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ABSTRACT 

Research works on intelligent chargers have received considerable attention in recent 

literature. The Nickel Cadmium (NiCd) battery charging is a nonlinear electrochemical 

dynamic process which has a high degree of uncertainty and lacks an exact 

mathematical model. There are several research works on applications of emerging 

technologies such as fuzzy, neural, genetic and neuro-fuzzy for battery charging. 

Unfortunately, progress in developing intelligent controller systems for NiCd battery 

charging has been limited, where existing chargers optimize charging time or battery 

temperature. Current intelligent battery chargers do not detect whether the battery is 

deeply discharged or shorted cell which can blow the battery if forced to charge. Thus, 

there is a need for an intelligent charger that optimizes both charging time and 

temperature while detecting the difference between deeply discharged and shorted cell 

before starting to charge the battery. 

This thesis proposes a novel neuro fuzzy genetic approach to model and control NiCd 

battery charging process. The dynamics of NiCd battery are described by recurrent 

fuzzy neural networks (RFNN) where fuzzy control rules are generated. In addition, a 

new dynamic data mining technique for battery charging rules extracting is also 

suggested within this work. The simulation results of the proposed approach show more 

efficiency in comparison with existing intelligent chargers. 



V 

TABLE OF CONTENTS 

APPROVAL .. 
II 

ACKNOWLEDGEMENT iii 
ABSTRACT iv 
TABLE OF CONTENTS V 

LIST OF ABBREVIATIONS viii 
LIST OF TABLES ix 
LIST OF FIGURES X 

1. INTRODUCTION 1 
2. STATE OF THE ART INTELLIGENT BATTERY 

CHARGING SYSTEMS 

2.1 Batteries as Control Object 3 
2.1.1 Battery Chemistries 4 
2.1.2 The Nickel Cadmium Battery 7 
2.1.3 Charging the Nickel Cadmium Battery 12 

2.2 Review of Existing Works of Intelligent Batteries 19 
Chargers 

2.3 Statement of Research Problem 25 
3. ARCHITECTURE OF NEURO-FUZZY-GENETIC 

CONTROL SYSTEM FOR BATTERIES CHARGING 
3.1 Structure of Control System and Description of its 27 

Working Principles 

3.2 Elements of Batteries Charging Control Systems 28 
4. RFNN AND THEIR LEARNING 

4.1 Review on FNN 37 



Vl 

4.2 Description of Investigated RFNN 38 
4.3 GA based learning of RFNN 39 

5. FUZZY MODELING OF THE NiCd BATTERIES BY 

USINGRFNN 

5.1 Approximation of the Nonlinear Dynamics of the Ni Cd 45 
Battery by RFNN 

5.2 Investigation of Accuracy Neuro Fuzzy Model of Ni Cd 49 
Battery 

5.3 Software Development Neuro-Fuzzy-Genetic Modeling 51 

of Ni Cd Batteries Charging 

6. EXPERIMENTAL INVESTIGATION OF INTELLIGENT 

NEURO-FUZZY-GENETIC CONTROL SYSTEM FOR 

NiCd BATTERY 

6.1 Dynamic data mining technique for battery charging rules 53 
extraction 

6.2 Software Development NFG Control System for NiCd 60 
Batteries Charging 

6.3 Experimental Results of Battery Control System 60 
6.4 Compatible Analysis of NFG Control System for 68 

Batteries Charging 

6.5 Identification of the Proposed Controller for Ni Cd 69 
Batteries Charger 

CONCLUSION 72 
REFERENCES 73 
APPENDIX 

A. Programs 

A.I N etwork_D .cs 78 
A.2 Controller .cs 92 



vii 

A.3 Charging_control.cs 97 

A.4 FR_ ChargingControl.cs 99 
A.5 TrainRules.cs 105 

A.6 Genetic_D.cs 105 

A.7 Battery.cs 117 

A.8 Macro of the NSIM-tem.xls file 121 

A.9 Macro of the NSIM-vol.xls 123 

A.10 sdkvars.bat 126 

A.11 battery _dll.bat 126 

A.12 TrainRules.bat 126 

A.13 FR_COMPILE.bat 127 
A.14 CCout.bat 127 
A.15 dll.bat 127 

A.16 COMPILE. bat 127 

B. Publications by the Candidate Relevant to the Thesis 

B.1 Symposium & Conference Proceedings Publications 128 
B.2 Journal Publications 128 
B.3 Pending 129 



A 

BP 

C 

dT/dt 

dU/dt 

FL 

FNN 

GA 

I 

Li-ion 

Li-ion polymer 

NDV 

NFG 

Ni Cd 

NiMH 

NN 

RFNN 

s 

SoC 

T 

Tend - T start 

u 
V 

viii 

LIST OF ABBREVIATIONS 

amper, unit of the current 

Back Propagation 

Charge and discharge current rate of a battery 

delta temperature I delta time 

delta voltage I delta time 

Fuzzy Logic 

Fuzzy Neural Network 

Genetic Algorithm 

Current 

Lithium Ion 

Lithium Ion Polymer 

Negative Delta Voltage 

N euro-Fuzzy-Genetic 

Nickel Cadmium 

Nickel Metal Hydride 

Neural Network 

Recurrent Fuzzy Neural Network 

Second 

State of Charge 

Internal battery temperature 

Temperature increase during battery charging 

Battery voltage 

Volt, unit of the voltage 



lX 

LIST OF TABLES 

Table 2.1 History of battery development 4 
Table 2.2 Characteristics of commonly used rechargeable batteries 6 
Table 2.3 Advantages and limitations of Ni Cd batteries 7 
Table 2.4 Comparison of the methods for control 21 
Table 3.1 Rules represented as a table 33 
Table 3.2 Applied Fuzzy Rules 35 
Table 6.1 The control rules 55 
Table 6.2 Comparison of Intelligence Ni Cd chargers 69 
Table 6.3 Comparison of the intelligent charger controllers mean square errors 71 



X 

LIST OF FIGURES 

Figure 2.1 Cross-section of a classic NiCd cell 8 
Figure 2.2 Typical Charge Characteristics 10 
Figure 2.3 Typical Self-discharge Characteristics 10 
Figure 2.4 Typical Discharge Characteristics (Comparison with Dry-cell) 11 
Figure 2.5 Typical Cycle Life Characteristics 11 
Figure 2.6 Typical Capacity Recovery After Storage 12 
Figure 2.7 Temperature/Voltage vs SOC characteristics of a NiCd cell 17 
Figure 2.8 Fuzzy Control of the process 20 
Figure 2.9 ANFIS control of the process 20 
'Figure 2.10 Neuro-Fuzzy-Genetic control 21 
Figure 2.11 NeuFuz system 22 
Figure 2.12 The systems that been used by [3] 23 
Figure 2.13 Fuzzy rules that been used in [7] 23 
Figure 2.14 ANFIS model that been used by [9] 24 
Figure 3.1 The architecture of the neuro fuzzy genetic battery charger 27 
Figure 3.2 Temperature-to-Digital Converter 29 
Figure 3.3 Triangle-shaped membership function 31 
Figure 3.4 Trapezoidal membership function 31 
Figure 3.5 Neural fuzzifier 32 
Figure 3.6 Input Membership Functions: U, dU, T and dT 34 
Figure 3.7 A Membership function of the output variable I 35 
Figure 4.1 The structure of fully RFNN 40 
Figure 4.2 GA based training of RFNN network 44 
Figure 5.1 Voltage vs. Time & Temperature vs. Time Characteristic 46 
Figure 5.2 Voltage model with Actual Voltage 49 
Figure 5.3 Temperature model with Actual Temperature 50 
Figure 5.4 Voltage characteristics for 8C, SC and 3C 50 
Figure 5.5 Temperature characteristics for 8C, SC and 3C 51 
Figure 6.1 Battery charging control process 59 



Xl 

Figure 6.2 Voltage and temperature 61 

Figure 6.3 Derivative of voltage and temperature 62 

Figure 6.4 Graph of the charging process 63 

Figure 6.5 The control with modified temperature term membership functions 64 

Figure 6.6 Intentionally remove some rules from consideration in control 65 

system 

Figure 6.7 Intentionally remove some rules from consideration in control 66 

system 

Figure 6.8 Corrupt membership functions of terms for the variables U and T 67 

Figure 6.9 Results of a Charging process 68 

Figure 6.10 Dynamic modeling of nonlinear systems using RFNN 70 

Figure 6.11 The output of the plant (y(k)) and the output of RFNN ( y (k)) 71 



1 

1. INTRODUCTION 

The nickel cadmium battery (commonly abbreviated NiCd or NiCad) is a popular type 

of rechargeable battery for portable electronics and toys using the metals nickel (Ni) and 

cadmium (Cd) as the active chemicals. NiCd batteries have a niche market in the area of 

cordless telephones, emergency lighting, as well as power tools. Due to their beneficial 

weight/energy ratio as compared to lead based technologies and good service lifetimes, 

NiCd batteries of large capacities with a wet electrolyte (wet NiCds) are used for 

electric cars and as start batteries for aero planes [31]. Ni Cd is the most popular battery 

type used by aerospace systems. 

The NiCd battery charging is a nonlinear electrochemical dynamic process and for this 

reason it can be very difficult to predict in an accurate manner. The NiCd battery 

charging process has a high degree of uncertainty with no exact mathematical model. 

Traditionally, the models that have been used for electrochemical processes based on 

statistics, but these models do not approximate the dynamic behavior of the processes 

with the accuracy required in practice. 

The research works on intelligent chargers have received considerable attention in 

recent literature. There are several intelligent research works on battery charging such 

as fuzzy, fuzzy-genetic and neuro-fuzzy. The existing systems minimize charging time 

or internal temperature increase and do not detect whether or not the battery is deeply 

discharged or shorted cell prior to charging. There is a danger that shorted cell batteries 

can blow up if forced to be charged. Thus, there is a need for an intelligent charger that 

minimizes both charging time & internal battery temperature increase, and detects the 

difference between deeply discharged and shorted cell. 

The aim of the work that is presented in this thesis is to design and develop an 

intelligent NiCd battery charger that minimize both charging time & internal 

temperature increase and detect the difference between deeply discharged and shorted 

cell before starting to charge the battery. The novel proposed system uses neuro-fuzzy- 
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genetic approach for modeling and control NiCd battery charging process. The 

dynamics of NiCd battery are described using recurrent fuzzy neural network (RFNN) 

trained by genetic algorithm (GA) to generate a fuzzy rule base to control battery 

charging process. In addition, a dynamic data mining technique for extraction of control 

rules for effective and fast NiCd battery charging process is also suggested within this 

work. Receiving current fuzzy values of the input signals, the suggested control system 

performs fuzzy inference and determines fuzzy values of output control signal. 

The proposed system is simulated using various software tools that include Java, C#, 

Visual Basic and Microsoft Excel. This thesis is organized as follows: 

Chapter 2 outlines a detailed knowledge on batteries and charging, review of existing 

intelligent Ni Cd batteries chargers with discussion of their capabilities and limitations. 

Chapter 3 presents a description of working principles, structure and elements of neuro 

fuzzy-genetic control system for NiCd batteries charging. 

Chapter 4 provides detailed description of the fuzzy neural networks and their learning 
process. 

Chapter 5 describes the fuzzy modeling of the Ni Cd batteries charging process by using 
recurrent fuzzy neural network. 

In Chapter 6, firstly the simulation results of the proposed approach are presented. Then 

a comparative analysis of neuro-fuzzy-genetic charger with existing intelligent ones is 

given. Then another comparison is presented between the proposed charger and the 

existing researches based on identification error. 

Finally in the Conclusion, the results obtained in previous chapters are summarized, and 

ideas for the future research are given. 
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2. STATE OF THE ART INTELLIGENT BATTERY 

CHARGING SYSTEMS 

2.1. Batteries as Control Object 

A battery converts chemical energy into electric energy through an electrochemical 

process. The basic unit is called a "cell" and can be manufactured in a wide variety of 

shapes and sizes. Batteries are made up of one or more cells in series or parallel 

combinations to create the desired voltage and output capacity. 

.The electrochemical cells consists of two terminal suspended in an electrolyte. The 

terminals are called the anode and the cathode. An electrical current is essentially a flow 

of electrons, and the battery can be regarded as an electron pump. The chemical reaction 

between the anode and the electrolyte forces electrons out of the electrolyte and into the 

anode metal, through the circuit, then back to the cathode. From the cathode metal, the 

electrons re-enter the electrolyte. This direction may seem strange, from negative to 

positive. The current has been conventionally regarded as flowing from positive down 

to negative, but in fact; this current is a flow of electrons in the opposite direction. The 

anode and cathode both get converted during this reaction, one is 'eaten away', and the 

other has a build-up of material on it. When a rechargeable battery is recharged, this 

chemical reaction is reversed, and the terminals are restored. 

Batteries can be divided into two classes: primary, and secondary. Primary batteries are 

designed for a single discharge cycle only, i.e. they are non-rechargeable. Secondary 

cells are designed to be recharged, typically, from 200 to 1000 times. The historical 

development of batteries is given in Table 2.1 [28]. The battery may be much ancient. It 

is believed that the Parthians who ruled Baghdad (250 BC) used batteries to electroplate 

silver. The Egyptians are said to have electroplated antimony onto copper over 

4300 years ago. 



4 

Table 2.1 History of battery development [28]. 

1600 Gilbert (UK) Establishment electrochemistry study 

1791 Galvani (Italy) Discovery of 'animal electricity' 

1800 Volta (Italy) Invention of the voltaic cell 

1802 Cruickshank (UK) First electric battery capable of mass production 

1820 Ampere (France) Electricity through magnetism 

1833 Faraday (UK) Announcement of Faraday's Law 

1836 Daniell (UK) Invention of the Daniell cell 

1859 Plante (France) Invention of the lead acid battery 

1868 Leclanche (France) Invention of the Leclanche cell 

1888 Gassner (USA) Completion of the dry cell 

1899 Jungner (Sweden) Invention of the nickel-cadmium battery 

1901 Edison (USA) Invention of the nickel-iron battery 

Shlecht & Ackermann 
1932 Invention of the sintered pole plate 

(Germany) 

1947 Neumann (France) Successfully sealing the NiCd battery 

Mid 1960 Union Carbide (USA) Development of primary alkaline battery 

Mid 1970 
Development of valve regulated lead acid 

battery 

1990 Commercialization nickel-metal hydride battery 

1992 Kordesch (Canada) Commercialization reusable alkaline battery 

1999 Commercialization lithium-ion polymer 

2001 
Anticipated volume production of proton 

exchange membrane fuel cell 

2.1.1 Battery Chemistries 

Advanced battery systems offer very high energy densities, deliver 1000 charge 

/discharge cycles and are paper thin. Batteries are scrutinized not only in terms of 

energy density but service life, load characteristics, maintenance requirements, self 

discharge and operational costs. Since NiCd remains a standard against which other 
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batteries are compared. Let us evaluate alternative chemistries against this classic 
battery type. 

• Nickel Cadmium (NiCd) - mature and well understood but relatively low in 

energy density. The NiCd is used where long life, high discharge rate and 

economical price are important. Main applications are two-way radios, 

biomedical equipment, professional video cameras and power tools. The NiCd 

contains toxic metals and is not environmentally friendly. 

• Nickel-Metal Hydride (NiMH) - has a higher energy density compared to the 

NiCd at the expense of reduced cycle life. NiMH contains no toxic metals. 

Applications include mobile phones and laptop computers. 

• Lead Acid - most economical for larger power applications where weight is of 

little concern. The lead acid battery is the preferred choice for hospital 

equipment, wheelchairs, emergency lighting and UPS systems. 

• Lithium Ion (Li-ion) - fastest growing battery system. Li-ion is used where 

high-energy density and light weight is of prime importance. The Li-ion is more 

expensive than other systems and must follow strict guidelines to assure safety. 

Applications include notebook computers and cellular phones. 

• Lithium Ion Polymer (Li-ion polymer) - a potentially lower cost version of the 

Li-ion. This chemistry is similar to the Li-ion in terms of energy density. It 

enables very slim geometry and allows simplified packaging. Main applications 
are mobile phones. 

• Reusable Alkaline - replaces disposable household batteries; suitable for low 

power applications. Its limited cycle life is compensated by low self-discharge, 

making this battery ideal for portable entertainment devices and flashlights. 

The characteristics of these six most commonly used rechargeable battery systems 

compared at Table 2.2 given in terms of energy density, cycle life, exercise 

requirements and cost [28]. The table is based on average ratings of commercially 
available batteries. 
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Table 2.2 Characteristics of commonly used rechargeable batteries [28]. 

Lead Li-ion Reusable 
Ni Cd NiMH Li-ion 

Acid polymer Alkaline 

Gravimetric Energy 
45-80 60-120 30-50 110-160 100-130 80 (initial) 

Density (Wh/kg) 

Internal Resistance 
100 to 200 200 to 300 <100 150 to 250 200 to 300 200 to 2000 

(includes peripherals 
6V pack 6V pack 12V pack 7.2V pack 7.2V pack 6V pack 

circuits) mW 

Cycle Life (to 80% of 200 to 500 to 
1500 300 to 500 300 to 500 50 (to 50%) 

initial capacity) 300 1000 

Fast Charge Time lh typical 2-4h 8-16h 2-4h 2-4h 2-3h 

Overcharge Tolerance moderate low high very low low moderate 

Self-discharge I 

Month 20% 30% 5% 10% -10% 0.3% 
(at room temperature) 

Cell Voltage 
1.25V 1.25V 2V 3.6V 3.6V 1.5V 

(nominal) 

Load Current 

- peak 20C SC SC >2C >2C O.SC 
- best result lC O.SC or 0.2C lC or lC or 0.2C or 

lower lower lower lower 

Operating 
-40 to -20 to -20 to -20 to 

Temperature 0 to 60°C 0 to 65°C 
60°C 60°C 60°C 60°C 

(discharge only) 

Maintenance 30 to 60 to 3 to 6 

Requirement 60 days 90 days 
not req. not req. not req. 

months 

Typical Battery Cost $50 $60 $25 $100 $100 $5 
(US$, reference only) (7.2V) (7.2V) (6V) (7.2V) (7.2V) (9V) 

Cost per Cycle (US$) $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50 

Commercial use since 1950 1990 1970 1991 1999 1992 

Note that NiCd has the shortest charge time, delivers the highest load current and offers 

the lowest overall cost-per-cycle, but has the most demanding maintenance 

requirements. 
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2.1.2 The Nickel Cadmium Battery 

Alkaline nickel battery technology is originated in 1899, when Waldmar Jungner 

invented the NiCd battery. The materials were expensive compared to other battery 

types available at the time and its use was limited to special applications. In 1932, the 

active materials were deposited inside a porous nickel-plated electrode and in 1947, 

research began on a sealed NiCd battery, which recombined the internal gases generated 

during charge rather than venting them. These advances led to the modern sealed NiCd 

battery. The advantages and limitations of Ni Cd Batteries are given in Table 2.3 [28]. 

Table 2.3 Advantages and limitations of Ni Cd batteries 

Advantages • Fast and simple charge - even after prolonged storage . 

• High number of charge/ discharge cycles - if properly 
maintained, the NiCd provides over 1000 charge/discharge cycles. 

• Good load performance - the NiCd allows recharging at low 

temperatures. 

• Long shelf life - in any state-of-charge . 

• Simple storage and transportation - most airfreight companies 

accept the NiCd without special conditions. 
. • Good low temperature performance . 

• Forgiving if abused - the NiCd is one of the most rugged 

rechargeable batteries. 

• Economically priced 

• Available in a wide range of sizes and performance options - 

most NiCd cells are cylindrical. 

Limitations • Relatively low energy density- compared with newer systems . 

• Memory effect 

• Environmentally unfriendly - the NiCd contains toxic metals . 

Some countries are limiting the use of the Ni Cd battery. 

• Has relatively high self-discharge - needs recharging after 

storage. 
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The NiCd prefers fast charge to slow charge and pulse charge to DC charge. All other 

chemistries prefer a shallow discharge and moderate load currents. The NiCd is the only 

battery type that performs best under rigorous working conditions. A periodic full 

discharge is so important that, if omitted, large crystals will form on the cell plates (also 

referred to as 'memory') and the NiCd will gradually lose its performance. 

Among rechargeable batteries, NiCd remains a popular choice for applications such as 

two-way radios, emergency medical equipment, professional video cameras and power 

tools. Most of the rechargeable batteries for portable equipment are Ni Cd However, the 

introduction of batteries with higher energy densities and less toxic metals is causing a 

diversion from NiCd to newer technologies. 

At the beginning battery cells were encased in glass jars. Later, larger batteries were 

developed that used wooden containers. The inside was treated with a sealant to prevent 

electrolyte leakage. With the need for portability, the cylindrical cell appeared. After 

World War II, these cells became the standard format for smaller, rechargeable 

batteries. Figure 2.1 [ 4] illustrates the conventional cell of a Ni Cd battery. 

P- ~iw lifflril!Nll 
PTC Elerrerit 

Gasket 
"'\ 

GB Rl!~ase V,errt 
' Pow:~ lfflrliti1~ l.ead 

N~a1h;~ 
Teminill 
.Lnd 

•' .. - 

Figure 2.1 Cross-section of a classic NiCd cell [4] 
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The cylindrical cell is moderately priced and offers high energy density. Typical 

applications are wireless communication, mobile computing, biomedical instruments, 

power tools and other uses that do not demand ultra-small size. NiCd offers the largest 

selection of cylindrical cells. 

Nickel-based cells provide a nominal cell voltage of 1,25V. Nickel-based cells are often 

marked 1,2V. There is no difference between a 1,2 and 1,25V cell; it is simply the 

preference of the manufacturer in marking. Whereas commercial batteries tend to be 

identified with 1,2V /cell, industrial, aviation and military batteries are still marked with 

the original designation of 1,25V/cell. A five-cell nickel-based battery delivers 6V 

(6,25V with l,25V/cell marking) and a six-cell pack has 7,2V (7,5V with 1,25V/cell 

marking). Packs with fewer cells in series generally perform better than those with 

12 cells or more. 

On higher voltage batteries, precise cell matching becomes important, especially if high 

load currents are drawn or if the pack is operated in cold temperatures. Parallel 

connections are used to obtain higher ampere-hour (Ah) ratings. When possible, pack 

designers prefer using larger cells. This may not always be practical because new 

battery chemistries come in limited sizes. Often, a parallel connection is the only option 

to increase the battery rating. Paralleling is also necessary if pack dimensions restrict the 

use of larger cells. Among the battery chemistries, Li-ion lends itself best to parallel 

connection. NiCd batteries have five main characteristics: charge, discharge, cycle life, 

storage, and safety. 

a) Charge Characteristics 

The charge characteristics of NiCd batteries are affected by the current, time, 

temperature, and other factors. Increasing the charge current and lowering the charge 

temperature causes the battery voltage to rise. Charge generates heat, thus causing the 

battery temperature to rise. Charge efficiency will also vary according to the current, 

time, and temperature. For rapid charge, a charge control system is required; refer to the 

following section on the charge methods for NiCd batteries. A typical charge 

characteristic for a Panasonic NiCd battery is shown in Figure 2.2 [5]. 
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Figure 2.2 Typical Charge Characteristics 

b) Discharge Characteristics 

The discharge characteristics of NiCd batteries will vary according to the current, 

temperature, and other factors. Generally, in comparison with dry-cell batteries, there is 

less voltage fluctuation during discharge, and even if the discharge current is high, there 

is very little drop in capacity. Among the various types of NiCd batteries, there are 

models such as Panasonic's "P" type which are specifically designed to meet the need 

for high-current discharge, such as for power tools, and there are also models such as 

new High Capacity and Rapid Charge type which are designed to meet the need for high 

capacity, such as for high-tech devices. A typical self discharge characteristics is shown 

in Figure 2.3 and the comparison with dry-cell from [5] shown in Figure 2.4. 
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I I I • 0 
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Figure 2.3 Typical Self-discharge Characteristics 
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Figure 2.4 Typical Discharge Characteristics (Comparison with Dry-cell) 

c) Cycle Life Characteristics 

The cycle life of NiCd batteries will vary according to the charge and discharge 

conditions, the temperature, and other usage conditions. The actual cycle life will vary 

according to which of the various charge formats is used, such as for rapid charge, and 

also according to how the device powered by the batteries is actually used. A typical 

cycle life characteristics from [5] shown in Figure 2.5. 

120 

'JOO - ;;{2, ~ 
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(.) 40 

20 
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Figure 2.5 Typical Cycle Life Characteristics 
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d) Storage Characteristics 

When NiCd batteries are stored in a charged state, the capacity will gradually decrease 

(self discharge), and this tendency will be markedly greater at high temperatures. 

However, the capacity can be subsequently restored by charge. Even if the batteries are 

stored for an extended length of time, if the storage conditions are appropriate, the 

capacity will be restored by subsequent charge and discharge. A typical capacity 

recovery after storage from [5] shown in Figure 2.6. 

20 
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0 
~ 
0:: 60 
.::, 
·c3 
ro g. 40 
(.) 

0 

Figure 2.6 Typical Capacity Recoveries after Storage 

e) Safety 

If pressure inside the battery rises as a result of improper use, such as overcharge, short 

circuit, or reverse charge, a reset able safety valve will function to release the pressure, 

thus preventing bursting of the battery. 

2.1.3 Charging the Nickel Cadmium Battery 

The charge and discharge current of a battery is measured in C-rate. Most portable 

batteries, with the exception of the lead acid, are rated at lC. A discharge of lC draws a 

current equal to the rated capacity. For example, a battery rated at lOOOmAh provides 

lOOOmA for one hour if discharged at 1 C rate. The same battery discharged at 0.5C 

provides 500mA for two hours. At 2C, the same battery delivers 2000mA for 
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30 minutes. The capacity of a battery is commonly measured with a battery analyzer. If 

the analyzer's capacity readout is displayed in percentage of the nominal rating, 

100 percent is shown if 1 OOOmA can be drawn for one hour from a battery that is rated 

at lOOOmAh. If the battery only lasts for 30 minutes before cutoff, 50 percent is 

indicated. A new battery sometimes provides more than 100 percent capacity. In such a 

case, the battery is conservatively rated and can endure a longer discharge time than 

specified by the manufacturer. 

The discrepancy in capacity readings with different C-rates largely depends on the 

internal resistance of the battery. On a new battery with a good load current 

characteristic or low internal resistance, the difference in the readings is only a 

few percentage points. On a battery exhibiting high internal resistance, the difference in 

capacity readings could swing plus/minus 10 percent or more. 

Applying the capacity offset does not improve battery performance; it merely adjusts 

the capacity calculation if discharged at a higher or lower C-rate than specified. The 

battery manufacturer determines the amount of capacity offset recommended for a given 

battery type. 

Battery manufacturers recommend that new batteries be slow charged for 24 hours 

before use. A slow charge helps to bring the cells within a battery pack to an equal 

charge level because each cell self-discharges to different capacity levels. During long 

storage, the electrolyte tends to gravitate to the bottom of the cell. The initial trickle 

charge helps redistribute the electrolyte to remedy dry spots on the separator that may 

have developed. 

Some battery manufacturers do not fully form their batteries before shipment. These 

batteries reach their full potential only after the customer has primed them through 

several charge/discharge cycles, either with a battery analyzer or through normal use. In 

many cases, 50 to 100 discharge/charge cycles are needed to fully form a nickel-based 

battery. Quality cells, such as those made by Sanyo [4], Panasonic [5] and Energizer 

[6], are known to perform to full specification after as few as 5 to 7 discharge/charge 
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cycles. Early readings may be inconsistent, but the capacity levels become very steady 

once fully primed. A slight capacity peak is observed between 100 and 300 cycles. 

Most rechargeable cells are equipped with a safety vent to release excess pressure if 

incorrectly charged. The safety vent on a NiCd cell opens at 1034 to 1379 kPa (150 to 

200 psi). In comparison, the pressure of a car tire is typically 240 kPa (35 psi). With a 

releasable vent, no damage occurs on venting but some electrolyte is lost and the seal 

may leak afterwards. When this happens, a white powder will accumulate over time at 

the vent opening. 

Commercial fast-chargers are often not designed in the best interests of the battery. This 

is especially true of NiCd chargers that measure the battery's charge state solely through 

temperature sensing. Although simple and inexpensive in design, charge termination by 

temperature sensing is not accurate. The thermistors used commonly exhibit broad 

tolerances; their positioning with respect to the cells are not consistent. Ambient 

temperatures and exposure to the sun while charging also affect the accuracy of full 

charge detection. To prevent the risk of premature cut-off and assure full charge under 

most conditions, charger manufacturers use 50°C as the recommended temperature cut 

off. Although a prolonged temperature above 45°C is harmful to the battery, a brief 

temperature peak above that level is often unavoidable. 

More advanced NiCd chargers sense the rate of temperature increase, defined as dT/dt, 

or the change in temperature over charge time, rather than responding to an absolute 

temperature (dT/dt is defined as delta Temperature I delta time). This type of charger is 

kinder to the batteries than a fixed temperature cut-off, but the cells still need to 

generate heat to trigger detection. To terminate the charge, a temperature increase of 

1 "C per minute with an absolute temperature cut-off of 60°C works well. Because of the 

relatively large mass of a cell and the sluggish propagation of heat, the delta 

temperature, as this method is called, will also enter a brief overcharge condition before 

the full-charge is detected. The dT/dt method only works with fast chargers. 

Harmful overcharge occurs if a fully charged battery is repeatedly inserted for topping 

charge. Vehicular or base station chargers that require the removal of two-way radios 

I' 
ii ~--·--- 
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with each use are especially hard on the batteries because each reconnection initiates a 

fast-charge cycle. This also applies to laptops that are momentarily disconnected and 

reconnected to perform a service. Repetitive connection to power affects mostly 'dumb' 

nickel-based batteries. A 'dumb' battery contains no electronic circuitry to 

communicate with the charger. 

More precise full charge detection of nickel-based batteries can be achieved with the 

use of a micro controller that monitors the battery voltage and terminates the charge 

when a certain voltage signature occurs. A drop in voltage signifies that the battery has 

reached full charge. This is known as Negative Delta V (NDV). NDV is the 

recommended full-charge detection method for 'open-lead' NiCd chargers because it 

offers a quick response time. The NDV charge detection also works well with a partially 

or fully charged battery. If a fully charged battery is inserted, the terminal voltage raises 

quickly, then drops sharply, triggering the ready state. Such a charge lasts only a few 

minutes and the cells remain cool. NiCd chargers based on the NDV full charge 

detection typically respond to a voltage drop of 10 to 30m V per cell. Chargers that 

respond to a very small voltage decrease are preferred over those that require a 

larger drop. 

To obtain a sufficient voltage drop, the charge rate must be 0.5C and higher. Lower than 

0.5C charge rates produce a very shallow voltage decrease that is often difficult to 

measure, especially if the cells are slightly mismatched. In a battery pack that has 

mismatched cells, each cell reaches the full charge at a different time and the curve gets 

distorted. Failing to achieve a sufficient negative slope allows the fast-charge to 

continue, causing excessive heat buildup due to overcharge. Chargers using the NDV 

must include other charge-termination methods to provide safe charging under all 

conditions. Most chargers also observe the battery temperature. 

The charge efficiency factor of a standard NiCd is better on fast charge than slow 

charge. At a 1 C charge rate, the typical charge efficiency is 1.1 or 91 percent. On an 

overnight slow charge (0 .1 C), the efficiency drops to 1.4 or 71 percent. At a rate of 1 C, 

the charge time of a NiCd is slightly longer than 60 minutes (66 minutes at an assumed 

charge efficiency of 1.1). The charge time on a battery that is partially discharged or 

- ---- ------ - 
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cannot hold full capacity due to memory or other degradation is shorter accordingly. At 

a O.lC charge rate, the charge time of an empty NiCd is about 14 hours, which relates to 

the charge efficiency of 1.4. 

During the first 70 percent of the charge cycle, the charge efficiency of a NiCd battery 

is close to 100 percent. Almost all of the energy is absorbed and the battery remains 

cool. Currents of several times the C-rating can be applied to a NiCd battery designed 

for fast charging without causing heat build-up. Ultra-fast chargers use this unique 

phenomenon and charge a battery to the 70 percent charge level within a few minutes. 

The charge continues at a lower rate until the battery is fully charged. Once the 

70 percent charge threshold is passed, the battery gradually loses ability to accept 

charge. The cells start to generate gases, the pressure rises and the temperature 

increases. The charge acceptance drops further as the battery reaches 80 and 90 percent 

SoC. Once full charge is reached, the battery goes into overcharge. In an attempt to gain 

a few extra capacity points, some chargers allow a measured amount of overcharge. 

Figure 2.7 illustrates the relationship of cell voltage, pressure and temperature while a 

NiCd is being charged [5]. 

Ultra-high capacity NiCd batteries tend to heat up more than the standard NiCd if 

charged at 1 C and higher. This is partly due to the higher internal resistance of the ultra 

high capacity battery. Optimum charge performance can be achieved by applying higher 

current at the initial charge stage, then tapering it to a lower rate as the charge 

acceptance decreases. This avoids excess temperature rise and yet assures fully charged 

batteries. 

The cell voltage, pressure and temperature characteristics are similar in a NiMH cell. 

Interspersing discharge pulses, between charge pulses improves the charge acceptance 

of nickel-based batteries. Commonly referred to as 'burp' or 'reverse load' charge, this 

charge method promotes high surface area on the electrodes, resulting in enhanced 

performance and increased service life. Reverse load also improves fast charging 

because it helps to recombine the gases generated during charge. The result is a cooler 

and more effective charge than with conventional DC chargers. 
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Figure 2.7 Temperature/Voltage v SOC characteristics of a NiCd cell. 

After full charge, the NiCd battery is maintained with a trickle charge to compensate for 

the self-discharge. The trickle charge for a NiCd battery ranges between 0.05C and 

O.lC. In an effort to reduce the memory phenomenon, there is a trend towards lower 

trickle charge currents. 

Some charger manufacturers claim amazingly short charge times of 30 minutes or less. 

With well-balanced cells and operating at moderate room temperatures, NiCd batteries 

designed for fast charging can indeed be charged in a very short time. This is done by 

simply dumping in a high charge current during the first 70 percent of the charge cycle. 

Some Ni Cd batteries can take as much a 1 OC, or ten times the rated current. Precise 

SoC detection and temperature monitoring are essential. 

The high charge current must be reduced to lower levels in the second phase of the 

charge cycle because the efficiency to absorb charge is progressively reduced as the 

battery moves to a higher SoC. If the charge current remains too high in the later part of 

the charge cycle, the excess energy turns into heat and pressure. Eventually venting 

- 
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occurs, releasing hydrogen gas. Not only do the escaping gases deplete the electrolyte, 

they are also highly flammable. 

Several manufacturers offer chargers that claim to fully charge NiCd batteries in half 

the time of conventional chargers. Based on pulse charge technology, these chargers 

intersperse one or several brief discharge pulses between each charge pulse. This 

promotes the recombination of oxygen and hydrogen gases, resulting in reduced 

pressure buildup and a lower cell temperature. Ultra-fast-chargers based on this 

principle can charge a nickel-based battery in a shorter time than regular chargers, but 

only to about a 90 percent SoC. A trickle charge is needed to top the charge to 

100 percent. 

Pulse chargers are known to reduce the crystalline formation (memory) of nickel-based 

batteries. By using these chargers, some improvement in battery performance can be 

realized, especially if the battery is affected by memory. The pulse charge method does 

not replace a periodic full discharge. For more severe crystalline formation on nickel 

based batteries, a full discharge or recondition cycle is recommended to restore the 

battery. 

Ultra-fast charging can only be applied to healthy batteries and those designed for fast 

charging. Some cells are simply not built to carry high current and the conductive path 

heats up. The battery contacts also take a beating if the current handling of the spring 

loaded plunger contacts is underrated. Pressing against a flat metal surface, these 

contacts may work well at first, and then wear out prematurely. Often, a fine and almost 

invisible crater appears on the tip of the contact, which causes a high resistive path or 

forms an isolator. The heat generated by a bad contact can melt the plastic. 

Another problem with ultra-fast charging is servicing aged batteries that commonly 

have high internal resistance. Poor conductivity turns into heat, which further 

deteriorates the cells. Battery packs with mismatched cells pose another challenge. The 

weak cells holding less capacity are charged before those with higher capacity and start 

to heat up. This process makes them vulnerable to further damage. 
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Many of today's fast chargers are designed for the ideal battery. Charging less than 

perfect specimens can create such a heat buildup that the plastic housing starts to distort. 

Provisions must be made to accept special needs batteries, albeit at lower charging 

speeds. Temperature sensing is a prerequisite. 

The ideal ultra-fast charger first checks the battery type, measures its SoH and then 

applies a tolerable charge current. Ultra-high capacity batteries and those that have aged 

are identified, and the charge time is prolonged because of higher internal resistance. 

Such a charger would provide due respect to those batteries that still perform 

satisfactorily but are no longer 'spring chickens'. 

The charger must prevent excessive temperature build-up. Sluggish heat detection, 

especially when charging takes place at a very rapid pace, makes it easy to overcharge a 

battery before the charge is terminated. This is especially true for chargers that control 

fast charge using temperature sensing alone. If the temperature rise is measured right on 

the skin of the cell, reasonably accurate SoC detection is possible. If done on the outside 

surface of the battery pack, further delays occur. Any prolonged exposure to a 

temperature of 45°C harms the battery. 

New charger concepts are being studied which regulate the charge current according to 

the battery's charge acceptance. On the initial charge of an empty battery when the 

charge acceptance is high and little gas is generated, a very high charge current can be 

applied. Towards the end of a charge, the current is tapered down. 

2.2 Review of Existing Work of Intelligent Batteries Chargers 

The dynamics of an electrochemical system is non-linear and the mathematical models 

are difficult to derive. There are several intelligence works on battery charging process. 

Castillo & Melin implemented three different intelligent systems by MATLAB in [ 1] to 

control a complex electrochemical process. The authors of [1] compared the results of 

fuzzy (Figure 2.8), neuro-fuzzy (Figure 2.9) and neuro-fuzzy-genetic systems (Figure 
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2.10) with conventional PID control by simulating the formation (loading) of a battery. 

These systems designed using absolute temperature (T) and temperature gradient 

(dT/dt) as inputs and current (I) as output. The authors of [1] used a simple linear 

repression model as: 

T= 88.03+2.5304 I (2.1) 

where 88.03 and 2.5304 are estimated parameters to be using real data. 

T ~ ~ I 
Fuzzy ~ Electro-chemical 

controller 
. 

process 
. ~ 

dT/dt 

Figure 2.8 Fuzzy Control of the Process [ 1] 

T I T 
~ ANFIS . Electro-chemical ~ ~ 

controller process 

Figure 2.9 ANFIS Control of the Process 
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Figure 2.10 Neuro-Fuzzy-Genetic Control 

According to Table 2.4 [1], neuro-fuzzy-genetic approach gives the best result to 

produce a battery in the manufacturing plant. Although [ 1] explains the duration of 

charging, unfortunately it neither gives the type of the battery nor does it give any 

information about temperature increase level during charging. However, a specific 

procedure to create control system for battery charging is not presented. 

Table 2.4 Comparison of the methods for control 

Control Method Time for Loading (hours) 

Manual Control 50 

Conventional Control 36 

Fuzzy Control 32 

Neuro-Fuzzy Control 30 

Neuro-Fuzzy-Genetic 25 
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The authors of [2] focus on the design of a super fast battery charger based on 

National's neural network that named as NeuFuz technology. In this application they 

used a NiCd battery pack as the test vehicle and measured values are T, Voltage (U) and 

I. The NeuFuz system designed by the authors of [2] is given in Figure 2.11. 
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Figure 2.11 NeuFuz System 

Instead of designing a model [2] uses 400 to 700 data points for NiCd by using invertors 

to be adequate to present the input space. These trip points are based on battery voltage 

(U) and T charging characteristics provided by manufacturer. The configuration 

parameters for training the neural network (NN), the number of fuzzy membership 

functions and absolute accuracy desired. Once the NN has been trained in [2] and the 

accuracy of the fuzzy logic solution found acceptable, then the controller code is 

generated. The results show 5 degree Celsius difference between ending temperature 

and starting temperature (Tend - Tstar1) where charging time is 20 to 30 minutes. The 

charging time is to long when compared with other researches. 

Work [3] presents a genetic algorithm approach to optimize a fuzzy rule-based system 

for charging high power NiCd batteries. In this paper the inputs are T, dT/dt, U and 

voltage gradient (dU/dt). The output is current (I). The author of [3] uses real battery in 
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the experiments instead of designing a model as shown in Figure 2.12. This paper gives 

low level Tend - Tstart and a short charging time results unfortunately not the lowest ones. 

Bosch GAL 12 

Figure 2.12 The systems that been used by [3] 

Authors of [7], propose some characteristics and implement the means on rule editor of 

the MATLAB instead of designing a specific NiCd battery model. The inputs of the 

designed fuzzy system are T, dT/dt, U and dU/dt where the output is I. In the conclusion 

the authors of [7] gives the Tend - Tstart result as 35 up to 60 degree Celsius. The 

charging time is not mentioned by the authors in [7]. Although the authors suggested 

that their system increases the life time up to 3000 cycle, they do not give the initial life 

time. The Tend - Tstart result is also too high compared with other research papers. 

Figure 2.13 Fuzzy rules that been used in [7] 
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The Author of [8] pointed out that the 'intelligent' battery chargers will not be able to 

detect the difference between deeply discharged and shorted cell batteries. In this paper 

the proposed method to solve this problem is checking the conductance. Unfortunately 

conductance controlled battery charging needs to measure the capacitance of the battery 

that increases the charging time. 

Paper [9] considers a fuzzy controller for rapid NiCd batteries charger using adaptive 

Neuro-Fuzzy inference system (ANFIS). The NiCd batteries were charged at different 

rates between 8 and 0.05 C-rate and for different durations. The two input variables 

identified to control the C are T and dT/dt. The equivalent ANFIS architecture for the 

system under consideration is shown in Figure 2.14 using MATLAB. Although this 

work gives the best result on charging time which gives a high level 50 degree Celsius 

Tend - Tstart• 

Figure 2.14 ANFIS model that been used by [9] 

Authors of [10], control the battery charging process by a microcontroller. T and U are 

used to control the output I. However the total charging time and Tend - T start results are 

not presented in this work. 

As it is mentioned in the [11] there is no comparison between recent research works on 

intelligent chargers of Ni Cd batteries. 



25 

2.3. Statement of Present Work Problem 

The aim of this dissertation is to design a controller that gives both least charging time 

and least temperature increase together and also able to detect the difference between 

deeply discharged and shorted cells. The system will also provide means to avoid 

charging shorted batteries.. To reach these goals the dissertation focuses on designing a 

model for nickel cadmium battery charging process and then uses this model to design a 
controller. 

The purpose of battery control system is to charge the whole battery pack, consisting of 

8 battery cells to hold 9,6V. The initial charge level is 1,37V and temperature is 21,6°C. 

Just after the battery reaches 1,6V, it becomes overheated and loss of charge is observed 

due to some chemical processes inside the battery. The purpose of control system is to 

charge the battery to hold 1,6V in a possibly shorter time while preventing the battery 

from overheating. Different charging I values can be applied to battery from controller 
output. 

The input signals T and U are defining the crisp current values of the battery 

temperature and voltage respectively. The battery charging control system measures 

temperature and voltage sensors. To consider the battery dynamics better, the first 

derivatives of U (dU/dt) and T (dT/dt) are used as additional input signals to the battery 
charging controller. 

As it is mentioned above, there is no available formal mathematical model of the battery 

under the charging process. A Soft Computing based computational model is required to 

allow dynamic update through the life of the battery. To design the required charger a 

RFNN is used to learn the required behavior of the battery charging system. The fuzzy 

rule extraction is performed to generate a set of fuzzy rules and membership functions. 

The acquired knowledge is then analyzed and adjusted by human and incorporated into 
fuzzy logic based controller. 

All the input signals: U, dU/dt, T and dT/dt, are fuzzified to compute relevance to 

respective fuzzy terms used in the rules. The controller performs fuzzy inference and 
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determines fuzzy values of control signal. The defuzzified fuzzy control signal, 

representing the value of current (I), from fuzzy logic based charging controller is then 

applied to the battery. 
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3. ARCHITECTURE OF NEURO-FUZZY-GENETIC 

CONTROL SYSTEM FOR BATTERIES CHARGING 

3.1 Structure of Control System and Description of its Working Principles 

The input signals of suggested control system for batteries charging temperature (T) and 

voltage (U) are measured by temperature and voltage sensors. Outputs of the sensors are 

crisp current values of temperature and voltage. As one can see in Figure 3.1 other input 

signals of neuro-fuzzy-genetic controller for battery charging is first derivatives of U 

(dU/dt) and first derivatives of T (dT/dt). All these input signals U, dU/dt, T and dT/dt 

are transmitted into fuzzy signals by fuzzifiers. Knowledge base of neuro-fuzzy-genetic 

controller is implemented by RFNN approximately. Receiving current fuzzy values of 

U, dU/dt, T and dT/dt controller performs fuzzy inference and determines fuzzy values 

of control signal. As only crisp control signals are applied to battery obtained from 

RFNN fuzzy control signal must be defuzzified by defuzzifier. This signal is transmitted 

from analog to digital and applied to the battery [ 18-27]. 

d I dt I Fuzzifier 

T 
j .Fuzzifier 

dT ldt 
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Figure 3.1 The architecture of the neuro fuzzy genetic battery charger 
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3.2 Elements of Batteries Charging Control Systems 

In this project, during simulation of the controller it was assumed that the temperature 

and voltage values measured by sensors are converted to digital signals before entering 

the fuzzifiers. The output current filtered, amplified and then converted to analog signal 
after defuzifier. 

An analog-to-digital converter (abbreviated ADC, AID or A to D) is an electronic 

circuit that converts continuous signals to discrete digital numbers. The reverse 

operation is performed by a digital-to-analog converter. A digital-to-analog converter 

(DAC or D-to-A) is a device for converting a digital (usually binary) code to an analog 

signal (current in Figure 3.1). Digital-to-Analog Converters are the interface between 

the abstract digital world and the analog real life, See [31] for more details. 

Several temperature sensing techniques are currently in widespread usage as explained. 

The most common of these are Resistance Temperature Detectors (RTDs), 

thermocouples, thermistors, and sensor ICs. Resistive sensors use a sensing element 

whose resistance varies with temperature. A platinum RTD consists of a coil of 

platinum wire wound around a bobbin, or a film of platinum deposited on a substrate. 

Another type of resistive sensor is the thermistor. Low-cost thermistors often perform 

simple measurement or trip-point detection functions in low-cost systems. A thermistors 

resistance-temperature function is very nonlinear. A thermocouple consists of a junction 

of two wires made of different materials. Integrated circuit temperature sensors differ 

significantly from the other types in a couple of important ways. The first is operating 

temperature range. A temperature sensor IC can operate over the nominal IC 

temperature range of -55°C to + 150°C. The second major difference is functionality. A 

silicon temperature sensor is an integrated circuit, and can therefore include extensive 

signal processing circuitry within the same package as the sensor. There is no need to 

design comparator or ADC circuits to convert their analog outputs to logic levels or 

digital codes. Those functions are already built into several commercial ICs. For details 
see [29]. 
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The circuit has shown in Figure 3.2 [29] implements a low-cost system for measuring 

temperature at several points within a system and converts the temperature readings to 

digital form. With the components shown here, up to 19 LM45 temperature sensors 

drive separate inputs of an ADC08019 8-bit, 19-channel ADC with serial (microwire, 

SPI) data interface. The tiny SOT-23 sensor packages allow the designer to place the 

sensors in virtually any location within the system. The 1,28V reference voltage is 

chosen to provide a conversion scale of 1 LSB = 5mV = 0,5°C, with full-scale equal to 
128°C. The R-C network at the sensor output provides protection against oscillation if 

capacitive loads (or cables) may be encountered, and also help filter output noise. The 

reference voltage can be manually adjusted to 1,28V with the 10k potentiometer, or the 

potentiometer can be replaced with a fixed resistor. If 5% values will be used, a 3,3 kQ 

resistor will work. For better accuracy, use 1 % resistors; the pot can then be replaced by 

a 3,24 kQ resistor. 

3.9K 28 122 
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Figure 3.2 Analog-to-Digital Converters 

A voltage sensor is a sensor used for measuring voltage. They are used for measuring 

DC or AC voltage. Voltage sensors, also known as electrical voltage sensors, are 

available in either digital or analog type. Digital- type voltage sensors are more accurate 

than analog- type voltage sensors. Voltage Sensors can be mounted either in printed 

circuit boards (PCB) or DIN rails. Voltage sensors can be used in combination with 
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current sensors. Voltage Sensors are available in different voltage range. The input of 

the voltage sensor may be DC input or AC input. Voltage sensors can work in the 

absence of input. Differential voltage sensors are used to measure voltage. The 

differential voltage sensor consists of a sensor that has a small signal amplifier with a 

wide range of frequency. The sensor is used for measuring voltage in DC and AC 

circuits. The sensor takes differential, voltage as input and produces negative and 

positive potentials. Differential voltage sensors are used in parallel with circuit 

elements. Potential difference between the ends is measured by the differential voltage 

sensor. The measured voltage is then passed to the amplifier unit and adjusted to the 

required range. The differential voltage sensor also comes with over-voltage protection 

for safety purposes. Interfaces are available for differential voltage sensors, see [30] for 

more details. 

The difference of the fuzzification and defuzzification used in neuro-fuzzy systems 

from those used traditionally is in that here the role of adjusting or learning is more 

important. A fuzzifier is a unit that has one input and several outputs; each of the 

outputs represents a certain fuzzy term and returns the membership value of a given 

input to that term. As a rule, fuzzifiers are adjustable and can be realized as neurons and 

neural networks. 

By analogy, a unit that allows obtaining an appropriate crisp value based on a given 

fuzzy one is named defuzzifier. Several methods of defuzzification are known; 

difference among them is in the way they calculate the average value based on the area 

below the membership function curve. There are no recommendations on which formula 

is the most universal and precise - each separate application may have its own reasons 

for selecting one out of these three. An attractive feature of the defuzzification in neuro 

fuzzy systems is that the formula of defuzzification can be adjusted just like the 

membership function. 

The method to create fuzzifier (and also defuzzifier) depends mostly on the 

requirements for the shapes of generated membership functions, that is on the formula 

that allows general appearance for membership function shapes necessary for this 
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application. On the base of the obtained formula one can select the necessary type of 

neuron. 

For triangle-shaped membership function that been used for current (I) output 

membership function , the appropriate fuzzifier is the neuron implementing the function 

~LA (x) 
LO •. 

a X 

Figure 3.3 Triangle-shaped membership function 

(3.1) 

This neuron has three parameters, directly defining the associated fuzzy number by the 

triple (a1,a2,a3), i.e. left bound, middle point and right bound. 

For trapezoidal membership functions that used for T, dT/dt, U and dU/dt membership 

functions , the appropriate fuzzifier is the neuron implementing the function 

a4 X 

Figure 3.4 Trapezoidal membership function 
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a4-X "f < < --r, 1 a:, _x_a4, 
a4-c1:3 

0 , otherwise 

(3.2) 

The machine, having replaced the fuzzifier by a traditional neural network and learned 

it, will obtain so-called neural fuzzifier (Figure 3.5). 

Membership 
functions 

T 

Figure 3.5. Neural fuzzifier 

The most commonly used defuzzification formula that consists in finding the line that 

divides the area below the membership function (describing the defuzzified number) 

into two equal-size sub-areas. The associated method is known by name "Center-of 

gravity method". 

J v µ(y)dy. 
Y defuz = J µ(y )dy (3.3) 

Because the output membership functions may consist of a combination (union) of 

some parts of input membership functions, and this combination does not in general 

inherit the features of the original shapes then the resulting defuzzifying function will 
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hardly be of a compact mathematical form. So the appropriate defuzzifier is built to 

substituted a unit performing the function. 

However, in most cases, the output membership functions are expressed as singletons 

especially when concerned with the monolith (neuro-and fuzzy in a single chip) 

compact, simple and effective neuro-fuzzy systems for limited applications. Then the 

defuzzifier is built. 

In this case the output membership functions are assumed to be singletons. They are 

completely defined by the parameters of the neuron ( W1) after learning. Here the 

division may be excluded by way of normalization of the coefficients ( Wi ), i.e. the 

defuzzification is performed by a neuron that just weighs the input signal forming its 

output. 

In the latter case the generated rules represented as a table (multi-dimensional in the 

general case) like Table 3.1. 

Table 3.1 Rules represented as a table 

Temperature Low Average High 

Low 0.19 0.25 0.15 

Average 0.05 0.31 0.12 

High 0.28 0.01 0.09 

As the block diagram shows in Figure 3.1, the U, dU, T and dT applied to the neuro 

fuzzy-genetic charger and the output current (I) connected to the charger to charge the 

battery. Different charging currents values have been applied ranging from OA to 6A 

that allows flexibility in tailoring the charge level to the state of the battery to achieve 

an optimal charging scheme [2]. The first few simulations give unsatisfactory results. 

In the next simulation cycles, fuzzy rules and membership functions were changed to 

get the best results from the system. The input membership functions U, dU, T and dT 
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used in simulation are given in Figure 3.6 and the output membership function I is given 

in Figure 3.7. 

medium 
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Figure 3.6 Input Membership Functions: U, dU, T and dT. 
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Figure 3.7 A Membership function of the output variable I 

The knowledgebase designed according to the NiCd charge characteristics as explained 

in section 2.1.3. The rules given in Table 3 .2.are applied to the system at the beginning. 

Table 3.2 Applied Fuzzy Rules 

T dT/dt u dU/dt I 

LOW LOW LOW LOW HIGH 

LOW MEDIUM LOW LOW HIGH 

LOW HIGH LOW LOW HIGH 

MEDIUM LOW LOW LOW HIGH 

MEDIUM MEDIUM LOW LOW MEDIUM HIGH 

MEDIUM HIGH LOW LOW MEDIUM LOW 

HIGH ANY ANY ANY LOW 

LOW LOW MEDIUM LOW HIGH 

LOW MEDIUM MEDIUM LOW HIGH 

LOW HIGH MEDIUM LOW HIGH 

LOW HIGH MEDIUM MEDIUM HIGH 

MEDIUM LOW MEDIUM MEDIUM MEDIUM HIGH 
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MEDIUM MEDIUM MEDIUM MEDIUM MEDillM HIGH 

MEDIUM HIGH MEDIUM MEDillM MEDillMLOW 

LOW LOW MEDIUM HIGH HIGH 

LOW MEDIUM MEDIUM HIGH HIGH 

LOW HIGH MEDIUM HIGH HIGH 

MEDIUM LOW MEDIUM HIGH MEDillM HIGH 

MEDIUM MEDIUM MEDIUM HIGH MEDillM HIGH 

MEDIUM HIGH MEDIUM HIGH MEDillMLOW 
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4. RECURRENT FUZZY NEURAL NETWORKS 

AND THEIR LEARNING 

4.1 Review on Fuzzy Neural Networks 

Fuzzy logic has been successfully applied in many areas, such as control of industrial 

processes, control of robotic manipulators, control of servo-motors, complex decision 

making, diagnostic systems and others. When using fuzzy logic, input data in the form 

of linguistic values are represented by membership functions which are used for 

defining fuzzy sets of crisp values and their corresponding membership degrees related 

to these sets. Many parameters of systems based on fuzzy logic should be defined with 

help of an expert. In the same time, however, the parameters associated in the 

construction of processes are performed by a method of the trial and error or some 

heuristic algorithms. Moreover, a designer who knows the characteristics of the system 

also needs to specify initial rules. Some researchers have suggested a number of 

mechanisms to generate fuzzy rules and developed methods of their modification on the 

basis of their experience. Among them, we must distinguish the self-organizing fuzzy 

controllers that are capable of forming and modifying fuzzy rules, the clustering 

algorithms for fuzzy partitioning of an input data space, and the least square algorithm 

for defining a succession of parameters that can be used to construct systems based on 

fuzzy logic. 

Despite utilization of all these algorithms, they still remain to be heuristic in some 

sense, and the selection of membership functions in fuzzy rules is connected to the 

method of trial and error. In order to remove this disadvantage recently some interesting 

methods were developed that utilize the learning ability of neural networks. Multi-layer 

neural networks with such learning methods as backpropagation, reinforcement, and 

unsupervised algorithms, or the combinations of the above, have been used to select 

fuzzy rules and precisely adjust membership functions used in those rules. For fuzzy 

neural network, the signals and/or the weights must be fuzzy set. There are three types 

of fuzzy neural networks (FNN)- FNN1, FNN2, FNN3. 
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The first type of fuzzy neural net (abbreviated FNN1) has crisp signals ( XJ (i = 1,n) 

but fuzzy weights. The second type of FNN (FNN2) has fuzzy signals and real number 

weights. The last FNN (FNN3) has both fuzzy signals and fuzzy weights. 

4.2 Description of Investigated Recurrent Fuzzy Neural Networks 

In spite of great importance of fuzzy feed-forward and recurrent neural networks (FNN) 

to solve a wide range of real world problems, today there is no effective learning 

algorithm for FNN. 

In [38] a learning algorithm for FNN is proposed with fuzzy signals and weights called 

the "fuzzified delta rule". As shown in [39] this algorithm lacks theoretical basis and is 

derived only through the use of the real differentiation instead of the fuzzy 

differentiation. 

In [ 40] an architecture and learning algorithm of FNN are proposed with trapezoid 

fuzzy weights. Using Zadeh's extension principle, a-level sets and interval arithmetic, a 

crisp learning algorithm is derived for adjusting four parameters of each trapezoid fuzzy 

weight. Earlier in [ 41] similar crisp learning algorithm for FNN was proposed with 

triangular weights. In [39, 42] the idea of using genetic algorithms was expressed for 

learning ofFNN. 

In this section we consider an effective genetic-based learning mechanism for FNN with 

fuzzy inputs, fuzzy weights expressed as LR-fuzzy numbers, and fuzzy outputs. 

Hamming fuzzy distance, which is non-differentiable is used as a performance error 

index for learning of FNN. The main distinguishing features of the proposed learning 

method from the existing approaches include the following: 

1. The proposed method does not require differentiability of error performance index of 

FNN. 
2. Fuzzy is used distance in general fuzzy number space for comparison of fuzzy actual 

fuzzy output and target of FNN. Therefore the derived algorithm is not crisp. The 
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proposed method guarantees a higher degree than existing algorithms in the global 

minimum of error performance of FNN. 

4.3 Genetic Algorithm Based Leaming of Recurrent Fuzzy Neural 

Networks 

Fuzzy neural network (FNN) approach becomes a powerful tool for solving real-world 

problems in area of forecasting, identification, control, image recognition and others 

that are related with high level uncertainty [13]. This is related with the fact that the 

FNN combines the capacity of fuzzy reasoning in handling uncertain information and 

the capability of pure neural networks in the learning from experiments. The advantage 

of FNN is that it allows automation of design of fuzzy rules and combined learning of 

numerical data as well as expert knowledge expressed as fuzzy IF-THEN rules. FNN 

may have smaller network size and be faster in convergence speed as compared with 

ordinary NN. 

In spite of great importance of fuzzy feed-forward and recurrent neural networks there 

is no effective learning algorithms for FNN. There are two approaches for training 

FNN. First approach is level-sets of fuzzy numbers and application of the back 

propagation (BP) learning algorithm. The second approach is to involve Genetic 

Algorithm (GA) to minimize error function and determine the fuzzy connection weights 

and biases. The main advantage of the GA based approach is that it is less complicate 

yet guarantees with higher degree the global minimum of total error performance index 

than classic gradient-based error minimization methods applied to alpha cuts [13]. In 

case of dynamic or temporal problems there is a need for RFNN. 

Because of the advantages of FNN and GA based approach that mentioned above we 

decide to design our Ni Cd battery charger with GA based trained RFNN. 

The structure of the considered RFNN is presented in Figure 4.1. The box elements 

represent memory cells that store values of activation of neurons at previous time step, 

which is feed back to the input at the next time step. 
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Layer D (input) Layer I (hidden) Layer L (output) 

x~ (t) 

D 
xj (t) 

Figure 4.1 The structure of fully RFNN 

In general the network may have virtually any number of layers successively from 0 

(the first or input layer) to L (last or output layer). The neurons in the first (layer 0) 

layer are only distributing the input signals without modifying the values 

y( (t) = x; (t) (4.43) 

The neurons in the next layer 1 have dynamic links and process the incoming fuzzy 

signals from layer O by the following formula: 

yJ(t) = F(e/)+ Ix~(t)w~ + LY~(t-l)v~ (4.44) 
j j 

The neurons in the remaining hidden layers (layer 2 to layer N1-2) are also dynamic and 

compute their output signals as follows 
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y{(t)=F(e:)+ LX~(t)w~ + LY~(t-l)v~ 
j j 

(4.45) 

The output neurons (layer L) are non-dynamic linear neurons: 

Y;\t) = F(B/ )+ LxJ(t)wt 
j 

(4.46) 

where x/ (t) is j-th fuzzy input to the neuron I at layer 1 at the time step t, y/ (t) is the 

computed output signal of the neuron at the step t, Wij is the fuzzy weight of the 

connection to neuron I from neuron j located at the previous layer, 8i is the fuzzy bias of 

neuron i, y/ (t-1) is the activation of neuron j at the time step (t-1 ), Vij is the recurrent 

connection weight to neuron i from neuron j at the same layer. 

The activation function F for a total input to the neurons is calculated as: 

s 
F(s) = l+lsl (4.47) 

All fuzzy signals and connection weights and biases are general fuzzy numbers that 

with any required precision can be represented as T(Lo,L1, .. ,Ln-1,Rn-1,Rn-2, ... ,Ro). In 

case the original learning patterns are crisp, we need to sample data into fuzzy terms, 

i.e. to fuzzify the learning patterns. The fuzzifiers can be created independently for 

specific problems. 

To apply genetic algorithm based approach for RFNN training, all adjustable parameters 

i.e. connection weights and biases are coded as bitstrings. A combination of all weight 

and bias bitstrings compose a genome (sometimes called a chromosome) representing a 

potential solution to the problem. 

During the genetic evolution a population consisting a set of individuals or genomes 

(usually 50-100 genomes) undergo a group of operations with some genetic operators, 

most used of which are crossover and mutation. Applying genetic operators results in 

generating many offsprings (new individuals or genomes). 



42 

When bitstrings are decoded back to weights and biases, presenting different RFNN 

solutions, some may present good network solutions and some bad. Good genomes (i.e. 

those corresponding to good solutions) have more changes to keep within the 

populations for many generations ahead while bad genomes have more changes to be 

discarded during the selection process. 

Whether a genome is good or bad is evaluated by a fitness function. The fitness function 

is an evaluator function ( can also be fuzzy) numerically evaluating the quality of 

genome and the representing solution. In case of a NN learning this paper's purpose is 

to minimize the network error performance index. 

Therefore the selection of best genomes from the population is done on the basis of the 

genome fitness value, which is calculated from RFNN error performance index. The 

calculation of fitness value of a particular genome require restoration of the coded 

genome bits back to fuzzy weight coefficients and biases of RFNN in other words it 

need to get a phenotype from the genotype. 

The RFNN error performance index can be calculated as follows: 

p i 
(4.48) 

i=n-1 i=n-1 

D(Tl, T2) = L k, ILTli - LT2i I+ L k, IRTli - RT2i I, 
i=O i=O 

where E101 is the total error performance index for all output neurons i and all learning 

data entries p; D(Tl,T2) is the distance measure between two fuzzy numbers Tl and T2; 

O~k0~k1 ... ~kn-z~kn-l are some scaling coefficients. Once the total error performance 

index for a combination of weights has been calculated the fitness f of the 
corresponding genome is set as: 

1 
f = I+E101 

(4.49) 
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As can be seen, the fitness function value for a genome ( coding a network solution) is 

based on a distance measure comparing two sets of fuzzy values. Scaling coefficients 

are included to add sensitivity to high membership areas of a fuzzy number. 

The GA used here can be described as follows: 

1. Prepare the genome structure according to the structure of RFNN; 

2. In case of existence of a good genome (an existing network solution), put it into 

population; else generate a random network solution and put it into population; 

3. Generate at random new PopSize-1 genomes and put them into population; 

4. Apply genetic crossover operation to PopSize genomes in the population; 

5. Apply mutation operation to the generated offsprings; 

6. Get phenotype and rank (i.e. evaluate and assign fitness values to) all the offsprings; 

7. Create new population with Nbest best parent genomes and (PopSize- Nbest) best 

off springs; 

8. Display fitness value of the best genome; 

If termination condition is met go to Step 9; 

Else go to step 4; 
9. Get phenotype of the best genome in the population. Store network weights file; 

10. Stop. 

In above algorithm PopSize is minimum population size and Nbest is the number of best 

parent genomes always kept in the newly generated population. 

The learning may be stopped once we see the process does not show any significant 

change in fitness value during many succeeding regenerations. In this case we can 

specify new mutation (and maybe crossover) probability and continue the process. If the 

obtained total error performance index or the behavior of the obtained network is not 

desired, we can restructure the network by adding new hidden neurons, or do better 

sampling (fuzzification) of the learning patterns. The GA-based training process is 

schematically shown in Figure 4.2. 
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5. FUZZY MODELING OF THE NICD BATTERIES 

BY USING RFNN 

5.1 Approximation of the Nonlinear Dynamics of the NiCd Battery by 

RFNN 

The battery converts chemical energy into electrical energy through an electro-chemical 

process. The basic unit is called a "cell" and can be manufactured in a wide variety of 

shapes and sizes. Batteries are made up of one or more cells in series or parallel 

combinations to create the desired voltage and output capacity. The dynamics of the 

electrochemical systems are nonlinear and therefore their mathematical models are 

difficult to derive. There are several intelligent methods for battery modeling explained 

in section 2.2. 

RFNN based model of Ni Cd batteries is created on base oflarger experimental analysis. 

These experiments included voltage-temperature characteristics for different C-rates. 

Figure 5.1 shows the voltage vs. time and temperature vs. time curves of a Ni Cd battery 

charging process when applied 6C (the initial charge level is 1,37V and temperature is 

21,6°C). Just after the battery reaches 1,6V, it becomes overheated and we can observe 

loss of charge due to some chemical processes inside the battery. 

At the beginning of the charging, the temperature does not rise significantly but remains 

relatively flat. After the battery reaches 80% of its capacity, its temperature begins to 

rise sharply. At the end of charging the voltage falls because of the temperature as 

shown in Figure 5 .1. An internal temperature increase forces the internal resistance to 

decrease. The purpose of control is to charge the battery to hold 1,6V in a possibly 

shorter time while preventing the battery from overheating. 
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Figure 5.1 Voltage v time & temperature v time characteristic [3]. 

During the charging process, beside the main electrochemical reactions, oxidation and 

corrosion occur especially during overcharging. These undesired reactions make the 

mathematical analysis very difficult [3]. There is no exact mathematical model. As a 

result, instead of designing a nonlinear differential equation model, it is preferable to 

use neuro-fuzzy-genetic method to define a model. 

To design the charger, NN is used to learn the behavior of the battery charging and to 

generate a set of fuzzy rules and membership functions, then acquired knowledge into 

new fuzzy logic system. The system creates the following voltage and temperature 

models. 

• Voltage Model 

U= Ru(NNu(Su(1:))) where 

the fitness function is 
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F(y) = y I l+lyl 

with Su('t) = - 0,75+1,5(-c - 'C min) I (r max - 'C min) 

that 'C max =1050 and 'C min = 0 

also Ru(u)= Umin+ 2/3 (U max - Umin) (0.75+u) where 

U max= 1,593333333 

Umin =1,3626666667 

finally the weights and biases are 

WJ(l) = -8,128643533155916 

w/2) = -2,4197691196295974 
w/1) = 8,697642485563088 

w/2) = 7,418189748923732 
wl) = 9,392557862982816 
w}2) = -7,849240230740181 

e/1)=-5,662001088311867 

e/2)=-2,1049911000121145 
Bz(l) =-5,176190575873721 

(h(l) =-6, 166325547059995 

• Temperature model 

T= Ry{NNJ{Sy{-c))) where 

the fitness function is 
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F(y) = y I l+lyl 

with S1('t) = - 0,75+1,5('t - "C min) I (r max - "C min) 

that "C max =1050 and "C min = 0 

also Rr{t)= T min+ 2/3 (T max -T min) (0,75+t) where 

T max= 27,306666673 

T min= 21,573333333 

finally the weights and biases are 

w/1) = 11,182785114029016 
WJ (2) = 6,94953.7070178358 

wl) = 7,573209499277103 
W2(2) = 0,8310318767165362 

wl) = 13,363060428561267 
wl) = -l,0052120737394616 
B1 (I) =-8, 128164020909667 

B1 (2) =3,4487370964491277 

(h_(I) =-2,4483745545162416 

B.i(l) =-8,307475498170888 

All these weights and biases are coded as 64 bits long genes. For a better learning 100 

genomes are used. All these genomes undergo the crossover operation (multi-crossover) 

in which the bits from one genome is inherited from the mate with a particular 

probability, i.e. several bits in a genome can be changed after the crossover. Then the 

mutation operation is applied to the offspring genomes with specified probability 

(mutation probability) the particular bits in all processed genomes are inverted. Then 

every 90 best offspring genomes plus 10 best parent genomes make a new population of 

100 genomes. The selection of 100 best genomes is done on the basis of the genome 

fitness value [13]. 
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GA is used with multi-point crossover with probability of 0,25, mutation probability of 

0,05 and size of population 100. 

The learning may be stopped once we see the process not showing any significant 

change in fitness value during many succeeding regenerations. In this case what we can 

do is to specify new mutation (and maybe crossover) probability and continue the 

process. If the obtained total error performance index or the behavior of the obtained 

network is not desired, we can restructure the network by adding new hidden neurons, 

or do better sampling (fuzzification) of the learning patterns [13]. 

5.2. Investigation of Accuracy NFG Model of NiCd Battery 

The comparison of the proposed models with actual voltage and temperature are shown 

in Figure 5.2 and Figure 5.3 respectively. 
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Figure 5.2 .Voltage model with Actual Voltage 
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Figure 5.3 Temperature model with Actual Temperature 

The system designs the voltage and temperature characteristics for the different C-rates 

as shown in Figure 5.4 and Figure 5.5. 
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Figure 5.4 Voltage characteristics for 8C, SC and 3C 
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Figure 5.5 Temperature characteristics for 8C, 5C and 3C 

5.3 Software Development Neuro-Fuzzy-Genetic Modeling ofNiCd 

Batteries Charging 

To design a model for Nickel Cadmium voltage and temperature characteristics during 

battery charging process a Neural Network Simulator (NSIM) with Java programming 

language implementation has been used. The program is used to train the RFNN with 

Genetic Algorithm. Two C#.NET class programs designed to create an identifier neural 

network program. It has 4 inputs, 20 hidden and 1 outputs. The neural networks that 

represent voltage and temperature have 3 input 10 hidden and loutput layer structures 

respectively. The input-output data used by these networks are stored in two files. one 

holds the voltage data and the other holds the temperature. 

To use and compile these programs, two dll and two bat files are created. The first bat 

file compiles the C#.NET program for battery and the other one compiles the C#.NET 

program for genetic algorithm. 

The results of NSIM program copied into an MS Excel file for temperature and voltage 

modeling. The temperature MS Excel file uses a macro program written with Visual 

Basic to evaluate the data in temperature data file using temperature network. The 
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results of the temperature model for different charging rates are shown in Figure 5.2 and 

Figure 5.4. The voltage MS Excel file uses a macro program written with Visual Basic 

to evaluate the data in voltage data file using voltage network. The results of the voltage 

model for different charging rates are shown in Figure 5.1 and Figure 5.3. 
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6. EXPERIMENTAL INVESTIGATION OF 

INTELLIGENT NEURO-FUZZY-GENETIC 

CONTROL SYSTEM FOR NICD BATTERY 

6.1 Dynamic Data Mining Technique for Battery Charging Rules 

Extraction 

Battery charging controllers design and application is a growing industry direction. Fast 

and efficient charging of battery packs is a problem which is difficult and often 

expensive to solve using conventional techniques. The majority of existing works on 

intelligent charging systems are based on expert knowledge and heuristics. Not all 

features of the desired charging behavior can be attained by the hard-wired logic 

implemented by expert generated rules. Because the battery charging is a highly 

dynamic process and the chemical technology a battery uses varies significantly for 

different battery types, data mining technique can be of real importance for extracting 

the charging rules from the large databases, especially, when the charging logic is to be 

continuously changed during the life of the battery dependent on the type and 

characteristics of the battery and utilization conditions. Soft Computing Based Data 

Mining technique used for extraction of control rules for effective and fast battery 

charging process. The obtained rules were used for Ni Cd battery charging. 

Neural networks are one of the techniques widely used today for data mining from 

unknown systems and creating self-adaptable intelligent controllers. One of the 

indictments against crisp neural networks is that it is difficult to understand the model 

that they have built and also how the raw data affects the output. The complex models 

of the neural network are captured solely by the link weights in the network which 

represent a very complex mathematical equation. There have been several attempts to 

alleviate these basic problems of the neural network. The simplest approach is to 

actually look at the neural network and try to create plausible explanations for the 

meanings of the hidden nodes. For example, paper [43] describes the ways for 

extracting the embedded knowledge in trained crisp neural networks in form of 
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symbolic rules. The rules in symbolic form are necessary for human interpretation, 

verification, and adjustment to acknowledge the trust level to the mined rule base. 

To design the required intelligent charger, there is a need for extraction of efficient rule 

base. The rule base should be flexible and should be adjusted on-line during the life of 

the battery. These updates the most effectively can be done by a trainable Soft 

Computing based system. However, as it was mentioned in literature, the fuzzy neural 

networks will allow a more natural, complete, and transparent rule generation than in 

case of crisp neural networks [32]. Moreover, the highly dynamic chemical processes in 

battery would require application of recurrent neural networks proven to be more 

efficient in such cases. 

Taking into consideration the above reasons we have come to the conclusion that for the 

battery (which is a highly dynamic object with mathematically undetermined and 

changeable model) the charging process can most efficiently be managed by using fuzzy 

inference system (FIS) with the rule base extracted from the Data Mining System 

implemented by a Fuzzy Recurrent Neural Network (RFNN). The necessary behavior is 

obtained by the RFNN after the training on the basis of experimental data. Then the 

charging control rules are extracted from the RFNN for using in the FIS-based charging 

controller. 

A soft computing approach proposed based on a fuzzy recurrent neural network trained 

by genetic algorithms to generate a fuzzy rule base to control battery charging process. 

Rule extraction is one of the major forms of data mining and is perhaps the most 

common form of knowledge discovery in learning systems [32-34]. Fuzzy neural 

networks, which use fuzzy inputs, fuzzy connection weights, and fuzzy outputs, can be 

converted to fuzzy If-Then rules directly, as they use limited number of linguistic terms 

for each input and output variables. The data mining process for the If-Then rules 

extraction for battery charging consists of the following steps: 

1. Collecting the detailed data base. Since data mining relies heavily on training data, it 

is important to collect data very carefully. Collected data base is cleansed and filtered. 
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2. Development of the model structure. The structure is selected on the basis of 

available data and expected complexity of the model. For battery charging controller we 

used 4 input variables (feeding RFNN input neurons) and 1 output variable (RFNN 

output neuron). Number of hidden neurons is varying and is part of optimization 

procedure. 

3. Fuzzification. Defining term sets for input and output variables. The initial terms are 

set to represent equally shaped and uniformly distributed membership functions. They 

will fuzzify the data entering the network. 

4. Training neural network and obtaining initial input-output relationships by GA 

based technique. Obtaining network weights. 

5. Adjustment of membership functions of used terms by GA. 

6. Extracting the rules and human analysis. 

7. Optimization of the number of rules and terms. Previous steps are repeated, if 

necessary. This optimization is done using GA having considered the required accuracy, 

existing complexity and performance. 

8. Fuzzy control system update. The fuzzy rule base extracted from the trained and 

optimized RFNN is incorporated into the intelligent battery charging control FIS. 

9. Loop to Step I. The dynamic nature of the charging process requires continuous 

data mining process updating the extracted and incorporated control rules. 

The battery charging control rules obtained as a result of the used data mining technique 

are listed in Table 6.1. 

Table 6.1 The control rules 

T dT/dt u dU/dt I 

LOW LOW HIGH LOW LOW 

LOW LOW HIGH MEDIUM LOW 

LOW LOW HIGH HIGH LOW 

LOW MEDIUM HIGH LOW LOW 

LOW HIGH HIGH LOW LOW 

LOW MEDIUM HIGH MEDIUM LOW 
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LOW HIGH HIGH MEDIUM LOW 

LOW MEDIUM HIGH HIGH LOW 

LOW HIGH HIGH HIGH LOW 

MEDIUM LOW HIGH LOW LOW 

MEDIUM LOW HIGH MEDIUM LOW 

MEDIUM LOW HIGH HIGH LOW 

MEDIUM MEDIUM HIGH LOW LOW 

MEDIUM HIGH HIGH LOW LOW 

MEDIUM MEDIUM HIGH MEDIUM LOW 

MEDIUM HIGH HIGH MEDIUM LOW 

MEDIUM MEDIUM HIGH HIGH LOW 
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All weights and biases of the RFNN are coded as 64 bits long genes. For a better 

learning we use 100 genomes. All these genomes undergo the crossover operation 

(multi-crossover) [15] in which the bits from one genome are inherited from the mate 

with a particular probability, i.e. several bits in a genome can be changed after the 

crossover. Then the mutation operation is applied to the offspring genomes with 

specified probability (mutation probability) the particular bits in all processed genomes 

are inverted. Then every 90 best offspring genomes plus 10 best parent genomes make a 

new population of 100 genomes. The selection of 100 best genomes is done on the basis 

of the genome fitness value [15]. GA used with multi-point crossover with probability 

0,25, mutation probability 0,05 and size of population 100. 

The FRRN designed for extracting the fuzzy control rules had 4 inputs, 20 hidden 

neurons, and 1 output. The three used inputs represented temperature (T), change of 

temperature ( dT), voltage (V) and change of voltage ( dV). The output of the controller 

is the current (I) applied for charging the battery. 

The network was trained by experimental data obtained from a large data base produced 

from readings collected from different sensors and further purified. Figure 6.1 shows 

the graph of the charging process under the fuzzy logic based charging controller with 

the extracted rule base. In majority of simulation experiments, GA learning was done 
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with population size 100, probability of multi-point crossover 0.25, and probability of 

mutation 0.05. 
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Figure 6.1 Battery charging control process 
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6.2 Software Development ofNeuro-Fuzzy-Genetic Control System for 

NiCd Batteries Charging 

To design a controller for NiCd battery charging process a Neural Network Simulator 

for crisp weights and signals with Java implementation, the temperature and voltage 

models that explained in chapter five has been used. 

The rules trained to the system with TrainRules.bat (Appendix A.12) program. This 

program is compiled as TrainRules.exe with the reference of Network.dll and 

TrainRules.cs (Appendix A.5) programs. TrainRules.cs uses the rules.io and the 

rules.nw. 

FR_ChargingControl.bat (Appendix 1.14) creates the CCont.exe program from 

Battery.dll, Network.dll and FR_ChargingControl.cs (Appendix 1.4) program. This 

program gives the current output, temperature and voltage values in seconds according 

to the models. FR_ChargingControl.cs uses the rules.nw. 

CCont.bat file stores the output of CCont.exe program into res.txt file. From this file the 

numerical values copied into an Excel file named as test.xls, then the temperature vs 

time, voltage vs time and current vs time characteristics of the designed controller 

converted to graphic formats. 

CCont.bat file stores the output of CCont.exe program into res.txt file. From this file the 

numerical values copied into an Excel file named as test.xls, then the temperature vs 

time, voltage vs time and current vs time characteristics of the designed controller 

converted to graphic formats. 

6.3 Experimental Results of Battery Control System 

Figure 6.2 shows the voltage and temperature graphs, when we first apply 6A for 600 

seconds and then 2A until we reach the required charge of 1.6V. Figure 6.3 shows the 
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curves displaying the derivative (speed of change) of voltage and temperature. Right to 

the graph, the trapezoid membership functions for terms used in fuzzy control rules as 

values for the variables dU, change of voltage, and dT, change of temperature, are 

shown: see left and right sides, respectively. 
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Figure 6.3 Derivative of voltage and temperature 

Figure 6.4 shows the graph of the charging process under the control of neural network 

learned by a set of fuzzy rules. 
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Figure 6.4 Graph of the charging process 
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Figure 6.5 shows the control with modified temperature term membership functions to 

allow slightly higher temperature. This has allowed a decrease in the charging time. 
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Figures 6 .6 and Figure 6. 7 show cases when we intentionally remove some rules from 

consideration in control system. 
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Figure 6.6 Intentionally remove some rules from consideration in control system. 
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Figure 6. 7 Intentionally remove some rules from consideration in control system 
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Figure 6.8 shows the case when we change (corrupt) membership functions of terms for 

the variables U (voltage) and T (temperature) 
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Figure 6.8 Corrupt membership functions of terms for the variables U and T 
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Other experiment been done to decrease the T ena-T start result and charging time. The best 

results of the neuro-fuzzy-genetic controller are shown in Figure 6.9. 
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Figure 6.9 Results of a Charging process 
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6.4 Compatible Analysis ofNeuro-Fuzzy-Genetic Control System for 

Batteries Charging 

The results of proposed charging controller compared with other battery chargers are 

given in Table 6.2. The NiCd charger with the rule base extracted on the basis of the 

developed technique gives less charging time and less Tend-Tstart result than other 

controllers. 

Table 6.2 Comparison ofNiCd chargers 

Max Charge Control Tend- T start 
C-rate Inputs 

Time (sec) 
(OC) 

Conventional Fast 
IC U,T 3600-5400 5 

Charger [2] 

NeuFuz [2] 4C U,T 1200-1800 5 

FG [3] 6C U,dU/dt,T,dT/dt 959 9 

FL [7] 6C U,dU/dt,T,dT/dt - 35-60 

J\NFIS [9] 8C T,dT/dt 900 50 

Proposed approach 6C U,dU/dt,T,dT/dt 860 2,85 

6.5 Identification of the Proposed Controller for Ni Cd Batteries Charger 

There are some intelligent works on NiCd batteries charging controllers identification 

[2], [3] and [9]. The identification of fuzzy controller for NiCd batteries charger by 

applying fuzzy c-means (FCM) clustering algorithm on the input-output training data 

proposed in [9]. The Takagi-Sugeno-Kang (TSK) model obtained through FCM 

clustering algorithm is further fine tuned through hybrid learning in [35]. The authors 

presents a framework for the identification of fuzzy models from the available input 

output data through Particle Swarm Optimization (PSO) algorithm in [36] that the data 

from the rapid NiCd battery charger developed by the authors in [9] and [35] has been 

used. 
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In this section, brief information is given on dynamic system identification using RFNN 

with back propagation learning algorithm. A four-layer RFNN, as in [37] which is 

comprised of an input layer, a membership layer, a rule layer, and an output layer, is 

adopted to implement the proposed RFNN. The charger to be identified is dynamic 

system whose outputs are functions of past inputs and past outputs as well. For this 

dynamic system identification, since a recurrent network the TRFN is used, only the 

current state of the system and control signal are fed as input to the network. The 

adopted identification configuration is a serial-parallel model from [37] shown in Figure 

6.10. The y(k) is the desired output, y (k) is the current output, u(k) is control input and 
E(k) is error function. 

Baekprepagation 
Learning Algoritlun 

y !J{) 
Recurrent Fuzzy 
Neural Network 

E(k) u(k) 

Dynamic Plant 
y(k) 

Figure 6.10 Dynamic modeling of nonlinear systems using RFNN 

The nonlinear plant with multiple time delay is described as 

y(k) = f ( y(k), y(k-1), y(k-2), u (k), u (k-1)) (6.1) 

where 

(6.2) 

Here, the current output of the plant depends on three previous outputs and two previous 
inputs. For the testing signal u(k) the following equation was used: 

. (ITkJ sin 25, 0 < k < 250 
(6.3) 

}, 250 ~ k <500 
u(k) - 1 - I, 500 ~ k < 750 

0.3 sin(~~ J + 0.1 sin(~~)+ o.6( ~~ J 750 s k < 1000 

Mean square error (MSE) is defined as 
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MSE = _!__. f (y(k)- y(k)) 2 
N k=I 

(6.4) 

where the N is the number of data points taken for model validation. 

The simulation demonstrates the identification error (MSE) as 0,003267655 where the 

N is equal to 2000 is shown in Figure 6.11. 
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Figure 6.11 The output of the plant (y(k)) and the output ofRFNN ( y(k)) 

The comparison of the error values between the proposed and the existing intelligent 

controllers shown in Table 6.3. 

Table 6.3 Comparison of the intelligent controllers MSE. 

Charger MSE 

ANFIS [9] 0, 132100000 

ANFIS [35] (fuzzy c-means clustering algorithm 0,008979000 
applied on the input-output training data) 
Mamdani model through Particle Swarm Optimization 0,145500000 
(PSO) algorithm [36] 
Singleton model through Particle Swarm Optimization 0,112300000 
(PSO) algorithm [36] 
Proposed approach 0,003267655 

From the comparison of the MSE results it can be seen that proposed approach achieved 
the highest identification accuracy than the compared networks. 
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Conclusion 

This thesis has presented a novel approach to modeling and controlling NiCd battery 

charging process. The proposed neuro-fuzzy-genetic model and controller system for 

NiCd batteries offers a unique combination of attributes intended to occupy a niche 

between the capabilities of existing intelligent chargers. The unique features of the 

proposed system include: 

• A novel genetic algorithm based trained recurrent fuzzy neural network model and 

controller for Ni Cd batteries. 

• Dynamic data mining technique used on the basis of recurrent fuzzy neural 

network to extract fuzzy rules for the controller. 

• Minimize both charging time and internal temperature increase. 

The comparisons with existing systems show that the suggested approach gives the least 

identification error besides least charging time and least internal temperature increase 

during charging. Proposed approach also detects the difference between deeply 

discharged and shorted cell batteries. 

Further work will be carried out to investigate the design of a neuro-fuzzy-genetic 

model and controller for quickly charging Nickel Metal Hydride (NiMH) batteries. 

Although the Nickel Cadmium is the most popular battery type used in space, NiMH 

batteries are currently being used to power the aerospace systems such as Hubble 

telescope, International Space Station (besides NiCd) and being considered for 

incorporation in further projects like SELENE (SELenological and ENgineering 

Explorer, Launch Date: 2007-07-01). Applications of NiMH type batteries include 

hybrid vehicles such as the Toyota Prius, humanoid prototype robot ASIMO designed 

by Honda and consumer electronics. 
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Appendix A. Programs 

A.1. Network D.cs 

namespace NSIM2 

{ 

public class Network 

{ 

public static void Main() 

{ 

System. Console. WriteLine("Loading network. .. "); 

//Network nw= new Network("nsim.nw"); 

//nw.InitializeWeights(); 

Network nw= new Network(new int[] { 2, 3, 1 } ); 

nw.IO.Load("nsim.io"); 

System.Console. WriteLine("Starting training ... "); 

nw.BP.Run(lOOOOOO, 10000); 

System.Console.Read(); 

} 
int nlay; 

public int NLayers 

{ 

get { return nlay; } 

} 

int[] units; 

public int[] Units 

{ 

get { return units; } 

} 

double[][][] weight; 

double[][] netstate; 
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protected double[] input; 

protected double[] output; 

TrainingData io; 

BP_ Training bp _ training; 

GA_ Training ga _ training; 

bool trainable=false; 

public TrainingData IO { get { return io; } } 

public BP_ Training BP { get { return bp _ training; } } 

public GA_Training GA{ get{ return ga_training;} } 

public Network() : this(new int[2] { 1, 1 } ) 

{ 

} 

public Network(int[] units) 

{ 

nlay= units.Length; 

if(nlay>4) nlay=4; else if(nlay<2) nlay=2; 

this.units= new int[nlay]; 

inti; 

for(i=O; i<nlay; i++ ){ 

int u= units[i]; 

if(u<l) u=l; else if(u>999) u=999; 

this. units[ i]=u; 

} 

weight= new double [nlay][][]; 

int n; 

for(n=O; n<nlay-1; n++ ){ 

weight[ n ]= new double[ units[ n+ 1 ]][]; 

for(i=O; i<units[ n+ 1]; i++ ){ 

weight[n][i]= new double[ units[n]+ 1]; 

} 

} 

Initialize Weights(); 

init_ state(); 



io= new TrainingData(this); 

bp_training= new BP _Training(this); 

ga_training= new GA_Training(this); 

trainable=false; 

} 

public Network(string nwfilename) 

{ 

if(Load(nwfilename)=O) Load(); 

io = new TrainingData(this); 

bp_training= new BP _Training(this); 

ga_training= new GA_Training(this); 

} 

void init_ state() 

{ 

inti, n; 

netstate= new double[nlay][]; 

for(n=O; n<nlay; n++) netstate[n]= new double[units[n]]; 

for(i=O; i<units[OJ; i++) netstate[OJ[i]=O; 

input=netstate[O]; 

output=netstate[ nlay-I]; 

_Run(); 

} 

void clear_ netstate() 

{ 

for(int n=O; n<nlay; n++) for(int i=O; i<units[n]; i++) 

netstate[n][i]=O; 

} 

public void InitializeWeights() 

{ 

InitializeWeights(-0.05, 0.05); 

} 

public void InitializeWeights(double wmin, double wmax) 

{ 

80 
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int n,i,j; 

System.Random rnd= new System.Random(); 

for(n=O; n<nlay-1; n++){ 

for(i=O; i<units[ n+ 1]; i++) { 

for(j=O; j<units[n]+ 1; j++){ 

weight[n][i][j]= 

wmin+rnd.NextDouble()*(wmax-wmin); 

} 

} 

} 

} 

protected int Load(string nwfilename) 

{ 

int n,i,j; 

sFILE f= new sFILE(); 

if ( f. OpenRead( nwfilename )=O) 

{ 

II Error opening file 

return O; 

} 

nlay=f.Readlnt(); 

if (nlay>4llnlay<2) 

{ 

return O; 

} 

units= new int[nlay]; 

for(n=O; n<nlay; n++ ){ 

int un; 

un=f.Readlnt(); 

units[n ]= un>O ? un : 1; 

} 

weight= new double[nlay][][]; 

for(n=O; n<nlay-1; n++){ 
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weight[n]= new double[units[n+ 1]][]; 

for(i=O; i<units[n+ 1]; i++){ 

weight[n][i]= new double[units[n]+ 1]; 

} 

} 

for(n=O; n<nlay-1; n++) { 

for(i=O; i<units[n+ 1]; i++){ 

for(j=O; j<units[n ]+ 1; j++) { 

weight[n][i][j]= f.ReadDouble(); 

} 

} 

} 

f.Close(); 

ini t _state(); 

trainable=false; 

return 1; 

} 

void Load() 

{ 

nlay=2; 

units[O]=units[ 1 ]= 1; 

weight= new double[nlay][][]; 

weight[O]= new double[units[l]][]; 

weight[O][O]= new double[2]; 

init_ state(); 

trainable=false; 

} 

public int Save(string nwfilename) 

{ 

int n,i,j; 

sFILE f= new sFILE(); 

if (f.Open Write(nwfilename)==O) 

{ 
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return O; 

} 

f. Write(nlay+" "+units[O]+" "+units[ 1 ]); 

if(nlay==3) f.Write(" "+units[2]); 

else if(nlay==4) f.Write(" "+units[2]+" "+units[3]); 

f.Write("\n"); 

for(n=O; n<nlay-1; n++){ 

for(i=O; i<units[n+ 1]; i++){ 

for(j=O; j<units[n]+ 1; j++){ 

f. Write(weight[ n ][i] [j]); 

f. Write("\n"); 

} 

} 

} 

f.Close(); 

return 1; 

} 
public void Run(double[] input, double[] output) 

{ 

this.input=input; 

this.output=output; 

_Run(); 

} 

protected void _ Run() 

{ 

int n,i,j; 

for(i=O; i<units[O]; i++) netstate[O][i]=input[i]; 

for(n=O; n<nlay-1; n++){ 

for(i=O; i<units[n+ 1]; i++){ 

double state; 

state=weight[ n] [i][ units[ n ]]; 

for(j=O; j<units[n]; j++) 

state+=weight[ n] [ i] [j] *netstate[ n] Li]; 
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netstate[n+ l][i]= Sigmoid(state); 

} 

} 

for(i=O; i<units[nlay-1]; i++) output[i]=netstate[nlay-l][i]; 

} 

void_ Run( double[] input) 

{ 

int n,i,j; 

for(i=O; i<units[O]; i++) netstate[O][i]= input[i]; 

for(n=O; n<nlay-1; n++){ 

for(i=O; i<units[n+ 1]; i++){ 

double state; 

state=weight[ n ][i][ units[ n ]] ; 

for(j=O; j<units[ n]; j++) 

state+=weight[ n] [ i] [j] *netstate[ n] [j]; 

netstate[n+ l][i]= Sigmoid(state); 

} 

} 

for(i=O; i<units[nlay-1]; i++) output[i]=netstate[nlay-l][i]; 

} 

public static double Sigmoid( double s) 

{ 

return s/(1 +System.Math.Abs(s)); 

} 

public static double DSigmoidS( double sigmoid) 

{ 

double f= 1-System.Math.Abs(sigmoid); 

return f*f; 

} 

/* 

int series _length=5; 

double[,] input_ series; 
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double[,] output_ series; 

void_ RunRecurrent( double[,] input_ series, double[,] output_ series) 
{ 

this.input_ series=input_ series; 

this.output_ series=output_ series; 

_ RunRecurrent(); 

} 

void _ RunRecurrent() 

{ 

int t,n,i,j; 

clear_ netstate(); 

for(t=O; t<series_length; t++){ 

for(i=O; i<units[OJ; i++) { 

netstate[ OJ [i]=input_ series[ i, t]; 

} 

for(n=O; n<nlay-1; n++){ 

for(i=O; i<units[n+ 1]; i++){ 

double state; 

state=weight[ n] [i][ units[ n ]]; 

for(j=O; j<unitsln); j++)l 

state+=weight[ n] [ i] [j] *netstate[ n] [j]; 

} 

for(j=O; j<units[ n+ 1]; j++ ){ 

state+=netstate[ n+ 1] [j]; 

} 

netstate[n+ l][i]= Sigrnoid(state); 

} 

} 

for(i=O; i<units[nlay-1]; i++) 

output[i]=output_ series[i,t]=netstate[ nlay-1] [i]; 

} 

} 



86 

public void AddTrainingData(int np) 

{ 

io= new TrainingData(this, np ); 

trainable=true; 

} 

public void AddTrainingData(string iofilename) 

{ 

io= new TrainingData(this); 

io.Load(iofilename); // trainable=true; 

} 

public class TrainingData 

{ 

double[][] dlnput; 

double[][] dOutput; 

public double[][] Dinput{ get{ return dlnput;} } 

public double[][] DOutput{ get{ return dOutput; } } 

int np, ni, no; 

public int NP{ get{ return np;} } 

public int NI { get { return ni; } } 

public int NO { get { return no; } } 

Network This; 

public TrainingData(Network nw) 

{ 

This=nw; 

.nw.io=this; 

} 

public TrainingData(Network nw, int np) 

{ 

This =nw; 

int n; 

this.np= np>O ? np : 1; 

this.ni=This.units[O]; 

this.no=This. units[This.nlay-1]; 
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dlnput= new double[ np] []; 

for(n=O; n<np; n++) dlnput[n]= new double[ni]; 

dOutput= new double[np][]; 

for(n=O; n<np; n++) dOutput[n]= new double[no]; 

This.io=this; 

This. trainable=true; 

} 

public int Load(string iofilename) 

{ 

int n, i; 

sFILE f= new sFILE(); 

if ( f. OpenRead(iofilename )=O) 

{ 

return O; 

} 

np=f.Readlnt(); 

ni=f.Readlnt(); 

no=f.Readlnt(); 

if (ni!=This.units[O] II no!=This.units[This.nlay-1] II 
np<=O) 

{ 

//Error in input or irrelevant data 

This.trainable=false; 

return O; 

} 

dlnput= new double[np][]; 

for(n=O; n<np; n++) dlnput[n]= new double[ni]; 

dOutput= new double[ np] []; 

for(n=O; n<np; n++) dOutput[n]= new double[no]; 

for(n=O; n<np; n++){ 

for(i=O; i<ni; i++) dlnput[n][i]=f.ReadDouble(); 

for(i=O; i<no; i++) dOutput[n][i]=f.ReadDouble(); 

} 
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This.io=this; 

This. trainable=true; 

return 1; 

} 

public double GetMSE() 

{ 

double error=O.O; 

int p, k; 

for(p=O; p<This.io.NP; p++){ 

This._ Run(This.io.Dlnput[p ]); 

for(k=O; k<This. units[This.nlay-1]; k++) { 

double e=dOutput[p ][k]-This.output[k]; 

error+=e*e; 

} 

} 

return error/This.io.NP; 

} 

public double GetRMSE() 

{ 

return System.Math.Sqrt(GetMSE()); 

} 

int _Load_ R( string iofilenarne) 

{ 

ifl_Load(iofilenarne)==O) return O; 

if(np<This.series _ length) np=This.series _length; 

This.input_ series= new double[ ni, This.series _length]; 

This.output_ series= new double[ no, This.series_ length]; 

return 1; 

} 

int Load_ R( string iofilenarne) 

{ 

return _Load_R(iofilenarne); 

} 
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} 

public class BP_ Training 

{ 

double rate=0.1; 

//double momentum=0.9; 

Network This; 

public double Rate{ get{ return rate;} set{ rate= value>O? value 

: 0.1;} } 

public void Initialize() 

{ 

This. Initialize Weights(); 

} 

double[][] error; 

public BP _Training(Network nw) 

{ 

This=nw; 

int 1; 

error= new double[This.nlay-1] []; 

for(l=O; l<This.nlay-1; l++) error[l]= new 

double[This. units[l+ 1 ]] ; 

} 

public void Run(int steps) 

{ 

Run(steps, 1); 

} 

public void Run(int steps, int showevery) 

{ 

if(steps<=O) return; 

if( showevery>steps) showevery=steps; 

int s; 

if(This. trainable) { 

System. Console. W riteLine("BackPropagation 

Training Algorithm\n\n"); 
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for(s=O; s<steps; s++){ 

_Step(); 

if(s>O && so/oshowevery==O){ 

//for(i=O; 

i<(s+""+TotError).Length+24; i++) System.Console.Write("\b"); 

System.Console.Write("Step: "+s+" 

RMSE: "+This.io.GetRMSE()+"\n"); 

} 

} 

System. Console. W ri teLine("\n \n Training 

completes:\n"); 

System.Console.Write("Step: "+s+" Final RMSE: 

"+This.io.GetRMSE()+"\n\n"); 

} 

} 

public void Run() 

{ 

Run(l); 

} 

protected internal void _ Step() 

{ 

int p, 1, i, j, k; 

double d, dw; 

//TotError= MaxError=O. 0; 

for(p=O; p<This.io.NP; p++) { 

This._ Run(This.io.Dinput[p ]); 

for(i=O; i<This.units[This.nlay-1]; i++){ 

double e= This.io.DOutput[p][i]- 

This.output[i]; 

//TotError+=e*e; 

I /if(MaxError<S ystem.Math.Abs( e)) 

MaxError=System.Math.Abs( e ); 

d= e*DSigmoidS(This.output[i]); 
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for(j=O; j<This.units[This.nlay-2]; j++) { 

dw= 

rate*d*This.netstate[This.nlay-2] [j]; 

I I_ weight(nlay-1, i, j)+=dw; 

This. weight[This .nlay- 

2J[i][j]+=dw; 

} 

This.weight[This.nlay-2J[i][j]+=rate*d; // 

adjust threshold - the last link 

//_error(nlay-1, i)=d; 

error[This.nlay-2J[i]=d; 

} 

for(l=This.nlay-2; 1>0; 1--) { 

for(i=O; i<This. units[!]; i++) { 

d=O; 

for(k=O; k<This.units[l+l]; k++){ 

/Id+= _error(l+ 1, 
k)* _ weight(l+ 1, k, i); 

d+=error[l J [k J *This. weight[!] [k J [ i]; 

} 

d*= DSigmoidS(This.netstate[l][i]); 

for(j=O; j<This.units[l-1]; j++){ 

dw=rate*d*This.netstate[l- 

l][j]; 

/I_ weight(l, i, j)+=dw; 

This. weight[l-1 J [ i J[j J+=dw; 

} 

This.weight[l-l][i]Li]+=rate*d; 

I/_ error(l, i )=d; 

error[l-1] [i]=d; 

} 

} 
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} 

} 

} 

public class GA_ Training 

{ 

Network This; 

public GA_Training(Network nw) 

{ 

This=nw; 

} 

} 

} 

} 

A.2 Controller.cs 

class Controller: NSIM2.Network 

{ 

public static void Main() 

{ 

Controller controller= new Controller( 

new Plant(new Plant.Model(ThisPlantModel)), 

new ReferencePlant( 

new ReferencePlant.Model(ThisReferenceModel), 

new ReferencePlant.Referenceinput(ThisReferencelnput) 

), 

"identifier.nw" 

); 

System.Console. W ri teLine("Testing Plant outputs ... "); 

controller.ShowPlantOutput(lOO); 

System. Console. W ri teLine("\nPlant Identification process started ... "); 

controller.Doldentification(2000, 100000); 
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controller.Run(2000, 0.02); 

System.Console.Read(); 

} 

static double ThisPlantModel(Plant.State y, double u) 

{ 

return 0.35*(y[O]*y[ l]*(y[0]+2.5)/(1 +y[O]*y[O]+y[l ]*y[l ])+u); 

} 

static double ThisReferenceinput(int t) 

{ 

if(t<500) return System.Math.Sin(System.Math.PI*t/25); 

else if(t<lOOO) return 1; 

else if(t<1500) return -1; 

else return 

0.3*System.Math.Sin(System.Math.PI*t/25)+ 

0.4*System.Math.Sin(System.Math.PI*t/32)+ 

0.3*System.Math.Sin(System.Math.PI*t/10); 

} 

static double ThisReferenceModel(Plant.State ym, double r) 

{ 

return 0.6*ym[0]+0.2*ym[l]+0.1 *r; 

} 

Plant ThisPlant; 

ReferencePlant ThisReference; 

Controller(Plant p ): base( new int[] { 4, 20, 1 } ) 

{ 

ThisPlant=p; 

} 

public Controller(Plant p, ReferencePlant r): this(p) 

{ 

ThisReference=r; 

} 

public Controller(Plant p, ReferencePlant r, string filename): this(p,r) 

{ 
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this. Load( filename); 

} 

public void Doldentification(int ndata, int nlessons) 

{ 

this.AddTrainingData(ndata); 

int t; 

for(t=O; t<ndata; t++){ 

double refinp= ThisReference.Input(t); 

ThisPlant.Feed(refinp ); 

this.IO.Dinput[t][O]= ThisPlant.Output; 

this.IO.Dlnput[t][ 1 ]= ThisPlant.OutputZ[ 1]; 

this.IO.Dinput[t][2]= ThisPlant.OutputZ[2]; 

this.IO.Dlnput[t][3]= ThisPlant.OutputZ[3]; 

this.IO.DOutput[t][O]= refinp; 

} 

this.BP .Run(nlessons, nlessons/100); 

this.Save("Identifier.nw"); 

} 

public void Run(int ndata) 

{ 

int t; 

for(t=O; t<ndata; t++){ 

ThisReference.Feed(t); 

this.input[O]= ThisReference.Output; 

this.input[ 1 ]= ThisPlant. Output; 

this.input[2]= ThisPlant.OutputZ[ 1 ]; 

this.input[3 ]= ThisPlant.OutputZ[2]; 

this._Run(); 

ThisPlant.F eed( this.output[ 0]); 

System. Console. W ri teLine(ThisPlant. Output+"\t\t"+ ThisReference. Output); 

} 

} 

public void Run(int ndata, double maxerr) 



{ 

int t; 

for(t=O; t<ndata; t++){ 

ThisReference.F eed( t); 

this.input[O]= ThisReference.Output; 

this.input[ 1 ]= ThisPlant. Output; 

this.input[2]= ThisPlant. OutputZ[ 1]; 

this.input[3 ]= ThisPlant. OutputZ[2]; 

this._Run(); 

double control_input=this.output[O]; 

ThisPlant.Feed(control_input); 

System.Console. W rite(ThisPlant. Output+"\t\t"+ ThisReference. Output); 

double err=System.Math.Abs(ThisPlant.Output-ThisReference.Output); 

if( err>maxerr) { 

System.Console. Write(" ---Training ... "); 

this.AddTrainingData(l ); 

this.IO .D Input[ 0] [ 0 ]= ThisReference. Output; 

this.IO.Dlnput[O] [ 1 ]= ThisReference.OutputZ[ 1]; 

this.IO.Dinput[O] [2]= ThisReference. OutputZ[2]; 

this.IO.Dlnput[0][3]= ThisReference.OutputZ[3]; 

this.IO.D0utput[O][O]= ThisReference.Input(t); II not possible! 

for(int i=O; i<l 0000; i++) this.BP._Step(); 

} 

System.Console.WriteLine(); 

} 

} 

public void ShowPlantOutput(int nsteps) 

{ 

int t; 

for(t=O; t<nsteps; t++){ 

ThisPlant.F eed(ThisReference.Input( t)); 

System.Console. WriteLine(ThisPlant. Output); 

} 

95 
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} 

} 

public class Plant 

{ 

const int Max Order= 5; 

Model ThisModel; 

State ThisState; 

public State OutputZ { get { return ThisState; } } 

public delegate double Model(Plant.State state, double input); 

public Plant(Model model) 

{ 

ThisModel= model; 

ThisState= new State(); 

} 

public double Output{ get{ return ThisState.Now; } } 

public class State 

{ 

internal double[] item= new double[MaxOrder]; 

public double Now{ get{ return item[O];} } 

public double Prev { get { return item[ 1]; } } 

public double PrevPrev{ get{ return item[2]; } } 

public double this[int i] 

{ 

get{ 

return System.Math.Abs(i)<MaxOrder? item[System.Math.Abs(i)] : O; 

} 

} 

} 

public void Feed(double input) 

{ 

double next_state= ThisModel(ThisState, input); 

ThisState.item[ 4]= ThisState.item[3]; 
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ThisState. i tem[3 ]= ThisState. i tern[ 2]; 

ThisState.item[2]= ThisState.item[ 1]; 

ThisState.item[ 1 ]= ThisState.item[O]; 

ThisState.item[OJ= next_ state; 

} 

} 

public class ReferencePlant: Plant 

{ 

public ReferencePlant(Model model, Referencelnput refinp ): base(model) 

{ 

Input= refinp; 

} 

public Referencelnput Input; 

public delegate double Referencelnput(int t); 

new void Feed(double input){} 

public void Feed(int t) .,, 

{ :~ 
base.Feed(Input(t)); 

} 

} .. - , ..• 

A.3 Charging_ control.cs 

public class ChargingController 

{ 

public static void Main() 

{ 

ChargerModel Charger= new ChargerModel(); 

double c; 

int t; 

int k=O; 

for(c=-0.75; c<0.751; c+=0.05){ 

for(t=O; t<lOOO; t+=lO){ 
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System.Console.Write(Charger.VoltageNN(c, t)+"\t"); 

System.Console. Write(Charger. VoltageNN( c, t-1 )+"\t"); 

System.Console.WriteLine(c); 

k++; 

} 

} 

System.Console. WriteLine(k); 

System.Console.Read(); 

} 

} 

public class ChargerModel 

{ 

NSIM2.Network nw _ vol; 

NSIM2.Network nw_tem; 

double[] input; 

double[] output; 

public ChargerModel() 

{ 

nw _ vol= new NSIM2.Network("charger-vol.nw"); 

nw_tem= new NSIM2.Network("charger-tem.nw"); 

input= new double[l]; 

output= new double[l]; 

} 

public double VoltageNN(double currency, int tau) 

{ 

double x= -0.75+1.S*tau/1050; 

if(x<-1) x=-1.0; else if(x>l) x=l.O; 

input[OJ=x; 

nw _ vol.Run(input, output); 

return currency*output[0]/6; 

} 

public double TemperatureNN( double currency, int tau) 
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{ 

double x= -0.75+1.5*tau/1050; 

if(x<-1) x=-1.0; else if(x>l) x=l.O; 

input[O]=x; 

nw _tem.Run(input, output); 

return currency*output[O]l6; 

} 

public double Voltage(double currency, int tau) 

{ 

return (1.362666667+(1.493333333-1.362666667)*(0. 75+ VoltageNN( currency, 

tau))*213)*8; 

} 

public double Temperature( double currency, int tau) 

{ 

return (21.57333333+(27.306666673- 

21.57333333)*(0. 75+TemperatureNN( currency, tau))*213)*8; 

} 

} 

A.4 FR_ ChargingControl.cs 

class Controller 

{ 

public static void Main() 

{ 

Controller controller= new Controller(); 

II 

I I show model 

controller.Run_ Charging(); 

II 

System.Console.Read(); 

II 
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} 

static Battery ThisBattery= new Battery(); 

static double vlt= ThisBattery. VoltageO; 

static double tern= ThisBattery.TemperatureO; 

static double dvlt=O; 

static double dtem=O; 

void Run_ Charging() 

{ 

inti; 

ThisBattery.Discharge(); 

II 

I* 
for(i=O; i<600; i++ ){ 

IISystem.Console.WriteLine("Vlt:\t"+vlt+"\t"+"Tem\t"+tem); 

IISystem.Console.WriteLine(vlt); 

System.Console.WriteLine(tem); 

1/if(vlt> 1.6) goto end; 

Run_ Charging( 6); 

} 

for(i=O; i<1800; i++){ 

IISystem.Console.WriteLine("Vlt:\t"+vlt+"\t"+"Tem\t"+tem); 

IISystem.Console.WriteLine(vlt); 

System.Console. WriteLine(tem); 

llif(vlt> 1.6) break; 

Run_ Charging(2); 

} 

end:; 

Control_ Charging(); 

} 

void Run_ Charging( double cur) 

{ 

ThisBattery. Current=cur; 

dvlt= ThisBattery. VoltageChange; 



101 

vlt+= dvlt; 

dtem= ThisBattery. TemperatureChange; 

tern+= dtem; 

ThisBattery. Consume(); 

} 

double Min(double xl, double x2) 

{ 

return System.Math.Min(xl, x2); 

} 

double Min(double xl, double x2, double x3) 

{ 

return System.Math.Min(System.Math.Min(xl, x2), x3); 

} 

double Max(double xl, double x2) 

{ 

return System.Math.Max(x 1, x2); 

} 

double Max(double xl, double x2, double x3) 

{ 

return System.Math.Max(System.Math.Max(xl, x2), x3); 

} 

double mf_Tem_is_LOW(double x) 

{ 

double c=24; 

double d=26; 

return Max(Min(l, (d-x)/(d-c)), O); 

} 

double mf_Tem_is_MED(double x) 

{ 

double a=25; 

double b=26; 

double c=27; 

double d=28; 
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return Max(Min((x-a)/(b-a), 1, (d-x)/(d-c)), O); 

} 

double mf_Tem_is_HIGH(double x) 

{ 

double a=27.5; 

double b=28; 

return Max(Min((x-a)/(b-a), 1), O); 

} 

double mf_dTem_is_LOW(double x) 

{ 

double c=7.5*0.002; 

double d=l 7*0.002; 

return Max(Min(l, (d-x)/(d-c)), O); 

} 

double mf_dTem_is_MED(double x) 

{ 

double a=7.5*0.002; 

double b=l4*0.002; 

double c=19*0.002; 

double d=27*0.002; 

return Max(Min((x-a)/(b-a), 1, (d-x)/(d-c)), O); 

} 

double mf_dTem_is_HIGH(double x) 

{ 

double a=l 7*0.002; 

double b=27*0.002; 

return Max(Min((x-a)/(b-a), 1), O); 

} 

double mf_ Vol_is_LOW(double x) 

{ 
double c=0.4; 

double d=0.6; 

return Max(Min(l, (d-x)/(d-c)), O); 
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} 

double mf_ Vol_is_MED(double x) 

{ 

double a=0.4; 

double b=0.6; 

double c=l.58; 

double d=l.61; 

return Max(Min((x-a)/(b-a), 1, (d-x)/(d-c)), O); 

} 

double mf_ Vol_is_HIGH(double x) 

{ 

double a=l.6; 

double b=l.65; 

return Max(Min((x-a)/(b-a), 1), O); 

} 

double mf_dVol_is_LOW(double x) 

{ 

double c=-l.5*0.0001; 

double d=2.5*0.0001; 

return Max(Min(l, (d-x)/(d-c)), O); 

} 

double mf_dVol_is_MED(double x) 

{ 

double a=-0.5*0.0001; 

double b=l.5*0.0001; 

double c=3.5*0.0001; 

double d=S.5*0.0001; 

return ~ax(Min((x-a)/(b-a), 1, (d-x)/(d-c)), O); 

} 

double mf_dVol_is_HIGH(double x) 

{ 
double a=2.5*0.0001; 

double b=S.5*0.0001; 
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return Max(Min((x-a)/(b-a), 1), O); 

} 

void Control_ Charging() 

{ 

NSIM2.Network nw= new NSIM2.Network("rules.nw"); 

double[] input= new double[12]; 

double[] output= new double[l]; 

inti; 

for(i=O; i<2400; i++) { 

dvlt= ThisBattery. VoltageChange; 

vlt+= dvlt; 

dtem= ThisBattery. TemperatureChange; 

tern+= dtem; 

input[O]= mf_Tem_is_LOW(tem); 

input[l]= mf_Tem_is_MED(tem); 

input[2]= mf_Tem_is_HIGH(tem); 

input[3]= mf_dTem_is_LOW(dtem); 

input[4]= mf_dTem_is_MED(dtem); 

input[5]= mf_dTem_is_HIGH(dtem); 

input[6]= mf_ Vol_is_LOW(vlt); 

input[7]= mf_ Vol_is_MED(vlt); 

input[8]= mf_ Vol_is_HIGH(vlt); 

input[9]= mf_dVol_is_LOW(dvlt); 

input[lO]= mf_dVol_is_MED(dvlt); 

input[l 1]= mf_dVol_is_HIGH(dvlt); 

nw.Run(input, output); 

ThisBattery.Current=((int)(output[0]/2+0.5))*2; 

//System.Console.WriteLine(ThisBattery.Current); 

//System.Console.WriteLine(vlt); 

//System. Console. W ri teLine( tern); 

ThisBattery. Consume(); 

} 

} 
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} 

A.5 TrainRules.cs 

public class TrainRules 

{ 

public static void Main() 

{ 

NSIM2.Network nw= new NSIM2.Network(new int[] { 12, 6, 1 } ); 

nw.IO.Load("rules.io"); 

System.Console.WriteLine("Rate="+nw.BP.Rate); 

nw.BP.Run(lOOOO, 1000); 

nw.Save("rules.nw"); 

System.Console.Read(); 

} 

} 

A.6 Genetic D.cs 

using System; 

/*/ 

class test 

{ 

class FunMinimize: Evolution.Problem 

{ 

internal FunMinimize() 

{ 

parameter_ number=2; 

avO=O; 

avl=l; 

parameters= new double[2] { 0.5, 0.5 } ; 
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} 

double fun( double x, double y) 

{ 

return x*x+y*y+x*y+ 1/x+ 1/y; 

} 

override public double Fitness 

{ 

get{ 

return fun(parameters[O], parameters[l]); 

} 

} 

} 

public static void Main() 

{ 

Console. WriteLine("Optimization started ... "); 

Evolution.Problem p= new FunMinimize(); 

Evolution e= new Evolution(p ); 

e.Run(500, 50, "minimize.log"); 

Console. WriteLine("Optimization stopped ... "); 

Console.Read(); 

} 

} 

public class Evolution 

{ 

public class Problem 

{ 

protected internal int parameter_ number= 1; 

public int Parameter Number { get { return parameter _number; } } 

protected internal double avO=O; 

//public double AvO{ get { return avO;} } 

protected internal double avl=lO; 

//public double Avl { get { return avl;} } 

protected internal double[] parameters= new double[l]; 
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public double[] Parameters{ get{ return parameters;} } 

public virtual double Fitness{ get{ return 100; } } 

public virtual int Save(string problemfilename) 

{ 

sFILE f= new sFILE(); 

f.OpenWrite(problemfilename); 

for(int i=O; i<parameter _ number; i++) 

f.Write("Parameter["+i+"]: "+parameters[i]+"\n"); 

f. Write("Fitness: "+Fitness+"\n"); 

f.Write("\n"); 

.f.Close(); 

return 1; 

} 

} 

Problem This= new Problem 

uint av_ max; 

double av _range; 

void initialize_ bits() 

{ 

//av_ bits=32; 

av_ max=Oxffffffff; 

av _range=( double )av_ max+ 1.0; 

} 

int pop_ size= 100; 

nt num _ best= 1 O; 

public void SetPopulationParams(int psize, int nbest) 

{ 

if(psize>O) pop_ size=psize; 

if( nbest<pop _size) num _ best=nbest; 

else{ num_best=pop_size/10; if(num_best=O) num_best=l;} 

} 

int ngens; 

int[] weights; 
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public class Genome 

{ 

public System.Collections.BitArray bits; 

public double Fitness; 

public readonly int Length; 

public Genome(int[] ws) 

{ 

bits= new System.Collections.BitArray(ws); 

Length=ws.Length*32; 

Fitness=double.MaxValue; // the worst 

} 

public Genome(int n) 

{ 

Length=n*32; 

bits= new System.Collections.BitArray(Length); 

Fitness=double.MaxValue; // the worst 

} 

public Genome(Genome g) 

{ 

Length=g.Length; 

bits= new System.Collections.BitArray(g.bits); 

Fitness=g.Fitness; 

} 

public uint Get32(int i) 

{ 

int k0=32*i; 

int kl=k0+32; 

int k; 

uint w=O; 

for(k=kl-1; k>=kO; k--){ w<<=l; if(bits[k]) wJ=l;} 

return w; 

} 

public bool Get(int i) 

---~ -- - ----------·· ----- 
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{ 

return bits.Get(i); 

} 

public int GetBit(int i) 

{ 

return bits.Get(i) ? 1 : O; 

} 

public void Set(int i, bool v) 

{ 

bits.Set(i, v); 

} 

public void SetBit(int i, int v) 

{ 

bits.Set(i, v==l ? true: false); 

} 

public void InvertBit(int i) 

{ 

bits.Set(i, !bits.Get(i)); 

} 

} 

Genome[] genomes; 

System.Random rnd= new System.Random(137); 

static double avO; 

static double avl; 

static int parameter_ number; 

public Evolution(Problem p) 

{ 

initialize_ bits(); 

This=p; 

ngens= This.parameter_ number; 

avO= This.avO; 

avl =This.avl ; 

parameter _number= This. parameter_ number; 
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genomes= new Genome[pop _size]; 

genomes[O]= _ GetGenotype(); 

} 

public Evolution(): this(new Problem()) 

{ 

} 

Genome _ GetGenotype() 

{ 

int 1; 

weights= new int[ ngens]; 

for(l=O; l<parameter_number; 1++){ 

weights[l ]=(int)_ Encode(This. parameters[l]); 

I* 
System. Console. Wri teLine(This. parameters [1 ]); 

//System.Console.WriteLine(GenToString((uint)weights[l])); 

System.Console.ReadLine(); 

*I 

} 

return new Genome(weights); 

} 

void_ GetPhenotype(Genome g) 

{ 

int 1; 

for(l=O; l<parameter _ number; l++) 

{ 

//This.Parameters[l]= _Decode((uint)weights[l]); 

This.parameters[l]= _Decode(g.Get32(1)); 

I* 
System. Console. W ri teLine(This. parameters[l]); 

System.Console.ReadLine(); 

*/ 

} 

} 



111 

void con(string s){ System.Console.WriteLine(s); } 

void _con(string s){ System.Console.Write(s); } 

void con(uint gen) 

{ 

inti; 

strings='"' sl=""· ' ' 
for(i=O; i<32; i++) { s+=gen%2; gen/=2; } 

for(i=O; i<32; i++) sl+=s[31-i]; 

con(sl); 

} 

public string GenToString(uint gen) 

{ 

inti; 

string s=?" s l=?": ' ' 
for(i=O; i<32; i++) { s+=gen%2; gen/=2; } 

for(i=O; i<32; i++){ sl+=s[31-i];} 

return sl; 

} 

public string GenomeToString(int n) 

{ 

inti; 

string s='!"; 

for(i=O; i<genomes[ n ].Length; i++ ){ 

if(i>O&&i%32==0) s+="\n"; 

s+= genomes[n].GetBit(i); 

} 

returns; 

} 

public uint _ Encode( double w) 

{ 
if(w>=avl) return Oxffffffff; 

else if(w<=avO) return O; 
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double v= (w-avO)/(avl-avO)*av_range+0.5; 

if( v>av _range) return Oxffffffff; 

else return (uint)v; 

} 

public double _Decode(uint c) 

{ 

return c*( avl-avO)/av _range+avO; 

} 

Genome[] offsprings; 

/* 

double xov _prob=0.25; 

double mut_prob=0.05; 

*I 
double xov _prob=0.50; 

double mut_prob=0.05; 

double _DetermineFitnessValue(Genome g) 

{ 
_ GetPhenotype(g); 

return g.Fitness=This.Fitness; 

}// 

int genome_length; 

int number_ off springs; 

void _RecallBestA vailableGenome() 

{ 

genomes[O]= _ GetGenotype(); 

} 
void _ GetRandomPopulation() 

{ 

number_ offsprings=pop _ size*(pop _ size-1 ); 

off springs= new Genome[ number_ off springs]; 

genome _length=genomes[O] .Length; 

inti; 

int k; 
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k=l; 

for(; k<pop size; k++) { 

for(i=O; i<ngens; i++){ 

weights[ i] =rnd.N ext()+md.N ext(); 

} 

genomes[k]= new Genome(weights); 

} 

} 

void _ GeneratePopulation() 

{ 

inti; 

int k, 1, r; 

r=O; 

for(k=O; k<pop_size; k++) for(l=O; l<k; I++){ 

offsprings[r]= new Genome(genomes[k]); 

for(i=O; i<genome_length; i++){ 

if(md.NextDouble()<xov __prob) 

off springs[ r ].Set(i, genomes[l].Get(i)); 

} 

r++; 

offsprings[r]= new Genome(genomes[l]); 

for(i=O; i<genome_length; i++){ 

II inherit bit <i> in genome <I> from genome <k> 

II with probability <xov __prob> 

if(md.NextDouble()<xov __prob) 

off springs[ r] .Set(i, genomes[k J.Get(i)); 

} 

r++; 

} 

for(k=O; k<r; k++){ 

for(i=O; i<genome _length; i++) { 

<mut__prob> 



114 

if(md.NextDouble()<mut_prob) 

offsprings[k] .InvertBit(i); 

} 

} 

} 

double_ SelectPopulation() 

{ 

int k, 1; 

double[] sort_keys= new double[number_offsprings+num_best]; 

Genome[] sort_items= new 

Genome[ number_ offsprings+num _best]; 

k=O; 

for(l=O; l<num_best; l++){ 

sort items[k]=genomes[l]; 

sort _keys[k ]= _ DetermineFitness Value(genomes[l]); 

k++; 

} 

for(l=O; l<number_offsprings; l++){ 

sort _i terns [k] =off springs [1] ; 

sort _keys[k ]=_DetermineFitness Value( offsprings[l]); 

k++; 

} 

System.Array. Sort( sort_ keys, sort_ items); 

for(k=O; k<pop_size; k++){ 

genomes[k ]=sort _items[k]; 

} 

return sort_keys[O]; II best fitness value 

} 

int _Save(string problemfilename) 

{ 

_ GetPhenotype(genomes [ 0]); 

return This.Save(problemfilename ); 
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public double Run(int nregen, int saveevery, string problemfilename) 

{ 

con("\n"); 

con("Genetic Algorithm Based Optimization\n\n"); 

con("Problem name: "+This+"\n"); 

con("GA parameters:"); 

con(" \n"); 

con("Size of population: "+pop_size); 

con("Number of best parent genomes to save: "+num_best); 

con("Probability of crossover: "+xov _prob); 

con("Probability of mutation: "+mut_prob ); 

con(" \n"); 

con(""); 

con("Present fitness value: 

"+ DetermineFitnessValue(_ GetGenotype())); 

con(""); 

int n; 

double oldfit=O.O; 

double bestfit=lOO.O; 

int gener=O; 

if(nregen<=O) return bestfit; 

if( saveevery<=O) saveevery=nregen; 

RecallBestA vailableGenome(); 

_ GetRandomPopulation(); 

for(n=O; n<nregen/saveevery; n++) { 

for(int g=O; g<saveevery; g++) { 

GeneratePopulation(); 

bestfit= SelectPopulation(); 

II 

for(int i=O; i<(gener+"").Length+ 13; i++) 

_ con("\b "); 

con("Generations: "+( ++gen er)); 

if(bestfit!=oldfit){ 

--- ----- --- --··- --- _, --~--- 
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con("\nBest fitness value: 

"+( oldfit=bestfit)+"\n"); 

} 

} 

_ Save(problemfilename ); 

} 

for(int g=O; g<nregen%saveevery; g++) { 

_ GeneratePopulation(); 

bestfit=_ SelectPopulation(); 

II 

for(int i=O; i<(gener+"").Length+13; i++) _con("\b"); 

_ con("Generations: "+( ++gener)); 

if(bestfit!=oldfit) { 

con("\nBest fitness value: "+( oldfit=bestfit)+"\n"); 

} 

II 

}Ilg 

_ Save(problemfilename ); 

return bestfit; 

} I /Run method 

public bool Run(int maxniter, double maxerr) 

{ 

con("\n"); 

con("GA Optimization--> Problem name: "+This+"\n"); 

con("Present fitness value: 

"+ _DetermineFitness Value(_ GetGenotype())); 

int n; 

double oldfit=O.O; 

double bestfit=lOO.O; 

int gener=O; 

if(maxniter<=O) return false; 

_ RecallBestAvailableGenome(); 

_ GetRandomPopulation(); 
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for(n=O; n<maxniter; n++){ 

_ GeneratePopulation(); 

bestfit= _SelectPopulation(); 

if(bestfit!=oldfit) { 

_con("Generations: "+(++gener)); 

con("\tBest fitness value: "+( oldfit=bestfit)); 

} 

if(bestfit<=maxerr) break; 

}//n 

// _ con("Generations: "+( ++gener)); 

//con("\tBest fitness value: "+( oldfit=bestfit)+"\n"); 

return bestfit<=maxerr; 

} 

} 

A.7 Battery.cs 

public class Battery 

{ 

static double scale_input(double x, double c) 

{ 

return -0.75 + 1.5 * x * (c I 6) I 1050; 
} 

static double V _scale_output(double x) 

{ 

return 1.36 + (1.60 - 1.36) * 2 I 3 * (0.75 + x); 
} 

static double[,] V _ Wl = new double[3, 2] { 

{ -8.128643533, -5.662001088 }, 

{ 8.697642486, -5.176190576}, 

{ 9.392557863, -6.166325547} 

}; 
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static double[] V _ W2= new double[ 4] { 

-2.41976912, 7.418189749, -7.849240231, -2.7049977 

}; 

double[] V _statel = new double[3]; 

double V _state2; 

double V _ Output( double cur, int dt) 

{ 

inti; 

double input= scale_input(dt, cur); 

for(i=O; i<3; i++){ 

V _statel[i]= input*V _ Wl[i, O]+V _ Wl[i, 1]; 

V _statel [i]= V _statel [i]/(1 +System.Math.Abs(V _statel [i])); 

} 

V state2= 

V _statel[O]*V _ W2[0]+V _statel[l]*V _ W2[1]+V _state1[2]*V _ W2[2]+V _ W2[3]; 

return V _scale_output(V _state2/(1 +System.Math.Abs(V _state2))); 

} 

int time=O; 

public void Discharge() 

{ 

time=O; 

current=6; 

voltage= O; 

VoltageO= V _Output(current, time); 

TemperatureO= T _ Output( current, time); 

inti; 

for(i=O; i<200; i++) voltage_history[i]=O; 

for(i=O; i<200; i++) temperature_history[i]=O; 

time++; 

} 

public double VoltageO; 

public double Current{ get{ return current; } set{ current=value; } } 

double current=6; 
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public double VoltageChange{ get{ return GetVoltage();} } 

double voltage; 

double[] voltagehistory= new double[200]; 

double GetVoltage() 

{ 

inti; 

for(i=O; i<=l 98; i++) voltage_ history[l 99-i]=voltage_ history[l 98-i]; 

voltage_ history[O]= V _ Output( current, time )-V _ Output( current, time-I); 

voltage=O; 

for(i=O; i<200; i++) voltage+= voltage_history[i]*0.383/(2*i+ 1); 

return voltage; 

} 

static double T_scale_output(double x) 

{ 

return 21.573 + (30.307 - 21.573) * 213 * (0.75 + x); 

} 

static double[,] T _ Wl = new double[3, 2] { 

{ 11.18278511, -8.128164021 }, 

{ 7.573209499, -2.448374555 }, 

{ 13.36306043, -8.307475498 } 

}; 

static double[] T _ W2= new double[ 4] { 

6.94953707, 0.831031877, -1.005212074, 3.448737096 

} ; 

double[] T_statel=new double[3]; 

double T_state2; 

public double T_Output(double cur, int dt) 

{ 

inti; 

double input= scale _input( dt, cur); 

for(i=O; i<3; i++){ 

T_statel [i]= input*T_ Wl [i, O]+T_ Wl [i, 1]; 

T_statel[i]= T_statel[i]/(1 +System.Math.Abs(T_statel [i])); 
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} 

T state2= 

T_statel[O]*T_ W2[0]+T_statel[l]*T_ W2[1]+T_state1[2]*T_ W2[2]+T_ W2[3]; 

return T _scale_ output(T _ state2/ ( 1 +S ystem.Math.Abs(T _ state2))); 

} 

public double TemperatureO; 

public double TemperatureChange{ get{ return GetTemperature();} } 

double temperature; 

double[] temperature_ history= new double[200]; 

double GetTemperature() 

{ 

inti; 

for(i=O; i<=198; i++) temperature_history[199- 

i]=temperature_history[ 198-i]; 

temperature_ history[O]= T _ Output( current, time )-T _ Output( current, 

time-I); 

temperature=O; 

for(i=O; i<200; i++) temperature+= 

temperature_ history[i]*0.383/(2*i+ 1 ); 

return temperature; 

} 

public Battery() 

{ 

Discharge(); 

} 

public void Consume() 

{ 

time++; 

} 

} 
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A.8 NSIM-tem.xls file macro written with Visual Basic 

Dim Wl() As Double 

Dim W2() As Double 

Dim NI As Integer, NH As Integer, NO As Integer 

Dim WeightsLoaded As Boolean 

'WeightsLoaded = False 

Dim StateAllocated As Boolean 

'StateAllocated = False 

Dim Statel() As Double 

Dim State2() As Double 

Function scale_input(x As Double, i As Double) 

scale_input = -0.75 + 1.5 * x * (i I 6) I 1050 
End Function 

Function scale_output(x As Double) 

scale_output = 21.57333333 + (27.306666673 - 21.57333333) * 2 I 3 * (0.75 + x) 
End Function 

Sub Load() 

Dim i As Integer, j As Integer, k As Integer 

NI= Range("Nlnputs").Cells.Value 

NH= Range("NHidden").Cells.Value 

NO= Range("NOutputs").Cells.Value 

Dim Weights As Range 

Set Weights= Range("Weights") 

ReDim Wl(NH, NI+ 1) As Double 

ReDim W2(NO, NH + 1) As Double 

k=l 

Fori= 1 To NH 

For j = 1 To NI + 1 

Wl(i, j) = Weights.Cells(k, l).Value 

k=k+l 

Nextj 

Next i 
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Fori= 1 To NO 

For j = 1 To NH + 1 

W2(i,j) = Weights.Cells(k, l).Value 

k=k+l 

Nextj 

Next i 

WeightsLoaded = True 

End Sub 

Sub StateAllocate() 

ReDim Statel(NH) 

ReDim State2(NO) 

StateAllocated = True 

End Sub 

Public Function GetOutput(n As Integer, Inp As Range) 

Dim i As Integer, j As Integer 

If (Not WeightsLoaded) Then Call Load 

If (Not StateAllocated) Then Call StateAllocate 

For i = 1 To NH 

Statel(i) = 0 

For j = 1 To NI 

Statel(i) = Statel(i) + Wl(i,j) * Inp.Cells(l,j).Value 
Nextj 

Statel(i) = Statel(i) + Wl(i, NI+ 1) 

Statel(i) = Statel(i) I (1 + Abs(Statel(i))) 

Next i 

For i = 1 To NO 

State2(i) = 0 

Forj = 1 To NH 

State2(i) = State2(i) + W2(i, j) * Statel(j) 
Nextj 

State2(i) = State2(i) + W2(i, NH+ 1) 

State2(i) = State2(i) I (l + Abs(State2(i))) 

Next i 

-- 
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GetOutput = State2(n) 

End Function 

Function frange(i As Integer, r As Range) 

frange = r.Cells(l, i).Value 

End Function 

Sub test() 

Dim r As Range 

'If(Not WeightsLoaded) Then Call Load 

'If (Not StateAllocated) Then Call StateAllocate 

Set r = Sheets("Simulation").Range("B4:C4") 

Sheets("Simulation").Cells(4, 6) = GetOutput(l, r) 

Set r = Sheets("Simulation").Range("B5:C5") 

Sheets("Simulation").Cells(5, 6) = GetOutput(l, r) 

Set r = Sheets("Simulation").Range("B6:C6") 

Sheets("Simulation").Cells(6, 6) = GetOutput(l, r) 

Set r = Sheets("Simulation").Range("B7:C7'') 

Sheets("Simulation").Cells(7, 6) = GetOutput(l, r) 

End Sub 

A.9 NSIM-vol.xls file macro written with Visual Basic 

Dim Wl () As Double 

Dim W2() As Double 

Dim NI As Integer, NH As Integer, NO As Integer 

Dim WeightsLoaded As Boolean 

'WeightsLoaded = False 
Dim StateAllocated As Boolean 

'StateAllocated = False 

Dim Statel() As Double 

Dim State2() As Double 

Function scale_input(x As Double, i As Double) 

scale_input = -0.75 + 1.5 * x * (i / 6) / 1050 
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End Function 

Function scale_output(x As Double) 

scale_output = 1.362666667 + (1.493333333 - 1.362666667) * 213 * (0.75 + x) 
End Function 

Sub Load() 

Dim i As Integer, j As Integer, k As Integer 

NI= Range("Nlnputs").Cells.Value 

NH= Range("NHidden").Cells.Value 

NO= Range("NOutputs").Cells.Value 

Dim Weights As Range 

Set Weights= Range("Weights") 

ReDim Wl(NH, NI+ 1) As Double 

ReDim W2(NO, NH + 1) As Double 

k=l 

For i = 1 To NH 

For j = 1 To NI + 1 

Wl(i,j) = Weights.Cells(k, 1).Value 

k=k+l 

Nextj 

Next i 

Fori = 1 To NO 

For j = 1 To NH + 1 

W2(i,j) = Weights.Cells(k, 1).Value 

k=k+l 

Nextj 

Next i 

W eightsLoaded = True 

End Sub 

Sub StateAllocate() 

ReDim Statel(NH) 

ReDim State2(NO) 

StateAllocated = True 

End Sub 
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Public Function GetOutput(n As Integer, Inp As Range) 

Dim i As Integer, j As Integer 

If (Not WeightsLoaded) Then Call Load 

If (Not StateAllocated) Then Call StateAllocate 

For i = 1 To NH 
Statel(i) = 0 

Forj = 1 To NI 
Statel(i) = Statel(i) + Wl(i,j) * Inp.Cells(l,j).Value 

Nextj 

Statel(i) = Statel(i) + Wl(i, NI+ 1) 

Statel(i) = Statel(i) I (1 + Abs(Statel(i))) 

Next i 

For i = 1 To NO 
State2(i) = 0 
Forj = 1 To NH 
State2(i) = State2(i) + W2(i, j) * Statel(j) 

Nextj 

State2(i) = State2(i) + W2(i, NH + 1) 

State2(i) = State2(i) I (1 + Abs(State2(i))) 

Next i 

GetOutput = State2(n) 
End Function 

Function frange(i As Integer, r As Range) 
\ 

frange = r.Cells(l, i).Value 
End Function 

Sub test() 

Dim r As Range 

Set r = Sheets("Simulation").Range("B4:C4") 

Sheets("Simulation").Cells(4, 6) = GetOutput(l, r) 

Set r = Sheets("Simulation").Range("B5:C5") 

Sheets("Simulation").Cells(5, 6) = GetOutput(l, r) 
Set r = Sheets("Simulation").Range("B6:C6") 

Sheets("Simulation").Cells(6, 6) = GetOutput(l, r) 

------------ 
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Set r = Sheets("Simulation").Range("B7:C7'') 

Sheets("Simulation").Cells(7, 6) = GetOutput(l, r) 

End Sub 

A.10 sdkvars.bat 

Set Path=C:\Program 

Files\Microsoft.NET\SDK\vl .1 \Bin\;C:\WINDOWS\Microsoft.NET\Framework\vl .1.4 

322\;C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\;C:\Program 

Files\Microsoft Visual Studio .NET 2003\Common7\IDE\;%P ATH% 

Set LIB=C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\lib\;"C:\Program 

Files\Microsoft.NET\SDK\vl .1 \Lib\";%LIB% 

Set INCLUDE=C:\Program Files\Microsoft Visual Studio .NET 

2003\ V c7\include\; "C: \Program 

Files\Microsoft.NET\SDK\vl .1 \include\";%INCLUDE% 

Set NetSamplePath=C:\PROGRA-1 \MICROS-1.NET\SDK\vl .1 \ 

A.11 battery_ dll.bat 

call sdkvars.bat 

csc /out:Battery.dll /target:library Battery.cs 

pause 

A.12 TrainRules.bat 

call sdkvars.bat 

csc /out:TrainRules.exe /target:exe /reference:Network.dll TrainRules.cs 

pause 

-··· --~ - -- ----- 
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A.13 FR CO)IPILE.bat 

call sdkvars.bat 

csc /out:CCont.exe /target:exe treference:Battery.dll /reference:Network.dll 

FR_ ChargingControl.cs 

pause 

A.14 CCout.bat 

CCont.exe >res.txt 

A.15 dll.bat (for Network.dll) 

call sdkvars.bat 

csc /out.Network.dll /target:library /reference:FILEIO.dll Network_D.cs Genetic_D.cs 

pause 

A.16 COMPILE2.bat 

call sdkvars.bat 

csc /out:CCont.exe /target:exe /reference:Network.dll ChargingControl.cs 

pause 

-·~----- ---- - - ----- -~ 



128 

Appendix B. Publications by the Candidate Relevant to 
the Thesis 

B.1 Symposium & Conference Proceedings Publications 

[1] Perviz Ali-zade, Kaan Uyar, "A New Approach for Portable Computer Accumulator 
Battery Life Saving Charging", Proceedings of the 2nd International Electrical, 
Electronics & Computer Engineering Symposium (NEU-CEE'2004), pp. 334-338 
Nicosia, TRNC, March 2004. 

[2] Perviz Ali-zade, Kaan Uyar, "A Fuzzy Controller Approach to Accumulator Battery 
Life Saving Electrical Desulfatation", Proceedings of the International Conference on 
Computational Intelligence (ICCI'2004), pp. 143-147, Nicosia, TRNC, May 2004. 

[3] Perviz Ali-zade, Kaan Uyar, "Ni-Cd Battery Fuzzy Controlled Charger Rules Based 
on Internal Resistance Data", Proceedings of the 3rd FAE International Symposium, 
pp. 369-373, Lefke, TRNC, November 2004. 

[4] Kaan Uyar, "Modeling of Nickel Cadmium Batteries", Proceedings of the 3rd 
International Conference on Soft Computing, Computing with Words and Perceptions 
in System Analysis, Decision and Control (ICSCCW-2005), pp. 263-268, Antalya, 
Turkey, Sep. 2005. 

[5] Kaan Uyar, "Fuzzy-Neural Control System for Nickel Cadmium Battery Charging", 
Proceedings of the 3rd International Conference on Soft Computing, Computing with 
Words and Perceptions in System Analysis, Decision and Control (ICSCCW-2005), 
pp.168-178, Antalya, Turkey, Sep. 2005. 

[6] Kaan Uyar, "Modeling and Simulation of NiCd Batteries Behavior Under Fast 
Charging with Genetic Algorithm Based Trained Recurrent Fuzzy Neural Network", 
Proceedings of the 7th International Conference on Application of Fuzzy Systems and 
Soft Computing (ICAFS - 2006), Siegen, Germany, Sep. 2006 

[7] Kaan Uyar, "A Novel Intelligent Approach for Modeling and Control of Non-linear 
Dynamic Systems", Proceedings of the 3rd International Electrical, Electronics & 
Computer Engineering Symposium 2006, pp. 291-296, Nicosia, TRNC, Nov. 2006. 

B.2 Journal Publications 

[1] Kaan Uyar, "Recurrent Fuzzy Neural Network Based Modeling and Control of 
Nickel Cadmium Batteries Charging", Journal "Knowledge" ("Technical Sciences''), 
vol. 3-4, pp. 6-16, Azerbaijan, 2005. 

--·---- -- 



129 

B.3 Pending 

[1] Rafik Aliev, Rashad Aliev, Babek Guirimov, Kaan Uyar, "Dynamic Data Mining 
Technique for Battery Charging Rules Extraction", Applied Soft Computing, Elsevier. 

[2] Rafik Aliev, Rashad Aliev, Babek Guirimov, Kaan Uyar, "Recurrent Fuzzy Neural 
Network Based System for Battery Charging", JSNN 2007, LNCS, June 2007. 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 2
	Titles
	. 1# 
	iiW~_ 
	~,8. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 3
	Titles
	ACKNOWLEDGEMENT 


	Page 4
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 5
	Titles
	TABLE OF CONTENTS 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 6
	Images
	Image 1

	Tables
	Table 1


	Page 7
	Images
	Image 1

	Tables
	Table 1


	Page 8
	Titles
	u 
	LIST OF ABBREVIATIONS 

	Images
	Image 1


	Page 9
	Titles
	LIST OF TABLES 

	Images
	Image 1

	Tables
	Table 1


	Page 10
	Titles
	LIST OF FIGURES 

	Images
	Image 1

	Tables
	Table 1


	Page 11
	Images
	Image 1

	Tables
	Table 1


	Page 12
	Titles
	1. INTRODUCTION 

	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1

	Tables
	Table 1


	Page 16
	Titles
	5 

	Images
	Image 1


	Page 17
	Titles
	6 

	Images
	Image 1

	Tables
	Table 1


	Page 18
	Images
	Image 1

	Tables
	Table 1


	Page 19
	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1


	Page 21
	Titles
	Charge Time (hours) 
	Storage Time (months) 

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3
	Table 4


	Page 22
	Titles
	o.e I l · I ' o 
	.Ł... 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 23
	Titles
	- 
	~ 
	Number of Cycles 
	2.1.3 Charging the Nickel Cadmium Battery 

	Images
	Image 1

	Tables
	Table 1


	Page 24
	Images
	Image 1


	Page 25
	Page 26
	Page 27
	Images
	Image 1


	Page 28
	Titles
	--- 
	:,... 
	> Ł 
	c:; 6511.46 /.' f ao 
	._, ., : 
	a ; ~ 
	I §511.42 /.., ~ /~ 60 i. 
	ii I / .~ 
	1 4511 Jo ; ' Ł 40 ; 
	~ ' 
	3511.34 20 
	I lo 
	100 
	state· of Chsge (%) 
	- 

	Images
	Image 1
	Image 2


	Page 29
	Images
	Image 1


	Page 30
	Titles
	2.2 Review of Existing Work of Intelligent Batteries Chargers 

	Images
	Image 1


	Page 31
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 1
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 2
	Titles
	A 
	Em 

	Images
	Image 1

	Tables
	Table 1


	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 4
	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Titles
	2.3. Statement of Present Work Problem 

	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Titles
	3. ARCHITECTURE OF NEURO-FUZZY-GENETIC 
	CONTROL SYSTEM FOR BATTERIES CHARGING 
	3.1 Structure of Control System and Description of its Working Principles 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1


	Page 8
	Titles
	3.2 Elements of Batteries Charging Control Systems 

	Images
	Image 1
	Image 2


	Page 9
	Titles
	CH1 2 
	L~:_-----+=j--~C~H~0~11_1 ADCmng 
	I ~ - 
	I Ł 
	LM45 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 10
	Images
	Image 1
	Image 2


	Page 11
	Titles
	~LA (x) 
	a 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 13
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 14
	Titles
	34 
	u 
	used in simulation are given in Figure 3.6 and the output membership function I is given 
	Łc 
	m°C 
	Figure 3.6 Input Membership Functions: U, dU, T and dT. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 15
	Titles
	The knowledgebase designed according to the NiCd charge characteristics as explained 
	an-per 
	35 
	8 
	6 
	4 
	2 
	0 
	Table 3.2 Applied Fuzzy Rules 
	-2 
	Figure 3.7 A Membership function of the output variable I 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 16
	Images
	Image 1

	Tables
	Table 1


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Titles
	4.2 Description of Investigated Recurrent Fuzzy Neural Networks 

	Images
	Image 1
	Image 2


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1
	Image 2


	Page 21
	Titles
	F(s) = l+lsl 

	Images
	Image 1
	Image 2


	Page 22
	Images
	Image 1


	Page 23
	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Titles
	Figure 4.2 GA based training of RFNN network 
	44 
	~ 
	~ I ~':'..:_~ I I ~~:.: 
	ŁŁŁŁmm~mmariraEE1s~~~~m~~mD~mmŁŁŁŁ 
	1D u 12 R2 Rl RD 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3


	Page 25
	Titles
	5. FUZZY MODELING OF THE NICD BATTERIES 
	5.1 Approximation of the Nonlinear Dynamics of the NiCd Battery by 

	Images
	Image 1


	Page 26
	Images
	Image 1
	Image 2


	Page 27
	Images
	Image 1


	Page 28
	Images
	Image 1


	Page 29
	Images
	Image 1
	Image 2


	Page 30
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 1
	Titles
	.a 24 
	8_ 23 

	Images
	Image 1

	Tables
	Table 1


	Page 2
	Images
	Image 1


	Page 3
	Titles
	6.1 Dynamic Data Mining Technique for Battery Charging Rules 

	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 6
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 8
	Images
	Image 1

	Tables
	Table 1


	Page 9
	Titles
	59 
	with population size 100, probability of multi-point crossover 0.25, and probability of 
	Figure 6.1 Battery charging control process 
	current vs Time 
	Temperature vs Time 
	0 
	Voltage vs Time 

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 10
	Titles
	6.2 Software Development ofNeuro-Fuzzy-Genetic Control System for 
	6.3 Experimental Results of Battery Control System 

	Images
	Image 1


	Page 11
	Titles
	2..---------<>------------1----- 
	~j~~;f ' ' :1 

	Images
	Image 1

	Tables
	Table 1


	Page 12
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 13
	Titles
	63 
	Voltage vs Time 
	Current vs Time 
	Temperature vs Time 
	Ł.. 
	Figure 6.4 Graph of the charging process 

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3


	Page 14
	Titles
	Ł.. 

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 15
	Titles
	65 
	Figures 6 .6 and Figure 6. 7 show cases when we intentionally remove some rules from 
	I 
	Cu,rent vs Time 
	Temperature vs Time 
	Voltage vs Time 
	1.4 
	Figure 6.6 Intentionally remove some rules from consideration in control system. 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3


	Page 16
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 17
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3


	Page 18
	Titles
	g' 30 

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3


	Page 19
	Titles
	6.4 Compatible Analysis ofNeuro-Fuzzy-Genetic Control System for 
	6.5 Identification of the Proposed Controller for Ni Cd Batteries Charger 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 20
	Titles
	(6.3) 
	E(k) 
	y !J{) 
	Recurrent Fuzzy 
	Neural Network 
	Dynamic Plant 
	y(k) 
	u(k) 
	. (ITkJ 
	Baekprepagation 
	u(k) - 1 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 21
	Titles
	; ! i i i ' l i i 
	...... ; ] ~ )......... ., .. . . . ..j 
	Ł:: : ~ : :: ~Ł~ : ~ ~ ::r :I Ł b=-="r==-=r--:ŁŁŁ ; : TŁŁŁŁŁŁŁŁŁl 

	Images
	Image 1

	Tables
	Table 1


	Page 22
	Titles
	Conclusion 

	Images
	Image 1
	Image 2


	Page 23
	Images
	Image 1
	Image 2


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Images
	Image 1
	Image 2


	Page 26
	Images
	Image 1


	Page 27
	Images
	Image 1


	Page 28
	Titles
	Appendix A. Programs 
	A.1. Network D.cs 

	Images
	Image 1
	Image 2


	Page 29
	Titles
	{ 
	} 
	} 

	Images
	Image 1


	Page 30
	Titles
	} 
	} 
	} 

	Images
	Image 1


	Page 1
	Titles
	} 
	} 
	} 
	{ 
	} 
	} 

	Images
	Image 1


	Page 2
	Titles
	} 
	} 
	} 

	Images
	Image 1


	Page 3
	Titles
	} 

	Images
	Image 1


	Page 4
	Titles
	} 
	} 
	{ 
	} 

	Images
	Image 1


	Page 5
	Titles
	{ 
	} 
	} 

	Images
	Image 1


	Page 6
	Titles
	{ 
	} 

	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Titles
	} 
	} 
	} 
	} 
	{ 
	} 
	} 

	Images
	Image 1


	Page 9
	Titles
	{ 

	Images
	Image 1


	Page 10
	Titles
	} 
	{ 
	{ 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	} 
	} 
	} 
	} 

	Images
	Image 1
	Image 2


	Page 12
	Titles
	{ 
	} 
	} 
	} 
	} 
	A.2 Controller.cs 
	{ 
	{ 
	); 
	92 

	Images
	Image 1
	Image 2


	Page 13
	Titles
	} 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	} 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 15
	Titles
	} 

	Images
	Image 1


	Page 16
	Titles
	{ 
	} 
	} 

	Images
	Image 1
	Image 2


	Page 17
	Titles
	.,, 

	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Titles
	{ 
	{ 
	} 
	A.4 FR_ ChargingControl.cs 

	Images
	Image 1


	Page 20
	Titles
	} 
	I* 
	} 
	} 
	{ 

	Images
	Image 1
	Image 2


	Page 21
	Titles
	} 

	Images
	Image 1
	Image 2


	Page 22
	Titles
	{ 
	} 
	{ 
	} 
	{ 

	Images
	Image 1


	Page 23
	Titles
	} 
	{ 

	Images
	Image 1
	Image 2


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Titles
	A.5 TrainRules.cs 
	A.6 Genetic D.cs 
	{ 
	{ 

	Images
	Image 1


	Page 26
	Titles
	} 
	} 
	} 

	Images
	Image 1
	Image 2


	Page 27
	Titles
	{ 
	} 

	Images
	Image 1
	Image 2


	Page 28
	Titles
	} 
	} 

	Images
	Image 1


	Page 29
	Titles
	{ 
	} 
	} 
	} 
	} 
	} 

	Images
	Image 1
	Image 2


	Page 30
	Titles
	*I 
	} 
	{ 
	I* 
	} 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	' ' 
	' ' 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	} 
	{ 
	{ 

	Images
	Image 1


	Page 3
	Titles
	{ 
	} 

	Images
	Image 1
	Image 2


	Page 4
	Titles
	} 
	} 
	} 
	} 
	} 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	II 
	} 

	Images
	Image 1


	Page 7
	Titles
	A.7 Battery.cs 
	{ 
	{ 

	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Titles
	{ 
	{ 

	Images
	Image 1
	Image 2


	Page 9
	Titles
	} 

	Images
	Image 1


	Page 10
	Titles
	} 
	} 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	A.8 NSIM-tem.xls file macro written with Visual Basic 

	Images
	Image 1


	Page 12
	Page 13
	Titles
	A.9 NSIM-vol.xls file macro written with Visual Basic 

	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Page 16
	Titles
	A.10 sdkvars.bat 
	A.11 battery_ dll.bat 
	A.12 TrainRules.bat 

	Images
	Image 1


	Page 17
	Page 18
	Titles
	Appendix B. Publications by the Candidate Relevant to 
	B.1 Symposium & Conference Proceedings Publications 
	B.2 Journal Publications 


	Page 19
	Titles
	B.3 Pending 

	Images
	Image 1



