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ABSTRACT 
• 

Fuzzy logic is nowadays applied in almost all sectors of industry and science in 

the whole world, especially in the field of control and pattern recognition. 

The aim of thesis is the development of the fuzzy controller for technological 

processes control. To achieve this aim the structures and operation principles of fuzzy 

PD-, PI-, PID-Like controllers are given. The functions of the main blocks­ 

fuzzification, inference engine, defuzzification, fuzzy knowledge base are described. 

The development of fuzzy PD-, PI-, PID-Like controllers are performed. Using 

time response characteristics of system and fuzzy model of the processes the fuzzy 

knowledge base for this controller are developed. The inference engine mechanism is 

realized by using max-min type fuzzy processing of Zadeh. Defuzzification mechanism 

is realized by using "Center of Gravity" algorithm. 

The modeling of fuzzy PD-Like controller for control of temperature of heater is 

carried out. The simulation of system is realized in MATLAB Programming Language. 

In the result of simulation obtained time response characteristics of system show the 

efficiency of application of fuzzy controller in complicated processes. 
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INTRODUCTION 
• 

Presently large class of industrial processes are characterized with non-linearity, 

time-variance, the overlapped presence of various disturbance and so on. As a result, it 

is difficult to develop sufficiently adequate models of these processes and, 

consequently, to design a control system using traditional methods of the control theory, 

even if sophisticated mathematical models are applied. 

At the same time it is surprising that a skilled human-expert successfully 

performs his duties due to a great amount of qualitative information that he uses 

intuitively while elaborating a control strategy. Usually, he keeps in mind this 

information in the form of linguistic rules, which make up an· intrinsic control 

algorithm. Furthermore, a human operator often is able to aggregate a great amount of 

quantitative information, to extract most essential peculiarities and interconnections as 

well as to define the most important qualitative control indices. 

Fuzzy set theory was found to be a very effective mathematical tool for dealing 

with the modeling and control aspects of complex , industrial and non industrial 

processes as an alternative to other much more sophisticated mathematical models. 

Further, the latter circumstance led to the appearance at the beginning of the 1970's of 

fuzzy logic computer controllers which became a powerfully tool for coping with the 

complexity and uncertainty with which we are faced in many real-world problems of 

industrial process control. The first investigations in this field had to answer the 

question: Is it possible to realize a process controller which deals like a man with the 

involved linguistic information? The results of these inquires led to the design of the 

first fuzzy control systems which implemented in hardware and software a linguistic 

control algorithm. Such a control algorithm was then formulated by a control engineer 

on the base of the interviews with human experts who currently work as process 

operators. The most simple fuzzy feedback control systems contain a fuzzy logic 

controller (FLC) in the form of a Table of linguistic rules, or fuzzy relation matrix and 

input-output interfaces. 

Fuzzy logic has been successfully applied to many of industrial spheres, in 

robotics, in complex decision-making and diagnostic system, for data compression, in 

TV and others. Fuzzy sets can be used as a universal approximator, which is very 

important for modeling unknown objects. Fuzzy technology has such characteristics as 
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interpretability, transparency, . plausibility, graduality, modeling, reasonmg, imprecision 

tolerance. 

The aim of the thesis is the development of a fuzzy controller for technological 

• 

processes control. The thesis consists of introduction, five chapters and conclusion. 

Chapter One describes the structure of the fuzzy system, the functions of it's main 

blocks. The structures of PD, PI and PID-Like fuzzy controllers and their operation 

principles are described. 

Chapter Two presents the algorithms of fuzzy controllers. The linguistic variables, their 

fuzzy values and different fuzzification algorithms are describe. The steps of inference 

engine mechanism are also describe. Different types of fuzzy processing mechanisms 

are given in this chapter as well. 

Chapter Three is devoted to the development of PD, PI and PID-Like fuzzy controllers 

for technological processes control. As a result, the fuzzy rule base controllers have 

been generated. 

Chapter Four is devoted to the development of fuzzy controller for control temperature 

c , of heater. The description of the processes is given. The realization of each block of 

fuzzy controller are described. 

Chapter Five describes the computer simulation of fuzzy system for control of 

temperature of heater by using Matlab package. The result of simulation is analyzed. 

Conclusion presents the obtained important results and contributions in the thesis. 

2 



CHAPT£RON£ 
• 

THE STRUCTURE OF FUZZY CONTROLLERS 

1.1 Overview 

In practice conventional controllers are often developed via simple models of the 

plant behavior that satisfy the necessary assumptions, and via the ad hoc tuning of 

relatively simple linear or nonlinear controllers. Regardless, it is well understood that 

heuristic enter the conventional control design process as long as we are concerned with 

the actual implementation of the control system. It must be acknowledged, moreover, 

that conventional control engineering approaches that use appropriate heuristics to tune 

the design have been relatively successful. 

Fuzzy control provides a formal methodology for representing, manipulating, 

and implementing a human' s heuristic knowledge about how to control a system. 

In this chapter the structure of fuzzy systems and the functions of their main 

blocks are described. Section 1.2 describes the structure of general fuzzy system. 

Sections 1.3, 1.4 and 1.5 are devoted to the structures and operation principles of fuzzy 

PD-, PI- and PID-like fuzzy controllers. 

1.2 Structure of General Fuzzy System 

There are specific components characteristic of a fuzzy controller to support a 

design procedure. A general structure of fuzzy controller is described in the block 

diagram shown in Figure 1.1. 

A fuzzy system is static nonlinear mapping between its inputs and outputs (i.e., 

it is not a dynamic system).' It is assumed that the fuzzy system has inputs u; EU; where 

i =1,2, ..... ,n and outputs Y; E Y; where i =l,2, ..... ,m. The inputs and outputs are "crisp" 

- that is, they are real numbers, not fuzzy sets. 

The fuzzy controllers are composed of the following four elements: 

1. A rule Base ( a set of If- Then rules), which contains a fuzzy logic quantification 

of the expert's linguistic description of how to achieve good control. 

2. An Inference Mechanism ( also called an "inference engine" or "fuzzy inference" 

module), which emulates the expert's decision making in interpreting and 

applying knowledge about how best to control the plant. 
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3. A Fuzzification Inference, which converts controller inputs into information that 

the inference mechanism can easily use to activate and apply rules 
) 

4. A defuzzification Inference, which converts the conclusions of the inference 

mechanism into actual inputs for the process ( converts fuzzy conclusion into 

crisp outputs). 

Inputs 
Crisp 
Outputs 

-- - --- - - -- - - -e-- - - - -- -j: 
Fuzzy 
Conclusion 

Crisp 
Inputs 

u, \ 

Fuzzified 

--------- ' I 
I 
I l 1 I . 

I ~ I = I • I = Inference 0 I I 1------. ·- . 0 Engine ..•..• I I ·- ~ I I ..•..• 
~ ~ I I ~ i.:: I I i.:: ·- I N I ·- t N I I N 
i.::l I I N 

I I = ~ 
I • ~ Knowledge ~ I . I ~ 

Base I I 
I I 

L----------------------------------J 

Figure 1.1. Structure of fuzzy controller. 

1.3 Structure of The PD-Like Fuzzy Controller 
The most simple fuzzy feedback control system contains a fuzzy logic controller 

(FLC) in the form of a Table of linguistic rules (or fuzzy relations matrix) and input­ 

output interfaces. A linguistic rule consists of one or more premises and one or more 

consequences, i.e. in the form: 

IF (premises:a and band c ... ) hold 

THEN (consequences:x and y and z ... ) hold too. 

The structure of PD-Like fuzzy controller is shown in Figure 1.2. 

A PD-Like fuzzy controller presents an information loop with: 

• an input signal g as an advising set-point (for example, a quality control); 

a comparator which checks, if the emitted process output x is the correct 

reaction; to the set-point g, and which emits himself an error signal e as an input 

to the decision element Table of Linguistic Rules (TLR) ( or Rule Base), in order 

to report him, how much the process output x deviates from the preset 

value of g; 

• 
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• calculating change of errror 

• a decision element TLR which emits for each value of e and change of error e ' 

and output u which, on its side, becomes an input to a process with output x to 

be controlled. 

A fuzzy logic controller is a synthesis of both, a controller's loop and a set of 

linguistic rules which are the content of the decision elements of the controller. The 

purpose of the input interface is to convert the non-fuzzy signals of error, either 

derivative (e') or sum of error (or both) into those input fuzzy sets which serve as 

premises in the correspondent linguistic rule of the FLC. The output fuzzy set ( or the 
( 

consequent of the linguistic rule) is converted by the output interface to the non-fuzzy 

control action which is transferred to the input of an industrial process. 

---------------------------------------------, 
PD-Like fuzzy controller 

' I x(t) I 
e(t) I = I 

Control 
I ,----, 

I = 0 ~ ..• 
Object 

0 •.. ·- r,:, ~ ..•... ~ ~ ~ ~ -+ ~ ~ ... ~ ~ N ·- - N N = ~ N ~ a- = ~ ~ 

Figure 1.2. Structure of fuzzy PD control system. 

The transient performance demonstrated by these controllers as well as the noise 

immunity and robustness were essentially better than that of usual PID (Proportional, 

Integral, Differential) controllers. At the same time, the practical use of fuzzy control 

systems revealed the following problems: 

a. there is not yet a satisfactory approach to the construction of input-output 

interfaces being sufficiently supported by logical evidence; 

b. there is no definitive agreement about how to proceed with an incomplete 

Table of linguistic rule (TLR). Thus, no actual rule in the TLR can be applied to a 

concrete decision case, if the features of parameters p of this case appear no where in 
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the TLR as premises. Then, a new consequent c, as the missing term of a new rule r(p, c) 

must be introduced (this is done, for instance, by interviewing the human process 

operator). On the other hand, the TLR demands an expensive study of the process and 

does not guarantee a desirable transient performance of the system in the case of a time 

variant process. 

Moreover, the efficiency of fuzzy systems depends on the completess of the 

experts interviewed during the knowledge elicitation process. Therefore, a wide 

application of single-loop fuzzy control systems is restricted, because of their inability 

to cope with complex decision cases. 

1.4 Structure of The Pl-Like Fuzzy Controller 
The structure of the fuzzy PI-Like controller is shown in Figure 1.3. The output 

signal of control object is compared with the target signal G(t) in the comparator. In the 

result of comparison the value of error between target and current signals of control 

object is determined. This signal e(t) is passed to integrator f and the integral value of 
error is determined. The error signal e(t) and the integral value of error f e(t) after 

multiplying to the scaling coefficients k , and k f are entered to the fuzzification 

block, where the fuzzy values of the error and integral value of error are determined. 

Fuzzy PI controller 

::::: Rule ::::: 
0 Base 

0 ·- ·- 
~ ~ 
(.) -+ 

(.) 

t;::: t;::: ·- ·- 
N 

N 

N 
N 

::l cEl 
µ.. I!) 

Cl 

Control ~ 
Object I I x(t) 

Figure 1.3. Structure of fuzzy Pl control system. 
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Using rule base block the fuzzy output of the controller is determined. It is input 

for defuzzification block. Defuzzification block calculates the crisp output of the 

controller. This output signal after scaling is entered to the plant input. 

1.5 Structure of The PID-Like Fuzzy Controller 
The fuzzy PID-Like controller is a combination of fuzzy PD-Like controller and 

a fuzzy Pl-Like controller. The structure of fuzzy PID-Like controller is shown in 

Figure 1.4. In the result of the comparison of output signal of control object with target 

signal of control system the value of error is determined.· This signal e(t) is passed to the 

integrator and differentiator. On the output of integrator and differentiator the integral 

value of error and change of error are determined. 

The error signal e(t), velocity of error e'(t) and the integral value of error f e(t) 
after multiplying to the scaling coefficients k , , k e' and k f 

fuzzification block, where the fuzzy values of error, the velocity value of error and 

are entered to the 

integral value of error are determined. 

Using rule base block the fuzzy output of the controller is determined. This 

signal after defuzzification in the defuzzification block is scaled and entered to the 

plant input. 

------------------------------------------ I 

PID-Like Fuzzy Controller 

= = 
0 

0 ·- -~ .•.... 

~ 

('j 
(.) Rule 

(.) 

~ ~ 
.N Base 

.N 
N 

N 

;:l c.2 
µ.. 11) 

Q 

Control I x~t) 
Object 

fe(t) 

~----------------------------------------- 

Figure 1.4. Structure of fuzzy PID control system. 
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1.6 Summary 
• 

A fuzzy system is a static nonlinear mapping between its inputs and outputs (i.e., 

it is not a dynamic system). 

The fuzzy controller's are composed of the following four elements: 

1. A rule Base ( a set of If-Then rules), which contains a fuzzy logic quantification 

of the expert's linguistic description of how to achieve good control. 

2. An Inference .Mechanism ( also called an "inference engine" or "fuzzy inference" 

module), which emulates the expert's decision making in interpreting and 

applying knowledge about how best to control the plant. 

3. · A Fuzzification Inference, which converts controller inputs into information that 

the inference mechanism can easily use to activate and apply rules 

4. A defuzzification Inference, which converts the conclusions of the inference 

mechanism into actual inputs for the process ( converts fuzzy conclusion into 

crisp outputs). 

In this chapter a full description of the PD, Pl, and PID-Like fuzzy controllers 

structures are given. 

In next chapter, different operations of fuzzy controller will be described in 

details. 
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CHAPT£RTWO 

ALGORITHMS OF FUZZY CONTROLLERS 
• 

2.1 Overview 

In order to construct a fuzzy application a sufficient knowledge on how to 

operate the system that is to be controlled is required. The performance of the fuzzy 

controller can be influenced by changing the shape and number of its membership 
/ 

functions, by changing its defuzzification method and its inference mechanism. These 

operations can be done in relatively easy manner without need for knowledge of all 

system parameters and without use of mathematical operations of any kind. 

In this chapter, the operations of fuzzy controller are described in details. The 

entire operations inside the fuzzification, inference mechanism and defuzzification 

blocks are shown. 

2.2 Operations of Fuzzy Controller 

The inference engine is the heart of a fuzzy controller ( and any fuzzy rules 

system) operation. The actual operation of the fuzzy controller can be divided into three 

steps as shown in Figure 2.1: 

• Fuzzification: actual inputs are fuzzified and fuzzy inputs are obtained. 

• Fuzzy processing: processing fuzzy inputs according to the rules set and 

producing fuzzy output. 

• Defuzzification: producing a crisp real value for fuzzy output. 

Actual Input 

Fuzzification 
Fuzzy 
Inputs 

Fuzzy 
Output 

Def1mfie1tl11 1 o11 ::::: 

Control Output 

If pressure is Neg Big then time is Short 
If pressure is Neg smal! then time is Short 
If pressure is Zero then time is average 
If pressure is Pos small then time is Long 
If pressure is Pos Big then time is Long 

Figure 2.1. Operations of fuzzy controller. 
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In real control system, the controller output should be used to control a real 

object or process. It is important to know a crisp value for every output signal. 

Defuzzification produces this value on the basis of output membership functions. 

Fuzzy control gives us a rather simple to use method for producing high quality 

controller with complicated input/output characteristics. In order to construct a fuzzy 

controller, it is needed just to write some rules. 

The classical design scheme contains the following steps: 

1. Define the input and control variable: determine which states of the process 

shall be observed and which control action are to be considered. 

2. Define the condition interface: fix the ways in which observation of the process 

are expressed as fuzzy sets. 

3. Design the rule base: determine which rules are to be applied under which 

conditions. 

4. Design the computational unit: supply algorithms to perform fuzzy 

computations. That unit will generally lead to fuzzy outputs. 

5. Determine rules according to which fuzzy control statement can be transformed 

into crisp control actions. 

The typical structure of control system based on fuzzy controller is given in 

Figure 2.2. 

r---------------------------------------------------------------------------------, 
I 

Rules 
Table 

Controller 
~----------------, 

I 

: Output 
Membership: Function 

.---------• 
I 

Input : 
Membership [Function 

Knowledge Base 
Database Rule base 

• Fuzzy 
Output 

I 
I 
I 
I 

T 
Fuzzification 

Fuzzy 
Input Inference Engine Defuzzification 

Crisp 
Input 

Process or Object Under Control 

Crisp 
Output 

Figure 2.2. The fuzzy logic controller. 
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The first usual step in the design process of any controller is choosing variables 

that can be measured. These variables become the inputs of the controller. Step 2 

represents the fuzzification process, step 4 fuzzy inference process and step 5 represents 

defuzzification process. 

However, the heart of a fuzzy controller design is a formulation of the rules. To 

get these rules the main basis is an expert's experience, his/her understanding how a 

fuzzy controller should operate.and what it should do. 

2.3 Fuzzification 
Fuzzy sets are used to quantify the information in the rule-base, and the 

inference mechanism operates on fuzzy systems to produce fuzzy sets; hence, we must 

specify how the fuzzy system will convert its numeric inputs U; EU; into fuzzy sets (a 

process called "fuzzification") so that they can be used by the fuzzy system. 

Let U;*; denote the set of all possible fuzzy sets that can be defined on U, Given 

U; EU;, fuzzification transforms u; to a fuzzy set denoted by A(uzz defined on the 

universe of discourse U; This transformation is produced by the fuzzification operator F 

defined by 

where 

F(u) = Afuzz 
I I ' 

Quite often "singleton fuzzification" is used, which produces a fuzzy set 

A/izz EU/ with a membership function defined by 

X =Ui 

otherwise 

Any fuzzy set with this form for its membership function is called a "singleton." 

Basically, the singleton fuzzy set is a different representation for the number u.. 

Singleton fuzzification is generally used in implementations since, without the presence 

of noise, we are absolutely certain that ui takes on its measured value (and no other 

value), and since it provides certain savings in the computations needed to implement a 
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fuzzy system (relative to, for example, "Gaussian fuzzification," which would involve 
• forming bell-shaped membership functions about input points, or triangular 

fuzzification, which would use triangles). 

The reasons other fuzzification methods have not been used very much are they 

add computational complexity to the inference process, the need for them has not been 

that well justified. 

This is partly due to the fact that very good functional capabilities can be 

achieved with the fuzzy system when only singleton fuzzification is used. 

It is actually the case that for most fuzzy controllers, the fuzzification block in 

Figure 2.1 can be ignored since this process is so simple. Generally the fuzzification 

process is the act of obtaining a value of an input variable (e.g., e(t)) and finding the 

numeric values of the membership function(s) that are defined for that variable. 

Some think of the membership function values as an "encoding" of the fuzzy 

controller numeric input values. The encoded information is then used in the fuzzy 

inference process that starts with "matching." 

2.4 Linguistic Variables 

The research lately have shown that conventional analysis methods for systems 

analysis and computer modeling, based on precise processing of numerical data, are not 

capable of dealing with huge complexity of real technological processes. This leads to 

the fact that in order to get decisions affecting the behavior of those processes we need 

to reject of traditional requirements to measurement accuracy, which are necessary for 

mathematical analysis of precisely defined mechanical systems. 

The necessity to sacrifice the precision and determinate is dictated also by the 

appearance of some classes of control problems that are connected with decision 

making by operator in the "man-computer" interface. Implementation of the dialog in 

such interface is impossible without application of languages close to natural ones and 

capable of describing fuzzy categories near to human notions and imaginations. In this 

connection, it is valuable to use the notion of linguistic variable first introduced by 

L.Zadeh[5]. Such linguistic variables allow an adequate reflection of approximate in­ 

word descriptions of objects and phenomena in the case if there is no any precise 

deterministic description. It should note as well that many fuzzy categories described 

linguistically even appear to be more informative than precise descriptions. 

12 



To specify rules for the rule base, the expert will use a linguistic description; 

hence, linguistic expressions are needed for the inputs and the outputs and the 

characteristics of the inputs and outputs. Here the linguistic variables ( constant 

symbolic descriptions of what are in general time-varying quantities) will be used to 

describe fuzzy system inputs and outputs. In the fuzzy system that described in Figure 

1.1 a linguistic input variables are denoted by u; . Similarly, linguistic output variables 

are denoted by Y;. For instance, an input to the fuzzy sy.stem may be described as u1 = 

"position error" or u2 ="velocity error," and an output from the fuzzy system may be 

y, ="voltage in." 

2.4.1 Linguistic Values 

Linguistic variables u; and Y; take on linguistic values that are used to describe 

characteristics of the variables. Let A( denote the r linguistic value of the linguistic 

variable u;. Defined over universe of discourse U;. If we assume that there exist many 

linguistic values defined over U;, then the linguistic variable u, takes on the elements 

from the set of linguistic values denoted by 

A; = {A( : j = 1,2, ..... ,N} 

(sometimes for convenience we will let the j indices take on negative integer values). 

Similarly, let B( denote the r linguistic variable Y; defined over the universe of 

discourse Y, . The linguistic variable y; takes on elements from the set of linguistic 

values denoted by 

B; = {Bt : p = 1,2, ..... ,M;} 

(sometimes for convenience we will let the p indices take on negative integer values). 

Linguistic values are generally descriptive terms such as "positive large", "zero" and 

"negative big". For example, assume that u, denotes the linguistic variable "speed", 

then it is possible to assign A/ = "slow", A12 = "medium", A? = "fast" so that u, has a 

value from A, = {A/, A12, A?}. 

13 



Another important aspect of the notion of linguistic variable that a linguistic 

variable is associated with the two rules: the syntactic rule, which can be set as a 

grammar, generating names for the variable; and the semantic rule, which determines an 

algorithmic procedure for calculating the meaning of each value. Thus these rules make 

the essential part of the description of the structure of linguistic variable. 

Definition . A linguistic variable is characterized by the set (u, T, X, G, M), where u is 

the name of variable; T denotes the term-set of u that refer to a base variable whose 

values range over a universem X,· G is a syntactic rule (usually in form of a grammar) 

generating linguistic terms; Mis a semantic rule that assigns to each linguistic term its 

meaning, which is a fuzzy set on X. 

A certain t E T generated by the syntactic rule G is called A term. A term 

consisting of one or more words, the words being always used together, is named an 

atomary term. A term consists of several atomary terms is named a composite term. The 

concatenation of some components of a composite term (i.e. the result of linking the 

chains of components of the composite term) is called a subterm. Here t1, t2, .•. are terms 

in 

T= t1 + t: + ... 

The meaning of M(t) of the term tis defined as a restriction R(t; x) on the basis 

variable x conditioned by the fuzzy variable X: 

M(t) = R(t; x), 

It is assumed here that R(t; x) and, consequently, M(t) can be considered as a fuzzy 

subset of the set X named as t. 

The assignment equation in case of linguistic variable takes the form in which t­ 

term in Tare name generated by the grammar G, where the meaning assigned to the 

term tis expressed by the equality 

M(t)=R(term in T) 

In other words the meaning of the term t is found by the application of the 

semantic rule M to the value of term t assigned according to the right part of equation. 
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Moreover, it follows that M(t) is identical to the restriction associated with the 
I 

term t. 

It should be noted that the number of elements in T can be unlimited and then for 

both generating elements of the set T and for calculating their meaning, the application 

of the algorithm, not simply the procedure for watching term-set, is necessary. 

We will say that a linguistic variable u is structured if its term-set T and the 

function M, which maps each element from the term-set into its meaning, can be given 

by means of algorithm. Then both syntactic and semantic rules connected with the 

structured linguistic variable can be considered algorithmic procedures for generating 

elements of the set T and calculating the meaning of each term in T, respectively. 

However in practice we often encounter term-sets consisting of a small number of 

terms. This makes it easier to list the elements of term-set T and establishes a direct 

• 

mapping from each element to its meaning. 

2.5 Rule Base 
The mapping of the inputs to · the outputs for a fuzzy system is in part 

characterized by a set of condition ~ action rules, or in modus ponens (If-Then) form, 

If premise Then consequent (2.1) 

Usually, the inputs of the fuzzy systems are associated with the premise, and the 

outputs are associated with the consequence. These If-Then rules can be represented in 

many forms. Two standard forms, multi-input multi-output (MIMO) and multi-input 

single-output (MISO), are considered here. The MISO form of a linguistic rule is 

If ». is A/ and u2 is A; and, ..... , and u11 is A~ Then Yq is B; (2.2) 

It is an entire set of linguistic rules of this form that the expert specifies on how 

to control the system. Note that if u1 ="velocity error" and A(= "positive large", then 

"u1 is A(", a single term in the premise of the rule, means "velocity error is positive 

large". It can be easily shown that the MIMO form for a rule (i.e. one with consequents 

that have terms MISO rules using simple rules from logic. For instance, the MIMO rule 

with n inputs and m =2 outputs 
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. . 
If u1 is A/ and u2 is A; and, ..... , and u,, is A:, Then y1 is B( and y2 is B; 

Is linguistically (logically) equivalent to the two rules 

If u1 is A/ and u2 is A; and, ..... , and u,)s A:, Then y1 is B1' 

If u1 is A( and u2 is A; and, ..... , and u,, is A:, Then y2 is B; 
I 

This is the case since the logical "and" in the consequent of the MIMO rule is 

still represented in the two MISO rules since it still assert that the both the first "and" 

second rule are valid. For implementation, then two fuzzy systems should be specified, 

one with output y1 and the other with the output y2• The logical "and" in the 

consequent of the MIMO rule is still represented in the MISO case since by 

implementation two fuzzy systems asserting that the ones set of rules is true "and" 

another it true. 

Assume that there are a total of R rules in the rule base numbered 1,2, ..... ,R, and 

we naturally assume that the rules in the rule base are distinct (i.e. there are no two rules 

with exactly the same premises and consequent); however, this does not general need to 

be the case. For simplicity let use tuples to denote the i1h MISO rule of the form given 

m equation (2.2). any of the terms associated with any of the inputs for any MISO rule 

(j, k, .... ,l; p, q)I 

can be included or omitted. For instance, suppose a fuzzy system has two inputs and one 

output with u1 ="position", u2 ="velocity", and y1 ="force". Moreover, suppose each 

input is characterized by two linguistic values A} ="small" and A;2 ="large" for i= 1,2. 

suppose further that the output is characterized by two linguistic values B/ ="negative" 
and B12 ="positive". A valid If-Then rule could be 

If Position is large Then force is positive 

Even though it does not follow the format of a MISO rule given above. In this 

case, one premise term (linguistic variable) has been omitted from the If-Then rule. It is 

clearly seen that it is allows for the case where the expert does not use all the linguistic 

terms (and hence the fuzzy sets that characterize them) to state some rules. 
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Finally, note that if all premise terms are used in every rule and a rule is formed 
• for each possible combination of premise elements, then there are 

II 
f1N; =N1.N2. .... .NII 
i=I 

rules in the rule base. For example, if n=2 inputs and we have N;=l 1 membership 

functions on each universe of discourse, then there are 11 * 11 = 121 possible rules. 
Clearly, in this case the number of rules increases exponentially with an increase in the 

number of fuzzy controller inputs or membership functions. 

The rules may use several variables both in the premise and the consequent of 

the rules. The controllers can therefore be applied to both multi-input multi-output 

(MIMO) problems and single-input single-output (SISO) problems. The typical S 1 SO 

problem is to regulate a control signal based on an error signal. The controller may 

actually need both the error, the change in error, and the accumulated error as inputs, 

but we will call it single-loop control, because in principle all of the three are formed 

from the error measurement. To simplify, this section assumes that the control objective 

is to regulate some process output around a prescribed set-point or reference. The 

presentation is thus limited to single-loop control. 

2.5.1 Rule formats 

Basically a linguistic controller contains rules in the If-Then format, but they can 

be presented in different formats. In many systems, the rules are presented to the end­ 

user in a format similar to the one below, 

1. If error is Neg and change in error is Neg then output is NB 

2. If error is Neg and change in error is Zero then output is NM 

3. If error is Neg and change in error is Pos then output is Zero 

4. If error is Zero and change in error is Neg then output is NM 

5. If error is Zero and change in error is Zero then output is Zero 

6. If error is Zero and change in error is Pos then output is PM 

7. If error is Pos and change in error is Neg then output is Zero 

8. If error is Pos and change in error is Zero then output is PM 

9. If error is Pos and change in error is Pos then output is PB 
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The names Zero, Pos, Neg are labels of fuzzy sets as well as NB, NM, PB and PM 

(negative big, negative medium, positive big, and positive" medium respectively). The 

same set of rules could be presented in a relational format, a more compact 

representation. 

Consider Table 2.1, The top row is the heading, with the names of the variables. 

It is understood that the two leftmost· columns are inputs, the rightmost is the output, 

and each row represents a rule. This format is perhaps better suited for an experienced 

user who wants to get an overview of the rule base quickly. The relational format is 

certainly suited for storing in a relational database. It should be emphasized that the 

relational format implicitly assumes that the connective between the inputs is always 

logical AND - or logical OR for that matter as long as it is the same operation for all 

rules - and not a mixture of connectives. 

Table 2.1. Relation between input and output variables. 

Error Change:in Error Outvut111 
·• ••V 

Neg Pos Zero 

Neg Zero NM 

Neg Neg NB 

Zero Pos PM 

Zero Zero Zero 

Zero Neg NM 

Pos Pos PB 

Pos Zero PM 

Pos Neg Zero 

Incidentally, a fuzzy rule with an or combination of terms can be converted into 

an equivalent and combination of terms using laws of logic (DeMorgan's laws among 

others). A third format is the tabular linguistic format. 

Consider Table 2.2, this is even more compact. The input variables are laid out 

along the axes, and the output variable is inside the table. In case the table has an empty 

cell, it is an indication of a missing rule, and this format is useful for checking 

completeness. When the input variables are error and change in error, as they are here, 
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that format is also called a linguistic phase plane. in case there are n > 2 input variables 
involved, the table grows to an n-dimensional array; rather user-unfriendly. 

To accommodate several outputs, a nested arrangement is conceivable. A rule 

with several outputs could also be broken down into several rules with one output. 

Lastly, a graphical format which shows the fuzzy membership curves is also 

possible. This graphical user-interface can display the inference process better than the 

other formats, but takes more space on a monitor. 

Table 2.2. Complete description of relation between input and output variables. 

Change In Error 
Zero Neg Pos 

Neg NB NM Zero 

NM Zero PM 

Zero PM PB 

Error Zero 

Pos 

2.5.2 Connectives 

In mathematics, sentences are connected with the words and, or, if- then ( or 

implies), and if and only if, or modifications with the word not. These five are called 

connectives. It also makes a difference how the connectives are implemented. The most 

prominent is probably multiplication for fuzzy and instead of minimum. So far most of 

the examples have only contained and operations, but a rule like "If error is very Neg 

and not Zero or change in error is Zero then ... '' is also possible. 

The connectives "and" and "or" are always defined in pairs, for example, 

a andb = min (a. b) rmrumum 

a orb= max (a. b) maximum 

or 

a andb= a* b 

a or b = a + b - a * b 
algebraic product 

algebraic or probabilistic sum 

There are other examples ( e.g., Zimmermann. 1991, 31 32), but they are more complex. 
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2.5.3 Modifiers 

A linguistic modjfier, is an operation that modifies ·the meaning of a term. For 

example, in the sentence "very close to O". the word very modifies Close to O which is a 

fuzzy set. A modifier is thus an operation on a fuzzy set. The modifier very can be 

defined as squaring the subsequent membership function, that is 

very a= a2 

Some examples of other modifiers are 

extremely a = a3 
slightly a =a113 

somewhat a= moreorlessa and not slightly a 

A whole family of modifiers is generated by cl where p is any power between zero and 

(2.3) 

infinity With p = oo the modifier could be named exactly, because it would suppress all 

memberships lower than 1.0. 

2.5.4 Universes 

Elements of a fuzzy set are taken from a universe old discourse (aorist universe). 

The universe contains all elements that can come into consideration. Before designing 

the membership functions it is necessary to consider the universes for the inputs and . 

outputs. Take for example the rule 

If error is Neg and change in error is Pos then output is Z 

Naturally, the membership functions for Neg and Pas must be defined for all possible 

values of error and change in error, and a standard universe may be convenient. 

Another consideration is whether the input membership functions should be 

continuous or discrete. A continuous membership function is defined on a continuous 

universe by means of parameters. A discrete membership function is defined in terms of 

a vector with a finite number of elements. In the latter case it is necessary to specify the 

range of the universe and the value at each point. The choice between fine and coarse 

resolution is a trade off between accuracy, speed and space demands. The quantiser 

takes time to execute, and if this time is too precious, continuous membership functions 

will make the quantiser absolute. 
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2.5.5 Membership Functions 

Every element in the universe of discourse is a member of a fuzzy set to some 

grade, maybe even zero. The grade of membership for all its members describes a fuzzy 

set, such as Neg. In fuzzy sets elements are assigned a grade of membership, such that 

the transition from membership to non-membership is gradual rather than abrupt. The 

set of elements that have a non-zero membership is called the support of the fuzzy set. 

The function that ties a number to each element x of the universe is called the 

membership function ( µ (x)). 

The designer is inevitably faced with the question of how to build the term sets. 

Then two specific questions should be considered: 

(i) How does one determine the shape of the sets? and (ii) How many sets are necessary 

and sufficient? For example, the error in the position controller uses the family of terms 

Neg, Zero, and Pos. According to fuzzy set theory the choice of the shape and width is 

subjective, but a few rules of thumb apply. 

A term set should be sufficiently wide to allow for noise in the measurement. 

A certain amount of overlap is desirable; otherwise the controller may run into 

poorly defined states, where it does not return a well defined output. 

A preliminary answer to questions (i) and (ii) is that the necessary and sufficient 

number of sets in a family depends on the width of the sets, and vice versa. A solution 

• 
• 

could be to ask the process operators to enter their personal preferences for the 

membership curves; but operators also find it difficult to settle on particular curves. 

Start with triangular sets. All membership functions for a particular input or 

output should be symmetrical triangles of the same width. The leftmost and the 

rightmost should be shouldered ramps. 

The overlap should be at least 50%. The widths should initially be chosen so 

that each value of the universe is a member of at least two sets, except possibly 

for elements at the extreme ends. If, on the other hand, there is a gap between 

two sets no rules fire for values in the gap. Consequently the controller function 

is not defined. 

Membership function can be flat on the top, piece-wise linear and triangle 

shaped, rectangular, or ramps with horizontal shoulders. 

Figure 2.3 shows some typical shapes of membership functions. 

• 

• 
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Figure 2.3. Examples of membership functions. Read from top to bottom, left to right: (a) s­ 
function, (b) n-function, (c)'z-function, (d-f) triangular versions, (g-i) trapezoidal versions, 

U) flat n- function. (k) rectangle. (I) singleton. 

Strictly speaking, a fuzzy set A is a collection of ordered pairs 

A={(x, µ (x))} (2.4) 

Item x belongs to the universe and µ(x) is its grade of membership in A. A single pair 

(x, µ(x)) is a fuzzy singleton; singleton output means replacing the fuzzy sets in the 

conclusion by numbers (scalars). For example 

1. If error is Pos then output is 10 volts 

2. If error is Zero then output is O volts 

3. If error is Neg then output is -10 volts 

There are at least three advantages to this: 

• The computations are simpler; 

• It ls possible to drive the control signal to its extreme values; and 
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• It may actually be a more intuitive way to write rules. 

The scalar can be a fuzzy set with the singleton placed in a proper position. For 

example 10 volts, would be equivalent to the fuzzy set (0,0,0,0, 1) defined on the 

universe (-10,-5,0,5,10) volts. 

Fuzzy controllers use a variety of membership functions. Membership function 

for the triangle form is calculated as 

x-x - - 
1---,x-a:s;x:s;x 

a 
x-x - - 

µ (x) = ~ 1- -- , X :s; X :s; X + /J 
/J 

(2.5) 

0, in other case 

A common example of a function that produces a bell curve is based on the exponential 

function, 

µ ( X) = exp [ - ( X - X O ) 
2 l 

2 O' 2 
(2.6) 

This is a standard Gaussian curve with a maximum value of 1, x is the independent 

variable on the universe, x is the position of the peak relative to the universe, and a is 

the standard deviation. Another definition which does not use the exponential is 

(2.7) 

The FL Smidth controller uses the equation 

(2.8) 
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The extra parameter a controls the gradient of the sloping sides. It is also 

possible to use other functions, for example the sigmoid known from neural networks. 

A cosine function can be used to generate a variety of membership functions. 

The s-curve can be implemented as 

0 X-< X1 

s(xi,x,.,x) = ~ 1 1 ( x-x,: X1 ~ X ~ X,. >- (2.9) -+-cos 
2 2 x, - x, 

1 X >- X,. 

where x, is the left breakpoint, and x., is the right breakpoint. The z-curve is just a 

reflection, 

1 X-< X1 

z(x" x,., x) =-<( 1 1 ( x-x J )> -+-cos 1 * 1r X1 ~ X ~ X,. (2.10) 
2 2 x, -x, 

0 X >- X,. 

Then the n-curve can be implemented as a combination of the s-curve and the z-curve, 

such that the peak is fiat over the interval [x2, x3] 

(2.11) 

2.6 Inference Mechanism 

The inference mechanism has two basic tasks: 

I. Determining the extent to which each rule is relevant to the current situation as 

characterized by the inputs u, i = 1, 2, ... , n (this task called "matching"); 

II. Drawing conclusions using the current inputs u; and the information in the rule­ 

base (we call this task an "inference step"). 
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For matching note that A1j x A/ x ... x A01 is the fuzzy set representing the 

premise of the i1h rule (j, k, ... , l; p, q); (there may be morethan one such rule with this 

premise). 

Suppose that at some time we get inputs u, i = 1, 2, ... , n, and fuzzification 

produces 

A fuz A fuz A fuz 
l ' 2 ''"'"'"' II 

the fuzzy sets representing the inputs. There are then two basic steps to matching. 

Step 1: Combine Inputs with Rule Premises: The first step in matching involves finding 

fuzzy sets A(, A;, ... , A,~, with membership functions 

µ A( (u1) =µA/ (u1) * µ A(" (u1) 

µ A; ( U2) = µ A; ( U2) * µ A:,Z ( U2) 

(for all j, k, ... , 1) that combine the fuzzy sets from fuzzification with the fuzzy sets 

used in each of the terms in the premises of the rules. If singleton fuzzification is used, 

then each of these fuzzy sets is a singleton that is scaled by the premise membership 

function ( e.g. µ A('z ( u1 )= µ A/ ( u1)) That is, with singleton fuzzification we have 

µ A('z = 1, for all i = 1, 2, ... , n for the given u, inputs so that 

µ A('z (u1) =µA( (u1) 

µ Af'z ( U2) = µ A; ( U2) 

A fi,z ( ) _ A; ( ) µ 11 U,, - µ II UII 
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We see that when singleton fuzzification is used, combining the fuzzy sets that 

were created by the fuzzification process to represent the inputs with the premise 

membership functions for the rules is particularly simple. It simply reduces to 

computing the membership values of the input fuzzy sets for the given 

inputs u1, u2, ••• , u11• 

Step 2: Determine Which Rules Are On: In the second step, we form membership 

values A ( u1, u2, ••• , u11) for the ;th rule's premise that represent the certainty that each 

rule premise holds for the given inputs. Define 

which is simply a function of the inputs u; 

We use to represent the certainty that the premise of rule (i) matches the input 

information when we use singleton fuzzification. This A ( u1, u2, ••• , u11) is simply a 

multidimensional certainty surface. It represents the certainty of a premise of a rule and 

thereby represents the degree to which a particular rule holds for a given set of inputs. 

Finally, we would remark that sometimes an additional "rule certainty" is 

multiplied by A . Such a certainty could represent our a priori confidence in each rule's 

applicability and would normally be a number between zero and one. If for rule (i) its 

certainty is (0.1), we are not very confident in the knowledge that it represents; while if 

for some rule (i) we let its certainty be (0.99), we are quite certain that the knowledge it 

represents is true. 

This concludes the process of matching input information with the premises of 

the rules. 

There are two standard alternatives to performing the inference step, one that 

involves the use of implied fuzzy set and the other that uses the overall implied fuzzy 

set. 

Alternative 1: Determine Implied Fuzzy Sets: Next, the inference step is taken by 

computing, for the i" rule (i, k, ... , l; p,q)i , the "implied fuzzy set" Bq with 

membership function 

(2.12) 
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The implied fuzzy set ( µB~ ) specifies the certainty level that the output should be a 
• 

specific crisp output Yq within the universe of discourse yq, taking into consideration 

only rule (i). Note that since µ;( Up u2, ... , un) will vary with time, so will the shape 

of the membership functions µB; (y q) for each rule. 
Alternative 2: Determine the Overall Implied Fuzzy Set: Alternatively, the inference 

mechanism could, in addition, compute the "overall implied fuzzy set" Bq with 

membership function 

(2.13) 

that represents the conclusion reached considering all the rules in the rule-base at the 

same time (notice that determining Bq can, in general, require significant computational 

resources). 

Instead, COG or centeraverage defuzzification method performed the 

aggregation of the conclusions of all the rules that are represented by the implied fuzzy 

sets. 

Using the mathematical terminology of fuzzy sets, the computation of µBq (yq) 

is said to be produced by a "sup-star compositional rule of inference". The "sup" in this 

terminology corresponds to the EB operation, and the "star" corresponds to *. "Zadeh's 
compositional rule of inference" is the special case of the sup-star compositional rule of 

inference when maximum is used for EB and minimum is used for (*). The overall 

justification for using the above operations to represent the inference step lies in the fact 

that we can be no more certain about our conclusions than we are about our premises. 

The operations performed in taking an inference step added here to this 

principle. To see this, we should study equation (2.5) and note that the scaling from 

µ;( up u2 , ... , un) that is produced by the premise matching process will always ensure 

that supyq { µB q (y q)} ::; A ( u,, u2 , ... , u 
11 

). The fact that we are no more certain of 

our consequents than our premises is shows that the heights of the implied fuzzy sets are 

always less than the certainty values for all the premise terms. 
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2. 7 Defuzzification 
• 

The resulting fuzzy set must be converted to a number that can be sent to the 

process as a control signal. This operation is called defuzzification. The resulting fuzzy 

set is thus defuzzified into a crisp control signal. There are several defuzzification 

methods. 

2.7.1 Centre Of Gravity (COG) 

The crisp output value u is the abscissa under the centre of gravity of the fuzzy 

set, 

(2.14) 

Here X; is a running point in a discrete universe, and µ(x;) is its membership value in 

the membership function. The expression can be interpreted as the weighted average of 

the elements in the support set. For the continuous case, replace the summations by 

integrals. It is a much used method although its computational complexity is relatively 

high. This method is also called centroid of area. 

2.7.2 Center Of Gravity Method for Singletons (COGS) 

If the membership functions of the conclusions are singletons (Figure 2.4), the 

output value is 

GUS) 

Here s; is the position of singleton i in the universe: and µ(s;) is equal to the firing 

strength a; of rule i. This method has a relatively good computational complexity and u 

is differentiable with respect to the singletons s;, which is useful in neuro-fuzzy 

systems. 
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2.7.3 Bisector Of Area (BOA) 

This method picks the abscissa of the vertical line that divides the area under the 

curve in two equal halves. In the continuous case, 

(2.16) 

Here xis the running point in the universe, µ(x) is its membership. 

Min is the leftmost value of the universe, and Max is the rightmost value. Its 

computational complexity is relatively high, and it can be ambiguous. For example, if 

the fuzzy set consists of two singletons any point between the two would divide the area 

in two halves; consequently it is safer to say that in the discrete case, BOA is not 

defined. 

2.7.4 Center Of Average 

A crisp output Ytsp is chosen using the centers of each of the output 

membership functions and the maximum certainty of each of the conclusions 

represented with the implied fuzzy sets, and is given by 

"R . yiri,p = L.ii=I b? sup yq {µ B~ (y q)} 

I:1 supyq {µ B~ (yq)} 

where "sup" denotes the "supermum" (i.e., the least upper bound which can often be 

thought of as maximum value). Hence, supx {µ(x)} can be simply thought as the highest 

value of µ(x). 

2.7.5 Max Criterion 

A crisp output yi·risp is chosen as the point on the output universe of discourse 

yq for which the overall implied fuzzy set Bq achieves a maximum-that is, 

y irisp E {arg sup {µB q (y q) }} 
Yq 
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• Here, "arg sup x {µ(x)}" returns the value of x that results in the supermum of the 

function µ( x) being achieved. For example, suppose that µoverall ( u) denotes the 

membership function for the overall implied fuzzy set that is obtained by taking the 

maximum of the certainty values of µ(1) and µ(2) over all u . 

2.7.6 Mean Of Maxima (MOM) 

An intuitive approach is to choose the point with the strongest possibility i.e. 

maximal membership. It may happen, though, that several such points exist, and a 

common practice is to take the mean of maxima (MOM). This method disregards the 

shape of the fuzzy set, but the computational complexity is relatively good. 

2.7.7 Leftmost (LM), and Rightmost Maxima (RM) 

Another possibility is to choose Leftmost Maxima (LM), or Rightmost Maxima 

(RM). In the case of the robot, for instance, it must choose between left and right to 

avoid an obstacle in front of it. 

0-.5 
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Figure 2.4. One input, one output rule base with non-singleton output sets. 
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The defuzzifier must then choose one or the other, not something in between . 
• These methods are indifferent to, the shape of the fuzzy set, but the computational 

complexity is relatively small. 

2.8 Mamdani-Type Fuzzy Processing 
Mamdani[ 19] proposed to control the plant by realizing some fuzzy rules or 

fuzzy conditional statements, for example: 

If pressure error (PE) is Negative Big (NB) 

Then heat change (HC) is Positive Big (PB) 

So the outputs of a plant can easily be measured and control action can be 

calculated according to this rules Table. 

The pressure error is the difference between the current value of the pressure and 

the set point. And the speed error (SE) is again the difference between the current speed 

and the set point. 

A set point is usually a desired value for the plant output: the values which some 

measured parameters of the process or the object should have at a particular time. 

Generally, Mamdani proposed a modification. In order to improve the control 

quality, he increased the number of control inputs and used the change in pressure error 

(CPE), defined as the difference between the present PE and the last one (corresponding 

to a last sampling instant), and the change in speed error (CSE) as well. 

Mamdani obviously improves the control quality, because it provides a 

controller with some degree of prediction. For example, if PE is Negative Big and CBE 

is also Negative Big, it means that at the next moment PE will become even more 

Negative Big and HC should obviously be Positive Big. But if PE is Negative Big and 

CPE is Positive Big, it means that at the next moment PE will become Negative Smaller 

and we think about how to choose PE. This condition increases the sensitivity of the 

controller. 

Mamdani realized his controller on the PDP-8 computer. It contained 24 rules. A 

fixed digital controller was also implemented on the computer and applied to the same 

plant for a comparison. For the fixed controller, many runs were required to tune the 

controller for the best performance. This tuning was done by trial-and-error process. 
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The quality of the fuzzy controller was found to be better than the best result of the 

fixed controller each time, so opening a new era in a controller design. 

Mamdani used fuzzy theory to calculate the output according to the rules set and 

gained a solid theoretical base. It means that we can use this result to construct other 

fuzzy controllers. Some of these controllers, illustrating different possible applications, 

are given in Table 2.3 

To process these rules the process is called the inference mechanism or the 

inference engine. Let us write Mamdani rules in a general case. Mathematically a rule 

will look like 

IF 

Here x1, x2, •• x111 stand for input variables, for example, pressure, temperature, error, 

etc., Au(xJ)(j = 1,2, .... m) is a fuzzy set on Xi, Y is an output variable, Bi is a fuzzy set on 

Y. 

So in the rule: 

if pressure error (PE) is Negative Big (NB) then heat change (HC) is Positive Big (PB) 
pressure error is X1 heat change is Y, Ail (x1) is Negative Big, and B; is Positive Big. 

Table 2.3 Fuzzy controller applications designed using Mamdani logic. 

Date ' ,,,{ l!!Aipplicatiop ii ' Designers 
'M ,,,, ,,,, 0 ,ill "' 

1975 Laboratory steam engine Mamdani and Assilian 

1976 Warm water plant Kikert and Van N auta Lemke 

1977 Ship course control Van Amerongen 

1978 Rolling steel mill Tong 

1979 Iron ore sinter plant Rutherford 

1980 Cement kiln control Umbers and king 

1985 Aircraft landing control Larkin 

1989 Autonomous guided vehicle Harris et al. 

1991 Ship yaw control Sutton and Jess 
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2.9 Sugeno-Type Fuzzy Processing 
• 

We have considered how fuzzy processing was realized by Mamdani, and the 

method is called after him. Another method was proposed by Sugeno, who changed a 

part of the rules. In his method, the consequence part is just a mathematical function of 

the input variables. The format of the method is: 

You see that the antecedent part is similar to the Mamdani method. The function fin a 

consequence is usually a simple mathematical function, linear or quadratic: 

The antecedent part in this case is processed in exactly the same way as the 

Mamdani method, and then an obtained degree of applicability is assigned to the value 

of Y calculated as the function of real inputs. 

Let us again consider the rule: 

If pressure is NegBig and temperature is High then time is Short 

But now replace it with: 

If pressure is NegBig and temperature is High then time is 0. 3 x pressure + 0. 5 x 

temperature. 

Suppose 0.3 and 0.5 are factors expressing how the necessary time depends on 

pressure and temperature. Then again for crisp inputs of -22kPa for a. pressure error and 

22 ° C for temperature we calculate the applicability degree of the rule, which is 0.6. 

Now we calculate the value for Y as a real function of crisp inputs. The result is 0.3 x (- 

22) + 0.5 x 22 = 4.4. And the membership degree obtained earlier is assigned to this 

result. So the output of the inference process will be (4-4, 0.6) where 4.4 is a real result 

and 0.6 is its membership degree. This is the result of the application of one rule. The 

final result will be obtained after applying all the rules. Then one will have a fuzzy set 

as a result. Once again if any element of the universe has two or more different 
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membership degrees as a result of different rules processing, one can choose the 

maximum value or apply another s -norm calculation method. 

Finally there are some questions presenting, which method is the best? When to 

apply a Mamdani or Sugeno controller? 

Mamdani fuzzy controller ( each rule output is described by a membership 

function) is good for capturing the expertise of a human operator. But it is awkward to 

design if you have the plant model but don't have a working controller (for instance, a 

human operator). Sugeno fuzzy controller (each rule's output is linear equation) is good 

for embedding linear controller and continuous switching between these output 

equations. 

This becomes very effective when the plant model is known. Also an adaptive 

capability and mathematical tractability make this type of fuzzy controller a primary 

choice for nonlinear and/or adaptive control design that is subject to rigorous analysis. 

To summarize our discussion about fuzzy inference, we should say that 

procedure can be roughly divided into three steps: 

• Calculation of the degree of applicability of the antecedent ( condition) part of 

each control rule. 

• Calculation of the inference result (solution fuzzy set) for each control rule. 

• Synthesis of the solution set for each control rule into the fuzzy output set. 

2.10 Summary 

The fuzzy controller operations can be divided into three processes: 

• Fuzzification: converts the crisp actual inputs into a fuzzy set that can be use by 

the inference mechanism. 

• Fuzzy Processing: processing fuzzy inputs according to the rules set and 

producing fuzzy output. 

• Defuzzification: producing a crisp real value for fuzzy output. 

The necessity to sacrifice the precision and determinate is dictated also by the 

appearance of some classes of control problems that are connected with decision­ 

making by operator in the "man-computer" interface. Implementation of the dialog in 

such interface is impossible without application of languages close to natural ones and 
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capable of describing fuzzy categories near to human notions and imaginations. In this 

connection, it is valuable to use the notion of linguistic variable first introduced by 

L.Zadeh[5]. Such linguistic variables allow an adequate reflection of approximate in­ 

word descriptions of objects and phenomena in the case if there is no any precise 

deterministic description. It should note as well that many fuzzy categories described 

linguistically even appear to be more informative than precise descriptions. 

Rules in the rule base can be formed in different formats: 

• If-Then Format: a set of condition-» action rules. 

• Relational Format: this format is perhaps better for an experienced user who 

wants to get an overview of the rule base quickly. 

• Tabular Linguistic Format: the input variable are laid out along the axes, and the 

output variable is inside the table. 

• Graphical Format: the graphical user-interface can display the inference process 

better than other formats, but takes more space on a monitor. 

In chapter Three the development of PD, PI and PID-Like fuzzy controllers are 

described. 
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CHAPTER THR££ 
• 

DEVELOPMENT OF FUZZY CONTROLLERS 

3.1 Overview 
Fuzzy systems provide a rich and meaningful addition to standard logic. In the 

fuzzy control design methodology, we are concerned to write down a set of rules on 

how to control the process, then we incorporate these rules into fuzzy controller that 

emulates the decision-making process. These rules are taken from a linguistic tables of 

the PD, PI and PID-like fuzzy controllers. In fact, there are slight changes between these 

tables, that means even small deviation errors will be lowed by large control signals. 

However, usually it is needed to make the control surface smoother in the vicinity of a 

set-point. 

Generally a controller is made to be less reactive to the large errors, In this case 

the solution is to modify the top and the bottom rows. It means that to make significant 

modifications, it is best to make changes to the regions than to change an individual 

cells. 

In this chapter the development of PD, PI and PID-Like fuzzy controllers are 

described. 

3.2 Development of PD-Like Fuzzy Controller 
The equation giving a conventional PD-controller is 

u(k) = KP *e(t)+KD * ~e(t), (3.1) 

Where Kp and Ko are the proportional and the differential gain factors. The 

structure of Fuzzy PD-Like controller is given in Figure 1.2. 

To describe this equation with the help of rules, what inputs and outputs should 

be used for this rules table. The PD controller for any pair of the values of error ( e) and 

change-of-error (Ae) calculate the control signal (u). The fuzzy controller should do the 

same thing. For any pair of error and change-of-error, it should work out the control 

signal. Then a PD-like fuzzy controller consists if rules, and a symbolic description of 

each are given as: 

If e(t) is <property symbol> and Aett) is <property symbol> then u(t) is 
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<property symbol>, 

Where <property symbol> is the symbolic name of a·linguistic value. 

The natural language equivalent of the above symbolic description reads as 

follows. For each sampling time (t): 

If the value of error is <linguistic value> and the value of change-of 

error is< linguistic value > then the value of control output is < linguistic value >. 

Consider the explicit reference to sampling time (t) is being omitted, since such 

a rule expresses a casual relationship between the process state and control output 

variables, which holds for any sampling time (t). 

This is one of the linguistic qualifiers, determine for the proper variable: error, 

change-of-error or control signal, for example: high, low, medium, etc. 

So, it is needed to have membership functions, describing all these qualifiers for 

all our variables: error, change-of-error or control. 

Definitely, these variables might be measured in different units. So the rules 

when the PD controller used can be like: 

If error is positive big and change-of-error is negative big then control is 

negative small. 

It is needed to describe an error signal. Because the actual process output (y) can 

be higher than the desired one as well as lower, the error can be negative as well as 

positive. Values of error ( e) with a negative sign mean that the current process output 

y(t) has a value below that set-point CYsp) since [ e(t) = Ysp - y(t) < O]. A negative value 

describes the magnitude of the difference CYsp -y). On the other hand, linguistic value of 

(e) with a positive sign means that the current value of (y) is above the set-point. The 

magnitude of such a positive value is the magnitude of the difference CYsp -y). 

The change-of-error (l\e) with a negative sign means that the current process 

output y(t) has increased when compared with its previous value y(t-1 ), since 

Aett) = e(t) - e(t-1) = -y(t) + y(t-1) <O. 
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The magnitude of this negative value given by the magnitude of this increase. 

Linguistic value of ~e(t) with a positive sign means that y(t) has decreased its value 

when compared to y(t-1). The magnitude of this value is the magnitude of the decrease. 

A linguistic values of e with a negative sign mean that the current process output 

y has a value below the set-point Ysp since e(t) = Ysp - y(t) < 0. The magnitude of a 

negative value describes the magnitude of the difference y,p - y . On the other hand, 

linguistic values of e with a positive sign mean that the current value of y is above the 

set-point. The magnitude of such a positive value is the magnitude of the difference 

Ysp - Y · 

A Linguistic value of (L1e) with a negative sign mean that the current process 

output y(t) has increased when compared with its previous value y(t-1) since 

~e(t) = -(y(t)- y(t -1)) < 0. The magnitude of such a negative value is given by the 

magnitude of this increase. A Linguistic value of L1e(t) with a positive sign means that 

y(t) has decreased its value when compared to y(t-1). The magnitude of such a value is 

the magnitude of the decrease. 

A linguistic value of 'zero' for e means that the current process output is about 

the set-point. A 'zero' for ~e means that the current process output has not changed 

significantly from its previous value i.e. -(y(t)-y(t-1))=0). The sign and the magnitude 

for u constitute the value of the control signal. 

The Table (3 .1) is suitable when we have two inputs and one output. On the 

topside of the table it should be written the possible linguistic values for the change-of­ 

error ~e and on the left side the error e. 

The cell of the table at the intersection of the row and the column will contain 

the linguistic value for the output corresponding to the value of the first input written as 

the beginning of the row and the value of the second input written on the top of the 

column. 

Let us consider the example where both inputs and an output have a set of 

possible linguistic values {NB, NM, NS, Z, PS, PM, PB} where NB stands for Negative 

Big, NM stands for Negative Medium, NS stands for Negative Small, Z stands for Zero, 

PS strands for Positive Small, PM stands for Positive Medium and PB stands for 

Positive Big. The cell defined by the intersection of the first row and the first column 

represents a rule such as: 
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if e(t) is NB and Aeit) is NB then u(t) is NB. 

Table 3.1. PD-Like fuzzy controller linguistic rules. 

e 
NS NM NB 

NM NS z 
PM 

z 
NS z PS 

z PS 

NS 

NM 

NB 

Gr. 0 I Gr. I 

The table includes 49 rules. It is taking into account now not just the error but 

the change-of-error as well. It allows describing the dynamic of the controller. 

To explain how this rules set works and how to choose the rules, let us divide 

the set of all rules into" the following five groups: 

Group 0: in this group of rules both (e) and (~e) are (positive or negative) small or 

zero. This means that the current value of the process output variable (y) has divided 

from the desired level (the set-point) but is still close to it. Because of this closeness the 

control signal should be zero or small in magnitude and is intended to correct small 

deviation from the set-point. Therefore, the rules in this group are related to the steady­ 

state behavior of the process. The change-of-error, when it is negative small or positive 

small, shifts the output to negative or positive region, because in this case, for example, 

when e(t) and ~e(t) are both negative small the error is already negative and, due to the 

negative change-of-error, tends to become more negative. To prevent this trend, one 

needs to increase the magnitude of the control output. 

Group 1: for this group of rules e(t) is positive big or medium which implies thaty(t) is 

significantly above the set-point. At the same time since ~e(t) is negative, this means 

that (y) is moving towards the set-point. The control signal is intended to either speed 
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up or slow down the approach to the set-point. For example, if y(t) is much below the 

set-point (e(t) is positive big) and it's moving toward the set~point with small step (L1e(t) 

is negative small) then the magnitude of this step has to be significantly increased (u(t) 

is negative medium). However, when y(t) is still much below the set-point (e(t) is 

positive big) but it is moving towards the set-point very fast (L1e(t) is negative big) no 

control action can be recommended because the error will be compensated due to the 

current trend. 

Group 2: for this group of rules y(t) is either close to the set-point( e(t) is positive small, 

zero, negative small) or significantly above it (negative medium, negative big). 

At the same time, since i'.1e(t) is negative, y(t) is moving away from the set-point. The 

control here is intended to reverse this trend and make y(t), instead of moving away 

from the set-point, start moving toward it. So here the main reason for the control action 

choice is not just the current error but also the trend in its change. 

Group 3: for this group of rules e(t) is negative medium or big, which means that y(t) is 

significantly below the set-point. At the same time, since i'.1e(t) is positive, y(t) is 

moving towards the set-point. The control is intended to either speed up or slow down 

the approach to the set-point. For example, if y(t) is much above the set-point (e(t) is 

negative big) and its moving towards the set-point with a some what large step (L1e(t) is 

positive medium), then the magnitude of this step has to be only slightly enlarged (u(t) 

is negative small). 

Group 4: the situation here is similar to the group (2) in some sense. For this group of 

rules e(t) is either close to the set-point (positive small, zero, negative small) or 

significantly above it (positive medium, positive big). At the same time since (L1e) is 

positive y(t) is moving away from the set-point. This control signal is intended to 

reverse this trend and make y(t) instead of moving away from the set-point start moving 

towards it. 

So, to design a PD-like controller it is needed just to create a rules table like Table ( 4.1 ). 

The contents of the table can be different. For example, we may replace the rule: 

If e is PS and L1e is PM then u is NB 

With the rule: 

If e is PS and L1e is PM then u is NM 
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3.3 Development of PI-Like Fuzzy Controller 

The equation given a conventional PI-controller is 
• 

u(k)=KP*e(t)+K1* fe(t)dt (3.2) 

Where Kr and K1 are the proportional and the integral gain coefficients. A block 

diagram for a fuzzy control system is given in Figure 1.3. 

It seems in this diagram to have a different form from the previous one. 

Differentiation with integration and a change-of-error with an integral error are 

replaced. Now the fuzzy controller and the rule table have other inputs. It means that the 

rules themselves should be reformulated. Sometimes it is difficult to formulate rules 

depending on an integral error, because it may have the very wide universe of discourse. 

Move the integration from the part proceeding to a fuzzy controller to the part 

following it. It may have the error and the change of error inputs and still realize the PI­ 

control. 

When the derivative, with respect to time, of the equation (3.2) is taken, it is 

transformed into an equivalent expression 

du(t)/ dt =KP* de(t)/ dt + K1 * e(t) 

Or in the discrete form: 

!iu(t) =KP * !ie(t) + K1 * e(t) 

One can see here that one has the error and the change-of-error input and one needs just 

to integrate the output of a controller. One may consider the controller output not as a 

control signal, but as a change in the control signal. The gain factor K1 is used with the 

error input and K» with the change-of-error. 

The rule can be written as: 

If e is<property symbol> and ile is< property symbol >then ilu is< 

property symbol >. 
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In this case, to obtain the value of the control output variable u(t), the change - 

of-control output Llu(t) is added to u(t-1). It is necessary to stress here that this take 

place outside the PI-like fuzzy controller, and is not reflected in the rule themselves. 

Now let's compile the rules table for this type of a controller. 

The output is not a control signal but the change-of-control. 

error 
I "I/ "I 

0 
u 
T 

(') 
p 

0 u s T 
Delay M r+( ,--.inp) •.. , 0 - 
Figure 3.1. A block diagram of PI fuzzy control system. 

If e is Zand Lle is NS then Llu is PM 

And: 

If e is Zand Lle is PS then Llu is NM 

Table 3.2. Pl-Like fuzzy controller linguistic rules. 

~ 

"" 
,,,,. "" ,,, Ii '' ,;, -;;;, ' 

PB PM,,,,,>:: h PS, ir Zr NS NM NB 
ic< .,, r fo 

r\),l~>,L, NB NB NB NB NM NS z 
- 

/"·' ... :.:.:.:'.. c:c'C: 

PM NB NB NB NM NS z PS 
,, ' 

I> vPS NB NB NM NS z PS PM 

z NB NM NM z PM PM PB .,,., 
' ' 

NS NM NS z PS PM PB PB r 
,.,, 

NM NS z PS PM PB PB PB 
+ 

NB z PS PM PB PB PB PB 
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The correction will lead to the change of the control surface. The controller will 

become more reactive in the neighborhood of the set-point. It means that even small 

deviation errors will be lowed by larger control signals. It is difficult to say if it will 

become better in a general case. However, usually it is needed to make the control 

surface smoother in the vicinity of a set-point. 

Generally a controller is made to be less reactive to the large errors, In this case 

the solution is to modify the top and the bottom rows. 

In the case that the left bottom comer is changed to PS, for example there will be 

a gap between two adjacent cells. So when (e) changed a little bit from PM to PB, the 

output will jump from NS to PS. Generally, these gaps should be avoided and perform a 

smooth transformation between adjacent cells. 

It means that to make significant modifications, it is best to make changes to the 

regions than to changes in individual cells (see Table 3.3). 

Table 3.3. PI-Like fuzzy controller linguistic rules (after some modifications) . 

~ 

... 
g .. PM, PS z NS NM'1 NB "'"' .. , 

> .i( 

PB NB NB NB NM NS z z ., ,, 

! PM NB NB NB NM NS z PS 

"······ 
PS NB NB NM NS z PS PM 

z NB NM NS z PS PM PB 
' 
NS NM NS z PS PM PB PB 

NM NS z PS PM PB PB PB 

NB z z PS PM PB PB PB 
... 
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3.4 Development of PID-Like Fuzzy Controller • 

The equation for conventional PID-controller is as follows: 

rete case of a PID-like fuzzy controller one as an additional process 

ely sum-of-errors, denoted 0e ~ au_d. c.cm:1. .. ~u.t~ci 'c...",: .. 

cre(t) = I e(i) , 
i=l 

The symbolic expression for a rule of a PID-like fuzzy controller is: 

If e is < property symbol > and L1 e is < property symbol > and oe is < property 

symbol > then u is < property symbol > 

The last one has three conditions in the antecedent part but the previous ones 

had just two. So it will need to formulate many more rules to describe the PID­ 

controller. 

If any input is described with seven linguistic values, as it was before, then 

because the PID-controller has three inputs and any rule has three conditions, it will 

need [7*7*7=343] rules. Previously it had just [7*7=49] rules. 

It is too much work to write [343] rules. The PID-like fuzzy controller can be 

constructed as a parallel structure of a PD-like fuzzy controller and a PI-like fuzzy 

controller with the output approximated as: 

u = (Kp I 2 * e + Kd * de/dt) + (Kp I 2 * e +Ki " fedt). 
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Figure 3.2. The structure for PID-like fuzzy controller. 

When information about the object or process under control and its structure is 

available, one may not want to be confined to using error, change of error, and sum of 

errors as process state variables, but rather use the actual process state variables. The 

symbolic expression for a rule in the case of multiple inputs and a signal output (MISO) 

system is as follows: 

If X1 is < property symbol > and ... and Xn is < property symbol > then u is < 

property symbol>, 

The fuzzy controller has been designed to control the turbine speed and pressure. 

The block diagram of fuzzy control system for a turbine speed control is given in 

Figure 3.3. 

Input 
load 

Actuator Delay 11t Turbine 

PIO-like I Control I Fuzzy 
Controller 

Figure 3.3. The block diagram of fuzzy controller system for a turbine speed control. 
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All blocks on this Figure demonstrate a nonlinear behavior, which is the main 

reason for a fuzzy control application. The fuzzy controller'has been designed as PID­ 

like fuzzy controller. It has three inputs: the error (the difference between a set-point 

and an actual output), the change of error, and the integral-error, and one output. To 

fuzzy the inputs, three classes are applied for each input with the membership function 

given in Figure 3.4.a. 

a) Input 

z 
N _____ t_ ___ p 

b) Output 

·L 0 L ·L 0 L 
Figure 3.4. Membership functions for the inputs and outputs. 

In order to defuzzify the output, seven classes are applied with the membership 

functions presented in Figure 3.4b. 

Because the fuzzy controller has three inputs, its rules table has a three­ 

dimensional image given in Figure 3.5. 

The best way to improve the performance of fuzzy controller is to increase the 

number of rules used. Whether they were fuzzy or classical didn't really matter, but the 

non -fuzzy rules were much easier to implement. 

Some types of servo operators are much simpler with standard rules ( e.g., if the 

sensor goes past this line, then actuate). 

The advantage of fuzzy logic for this case would be using fewer, simpler rules to 

handle all the cases reasonably. With fuzzy logic it needs to write three to six rules for 

size, motion, etc., and sum them. The rules follow more closely what a truck driver 

standing behind a truck does; instead of examining every item and plugging in every 

rule he or she knows about objects and decides that something is either 'a problem' or 

'can be ignored' or' Keep an eye on it' as the driver is guided backwards. 
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·L 0 L Integral error 

Figure 3.5. The rules table for the fuzzy controller. 

This allows them to ignore cats, birds, open lunch boxes, paper bags, ignore 

pedestrians who obviously see the truck and are moving at safe distance form it without 

having to make a special rule for each of them, thinks like drunks stumbling under the 

wheels, broken glass, other trucks or unaware pedestrians receive more attention 

because they fit into the class of 'problem item'. 

In one sense all measured inputs have some fuzziness even in classical control 

all have limits to precision. As a result no rule will be 'absolutely accurate', since the 

error terms, physical limitation (e.g., phase-shift and attenuation) and input noise will 

normally be a noticeable part of the input. Also filtering inevitably reduces the 

legitimate input, attenuating the original single. At the point, fuzzy logic simply 
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recognizes what have been doing all along and 'hard' rules are ignored: approximations 

onto the response that makes the useful outcome more likel/ 

3.5 Summary 

The PD controller for any pair of the values of error (e) and change-of-error (Ae) 

should calculate the control signal (u). The fuzzy controller should do the same thing. 

For any pair of error and change-of-error, it should work out the control signal. At the 

same time it is needed to have membership functions, describing all these qualifiers for 

all our variables: error, change-of-error or control. 

To design a PD, PI or PID-like controller it is very important to create a rules 

table that holds the linguistic description of all rules. 

In the PI-Like controller differentiation with integration and a change-of-error 

with an integral error are replaced. Now the fuzzy controller and the rule table have 

other inputs. It means that the rules themselves should be reformulated. Sometimes it is 

difficult to formulate rules depending on an integral error, because it may have the very 

wide universe of discourse. 

A PID-like fuzzy controller has three inputs: the error (the difference between a 

set-point and an actual output), the change of error, and the integral-error, and one 

output. To fuzzy the inputs, three classes should applied for each input with the 

different membership functions. 

In chapter four development of fuzzy controller for control temperature of a 

heater is described. The general steps to develop and implement a fuzzy controller are 

shown. 
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CHAPTER FOUR 
• 

DEVELOPMENT OF FUZZY CONTROLLER FOR CONTROL 
TEMPERATURE OF A HEATER 

4.1 Overview 

A heater control has been designed that uses a fuzzy controller to sense the 

temperature, compare it to the user-selected temperature and control heater current. The 

inexpensive, dedicated fuzzy logic device is an adaptive controller that prevents thermal 

instability, providing consistent performance under all conditions. 

This chapter describes all the steps of designing a fuzzy controller in general and 

a temperature of heater controller specifically. 

4.2 Description of The Process 

Household appliances that use heaters, such as ovens, rice cookers, toasters, 

should come quickly to the desired temperature and maintain it regardless of changes in 

conditions such as load or air-flow. Heating elements, because of thermal inertia, 

require a certain amount of time to change temperature. This between control and 

response causes the heater to overshoot and oscillate about the desired temperature. 

Once the temperature is achieved, varying environmental conditions often throw the 

heater back into oscillation. In addition, most heaters have poor temperature control due 

to the use of crude, on-off switches. The result is an inefficient and inconsistent 

operation. 

To overcome this drawback, many industrial and consumer products as diverse 

as industrial chambers, ovens, rice cookers, toasters and irons use heating elements that 

could benefit advantages and feature enhancements of fuzzy logic control. A heater 

control has been designed that uses a fuzzy controller to sense the temperature, compare 

it to the user-selected temperature and control heater current. The inexpensive, 

dedicated fuzzy logic device is an adaptive controller that prevents thermal instability, 

providing consistent performance under all conditions. 

We will describe both the fuzzy logic rules and design for the heater control. 

Most appliance heaters are controlled by bimetallic strips or capillary tubes that expand 

with heat and switch the heater on or off. These crude mechanical controllers merely 

react to temperature fluctuations and cannot anticipate when the heater is approaching 

the selected temperature. When the element passes through the operating point, the 
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uaRtt.R'< 
switch opens, cutting power to the heater. But by this time, the heater has ouj.h 

0~ 
energy to carry the system temperature far above the selected range and it takes a w · i - LEf~ 

for it to return. 

The switch stays open until the heater cools to the correct temperature. At that 

point the switch closes, but some time is required before the heater can again provide 

sufficient heat and the system cools well below the correct temperature. The overshoot 

and undershoot process can continue for minutes or hours. A change in the selected 

temperature or in environment (such as changing air conditions in a heating system or 

opening an oven door) may cause the heater to go into oscillation again. 

Heaters have widely varying characteristics. They are specified in terms of their 

form including length, shape, thickness and material composition. Heating elements 

may add instability to a system because of their slow response time and thermal inertia. 

The heater specifications are based on the requirements of the end product. The 

end product also has a range of thermal characteristics that influence the behavior of the 

heater: Many variables of heating systems make the design of a controller for different 

systems a difficult task. A control system using a fuzzy controller brings the 

temperature of the heater to the selected temperature quickly and keeps it there 

regardless of any changes in the load or environment. This results is a more stable and 

reliable operating temperature. 

There are three external inputs monitored by the controller. The first comes from 

a thermistor to monitor the temperature. The second is the user-selected, desired 

temperature setting. Input three is, again, the measured thermistor value signal only 

delayed by a small amount of time. This last input enables the controller to know the 

direction and magnitude of the temperature change in addition to the absolute 

temperature. The controller samples the input data, processes it and outputs a pulse 

width modulated (PWM) output signal that switches a triac controlling the current 

through the heater. 

4.3 Rule Base Formulation 

Using knowledge of experts the fuzzy IF-THEN rules for controller are 

generated. The Table 4.1 will represent abstract knowledge of human-expert to control 

the temperature of the heater. 
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The main part of any fuzzy controller is implemented as a set of rules. It 
• performs the control algorithm. By studying the rules, one can see the criteria for taking 

actions such as switching the heater on or off. These rules make decisions based on 

adjustable membership function definitions. The rules are easily modified to respond to 

different criteria. The following describes the rule's purposes in relation to the inputs, 

their associated fuzzy variables, and the action taken when a rule is fired. 

Table 4.1. Expert knowledge for controlling the temperature of a heater. 

~ 

w PM ;:,r 
i' 

PB PS cj; z NS NM .. NB 
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Here NB is Negative Big, NM is Negative Medium, NS is Negative Small, N is Normal, 

PS is Positive Small, PM is Positive Medium, PB is Positive Big. 

Using Table 4.1 we can form IF-THEN rules. In Figure 4.2 fragment of rule base is 

given, 

1. If e = Z and e' = Z Then U = Z. 
2. If e = NL and e' = Z Then U = PB. 
3. If e = PL and e' = Z Then U = NB. 
4. If e = NM and e' = PB Then U = NS. 
5. If e = NM and e' = PS Then U = NS. 
6. If e = PM and e' = NS Then U = PS. 
7. If e = PM and e' = NB Then U = PS. 
8. If e = NM and e' = Z Then U = PB. 
9. If e = PM and e' = Z Then U = NS. 
10. If e = NS and e' = NB Then U = PB. 
11. If e = NS and e' = PS Then U = Z. 
12. If e = NS and e' = Z Then U = PS. 
13. If e = PS and e' = Z Then U = NS. 

Figure 4.1. Some of the If-Then rules taken from Tabe 4.1. 
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Let consider the implementation of the blocks of fuzzy controller to control the 

temperature of heater. As described above linguistic variables are represented by 

membership functions. 

Many different choices of membership functions are possible, for our case to 

describe linguistic terms, in rule base shown in Figure 4.1, the triangle membership 

function is used. The membership function quantities wheather values of e(t) error 

belong to the set of values that are "positive small", and hence it quantities the mean 

using of the linguistic statement "error is positive small". 

To specify the meaning of a linguistic value via a membership function we can 

specify the membership functions for all linguistic values (seven for each input and 

seven for the output) in Table 4.1. Figure 4.2 demonstrates the choice of membership 

function for input variables error, change of error and output variable voltage. 

NL NM NS z PS PM PL 

ett 
-12 -8 -4 0 4 8 12 

NL NM NS z PS PM PL 

de/dt 

-12 -8 -4 0 4 8 12 

NL NM NS z PS PM PL 

utt 

-30 -20 -10 0 10 20 30 

Figure 4.2. Choices of membership functions for input and output variables. 
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For the output u, the membership functions at the outermost edges cannot be 

saturated for the fuzzy system to be properly defined. The· basic reason for this takes 

actions an exact value for the process input. Generally cannot indicate to a process 

actuator, "any value bigger than, say, 10, is acceptable." 

The rule-base of the fuzzy controller holds the linguistic variables, linguistic 

values, their associated membership functions, and the set of all linguistic rules (shown 

in Table 4.1) describing the simple heater temperature controller. 

4.4 Fuzzification 

The fuzzification process as the act of obtaining a value of an input variable 

(e.g., e(t )) and finding the numeric values of the membership function(s) that are 

defined for that variable error. For example, if e(t) = 8 and de(t)/dt = 2, the fuzzification 

process amounts to finding the values of the input membership functions for these. In 

this caseµ ps=l (with all others zero) and µzero(de(t)/dt)= µ ps(de(t)/dt)=0.5. 

Here the membership function values as an "encoding" of the fuzzy controller 

numeric input values. The encoded information is then used in the fuzzy inference 

process that starts with "matching." 

4.5 Determining Which Rules to Use 

1. The premises of all the rules are compared to the controller inputs to determine 

which rules apply to the current situation. This "matching" process involves 

determining the certainty that each rule applied, and typically take into account the 

recommendations of rules that certainly apply to the current situation. 

2. The conclusions (what control actions to take) are determined using the rules that 

have been determined to apply at the current time. The conclusions are characterized 

with a fuzzy set ( or sets) that represents the certainty that the input to the plant should 

take on various values. 

4.6 Premise Quantification via Fuzzy Logic 

To perform inference mechanism first each of the rules must be quantified with 

fuzzy logic. To do this first quantify the meaning of the premises of the rules that are 

composed of several terms, each of which involves a fuzzy controller input. 
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If error is Zand change-in-error is PS Then output is NS 
• 

Above, the meaning of the linguistic terms "error is zero" and "change-in- error is 

Positive Small" via the membership functions had quantified. Now quantifing the 

linguistic premise "error is zero and change-in-error is Positive Small." Hence, the 

main item to focus on is how to quantify the logical "and" operation that combines the 

meaning of two linguistic terms. While standard boolean logic used to combine these 

linguistic terms, since they quantified more precisely with fuzzy sets (i.e., the 

membership functions). 

To see how to quantify the "and" operation, begin by supposing that e(t) = 4 and 

de(t)/dt=l, so that using Figure 4.2 (or Figure 4.3) so 

Error is Z 

i 
Change-in-error is PS 

i 
quantified with quantified with 

o, 

µz 

-8 8 e(t) 2 4 8 de(t)/dt 

Figure 4.3. Quantifying AND operation. 

µz (e(t))=0.5 and µps( de/dt)=0.5 

What, for these values of e(t) and de(t)/dt, is the certainty of the statement 

"error is Z and change-in-error is PS" 

that is the premise from the above rule. This certainty will be denoted by µpremise· There 

are actually several ways to define it: 
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Minimum: Defineµpremise=min{0.5,0.25}=0.25, that is, using the minimum of 
• the two membership values. 

Product: Define µpremise=(0.5)(0.25)=0.125, that is, using the product of the 

two 

membership values. 

Notice that both ways of quantifying the "and" operation in the premise indicate 

that you can be no more certain about the conjunction of two statements than you are 

about the individual terms that make them up (note that O::c:;µpremise::c:;1 for either case). 

While this is simply shown how to quantify the "and" operation for one value of 

e(t) and de(t)/dt, consider all possible e(t) and de(t)/dt values, the multidimensional 

membership function µpremise(e(t), de(t)ldt) will be obtained that is a function of e(t) and 

de(t)/dt for each rule. For this example, choose the minimum operation to represent the 

"and" in the premise, then this result to the multidimensional membership function 

µpremise(e(t),de(t)/dt). Notice that picking values for e(t) and de(t)/dt will allow the value 

of the premise certainty µpremise(e(t),de(t)/dt) represents how certain are that the rule is 

If error is Zand change-in-error is PS Then output NS 

applicable for specifying the input to the plant. As e(t) and de(t)/dt change, the value of 

µpremise(e(t),de(t)/dt) changes according to Figure 4.4, and we become less or more 

certain of the applicability of this rule. 

- nl e(t), (rad) 

Figure 4.4. Membership function of the premise for a single rule. 
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4. 7 Determining Which Rules Are On 
• 

Determining the applicability of each rule is called "matching." It said that a 

rule is "on at time t" if its premise membership function µpremise(e(t),de(t)/dt) > 0. 

Hence, the inference mechanism seeks to determine which rules are on to fmd out 

which rules are relevant to the current situation. 

Consider, for the Heater example, how to compute the rules that are on. Suppose 

that 

e(t)=O and de(t)/dt=4-1 =3 

Figure 4.5 shows the membership functions for the inputs and indicates with 

thick black vertical lines the values above for e(t) and de(t)/dt. Notice that /Jzera(e(t))=l 

but that the other membership functions for the e(t) input are-all "off'' (i.e., their values 

are zero). For the de(t)/dt input it is clearly seen that Jlzera(de(t)/dt)=0.25 and 

µpossmalde(t)/dt) = 0.75 and that all the other membership functions are off. This 

implies that rules that have the premise terms are on ( all other rules have 

µpremise(e(t),de(t)/dt) = 0. 
"Error is Z" 

"Change-in-error is Z" 

"Change-in-error is PS" 

So, which rules are these? Table 4.1 is shows that the rules that are on are the following: 

1. If error is Zand change-in-error is Z Then output is Z 

2. If error is Zand change-in-error is PS Then output is NS 

Note that since for the controlling of heater temperature example two 

membership functions over- lapping, it will never have more than four rules on at one 

time (this concept generalizes to many inputs). Actually, for this system either it has 

one, two, or four rules on at any one time. To get only one rule on choose, for example, 

e(t) = 0 and de(t)/dt=4 so that only rule 2 above is on. 
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z 
• 

NL NM NS PS PM PL 

-12 -8 -4 0 4 8 12 

z 

NL NM NS PS PM PL 

de/dt 

-12 . -8 -4 0 4 8 12 

Figure 4.5. Input membeship functions with input values. 

4.8 Inference Step: Determining Conclusions 

Next, the question is how to determine which conclusions should be reached 

when the rules that are on are. To do this, first consider the recommendations of each 

rule indeperidently. Then later combine all the recommendations from all the rules. 

4.9 Recommendation from One Rule 

Consider the conclusion reached by the rule 

If error is Z and change-in-error is Z Then Tis Z 

which for convenience we will refer to as "rule (1)." Using the minimum to represent 

the premise, so 

µpremise] =min{O. 25, I} =0. 25 

The notation µpremisel represents µpremise for rule (1) so that the certainty are 0.25 

that this rule applies to the current situation. The rule indicates that if its premise is true 

then the action indicated by its consequent should be taken. For rule ( 1) the consequent 

is "temperature is zero". The membership function for this consequent is shown in 
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Figure 4.6 (a). The membership function for the conclusion reached by rule (1), which 

we denote by µ1, is shown in Figure 4.6 (b) and is given by • 

µJ(u) =min{0.25, /lzero(u)} 

This membership function defines the "implied fuzzy set" for rule (1) (i.e., it is 

the.conclusion that is implied by rule (1)). The justification for the use of the minimum 

operator to represent the implication is that can be no more certain about the 

consequent than our premise. 

Notice that the membership function µJ(u) is a function of u and that the 

minimum operation will generally "chop off the top" of the /lzero(u) membership 

function to produce µ1(ut). For different values of e(t) and de(t)/dt there will be 

different values of the premise certainty µpremise(e(t), de(t)/dt) for rule (1) and hence 

different/unctions µ1(u) obtained (i.e., it will chop off the top at different points). 

It is clearly seen that µJ(u) is in general a time-varying function that quantifies 

how certain rule (1) is that the temperature input u should take on certain values. It is 

most certain that the temperature input should lie in a region around zero (see Figure 

4.6(b )), and it indicates that it is certain that the force input should not be too large in 

either the positive or negative direction-this makes sense if you consider the linguistic 

meaning of the rule. The membership function µJ(u) quantifies the conclusion reached 

by only rule (1) and only for the current e(t) and de(t)/dt. It is important that the reader 

be able to picture how the shape· of the implied fuzzy set changes as the rule's premise 

certainty changes over time. 

Q ]Z 

0.25 

10 u(t) -10 

a) 

10 u(Q -10 

b) 

Figure 4.6. (a) Consequent membership function and (b) implied fuzzy set with membership 
function µ1(u) for rule (1). 
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4.10 Recommendation From Another Rule 
• 

Next, consider the conclusion reached by the other rule that is on, 

If error is Zand change-in-error is PS Then u is NS 

which for convenience will refer to as "rule (2)." Using the minimum to represent the 

premise, then 

µpremise2(u)=min{O. 75,1}=0. 75 

so that it is 0. 75 certain that this rule applies to the current situation. Notice that it is 

much more certain that rule (2) applies to the current situation than rule (1). For rule (2) 

the consequent is "T is negative small". The membership function for this consequent 

is shown in Figure 4.7 (a). The membership function for the conclusion reached by rule 

(2), which we denote by µ2(u), is shown in Figure 4.7 (b) (the shaded region) and is 

given by 

µ2(u) =min [O. 7 5, µnegsmau(u) 

this membership function defines the implied fuzzy set for rule (2) (i.e., it is the 

conclusion that is reached by rule (2)). Once again, for different values of e(t) and 

de(t)/dt there will be different values of µpremise2(e(t),de(t)/dt) for rule (2) and hence 

different functions µ2(u) obtained. Rule (2) is quite certain that the control output 

(process input) should be a small negative value. As rule (2) has a premise membership 

function that has higher certainty than for rule (1 ), note that it is more certain of the 

conclusion reached by rule (2). 

NS z 
-----.I 1 

-20 -10 u(t) -20 -10 u(t) 

(a) (b) 

Figure 4.7. consequent membership function (a), and implied fuzzy set with membership 
function µ2 ( u) for rule (2) 
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This completes the operations of the inference mechanism. While the input to 
• the inference process is the set of rules that are on, its output is the set of implied fuzzy 

sets that represent the conclusions reached by all the rules that are on. For our example, 

there are at most four conclusions reached since there are at most four rules on at any 

one time. (In fact, you could say that there are always four conclusions reached for our 

example, but that the implied fuzzy sets for some of the rules may have implied 

membership functions that are zero for all values). 

4.11 Converting Decisions Into Actions 

Next, consider the defuzzification operation, which is the final component of 

the fuzzy controller. Defuzzification operates on the implied fuzzy sets produced by the 

inference mechanism and combines their effects to provide the "most certain" 

controller output (plant input). Some think of defuzzification as "decoding" the fuzzy 

set information produced by the inference process (i.e., the implied fuzzy sets) into 

numeric fuzzy controller outputs. These are a number of defuzzification algorithms 

they are described in chapter 2. 

To demonstrate defuzzification, it is best to first draw all the implied fuzzy sets 

on one axis as shown in Figure 4.8. Then find the one output, which denoted by 

"ucrisp" that best represents the conclusions of the fuzzy controller that are represented 

with the implied fuzzy sets. There are actually many approaches to defuzzification. 

4.11 Combining Recommendations 

Due to its popularity, first consider the "center of gravity" (COG) 

defuzzification method for combining the recommendations represented by the implied 

fuzzy sets from all the rules. Let bi denote the center of the membership function, then 

and 

NS IZ 

10 u(t) 

Figure 4.8. Combining recommendations. 
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as shown in Figure 4.8. Let f A denote the area under the membership function µ; . 
• 

The COG method computes «= to be 

l);fA 
. i 

Ucrisp = L f A 
i 

(4.1) 

This is the classical formula for computing the center of gravity. In this case it is 
\ 

for computing the center of gravity of the implied fuzzy sets. Three items about 

equation (4.1) are important to note: 

1. Practically, there are no output membership functions that have infinite area 

smce even though they may be "chopped off in the minimum operation for the 

implication ( or scaled for the product operation) they can still end up with infinite area. 

This is the reason we do not allow infinite area membership functions for the linguistic 

values for the controller output. 

2. You must be careful to define the input and output membership functions so 

that the sum in the denominator of equation ( 4.1) is not equal to zero no matter what the 

inputs to the fuzzy controller are. Essentially, this means that there must be some sort of 

conclusion for all possible control situations that may encounter. 

3. While at first glance it may not appear so, f A is easy to compute. For the 

case of symmetric triangular output membership functions that peak at one and have a 

base width of w, simple geometry can be used to show that the area under a triangle 

"chopped off at a height of h (such as the ones in Figures 4.6 and 4.7) is equal to 

Given this, the computations needed to compute e= are not too significant. 
The property of membership functions being symmetric for the output is 

important since in this case no matter whether the minimum or product is used to 

represent the implication, it will be the case that the center of the implied fuzzy set will 

be the same as the center of the consequent fuzzy set from which it is computed. If the 

output membership functions are not symmetric, then their centers, which are needed in 
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the computation of the COG, will change depending on the membership value of the 

premise. This will result in the need to recompute the center at each time instant. 

Using Equation (4.1) with Figure 4.8 result to the following equation 

u":" = (0)( 4.375) + (-10)(9.375) = _6_81 
4.375 + 9.375 

NS z 
,''\-1 

\ / I \ o 

-30 20 30 utt). (N) 

u":" = -6.81 
Figure 4.9. Represents the Center Of Overage 

Defuzzification process 

4.12 Other Ways to Compute and Combine Recommendations 

As another example, it is interesting to consider how to compute, by hand, the 

operations that the fuzzy controller takes when using the product to represent the 

implication or the "center-average" defuzzification method. 

First, consider the use of the product. Consider Figure 4.9, where the output 

membership functions have been drawn for "negative small" and "zero" as dotted lines. 

The implied fuzzy set from rule (1) is given by the membership function shown in 

Figure 4.10. 

µ1 (u) =0. 2 5 /lzero(u) 

as the shaded triangle; and the implied fuzzy set for rule (2) is given by the membership 

function shown in Figure 4.10 as the dark triangle. 
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µ2(u) =0. 7 5 µ NS (u) 
• 

Notice that computation of the COG is easy since it can use wh as the area for a 

triangle with base width w and height h. When using product to represent the 

implication, the following equation will be obtained 

u":" = (0)(2.5)+(-10)(7.5) = _7_5 
2.5 +7.5 

which also makes sense 

NS Zero .... / 0.75 
, 1'/,;::··· , ' , ' .......... ,/. .... , 

0.25 

' ' ' ' ' ' ' ' 

-20 -10 0 10 20 

Figure 4.10. Example of combining recommendations. 

Next, as another example of how to combine recommendations, we will 

introduce the "Center-Average" method for defuzzification. For this method we let 

L b.u premise, 
crisp - '....1 ---- 

U - I µ premise, (4.2) 

where to compute µpremisei we use, for example, minimum. This is called the "center­ 

average" method since equation ( 4.2) is a weighted average of the center values of the 

output membership function centers. Basically, the center-average method replaces the 

areas of the implied fuzzy sets that are used in COG with the values of µpremisei . This is 

a valid replacement since the area of the implied fuzzy set is generally proportional to 

µpremisei since µpremisei is used to chop the top off (minimum) or scale (product) the 

triangular output mef!lbership function when COG is used. For the above example, 
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Ucrisp = (0)(0.5)+(-10)(0.75) = _7.5 
0.25 + 0.75 • 

which just happens to be the same value as above. Some like the center-average 

defuzzification method because the computations needed are simpler than for COG and 

because the output membership functions are easy to store since the only relevant 

information they provide is their center values ( Bi ) (i.e., their shape does not matter, 

just their center value). 

Notice that while both values computed for the different inference and 

defuzzification methods provide reasonable command inputs to the plant, it is difficult 

to say which is best without further investigations ( e.g., simulations or 

implementation). This ambiguity about how to define the fuzzy controller actually 

extends to the general case and also arises in the specification of all the other fuzzy 

controller components, as discussed below. Some would call this "ambiguity" a design 

flexibility, but unfortunately there are not too many guidelines on how best to choose 

the inference strategy and defuzzification method, so such flexibility is of questionable 

value. 

4.13 Graphical Depiction of Fuzzy Decision Making 

Let summarize the procedure that the fuzzy controller uses to compute its 

outputs given its inputs in Figure 4.11. Here, let use the minimum operator to represent 

the "and" in the premise and the implication and COG defuzzification. To develop a 

similar diagram for the case where the product operator is used to represent the "and" 

in the premise and the implication, and choose values of e(t) and de(t)/dt that will 

result in four rules being on. Then, repeat the process when center-average de(t)ldt 

defuzzification is used with either minimum or product used for the premise. Also, 

learn how to picture in your mind how the parameters of this graphical representation 

of the fuzzy controller operations change as the fuzzy controller inputs change. 

This completes the description of the operation of a simple fuzzy controller 
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-8 8 e(t) 
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7 7 

D 
NS z 

' 

7 

-8 8 e(t) 

-4 2 4 e'(t) 

If error is Z 

2 4 8 e'(t) -10 

10 utt). (N) 

and change-in-error is PS Then output is NS 

-20 -10 

u':" = -6.81 

Figure 4.11. Graphical representation of fuzzy controller operations. 
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4.14 Summary 
• 

A control system using a fuzzy controller brings the temperature of the heater to 

the selected temperature quickly and keeps it there regardless of any changes in the load 

or environment. This results is a more stable and reliable operating temperature. 

There are three external inputs monitored by the controller. The first comes 

from a thermistor to monitor the temperature. The second is the user-selected, desired 

temperature setting. Input three is, again, the measured thermistor value signal only 

delayed by a small amount of time. This last input enables the controller to know the 

direction and magnitude of the temperature change in addition to the absolute 

temperature. 

Using knowledge of experts the fuzzy IF-THEN rules for controller are 

generated. Then we should represent abstract knowledge of human-expert to control the 

temperature of the heater. the main part of any fuzzy controller is implementation of a 

set of rules. It performs the control algorithm. By studying the rules, one can see the 

criteria for taking actions such as switching the heater on or off. These rules make 

decisions based on adjustable membership function definitions. The rules are easily 

modified to respond to different criteria. 

The fuzzification process as the act of obtaining a value of an input variable 

(e.g., e(t )) and finding the numeric values of the membership function(s) that are 

defined for that variable error. 

After fuzzification we should determine which rules to use, there are two ways 

to do so: 

1. The premises of all the rules are compared to the controller inputs to determine 

which rules apply to the current situation. 

2. The conclusions (what control actions to take) are determined using the rules that 

have been determined to apply at the current time. 

To perform inference mechanism first each of the rules must be quantified with 

fuzzy logic. To do this first quantify the meaning of the premises of the rules that are 

composed of several terms, each of which involves a fuzzy controller input. 

Determining the applicability of each rule is called "matching." It said that a rule 

is "on at time t" if its premise membership function µpremise(e(t),de(t)/dt) > 0. Hence, the 

inference mechanism seeks to determine which rules are on to find out which rules are 

relevant to the current situation. 
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Next, consider the defuzzification operation, which is the final component of 

the fuzzy controller. Defuzzification operates on the implied tuzzy sets produced by the 

inference mechanism and combines their effects to provide the "most certain" 

controller output (plant input). 

Chapter five presents the computer simulation of fuzzy system for control 

temperature of heater using Matlab Programming Language. 
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CHAPTER FIVE 

MODELING OF FUZZY CONTROLLER FOR CONTROLING 
TEMPERATURE OF HEATER 

5.1 Overview 

The computer simulation of temperature controller is realized using a 

graphical user interface (GUI) tools provided by the fuzzy logic toolbox in Matlab 

package. 

The computer simulation of control system with PD-Like fuzzy controller have 

been carried out. Result of computer simulation of fuzzy control system is compared 

with the result of simulation of control system with PD-Like controller. Time response 

characteristic of control system with PD controller and fuzzy controller is shown in the 

same diagram which shows the efficiency of the fuzzy controller over the conventional 

PD controller. 

5.2 Modeling Fuzzy Controller Using MATLAB Package 
The computer simulation of fuzzy system for control temperature of a heater is 

performed in Matlab package. To control the temperature of heater the PD-like fuzzy 

controller is used. 

During simulation the temperature of heater is described by second order 

differential equation: 

(5.1) 

Here y is controlled temperature variable, y' and y II first and second order derivatives of 

controlled variable,, u is control signal (the output of controller), a0 =0.075, a1 =0.64, 

a2 =1, B=40 are the parameters of control object. 

The rule base for controller is given in Table 5.1. 
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NB NB NB NM NS z PS 

NB NB NM NS z PS PM 

NB NM NM z PM PM PB 

NM NS z PS PM PB PB 

~ NS z PS PM PB PB PB 
0 

:L+, ', z PS NB"' PM PB PB PB PB .,;,,.1: ', 

Table 5.1. Linguistic rule base for the controller. 

The computer simulation of temperature controller is realized using a 

Graphical User Interface (GUI) tools provided by the fuzzy logic toolbox in Matlab 

Package (Appendix I). 

In general, there are five primary GUI tools for building, editing, and observing 

fuzzy inference systems in the fuzzy logic tool box: the Fuzzy Inference System or FIS 

Editor, the Membership Function Editor, the Rule Editor, The Rule Viewer, and the 

Surface Viewer. Lets consider each of these tools separately. 

5.2.1 The FIS Editor 

The FIS Editor for control temperature of a heater example is shown in Figure 

5.1. In our example we have two inputs, error and change of error, and one output, the 

FIS Editor displays general information about a fuzzy inference system. There's a 

simple diagram at the top that shows the name of each input variables on the left and 

output variable on the right. The sample membership functions in the boxes are just 

icons and do not depict the actual shapes of the membership functions. 
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.• ) FIS Editor: temperature , '~,, 1 
"" " 

temperature 

(matndani) 

Figure 5.1. FIS Editor for the control of temperature of a heater. 

Bellow the diagram is the name of the system and the type of inference used. 

Here we are using Mamdani-Type Inference. Bellow the name of the fuzzy inference 

system (temperature), on the left side of the Figure is the area that displays the name of 

either an input or output variable, its associated membership function type, and its 

range. 

5.2.2 The Membership Function Editor 

The Membership Function Editor (see Figure 5.2) shares some features with the 

FIS Editor. In fact, all of the five basic GUI tools have similar menu options, status 

lines, and Help and Close buttons. Membership Function Editor is the tool that displays 

and edits all of the membership functions associated with all of the input and output 

variables for the entire fuzzy inference system. 

When we open the Membership Function Editor to work on a fuzzy inference 

system that does not already exist in the work space, there are not yet any membership 

functions associated with an inputs or an output variable for the FIS, select an FIS 

variable in this region by clicking on it. 
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.• J Membership Function Editor: temper · , • , 
View 

l(change01trror 

error output 

FIS Variables Membership function plots plot points: 

Figure 5.2. The Membership Function Editor. 

Next select the Edit pull-down menu, and choose Add MFs. A new window will 

appear, which allows you to select both the type and a number of membership functions 

associated with the selected variable (see Figure 5.3), in our example we have 7 

membership functions associated with each input and output (NL, NM, NS, Z, PS, PM, 

PL). 

Figure 5.3. Adding membership function. 
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Bellow the Variable Plette is some information about the type and name of the 

current variable. There is a text field in this region that lets ·us change the limits of the 

current variable's range (universe of discourse) and another that lets you set the limits 

of the current plot (which has no real effect on the system). 

5.2.3 The Rule Editor 

Constructing rules using the graphical Rule Editor interface is fairly self-evident, 

Based on the descriptions of the input and output variables defined with the FIS Editor, 

the Rule Editor allows us to construct the rule statements automatically, by clicking on 

and selecting one item in each input variable box, one item in each output box, and one 

connection item. Choosing none as one of the variable qualities will exclude the 

variable from a given rule. Choosing not under any variable name will negate the 

associated quality. Rules may be changed, deleted, or added, by clicking on the 

appropriate button. The rule construction for our example is shown in Figure 5.4 . 

.• ) Rule Editor: temperature '*' ... 

error rs t-'LJ and (change_o1_erro1 is PL) then (out,pul is NL) (1) 
2. II (error is PL) and (change_ol_error is PM) then (oulput is NL) (1] 
3. If (error is PL) and (change_of_error is PS) then {output is NL] (1) 
4. If (error is PL) and (change_ol_error is Z] then (output is NL) (1) 
5. If [enor is PL) and (change_of_error is NS) then (output is NM) (1) 
6. lf [error is PLJ and (change_of_error is NM] then {output is NS) (1) 
7. If (euor is PL) and (change_ol_error is NL] then (output is Z) (1) 
R If (error is PM) and (change_of_error is PL) then (oulput. is NL] (1) 
9. If [error is PM and chan e of error is PM then out ut is NL 1 

-- ~~ 

Figure 5.4. Th~ Rule Editor. 

The rules have been constructed using the Table 5.1. If we choose PM for error 

and PS for change of error, the output will be NL, so the rule will be looks like 
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Jf(error is PM) and (change of error is PS) then (output is NL) (I) 
• 

The number in the parentheses represents weights that can be applied to each rule if 

desired. You can specify the weights by typing in a desired number between zero and 

one under weight-setting. 

5.2.4 The Rule Viewer 

.The Rule Viewer displays a roadmap of the whole fuzzy inference process. It's 

based on fuzzy inference diagram described in the previous section. In Figure 5.5 a 

single window with 49 small plots nested in it (Figure 5.5 shows the Rule Viewer). 

E.d,t View. 

error •• 0 output"' -1.87e-018 

ts 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
1B 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

.~ 

E: ~ 

t Z-S 
I z::s; 
i Z-S 
ts 
I ZS 
cz::s;; 
t ZS 

Figure 5.5. Rule Viewer. 

The Rule Viewer allow us to interpret the entire fuzzy inference process at once. 

The Rule Viewer also shows how the shape of a certain membership functions 

influences the overall result. Since it plots every part of every rule, it can became 
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unwieldy for particular large systems, but, for a relatively small number of inputs and 

outputs, it performs well. • 

5.2.5 The Surface Viewer 

Upon opening the Surface Viewer, we are presented with a two-dimensional 

curve that represents the mapping from service quality to temperature amount. The 

number of inputs and outputs is strongly affects the general result shape, since this two­ 

input one-output system also work well, see Figure 5.6. 

Figure 5.6. The Surface Viewer. 

5.3 Modeling of Control System With Fuzzy Controller 
The computer simulation of control system with PD-Like fuzzy controller have 

been carried out. In Figure 5. 7 the flow-chart of the program of fuzzy control system is 

given. 
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start • 

I-Input parameters 
of control object 
a0 , a1 , a2 , B, t 

2-Input set-point 
Signal g and initial 
value of plant output 

y(O) 

e = g- y(t) 
de = (e(t) - e(t -1) It) 

4- Scaling input signal 
xl =kl.e; x2=k2.de 

5- Fuzzification 

6- Determining Active rules 

7- Finding minimum values of 
membership function of premise 

part 

8- Finding fuzzy output signas 
of the rules 

9- Finding fuzzy output signas 
of the rules 

75 



• 

10- Deffuzification 
Lµ(u).u; 

U===---- 
Lµ(u) 

11- Control object y(t) 
2 I B a0y +a1y +a?y= u 

Stop 

Figure 5.7. The main modules of the program. 

Block 1 is used to enter parameters of the plant. 

Block 2 is used to enter the set-point signal g and current value of plant output signal. 

By Block 3 the values of error e and change of error e' are calculated. 

In Block 4 the scaling of controller input signals is performed. 

Block 5 realize the fuzzification of input signals. 

Block 6 determine active rules in rule base and for each active rule it calculates the 

membership grade of input signals. 

Block 7 realize min operation for each active rule. 

By Block 8 the fuzzy output signals for each active rule are determined. 

In Block 9 using union operation the total fuzzy output signal is determined. 

In Block 10 the fuzzification of fuzzy output signal of controller is carried out. This 

signal is given to the input control. 

In Block 11 the output signal of plant is determined. 

As a result of computer simulation the fuzzy control system for controlling 

temperature of heater is developed. 

In Figure 5.8 the time response characteristic of PD-like fuzzy control system is 

given. 
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Figure 5.8. Time response characteristic of control system with fuzzy controller. 
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Figure 5.9. Time response characteristic of control system with PD controller. 
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Result of computer simulation of fuzzy control system is compared with the result of 
• simulation of control system with PD-Like controller (Figure 5.9). In Figure 5.10 

comparative results of control system based on fuzzy and PD-Like controllers is shown. 

y(t) 

8 

6 

4 

2 

t 
0 10 20 30 40 50 60 , 70 80 90 100 

Figure 5.10. Comparative results of fuzzy PD-like and PD controllers. 

5.4 Summary 

In general, there are five primary graphical user interface (GUI) tools, provided 

by the fuzzy logic toolbox in Matlab package, for building, editing, and observing fuzzy 

inference systems: 

• Fuzzy Inference System or FIS Editor: displays general information about a 

fuzzy inference system. 

• Membership Function Editor: displays and edits all of the membership functions 

associated with all of the input and output variables for the entire fuzzy 

inference system. 

• Rule Editor: allows us to construct the rule statements automatically, by clicking 

on and selecting one item in each input variable box, one item in each output 

box, and one connection item. 

• Rule Viewer: displays a roadmap of the whole fuzzy inference process. 

• Surface Viewer: a two-dimensional curve that represents the mapping from 

service quality to temperature amount. 
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CONCLUSION 
• 

The analysis of some industrial and non-industrial processes show, that they are 

characterized with uncertainty of environment, fuzziness of information. In these 

conditions the fuzzy system is the most effective mathematical tool for modeling and 

controlling these processes. In the thesis: 

• The structures of PD, PI and PID-Like fuzzy controllers and their operation 

principles are given. 

• The operation algorithms of fuzzy controllers are presented. 

• The synthesis procedures for PD, PI and PID-Like fuzzy controllers are 

presented. 

• The fuzzy PD-Like controller for controlling temperature of heater is developed. 

• Using Matlab package the computer simulation of PD-Like fuzzy controller to 

control temperature of heater is performed. 

The thesis consists of introduction, five chapters and conclusion. 

Chapter One described the structure of the fuzzy system and the functions of it's main 

blocks. The structures of PD, PI and PID-Like fuzzy controllers and their operation 

principles are described. 

Chapter Two presented the algorithms of fuzzy controllers. The linguistic variables, 

their fuzzy values and different fuzzification algorithms are described. The steps of 

inference engine mechanism are also described. Different types of fuzzy processing 

mechanisms are given in this chapter as well. 

Chapter Three is devoted to the development of PD, PI and PID-Like fuzzy controllers 

for technological processes control. As a result, the fuzzy rule base controllers have 

been generated. 

Chapter Four is described the development of fuzzy controller for control temperature 

of heater. The description of the processes is given. The realization of each block of 

fuzzy controller are described. 

Chapter Five described the computer simulation of fuzzy system for control of 

temperature of heater by using Matlab package. The result of simulation is analyzed. 
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The thesis demonstrated how to design, develop and implement a fuzzy logic 

control applications and how to fine tune an existing fuzzy logic system to operate at its 

optimal point. 

The result of simulation demonstrated the efficiency of the applied 

methodology. 
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Appendix 1 
• 

[System] 

N ame='temperature' 

Type='mamdani' 

Version=2.0 

Numlnputs=2 

NumOutputs= 1 

NumRules=49 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid' 

[Inputl] 
1 

Name='error' 

Range=[-9 9] 

NumMFs=7 

MFl='NL':'trimf,[-14.85 -9.15 -5.85] 

MF2='NM':'trimf,[-9 -6 -3] 

MF3='NS':'trimf,[-6 -3 O] 

MF4='Z':'trimf,[-3 5.551e-017 3] 

MF5='PS':'trimf,[O 3 6] 

MF6=,,PM':'trimf,[3 6 9] 

MF7='PL':'trimf,[6 9 15] 

[Input2] 

Name='change _ of_ error' 

Range=[-18 18] 

NumMFs=7 

MFl='NL':'trimf,[-30 -18 -12] 

MF2='NM':'trimf,[-18 -12 -6.001] 

MF3='NS':'trimf,[-12 -6.001 O] 

Al-1 



MF4='Z':'trimf,[-6.001 0 6.001] 

MF5='PS':'trimf,[O 6.001 12] 

MF6='PM':'trimf,[6.001 12 18] 

MF7='PL':'trimf,[12 18 30] 

• 

[Outputl] 

Name=' output' 

Range=[-0.9 0.9] 

NumMFs=7 

MFl='NL':'trimf,[-1.2 -0.905 -0.605] 

MF2='NM':'trimf,[-0.9 -0.6 -0.3] 

MF3='NS':'trimf ,[-0.6 -0.3 O] 

MF4='Z':'trimf,[-0.3 0 0.3] 

MF5='PS':'trimf,[O 0.3 0.6] 

MF6='PM':'trimf,[0.3 0.6 0.9] 

MF7='PL':'trimf,[0.6 0.9 1.2] 

[Rules] 

7 7, 1 (1): 1 

7 6, 1 (1) : 1 

75,1(1):1 

7 4, 1 (1) : 1 

7 3, 2 (1) : 1 

7 2, 3 (1) : 1 

71,4(1):1 

67,1(1):1 

6 6, 1 (1) : 1 

65,1(1):1 

6 4, 2 (1): 1 

6 3, 3 (1): 1 

6 2, 4 (1): 1 

6 1, 5 (1) : 1 

57,1(1):1 

5 6, 1 (1) : 1 

Al-2 



5 5, 2 (1): 1 

54,3(1):1 

5 3, 4 (1): 1 

52,5(1):1 

51,6(1):1 

47,1(1):1 

4 6, 2 (1) : 1 

4 5, 3 (1) : 1 

4 4, 4 (1) : 1 

43,5(1):1 

4 2, 6 (1) : 1 

4 1, 7 (1) : 1 

3 7, 2 (1) : 1 

3 6, 3 (1) : 1 

3 5, 4 (1) : 1 

3 4, 5 (1) : 1 

3 3', 6 (1) : 1 

3 2, 7 (1) : 1 

31,7(1):1 

2 7, 3 (1): 1 

2 6, 4 (1): 1 

2 5, 5 (1): 1 

2 4, 6 (1): 1 

2 3, 7 (1): 1 

2 2, 7 (1): 1 

21,7(1):1 

1 7, 4 (1) : 1 

16,5(1):1 

15,6(1):1 

1 4, 7 (1) : 1 

13,7(1):1 

1 2, 7 (1) : 1 

1 1, 7 (1): 1 

Al-3 



Appendix 2 
• 

g=input ('Enter set-point signal '); 

!=3; 

a0=0.42; 

al=0.72; 

a2=1; 

b=60; 

t=0.15; 

aal =(2*aO+al-t)/(aO+al *t+a2*t*t); 

aa2=-a0/(a0+al *t+a2*t*t); 

r bbl =(b*t*t)/ (aO+al *t+a2*t*t); 

bb2=0; 

x(l)=O; 

x(2)=0; 

x(3)=0; 

e(1)=0; 

e(2)=0; 

e(3)=0; 

out(l)=O; out(2)=0; out(3)=0; 

k0=0.02; 

kl=0.01; 

while(l<lOO) 

e(l)=g-x(l); 

ee( /)=( e( 1)-e( /-1) )/t; 

e 1 =kO*e(l); 

e2=_;=kl *ee(l); 

output=el +e2; 

out(l)=output*bbl +aal *out(l-l)+aa2*out(l-2); 

I= I+ 1; 

·end; 

plot(out) 

A2-1 
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