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Chanter 1 

~~
THE USE OF VECTORS- 

Introduction:- 

/
Most engeneers are familiarwith the purpose of vectors, but perhaps not quite so

familiarwith their use.

Those who use them know how solvable they are for ,:ıxpressingvoltage and current

relations in a way that can easilybe understood, and how natural it becomes to visualize

even complex conditions in term of vectors, it should also be understood that, in addition

to their having an implicitvalue, vectors are the basicsofmany fault calculation.

BASIC CONCEPTS OF VECTORS-TECHNIQUE. 

Sinusoidal quantati es such as alternatingcurrent and voltage can be represented by

a vector.

In vector-technique as applied to electrical engineering, the main concern is with a

pictorial representation of relatios between two or more alternating quantities, such as

current and voltage, i.e. their relative magnitudes and phase-displacements, and not with

their values at any instant of time. For example el= Elsin wt and e2 = E2sin(wt + <l>),



two voltages represented by two vectors having lengths proportional to E 1 and E2, and

with angular displament <l> between them, as shown in Fig. 1- 1

El
Fig. 1-1

Since they have the same angular velocity, their magnitude and phase-displacement

are not affected by their relations but are the same at all instants.

When drawing vector diagrams, it is usual to shoose an arbitary line (reference-

vector) and give one of the vectors zero phase-displacement by drawing it along this line,

as El in the Fig. 1-1, we will consider right hand side as positive position. So any vector

will be dra~~ill be related to zero postion vector. (El in this figure).

In the electric point of view the vector length is usually made proportional to the

R.M.S. value of the quantity represented, rather than its maximum value.

By way of example, consider the vectors relating to a three-phase system. In Fig .
•

l-2(a), Ean, Ebn and Ecn are the voltage of the phase. Terminals a,b and c realtive to the

netural n.
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In Fig. 1-2(b), Ena, Enb and Enc are the voltages of tye neutral-terminal n relative

to the phase-terminals a,b and c.

bn

~ Enc
C

Ecn

'>----~Ean

Ebn

1-2(a)

Enb
•

Enc

Fig. 1-2(b)
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In Fig. 1-3(a), Ia, lb and le are the currents in the phase-wires, shown lagging

behine their driving voltages Ean, Ebn and Ecn by angular <l> 1, <1>2 and <1>3. It is often said

that the netural-current in is the vector-sum of the line cuurent, but since we consider the

currents acting away from the source In= - (Ia+ lb+ le). As shown in Fig. 1-2(a)

generator Ia
"' A A A

--

nı
a

Ib 7
-b

le 7
-C

In
Ln

le
"'Ecn.,.

¢3 
ı/
"- I Ean

/~/V<ı>ı
Ib

"*'"" I ~ 
Ia

Ebn

Fig. 1-3(a)

••.
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The following figures shows the lagging, leading interphase vectors:

Ecb
"" C

c, I
\ ..,,Eab

' Eca
' ' '>L....---~a ~----a

/

Eac
/

/

b

Lagging
Ebe Leading

* phase-sequence:

The term "phase-sequence" is use to describe the order in which vectors are palced

in relation to one another for counter-clockwise relation. The phase order a-b-c is called

positive-phase-sequence as shown in the figure above.

~
/

The phase order a-b-c is called negative-phase-sequenceas shown/ın the figure. If

•

all the vectors are in phase, they are said to have zero-phase-sequence.

V 
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VOLTAGE DROPS:

The voltage between any two points in a system of impedences is the vector-sum

of the cource-voltage and the voltage-drop in the impedence between the source and the

points under consideration as shown in Fig. 1-4,

ö/V~

b

Epb =IaX

Eab =Iaz

Ia
Fig. 1-4

VECTOR ALGEBRA

An impedence may be expressed as a vector-quantity comprising resistance and

reactance component at right angles, and may therefor be written algebricallyas Z = R+jX

(inductive) and Z = R-jX (capacitive). The numerical value of the impedance is the

modulus iz I = .J R2 + X2 .

The angle between the vector and the reference-line is the argument,

A= tan-1 XI R . 
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CHAPTER2 

2- SYMMETRICAL COMPONENTS:- 

The system impeedence in each phase are identical and the three phase voltage and

currents throughout the system are completly balanced, in other words they have equal

magnitudes in each phase and are displacedin ~ 3 phase by 120 degree.

In a balnced system, analysiscan proceed on a single-phase basis. The knowledge

of voltage and current in one phase is sufficint to completly determ~V &C) in the other

two phases. Real & reactive powers are simply three times the coressponding per phase

values.

Unbalanced system operation can result in an otherwise balanced system due to

unsymmetrical fault e.g live to ground fault or line to line fault. System operation may also

become unbalanced when laods are unbalaned as in the presence of large single phase

loads.

A more convenient method of analyıing unbalanced operation is through
••

symmetrical component when the three phase (V & C) which may be unbalanced are

transformed in to three sets of balanced (V & C) called symmetrcal components. In such a

transformation, the impedances presented by various power system elements to

7



symmetrical components are decoupled from each other resulting in independent system

networks for each component as balanced set.

2-2 SYMMETRICAL COMPONENT TRANSFORMATION 

A set of three balanced voltages (phasers) Va, Vb, Ve is characterized by equal

magnitudes and interphase differences of 120 degree. The set is said to have a phase

sequence abc (positive sequence) if Vb lags Va by 120 degree and Ve lags Vb by 120

degree. The three phasers can then be expressed in terms of the refernce phasor Va as

Va=Va Vb=a2 Va Vc=a Va' '

where the complex number operator a is defined as

a = e1120° 

It has the following properties

a = eJ240° = e-1120° =a• 

(2-1)

•

If the phase seqyence is acb (negative sequence), then

Va=VD.,Vb=aVc>., Vc=a2Va

8



Thus a set of balanced phasors is fully characterized by its refernce phasors (say

Va) and its phase sequence (positve or negative).

Suffix 1 is commonly used to indicate positive sequence. A set of (balanced)

positve sequence phasors is written as

Val, Vbl = ()(.2 Val, Vcl = a Val (2-2)

Similarly, suffix 2 is used to indicate negative sequence. A set of (balanced)

negative sequence phasors is written as

Vaz, Vb.= a Va., Vcı = d.2 Va, (2-3)

A set of three voltages (phasors) equal in magnitude and having the same phase is

said to have zero sequence. Yhus a set of zero sequence phasors is written as

Vao,, Vbo = Vao, Vco = Vao (2-4)

Consider now a set of three voltages (phasors) Va, Vb, Ve which in general may

be unbalanced. According to Fortesque's therom the three phasors can be the sum of

positve, negative and zero sequence phasors defined above. Thus
• •

Va=Val +Va2+Vao (2-5)

Vb = Vb1 + Vb2 + Vbo (2-6)

Vc = Vc 1 + Vc2 + Vco (2-7)

9



r . , ..., are called the

symmetrical components of the original p~asors set Va, Vb, Vc. The addition of

symmetical components as per Eqs. (2-5) to (2-7) to generate Va, Vb, Ve indicated by

Vaı

' 'ı•

Let us now express Eqs.-(1-5) to (1-7) in terms of refemce phasers Val, Va2,

Vao. •
Thus

I\.. 

~ ----------

(2-8)

Val+a2 Va2 + Vao

(2-9)

(2-1O)

10



These equations can be expressed in the matrix form

Va 1 1 ı I I Val

Vb = aı a 1 Va21 (2-11)

Vcl la aı 1 Vao

or

Vp=AVs (2-12)

where

Va

Vp= IVb

Ve

= vector of original phasor

Val

Vs= I Va2 ı = vector of symmetricalcomponent

Vao

1 1 1 ••
A= la2 a 1 (2-13)

a aı 1

we can write Eq. (2-12) as

Vs=A-1 Vp (2-14)

11



Computing A- 1 and utilizing relations (2- 1 ), we get

1 a a2

A-1= +11 a2 a (2-15)

1 1 1

In expanded form we can write Eq. (2-14) as

Va 1 = 1 /3 (Va + a Vb + a 2 Vc)

Va2 = 1/3 (Va + a 2 Vb + a Vc)

Yao= 1/3 (Va+ Vb+ Ve)

(2-16)

(2-17)

(2-18)

Equations (2- 16) to (2- 18) give the necessary relationships for obtaining

symmetrical components of the original phsors, while Eqs. (2-5) to (2- 7) give the

relationships for obtaining original phasers from the symmetrical components.

The symmetrical component transformations through given abpve in terms of

voltages hold for any set of phasers and therefore automatically apply for a set of currents.

Thus

Ip= A Is (2-1 ~)

and

Is= A-1 Ip (2-20)

12



where

IA lal

Ip= I lb and Is =i Ia2

le Iao

Of course A and A-1 are the same as given earlier.

In expanded form the relations (2-19) and (2-20) can be expressed as follows:

(I) Construction of current phasers from their symmetricalcomponents:

lal= lal + Ia2 + Iao (2-21)

(2-22)lb = a 2 lal + a Ia2 + Iao

le = a lal + a 2 Ia2 + Iao (2-23)

(ii) Obtaining symmetricalcomponents of current phasers:

Ia 1 = 1 /3 (Ia + a lb + a 2 le)
'

(2-24)

Ia2 = 1 /3 (Ia + a~lb + a le) (2-25,)

(2-26)Iao = 1/3 (Ia+ lb+ le)

Certain observation can now be made regarding a three-phase system with neutral

return as shown in Fig. 1-2.

13



'a or, ' JVa

Vab Yea

I rb
I

I I
I bıv:' c---.

I·
le

"'ln

'·.I 

The sum of the three line voltages will always be zero. Therefore, the zero

sequence component of line voltages is alwayszero, i.e.

Vabo = 1/3 ( Vab + Vbc +Vea)= O (2-27)

On the other hand, the sum of phase voltages (line to neutral) may not be zero so

that their zero sequence component Vao may exist.

Since the sum of the three line current equals the current in the neutral wire, we

have

Iao = 1/3 (Ia+ lb+ le)= 1/3 In (2-28)

i.e. the current in the neutral is tfiree times the zero sequence line current. If the neutral

connection is servered,

Iao = 1 /3 In = O (2-29)

i.e. in mı::absenceof a neutral connection the zero sequence line current is always zero.

Power inveriant means that the sum of powers of the three symmetrical component equals

the three-phase power.

14



Total complex power in a three-phase circut is given by

S = Vp2 Ip*= Va la*+ Vb lb*+ Ve le* (2-30)

or

S = [ A Vsf [Ais]*

= Vsr Ar A* ls* (2-31)

Now

1 a2a 1 1 1 1 O O

ArA*=I 1 a a2II a a2 11 = 3 IO 1 Ol=3U (2-32)

1 1 1 a2 a o o o

S = 3 Vsr U Is*= 3 Vsr Is*

= 3 Val lal*+ 3 Va2 la2* + 3 Yao lao*

= sum of summetricalcomponent powers

(2-33)

Example 2- 1 A delta connected balanced resistive load is connected across an

unbalanced three-phase supply as shown in Fig. 2;3. With currents in lines A and B

specified, find the symmetrical components of line currents. Also find the symmetrical

components of delta currents. Do you notice any relationship between symmetrical

components of line and delta currents. Comment.

15



A
10 L.]2_0

B 15 L::.§_o0

C

Fig. 1-3

Solution IA + 1B + IC = O

or

10 L30° + lSL-60° +le= O

:. le= -16.2 +j8.0 = 18L154 ° A

From Eqs. (2-24) to (2-26)

IA2 = 1/3 (10L30° + ISL(-60° +120°) + 18L(l54 ° +240° ))

= 10.35 + j9.3 = 14L42° A (i)

IA2 = 1/3 (10L30° +ISL(-60° +240° )+18L(l54° +120° ))

= -1.7 - j4.3 = 4.65L248° A

Iao = 1/3 (IA+ 1B +le)= O

(ii)

(iii)

From Eq. (2-2)

IBl = 14L282° A

IB2 = 4.65L8 °

Ibo= O A

lel = 14Ll62° A

le2 = 4.ö5L128° A

leo = O A

•

Check:

IA= 1Al+IA2+1Ao= 8.65+j5 = IOL30°

16



Converting delta load into equivalant star, we can redraw Fig. 2-3 as in Fig. 2-4.

A-----+----. IA

B IB 
C IC

Fig.2-4

Delta currents are obtained as follows

VAB= 1/3 (R(IA-IB)

Now

IAB = VAB/R = 1/3 (IA-IB)

similarly,

IBC = 1/3 (IB - le)

ICA = 1/3 (IC - IA)

Substituting the values of IA, 1B and IC, we have

IAB = 1/3 (10L30° - lSL-60°) = 6L86° A

IBC = 1/3 (lSL-60° - 18L154°) = 10.SL-41.5° A..
ICA = 1/3 (18L154 ° - IOL'.30°) = 8.3Ll 73 ° A

The symmetrical components of delta currents are

IABl = 1/3 (6L86° +10.SL'.(-41.5° +120° )+8.3L'.(173° +240° ))(iv)

= 8L72° A

17



IAB2 = 1/3(6L86° +10.SL(-41.5° +240° )+8.3L(173° +120° )) (v)

= 2.7L218° A

IAB =O (vi)

IBCI, IBC2, IBCO,ICAI, ICA2 and ICAO can be found by using Eq. (2-2).

Comparing Eqs. (i)and (iv), and (ii) and (v), the following relationship between

symmetrical components of line and delta currents are immediatelyobserved:

!Al 
IABI =-L30°J3 (vii)

IA2
IAB2 = -L-30°J3 (viii)

We can verify these by calculating IABI and IAB2 from Eqs. (vii) and comparing

the results with Eqs.(iv)and (v).

\
\')'

..

2-3 PHASE SHIFT IN STAR-DELTA TRANSFORMERS

18



We need to discuss the standard polarity marking of a single-phase transformer as

shown in Fig.1-5. The transformer ends marked with a dot have the same polarity.

-r, 12
LH

VHH' Vu_'

,I " I .Ho-- L

Therefore, voltage VHH is in phase with voltage VLL'. Assuming that the small

amount of magnetising current can be neglected, the primary current il entering the

dotted end cancels the demagnetising ampere-turns of the secondary current 12 so that il

and 12 with directions of flow as indicated in the diagram are in phase. If the directions of

12 is reversed, I 1 and 12 will be in phase opposition.

Consider now a star-delta transformer with primary side star connected and

secondary side delta connected as"' shown in Fig. 2-6. Windings shown parallel to each

other are magnetically coupled. The polarity markings are indicated on each phase. With

phases marked ABC on the star side, there are a number of ways of labelling the phases

abc on the delta side. The labelling indicated on the diagram corresponds to

+90 ° connection in which the positive sequence phase a to neutral voltage (delta side)

leads phase A to neutral voltage (star side) by 90° and so also the line currents in a and A.

19



This labelling is computationally convenient. Ifwe reliable delta as (b~a, c~b, and a~c).

we get the standard Ydl, -30° connection. If the polarities on delta side are also reversed,

we get the standard Ydl 1, 30° connection [30].

Double suffixes will be used for line-to-line voltages and delta currents; while

single suffixes will be used for line currents and line to neutral (phase) voltages. Line-to-

line transformation ratio will be taken as unity.

A
Ir. ııı,"' i IbcıA.,

Ib•• b

I .
B ••B •

f_L 

\_ / v

.C-··
. ıc -;~ I -

la

•• - -a
lea I---cıa,S_ -c

Figure 2-7 shows positive and negative sequence voltages on primary (star) and

secondary (delta) sides of the transformer. Fig. 2-8 shows the positive and negative

sequence currents on the two sides of the transformer. The following observations can

easily be made from these figures: •
Val=jVAl, lal= j IAI (2-34)

Va2 = -j VA2, la2 = -j IA2

20



If the power flow reverses, that is, if it flows from delta to star, the voltage phasors

do not change, while all the current phasors reverse. The phasor relationships between star

and delta voltages and current therefore remain unchanged.

-,-. -. ~-. ~·

A

Posltiııq sqquence
ııoltogrs

Negotiııq sequence
voltages

C

Stor side o,tto slde

By examination of Fig. 2-7, the following relationship can be written down

between line to neutral sequence voltages and line-to-line sequence voltages.

VABl = J3 Val.L30°; Vabl = J3 Va1L30° (2-35)

VAB2 = J3 VA2L-30°; Vab2 = J3Va2L-30°

Also by examination of Fig. 2-8, we can write the following relationship between

sequence line current and sequence delta currents.

21



Ia2
lab2 = .[j LlS0° (2-36)

2-4 SEQUENCE IMPEDANCE OF PASSIVE ELEMENTS 

Fig. 2-10 shows three impedance's Za, Zb, Zc carrying currents Ia, lb, le which

return via the neutral (ground) impedance Zn. The phase voltages at the two ends of the

impedance's are VA, VB, ve and Va, Vb, Ve, respectively. This circuit model can

represent a three-phase transmission line with active sources (synchronous machines) at

each end and with a ground return circuit. If Va, Vb, Vc are regarded as zero, the circuit

represents three star connected impedance's with neutral return through Zn. Now

VA - Va = Vaa, the voltage drop in Za and Zn

VB - Vb = Vbb, the voltage drop in Zb and Zn

Ve - Vc = Vcc, the voltage drop in Zc and Zn

• ~

We can therefore write

VAa = Za Ia + Zn(Ia + lb + le)
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VBb = Zb lb+ Zn(Ia +lb+ le)

VCc = Zc le+ Zn(Ia +lb+ le)

or, in vector matrix form

VAa Za+Zn Zn Zn ı/

VBb = Zn Zb+Zn Zn lb (2-37)

VCcl I Zn Zn Zc + 2lnl le
I

or

Vp = Z Ip (2-38)

Applying symmetricalcomponent transformation,we get

Avs =Z Ip

or

Vs = A- 1 Z A Is = Zs Is (2-39)

where

Zs =.A-1 ZA = symmetricalcomponent impedance matrix.

- -·-ıl a ıx2l JZa + Zn Zn Zn lıl I Jl
z, = ı\ 1 a' a il Zn z, + Zn Zn 11 cx2 ~ I I

LI I I _I Zn. . Zn Zc + Z0J Lıx ıx2 IJ
or

Z, = I HZa+ıxZb-f-a2Zc) HZ,-!--Zb+Zc) l(~a+a2Zb+ıxZc)
U(Za+ ~?Zd-aZc) l(Za +ıxzb+a2Zc) HZa+Zb+Zc)+3Zn I

Zs is computed below:

23



1 1 1

Zn

Zb+Zn

Zn

1 1 1

Zs = 1/31 1 a 2 a Zn

Zn

Zn

Zn

Zc+Z

a2 a 1

a a2 1

1 a a 2 I I Za+Zn

(10-40)

SubstitutingZs from Eq. (2-40) in Eq. (2-39), we can write

zıı 212 zıo 1aı

VAa2 =ı Z21 222 Z2 lal

zo 1 202 zoo la©

where the symmetricalcomponent self and mutural impedances are defined as

zıı = 222 = 1/3 (Za + Zb + Zc)

ZOO= 1/3 (Za + Zb + Zc) + 3Zn

212 = 220 = zoı = 1/3 (Za + a2 Zb + aZc)

zıo = 221 = 202 =-113 (Za + oZb + a2 Zc)

It is immediately seen from above that the voltage drop of any particular sequence

will be produced by currents of all sequence (positive, negative and zero). Therefore, the

method of symmetrical component is no simpler that three-phase circuit analysis.

However, there is a redeeming feature due to the fact that the components of a power

24 



system present balanced impedences and a fault imbalannces an otherwise balanced

system. For a balanced system

Za = Zb = Zc = Zt

The symmetrical component impedence matrix now simplifies to

Zt O

Zs=IO Zt

o

o = a diagonal matrix

O O Zt+3Zn

We can now write Eq. (2-39) in expanded form as

VAal = Zt lal = Zl lal

VAa2 = Zt la2 = Z2 la2

VAaO = (Zt +3 Zn) laO = ZO lao

2-6 SEQUENCE IMPEDENCES OF SYNCHRONOUS MACHINE

Z 1 = Z 1 = positive sequence impedence

Z2 = Z 1 = negative sequence impedence

ZO = Z 1 + 3Zn = zero sequence impedence

25 
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a) Positive sequence impedence and network 

Since a synchronous machine is designedwith symmetricalwinding, it has induced

emfs of positive sequence only, i.e. no negative or zero sequence voltages are induced in

it. When the machine carries positive sequence currents only. The armature reaction field

caused by positive sequence currents rotate at synchronous speed in the same direction as

the rotor, i.e. it is stationary with respect to field excitation. The machine equivalently

offers a direct axis reactance whose value reduces from subtransient reactance (Xd") to

trasient reactance (Xd') and finally to state (synchronous)reactance (Xd) as the short

circuit transient progresses in time. If armature resistance is assumed negligible, the

positive sequence of the machine is

Z 1 = jXd" (if 1 cycle trasient is of interest)

= jXd' (if 3-4 cycle transient is of interest)

= jXd (if steadystate value is of interest)

(2-46)

(2-47)

(2-48)

..
If the machine short circuit takes place from unloaded conditions, the terminal

voltage constitutes the positive sequence volatge; on the other hand, if the short circuit

from loaded conditions, the voltage behind appropriate reactance (subtransient, trasient or

synchronous) constitutes the positivesequnce voltage.

26



Fig. 2- I 2a shows the three-phase positive sequence network model of a

synchronous machine. Zn does not appear in the model as In = O for positive sequence

currents. Since it is a balanced network it can be reprsented by the single-phase network

model of Fig. 2-I2b for purposes of analysis. The reference bus for a positive sequence

network is at neutral potential. Further, since no current flows from ground to neutral, the

neutral is at ground potential.

laı
0

\,
laı

Refercznce bus

==>

o

(o) ThrG?e-phose rno det (b) SinglG?-phascz model

With refernce to Fig. 2-I2b, the positive sequence voltage of terminal a with

respect to the reference bus is given by

Va I = Ea - Z I IaI (2-49)

b) Negative Sequence T'mpedence and Network 

It has already been said that a synchronous machine has zero negative sequnce

induced volyage. With the flow of negative sequence currents in the stator a rotating field

27



is created which rotates in the opposite direction to that of the positive sequence field and,

therefore, at double synchronous speed with respect to rotor. Currents at double the stator

frequency are therefore induced in rotor field and damper winding. In sweeping over the

rotor surface, the nagative sequence mmf is alternately presented with reluctances of direct

and quadrature axes. The nagative sequence impedance presented by the machine with

consideration given to the damper windings, is often defined as

22 = j(Xq" + Xd")/2 (2-50)

Negative sequence network model of a synchronous machine, on a three-phase

and single-phase basis are shown in Fig. 2-13a and b, respectively.The reference bus is of

course at neutral potentioal which is the same as ground potential.

From Fig. 2-13b the negative sequence votalge of terminal a with respect to

refernce bus is

Va2 = -22 Ia2 (2-51)

.-~~~~~ .••~~a

==> E},,
102 o

(b) Single-phase model

lb2 b.......•.
lc.,ı C

(o) Three-phase model

c) Zero Sequence Impedence and Network 

28



We state once again that no zero sequence voltages are induced in a synchronous

machine. The flow of zero sequence current creates three mmfs which are in time phase

but are distributed in space phase by 120° . The resultant air gap field casued by zero

sequence is therefore zero. Hence, the rotor winding present leakage reactance only to the

flow of zero sequence currents.

Zero se_qeunce network models on a three- and single-phase basis are shown in

Fig. 2-14a and b. In Fig. 2-14a the current flowing in the impedance Zn between nautral

and ground is In= 3Ia0. The zero sequence voltage of terminal a with respect to ground,

the refernce bus is therefore

VaO = -3Zn IaO - ZOg IaO (2-52)

where ZOg is the zero sequence impedance per phase of the machine. Sine the single­

phase zero sequence network of Fig. 2-14b carries only per phase zero sequence current,

its total zero sequence impedance must be

ZO = 3Zn + ZOg (2-53)

in order for it to have the same voltage from a to refemce bus. The refernce bus here is, of

course, at ground potential.

From Fig. 2-14b zero sequence voltage of point a with respect to the

refernce bus is

VaO = - ZO laO (2-54)
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loo a Ref.rence bus

Ibo b....••. ..

'\

3Zn

lao -o
(b) Single-phase model(a) Three-phase model

Order of Values of Sequence Impedence of a Synchronous Generator

Typiacl values of seqeunce impedence of a turbo-generator rated 5 MVA, 6.6KV,

3,000 rmp are:

Zl = 12% (subtransient)

Z 1 = 20% (transient)

Zl = 110% (synchronous)

22 = 12%

Z0=5%

For typiacl values of positive, negative and zero sequence reactancees of a

synchronous machine refer to Tabla , 9.1.

..

2-7 SEQUENCE IMPED ENCE OF TRANSMISSION LINES
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A fully transposed three-phase line is completely symmetrical and therefore the per

phase impedance offered by it is independent of the phase sequence of a balanced set of

currents. In other words, the impedances offered it to positive sequence current are

identical.

When only zero sequence flow in a trasmission line, the currents in each phase are

identical in both magnitude and phase angle. Part of these currents return via the ground,

while the set rest return through the overhead groung wires. The ground wires being ·

grounded at several ·towers, the return currents in the ground wires are not necessarily

uniform along the entire length. The flow of zero sequence currents through the

transmission lines, ground wires and ground creates a magnetic field pattern which is very

different from that caused by the flow of positive or negative sequence currents where the

currents have a phase different of 120° and the return currents is zero. The zero sequence

impedence of a transmission line also accounts for the ground impedence (ZO = ZIO +

3Zg0). Since the ground impedence heavily depends on soil conditions, it is essential to

make some simplifying assumptions to obtain analytical results. The zero sequence

impedence of transmission line usually ranges from 2 to 3. 5 times the positive sequence

impedence. This ratio is on the higher side for double circuit lineswithout ground wires.

2-8 SEQUENCE IMPEDENCE AND NETWORK OF TRANSFORMERS 
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It is well known that all J))tlent day installations have three-phase transformers since

they entail lower initial cost, have smaller space requirements and higher efficiency.

The positive sequence series impedence of a transformers equals its leakage

impedence. Since a transformers is a static device, the leakage impedence does not change

with alteration of phase sequence of balanced applied voltage. The transformer negative

sequence impedence is also therefore equal to its leakage reactance. Thus, for a

transformer

Z 1 = Z2 = Zleakage (2-55)

Assuming such transformer connection that zero sequence currents can flow on

both sides, a transformer offers a zero sequence impedence which may differ slightly from

the corresponding positive and negative sequence values. It is, however, normal practice

to assume that the series impedence of all sequence are equal regardeless of the type of

transformer.

The zero sequence magnetizingcurrent is somewhat higher in a core type than in a

shell type transformer. This differefl.cedoes not matter as the magnetizing current of a

trasformer is always neglected in short circuit analysis.
..

Above a certain rating (1,000 kVA) the reactance and impedence of a transformer

are almost equal and are therefore not distinguished.
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Zero Sequence Networks of Transformers

Before considering the zero sequence network of various types of transformer

connections, three important observations are made:

(i) When magnetizing current is neglected, transformer primary would carry

current only if there is current flow on secondary side.

(ii) Zero seqeunce currents can flow in the legs of star connection only if the star

point is grounded which provides the necessary return path for zero sequence curmts. This

fact is illustrated by Fig. 2-1 Sa and b.

Iao= O a tao a

n

b b

Ibo=O I lbo=laoL . (a) Ungroundedstar (b) Grounde·dstar

(iii) No zero sequence currents can flow in the lines connected to a delta

connection as no return path is available for currents. Zero sequence currents can,

however, flow in the legs of a delta-such currents are caused by the p resence of zero

sequence volatgews in the delta connection. This fact is illustratedby Fig. 2-16.
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Iao = o

Let us now consider various types of transformer connection.

Casel: Y-Y transformer ba ınk with any one neutral grounded

If any one of the two neutrals of a Y-Y tranformer is ungrounded, zero sequence

currents cannot flow in the ungrounded star and consequently, these cannot flow in the

grounded star. Hence, an open circuit exists in the zero sequence network between H and

L, i.e. between the two parts of the system connected by the transforemer as shown in Fig.

2-17.

-,L
l
I

Referenc.e btJs

H 

I

I

I

I

I

I

I

I

I

I

~

~

I
I

I o-- z L
H O I" I

Case 2: Y-Y transformer bank both neutrals grounded

When both the neutral of a Y-Y transformer are grounded, a path through the

transformer exists for zero sequence currents in both windings via the two grounded
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nautrals. Hence, in the zewro sequence netwrk H and L are connected by the zero

sequence impedence of the transformer as shown in Fig. 2-18 .

H._~
l ~l 'I r-..----,,

~~'"'-\ j ·~----. - ı_.
i

~~---

....----L
I
I
I
I
I
I

_.J

Reference bus

Case 3: Y-.1 transformer bank with grounded Y neutral 

If the neutral of star side is grounded, zero sequence currents can flow in star

becasue a path is availableto ground and the balancing zero sequence currents can flow in

delta. Of cours no zero sequence currents can flow in the line on the delta side. The zero

sequence network must therefore have a path from the line H on the star side through the

zero sequence impedence of the transformer to the reference bus, while an open circuit

must exist on the line L side of delta (see Fig. 2-19). If the star neutral is grounded

through Zn, an impedednce 3Zn apperas in serieswith ZO in the sequence network.
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H ---, 
I
I
I
I
I
I
I

i

-----ıl
i
I
I

Rızluıznce bus

I
I
I
IL--- _,· ----o

L

Case 4: Y-A transformer bank with ungrounded star

This is the special case of case 3 where the neutral is grounded through Zn = cc,

Therefore no zero· sequence current can flow in the transformer windings. The zero

sequence network then modifiesto that shown in Fig. 2-20.

Rızfızrızncız bus

---o,
L

Case 5: A-A transformer bank
•.

Since a delta circuit provides no return path, the zero sequence currents cannot

flow in or out of A-A transformer; however, it can circulate in the delta windings.

Therefore, thereis an open circuit between H and L and ZO is connected to the refernce
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bus on both ends to account for any circulating zero sequence current in the two deltas

(see Fig. 2-2 I).

t I
I + 

2-9 CONSTRUCTION OF SEQENCE NETWORK OF A POWER SYSTEM

The positive sequence network is constructed by examination of one-line diagram

of the system. It is to be noted that positive sequence voltages are present in synchronous

machines (generator and motors) only. The transition from positive sequence network to

negative network is straight forword. Since the positive and negative sequence impedence

are identical for static elements (lines and transformers), the only change necessary in

positive sequence network to obtain negative sequence network is in respect of

synchronous machines. Each machine is represented by its negative sequence impedence,

the negative sequence voltage being zero.
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The refemce bus for positive and negative sequence networks is the system neutral.

Any impedence connected between a neutral and ground is not included in these sequence

networks as neither of these sequence cuurent can flow in such an impedence.

Zero sequence subnetworks for various parts of a system can be easily combine to

form complete zero sequence network. No voltage sources are present in the zero

sequence network. Any impedance included in generator or transformer neutral becomes

three times its value in a zero sequence network. The procedure for drawing sequence

network is illustrsted through the following examplpes.

Example 2-3 A 25MV A, 1 lkV, three-phase generator has a subtrasient reactance

of 20%. The generator supplies two motors over a transmission line with transformers at

both ends as shown in the one-line digram of Fig. 2-22. The motors have rated inputs of

15 and 7.5 MV A, both 12 kV with 25% subtransient reactance. The three-phase

transformers are both rated 30 MV A, 10.8/121 kV, connection /i-Y with leakage

reactance of 10% each. The series reactance of the line is 100 ohms. Draw the positive

and negative sequence networks of the system with reactance marked in per unit.

..
Assume that the negative sequence reactance of each machine is equal to its

• A 

subtransient reactance. Omit resistances. Select generator rating as base in the generator

circuit.
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Solution A base of 25 MVA, 1 lkV in the generator circuit requiers a 25 MVA

base in all other circuit and followingvoltage bases.

Transmission line voltage base= 11 x 121/10.8= 123.2 kV

Motor voltage base= 123.2x 10.8/121= 11 kV

The reactance of transformers, line and motors are converted to pu values on

appropriate bases as follows:

Transformers reactance =O.Ix 25/30 x (10.8/11)2 = 0.0805 pu

Line reactance = 100x 25/(123.2) 2 = 0.164 pu

Reactance of motor 1 = 0.25x25/15x(I0/11) 2 = 0.345 pu

Reactance ofmotor 2 = 0.25x25/7.5x(IO/l 1) 2 = 0.69 pu

The required positive sequence network is presented in Fig. 2-23.

Rcforencc bus

j0·0805

..•
Since all the negative sequence reactance of the system are equal to the positive

seqeunce reactances, the negative sequence network is identical to the positive sequence

network but for- the omission of voltage sources. The negative sequence network is drcıwn

in Fig. 2-24.
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Rızfızrızncız bus

j 0·345

jQ·164 jO 0805 g
------- -- ----

Example 2-4 For the power systemwhose one-line diagram is shown in Fig. 2-25

sketch the zero sequence network.

Example 2-5 Draw the zero sequence network for the system discribed in example
•

2-3. Assume zero sequence reactances for the generator and motor of 0.06 per unit.

Current limiting reactance of 2.5 ohms each are connected in neutral of the generaot and

motor No .. 2. The zero sequence reactance of the transmissionlines is 300 ohms.
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Solution The zero sequence reactance of the transformers is equal to its positive

sequence reactance. Hence

Transformers zero sequence reactance = 0.0805 pu

Generatorr zero sequence reactance s = O.06 pu

Zero sequence reactance of motor 1 = 0.06x25/15 x(l0/11) 2

= 0.082 pu

Zero sequence reactance ofmotor 2 = 0.06x25/7.5 x(l0/11) 2

= 0.0164 pu

Reactance of currents limitingreactors= 2.5x25/(11) 2 = 0.516 pu

Reactance of current limitingreactor included in zero sequence network

= 3x0.516 = 1.548 pu

Zero sequence reactance of transmissionline= 300x25/(123.2) 2

= 0.494 pu

Reference bus

3Zn

Zogı

Zo(line)

The zero sequence network is shown in Fig.2-27.

Reference bus

jO 164

j1 546 j 1 51.8

jO 06

g
jO 0605 jO 494 jO OBOS
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CHAPTERJ 

SYMMETRICAL FAULT ANALYSIS 

3-1 INTRODUCTION 

The symmetrical short circuits faults arecaused in the system accidentally through

insulation failure of equipment or flashover of lines initiated by lightning stroke or through

accidental faulty operation. The system must be protected against flow of heavy short

sircuits currentsby disconnecting the faulty part of the system by means of circuits breaker

operated by protective relaying.

The mejority of the system faults are not three-phases faults but faults involving

one line to ground or occasionally two lines to ground. These are unsymmetricall faults.

Th'rough the symmetrical faults are rare, the symmetrical fault analysis must be carried out,

as this type of fault generally leads to most severe fault current flow against which the

system must be protected. Symmetrical fault analysis is, of course, simpler to carry out.

'

~ A power network comprises synchronous generators, transformers, lines/and loci.Jı-

Thogh the operating conditions at the time of fault are important, the- kids can be

neglected during fault, as voltage dip very low so that currents drawn by loads can be

neglected in comparison to fault current. •..
\v

The synLnous generator during short circuit has a characteristic time-varying

behaviour oc, ;" .In the event of a short circuits, the flux per pole undergoes dynamic

change with associated transient in damper and field windings. The reactance of the

circuits model of the machine changes in the first few cycles from a low subtransient
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reactance to a higer transient value, finally settling at a still higher synchronous (steady

state) value. Depending up on the arc interruption time of circuit breakers, a suitable

reactance value is used for the circuit model of synchronous generators for short circuit
I

analysis.

For selecting a circuit breaker we must, therefore, determint the initial current in

the transient that flows at the time of circuit interruption.

3-2 TRANSIENT ON A TRANSMISSION LINE 

i) The line is fed from constant voltage source.

ii) Short circuit takes place when the line is unloaded.

iii) Line capacitance is nigligible and the line can be represented by a jumped RL

series circuit. So our circuitwill be such as in figure 3 .1

"'

The parameter a controls the instant on the voltage wave when short circuit

occurs after short circuit» ~:ıere-
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i = is + it
i =s

Jıv.Z = ızısın (wt+ a - B)

= (R2 +w2L2)7~ < (() = tan-11)
it = Transient current

·= i.(O)e-(RIL)t

= ~ sin(B-aV'R"'

Jıv Jıv
i = ızısin(wt + a -B) +ızısin(B - a)e-cRıL)t (3. I)

Symmetricalshort
circuit current

DC off - set currnt

In power system terminology, the sinusoidal steady state current is called the
I

symmetrical short circuit current unindirectional transient component is called the DC off

set current, unsymmmetricaltill the transient decays.

The maximum momentary short circuit current İmm corresponds to the first peak.

If the decay of transient current in this short time is neglected
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..[iv ..[iv
ı.: = lzisin(B-a)+lzi (3.2)

- Since transmission line resistance is small, B ~ 90°.

(3.3)

This has the maximum possible value for a = O, i.e.
short circuit occurringwhen the voltage wave is going through zero.

Thus
..[iv

İmm(max possible) = 2 lzi
(3.4)

= twice the maximum of symmetrical short circuit
current (doubling effect)

For a selection of circuit breakers momentary short circuit current is taken

corresponding to its maximumposiiblevalue (a safe choice).

Q
The next question is 'waht is the current to be interrupted?. As has been pointed

out earlier, t~ modem day circuitbreakers are designed to interrupt the current in the first

few cycles (faive cycles or less). With reference to figure 3.2 it means that when the

current is interrupted, the DC off-set (it) has not yet died out and so contributes the

current to be interrupted.

..
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.-t

FIGURE 3.2 Waveform of short circuit current on a transmissionline

3-3 SHORT cıncurr OF A SYNCRONOUS MACHINE 

(ON NO LOAD) ıı
Under steady state short circuit conditions, the armature reaction of a syn[onous

generator produces a demagnetizing flux. In terms of a circuit this effect is modelled as a

reactance Xs in series with the induced emf. This reactance when combined with the..
leakage reactance Xı of the machine is called synchronous reactance Xd. Armature

resistance being small can be geglected.
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xd 
Synchronous

reoctcrıce
Eg

Direct axis subtransicnt
reactarıce

{a) Stczadystcte short circuit model
of a synchronous machincz

{b) Approximatcz circuit model during
subtransicnt perıcd of short circuit

Xf

Eg

(c) Approximatcz circuit model during
transient period of short circuit

Consider now the sudden short circuit of a synchronous generator initially

operating under open circuit conditions. The machineundergoes a transient in all the three

phases finally ending up in steady state conditions. The circuit breaker must, of course,

interrupt the current much before steady conditions are reached. Immediately up on short

circuit, the DC off-set currents appear in all the three phases, each with a different

magnitude since the point on the voltage wave at which short circuit occurs is different for

each phase. These DC off-set currents are accounted for separately on an impirical basis

and, therefore, for short circuit studies we need to concentrate our attention on

symmetrical short circuits current only.Immediately in the event of short circuit, the

symmetrical short circuit current is limited only by the leakage reactance of the machine.

Since the air gap flux cannot change intantaneouslyto counter the demagnetization of the

armature short circuit current, currents appear in the fieldwinding as well as in the damper

winding in a direction to help the main flux. These currents decay in accordance with the

winding time constants. The time constant of the damper winding which has low leakage

inductance is much less than of the field winding, which has high leakage inductance.

Thus during the initial part of the short circuit, the .damper and field windings have
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transformer currents induced in them so that in the circuit model their reactances Xr of

feild winding and Xdw of damper winding appear in parallel square with Xa in figure

3.3b. As the damper winding currents are first to die out, Xdw effectively becomes open

circuited and at alater stage Xt becomes open circuited. The machine reactance thus

changes from the parallel combination of Xa, Xf and Xdw during the initial period of the

short circuit to Xa and Xf in parallel in the middle period of the short circuit, and finally to

Xa in steady state. The reactance presented by the machine in the initial period of the short

circuit.

(3.5)

Subtransient reactance of the machine; while the reactance effective after the

damper winding currents have died out,

(3.6)

Transient reactance. Of course the reactance under steady conditions is the

syncronous reactance of the machine. Obviously Xd" < Xd' < Xd. The machine thus offers

a time-varying reactance which changes from Xd" to Xd' and finallyto Xd.
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The short circuit current can be devided into three periods-Initial subtransient

period when the current is large as the machine offers subtransient reactance, the middle

transient period where the machine offers transient reactance, and finally the steady state

period when the machine offers synchronous reactance.

In term of the oscillogram, the currents and reactances discussed aboe we can

write

(3.7a)

(3.7b)

(3.7c)

where

I I I = Steady state current (rms)

I I' I = Transient current (rms) excludingDC component..
I I" I = Subtransient currnt (rms) excludingDC component

Xa = Direct exis synchronous reactance
..

X'd = Direct axis transient reactance

X"d = Direct axis subtransient reactance

I Eg I = Per phase no load voltage

To find the transient Oa, Ob, Oc reactance we can calculate the intercept Ob.
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!ı{ = !ıi~exp(-t I 'dw)

!ıi'= !ıi~exp(-t I ı-1)

Where 'dw and 'rare respectively damper, and field winding time constants
with t dw << t r. are time t >> t dw» !ı i" practically dies out and we can write

log(/ıi"+/ı i')t>rdw ::::: log!ıi' = -!ı i~t IT r

log(/ıi"+/ıi'I t>rdw::::: log!ıi'= -!ıi~ I if

The plot oflog(!ıi"' +!ıi') versus time fort > tdw therefore, becomes a stright line with a slope of (-!ıi~
As the stright line portion of the plot is extrapolated, te intrcept corresponding tot= O is

!ı { [ ı=o = lı i~ exp(-t I t 1t=o = !ı i~ = aô

.ı,~
\

\

ı,r: 11 ~ı,ıbus

j1·0 (0744+j099) ;.·6 (093+j0·55)
-··L :=J---f'ıl~F

Line r2 Crıble

= - -~
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Table 3.1 

"~ \ıv

Typicaı/:ues of synchronousmachine reactances

Type of Turbo-Alternator SalientPole Syncronous
Machine (Turbıne Generator) (Hydroelectric) Comensator

(Condenser/
Capacıtor)

Xs (or Xd) 1.00-2.0 0.6-1.5 1.5-2.5
Xq 0.9-1.5 0.4-1.0 0.95-1.5
X'd O. 12-0.35 0.2-0.5 0.3-0.6
X"d O. 1-0.25 0.13-0.35 O. 18-0.38
X2 =X"d =X"d O. 17-0.37-
XO 0.04-0. 14 0.02-0.2 0.025-0.16
ra 0.003-0.008 0.003-0.015 0.004-0.01

Syncronous
Motors*

0.8-1. 10
0.65-0.8
0.3-0.35
O. 18-0.2
O. 19-0.35
0.05-0.07
0.003-0.012

Tlough the machine reactance are dependent upon magnetic station, the values of

reactances normally lie within certain predictable limits for different types of machines.

Table 3. 1 gives typical values of machine reactances which can be used in fault

calculations and in stabilitystudies.

Normally both generator and motor subtransient reactances are used to determine

the momentary current following on occurance of a short circuit. To decide the

interrupting capacity of circuit breakers, except those which open instantaneously,

subtransient reactance is used for generators and transient reactance for synchronous

motors.

Since the system in on no prior to occurance of the fault, the voltage of the two

generators are indentical and are equal to 1 pu.
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Total impedance= Ul5 llJ1.25) + ULO) + (0.744 + J0.99)

+Ul.6)+(0.93+ J0.55)

= 1.674+ )4.82 = 5.1 < 70.8° pu

1<0ise = = 0.196 < - 70.8° pu
5.1 < 70.8°

i - 100 * 103
base - -./3-=3~*-6-.6- = 8,750 A

Isc=0.196*8,750=1,715 A

Total Impedance between F and Il kV bus
= (0.93 + J0.55) + Ul.6) + (0.744 + J0.99) + ULO)

= 1.674 + )4.14 = 4.43 < 76.8° pu

Voltage at 11 kV bus= 4.43 < 67.8° * 0.196 < -70.8°

= 0.88 <-3°pu = 0.88 *il= 9.68 kV

Example 3-1

A 25 rhv~ 11 kV generator with Xd" connected through a transformer, line and a

transformer to a bus that supplies three identical motors as shown in Fig 3. 8 . Each motor

has Xd"=25% and Xd'=30% on a base of 5 MV A, 6.6 kV. The three-phase rating of the

step-up transformer is 25 MV A, 11/66 kV with a leakage reactance of 10% and that of the
••

step-down transformer is 25 MVA, 66/6.6 kV when a three-phase fault occurs at the point

F. For the specified fault, calculate

a) The subtransient current in the fault,

b) The subtransient cutrrent in the breaker,

c) The momentary cutrrent in breaker B, and

d) The current to be interrupted by breaker B in five cycles.
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Given: Reactance of the transmission line=15% on a base of 25 MV A, 66 kV.

Assume that the system is operating on no load when the fault occurs.

~t a ~~Motors
~~ e 66/6·6kV p F .G<ın 11/66 kV

. B .

Fig 3.8

Solution 

Choose a system base of 25 MVA.

For Generator voltage base of 11 kV, line voltage base is 66 kV and motor voltage

base is 6.6 kV.

a) For each motor

X" dm= JO. 25 * 25 = jl.25.pu
5

Line, transformers and generator reactance are already given on paper base values.
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The circuit model of the system for fault calculations is given in Fig 3. 9a. The

system being initially on no load, the generator and motor induced emfs are indentical.

The circuit can be therefore be reduced to that of fig. 3.9b and then to fig. 3.9c. Now

1 1ise= 3*--+--=-4.22 pu
JI.25 J0.55

B . 6 6 kV . . 25* 1, 000 Aase current ın . cırcuıt = r;; = 2,187-n *6.6
/sc=4.22*2,187=9,229 A

b) From Fig 3.9c, current through circuit breaker Bis

Isc(B) = 2*-1-+-1- = -}3.42
JI.25 J0.55

=3.42*2,187=7,479.5 A

(a)

(b)

Fig. 3.9
ise (circuit brco ker ) (c) (d)
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c) For fin. ding mon mentary current through the breaker we must add the DC off-set­

current to the symmetrical subtransient current obtained in part (b). Rather than

calculating the DC off-set current allowance is made for it on an empirical basis.

Momentary current through breaker B= 1. 6 x 7,473.5

= 11,967 A

d) To compute the current to be interrupted by the breaker, motor subtransient reactance

(Xd"=j0.25) is replaced by transient reactance (Xd'=j0.30).

X'd(motor)=j0.3 x 25/5 = jl.5 pu

The reactances of the circuit of fig 3. 9c now modify to that of fig. 3. 9d. Cutrrent

(symmetricaş to be interrupted by the breaker (as shown by arrow)
1 1

=2*-+--=3.1515 pu
jl.5 J0.55

Allowance is made for the DC off-set value by multiplyingwith a factor ofl .1 (sec.3.5).

Therefore, the current to be interrupted is

1.1 *3 .1515*2,187=7,58l
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3.4 SHORT CIRCUIT OF A LOADED SYNCHRONOUS MACHINE 

The analysis of short circuit on a loaded synchronousmachine is complicated and is

beyond the scope of this project. WE shall however , present here the methods of

computing short circuitcurrent when short circuit occurs under loaded condition.

The circuit model of a synchronous generator operating under steady conditions

supplying a load current I O to the bus at the terminal voltage V>. Eg is the induced emf

under loaded condition and Xd is the direct axis synchronous reactance of the machine.

When short circuit occurs at the terminals of this machine, the circuit model to be used for

computing short circuit current is given for subtransient current, and for transient current.

The induced emfs to be used in these models are given by

I
'Vo

I

Fig. 3. 1 O Circuit model of a loaded machine

.. E; = v0 +1rx:
E' = V0 +J'I°X'g g

(3.8)

(3.9)
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The voltage I\ is known as the voltage behind the subtransient
reactance and the voltageE~is known as the voltage behind the

transient reactance. In fact, if I° is zero (no load case), E: = E; = Eg.
the no loads volatage, in which case the circuit model reduces discussedbefore.

to

I
\
\

\

lo

\Jo

\
(b) Cir-cuıt mod,zl for computiııg

trans·ıent current(o) Circuit model for corrıpuliııg
~roııs'ııınl current

Fig. 3.11

The synchronous motors have internal emfs and reactances similar to that of a

generator except that the current direction is reserved. During short circuit conditions

voltage can be replaced by similar circuit models except that the voltage behind

subtransient/transient reactance is given by 1
~ ~

E~ = V0 + JI°X~ (3.10)
E~ = V0 + JI°X~ (3.11)

Whenever we are dealing with short circuit the synchronous machines (generator

and motors) are replaced by their voltage behind subtransient (transient) reactance is series

with swansient (transient) reactance. The rest of the network behind passive remains

unchanged.
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EXAMPLE 3-3

A synchronous generator and a synchronous motor each rated 25 MV A, 11 kV

having 15% subtransient reactancare connected though transformers and line as shown in

fig 3.12. The transformers are rated 25 MV A, 11/66 kV and 66/11 kV with leakage

reactance of 10% eachTHe line has a reactance of 10% on a base of a 25 MV A, 66 kV.

The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6

kV when symmetrşcal three-phase fault occurs at the motor terminals. Find the

subtransient current in the generator, motor and fault.

Tı

~ f ~'~t Lıne

(aJ Onr.-1:nız diagrarn for the system

yO ~ _i_C?~1- JÜ ı' F

(b) Prefault equivalent circuit

of Exornp!e 9·)

jO J F ı;;,

1015
ıf

E;;, 

(c) Equivalent cırc uıt rJı_ıring fuuıı

Fig 3.~2
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Solution

All reactances are given on a base of 25 MV A and appropriate voltages.

Prefault voltage V0
10·6 = 0.9636(0° pu

11
Loaded = 15 MW, O. 8 pf leading

= _!2 = 0.6 pu, 0.8 pf leading
25

Prefault current/° = O. 6 (36. 9° = O. 7783 (36. 9° pu
0.9636*0.8
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Volatage behind transient reactance (Generator)

E; = 0.9636 < 0° + J0.45 * 0.7783< 36.9°

= 0.7536+ J0.28 pu

Voltage behind subtransient (Motor)

E: = 0.9636 < 0° - J0.15 * 0.7783< 36.9°
= 0.0336- J0.0933 pu

The prefault equivelant circuit is shown in Fig. 9.12b. Under faulted condition (Fig. 9.12c)

. 0.7536+ J0.2800 = o.6226- Jl.6746 pu
Im= J0.45

. 0.0336- J0.0933 = -0.6226- )6.8906 pu
Im= J0.15

= 0.0336- J0.0933 pu

current in fault

11 = 1;+/: = -)8.5653 pu
25 * 103

Base current (gen I motor) = t: = 1,3122.2 pu
v3 * 11

Now
I~ = 1,312.2(0.6226- jl.6746) = (816.4- )2,197.4) pu.
1: = 1,312.2(-0.6226-}6.8906) = (-816.2- )9,041.8) A

I = - jll,239 A
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SHORT CIRCUIT (SC) CURRENT COMPUTATION THROUGH THE

THEVENIN THEOREM

An alternate method of computing short circuits is through the application of the

Thevenin theorem. This method is faster and easily adopted to systematic computation for

large networks.

Consider synchronous generator feeding a synchronous motor over a line. Figure

3,.13b shown the circuit model of the system under conditions of steady load. Fault

computations are to be made for a fault at F, at the motor terminals. As a first step the

circuit model is replaced by the one shown in fig3. 13b.

As seen from FG the Thevenin equivalent circuit of fig. 3.13b is drawn in fig.

3.13c. It comprises prefault voltage V digree in series with the passive Thevenin

impedance network. It is noticed that the prefault current I digree does not appear in the

passive Thevenin impedance network. It is therefore to be remembered that this current

must be accounted for by superposition after the SC solution is obtained through use of

the Thevenin equivalent.

Consider now a fault at F through an impedance Z. Figure J 13 shows the..
Thevenin eqivalent of the systemfeeding the fault impedance. We can immediatelywrite
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f V0

I = ıx; +Z1
(3. 12)

Current caused by fault in generator circuit

- x~m fsı, - (X' X X' I
dg+ + dm

(3. 13

X F X

Em LJE;,,
•

(a) G (b)

F• 
Vo 

X

,am} ,,+a, F' I [z '
x:ı,;,-~ i Rd bus

G G
(c)

. (Thevenin reoctcrıce)
(d)

..
FIGURE 3.13 Computation of SC current by the thevenin equivalent

Current Caused by fault in motor circuit
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(3. 14)

Postfault currents and voltage are obtained as follows by superposition:

11 = ı: +t:ı.ıg s

ı; = -F + t:ı.Jm(in the direction of t:ı.ım
Postfault voltage

v1 = v· + (-JXrhı1) = v· + t:ı. v

(3. 15)

(13.16)

Where ~V = -jXth Ff is the voltage of the fault point F' on the Thevenin passive network

(with respect to the reference bus G) caused by the flow of fault current Ji' f.

An obsevation can bae made here. Since the prefault current flowing out of fault

point F is always zero, the postfault current out of F is independent of load for a given

prefault voltage at F.

The above approach to SC computation is summarizedin the following four steps:

STEP 1:

Obtain steady state solution of loaded system

STEP 2:
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-
Replace reactances of synchronous machines by subtransient/transient values.

Short circuit all emf sources. The result is the passiveThevenin network.

STEP 3:

Excite the passive network of step 2 at the fault point by negative of prefault

voltage in series with the impedance. Compute voltages and currents at points of interest.

STEP 4:

Postfault currents and voltages are obtained by adding results of steps 1 and 3.

The following assumptions can be saely made in SC computations leading to

considerable computational simplification:

Assumption 1: All prefault voltage magnitudes are 1 pu.

Assumption 2: All prefault currents are zero.

The first assumtion is quite close to actual conditions as under normal operation all

voltages (pu) are nearly unity.

The changes in current caused by short circuit are quite large, of the order of 10-

20 pu and are purely reactive; whereas the prefault load currents are almost purely real...
Hence the total postfault current which is the result of the two currents can be taken in

magnitude equal to the large component (caused by the fault).

This justifies assumption 2.

Let us illustrate the above method by recalculatingthe results of example 3. 3
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The circuit model for the system of example 3.3 for computation of postfault

condition is shown in fig 3. 14

Vo 
ıo 3

Figure 3 .14 F is the fault point on the passiveThevenin network

..
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ı' = vo _ 0.9636*J0.60
U0.15 \li0.45- J0.15 * J0.45 = -)8.565 pu

Change in generator current due to fault,
j0.15

~I = -)8565*-- = -)2141 pu
g . J0.60 .

Change in motor current due to fault,
j0.45

~I = -)8565*-- = -)6424 pu
m · j0.60 ·

To these changes we add the prefault current to obtain the subtransient current in machines.

Thus
ı; = J° + ~lg = (0.623-jl.674) pu

ı; = -J° +~Im= (-0.623- )6.891)pu

Which are the same as calculated already.

We have thus solved Example 9.3 alternatively through the Thevenin theorem and

superposition. This, needed, is a powerful method for large networks.
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3.5 SELECTION OF cıacurr BREAKERS 

Two fo the circuit breaker rating require the computation of SC current are: rated

momentary current and rated interrupting current. Symmetricalmomentary SC current is

obtained by using subtransient reactances for synchronous machines. Momentary current

(rms) is then calculated by multiplyingthe symmetricalmomentary current by a factor of

1.6 to account for the presence of DC off-set current.

Symmetricalcurrent to be interrupted is computed by using subtransient reactances

for synchronous generator and transient reactances for synchronous motors-induction

motors are neglected. The DC off-set value to be added to obtain the current to be

interrupted is accounted for by multiplying the symmetrical SC current by a factor as

tabulated below:

Circuit breaker Speed MultiplyingFactor

5 cycles

3 cycles

2 cycles

1.0

1.1

1.2

1.4

8 cycles or slower

If SC MVA (explained below) is more than 500, the above multiplying factors are

increased by O.1 each. The multiplyingfactor for air breakers rated 600 V or lower is 1. 25.
..•

The current that a circuit breaker can interrupt is inversely proportional to the

operating voltage over a certain rage, i.e.

Amperes at operating voltage

= amperes at rated voltage * rated voltage

operating voltage
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Of course, operating voltage cannot exceed the maximum design value. Also, no

matter how low the voltage is, the rated interrupting current cannot exceed the rated

maximum interrupting current. Over this range of voltage, the product of operating

voltage and interrupting current is constant. It is therfore logical as well as convenient to

express the circuit breaker rating in terms of SC MVA that can be interrupted, defined as

Rated interrupting MVA (three-phase) capacity

Obviously, rated MV A interrupt capacity of circuit breaker is to be more than (or

equal to) the SC MV A required to be interrupted.

For the selection of a circuit breaker for a particular relation, we must find the

maximum possible SC MV A to be interrupted with respect to type and location of fault

and generating capacity (also synchronous motor load connected to th system. A three­

phase fault though rare is generaly the one which gives the highest SC MV A and circut

breaker must be capable of interrupting it. An exception is an LG (line-to-ground) fault

close to a synchronous generator. In a simple system the fault location which gives the

highest SC MV A may be abvious but in a large system verious possible location must be

tried out to obtain the highest SC MV A requiring repeated SC computations .

..
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3.6 ALGORITHM FOR SHORT CIRCUIT STUDIES

So far we have carried out short circuit calculations for simple systems whose

passive networks can be easily reduced. In this article we extend our study to large

systems. In order to apply the four steps of short circuit computation developed earlier to

large systems, it is necessary to evolve a systematic general algorithm so that digital

computer can be used. The first step towards short circuit computation is to obtain prefault

voltages at all buses and currents in all lines through a load flow study. Let us indicate the

prefault bus voltage vector as

(3. 18)

Let us assume that the rth bus is faulted through a fault impedance ZAf The postfault bus

voltage vector will be given by

(3.19)

where L).V is the vector in changes in bus voltage caused by the fault.

As step 2, we draw the passive Thevenin network of the system with generators

replaced by transient/subtransient reactances with their emfs shorted (Fig. 3.21)
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l

)carı'.
Gırn

Fig 3.21

As per step 3 we now excite the passive Thevenin network with -V0r in series with Z1''f as

in figure 31.2 ı. The vector /J.V comprises the bus voltages of this network.

Now
AV = ZBUSJF (3 .20)

WHERE IZJI Zin l
ZBUS = l;,, ;J= Bus impedance matrix of the pas sive Thevenin network(3. 21)

Jf = bus injection vector
Since the network is injected with current - I I only at the rth bus,

71



In the above relationships, V0ıs, the prefault bus voltages are obtained from a load

flow study. YBVS matrix is assembled for the network of Fig. .lı.20 (this includes the

generator reactances) using the rules given

by inversion of the YBUS matrix.

The Zınıs matrix is then obtained

Postfault currents can now be obtained in all branches of the network. The

postfault current Lj in the (ij)th line (with positivecurrent direction from i to j) is given by

I{= Y;;(V/ -V/)

Where Yı] is the admittance of the (ij)th line e.
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