR(l) 1484,57 
MA(l) 1499,93 
ARMA(l,l) 1485,92 

Where AIC is Akaike information criterion, which shows fitness of model. 

AIC=nln(S/n)+2p, where Sis the sum of squared residuals up to time T(the residuals are 

the within-sample one-step-ahead forecast errors), n is number of observations, p denotes 

the number of parameters fitted in the model. As lower the value of AIC, as better model 

fits to the data. AIC for AR(l) is lowest value, so AR(l) suits better than other models. 

The results of forecasting by using program in Delphi are shown below: 

Plot of forecasts by ARIMA(l,0,0) in Delphi 

1[2]=66426,46 
1[3]=66519.20 
1[4]=66288.01 
1[5}=65849,15 
1[6}=66187 ,51 
1[71=66150,92 
1[8}=66636.95 
1[9]-66473.87 
1[10}=67335,45 
![11}=68787.49 
1112],68565.64 

1•[31=66338,00 
y[4J=65780,00 
y[51=66184 ,00 
y[61=66058,00 
y[7J=66654 .00 
i,[8]=66362.00 
y[91•67111.00 
y[1 0]=68769,00 
y[11 )=68764,00 
y[12]=6700B.OO 

Figure 4.9. 
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Forecasts by ARIMA(l,0,0) in Delphi 

Table 4.6. 
Forecasts Actual values 
66426 66523 
66519 66338 
66288 65780 
65849 66184 
66187 66058 
66150 66654 
66636 66362 
66473 67111 
67335 68769 
68787 68764 
68565 67008 

4.2.2. Forecast for 2003 

To make a forecasting for 2003 year, the best model should be chosen, it is a model, 

which is not very complicated and at the same time gives least error. By comparing 

results, which were gotten before, forecast accuracy of three applied models is equal to 

values presented by Table 4. 7. 

Table for errors of forecasting 

Table 4.7. 

Model MAD 

Moving Average Forecasting Model 916,12 

An Exponential-Smoothing Forecasting 631,31 

Model 

AR(l) 516,36 

From this results follows that AR(l) model fits better then other applied models. So this 

model will be applied for forecasting 2003. 
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Plot of forecasted values by ARIMA(l,0,0) in Delphi 

Figure 4.10. 

Forecasted values by ARIMA(l,0,0) in Delphi 
Table 4.8. 
68560 
68579 
68600 
68622 -- 
68644 
68665 
68687 
68709 
68731 
68753 
68774 
68796 

4.3. The Number of Engineering Department's students 

Total number of students at the Faculty of Engineering according to academic years for 

period from 1994 to 2004 is represented by following table and Figure 4.11. 
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Academic Year Number of students 
1994-1995 1203 
1995-1996 835 
1996-1997 835 
1997-1998 788 
1998-1999 896 
1999-2000 951 
2000-2001 1230 
2001-2002 1288 
2002-2003 1331 
2003-2004 1450 

Plot for data of Engineering Department students number 

Number of students j-+- Number of \ 
students 

1600 
1400 
1200 
1000 
800 
600 
400 
200 
0 

... •,, 

1994- 1995- 1996- 1997- 1998- 1999- 2000- 2001- 2002- 2003- 
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

Figure 4.11. 

4.3.1. Forecast for academic year 2004-2005 by Exponential-Smoothing Model 

As clear from the Table 4.9. the number of Engineering Department students in academic 

year 2004-2005 is equal to 1453,79 with forecasting error s= 209,785. 
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Implementation of forecasting by Exponential-Smoothing method in Excell 

Table 4.9. 
Forecast, 

Number of T=1, Forecast 

Year students St St(2) St(3) a=0,2 Error 

1994-1995 1203 1203 1203 1203 

1995-1996 835 1129,4 1188,28 1200,056 1203 368 

1996-1997 835 1070,52 1164,728 1192,99 982,2 147,2 

1997-1998 788 1014,016 1134,586 1181,309 849,72 61,72 

1998-1999 896 990,4128 ·1105,751 1166,198 747,92 148,08 

1999-2000 951 982,5302 1081,107 1149,18 760,472 190,528 

2000-2001 1230 1032,024 1071,29 1133,602 811,647 418,353 

2001-2002 1288 1083,219 1073,676 1121,617 1018,95 269,0503 

2002-2003 1331 1132,775 1085,496 1114,392 1184,967 146,0334 

2003-2004 1450 1196,22 1107 ,641 1113,042 1310,9 139,1002 

forcec. 2004-2005 1453,79 

MAD 209,785 

4.3.2. Forecast for academic year 2004-2005 by using model AR(l) 

Implementation of forecasting with ARIMA(l,0,0) in Delphi 

Figure 4.12. 
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Program gives forecast for academic year 2004-2005, which is equal to 1464 students. 

4.4. Summary 

Two examples of implementation of forecasting methods are considered. For the first one 

which is world petroleum production forecasting, three forecasting methods were used, 

they are Moving Average method, Exponential-Smoothing forecasting method and ARIMA 

model. The implementation was done by two ways in Excel and with Delphi program help. 

Als6 S-PLUS applied package was used for model diagnostic, like a result ARIMA(l, 1,0) 

model was chosen for forecasting. 

The second example is prediction of Engineering Department students number. Forecasting 

was implemented by using Exponential-Smoothing model and AR(l) model. 

70 



CHAPTERS 

NETWORK TRAFFIC FORECASTING 

5.1. Overview 

In planning for the future needs of any complicated system, accurate forecasting of the 

workload is important to access future capacity requirements, and to plan for changes. 

A detailed forecast of traffic patterns allows for more accurate planning and better 

decisions. If hardware changes are required at some point in a coming year, the model 

could estimate when traffic levels are likely to be lowest. If a particular backbone link is 

approaching maximum capacity, a detailed model of the traffic patterns on that link could 

predict when the capacity is likely to be exceeded. The ability to make forecasts two or 

more years in advance has great advantages for planning for future requirements. 

One of the key issues in measurement-based network control is to predict the bandwidth 

requirement in a next control time interval based on the online measurement of traffic 

characteristics. Therefore, traffic prediction plays an important role in network control. The 

goal is to forecast future traffic variations as precisely as possible, based on the measured 

traffic history. Traffic predictability denotes the possibility for prediction to satisfy some 

precision requirement over desired prediction control time interval. On one hand, a large 

prediction interval is needed to provide sufficient time for control actions, and to offset the 

inevitable delays caused by traffic measurement (sampling/ smoothing) and traffic 

prediction (modeling/computing). On the other hand, a small prediction error is desirable 

for the following reason: Control actions based on erroneous prediction may inadvertently 

compromise the control performance. To overcome this problem, one must usually be 

conservative and set aside network resources, specifically the bandwidth resource in this 

paper. Thus, in order to achieve high resource utilization, a network controller would prefer 

precise prediction. Unfortunately, prediction accuracy deteriorates quickly as the prediction 

interval increases. 

There are many factors affecting the amount of traffic, most of which cannot be measured 

or identified. To predict probable future traffic, the best available basis is an analysis of 

previously observed traffic patterns. The first requirement for an adequate model is that the 
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model must be a time series model; also it should be model which can accept non­ 

stationary data. A time series model that fits these criteria is the autoregressive integrated 

moving average process (ARI.MA). 

5.2. Data 

The data used in this paper was taken from Near East University's computer center and 

consists of daily packet totals, between January 13, 2004 and Mart 8, 2004. The data is 

presented by Table 2, represented in Appendix and Figure 5 .1. And the part of this table is 

shoV1111 below: 

Date Traffic IN (bytes) Traffic OUT (bytes) Traffic (bytes) 

08.03.2004 43.977.48~ 115.642.494 159.619.978 

07.03.200~ 66.971.974 'I 50.424.19t 217.396.16S 

06.03.2004 71.250.79:: 218.398.21( 289.649.00:: 

05.03.2004 87.176.80'.: 303. 7 43.898 390.920.701 

04.03.2004 94.620.971 247.238.424 341.859 .401 

0303.2004 73.123.069 314.037.94C 387.161.00f 

02 03.2004 591.336.560 306.554.361 897.890.921 

0'1.03.2004 61.119.094 266.353.130 327.472.224 

Figure 5.1. 

5.3 . Missing Data 

The data for February 22 is missed. There are two options for dealing with missing data: 

ignore them and omit those data points, or estimate the missing points. Because the 

ARIMA model examines the pattern of data over time, estimating the missing points and 

preserving the overall pattern was judged to be more desirable. 
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5.4. Model Identification 

The purpose of the model identification step is to determine likely values for p, d and q. 

Once one or more promising sets of (p,d,q) have been identified, the model parameters for 

those orders can be estimated, diagnostic tests can be run, and the resulting model forecasts 

can be examined. 

Differencing is required to make data stationary. Figure 5.2 shows the data without 

differencing and Figure 5. 3 after first-order differencing. 

Plot of actual data for Network Traffic 

Traffic Total / -.- traffic total 

2000000000 

1500000000 

1000000000 

500000000 

0 

Figure 5.2. 

Plot of Network Traffic data after first-order differencing 

first-order difference 

2000000000 
1500000000 
1000000000 
500000000 

0 
-500000000 

-1000000000 
-1500000000 
-2000000000 - 

Figure 5.3. 

After differencing of first order stationarity is reached, so d=l . 
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Once stationarity have been addressed, the next step is to identify the order (i.e., the p and 

q) of the autoregressive and moving average terms. 

The acf and partial acf was calculated by using the package S-PLUS. Figure 5.4 and Figure 

5.5 show the output of this data. 

Autoregression is determined by examining the pattern of autocorrelations. If all values 

except the first are 0, p should be 0. Continually decreasing values indicate a p of 1, and a 

mixture of increasing and decreasing values mean a p of 2. 

The interval of confidence is 1Thl>2/"'1n, or (-0,26;0,26). 

Let's assume that null hypothesis is 'all the correlations are equal to zero', by the test 

concerning autocorrelations coefficients, if I r» j>2/"'1n, then reject null hypothesis. All 

autocorrelations components accept first inside of confidence interval, so there are no 

correlations between actual data. 

Autocorrelation plot 

Series kat$V1 

(.1:::, 
6 

-·-------,-------· 
·15 0 5 10 

Figure 5.4. 

The moving average is determined in a similar fashion, by examining the pattern of the 

partial autocorrelations, again after the data has been differenced. The meaning of the 

patterns is the same as for the auto regression. 
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Partial Autocorrelation plot 

Series : kat$V1 

<'·I 
ci 

·15 
Lag 

Figure 5.5. 

As seen in the Figure 5.4, Figure 5 .5 possibly indicatingp= 1, q=O or possibly q= l. 

5.5. The Model Parameters 

Two models were chosen by the previous step ARIMA(l,1,0) and ARIMA(l,1,1). 

By using the program in Delphi parameters of model ARIMA(l,1,0) and ARIMA(l,1,1) 

also errors of forecasting were found. Following table shows estimated parameters and 

error of forecasting. 

Ta bite of forecasting errors 
Table 5.l. 

Model Estimated Parameters MAD 
AllIJ\,fA(l,1,0) ¢1 = -0,385 265.940.692 
ARIMA(l,1,1) ¢1 = --o,3s,e1 = -0,91 340.966.206 

5.6. Simulation Results 

The available data is from 13th January through 81h March. To test the ARIMA model's 

ability to predict across a week, the model was given only the data from February through 
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March, and was asked to forecast the Network traffic for last week from l " March to i11 

March, which is known. 

This prediction was then compared to the actual data for that week. · 

First of all ARIMA(l,1,0) was checked. Forecasting for one week from I" March to 7th 

March was implemented by using present model. Figure 5.6 shows the comparison 

between actual data and forecasted values. Where blue line indicates actual values of 

Network traffic totals at the present week, and accordingly red line is the forecast for the 

same week. The forecast calculated by Delphi program is presented by Table 5.2. 

The mean absolute deviation of this model is equal to 265.940.692. 

Forecasting with ARIMA(l,1,0) for last week from 1 March to 7 March in Delphi 

Figure 5.6. 
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Forecasting with ARIMA(l,1,0) for last week from 1 March to 7 March in Delphi 
Table 5.2. 

Forecasts Actual values 
228.519.731 327.472.224 
75.426.106 897.890.921 
1080.335.362 387.161.009 
382.559.745 341.859.401 
299.335.698 390.920.701 
408.812.622 289.649.003 
295.878.862 217.396.169 

Second step is estimation of model ARilvt:A(l ,1,1 ), results are represented by Figure 5.7. 

Like at the previous case program output gives comparison of actual data for a week and 

forecasted values for the same week. Accordantly there is blue line indicating actual data 

and red line indicating forecasts. The forecast is presented by the Table 5.3 and the 

accuracy is 340.966.206. 

Forecasting with ARIMA(l,1,1) for last week from 1 March to 7 March in Delphi 

Figure 5.7. 
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Forecasting with ARIMA(l,1,1) for last week from 1 March to 7 March in Delphi 
Table 5.3. 

Forecasts Actual values 
281.278. 8 82 327.472.224 
196.536.344 897.890.921 
1.832.290.325 387.161. 009 
1.026.132.798 341.859.401 
359.368.666 390.920.701 
512.153.341 289.649.003 
424.257.941 217.396.169 

Analysis of the Figures 5.6 and 5.7 can be seen that the ARIMA(l,1,0) model's prediction 

was quite accurate. So from the previous model estimation follows that ARIMA(l ,1,0) fits 

more than ARIMA(l,1,1) to the considering process. So forecast for next week promise to 

be quite accurate too. The Network traffic forecast for one week from 91h March to 151h 

March was calculated by using ARIMA(l ,0,0) model and presented by Figure 5.8. 

One week prediction from 9 March to 15 March with ARIMA(l,1,0) in Delphi 

Figure 5.8. 
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The following Table 5.4 is the Delphi program's output, i.e. forecast for the week from 9 

March to 15 March. 

One week prediction from 9 March to 15 March with ARIMA(l,1,0) in Delphi 
Table 5.4. 
194.534.959 
180.563.916 
163.312.503 
147.325.655 
130.851.620 
114.565.279 
98.206.627 

5. 7. Summary 

The purpose of the work was to examine the feasibility of using time series analysis to 

make detailed prediction about network traffic. The close match between predicted and 

observed traffic levels suggests that this approach can be used for forecast and planning 

with some confidence. The stages of building ARIMA model were considered in detail, and 

ARIMA(l ,1,0) was chosen for forecasting, like a result one week network traffic prediction 

was gotten. 
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CONCLUSION 

The analysis of application of different forecasting models to industrial and non-industrial 

systems has been presented. The results of analysis demonstrate that the forecasting models 

based on time-series analysis are more accurate models. 

The description of naive models, econometric models and. time-series models has been 

given. As an example Moving Average forecasting model, Exponential Smoothing 

forecasting model and Box-Jenkins forecasting procedure are represented. The applications 

of these forecasting models to world petroleum production, number of students of 

Engineering faculty and network traffic analysis are given. The statistical data for 8 years 

for world petroleum production forecasting are taken. In the result of application of 

Moving Average model, Exponential-Smoothing model and Box-Jenkins forecasting 

procedure it was clear that time series models gives more accurate results. The accuracy of 

ARIMA model was better than other models. In the result identification and estimation the 

structure and parameters values of A.RIMA models has been found. The S plus package 

was used to select structure of ARIMA models. Different structures of ARil\llA models for 

given problems have been tested. The ARIMA(l,1,0) model was chosen for world 

petroleum production forecasting to obtain more accurate results. Also in the result of 

investigation ARIMA(l ,0,0) model was chosen for forecasting number of students of 

Engineering faculty. 

The analysis of Network Traffic shows that it has high order nonlinearity. For prediction 

model statistical data for one week has been taken. First-order differencing is applied to 

avoid from the trend. The ARIMA model was chosen to make short-term forecast. The S 

plus package was used to select structure of ARIMA models. For these models the values 

of parameters (p,d,q) were identified. The analysis of autocorrelation :function and partial 

autocorrelation :function plots show that ARIMA(l,1,0) is most suitable model for given 

network traffic problem. 

All forecasting model have been realized using Delphi programming. Simulation results of 

models have been gotten in numerical and graphical formats. 
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Results of this research work allow to learn theory of time series forecasting, practical part 

is necessary to realize the main ideas, and the creating of program for implementation of 

used forecasting methods makes this realizing more complete. 
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World Petroleum Production 
Table 1 

Year Mon1h Value ,(Mb/d) 
1995 1 61.845,09 
1995 2 62.366,37 
1995 3 61.622,49 
1995 4 62.422,38 
1995 5 62.427,01 
1995 6 61.563,90 
1995 7 62.522,78 
1995 8 62.641,34 
1995 9 63.041,18 
1995 10 62.705,11 
1995 11 62.903,93 
1995 12 63.292,91 
1996 1 63.454,63 
1996 2 63.855,80 
1996 3 63.704,33 
1996 4 63.559,26 
1996 5 63.557,57 
1996 6 63.885,49 
1996 7 63.975,96 
1996 8 63.645,90 
1996 9 64.110,92 
1996 10 64.467,82 
1996 11 64.925,84 
1996 12 65.501,23 
1997 1 65.781,99 
1997 2 66.143,83 
1997 3 66.119,91 
1997 4 66 665,64 
1997 5 66.000,64 
1997 6 65.244,31 
1997 7 65.694,78 
1997 8 66.569,91 
1997 9 66.917,73 
1997 10 67.453,45 
1997 11 67.307,54 
1997 12 67.125,03 
1998 1 67.655,63 
1998 2 68.020,28 
'1998 3 67.897,29 

APPENDIX 
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1998 4 67.762,26 
1998 5 67.219,59 
1998 6 66.952,63 
1998 7 66 821,78 
'1998 8 65.807,03 
1998 9 65.904,14 
1998 10 66.024,94 
1998 11 66.870,20 
1998 12 66.696,52 
1999 1 66.891,00 
1999 2 67.211,18 
1999 3 66.888,37 
1999 4 65.445,83 
1999 5 65.253,04 
1999 6 64.202,45 
1999 7 65.725,35 
1999 8 65.602,84 
1999 9 65.641,80 
1999 10 66.156,27 
1999 11 66.143,10 
1999 12 65.337,35 
2000 1 66.032,24 
2000 2 66.658,74 
2000 3 66.689,07 
2000 4 67.353,56 
2000 5 67 856,83 
2000 6 67.646,48 
2000 7 68.273,49 
2000 8 69.078,70 
2000 9 69.115,68 
2000 10 69.556,65 
2000 11 70 101,60 
2000 12 68.838,87 
2001 1 68.940,12 
2001 2 68.478,21 
2001 3 69.165,97 
2001 4 68.268,40 
2001 5 67.576,67 
2001 6 66.004,01 
2001 7 67.978,71 
2001 8 68.165,35 
2001 9 67.792,01 
2001 10 67.680,40 
2001 11 67.929,27 
2001 12 67.473,76 
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2002 1 66.391,57 

2002 2 66.523,81 
2002 3 66.338,93 
2002 4 65.780,53 

2002 5 66.184,34 

2002 6 66.058,17 

2002 7 66.654,99 

2002 8 66.362,88 

2002 9 67.111,00 

2002 10 68.769,01 
2002 '11 68.764,28 
2002 12 67.008,72 

Network Traffic Data 

Table 2 

Date Traffic IN (bvtes) Traffic OUT (bytes) Traffic (bytes) 

08.03.2004 43.977.48A 115.642.49~ 159.619.978 

07 03.2004 66.971.97-' 150.424.19~ 217.396.16S 

06 03.2004 71.250.79~ 218.398.210 289.649.002 

05.03.2004 87.176.802 303.743.898 390.920.701 

04.03.2004 94.620.977 247.238.42A 341.859.401 

03 03.2004 73.123.00S 314.037.940 387.161.009 

02.03.2004 591.336.56( 306.554.361 897.890.921 

01.03.2004 61.119.09J 266.353.13( 327.472.224 

29.02.2004 34054.227 239.101.257 273.155.484 

28.02.2004 48.987.49€ 217.398.944 266.386.44( 

27.02.2004 54.519.15( 291.121.07S 345.640.22£ 

26.02.2004 56.549.59~ 265.479.84f 322.029.444 

25 02.2004 48.656.45< 308.929.84€ 357.586.30( 

24.02.2004 55.225.95: 324.819.334 380.045.28€ 

2302 2004 56.353.281 296.938.55c 353.291 .834 

22.02.2004 C C 0 

21.02.2004 28.450.96~ 144.569.591 173.020.55E 

2002 2004 56033.43, 297.806.35€ 353.839.788 

19.02.2004 62.726.12E 321.770.94"1 384.497 .067 

18.02.2004 60.328.34!: 376.715.149 437.043.498 

17 02.2004 56.446.541 375.811.676 432.258.222 

16.02 2004 63.256.382 311.134.077 37 4.390.45S 

15.02.2004 32.296.557 190.217.226 222.513.783 

14.02.2004 32.984.73( 190.391.856 223.376.586 

13 02 2004 54032 262 275.605.620 329.637.882 

12.02.2004 72.233.950 308.485.016 380.718.966 
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11.02.2004 88.434.491 354.494.69( 442.929.187 
1002.200..: 83.432.091 351.884.64E 435.316.743 

09.02.200~ 115.284.57"1 351.229.601 466.514.172 

08.02.200< 64.316.??J 212.269.22£ 276.586.003 

07.02.2004 39.530.07E 206.322.251 245.852.32S 

06.02.2004 80.604.214 339.269.69( 419.873.904 

05.02.2004 76.473.14€ 1. 723 .415.694 1. 799 888 .84( 

04.02.2004 10.651.82'.: 51.488.60~ 62.140.42f 

03.02.200,: 44.826.112 154.210.73S 199.036.852 

02.02.2004 54.008.561 204.131.141 258.139.708 

01 02.2004 41.710.37< 149.557.45'. 191.267.827 

31.01.2004 63.081.70< 277.447.72( 340.529.42,: 

30.01.2004 148.776.60! 465.177.68£ 613.954.298 
29.01.2004 174.748.66( 413.560.191 588.308.851 

28.01.2004 100.104.084 375.684.152 475. 788.237 
27.01.2004 101.974.61( 381.099.552 483.074.162 

26.01.2004 140087.247 349. 704.22( 489. 791 .467 

25 01.2004 96.467 06: 138.140. 75( 234.607.815 

24.01.2004 72.303.507 162.504.40S 234.807 .911: 

23.01.2004 72.724.544 281.010. 757 353. 735 .301 
22 01.2004 58.474.91( 280.300.80( 338. 775. 71( 

21.01.2004 72.148.271 337.049.57< 409.197 .84!: 
20.01.2004 71.867.001 322.171.04~ 394.038.044 

19.01.2004 58.046.451 280.724.121 338.770.578 
18.01.2004 43.094.0·1, 103.329.04< 146.423.056 

17.01.2004 70.618.571 159.265.02'.: 229.883.594 
16.01.200<: 56.674.18( 130.417.571 187.091.751 
15 01.200; 58.810.98: 90.523.47i 149.334.46( 
'14.01.2004 87.570.561 231.312.341 318.882.91( 

13.01.2004 3.065.9·1, 4.128.884 7.194.801 
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THE GUIDE TO APPLIED PROGRAM 

First step: 

If suitable forecasting method is chosen, Form 1 makes calculation of forecasts, according 

to chosen method. 

Second step: 

On the left top comer are situated two windows. The left one with button 'Enter data' under 

it for entering data, second one shows index of time series, so it let us to be sure that data 

was entered right. 

Third step: 

1. The panel on the top of screen includes menu with titles of forecasting methods: 

Moving Average model, Exponential- Smoothing forecasting model, Box-Jenkins 

forecasting procedure, where last one has substrncture: ARJMA(l,0,0), 

AfilMA(l,1,0), ARIMA(l,1,1), ARJMA(2,0,0). Choose suitable method from 

menu. 

2. Results of forecasting according to chosen method will be written in the window 

with title 'Forecasts'. 

3. There is a chart to the right side from the window with forecasted values. It shows 

graph, which is created according to forecasted values. 

Forth step: 

If suitable model for given time series is not known, Form 2 is created to solve this 

problem. Form 2 includes menu with forecasting methods titles and windows for entering 

data like a Form 1. The aim of two windows below to show results, left one forecasted 

values, right one actual data. This interface was done for easiest comparing actual data, 

which are known with forecasted values. Also there is one small window with label 

'accuracy' on the lower part of screen. It shows error of forecasting, which was calculated 

accordantly to chosen method. 

Chart on the right side shows two graphs, where blue colored curve is actual data, and red 

colored curve is forecasted data. So it can be seen how much forecast is accurate. 
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Fifth step: 

After several methods were checked and accuracy was known, model can be chosen by 

following parameters: firstly model shouldn't be complicated, secondly, it should have least 

error. 

Sixth step: 

First Form gives forecasting by using method which was chosen on the previous steps. 
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unit Unitl; 

interface 

uses 
Windows, Messages, SysUtils, { Variants,} Classes, Graphics, Controls, Forms, 
Dialogs, StdCtrls, ExtCtrls, TeeProcs, TeEngine, Chart, Series, Menus, Unit2; 
const suntitled= 1; 

soverwrite=2; 
type 
TForml = class(TForm) 
Editl: TEdit; 
Buttonl: TButton; 
Edit2: TEdit; 
Label 1: TLabel; 
Chartl: TChart; 
Button2: TButton; 
Seriesl: TLineSeries; 
MainMenul: TMainMenu; 
movingaveral: TMenuitem; 
anexponentialsmoothingforecastmodel 1: TMenultem; 
ListBoxl: TListBox; 
Button3: TButton; 
Label2: TLabel; 
Buttons: TButton; 
Edit3: TEdit; 
File 1: TMenultem; 
Newl: TMenultem; 
Openl: TMenultem; 
Savel: TMenultem; 
Nl: TMenuitem; 
BoxJenkisl: TMenuitem; 
BoxJenkislOOl: TMenultem; 
BoxJenkinsforecastl: TMenuitern; 
BoxJenkinsl 102: TMenultem; 
Memo 1: TMemo; 
OpenDialogl: TOpenDialog; 
SaveDialogl: TSaveDialog; 
Saveasl: TMenultem; 
Exitl: TMenultem; 
Button4: TButton; 
procedure Buttonl Click(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure Button2Click(Sender: TObject); 
procedure movingaveral Click(Sender: TObject); 
procedure Button5Cbck(Sender: TObject); 
procedure Button3Click(Sender: TObject); 
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procedure anexponentialsmoothingforecastmodel 1 Click(Sender: TObject); 
procedure BoxJenkinsforecstprocedurel Click(Sender: TObject); 
procedure New 1 Click(Sender: TObj ect ); 
procedure Open l Click(Sender: 'I'Object); 
procedure Savel Click(Sender: 'I'Object); 
procedure BoxJenkis I 00 I Click(Sender: TObject); 
procedure BoxJenkinsforecastl Click(Sender: TObject); 
procedure BoxJenkinsl 102Click(Sender: TObject); 
procedure Saveasl Click(Sender: TObject); 
procedure ExitlClick(Sender: TObject); 
procedure Button4Click(Sender: TObject); 
private 
ffilename:string; 
filel 1 :Text; 
y :array[l..12]ofreal; 
f: array[l3 .. 24]ofreal; 
{ Private declarations } 

public 
{ Public declarations } 

end; 

var 
Form 1: TForml; 
code:integer; 
result: real; 
s :string; 
apos,n:integer; 

implementation 

{$R *dfm} 

procedure TForml .newl Click(Sender: TObject); 
begin 
Memol .visible:=true; 
Memo I .Lines. Clear; 
Memo I .Modified := False; 
end; 

procedure TForml .open 1 Click(Sender: TObject); 
var FileExt:String[ 4]; 
begin 
If opendialogl.execute then begin 
FileExt:=ExtractFileExt(OpenDialogl .Filename); 

Memol .visible:=True; 
Memo 1.Lines.LoadFrornFile(OpenDialogl .FileName ); 
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FFileName := OpenDialogl .FileNarne; 
Memol .SetFocus; 
Memol .Modi:fied := False; 
Memol .ReadOnly := ofReadOnly in OpenDialogl .Options; 

end; 
end; 

procedure TForml.Savel Click(Sender: TObject); 
begin 
if FFileNarne = LoadStr(sUntitled) then 
Save 1 Click(Sender) 

else 
begin 
Mernol .Lines.SaveToFile(FFileName); 
Memol.Modified := True{False}; 

end; 
end; 

procedure TForml .Saveasl Click(Sender: TObject); 
begin 
if SaveDialogl .Execute then 
begin 
ifFileExists(SaveDialogl .FileName) then 
if MessageDlg(FmtLoadStr(sOverwrite, [SaveDialogl .FileName ]), 
rntConfirmation, mbYesNoCancel, 0) <> idYes then Exit; 

Memo I .Lines. SaveToFile(SaveDialogl .FileName ); 
FFileName := SaveDialogl .FileName; 
Memo I .Modified:= False; 
end; 

end; 

procedure TForml .Button4Click(Sender: TObject); 
var 
i: integer; 
s I :string; 

begin 
If opendialogl .execute then begin 
FFileNarne := OpenDialogl .FileName; 
assignfi le( file 11,ffilenarne ); 
reset(file 11 ); 
i :==I; 
while not eof(filel 1) do 
begin 
readln(file 11,y[i ]); 
str(y [ i ],s I); 
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memol .text.=rnemo l .text+sl +#13#1 O; 
i:=i+l; 

end; 
end; 

end; 

procedure TForml .Button2Click(Sender: TObject); 
begin 
Halt; 
end; 

procedure TForml .Buttonl Click(Sender: TObject); 
var 
t:integer; 
begin 

val(editl .Text,t,code ); 
y[apos):=t; 
apos:=apos+ 1; 
edit2.Text:=inttostr(apos); 
editl .text:="; 

end; 

procedure TForm l .F ormCreate(Sender: TObj ect ); 
begin 
apos:=l; 
n:=l; 
edit2.Text:=inttostr(apos ); 
end; 

procedure TForml .movingaveral Click(Sender: TObject); 
var 
i :integer; 
begin 
for i:=12 to 23 do 
begin 
f[i+ 1] :=(y[i ]+y[i-1 ]+y[i-2 ]+y[i-3 ]+y[i-4 ])/5; 

end; 

for i:= 13 to 24 do 

begin 
seriesl .AddXY(i-11,f[i],",clRed); 
listboxl .Items. Add('fl'+formatfloat('O' .i )+']='+ formatfloat('O. 00',fl i]) ); 
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end; 

end; 

procedure TForml.Button5Click(Sender: TObject); 
begin 
Forml.Hide; 
Form2.Show; 

end; 

procedure TForml .Button3Click(Sender: TObject); 
begin 
listboxl .Clear; 
apos:=l; 
edi t2 .T ext:=in ttostr( apos ); 

end; 

procedure TForml. anexponentialsmoothingforecastmodel 1 Click( 
Sender: TObject); 

var 
i .integer; 
s,ss,sss:array[l..12] ofreal; 
begin 
s[l] :===y[l]; 
ss[ l ]:=y[l ]; 
sss[l] :=y[l]; 
for i:=2 to 12 do 
begin 
s[i] :=0 .2 *y[i]+O .8 *s[i-1 ]; 
ss[i] :=O .2 *s[i ]+0.8*ss[i-1 ]; 
sss[i ]:=0.2 *ss[i ]+O. 8 *sss[i-1]; 

end; 

fori:=l to 11 do 
begin 
f(i ]:=3 .8125 *s[i ]-4. 3 75 *ss[i]+ 1. 5625 *sss[i ]; 

end; 

for i:=1 to 12 do 
begin 
seriesl .AddXY(i,tli],",clRed); 
listboxl .Items.Add('f('+formatfloat('O',i )+']='+ formatfloat('O .00',f[i ])); 

end; 

end; 
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procedure TForml .BoxJenkinsforecstprocedurel Click(Sender: TObject); 
var 
i:integer; 
v,w,z,vv,ww,vw,vz,wz:array[l .. l O] of Double; 
d,dl ,d2,d3 ,a,b,c,sumv,sumw,sumz,sumvv ,sumww,sumvw,sumvz,sumwz: real; 
begin 
sumv:=O; 
sumw:=O; 
sumz:=O; 
sumvv:=O; 
sumww:=0; 
sumvw:=O; 
sumvz:=O; 
sumwz:=O; 
for i:=l to 10 do 

begin 
v[i]:=y[i]; 
w[i] :=y[i+l ]; 
z[i]:=y[i+2]; 

end; 
for i:=l to 10 do 

begin 
vv[i] :=v[i ]*v[i ]; 
ww[i] :=w[i] *w[ i]; 
vw[i]:=v[i ]*w[i]; 
vz[i] :=v[i] *z[i]; 
wz[i]:=w[i ]*z[i ]; 
sumv:=sumv+v[i]; 
sumw:=sumw+w[i]; 
sumz:=sumz+z[i]; 
sumvv:=sumvv+vv[i]; 
sumww:=sumww+ww[i]; 
sumvw:=sumvw+vw[i]; 
sumvz:=sumvz+vz[i]; 
sumwz:=sumwz+wz[i]; 

end; 
d:=12*sumvv*sumww-12*sumvw*sumvw­ 
sumv*sumv*sumww+sumv*sumvw*sumw+sumw*sumv*sumvw-sumw*sumvv*sumw; 
d 1 :=sumz*sumvv*sumww-sumz*sumvw*sumvw­ 
sumv*sumvz*sumww+sumv*sumwz*sumvw+sumw*sumvz*sumvw­ 
sumw*sumwz*sumvv; 
d2:=12*sumvz*sumww-12*sumvw*sumwz­ 
sumz*sumv*sumww+sumz*sumvw*sumw+sumw*sumv*sumwz-sumw*sumvz*sumw; 
d3 :=12*sumvv*sumwz-12*sumvz*sumvw­ 
sumv*sumv*sumwz+sumv*sumw*sumvz+sumz*sumv*sumvw-sumz*sumvv*sumw; 
a:=dl/d; 
b:=d2/d; 
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c:=d3/d; 
f(l 3):=a+b*y[l l]+c*y[l2]; 
f(l 4 ]:=a+b*y[l 2]+c*fll 3]; 
for i := 15 to 24 do 

begin 
f(i] :=a+b*f1i-2]+c*fli-l]; 

end; 
for i:= 13 to 24 do 

begin 
seriesl.AddXY(i-11,f1i],",clRed); 
listboxl .Items.Add('f1'+formatfloat('O',i )+']='+ formatfloat('O. 00',fl:i]) ); 

end; 
end; 

procedure TForml.BoxJenkinsl 102Click(Sender: TObject); 
var 
v,w,yy,xx,xy:array[l.. l O]of real; 
y 1 :array[l..11] of real; 
f:array[l2 .. 24] of real; 
fl :array[12 .. 24] of real; 
i :integer; 
xaverage,yaverage,sumx,sumy ,sumxx,sumyy .sumxy.sxx.sxy ,bl ,b2 :real; 
begin 
for i:=l to 11 do 
begin 
y 1 [i] :=y [i+ 1 ]-y[i]; 
end; 

sumy:=0; 
sumx:=O; 
sumyy:=O; 
sumxx:=O; 
sumxy:=O; 
for i:=l to 10 do 
begin 
v(i]:=yl[i]; 
w[i]:=yl [i+l]; 

end; 
for i:=l to 10 do 
begin 
yy[i] :=w[i ]*w[i ]; 
xx[i] :=v[i ]*v[i]; 
xy[i] :=v(i]*w[i ]; 
sumy:=sumy+w[i]; 
sumx:=sumx+v[i]; 
sumxx:=sumxx+xx[i ]; 
sumyy :=sumyy+yy [i]; 
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sumxy =sumxy+xy [i]; 
end; 

xaverage:=sumx/10; 
yaverage:=sumy/10; 
sx:x:=sumx:x-(sumx*sumx)/1 O; 
sxy:=sumxy-(sumx*sumy)/1 O; 
bl :=sxy/sxx:; 
b2 :=yaverage-b 1 *xaverage; 
f112]:=b2+bl *yl[l l]; 
fl [12] :=y[l l ]+fl:12 ]; 
for i:=13 to 24 do 
begin 
f[i]:=b2+bl *f[i-1]; 
fl [i]:=fl [i-1 ]+f1i]; 

end; 

fori:=13 to 24 do 
begin 
series I .AddXY(i,fl [i],",clRed); 
listboxl .Items.Add('f1'+formatfloat('O',i )+']='+ formatfloat('O .00',fl [i]) ); 

end; 
end; 

procedure TForml .BoxJenkinsforecastl Click(Sender: TObject); 
var 
i:integer; 
v,w,z,vv,ww,vw,vz,wz:array[l .. l O] of Double; 
d.dl ,d2,d3 ,a,b,c,sumv,sumw,sumz,sumvv,sumww,sumvw,sumvz,sumwz: real; 
begin 
sumv:=O; 
surnw:=O; 
sumz:=O; 
sumvv:=O; 
sumww:=O; 
sumvw:=O; 
surnvz:=O; 
sumwz:=0; 
fori:=l to !Odo 

begin 
v[i]:=y[i]; 
w[i] :=y[i+ 1 ]; 
z[i]:=y[i+2]; 

end; 
fori:=l to lOdo 

begin 
vv[i] :=v[i] *v[i]; 
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ww[i] :=w[i] *w[ i]; 
vw[i]:=v[i ]*w[i]; 
vz[i ]:=v[i] *z[i]; 
wz[i]:=w[i]*z[i]; 
sumv:=sumv+v(i]; 
sumw:=sumw+w[i ]; 
sumz:=sumz+z[i]; 
sumvv:=sumvv+vv[i ]; 
sumww:=sumww+ww[i]; 
sumvw:=sumvw+vw[i ]; 
sumvz :=sumvz+vz[ i]; 
sumwz:=sumwz+wz[ i]; 

end; 
d:= 12 *sumvv*sumww-12 *sumvw*sumvw­ 
sumv*sumv*sumww+sumv*sumvw*sumw+sumw*sumv*sumvw-sumw*sumvv*sumw; 
dl :=sumz*sumvv*sumww-sumz*sumvw*sumvw­ 
sumv*sumvz*sumww+sumv*sumwz*sumvw+sumw*sumvz*sumvw­ 
sumw*sumwz*sumvv; 
d2:=12*sumvz*sumww-12*sumvw*sumwz­ 
sumz*sumv*sumww+sumz*sumvw*sumw+sumw*sumv*sumwz-sumw*sumvz*sumw; 
d3 := 12 *sumvv*sumwz-12 *sumvz*sumvw- 
sumv" sumv*sumwz+sumv*sumw*sumvz+sumz*sumv* sumvw-sumz*sumvv* sumw; 
a:=dl/d; 
b:=d2/d; 
c:=d3/d; 
f[l 3]:=a+b*y[l l]+c*y[l2]; 
f[14]:=a+b*y[12]+c*f113]; 
for i:=15 to 24 do 

begin 
f[i ]:=a+b*f1i-2]+c*f1i-l]; 

end; 
for i := 13 to 24 do 

begin 
seriesl.AddXY(i-11,fTi],",clRed); 
listboxl Jtems.Add('fl'+formatfloat('O',i )+']='+ formatfloat('O. 00',f[ i])); 

end; 
end; 

procedure TForml .BoxJenkisl 001 Click(Sender: TObject); 
var 
v, w,yy ,xx,xy: array[ 1 .. 12 ]of real; 
i:integer; 
xaverage,yaverage,sumx,sumy ,sumxx,sumyy,sumxy .sxx.sxy ,b 1,b2 :real; 
begin 
sumy:=O; 
sumx:=0; 
sumyy:=O; 
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sumxx:=0; 
sumxy:=0; 
for i:=1 to 11 do 
begin 
v[i]:=y[i]; 
w[i]:=y[i+l]; 

end; 
for i:=1 to 11 do 
begin 
yy(i]:=w[i]*w[i]; 
xx(i] :=v[i ]*v[i]; 
xy [i] :=v[i ]*w[i]; 
sumy:=sumy+w[i]; 
sumx:=sumx+v[i]; 
sumxx:=sumxx+xx[i ]; 
sumyy =sumyy+yy [i]; 
sumxy =sumxy+xy [i]; 

end; 
xaverage:=sumx/12; 
yaverage:=sumy/12; 
sxx:=sumxx-(sumx*sumx)/12; 
sxy=sumxy-Isumx=sumyj/l Z; 
b 1 =sxy /sxx; 
b2 =yaverage-b 1 *xaverage; 
for i:=13 to 24 do 
begin 
f[i ]:=b2+b 1 *y[i-1 ]; 

end; 
for i:= 13 to 24 do 
begin 
seriesl .AddXY(i-11,fli],",c!Red); 
listboxl .Items.Add('f['+formatfloat('O' ,i)+']='+ formatfloat('O. 00' ,f[i])); 

end· · 
' end; 

procedure TForml .Exitl Click(Sender: TObject); 
begin 
close; 
end; 

end. 

99 



unit Unit2; 

interface 

uses 
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
Menus, ExtCtrls, TeeProcs, TeEngine, Chart, StdCtrls, Series; 
const suntitled=l; 

soverwrite=2; 

type 
TForm2 = class(TForm) 
MainMenul: TMainMenu; 
ListBoxl: TListBox; 
ListBox2: TListBox; 
Button I: TButton; 
Editl: TEdit; 
Edit2: TEdit; 
Chartl: TChart; 
rnovingaverage l: TMenuitem; 
movingaverageforecastmodell: TMenultem; 
exponentialsmoothingforecastmodell: TMenultem; 
BoxJenkinsforecastprocedurel: TMenuitem; 
Nl 001: TMenultem; 
N2001: TMenultem; 
Button2: TButton; 
Lab ell: TLabel; 
Seriesl: TLineSeries; 
Series2: TLineSeries; 
ListBox3: TListBox; 
NllOl: TMenuitem; 
Nl 111: TMenultem; 
Edit3: TEdit; 
Edit4: TEdit; .. 
Openl: TMenultem; 
Savel: TMenultem; 
Saveasl: TMenultem; 
Exitl: TMenultem; 
Newl: TMenultem; 
OpenDialogl: TOpenDialog; 
SaveDialogl: TSaveDialog; 
Memol: TMemo; 
Button3: TButton; 
procedure Button I Click(Sender: TObject); 
procedure Button2Click(Sender: TObject); 
procedure FormCreate(Sender: TObject); 
procedure movingaverageforecastmodell Click(Sender: TObject); 
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procedure exponentialsmoothingforecastmodel 1 Click(Sender: TObject); 
procedure NlOOl Click(Sender: TObject); 
procedure N2001 Click(Sender: I Object); 
procedure Nl 1 Ol Click(Sender: TObject); 
procedure NI 111 Click(Sender: TObject); 
procedure Open 1 Click(Sender: TObject); 
procedure NewlClick(Sender: TObject); 
procedure SavelClick(Sender: TObject); 
procedure Saveasl Click(Sender: TObject); 
procedure ExitlClick(Sender: TObject); 
procedure Button3 Click(Sender: TObject); 

private 
{ Private declarations } 
ffilename:string; 
filel :Text; 
y : array[l..24 ]of real; 

public 
{ Public declarations } 

end; 

var 
Form2: TF01m2; 
apos2,n:integer; 
code:integer; 
dev:array[l .. 12]ofreal; 
mad: real; 

implementation 

{$R *.DFM} 

procedure TForm2.Newl Click(Sender: TObject); 
begin 
Memol .visible:=true; 
Memo I .Lines. Clear; 
Memo I.Modified:= False; 
end; 

procedure TForm2.0penlClick(Sender: TObject); 
var FileExt:String[4]; 
begin 
If opendialogl .execute then begin 
FileExt:=ExtractFileExt(OpenDialogl .Filename); 

Memol .visible:=True; 
Memol .Lines.LoadFromFile(OpenDialogl .FileName); 
FFileName := OpenDialogl .FileName; 
Memo l .SetFocus; 
Memo! .Modified:= False; 
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Memo I .Read Only := ofReadOnly in OpenDialogl .Options; 

end; 
end; 

procedure TForm2. Savel Click(Sender: TObject); 
begin 
if FFileName = LoadStr(sUntitled) then 
Save 1 Click(Sender) 

else 
begin 
Memo I .Lines. SaveToFile(FFileName ); 
Memol .Modified:= True{False}; 
end; 

end; 

procedure TForm2.Saveasl Click(Sender: TObject); 
begin 
if SaveDialogl .Execute then 
begin 
if FileExists(SaveDialogl .FileName) then 
if MessageDlg(FmtLoadStr(sOverwrite, [SaveDialogl .FileName ]), 
mtConfirmation, mbYesNoCancel, 0) <> idYes then Exit; 

Memo I .Lines. SaveToFile(SaveDialogl .FileName ); 
FFileName := SaveDialogl.FileName; 
Memol .Modified:= False; 
end; 

end; 

procedure TForm2.Exitl Click(Sender: TObject); 
begin 
close; 
end; 

procedure TFom12.Button3Click(Sender: TObject); 
var 
i: integer; 
sl :string; 

begin 
If opendialogl.execute then begin 
FFileName := OpenDialogl .FileName, 
assignfile(file] ,ffilename ); 
reset(filel ); 
i:=l; 
while not eof(filel) do 
begin 
readln(file l ,y[i]); 
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str(y[i],sl); 
memol .text:=memol .text+sl +#13#1 O; 
i:=i+l; 

end; 
end; 
end; 

procedure TForm2.Buttonl Click(Sender: TObject); 
var 
t:integer; 
begin 
val ( editl .T ext,t,code ); 
y [ apos2] :=t; 
apos2:=apos2+1; 
edit2.Text:=inttostr(apos2); 
editl .text:="; 

end; 

procedure TForm2.Button2Click(Sender: TObject); 
begin 
listboxl .Clear; 
listbox2.Clea.r; 
apos2:=l; 
edit2.Text:=inttostr(a.pos2); 

end; 

procedure TForm2.FormCrea.te(Sender: TObject); 
begin 
apos2:=l; 
n:=l; 
edit2.Text:=inttostr(a.pos2); 
end; 

procedure TForm2.movingaverageforeca.stmodel 1 Click(Sender: TObject); 
var 
i: integer; 
ace: real; 
f:array[13 .. 24] of real; 
begin 
mad:=O; 
for i:=13 to 24 do 
begin 
f[i ]:=(y[i-1 ]+y[i-2]+y[i-3 ]+y[i-4 ]+y[i-5 ])/5; 
dev[i] := Abs(f[i ]-y[i ]); 
mad :=mad+dev[i]; 

end; 
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acc:=mad/12; 
for i:= 13 to 24 do 
begin 
series I .AddXY(i-11,fl)],",clRed); 
series2.AddXY(i-l 1,y[i ],",c!Blue ); 
listboxl .Items.Add('fT'+formatfloat('O',i)+']='+ formatfloat('O. 00',fTi]) ); 
listbox2 .Items.Add('y['+formatfloat('O',i )+']='+ fmmatfloat('O. 00',y[i])); 

end; 
listbox3 .Items.Add(formatfloat('O. 00',acc )); 
end; 

procedure TForm2. exponentialsmoothingforecastmodel 1 Click(Sender: TObj ect ); 
var 
i :integer; 
mad,acc :real; 
s,ss,sss:array[L 12] ofreal; 
f:array[2 .. 12] of real; 
begin 
s[l]:=y[l]; 
ss[l]:=y[l]; 
sss[l] :=y[l]; 
for i:=2 to 12 do 
begin 
s[i] :=O .2 *y[i]+0.8 *s[i-1 ]; 
ss[i] :=0.2 *s[i ]+O. 8 *ss[i-1 ]; 
sss[i] :=0.2 *ss[i ]+O. 8 *sss[i-1 ]; 

end; 

mad:=O; 
for i:=2 to 12 do 
begin 
£Ti ]:=3 .8125 *s[i-1]-4.375 *ss[i-1 ]+ 1.5625 *sss[i-1]; 
dev[i] :=Abs(fTi]-y[i ]); 
mad :=mad+dev[i ]; 

end; 
acc.=mad/Ll ; 

for i:=2 to 12 do 
begin 
seriesl .AddXY(i,fTi],",clRed); 
series2.AddXY(i ,y[i ],",clblue ); 
listboxl .Items.Add('f['+formatfloat('O',i )+']='+ formatfloat('O. 00',f[i])); 
listbox2 .Items. Add('y ['+formatfioat('O ',i )+ ']='+ fo rmatflo at('O. 00 ',y [i])); 

end; 
listbox3 .Items. Add(formatfloat('O. 00' ,acc) ); 

end; 

104 



procedure TForm2.Nl 001 Click(Sender: TObj ect); 
var 
v,w,yy,xx,xy,f,dev:array[l .. 12]ofreal; 
i:integer; 
xaverage,yaverage,sumx,sumy ,sumxx,sumyy ,sumxy .sxx.sxy ,b 1, b2,acc,mad :real; 
begin 
sumy:=O; 
sumx:=O; 
sumyy:=O; 
sumxx:=O; 
sumxy:=O; 
for i:=l to 11 do 
begin 
v[i]:=y[i]; 
w[i]:=y[i+ l]; 

end; 
for i:=1 to 11 do 
begin 
yy[i] :=w[i )*w[i ]; 
xxji] :=v[i )*v[i]; 
xy[i] :=v[i )*w[i]; 
sumy:=sumy+w[i]; 
sumx:=sumx+v[i ]; 
sumxx:=sumxx+xx[i]; 
sumyy :=sumyy+yy [i]; 
sumxy =sumxy+xyji]; 

end; 
xaverage:=sumx/12; 
yaverage:=sumy/12; 
sxx:=sumxx-(sumx*sumx)/12; 
sxy:=sumxy-(sumx*sumy)/12; 
bl :=sxy/sxx; 
b2 :=yaverage-b 1 *xaverage; 
mad:=O; 
f[l]:=y[l]; 
for i:=2 to 12 do 
begin 
f[i):=b2+b1 *y[i-1); 
dev[i] :=Abs(f[i]-y[i ]); 
mad :=mad+dev[i ]; 

end; 
acc:=mad/12; 

for i:=l to 12 do 
begin 
seriesl .AddXY(i,f[i],",clRed); 
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series2.AddXY(i,y[i ]," ,clBlue ); 
listboxl .Items.Add('fl'+formatfloat('O',i )+']='+ formatfloat('O. 00' ,fli]) ); 
listbox2 .Items. Add('y ['+formatfloat('O' ,i )+']='+ formatfloat('O. 00',y[i]) ); 

end; 
listbox3 .Items. Add(formatfloat('O. 00',acc) ); 

end; 

procedure TForm2.N2001Click(Sender: TObject); 
var 
i .integer; 
v,w,z,vv,ww,vw,vz,wz:array[l .. 10] ofDouble; 
dev,f:array[l..12] ofreal; 
d,dl ,d2,d3,a,b,c,sumv,sumw,sumz,sumvv,sumww,sumvw,sumvz,sumwz,acc,mad: real; 
begin 
sumv:=O; 
sumw:=O; 
sumz:=O; 
sumvv:=O; 
sumww:=O; 
sumvw:=O; 
sumvz:=O; 
sumwz:=O; 
for i:=l to 10 do 

begin 
v[i]:=y[i]; 
w[i]:=y[i+ l]; 
z[i]:=y[i+2]; 

end; 
fori:=l to lOdo 

begin 
vv[i] :=v[i ]*v[i ]; 
ww[i] :=w[i J *w[i]; 
vw[i]:=v[i ]*w[i]; 
vz[i ]:=v[i] *z[i]; 
wz[i ]:=w[i] *z[i]; 
sumv:=sumv+v[i]; 
sumw:=sumw+w[i]; 
sumz:=sumz+z[i]; 
sumvv=sumvv+vvji]; 
sumww:=sumww+ww[i]; 
sumvw:=sumvw+vw[i]; 
sumvz:=sumvz+vz[ i]; 
sumwz:=sumwz+wz[i]; 

end; 
d:=12*sumvv*sumww-12*sumvw*sumvw­ 
sumv*sumv*sumww+sumv*sumvw*sumw+sumw*sumv*sumvw-sumw*sumvv*sumw; 
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dl :=sumz*sumvv*sumww-sumz*sumvw*sumvw­ 
sumv*sumvz*sumww+sumv*sumwz*sumvw+sumw*sumvz*sumvw­ 
sumw*sumwz*sumvv; 
d2:=12*sumvz*sumww-12*sumvw*sumwz­ 
sumz*sumv*sumww+sumz*sumvw*sumw+sumw*sumv*sumwz-sumw*sumvz*sumw; 
d3 :=12*swnvv*sumwz-12*sumvz*sumvw­ 
sumv*sumv*sumwz+sumv*sumw*sumvz+sumz*sumv*sumvw-sumz*sumvv*sumw; 
a:=dl/d; 
b:=d2/d; 
c:=d3/d; 
mad:=O; 
f[l ]:=y[l ]; 
f[2]:=y[2];. 
for i:=3 to 12 do 

begin 
f[i ]:=a+b*y[i-2]+c*y[i- l]; 
dev[i] := Abs(f[i ]-y[i ]); 
mad:=mad+dev[i]; 

end; 
acc:=mad/12; 
for i:= l to 12 do 

begin 
series I .AddXY(i,f[i],",clRed); 
series2.AddXY(i,y[i ]," ,clBlue ); 
listboxl .Items.Add('f['+formatfloat('O',i )+']='+ formatfloat('O. 00',f[i]) ); 
listbox2 .Items.Add('y ['+formatfloat('O' ,i )+']='+ formatfloat('O. 00',y [i]) ); 

end; 
listbox3 .Items.Add(formatfloat('O. 00',acc )); 
end; 

procedure TForm2.Nl 101 Click(Sender: TObject); 
var 
v,w,yy,xx,xy,dev:array[l .. l O]ofreal; 
y 1 .array] l .. 11] ofreal; 
f:array[l..12] ofreal; 
fl: array[2 .. l 2 J ofreal; 
i:integer; 
xaverage,yaverage,sumx,sumy ,sumxx,sumyy ,sumxy ,sxx,sxy ,bl ,b2,acc,mad .real; 
begin 
fori:=l to 11 do 
begin 
y 1 [i J :=y[i+ 1 ]-y[i]; 

end; 
sumy:=O; 
sumx:=O; 
sumyy:=O; 
sumxx:=O; 
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sumxy:=O; 
for i:=l to 10 do 
begin 
v[i] :=y 1 [i]; 
w[i]:=yl[i+l]; 

end; 
for i:=l to 10 do 
begin 
yy[i] :=w[i ]*w[i]; 
xx[i] :=v[i ]*v[i ]; 
xy[i] :=v[i]*w[i]; 
sumy:=sumy+w[i]; 
sumx:=sumx+v[i]; 
sumxx:=sumxx+xx[i]; 
sumyy :=sumyy+yy [i]; 
sumxy=sumxy+xyji]; 

end; 
xaverage:=sumx/10; 
yaverage:=sumy/10; 
sxx:=sumxx-(sumx*sumx)/1 O; 
sxy:=sumxy-(sumx*sumy)/1 O; 
bl :=sxy/sxx; 
b2 :=yaverage-b 1 *xaverage; 
mad:=O; 
f[l]:=yl[l]; 
for i:=2 to 12 do 
begin 
f[i ]:=b2+b 1 *y 1 [i-1]; 
fl [i] :=y[i-1 ]+fli]; 
dev[i] := Abs(fl [i]-y[i ]); 
mad:=mad+dev[i]; 

end; 
acc:=mad/11; 
fori:=2 to 12 do 
begin 
seriesl .AddXY(i,fl [i ], ",cIRed); 
series2.AddXY(i,y[i],",clBlue ); 
listboxl .Items.Add('f['+fon11atfloat('O',i)+']='+ formatfloat('O .00',fl [i]) ); 
listbox2 .Items. Add('y ['+formatfloat('O' ,i)+']='+ formatfloat('O. 00',y[i]) ); 

end; 
listbox3 .Items.Add(formatfloat('O. 00',acc )); 
end; 

procedure TForm2.Nl 11 lClick(Sender: TObject); 
var 
v,w,vv,ww,yy,xx,xy,dev,devv:array[l .. l O]ofreal; 
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y 1 :array[l .. l 1] ofreal; 
f:array[l..12] ofreal; 
fl ,f2 :array[2 .. l 2] ofreal; 
i:integer; 
xaverage,yaverage,sumx,sumy ,sumxx,sumyy ,sumxy,sxx,sxy ,bl ,b2, tl ,acc,mad:real; 
begin 
for i:=l to 11 do 
begin 
y 1 [i] :=y[i+ 1 ]-y[i]; 

end; 
sumy:=O; 
sumx:=O; 
sumyy:=O; 
sumxx:=O; 
sumxy:=O; 
for i := 1 to 10 do 
begin 
v[i]:=yl [i]; 
w[i]:=yl [i+ I]; 

end; 
for i:=l to 10 do 
begin 
yy[i]:=w[i]*w[i]; 
xx[i] :=v[i ]*v[i ]; 
xy [i] :=v[i ]*w[i]; 
sumy:=sumy+w[i]; 
sumx:=sumx+v[i ]; 
sumxx==sumxx+xxjj l 
sumyy :=sumyy+yy [i]; 
sumxyr=sumxy+xyji]; 

end; 
xaverage:=sumx/10; 
y average: =sumy /10; 
sxx:=sumxx-(sumx*sumx)/1 O; 
sxy:=sumxy-(sumx*sumy)/1 O; 
bl =sxy/sxx; 
b2 =yaverage-b I *xaverage; 
mad:=O; 
f[l ]:=yl [1]; 
for i:=2 to 12 do 
begin 
f[i]:=b2+bl *yl [i-1]; 
fl [i ]:=y[i-1 ]+£Ii]; 
dev[i]:=Abs(fl [i]-y[i_; . 

end; 
for i:=2 to 11 do 
begin 
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vv[i ]:=dev[i]; 
ww[i]:=dev[i-rl ]; 

end; 
for i:=2 to 11 do 
begin 
yy[i]:=O; 
xx[i]:=O; 
xy[i]:=O; 

end; 
sumx:=O; sumy:=O; sumxy:=O; sumxx:=O; sumyy:=O; 

for i:=2 to 11 do 
begin 
yy[i]:=ww[i]*ww[i ]; 
xx [i] :=vv[ i] *vv [i]; 
xy[i] :=v[i ]*w[i]; 
sumy:=sumy+ww[i ]; 
sumx:=sumx+vv[i]; 
sumxx:=sumxx+xx[i]; 
sumyy :=sumyy+yy [i]; 
sumxy=sumxy+xyji]; 

end; 
sxx:=sumxx-(sumx*sumx)/1 O; 
sxy:=sumxy-(sumx*sumy)/1 O; 
tl :=sxy/sxx; 
fll]:=yl[l]; 

for i:=2 to 12 do 
begin 
f[i]:=b 1 *y 1 [i-1 ]-tl *dev[i-1]; 
£2[i] :=y[i-1 ]+£Ii]; 
devv[i] := Abs(£2[i ]-y[i ]); 
mad:=mad+devv[i]; 

end; 
acc:=mad/11; · 
for i :=4 to 11 do 
begin 
seriesl .AddXY(i,£2[i ],",clRed); 
series2.AddXY(i,y[i]," ,clBlue ); 
listboxl .Items.Add('f['+formatfloat('O',i )+']='+ formatfloat('O',f2[i ])); 
listbox2.Items.Add('y['+formatfloat('O',i)+']='+ formatfloat('O',y[i])); 

end; 
listbox3 .Items.Add(formatfloat('O. 00',acc )); 
Edit3 .Text:=formatfloat('0.00', b 1 ); 
Edit4.Text:=formatfloat('O.OO', tl ); 
end; 
end. 
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