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ABSTRACT

Face databases that contain obstacles that occlude the natural features of the face pose a

special challenge for face recognition algorithms. In this thesis, our goal is to investigate

whether dividing the face into regions would perform better than the classic approach

of using the whole face. For a more comprehensive comparison, we created our own

face image database in addition to the standard ORL database that contains 15 persons

with 10 images per person. In our region-division approach, the goal is to use each part

of the face as a separate feature and then combine the recognition results of all regions

using majority voting to decide on the best match. In our approach, we divide each

face image into five horizontal regions without removing the background. We introduce

two region-division approaches. One of these approaches uses these five regions of the

face with majority voting. The other uses the five regions of face and the whole face as

a sixth region with majority voting. We tested these two techniques against the classic

approach using both PCA and LDA feature extraction algorithms. In order to test these

region-division approaches, we implemented a software system that generates sets of

ten experiments randomly, and, we used the unpaired t-test to compare the results. The

performance of our region-division approaches did not perform any better than the clas-

sic approach using PCA on our face image database and using both PCA and LDA on

the ORL database. However, with LDA, the five-region and six-region approaches with

majority voting outperformed the classic approach on our face image database with 99%

statistical confidence.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis addresses the issue of developing a face recognition system that uses two

region-division approaches in order to achieve a higher recognition rate especially in

cases where the facial features of person are modified by wearing a different hair styles

or wearing glasses. One of the region-division approaches uses the five regions of the

face. The second approach uses the five regions of the face but also considers the whole

face as a sixth region, and it compares the performance of this approach using Principle

Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

In order to recognize a face, the approach presented in this thesis divides each face

into five horizontal parts, applies either the PCA or the LDA method to each part, and

uses the majority voting scheme to decide on the best match. In order to better demon-

strate this region-division approach, we created a new face database that we will refer to

as the NEU Face Image Database (NFID) in the remainder of this thesis. This new face

database contains different types of occlusions of the face so that that the database poses

a challenge for face recognition compared to a database that does not contain similar

occlusions of the face.

Experimental results show that, for small number of classes, the PCA approach is a

reliable and robust face recognition method. However, the LDA approach is more suc-

cessful than the PCA approach with large face databases. In particular, using the entire

face, the recognition rate with different number of training and test cases were used the

classic approach with either the PCA or LDA feature extraction methods.
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The recognition rates when only a single training image and 9 test images with PCA

was 49.4% and with LDA the recognition rate was 18.3%. Using the five-region approach

with majority voting described in this thesis, the PCA-based recognition rate was 39.9%

and the LDA-based recognition rate increased to 20.9%. Using the six region approach

with majority voting, the PCA-based recognition rate was 44.0%, and the LDA-based

recognition rate was only 21.9%. Since only a single training image was used, these re-

sults were expected.

When 5 training images and 5 test images were used, the recognition rate for the clas-

sic whole face approach with PCA was 65.2%, and, with LDA, the recognition rate was

78.5%. Using the five region approach with majority voting, the PCA-based recognition

rate increased to 67.3%, and the LDA-based recognition rate increased to 85.6%. Using

the six-region approach with majority voting, the PCA-based recognition rate increased

to 69.5%, and the LDA-based recognition rate increased to 88.3%.

When 9 training images and a single test image were used for testing, the recognition

rate for the classic whole face with PCA was 71.3, and, with LDA, it was 78.7%. Using

the five-region approach with majority voting, the PCA-based recognition rate increased

to 78.0%, and the LDA-based recognition rate increased to 94.0%. Using the six-region

approach with majority voting, the PCA-based recognition rate increased to 81.3%, and

the LDA-based recognition rate increased to 95.3%.

The LDA experiments run using 5 training image and 5 test images and also using 9

training images and one test image showed that the region-division with majority voting

approach reported in this thesis performed statistically better than the classic whole face

approach with 99% confidence.

Face recognition is one of the most popular problems in the field of image analysis

and understanding. Identifying a person from an unknown face is usually done by com-

paring the unknown face with the known faces from a face database.

The interest of researchers and engineers in the face recognition problem has grown

rapidly in recent years since there is a wide range of commercial and law enforcement

applications on face recognition [Zhao et al., 2003, Chellappa et al., 1995]. The increas-

ing need for surveillance-related applications, especially due to drug traffic and terrorist

activities has a great impact on the growth of the interest in the field of face recognition.
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There are several application areas of face recognition in our real life such as identifi-

cation of personnel using credit cards, passport checks, entrance control, criminal inves-

tigations, and so on. There exist a number of well-known appearance-based statistical

methods applied for the solution of the face recognition problem. Eigenfaces based on

Principle Component Analysis (PCA) is one of the first of these methods used for di-

mensionality reduction in compression and recognition problems. Alex P. Pentland and

Mathew A. Turk of MIT suggested the Eigenfaces methodology in 1991 [Turk and Pent-

land, 1991].

The main idea in the Eigenfaces approach is to get the features of the face in the

mathematical sense instead of the physical face feature using mathematical transforms.

The eigenface algorithm finds the principle components of the covariance matrix of a

set of face images. These vectors can be thought as a set of features, which together

characterize the variations between face images. Each face image in the training set can

be represented exactly in terms of a linear combination of the Eigenfaces. More recently,

Nayar, Nene and Murase used eigenspace projection to identify objects using a turntable

to view objects at different angles [Nayar et al., 1996]. Finlayson, Dueck, Funt and Drew

extended grayscale Eigenfaces to color images [Finlayson et al., 1996]. Their experimental

results have proven that the Eigenface method is a reliable and robust face recognition

method [Nayar et al., 1996, Finlayson et al., 1996].

Another well-known approach to face recognition is the Linear Discriminant Analy-

sis (LDA), which is also known as Fisher’s Discriminant Analysis. Fisher developed the

Fisher’s Linear Discriminant (FLD) in the 1930’s, but not until recently have Fisher Dis-

criminants been utilized for object recognition [Fisher, 1936]. This algorithm is very sim-

ilar to the Eigenface algorithm. Fisherfaces are complex modification of the Eigenfaces

that maximize the ratio of the determinant of the between scatter matrix of the projected

samples to the determinant of the within-class scatter matrix.

Swets and Weng used FLD to cluster images for identification in 1996 [Swets and

Weng, 1996]. Also in 1997, Belhumeur et al used FLD to identify faces, by training and

testing some faces under different lighting [Belhumeur et al., 1997]. The performance of

their algorithm has proven that the LDA approach is more successful than the previous

algorithms that have been used for face recognition.
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1.2 Contribution

This thesis contributes the following:

• A face recognition method that considers a face region by region and applies ma-

jority voting to pick the best match.

• A comparison of the performance of the PCA and LDA feature extraction approaches

between the classic whole face approach and the region-division approaches de-

scribed in this thesis.

• A new face image database of a total of 150 face images belonging to 15 different

persons (all males) that contains challenges for the classic approach that considers

each face image as a whole.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 describes the fundamentals of pattern and face recognition, which the

work presented in this thesis is based upon. It also discusses work closely related

to the work to the methodology described in this thesis.

• Chapter 3 describes the methodology in this thesis for face recognition. This method-

ology is based upon applying PCA and LDA methods alternatively after dividing

the face into five regions and then combining the recognition results from each re-

gion using majority voting.

• Chapter 4 describes the face image databases used in the experiments, namely the

ORL database and the NEU Face Image Database (NFID) created for the work re-

ported in this thesis.

• Chapter 5 presents the simulation results of the face recognition methodology de-

scribed in this thesis and the comparison of this methodology using both PCA and

LDA. This chapter also provides a discussion of these results.

• Chapter 6 presents the conclusions and future work.
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CHAPTER 2

BACKGROUND

2.1 Overview

Pattern recognition is a mathematically rigorous field with the purpose of classifying

objects into one of a number of classes. These objects are generically termed patterns

and include printed characters, speech waveforms, textures, images, and anything else

one wishes to classify. The pattern recognition process is generally implemented in a

manner that allows automatic recognition without human intervention. For example,

a system may tell the credit card company which transactions are likely the results of

unauthorized credit card use. Important application areas are image analysis, character

recognition, speech analysis, man and machine diagnostics, person identification reading

machine for the blind, searching for meaningful patterns, and industrial inspection.

2.2 Pattern Recognition

There are two types of features, namely, holistic features, where each feature is a charac-

teristic of whole face, and partial features such as hair, nose, eyes, and mouth. Holistic

features focus on detecting individual features such as eyes, mouth, nose and head out-

line, and defining face model by position, size and relationships between these features.

Wilson made the first attempt to semi-automated face recognition with a human com-

puter system that classified faces on the basis of facial marks entered on the photographs

by hand [Bledsoe, 1966]. Parameters for classification were normalized distances and

ratios among points such as eye corners, mouth corners, nose tip and chin point. Later
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work at Bell Labs led to the development of a vector of up to 21 features, and the system

created recognized faces using standard pattern classification.

The Tanaka approach improved template matching approach which measures simi-

lar features automatically, describe linear algorithm that use local template matching and

global matching of fit to find and measure facial feature [Tanaka et al., 2000]. Kamel et al

described a system for content-based retrieval of facial images from an image database

[Kamel et al., 1993]. This system includes feature extraction based on expert-assisted fea-

ture selection, spatial feature measurement, feature and shape representation, feature in-

formation compression and organization, search procedures, and pattern-matching tech-

niques. The system uses novel data structures to represent the extracted information.

These structures include attributed graphs for representing local features and their rela-

tionships.

The approach in [Burt, 1988] is based on multi-resolution template matching using

a special-purpose computer built to calculate multi-resolution pyramid images quickly,

and this approach has been demonstrated to identify people in near real-time.

[Kotani et al., 2006] used a vector quantization histogram method for recognition. In

this approach, the face is divided into different regions, and the histograms resulting

from vector quantization are used to recognize faces.

Rose emphasizes the work of Nobel Laureate and Herbert Simon whose central find-

ing was that pattern recognition is critical in most human decision making tasks ”The

more relevant patterns at your disposal, the better your decisions will be.” [Rose, 1998]

Recently Anil et al introduced pattern recognition as the best way of utilizing available

sensors, processors and domain knowledge to make decisions automatically [Jain et al.,

2000].

Construction of a pattern recognition system involves learning from a set of example

patterns. This learning process has two forms: supervised and unsupervised. If the classes

of the example patterns are already known, the learning process is termed as supervised

pattern recognition. That is, the correct classification of an individual pattern is used to

evaluate the performance of the system. On the other hand, if the classes are not known

a priori, then an unsupervised pattern recognition system must not only produce a classifi-

cation procedure but also define the classes themselves.
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In general, pattern recognition is performed in two phases. The first phase involves

the extraction of features, where observation X of a pattern is transformed into a vector

Y , whose components are called features. Y is generally more tractable for the system

than X , but it needs to contain most of the information necessary for classification of the

patterns.

The second phase of pattern recognition involves the classification of the feature vec-

tors. A classifier partitions the feature space of Y into disjoint regions, each corresponding

to a pattern class. If the feature vector of a specific observation lies in the region Rk, the

observation is assigned to class Ck. Thus, the partition specifies the class membership of

the observations. Constructing the classifier in a supervised pattern recognition system is

relatively simple, because the class memberships of a set of example patterns are already

known. This feedback knowledge can then be used to both train and test the classifier. If

the class membership is unknown, however, construction is much more difficult and will

involve clustering.

feature
extraction

Phenomenon C
k

X Y

classificationobservation

Figure 2.1: Pattern recognition process

Figure 2.1 illustrates the general pattern recognition process. First, an observation vec-

tor X is recorded while observing a phenomenon. Feature extraction from X produces a

smaller vector Y that encapsulates the salient features of the original observation. Finally,

classification determines the best class label Ck that may be assigned to Y .

2.3 Clustering

Clustering is the process of constructing a classifier for unsupervised pattern recognition.

Here, the problem is not only to classify the given data, but also, at the same time, to de-

fine the classes themselves. In the general sense, clusters are defined as groups of similar
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points according to some measure of similarity. Usually, similarity is defined as proxim-

ity of the points as measured by a distance function, such as the Euclidean distance, of

feature vectors in the feature space. However, measures of other properties, such as vector

direction, may also be used. The method of finding the clusters may have a heuristic

basis or may be dependent on minimization of a mathematical clustering criterion.

In the field of digital signal processing, vector quantization is a clustering method that

uses the Euclidean distance measure. However, many new terms are used. Furthermore,

the distance of each sample to the mean of its enclosing cluster is no longer a measure of

similarity but rather a measure of distortion. The goal of vector quantization is to find

the set of quantization levels that minimizes the average distortion over all samples.
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A B C

Figure 2.2: Clustering of data in pattern recognition where (A) is the collection of data,
(B) is the vector quantization showing the associated mean, and (C) is the Gaussian dis-
tribution of the clusters.

Figure 2.2 illustrates the clustering process. First, all the data are collected into a single

set of observation vectors. Next, vector quantization groups the data points into clusters.

Finally, assuming a Gaussian distribution in each cluster, the estimated mean and covari-

ance of each cluster are computed.

2.4 Face Recognition

Face recognition is a type of pattern recognition task where a face classified as either

”known” or ”unknown,” after comparing that face with the images of known individuals

stored in the database. Since there is variability in data due to the random variation across

people as well as the systematic variations due to pose, lighting conditions, and so on,

face recognition becomes a challenging task.
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Computational models of face recognition must address several difficult problems.

These difficulties arise from the fact that faces must be represented in a way that best

utilizes the available face information to distinguish a particular face from all other faces

in the database. Face pose is a particularly difficult problem in this respect because all

the faces look like each other, since they contain two eyes, a mouth, a nose, and other

features located at about the same place.

Figure 2.3 shows the main computational stages of a face recognition system.

face image
normalized grayscale

Acquisition

Module

Preprocessing
Module

Feature Extraction
Module

Feature Extraction
Module

Decision

Classifier
Module

feature vector feature vector

color face image

Training Set Test Set

Face Database

Figure 2.3: The main computational stages of a face recognition system (modified from a
figure in [Eleyan, 2004])

The system starts with the Acquisition Module where images are captured with a dig-

ital camera or any image capturing device. In the second phase, captured images are sent

through the Preprocessing Module to meet the standards required by a given recognition

system. The Preprocessing Module may perform tasks such as color-to-grayscale conver-

sion, image resizing, and illumination and background removal in order to normalize the

input image. Then the normalized images are added to the Face Database. Some of the

images in the face database are used as the Training Set of the system and the rest will

be the Test Set. The Feature Extraction Module takes as input a normalized image and

outputs a mathematical model of that input image that expresses the most important fea-

tures in that image, thereby reducing its dimensionality. For example, techniques such as
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Principal Components Analysis (PCA) and the Linear Discriminant Analysis (LDA) can

be used as feature extractors. Finally, the Classifier Module compares the feature vectors

between a test image and all the training images and decides which training image is

closest to that test image.

2.4.1 Major Computational Stages of A Face Recognition System

A face recognition system comprises the following modules:

• Acquisition Module: This is the entry point of the face recognition process. It is the

module where the face image under consideration is presented to the system. An

acquisition module can acquire a face image from several different environments.

• Preprocessing Module: By means of early vision techniques, face images are nor-

malized and enhanced to improve the recognition performance of the system. The

following preprocessing steps can be implemented in a face recognition system:

– Image size normalization: Because the Principal Components Analysis (PCA)

and the Linear Discriminant Analysis (LDA) involve multiplication of arrays,

it is important to normalize the size of all images. This is done by resizing all

images to a default image size such as 112 × 92 pixels as in the ORL database

we use in this work to guarantee that information about the eyes, nose, and

mouth is not lost in potentially small versions of images.

– Illumination normalization: The general purpose of illumination normalization

is to decrease lighting effect when the observed images are captured in differ-

ent lighting environments. A common approach is to adjust observed images

to approximate the ones captured under a standard lighting condition.

– Histogram equalization: Histogram equalization is a process of adjusting the

image so that each intensity level contains an equal number of pixels such that

the appearance of the image is improved by balancing light and dark areas.

– Median filtering: Median filtering is used to reduce the noise in an image.

– High-pass filtering: High-pass filtering removes low frequency gradients in the

image, without affecting high frequency gradients.
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– Background removal: Removal of the background is used so that only the face

can be considered.

– Translational and rotational normalization: It is possible to work on a face image

in which the head is shifted or rotated. The head plays a very important role

in the determination of facial features especially for face recognition systems

that are based on the frontal views of faces. It may be desirable that the pr-

processing module determine and normalize the shifts and rotations in the

head position.

• Feature Extraction Module: After preprocessing, it uses the normalized face image

to find the key features that are going to be used for classification.

• Classification Module: Given the test face image and a set of preprocessed train-

ing images from a face database, the Classification Module performs a comparison

based on a distance metric and decides on the class of that test image.

2.4.2 Difficulties of Recognition and Identification

Facial features used for face recognition need to remain invariant to factors unrelated to

a person’s identity in order for a face to be a source of useful biometrics. Existing prac-

tice suggests these factors are difficult to handle, and yet the exact source of difficulties

remains unclear. The literature concentrates on specific difficulties that influence face

image acquisition and individual differences in subjects [Gross et al., 2001].

• Viewing angle

The face has a 3-dimensional shape. As the camera pose changes, the appearance

of the face can experience projective deformation, which leads to stretching and

foreshortening of different part of face. Camera pose changes may also cause self

occlusion and disocclusion of parts of the face. If faces are only seen from one view-

ing angle, in general, it may be difficult to recognize them from different angles.

• Illumination

Illumination variation is an inevitable difficulty in face recognition. Ambient light-

ing is likely to change greatly during the same day or from day to day, and it may
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change between indoors and outdoors. Due to the 3-dimensional shape of the face,

direct lighting can cast dark shadows that accentuate or diminish some facial fea-

tures.

• Expression

The face is a non-rigid object, and different expressions can cause the appearance

of a face to change. Given that the number of possible changes in facial expression

is in the thousands, a good recognition system needs to be able to handle a range of

changes in the same face well. Yet, the influence of facial expression on recognition

is not yet a well-understood subject.

• Occlusion

The face may be occluded by other objects in the environment or by sunglasses or

even hair, for example. However, we would like a recognition system to be able

to recognize individuals that may intentionally or intentionally occlude their faces

from a complete view.

• Time Effects

Faces change over time due to aging, hair style, makeup, muscle tension, presence

or absence of facial hair, glasses, or other facial jewelry, and a face recognition sys-

tem must adjust to these changes as best as it can.

• Individual Factors

Day-to-day changes in mood and use of makeup may potentially effect recognition.

An algorithm may be more or less sensitive for men or women or members of dif-

ferent ethnic groups. Practically, females may be more difficult to recognize because

of greater use and day-to-day variation in makeup or hair style. Male and female

faces differ in both local features and in shape. Men’s faces tend to have thicker

eyebrows and greater texture in the beard region. In women’s faces, the distance

between the eyes and brows is greater, the protuberance of the nose smaller, and

the chin is narrower than in men. It is hard to identify, however, the sensitivity of

specific algorithms to these factors.
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2.5 Fundamental Problems in Pattern Recognition

The design of an automatic pattern recognition system requires great attention to sev-

eral issues. The first issue has to do with dealing with the representation of the input

data, which can be measured from the objects to be recognized. Each measured quantity

describes a characteristic of the pattern or object. In other words, a pattern vector that

describes the input data has to be formed. The pattern vectors contain all the measured

information available about the patterns. The set of patterns belonging to the same class

corresponds to an ensemble of points scattered within some region of the measurement

space.

The second issue in pattern recognition systems concerns the extraction of character-

istic features from the received input data and the dimensionality reduction of pattern

vectors. This is referred as the feature extraction problem. The elements of intraset fea-

tures which are common to all pattern classes under consideration carry no discrimina-

tory information and can be ignored. If a complete set of discriminatory features for each

pattern class can be determined from the measured data, the recognition and classifica-

tion of patterns will present some difficulty. Automatic recognition may be reduced to

a simple matching process. However, in most pattern recognition problems that arise in

practice, the determination of a complete set discriminatory features is extremely diffi-

cult.

The third issue in pattern recognition system design involves the determination of

the optimum decision procedures, which are needed in the identification and classifi-

cation process. After expressing the observed data in the form of measurement vectors

in the pattern space, we want the machine to decide to which pattern class these data

belong. Let the system be capable of recognizing N different pattern classes. Then the

pattern space can be considered as consisting of N regions, each of which encloses the

measurement of a class. The recognition problem can now be viewed as that of generat-

ing the decision boundaries that separate the N pattern classes on basis of the observed

measurement vectors. These decision boundaries are generally determined by decision

functions.
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2.6 Sources of Variation

The reasons for the image of a face being different can be divided into two categories:

Intrinsic variation and extrinsic variation. Intrinsic variation is independent of any ob-

server and due to physical nature of face only. Extrinsic variation, which is dependent of

observer and on interaction of light with face (image dependent on external factors).

The intrinsic sources of variation include identity, expression, speech, gender, and

age. Non-rigid body motions due to speech or facial expression are peculiar to an in-

dividual and not due to any external factors and are therefore intrinsic. Examples of

extrinsic sources of variation are viewing geometry (pose), illumination (shading, self-

shadows, color, specular highlights), imaging process (resolution, focus, imaging noise,

and perspective effects), effects of other objects (occlusion, shadowing, and indirect illu-

mination). Pose is one of the most significant sources of variation. As pose is determined

by relative three-dimensional position and orientation of the observer, it is extrinsic.

2.7 Recent Applications of Face Recognition

Yan and Osadciw proposed a method that fuses the classification results from the com-

ponents of the face (eyes, nose and mouth) and from the whole face image, instead of

concatenating the face feature and the modular features for a single classifier [Yan and

Osadciw, 2007]. Yang and Wang present a new face recognition system based on Local

Binary Patterns with the Hamming distance constraint [Yang and Wang, 2007]. Yang and

Liu present a General Discriminant Model (GDM) for color face recognition. The GDM

model involves two sets of variables, namely a set of color component combination co-

efficients for color image representation and a set of projection basis vectors for image

discrimination [Yang and Liu, 2007]. Hemery et al analyze the benefit and the limitations

of using biometrics in order to replace the PIN code authentication for banking [Hemery

et al., 2008]. Sirlantzis et al present two methods for creating multiple classifier systems

based on an initial transformation of the original features to the binary domain and sub-

sequent quantization [Sirlantzis et al., 2008].
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2.8 Summary

This chapter presented the background of face recognition from the perspective of the

work reported in this thesis. This chapter also described the main computational stages of

a face recognition system and the difficulties of recognition and identification in general.

Work closely related to our study will be discussed in detail in the next chapter.

15



CHAPTER 3

METHODOLOGY

3.1 Overview

The purpose of pattern recognition is to classify objects into one of a number of classes.

These objects are generically termed patterns and may include printed characters, speech

waveforms, textures, or images. Pattern recognition is usually implemented such that a

recognition system can work without human intervention. For example, a system may

tell a credit card company which transactions are likely the results of unauthorized use.

Important application areas of pattern recognition are image analysis, character recogni-

tion, speech analysis, man and machine diagnostics, person identification development

of reading machines for the blind, searching for meaningful patterns, and industrial in-

spection.

Many algorithms and approaches exist for solving the problem of human face recog-

nition. In this thesis, our goal is to develop a system that can recognize faces whose

appearance changes according to different factors such as hair style or what is worn by a

person such as glasses and hats, especially for cases where the treatment of the whole face

may fail to produce correct recognition. Instead of considering the whole face at once, in

our approach, we divide the face into five horizontal regions, and apply a near-complete

recognition on each region except for the final decision, and consider the recognition re-

sult from each facial region as a vote for the corresponding person. Finally, the person

who receives the highest vote is chosen as the best match.

To provide a perspective on the angle of our region-division approach that uses ma-

jority voting, we compare the recognition performance of two techniques, namely the
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Principle component analysis (PCA) and Linear Discriminant Analysis (LDA).

3.2 Principle Component Analysis (PCA)

Principle Component Analysis (PCA) is a dimensionality reduction technique that is used

for image recognition and compression. It is also known as Karhunen-Loeve transforma-

tion (KLT) or eigenspace projection [Turk and Pentland, 1991]. The main goal of PCA is

dimensionality reduction. Therefore, the eigenvectors of the covariance should be found

in order to reach the solution. The eigenvectors correspond to the directions of the prin-

ciple components of the original data, and their statistical significance is given by their

corresponding eigenvalues.

The first introduction of a low-dimensional characterization of faces was developed at

Brown University by Kirby and Sirovich in 1987 [Kirby and Sirovich, 1990]. This was later

extended to eigenspace projection for face recognition by Pentland, Turk, Moghaddam

and Starner at the Vision and Modeling Group of MIT in 1994 [Pentland et al., 1994].

More recently, Nayar et al used eigenspace projection to identify objects using a lookup

table to view objects at different angles [Nayar et al., 1996]. Finlayson et al extended

grayscale eigenfaces to color images [Finlayson et al., 1996].

3.2.1 Calculating Eigenfaces

Consider an N ×N face image Γ(x, y) as a vector of dimension N2, so the image can be

thought as a point in N2 dimensional space. A database of M images can therefore be

mapped to a collection of points in this high-dimensional ”face space” as Γ1,Γ2,Γ3, . . . ,ΓM .

To compute Eigenfaces, first an average of all training images needs to be computed.

The average image Ψ is computed using Equation 3.1:

Ψ =
1
M

M∑
n=1

Γn (3.1)

Each image Γi differs from the average image Ψ by the vector Φi = Γi−Ψ where i =

1, 2, . . . ,M . The covariance matrix C of the data set is defined by Equation 3.2.

C =
1
M

=
M∑

n=1

ΦnΦT
n = AAT (3.2)
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where the matrix A = [Φ1,Φ2, . . . ,ΦM ]. The matrix C has a dimension of N2 ×N2 eigen-

vectors and eigenvalues, and, for typical image sizes, this size would be a very high

value. Therefore, we need a computationally feasible method to determine these eigen-

vectors.

If the number of data points in the image space is less than the dimension of space

M < N2, there will be only (M − 1) meaningful eigenvectors, and the rest of the eigen-

vectors will have eigenvalues of zeros.

Consider eigenvectors νi of ATA such that

ATAνi = µiνi (3.3)

Multiplying both sides by A, we have

AATAνi = µiAνi (3.4)

From Equation 3.4, we can see that Aνi are the eigenvectors of C = AAT . Then we can

construct a M ×M matrix:

L = ATA (3.5)

Then we can find the M eigenvectors νi of L. These vectors determine linear combi-

nations of the M training set face images to form Eigenfaces ui.

ui =
M∑

k=1

νikΦk (3.6)

Eigenvectors ui are in fact images, and they are called eigenfaces, and the eigenvectors

with the highest eigenvalues are more useful than the rest. Therefore those M I < M

eigenfaces that are most significant are used for constructing the ”face subspace” for pro-

jections that are used in identifying or classifying images.

Using Eigenfaces for Projection and Classification

In order to identify an input image, first of all, that image needs to be transformed into

the face space by taking inner products with eigenfaces. These inner products compose
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a vector, which is the representation of input image in face space. Then we compare this

vector with those of known images using Euclidean distance. The input test image is

then classified as the closest match.

A new face image (Γ) is transformed into its eigenface components (i.e., projected into

“face space”) using the following operation:

ωk = uT
k (Γ−Ψ) k = 1, 2, . . . ,M I (3.7)

where ωk is the k-th coordinate of the Φ in the new “face space.” The above equation de-

scribes point-by-point image multiplication and summation, resulting in the scalar value

(dimension 1×1) defined as a weight that describes each face. The weights form a feature

vector given by Equation 3.8:

ΩT = [ω1, ω2, . . . , ωM ] (3.8)

Vector ΩT in Equation 3.8 describes the contribution of each eigenface in representing

the input test face image, where the eigenfaces represent the basis set for face images.

This vector is used in finding the class that the input image belongs to, if there are more

than one image describing a person, otherwise it is used to find to which single image

is most similar to the test image. This decision is reached by computing the Euclidean

distance between input image and training images in the face database (i.e., class projec-

tions), as given in Equation 3.9.

εk =
∥∥∥∥Ω− Ωk

∥∥∥∥2

(3.9)

where Ωk describes k-th face class, which is the average of the eigenface representation

of the face images for each individual in the training set. A face will be classified as

belonging to some class if the minimum εk is below some specified threshold. Otherwise,

that image will be classified as unknown face.

3.2.2 A PCA Example

Identifying images through eigenspace projection takes three basic steps. First, the eigenspace

must be created using training images. Second, the training images are projected into the
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eigenspace. Finally, the test images are identified by projecting them into the eigenspace

and comparing them to the projected training images.

• Create an Eigenspace

The following steps create an eigenspace:

1. Center data: Each of the training images must be centered. To do so, the av-

erage (mean) image is subtracted from each of the training images. The mean

image is a column vector such that each entry is the mean of all corresponding

pixels of all training images.

2. Create a data matrix: Once the training images are centered, they are com-

bined into a data matrix of size N × P , where P is the number of training

images and each column is a single.

3. Create covariance matrix: The data matrix is multiplied by its transpose to

create a covariance matrix.

4. Compute the eigenvalues and eigenvectors: The eigenvalues and correspond-

ing eigenvectors are computed for the covariance matrix.

ΩV = ΛV

where V is the set of eigenvectors associated with the eigenvalues Λ.

5. Order eigenvectors: Order the eigenvectors νi ∈ V g according to their corre-

sponding eigenvalues λig ∈ gΛg from high to low. Keep only the eigenvec-

tors associated with non-zero eigenvalues. This matrix of eigenvectors is the

eigenspace V , where each column of V is an eigenvector.

V = ν1|ν2| . . . |νP

• Project Training Images

Each of the centered training images xi is projected onto the eigenspace. To project

an image onto the eigenspace, calculate the dot product of the image with each of
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the ordered eigenvectors.

x̂i = V Txi (3.10)

Therefore, the dot product of the image and the first eigenvector will be the first

value in the new vector. The new vector of the projected image will contain as

many values as eigenvectors.

• Identify Test Images

Each test image is first mean centered by subtracting the mean image, and is then

projected into the same eigenspace defined by V .

yi = yi −m, where m =
1
P

P∑
i=1

yi (3.11)

and

ŷ i = V T y i (3.12)

The projected test image is compared to every projected training image, and the

training image that is found to be closest to the test image is used to identify the

training image. The images can be compared using any number of similarity met-

rics such as the Euclidean distance.

The following is an example of identifying images through eigenspace projection.

Let the four images in Figure 3.1(a)–Figure 3.1(d) be training images, and let the

additional image in Figure 3.1(e) be a test image. The four training images and the

mean image are:
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x1 =



225

229

48

251

33

238

0

225

217



x2 =



10

219

24

255

18

247

17

255

2



x3 =



196

35

234

232

59

244

243

57

226



x4 =



255

223

224

225

0

225

249

255

235



m =



171.50

176.50

132.50

240.75

27.50

238.50

127.25

198.00

170.00


The centered images are:

x1 =



53.5000

52.5000

−84.5000

10.2500

5.5000

−0.5000

−127.2500

27.0000

47.0000



x2 =



−161.5000

42.5000

−108.5000

14.2500

−9.5000

8.5000

−110.2500

57.0000

−168.0000



x3 =



24.5000

−141.5000

101.5000

−8.7500

31.5000

5.5000

115.7500

−141.0000

56.0000



x4 =



83.5000

46.5000

91.5000

−15.7500

−27.5000

−13.5000

121.7500

57.0000

65.0000


Combine all the centered training images into one data matrix:

X =



53.5000 −161.5000 24.5000 83.5000

52.5000 42.5000 −141.5000 46.5000

−84.5000 −108.5000 101.5000 91.5000

10.2500 14.2500 −8.7500 −15.7500

5.5000 −9.5000 31.5000 −27.5000

−0.5000 8.5000 5.5000 −13.5000

−127.2500 −110.2500 115.7500 121.7500

27.0000 57.0000 −141.0000 57.0000

47.0000 −168.0000 56.0000 65.0000
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(a) Training image x1 (b) Training image x2

(c) Training image x3 (d) Training image x4

(e) Test image y1

Figure 3.1: Four training patterns and and one test pattern for PCA
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Next, compute the covariance matrix:

Ω = XX
T =



3.6517 −0.3639 2.3129 −0.3282 0.0304 −0.2392 2.4000 −0.6456 3.6446

−0.3639 2.6747 −1.9155 0.1650 −0.5851 −0.1071 −2.2083 2.6442 −0.9574

2.3129 −1.9155 3.7587 −0.4742 0.1247 −0.1557 4.5603 −1.7562 2.5888

−0.3282 0.1650 −0.4742 0.0633 0.0078 0.0280 −0.5806 0.1425 −0.3426

0.0304 −0.5851 0.1247 0.0078 0.1869 0.0461 0.0645 −0.6402 0.1831

−0.2392 −0.1071 −0.1557 0.0280 0.0461 0.0285 −0.1880 −0.1074 −0.2021

2.4000 −2.2083 4.5603 −0.5806 0.0645 −0.1880 5.6569 −1.9101 2.6937

−0.6456 2.6442 −1.7562 0.1425 −0.6402 −0.1074 −1.9101 2.7108 −1.2498

3.6446 −0.9574 2.5888 −0.3426 0.1831 −0.2021 2.6937 −1.2498 3.7794


The ordered non-zero eigenvectors of the covariance matrix and the corresponding

eigenvalues are:

ν1 =



0.3672

−0.2731

0.4795

−0.0592

0.0343

−0.0192

0.5582

−0.2725

0.4120



ν2 =



0.5447

0.5275

−0.0600

−0.0148

−0.1165

−0.0621

−0.1251

0.4644

0.4153



ν3 =



0.2728

−0.2926

−0.3084

0.0593

0.2031

0.0422

−0.5752

−0.4682

0.3850


λ1 = 0.2533 λ2 = 0.4752 λ3 = 1.5226

The eigenspace is defined by the projection matrix, V :
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V =



0.3672 0.5447 0.2728

−0.2731 0.5275 −0.2926

0.4795 −0.0600 −0.3084

−0.0592 −0.0148 0.0593

0.0343 −0.1165 0.2031

−0.0192 −0.0621 0.0422

0.5582 −0.1251 −0.5752

−0.2725 0.4644 −0.4682

0.4120 0.4153 0.3850


The four centered training images projected into eigenspace are:

x̂1 = V Tx1 =


−94.6419

109.1201

105.6437

 x̂2 = V Tx2 =


−270.5630

−88.1799

−51.7143



x̂3 = V Tx3 =


223.9086

−127.9723

43.8963

 x̂4 = V Tx4 =


141.2963

107.0321

−97.8257


The test image viewed as a vector and the centered test image are:

y1 =



20

244

44

246

21

244

4

255

2



y1 =



−151.5000

67.5000

−88.5000

5.2500

−6.5000

5.5000

−123.2500

57.0000

−168.0000
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The projected test image is:

ŷi = V T y1


−270.6914

−69.1469

−55.0417


The Euclidean distance of the test image y1 from the four training images x1, x2, x3

and x4 are 297.64, 19.32, 507.81 and 450.12 respectively. By comparing these distance

values, the second training image x2 is found to be closest to the test image y1. Therefore,

the test image y1 is identified as belonging to the same class of images as the second

training image x2. One can validate this result by visually inspecting the original test

and training images.

3.2.3 Summary of PCA

The steps in finding the principle components can be summarized as follows:

• Form a face library that consists of the face images of known individuals.

• Select a training set that includes a number of images (M) for each person with

variation in expression and lighting.

• Compute the mean (average) of the training set and subtract it from each image in

the training set.

• Compute the covariance matrix

C =
1
M

=
M∑

n=1

ΦnΦT
n = AAT

• Determine eigenvalues and eigenvectors of the covariance matrix C.

• Choose the M I eigenvectors with the highest eigenvalues.

• Combine the normalized training set of images to produce M I eigenfaces. Store

these eigenfaces for later use.

• Determine the projection vectors of the training images.
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• The projected test image is compared to every projected training image by calculat-

ing the Euclidean distance.

• The result is the training image, which is closest to the test image.

• Compute the system accuracy rate.

3.3 Linear Discriminant Analysis (LDA)

The LDA approach or Fisher discriminants group images of the same class and separates

images of different classes. Images are projected from N-dimensional space (where N is

the number of pixels in the image) to C − 1 dimensional space (where C is the number of

classes of images). For example, consider two sets of points in 2-dimensional space that

are projected onto a single line. Depending on the direction of the line, the points can

either be mixed together (Figure 3.2(a))) or separated (Figure 3.2(b)). Fisher discriminants

find the line that best separates the points. To identify a test image, the projected test

image is compared to each projected training image, and the test image is identified as

the closest training image.

As with eigenspace projection, training images are projected into a subspace. The test

images are projected into the same subspace and identified using a similarity measure.

What differs is how the subspace is calculated. Following are the steps to follow to find

the Fisher discriminants for a set of images.

The within-class scatter matrix, also called intra-personal, represents variations in ap-

pearance of the same individual due to different lighting and face expression, while the

between-class scatter matrix, also called the extra-personal, represents variations in ap-

pearance due to a difference in identity. By applying this method, we find the projection

directions that on one hand maximize the Euclidean distance between the face images of

different classes on the other hand minimize the distance between the face images of the

same class. The ratio is maximized when the column vectors of the projection matrix are

the eigenvalues of S−1
w Sb. In face recognition tasks this method cannot be applied directly

since the dimension of the sample space is typically larger than the number of samples

in the training set, in other words is singular in this case. This problem is also known as

the “small sample size problem” [Huang et al., 2002].
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(a) Points are mixed when projected onto a line (b) Points can be grouped when projected onto
a line

Figure 3.2: Linear Discriminant Analysis (LDA) example demonstrating the scattering of
points in Fisher space based on projections on a line that best separates the points [Eleyan
and Demirel, 2006]

In the last two decades numerous methods, have been proposed to over come this

problem. Tian et al [Tian et al., 1986] used the Pseudo-Inverse method to solve the singu-

larity problem by replacing S−1
w with its Pseudo inverse. Perturbation method has been

used to solve this problem [Cheng et al., 1992, Chen et al., 2000], where a small Perturba-

tion matrix is added to in order to make it non-singular. Cheng et al [Cheng et al., 1992]

proposed the Rank Decomposition method based on successive eigen-decompositions of

the total scatter matrix Sb and the between class scatter matrix. Chen et al [Chen et al.,

2000] proposed the Null space method; it can be used when the dimension of the sample

space is larger than the rank of the within-class scatter matrix. Another method, the Prin-

cipal Component Analysis + Null space method was proposed by Huang et al [Huang

et al., 2002] for dealing with small sample size problem. In this method, PCA is applied to

remove the null space of Sb and Sw, which contains the intersection of the null spaces of

and. Then, the optimal projection vectors are found in the remaining lower-dimensional

space by using the Null space method.

The problem that may arise during recognition that the within-class scatter matrix

sometimes becomes singular, so, in order to overcome this problem and make the within

class scatter matrix nonsingular, the Pseudo-Inverse method [Tian et al., 1986] has been

used in this thesis.

In terms of face recognition, maximizing the between class scatter matrix and min-
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imizing the within class scatter matrix means grouping images of the same class and

separate images of different classes. Images are projected from a N -dimensional space,

where N is the number of pixels in the image, to a M − 1 dimensional space, where M is

the number of classes of images.

Figure 3.3 shows good and bad class separation.

within

between

(a) Good class separation

within

between

(b) Bad class separation

Figure 3.3: Linear Discriminant Analysis (LDA) class separation example demonstrating
good and bad class separation

3.3.1 Calculating Fisherfaces

Unlike the PCA method that extracts features to best represent face images, the Linear

Discriminant Analysis (LDA) method tries to find the subspace that best discriminates

different face classes. It is achieved by maximizing the between-class scatter matrix Sb,

while minimizing the within-class scatter matrix Sw in the projective subspace.

Sw and Sb are defined as

Sw =
C∑

j=1

Nj∑
i=1

(Xj
i − µj)(X

j
i − µj)T (3.13)

where Xj
i is the ith sample of class j, µj is the mean of class j, C is the number of classes,

and Nj is the number of samples in class j.

Sb =
C∑

j=1

(µj − µ)(µj − µ)T (3.14)

where µ represents the mean of all classes.
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The subspace for LDA is spanned by a set of vectors W= [W1,W2, . . . ,Wd] satisfying

W = argmax
∣∣∣∣W TSbW

W TSwW

∣∣∣∣ (3.15)

The within class scatter matrix represents how face images are distributed closely

within classes and between class scatter matrix describes how classes are separated each

other. When face images are projected into the Discriminant vectors W , face images

should be distributed closely within classes and should be separated between classes, as

much as possible. In other words, these Discriminant vectors minimize the denominator

and maximize the numerator in Equation 3.15.

W can therefore be constructed by the eigenvectors of Sw
−1Sb.

There are various methods to solve the problem of LDA as mentioned in the related

work section, such as the pseudo inverse method, the subspace method, or the null space

method. In this thesis, the singularity problem (Small Sample Size problem) has been

solved by using the pseudo inverse method.

The approach is similar to the eigenface method, which makes use of projection of

training images into a subspace. The test images are projected into the same subspace

and identified using a similarity measure. What differs is how subspace is calculated.

The face which has the minimum distance with the test face image is labeled with the

identity of that image. The minimum distance can be found using the Euclidean distance

method.

3.3.2 The Pseudo-Inverse Method

Pseudo inverse is one of the most successful methods that have been used to overcome

the singularity or “small sample size” (SSS) problem arising from the small number of

available training samples compared to the dimensionality of the sample space. This

problem occurs in calculating the within classes scatter matrix.

The method can be expressed numerically as follows;

A set of linear algebraic equations can be written as

Ax = b (3.16)
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whereA is a matrix of coefficients,m×n andm×1 is some form of a system output vector.

The vector x is what we usually solve for. If m = n, then there are as many equations as

the number of unknowns, and there is a good chance of solving for x. That is

A−1Ax = A−1b (3.17)

x = A−1Ax = A−1b (3.18)

Here, we compute the inverse of A. This can prove to be a challenging task, however,

since there are many situations where the inverse of A does not exist. In these cases the

inverse can be computed using the pseudo inverse based on singular value decomposi-

tion (SVD) method which can turn a singular problem into a non-singular one. Vector x

in Equation 3.16 can also be solved for by using the transpose of A.

That is

ATAx = AT b (3.19)

x = (ATA)−1AT b (3.20)

where the inverse of A is expressed as

A+ = (ATA)−1AT (3.21)

where A+ is called the more Penrose pseudo inverse.

3.3.3 An LDA Example

As with eigenspace projection, training images are projected into a subspace. The test

images are projected into the same subspace and identified using a similarity measure.

What differs is how the subspace is calculated. Following are the steps to follow to find

the Fisher discriminants for a set of images.

1. Calculate the within class scatter matrix: The within class scatter matrix measures
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the amount of scatter between items in the same class. For the ith class, a scatter ma-

trix (Si) is calculated as the sum of the covariance matrices of the centered images

in that class.

Si =
∑
xεXi

(x−mi)(x−mi)T (3.22)

where mi is the mean of the images in the class. The within class scatter matrix

(SW ) is the sum of all the scatter matrices.

Sw =
C∑

i=1

Si (3.23)

where C is the number of classes.

2. Calculate the between-class scatter matrix: The between-class scatter matrix (SB)

measures the amount of scatter between classes. It is calculated as the sum of the

covariance matrices of the difference between the total mean and the mean of each

class.

Sb =
C∑

i=1

ni(mi −m)(mi −m)T (3.24)

where ni is the number of images in the class, mi is the mean of the images in the

class and m is the mean of all the images.

3. Solve the generalized eigenvalue problem: Solve for the generalized eigenvectors

(V ) and eigenvalues (Λ) of the within class and between class scatter matrices.

SbV = ΛSwV (3.25)

4. Keep first (C − 1) eigenvectors: Sort the eigenvectors by their associated eigenval-

ues from high to low and keep the first C−1 eigenvectors. These eigenvectors form

the Fisher basis vectors.

5. Project images onto Fisher basis vectors: Project all the original (i.e. not centered)

images onto the Fisher basis vectors by calculating the dot product of the image
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with each of the Fisher basis vectors. The original images are projected onto this

line because these are the points that the line has been created to discriminate, not

the centered images.

Following is an example of calculating the Fisher discriminants for a set of images.

Let the twelve images in Figure 3.4 be training images. There are two classes. Im-

ages x1–x6 are in the first class and images x7–x12 are in the second class. The

training images viewed as vectors are:

x1 =



196

35

234

232

59

244

243

57

226



x2 =



188

15

236

244

44

228

251

48

230



x3 =



246

48

222

225

40

226

208

35

234



x4 =



208

16

235

255

44

229

236

34

247



x5 =



245

21

213

254

55

252

215

51

249



x6 =



248

22

225

252

30

240

242

27

244



x7 =



255

223

224

255

0

255

249

255

235



x8 =



234

255

205

251

0

251

238

253

240



x9 =



232

255

231

247

38

246

190

236

250



x10 =



255

241

208

255

28

255

194

234

188



x11 =



237

243

237

237

19

251

227

225

237



x12 =



224

251

215

245

31

222

233

255

254


The scatter matrices S1 and S2 are as follows:
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(a) Class 1 training images

(b) Class 2 training images

(c) Test image

Figure 3.4: Training images belonging to two different classes and a test image to be used
with the LDA approach

S1 =



3.8088 0.5892 −1.0935 0.1397 −0.5957 0.3945 −1.6945 −0.8330 0.7713

0.5892 0.8268 −0.1485 −0.7177 0.0467 −0.0865 −0.6335 0.0100 −0.2773

−1.0935 −0.1485 0.4175 −0.0560 −0.0050 −0.2555 0.6165 0.0340 −0.2310

0.1397 −0.7177 −0.0560 0.7893 −0.1033 0.2100 0.2790 −0.1650 0.4777

−0.5957 0.0467 −0.0050 −0.1033 0.5473 0.2760 −0.0700 0.5620 −0.1297

0.3945 −0.0865 −0.2555 0.2100 0.2760 0.5475 −0.0855 0.2820 0.1440

−1.6945 −0.6335 0.6165 0.2790 −0.0700 −0.0855 1.4615 0.1120 −0.2800

−0.8330 0.0100 0.0340 −0.1650 0.5620 0.2820 0.1120 0.6800 −0.2630

0.7713 −0.2773 −0.2310 0.4777 −0.1297 0.1440 −0.2800 −0.2630 0.4613



S2 =



0.8135 −0.6210 −0.0890 0.2820 −0.3790 0.6110 −0.0465 −0.0970 −1.1680

−0.6210 0.7393 −0.1440 −0.1573 0.4547 −0.3367 −0.5863 −0.0900 0.4960

−0.0890 −0.1440 0.8200 −0.2840 0.2500 0.0580 −0.1180 −0.4370 0.5930

0.2820 −0.1573 −0.2840 0.2373 −0.1827 0.1567 −0.0147 0.2200 −0.4060

−0.3790 0.4547 0.2500 −0.1827 1.3073 −0.4743 −1.5447 −0.4880 −0.0030

0.6110 −0.3367 0.0580 0.1567 −0.4743 0.7853 −0.1673 −0.3010 −0.8400

−0.0465 −0.5863 −0.1180 −0.0147 −1.5447 −0.1673 2.9388 1.0020 1.1340

−0.0970 −0.0900 −0.4370 0.2200 −0.4880 −0.3010 1.0020 0.8420 0.5600

−1.1680 0.4960 0.5930 −0.4060 −0.0030 −0.8400 1.1340 0.5600 2.8180


34



The within class scatter matrix is:

Sw =



4.6223 −0.0318 −1.1825 0.4217 −0.9747 1.0055 −1.7410 −0.9300 −0.3967

−0.0318 1.5662 −0.2925 −0.8750 0.5013 −0.4232 −1.2198 −0.0800 0.2187

−1.1825 −0.2925 1.2375 −0.3400 0.2450 −0.1975 0.4985 −0.4030 0.3620

0.4217 −0.8750 −0.3400 1.0267 −0.2860 0.3667 0.2643 0.0550 0.0717

−0.9747 0.5013 0.2450 −0.2860 1.8547 −0.1983 −1.6147 0.0740 −0.1327

1.0055 −0.4232 −0.1975 0.3667 −0.1983 1.3328 −0.2528 −0.0190 −0.6960

−1.7410 −1.2198 0.4985 0.2643 −1.6147 −0.2528 4.4003 1.1140 0.8540

−0.9300 −0.0800 −0.4030 0.0550 0.0740 −0.0190 1.1140 1.5220 0.2970

−0.3967 0.2187 0.3620 0.0717 −0.1327 −0.6960 0.8540 0.2970 3.2793


The mean of each class and the total mean are:

m1 =



221.8333

26.1667

227.5000

243.6667

45.3333

236.5000

232.5000

42.0000

238.3333



m2 =



239.5000

244.6667

220.0000

248.3333

19.3333

246.6667

221.8333

243.0000

234.0000



m =



230.6667

135.4167

223.7500

246.0000

32.3333

241.5833

227.1667

142.5000

236.1667


The between class scatter matrix is:

Sb =



0.0094 0.1158 −0.0040 0.0025 −0.0138 0.0054 −0.0057 0.1065 −0.0023

0.1158 1.4323 −0.0492 0.0306 −0.1704 0.0666 −0.0699 1.3176 −0.0284

−0.0040 −0.0492 0.0017 −0.0011 0.0059 −0.0023 0.0024 −0.0452 0.0010

0.0025 0.0306 −0.0011 0.0007 −0.0036 0.0014 −0.0015 0.0281 −0.0006

−0.0138 −0.1704 0.0059 −0.0036 0.0203 −0.0079 0.0083 −0.1568 0.0034

0.0054 0.0666 −0.0023 0.0014 −0.0079 0.0031 −0.0033 0.0613 −0.0013

−0.0057 −0.0699 0.0024 −0.0015 0.0083 −0.0033 0.0034 −0.0643 0.0014

0.1065 1.3176 −0.0452 0.0281 −0.1568 0.0613 −0.0643 1.2120 −0.0261

−0.0023 −0.0284 0.0010 −0.0006 0.0034 −0.0013 0.0014 −0.0261 0.0006


Since there are two classes, only one eigenvector is kept. The non-zero eigenvector
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and corresponding eigenvalue of SBV = λ SwV are:

ν1 =



0.1847

0.5185

0.5270

0.5571

0.0099

−0.1053

0.0836

0.2611

−0.1503


Table 3.1 shows the values of the images projected onto the first eigenvector. Figure 5

shows a plot of the points, illustrating the separation between the two classes.

Table 3.1: The values of the images projected onto the first eigenvector

Pattern X1 X2 X3 X4 X5 X6

Class 1 283.0480 278.1952 280.6345 280.4389 277.7812 281.8256

Pattern X7 X8 X9 X10 X11 X12
Class2 448.0635 446.7615 448.8117 446.2217 442.5680 446.1270

Y 438.3069

260 280 300 320 340 360 380 400 420 440 460
0

0.5

1

1.5

2

Figure 3.5: Plot of the images projected onto Fisher basis vectors
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3.3.4 Summary of LDA

The steps followed in the evaluation of the Fisherfaces are as follows:

• Read images (faces) in the database and divide them into two sets, one for training

and the other for testing.

• Images for training

• Create the training set and find the average of each class and find the average for

each person’s training images, µj .

• Find average of the training images in the database, µ.

• Apply the Linear Discriminant Analysis to find the within-scatter matrix and between-

scatter matrix:

• The within-scatter matrix:

Sw =
C∑

j=1

Nj∑
i=1

(Xj
i − µj)(X

j
i − µj)T (3.26)

• The between-scatter matrix:

Sb =
C∑

j=1

(µj − µ)(µj − µ)T (3.27)

• Find the associated eigenvectors using the between scatter matrix and within scat-

ter matrix: Sw
−1Sb.

• Transform the test images and all the faces in the database into the face space cre-

ated in the previous step.

• Using Euclidean distance method, find the identity of the test image: εk = ||Ω −

Ωkt||2

• Compute the system accuracy rate.
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3.4 Region-Division with Majority Voting

Instead of applying PCA or LDA directly on face databases [Turk and Pentland, 1991,

Belhumeur et al., 1997, Pentland et al., 1994], this thesis presents a slightly different ap-

proach, where we divide each face image in the database into five horizontal regions,

namely the forehead, eyes, nose, mouth, and chin regions, and then we apply PCA or

LDA on each separate region locally and use majority voting method over the Euclidean

distance values from each algorithm to decide on a match. That is, no recognition is done

on a part-by-part basis, and, instead, each facial region generates a vote for the person

recognized using that region only. Therefore, instead of having one database, we have

five separate databases, one for each facial region. Figure 3.6 depicts the architecture of

our system.

Region Division

Feature Extraction
(PCA/LDA)

Feature Extraction
(PCA/LDA)

Feature Extraction
(PCA/LDA)

Feature Extraction
(PCA/LDA)

Feature Extraction
(PCA/LDA)

Classifier
(Euclidean distance)

M
aj

or
ity

 V
ot

in
g

Decision
Classifier

(Euclidean distance)

Classifier
(Euclidean distance)

Classifier
(Euclidean distance)

Classifier
(Euclidean distance)

Face Database

Forehead
Database

Database
Eye

Database
Mouth

Chin
Database

Database
Nose

Figure 3.6: The architecture of the proposed region-division approach that uses majority
voting

After applying PCA or LDA as alternate feature extractors, we use Euclidean distance

over the resulting vectors in the classifier stage. Instead of taking the best value among

the results and declare the person as it is usually done, our approach takes the best four

values from each facial region, and then we apply majority voting in order to decide on

the best match.

Our system is based upon two main algorithms, one for dividing face images into

regions and the other for executing the tests.

• Database Preparation Algorithm: In this algorithm, the system divides whole-face
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images belonging to each person into five regions, namely the forehead region, eye

region, nose region, mouth region, and chin region. After dividing a single face

image into these five regions, our system saves each region image into a separate

image database.

RegionDivide( Database )

FOR EACH person n = 1 to 15 DO

FOR EACH image i = 1 to 10 DO

Divide imageni
in given whole-face database Database into five regions: {imageniforehead

,

imagenieye
, imageninose

, imagenimouth
, imagenichin

}

Add imageniforehead
to Databaseforehead

Add imagenieye
to Databaseeye

Add imageninose
to Databasenose

Add imagenimouth
to Databasemouth

Add imagenichin
to Databasechin

END

END

• Recognition Algorithm: This algorithm runs a recognition test for a given test im-

age t using feature extraction methodM using the training database TrainDatabase.

The algorithm returns the ID of the person that is recognized by the system.

Recognize( t, M , TrainDatabase )

Divide test image t into five regions: R ={imageforehead , imageeye , imagenose ,

imagemouth , imagechin}

RegionDivide( TrainDatabase )

FOR EACH test image region ts in R DO

FOR EACH Databases resulting from RegionDivide( TrainDatabase ) DO

Process Databases using M (PCA or LDA)

Compute the projection vector ps for test image ts in R

FOR EACH training image k in Databases DO
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Compute the projection vector pk for k

Compute Euclidean distance dsk between ps and pk

END

END

END

D = {}

FOR EACH region r in {forehead , eye , nose , mouth , chin} DO

Determine the smallest/best Euclidean distance value dr

Add dr to D

END

Determine the best Euclidean distance value dbest in D

FOR EACH person p in TrainDatabase DO

Initialize the total votes for recognition Cp to 0

END

FOR EACH distance value dr in D DO

Add 1 (vote) Cp where p is a person in TrainDatabase

END

Return the person ID p in TrainDatabase with the highest total vote Cp

3.5 Evaluation Method nad Experiment Design

In order to evaluate the ideas presented in this thesis, we will compare the performance

of our region-division techniques that employ majority voting to the performance of the

classic technique that uses the whole face. One of our region-division methods uses all

the five regions a face is divided into (Figure 4.2, Chapter 4). The second region-division

technique also uses the same five facial regions, but it also uses the entire face as a sixth

region.

Since there are 10 images per person in both the ORL database and the NFID, we

conduct tests that vary the number of training images between 1 and 9, as the number

of test images vary from 9 to 1. In addition, we conduct each experiment with both PCA

and LDA.

Our system randomly generates 10 test scenarios for each run with a given num-
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ber of training/test images, feature extraction method (PCA/LDA), and face recognition

approach (5 Region/6 Region/Whole Face). Therefore, for each given number of train-

ing/test images, we run three sets of experiments, one for each face recognition approach.

Each run contains 10 different experiments where, in each experiment, each given test im-

age is compared to all available training images in the given database. For example, in

the NFID, when two test images are used per person (i.e., number of training images per

person will then be 8), each test image will be compared to 15× 8 (120) training images.

To test for statistical significance, we use the student’s t-test. Since each run has 10

scenarios, we compare the ten recognition rate averages for each such run to those ob-

tained from another run. For this comparison, we use the unpaired t-test, because each

test scenario is not repeated.

3.6 Implementation

We implemented the two region-division approaches with majority voting in Matlab ver-

sion 7.1. One of the region-division approaches uses the five regions of the face. The

second approach uses the five regions of the face but also considers the whole face as a

sixth region presented in this thesis. A desktop computer was used for testing with an

Intel Celeron 2.8GHz CPU, 512MB main memory, and an 80GB hard disk.

3.7 Summary

This chapter presented our proposed approach for face recognition that uses the two

region-division approaches with majority voting scheme. Since we test this approach

using PCA and LDA, this chapter also presents the PCA and LDA algorithms for face

recognition.
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CHAPTER 4

FACE IMAGE DATABASES

4.1 Overview

Our work in this thesis focus mainly in applying PCA and LDA algorithms using ORL

(Olivetti Research Laboratories) database [Website, 1994] and our new face database,

which we prepared for this purpose. We divided the faces in the database into five re-

gions: forehead region, eye region, nose region, mouth region, and chin region. This

chapter discusses the details of the new database.

4.2 Camera Details

We used a SAMSUNG Digimax 301 digital camera with 3.2 megapixel resolution to shoot

these photos. Camera features are listed in Table 4.1:

4.3 NEU Face Image Database (NFID)

A total of 150 face images where taken against a homogeneous dark background by the

author between December 2007 and March 2008. The images belong to 15 students study-

ing at the Near East University, Cyprus. Each student has had his face image captured 10

times where each of the 10 images represents a different facial expression (open/closed

eyes, smiling/not smiling), facial details (glasses/no glasses, beard/shaven, hat/without

hat), varying lighting, and head pose (tilting and rotation). Figure 4.1 shows an example

subset of the NEU Face Image Database.
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Model SAMSUNG Digimax 301
Pixel Resolution 3.2 MP
PC Camera function Yes
Digital Camera Function Yes
Image Resolution 1600× 1200, 1280× 1024, 1024× 768
Lens Free focus, 50mm equivalent
Shutter 1/4 sec ∼ 1/1000sec
Focusing Range Normal: 1.5m–inf , Macro: 30–50cm, Text: 11 13cm
Digital Zoom Yes
Flash Built-in
File Format Compressed JPEG
Quality Level Super fine, Fine, Normal
Connectivity Mini USB
LCD Monitor Status LCD

Table 4.1: Specifications of the digital camera used to capture the images used in the NEU
Face Image Database

All the images in the NEU Database were preprocessed by resizing them to 90 × 120

pixels and converting them to grayscale bitmap images, as demonstrated in Figure 4.2.

Figure 4.3 is the entire content of the NEU Face Image Database (NFID). The database

contains 10 images per person with poses similar to that in the ORL database. Moreover,

this database contains subjects wearing beards, hats, and different types of eyewear.

Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 depict the face region databases

generated from the NFID.

4.4 The ORL Database

For testing the algorithms performance based on the number of classes, number of Eigen-

faces, Fisherfaces, pose and accessories the ORL (Olivetti Research Laboratory) database

has been used, which is freely distributed on the Internet (See Figure 4.9). The ORL

database contains a set of face images taken between April 1992 and April 1994 at the

lab. There are 10 face images of 40 subjects where taken against a dark background. The

faces vary in lighting, facial expressions, and facial details (glasses/ no glasses) and pose

(straight looking, left-looking and right looking). Each face here will be again divided to

5 regions same as what we did with our own face image database. The results of both

databases are compared in Chapter 5.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: An example set of images from the NEU Database. Image (a) shows the per-
son shaven, image (b) wearing a beard, image (c) shaven but with light-colored glasses,
image (d) wearing a beard but with dark sunglasses, (e) wearing a beard but with a base-
ball hat, and, finally, image (f) shaven and smiling.

4.5 Summary

In this chapter, we showed our new prepared face database together with, the ORL

(Olivetti Research Laboratories) database. We divided the faces in the database to five

parts; forehead region, eyes region, nose region, mouth region, and chin region. These

regions will be supplied separately to the recognition system and the results will be eval-

uated as it will be shown in next chapter.

44



(a) Original color image (b) Resized
color image

(c) Resized
grayscale
image

Forehead region (40 pixels)

Eye region (20 pixels)

Nose region (20 pixels)

Mouth region (20 pixels)

Chin region (20 pixels)

(d) Division of the face image

Figure 4.2: An example image for the NEU Database. (a) Each image starts with its color
original. (b) Then the color original is scaled down to 90 × 120 pixels. (c) Finally, color
is replaced by grayscale values (90× 120 pixels), and the five parts (forehead, eyes, nose,
mouth, chin) are created with the given fixed region-division scheme.
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Figure 4.3: NEU Face Image Database. The database has images of 15 persons. For each
person, the database contains 10 variations each for a total of 150 images
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Figure 4.4: NEU Face Image Database (Forehead Region)

Figure 4.5: NEU Face Image Database (Eye Region)
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Figure 4.6: NEU Face Image Database (Nose Region)

Figure 4.7: NEU Face Image Database (Mouth Region)
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Figure 4.8: NEU Face Image Database (Chin Region)
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Figure 4.9: ORL Face Image Database. The database has images of 40 persons. For each
person, the database contains 10 variations each for a total of 400 images
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CHAPTER 5

RESULTS and DISCUSSION

5.1 Overview

This chapter presents the experiments we carried out in our study and the results ob-

tained from these experiments. We used two separate databases, namely the ORL database

and our own database that we refer to as the NEU Face Image Database (NFID) (See Chap-

ter 4).

The aim is to show that, existing schemes that use the whole face do not perform well

when faces are occluded by what is worn on the face such as beards, glasses, or hats and

that, using our proposed region-division with majority voting approach results in better

performance than using the classic whole face approach.

5.2 Face Recognition Examples

In this section, we illustrate the way our system works with the help of a few examples.

5.2.1 Whole Face Example

Figure 5.1 depicts the entire sequence of the classic whole face approach to face recogni-

tion for a small experiment conducted using a small set of images from the ORL database.

Five training images are used for each person, and, then, for each person, one test image

is used. As Figure 5.1 indicates, all 5 test images were correctly identified using both PCA

and LDA feature extraction method.
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(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

1 2 3 4 5

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 3 4 5

(k) Recognized face images with PCA
1 2 3 4 5

(l) Recognized face images with LDA

Figure 5.1: ORL whole face example using both PCA and LDA. The input to the system
are the five sets of face images, each with five variations. Although PCA and LDA rec-
ognize different images as most similar to the test images (j), the results (k & l) are 100%
correct.
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5.2.2 Region-based PCA and LDA Examples

This section provides recognition examples using region-based division in order to pro-

vide a perspective for how our system works.

Forehead Example:

(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

1 2 3 4

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 5 4 5

(k) Recognized face images with PCA
1 2 3 4 5

(l) Recognized face images with LDA

Figure 5.2: ORL forehead region example using both PCA and LDA (Figure 5.1(a)–
Figure 5.1(e) are corresponding full-face images). The input to the system are the five
sets of face images, each with five variations.

Figure 5.2 depicts how region-division works with only a single region at work, in this

case, the forehead. Similar to the previous example, the figure depicts a small experiment

conducted using a small set of images from the ORL database. Five training images are

used for each person, and, then, for each person, one test image is used. Using PCA,

all but the third person were recognized correctly. The third person (Figure 5.2 (j), third

image from left) was recognized incorrectly as the fifth person (Figure 5.2 (e)). Using

53



LDA, on the other hand, all persons were recognized correctly.

Eye Example:

(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

1 2 3 4

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 3 4 3

(k) Recognized face images with PCA
1 2 3 4 2

(l) Recognized face images with LDA

Figure 5.3: ORL eye region example using both PCA and LDA (Figure 5.1(a)–Figure 5.1(e)
are corresponding full-face images). The input to the system are the five sets of face
images, each with five variations.

Figure 5.3 depicts a small experiment conducted using a small set of eye images ex-

tracted from the ORL database. Five training eye images are used for each person, and,

then, for each person, one test image is used. Using PCA, all but the fifth person were

recognized correctly. The fifth person (Figure 5.3 (j), fifth image from left) was recognized

incorrectly as the third person (Figure 5.3 (c)). Similarly, using LDA, all but the fifth per-

son were recognized correctly. The fifth person (Figure 5.3 (j), fifth image from left) was

recognized incorrectly as the second person (Figure 5.3 (b)).

Nose Example:

Figure 5.4 depicts a small experiment conducted using a small set of nose images ex-

tracted from the ORL database. Five training eye images are used for each person, and,

then, for each person, one test image is used. Using PCA, all but the fifth person were
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(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

1 2 3 4

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 3 4 3

(k) Recognized face images with PCA
1 2 3 4 3

(l) Recognized face images with LDA

Figure 5.4: ORL nose region example using both PCA and LDA. The input to the system
are the five sets of face images, each with five variations.

recognized correctly. The fifth person (Figure 5.4 (j), fifth image from left) was recognized

incorrectly as the third person (Figure 5.4 (c)). Similarly, using LDA, all but the fifth per-

son were recognized correctly. The fifth person (Figure 5.4 (j), fifth image from left) was

also recognized incorrectly as the third person (Figure 5.4 (c)).

Mouth Example:

Figure 5.5 depicts a small experiment conducted using a small set of mouth images ex-

tracted from the ORL database. Five training eye images are used for each person, and,

then, for each person, one test image is used. Using both PCA and LDA, all but the fifth

person were recognized correctly. The fifth person (Figure 5.5 (j), fifth image from left)

was recognized incorrectly as the third person (Figure 5.5 (c)).

Chin Example:

Figure 5.6 depicts a small experiment conducted using a small set of mouth images ex-

tracted from the ORL database. Five training eye images are used for each person, and,

then, for each person, one test image is used. Using both PCA and LDA, all but the third
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(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

1 2 3 4

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 3 4 3

(k) Recognized face images with PCA
1 2 3 4 3

(l) Recognized face images with LDA

Figure 5.5: ORL mouth region example using both PCA and LDA. The input to the sys-
tem are the five sets of face images, each with five variations.

(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image
1 2 3 4 5

(g) Difference between each training set im-
age and the average image

(h) Eigenfaces of the difference images
1 2 3 4 5

(i) Fisherfaces of the difference images
1 2 3 4 5

(j) Test set of 5 images
1 2 5 4 5

(k) Recognized face images with PCA
1 2 5 4 5

(l) Recognized face images with LDA

Figure 5.6: ORL chin region example using both PCA and LDA. The input to the system
are the five sets of face images, each with five variations.
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person were recognized correctly. The third person (Figure 5.6 (j), third image from left)

was recognized incorrectly as the fifth person (Figure 5.6 (e)).

5.2.3 A Counter-Example Using the Classic Whole Face Approach

This section presents a counter-example of using the classic whole-face approach. The

experiment run involved images of five persons from the NEU Face Image Database

(NFID). For each person, the experiment used 5 training images and 5 test images. The

recognition rate using PCA was 2/5, and using LDA, the recognition rate was 3/5. Fig-

ure 5.7 is a summary of this experiment.
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(a) Training images for person 1 (b) Training images for person 2

(c) Training images for person 3 (d) Training images for person 4

(e) Training images for person 5

(f) Average image

(g) Difference between each training set im-
age and the average image

(h) Eigenfaces of the difference images

(i) Fisherfaces of the difference images

(j) Test set of 5 images

(k) Recognized face images with PCA

(l) Recognized face images with LDA

Figure 5.7: Counter-example where the full-face application of PCA and LDA fails to
recognize the images from the NEU Face Image Database correctly. PCA recognition rate
= 2

5 , LDA recognition rate = 3
5
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5.3 Simulation Results for PCA

This section presents the results of performing whole-face recognition using PCA on the

ORL face image database and the NEU Face Image Database (NFID).

5.3.1 ORL Database and NEU Face Image Database (NFID)

Firstly, we used our NEU Face Image Database to perform PCA-based whole face recog-

nition and compare the performance to that with the ORL database. In the ORL experi-

ments, we used 10 images of 40 different individuals from the ORL database. We varied

the number of training images from 1 to 9, so the number of test images varied between

9 and 1 always totaling 10. We applied the same to the NFID. Table 5.1 shows the results

of applying PCA-based recognition to both of these face image databases.

Table 5.1: PCA recognition rates for the NEU Face Image Database (NFID) and the ORL
database

# training images #test images NFID ORL

1 9 49.4 58.2
2 8 54.6 72.4
3 7 62.0 79.6
4 6 64.7 84.0
5 5 65.2 89.2
6 4 66.2 91.9
7 3 71.8 92.4
8 2 67.7 94.0
9 1 71.3 96.8

Figure 5.8 is a graph of the results given in Table 5.1. From Figure 5.8 and Table 5.1,

one can observe that recognition rates for the ORL database were very close. As the

number of training images increased, the recognition results for both the ORL database

and NFID increased, but the recognition rates for the ORL database were higher than

that for NFID. Therefore, we can conclude from this analysis that applying whole face

recognition on the NFID does not work well. That is, these results confirm that the NFID

is more challenging database than the ORL due to different types of occlusions present

in the images of the NFID.
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Figure 5.8: PCA recognition rates varying with respect to number of training images
using the whole face as input (NEU Face Image Database (NFID),ORL database)

5.3.2 Region-based PCA Recognition

We also investigated how recognition rate would vary if we use only one of the five facial

parts at a time for recognition in order to gain a perspective on the potential contribution

of each facial part to the overall recognition rate.

ORL Database

Table 5.2 presents for recognition performance of individual facial parts in the case of the

ORL database as well as the whole face. We can see that the chin region provided the

best results with 88.5% recognition rate when 9 training and 1 test images were used.

Still, the recognition performance using the whole face was better with 96.8%. Note that

the results for the whole face are repeated here from Table 5.1.

Figure 5.9 is a graph of the results given in Table 5.3. The Figure 5.9 and Table 5.3

present PCA recognition rates varying with respect to the number of training images

using the whole face, five facial regions with majority voting, and using six regions (5

facial regions and the classic whole face as a sixth region) with majority voting for the

ORL database. From The Figure 5.9 and Table 5.3, one can observe that the two region-
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Table 5.2: PCA recognition results for the ORL database using the whole face alone and
each facial part on its own. Thus, this table provides a perspective on the potential rela-
tive contribution of each part to the overall recognition.

#training
images

#test
images

Whole
Face

Forehead
Region

Eye Re-
gion

Nose
Region

Mouth
Region

Chin
Region

1 9 58.2 48.3 36.1 33.6 31.4 42.2
2 8 72.4 61.9 46.0 46.5 44.9 58.7
3 7 79.6 69.1 53.1 55.3 51.9 66.5
4 6 84.0 73.0 60.8 59.4 56.1 72.6
5 5 89.2 77.5 63.4 66.3 60.8 76.7
6 4 91.9 80.3 66.0 69.2 63.8 79.8
7 3 92.4 80.8 69.0 72.7 68.8 83.6
8 2 94.0 84.0 72.3 77.3 71.3 86.9
9 1 96.8 82.5 72.3 78.3 75.3 88.5

division approaches did not perform any better than the classic whole-face approach.

Table 5.3: PCA recognition rates for the ORL Database
#training
images

#test
images

Whole
Face

5 Regions
(MV)

6 Regions
(MV)

1 9 58.2 48.6 52.7
2 8 72.4 65.7 72.2
3 7 79.6 74.7 78.7
4 6 84.0 82.9 83.3
5 5 89.2 86.1 88.2
6 4 91.9 88.6 91.3
7 3 92.4 91.9 94.3
8 2 94.0 94.4 95.9
9 1 96.8 95.3 96.8

5.3.3 NEU Face Image Database (NFID)

Table 5.4 presents for recognition performance of five individual facial parts in the case

of the NEU Face Image Database (NFID) as well as the whole face. As in the above

experiment, the chin region provided the best results with 78% recognition rate when 9

training and 1 test images were used. As stated previously, the recognition performance

using the whole face with 9 training images were a mere 71.3%. Note that the results for

the whole face are repeated here from Table 5.1.

Figure 5.10 is a graph of the results given in Table 5.5. The Figure 5.10 and Table 5.5

present PCA recognition rates varying with respect to the number of training images us-
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Figure 5.9: PCA recognition rates varying with respect to number of training images
using the whole face, five-regions of the face, and five regions of the face combined with
the whole face as input (ORL database)

ing the whole face, five facial regions with majority voting, and using six regions (5 facial

regions and the classic whole face as a sixth region) with majority the NEU Face Image

Database (NIFD). From Figure 5.10 and Table 5.5, one can observe that the recognition

rates for the five facial regions with majority voting and using six regions with majority

voting better than the classic whole-face. Tabletabl:overall-results-ttest depicts the results

of statistical significance tests using the student’s t-test.

5.4 Simulation results for LDA

This section presents the results of performing whole-face recognition using LDA on the

ORL face image database and the NEU Face Image Database (NFID).

5.4.1 ORL Database and NEU Face Image Database (NFID)

Firstly, we used our NEU Face Image Database (NFID) to perform LDA-based whole-

face recognition and compare the performance to that with the ORL database. In the

ORL experiments, we again used 10 images of 40 different individuals from the ORL
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Table 5.4: PCA recognition results for the NEU Face Image Database using the whole
face alone and each facial part on its own. Thus, this table provides a perspective on the
potential relative contribution of each part to the overall recognition.

#training
images

#test
images

Whole
Face

Forehead
Region

Eye Re-
gion

Nose
Region

Mouth
Region

Chin
Region

1 9 49.4 32.1 35.6 30.7 27.6 51.0
2 8 54.6 36.8 39.3 35.4 35.2 61.0
3 7 62.0 38.2 40.5 41.8 39.3 66.4
4 6 64.7 40.6 44.7 42.3 39.8 68.6
5 5 65.2 42.3 47.2 46.5 42.0 69.9
6 4 66.2 42.5 48.2 47.0 46.0 73.0
7 3 71.8 43.3 49.1 50.2 48.0 75.8
8 2 67.7 44.3 51.0 49.3 49.0 77.7
9 1 71.3 38.7 52.7 54.0 48.0 78.0

Table 5.5: PCA recognition rates for the NFID
#training
images

#test
images

Whole
Face

5 Regions
(MV)

6 Regions
(MV)

1 9 49.4 39.9 44.0
2 8 54.6 51.6 56.3
3 7 62.0 63.4 59.0
4 6 64.7 64.2 68.8
5 5 65.2 67.3 69.5
6 4 66.2 68.7 71.0
7 3 71.8 74.0 78.0
8 2 67.7 73.7 77.0
9 1 71.3 78.0 81.3

database. We varied the number of training images from 1 to 9, i.e., the number of test

images varied between 9 and 1. We applied the same to the NFID. Table 5.6 shows the

results of applying LDA-based recognition to both of these face image databases.

As in the case of PCA (Table 5.1), results in Table 5.6 and Figure 5.11 demonstrate that

higher recognition rates were possible with the ORL database than with the NEU Face

Image Database (NFID). This also confirms that the NEU Face Image Database (NFID) in-

volves difficulties that severely affect recognition performance. As may be observed from

Figure 4.3, face in the NEU Face Image Database (NFID) contain occlusions or obstacles

such as a hat, sunglasses, and beards for the same faces.
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Figure 5.10: PCA recognition rates varying with respect to number of training images
using the whole face, five-regions of the face, and five regions of the face combined with
the whole face as input (NFID)
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Figure 5.11: LDA recognition rates varying with respect to number of training images
using the whole face as input (ORL database, NEU Face Image Database (NFID))
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Table 5.6: LDA recognition rates for the NEU Face Image Database (NFID) and the ORL
Database

#training images #test images NFID ORL

1 9 18.3 5.1
2 8 63.3 76.6
3 7 75.9 87.5
4 6 78.8 91.5
5 5 78.5 95.3
6 4 80.3 97.3
7 3 79.1 97.5
8 2 79.0 97.9
9 1 78.7 99.0

5.4.2 Region-based LDA Recognition

In this section, we present an analysis similar to what was presented in Section 5.3.2 except

that LDA is used in this case instead of PCA.

ORL Database

Table 5.7 presents the recognition performance of individual facial parts in the case of the

ORL database. The recognition rate obtained when the full face is used is duplicated

here from Table 5.6 for comparison. Interestingly, using only the forehead region, the

recognition rate was 94.3% when 9 images were used for training, and, using the whole

face, the recognition rate was 99%.

Table 5.7: LDA recognition results for the ORL Database using the whole face alone
and each facial part on its own. Thus, this table provides a perspective on the potential
relative contribution of each part to the overall recognition.

#training
images

#test
images

Whole
Face

Forehead
Region

Eye Re-
gion

Nose
Region

Mouth
Region

Chin
Region

1 9 5.1 2.4 3.9 3.1 4.1 3.4
2 8 76.6 70.3 44.0 36.8 38.1 47.8
3 7 87.5 79.0 57.0 51.5 54.6 62.5
4 6 91.5 85.8 65.9 58.8 63.0 71.9
5 5 95.3 89.0 70.8 67.8 68.8 77.5
6 4 97.3 91.0 75.8 71.1 75.6 81.1
7 3 97.5 93.2 78.7 75.9 79.5 83.0
8 2 97.9 93.5 83.0 79.3 82.4 86.6
9 1 99.0 94.3 83.8 83.0 81.8 86.5

Figure 5.12 is a graph of the results given in Table 5.8. The Figure 5.12 and Table 5.8
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present the LDA-based recognition rates varying with respect to the number of training

images using the classic whole-face, five facial regions with majority voting and using

six regions with majority for the ORL database. From Figure 5.12 and Table 5.8, one can

observe that the two region-division approaches did not perform better than the classic

whole-face approach.

Table 5.8: LDA recognition rates for the ORL Database
#training
images

#test
images

Whole
Face

5 Regions
(MV)

6 Regions
(MV)

1 9 5.1 4.2 6.1
2 8 76.6 60.4 68.0
3 7 87.5 76.9 83.9
4 6 91.5 85.0 89.1
5 5 95.3 90.7 93.2
6 4 97.3 92.6 95.8
7 3 97.5 94.5 97.4
8 2 97.9 96.4 98.1
9 1 99.0 96.5 98.5
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Figure 5.12: LDA recognition rates varying with respect to number of training images
using the whole face, five-regions of the face, and five regions of the face combined with
the whole face as input (ORL)
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NEU Face Image Database (NFID)

Table 5.9 presents for recognition performance of five individual facial parts when the

NEU Face Image Database (NFID) is used. The whole-face performance is duplicated

here from Table 5.6 for comparison. The performance obtained using only the chin region

was higher than the performance obtained for all cases. Similarly, using only the chin re-

gion, in the experiment with 9 training images, the recognition rate was 92.7% compared

to 78.7% when the whole face was used.

Table 5.9: LDA recognition results for the NEU Face Image Database using the whole
face alone and each facial part on its own. Thus, this table provides a perspective on the
potential relative contribution of each part to the overall recognition.

#training
images

#test
images

Whole
Face

Forehead
Region

Eye Re-
gion

Nose
Region

Mouth
Region

Chin
Region

1 9 18.3 16.1 14.7 16.4 16.5 19.2
2 8 63.3 48.7 40.6 40.5 42.6 72.8
3 7 75.9 57.4 47.0 51.5 54.2 82.8
4 6 78.8 61.6 51.4 54.4 58.3 86.8
5 5 78.5 64.4 51.7 56.5 63.2 89.6
6 4 80.3 67.0 52.8 56.3 65.3 91.2
7 3 79.1 70.9 55.8 57.8 63.1 91.1
8 2 79.0 67.3 57.3 59.3 60.7 92.3
9 1 78.7 76.7 50.0 60.0 67.3 92.7

Figure 5.13 is a graph of the results given in Table 5.10. The Figure 5.13 and Table 5.10

present the LDA-based recognition rates varying with respect to the number of training

images using the classic whole-face approach, five facial regions with majority voting

approach, and six regions with majority voting approach for the NIFD. From Figure 5.13

and Table 5.10, one can observe that the recognition rates for the five facial regions with

majority voting and using six regions with majority voting were statistically better than

the classic whole-face, as depicted in Tabletabl:overall-results-ttest.

5.5 Summary of Results for the NEU Face Image Database (NFID)

Table 5.11 depicts the summary of the recognition results for all PCA- and LDA-based

experiments using a single training image and 9 test images. The two region-division

approaches did not improve the performance compared to the whole-face approach. As

expected, since the number of training images was low, PCA performed relatively better
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Table 5.10: LDA recognition rates for the NFID
#training
images

#test
images

Whole
Face

5 Regions
(MV)

6 Regions
(MV)

1 9 18.3 20.9 21.9
2 8 63.3 60.7 64.5
3 7 75.9 78.6 81.9
4 6 78.8 83.9 87.2
5 5 78.5 85.6 88.3
6 4 80.3 84.3 87.5
7 3 79.1 89.3 92.0
8 2 79.0 88.7 89.3
9 1 78.7 94.0 95.3

than LDA.

Table 5.11: Comparison of the recognition rate results for the NEU Face Image Database
(NFID) between the whole-face approach and two region-division approaches with ma-
jority voting using the PCA and LDA methods with 1 training image and 9 test image.
One of the region-division approaches uses the five-regions of the face. The second ap-
proach uses the five-regions of the face but also considers the whole face as a sixth region.

Technique PCA LDA

Whole Face 49.4 18.3
Five Regions (Majority Voting) 39.9 20.9
Six Regions (Majority Voting) 44.0 21.9

Table 5.12 depicts the summary of the recognition results for all PCA- and LDA-based

experiments using 5 training images and 5 test images. The two region-division ap-

proaches did not improve the performance compared to the whole-face approach using

PCA. In the case of LDA, however, both region-division approaches improved over the

classic whole-face approach with 99% statistical confidence (See Table 5.14).

Table 5.12: Comparison of the recognition rate results for the NEU Face Image Database
(NFID) between the whole-face approach and two region-division approaches with ma-
jority voting using the PCA and LDA methods with 5 training image and 5 tests image.
One of the region-division approaches uses the five regions of the face. The second ap-
proach uses the five-regions of the face but also considers the whole face as a sixth region.

Technique PCA LDA

Whole Face 65.2 78.5
Five Regions (Majority Voting) 67.3 85.6
Six Regions (Majority Voting) 69.5 88.3

Table 5.13 depicts the summary of the recognition results for all PCA- and LDA-based
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Figure 5.13: LDA recognition rates varying with respect to number of training images
using the whole face, five-regions of the face, and five regions of the face combined with
the whole face as input (NFID)

experiments using 9 training images and a single test image.

The two region-division approaches did not improve the performance compared to

the whole-face approach using PCA. In the case of LDA, however, both region-division

approaches improved over the classic whole-face approach with 99% statistical confi-

dence (See Table 5.14).

Table 5.13: Comparison of the recognition rate results for the NEU Face Image Database
(NFID) between the whole-face approach and two region-division approaches with ma-
jority voting using the PCA and LDA methods with 9 training image and 1 test image.
One of the region-division approaches uses the five regions of the face. The second ap-
proach uses the five-regions of the face but also considers the whole face as a sixth region.

Technique PCA LDA

Whole Face 71.3 78.7
Five Regions (Majority Voting) 78.0 94.0
Six Regions (Majority Voting) 81.3 95.3

Table 5.14 presents an overall statistical comparison of the performance using five

facial regions with majority voting and using six regions (5 facial regions and the whole

face as a sixth region) with majority voting versus the classic whole-face approach. The

table presents the t-test results for varying number of training and test cases using PCA
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Table 5.14: Statistical two-tailed unpaired t-test comparison of the recognition results
for the NEU Face Image Database (NFID) between the classic whole-face approach and
two region-division approaches with majority voting approach using the PCA and LDA
feature extraction methods with different sets of training and test sets. One of the region-
division approaches uses the five-regions of the face. The second approach uses the five-
regions of the face but also considers the whole face as a sixth region. The value in
each table cell indicates the confidence level of the t-test based on 10 test averages. Each
of the 10 tests run have been generated randomly. Negative values indicate that the
classic whole-face approach performed better than the technique in question with the
given confidence level reversed. A horizontal dash (—) indicates that the performance
difference for the corresponding test was not statistically significant.

PCA LDA

5 Regions
vs Whole
Face

6 Regions
vs Whole
Face

5 Regions
vs Whole
Face

6 Regions
vs Whole
Face

1 training, 9 test -99% -85% — —
5 training, 5 test — 85% 99% 99%
9 training, 1 test — 85% 99% 99%

and LDA feature extraction methods.

When only a single training image and 9 test images (per person) were used with

PCA, the classic whole-face approach outperformed the five-region approach with 99%

confidence. In a similar vein, the whole face performance was numerically (but not nec-

essarily statistically) better than the six-region approach. Hence these results have been

expressed as negative values in Table 5.14.

In the case of LDA with a single training image and 9 test images per person, there

is no statistically significant difference between the performance of the five-region ap-

proach and the whole-face approach, and so is the case between the performance of the

six-region approach and the whole-face approach.

As the number of training images is increased, we start observing this negative per-

formance being reversed in favor of our region-division approaches except in the case of

the five-region approach using PCA. Numerically (but not necessarily statistically), the

performance of our region-division approaches was better than the classic whole-face ap-

proach using LDA both when 5 training images were used and 9 training images were

used.

Unlike in the case of PCA, with LDA, our region-division approaches outperformed

the classic whole-face approach with a statistical 99% confidence both when 5 training
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images were used and 9 training images were used. Therefore, these results indicate that

our region-division approach can improve face recognition over the classic whole face

approach using LDA.

5.6 Summary

This chapter presented a series of results providing a perspective on the region division

with majority voting scheme presented in this thesis and overall results of running the

whole-face approach and our approach on the NEU Face Image Database. We used two

well-known feature extraction algorithms, namely the PCA and LDA to get a better un-

derstanding of the differences between the classic whole-face approach to recognition

and the region-division approach reported in this thesis.

71



CHAPTER 6

CONCLUSIONS

Our work focused on applying PCA and LDA feature extraction algorithms using the

ORL (Olivetti Research Laboratories) database and our own NEU Face Image Database

(NFID), which we prepared in order to demonstrate the performance of the region-division

approach applied to face recognition in this thesis. The idea behind creating a new

database was to make the recognition task more challenging by making the face images

harder to recognize by adding some obstacles such as a hat, glasses or sunglasses than

the images available in the ORL database.

With this challenging database and from the results in Chapter 5, we can conclude that

the performance of the classic approach of using PCA and LDA with the face as a whole

was not good enough. We demonstrated the weakness of this method with the NEU Face

Image Database we created.

Since, for some examples, considering the whole face failed when the face is occluded

or modified in an image, we hypothesized that dividing the face into multiple regions and

using the best matching parts as a guide for recognition would perform better. In our ap-

proach, each face image is divided into five regions, namely the forehead region, eye re-

gion, nose region, mouth region, and chin region. So we created five new databases from

the original NEU Face Image Database. Then the processed values of these 5 databases

were combined using majority voting, as described in Chapter 3.

The results reported in Chapter 5 show that, for the NEU Face Image Database, the two

region-division approaches with majority voting improved, with a statistical 99% confi-

dence, the recognition rate with 5 training images and 5 test images per person compared

to the the classic approach with the LDA feature extraction method.
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The recognition rates with PCA for five regions increased from 65.2% to 67.3%, and

the recognition rate with LDA increased from 78.5% to 85.6%, and for six regions with

PCA the recognition rate increased to 69.5% and for LDA to 88.3%. and with 9 training

images and 1 test image per person, for the five regions approach with PCA the recog-

nition rate increased from 71.3% to 78.0% and the recognition rate with LDA increased

from 78.7% to 94.0%, and, for the six-region approach with PCA, it increased to 81.3%,

and, for LDA, the recognition rate increased to 95.3%. From these results, we can also

conclude that the LDA algorithm performed better than PCA algorithm on our challeng-

ing face image database. On the other hand, the region-division approaches reported in

this thesis did not perform any better than the whole-face approach both under PCA and

LDA for the ORL database.

6.1 Future Work

Our NEU Face Image Database consists of only 15 persons with 10 face images per per-

son. This database is limited, and it can be enlarged and improved to contain more per-

sons and possibly more images per person. Another improvement to our work may

involve applying some other algorithms for face recognition and compare them with

both PCA and LDA algorithms such as Support Vector Machines (SVM) and Neural

Networks. These performance of these algorithms can be evaluated using our region-

division approach, and the results can be compared with the obtained results in this the-

sis. Moreover, during the preparation of the NEU databases, the five facial regions where

cropped and prepared manually. The cropping and resizing of the regions can be done

automatically as in [Kotani et al., 2006].
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APPENDIX A

Matlab Source Code

This appendix contains the Matlab source code that implements the ideas presented in
this thesis. For conducting student’s t-tests, we used a function named testt() that
is publicly available [Cardillo, 2006]. This function depends on the powerStudent()
function [Trujillo-Ortiz, 2003]. We also use a function called distance() that computes
the Euclidean distance matrix between two sets of vectors [Bunschoten, 1999] –this func-
tion has been renamed to euclideanDistance() in our source code.

All program listings in this appendix have been reformatted from their original in
order to fit their text within the available text area.

A.1 computeAverageImage.m

function avgImage = computeAverageImage( trainsets, trainSetSize,

numRuns, curRun, numPersons, numImagesPerPerson,

dirPath, imageXdim, imageYdim )

% Keeps track of which row to pick. The row format is such that

% each test case is listed one after the other for each person.

% Therefore, there are a total of N x M rows where N is the number

% of persons and M is the value of numRuns

%

trainRow = curRun;

I = zeros( imageXdim, imageYdim );

for i=1:numPersons

%fprintf(1, ’\n>>> Averaging [Run %d, Person %d]\n’, curRun, i );

curTrainVector = trainsets( trainRow, 1:trainSetSize );

for j=1:trainSetSize

% Specific index of the training image for the current person

%

trainval = curTrainVector( j );

% Name of the current training image

%

facefile = [ dirPath ’face’ int2str( trainval +
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((i - 1) * numImagesPerPerson) ) ’.bmp’];

% Read the input face image and add it to the total

%

[X, MAP] = imread( facefile );

X=ind2gray( X, MAP );

I = I + double( X );

end

trainRow = trainRow + numRuns;

end

% Compute the average face from all training images in the current

% training set

avgImage = I / (numPersons * trainSetSize);

end

80



A.2 computeTrainDifference.m

function A = computeTrainDifference( trainsets, curRun, numRuns,

numPersons, trainSetSize, numImagesPerPerson, avgImage,

imageXdim, imageYdim, dirPath )

% Computes the difference between the average training image and

% each of the training images for the current run and then compute

% the covariance matrix from this difference

%

vectorIndex=curRun;

for personID=1:numPersons

curTrainVector = trainsets( vectorIndex, 1:trainSetSize );

for curTrainIndex=1:trainSetSize

% Generate the name of the current training image

%

trainImageIndex = curTrainVector( curTrainIndex );

facefile = [ dirPath ’face’ int2str( trainImageIndex +

((personID - 1) * numImagesPerPerson) ) ’.bmp’];

[X, MAP] = imread( facefile );

X = ind2gray( X, MAP );

diff = double( X ) - avgImage;

newDiffVect = reshape( diff, 1, (imageXdim * imageYdim) );

% Create a column matrix

diffTransposed = transpose( newDiffVect );

ai = ((personID - 1) * trainSetSize) + curTrainIndex;

A( :, ai ) = diffTransposed; % Covariance matrix holder

end

vectorIndex = vectorIndex + numRuns;

end

end
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A.3 generateTestAndTrainCases.m

function [testsets, trainsets] = generateTestAndTrainCases(

numPersons, numRuns, testSetSize, numImagesPerPerson )

%rand( ’seed’, 1000 )

testsets=[];

trainsets=[];

imageIDs=randperm( numImagesPerPerson );

combinations=nchoosek( imageIDs, testSetSize );

num_combinations = length( combinations );

for i=1:numPersons

curtestset=[];

curtrainset=[];

for j=1:numRuns

pick=randomval( num_combinations );

curtest=[];

for col=1:testSetSize

curtest=[ curtest combinations( pick, col )];

end

curtrain=setdiff( imageIDs, curtest );

curtestset=[ curtestset; curtest ];

curtrainset=[ curtrainset; curtrain ];

end

testsets=[testsets; curtestset];

trainsets=[trainsets; curtrainset];

end

end

82



A.4 mainmain.m

% Main program for running all tests

%

modeName=’UNKNOWN_Mode’

if (mode == 1) modeName=’PCA’;

elseif (mode == 2) modeName=’LDA’;

end

methodName=’UNKNOWN_Method’

if (method == 1) methodName=’Weighted Majority Voting’;

elseif (method == 2) methodName=’Regular Majority Voting’;

end

faceType=’’;

if (regionSelection(1) == 1) faceType=[faceType ’forehead ’]; end

if (regionSelection(2) == 1) faceType=[faceType ’eye ’]; end

if (regionSelection(3) == 1) faceType=[faceType ’nose ’]; end

if (regionSelection(4) == 1) faceType=[faceType ’mouth ’]; end

if (regionSelection(5) == 1) faceType=[faceType ’chin ’]; end

if (regionSelection(6) == 1) faceType=[faceType ’full ’]; end

outfilename = [’results.’ databaseName ’.’ modeName ’.’ methodName ’.’

faceType ’.’ fileinfo ’.txt’];

outfilename = deblank( outfilename );

resultout = fopen ( outfilename, ’wt’ );

fprintf( resultout, ’LaTeX>%% %s Experiments (%s, %s, regions=[%s])\n’,

modeName, databaseName, methodName, faceType );

for numTest=(numImagesPerPerson - 1):-1:1

performance=[];

decisions=[];

% Generate the test and training sets that will be used in all

% testing so that our comparisons are standardized

%

[testsets, trainsets]=generateTestAndTrainCases( numPersons,

numRuns, numTest, numImagesPerPerson );

numTrain = (numImagesPerPerson - numTest);

[performance decisions]=regiondivision( testsets, trainsets, mode,

method, databaseName, regionSelection,

numPersons, numRuns, numTest,

numImagesPerPerson, numBestValues, mainPath );

averagePerformance = mean( performance );

fprintf( resultout, ’LaTeX> %3d & %3d & %4.1f & \n’, numTrain,

numTest, averagePerformance );
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fprintf( resultout, ’Matlab>performance=[%s]\n’,

sprintf( ’%3.2f ’, performance ) )

fprintf( resultout, ’Matlab>decisions=[%s]\n’,

sprintf( ’%d ’, decisions ) )

end
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A.5 projectTestImages.m

function y = projectTestImages( testsets, curRun, numRuns, numPersons,

trainSetSize, numImagesPerPerson,

avgImage, eigenFaces, imageXdim,

imageYdim, imageDirPath )

vectorIndex = curRun;

trainMatrixSize = (numPersons * trainSetSize);

testSetSize = numImagesPerPerson - trainSetSize;

for personID=1:numPersons

% Pick the test set image indices for the current person

%

curTestVector = [testsets( vectorIndex, 1:testSetSize )];

for curTestIndex=1:testSetSize

% Index of the training image for the current person

%

testImageIndex = curTestVector( curTestIndex );

facefile = [ imageDirPath ’face’ int2str( testImageIndex +

((personID - 1) * numImagesPerPerson) ) ’.bmp’];

[AI,Mp2] = imread( facefile );

AI = ind2gray( AI, Mp2 );

DI = double( AI ) - avgImage;

gamma = reshape( DI, (imageXdim * imageYdim), 1 );

omega = zeros( trainMatrixSize, 1 );

for k=trainMatrixSize:-1:1

W = transpose( eigenFaces( :, k ) ) * gamma;

omega( (trainMatrixSize - k) + 1 ) = W;

end

yi = ((personID - 1) * testSetSize) + curTestIndex;

y( :, yi ) = omega(:);

end

vectorIndex = vectorIndex + numRuns;

end

end
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A.6 projectTrainImages.m

function x = projectTrainingImages( trainsets, curRun, numRuns,

numPersons, trainSetSize,

numImagesPerPerson, avgImage,

eigenFaces, imageXdim, imageYdim,

imageDirPath )

vectorIndex = curRun;

trainMatrixSize = (numPersons * trainSetSize);

for personID=1:numPersons

% Pick the training set image indices for the current person

%

curTrainVector = [trainsets( vectorIndex, 1:trainSetSize )];

for curTrainIndex=1:trainSetSize

% Index of the training image for the current person

%

trainImageIndex = curTrainVector( curTrainIndex );

facefile = [ imageDirPath ’face’ int2str( trainImageIndex +

((personID - 1) * numImagesPerPerson) ) ’.bmp’];

[AI, Mp2] = imread( facefile );

AI = ind2gray( AI, Mp2 ); % AI: Arbitrary Image

DI = double( AI ) - avgImage; % DI: Difference Image

gamma = reshape( DI, (imageXdim * imageYdim), 1 );

omega = zeros( trainMatrixSize, 1 );

for k=trainMatrixSize:-1:1

W = transpose( eigenFaces( :, k ) ) * gamma;

omega( (trainMatrixSize - k) + 1 ) = W;

end

xi = ((personID - 1) * trainSetSize) + curTrainIndex;

x( :, xi ) = omega( : );

end

vectorIndex = vectorIndex + numRuns;

end

end
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A.7 randomval.m

% randval = randomval( x )

%

% Generates a random integer value between 1 and x, inclusive

%

% Examples:

%

% >> randomval( 5 )

% ans = 5

% >> randomval( 5 )

% ans = 4

% >> randomval( 5 )

% ans = 3

% >> randomval( 5 )

% ans = 1

% >> randomval( 5 )

% ans = 5

% >> randomval( 5 )

% ans = 3

%

function randval=randomval( x )

randval = 1 + rem( floor( rand() * x ), x );

end
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A.8 regiondivision.m

% Note that regular full face or individual region tests can be done

% using the weighted majority voting mode with a single region

%

function [performance allDecisions]=regiondivision( testsets,

trainsets, mode, method, databaseName, regionSelection,

numPersons, numRuns, testSetSize, numImagesPerPerson,

numBestValues, mainPath )

if (method == 1)

fprintf( ’--- Region Division with Weighted Majority Voting ...\n’ );

elseif (method == 2)

fprintf( ’--- Region Division with Regular Majority Voting ...\n’ );

else

fprintf( ’*** Error: Unsupported method %d! Exiting ...\n’, method );

exit( 1 );

end

if (mode == 1)

fprintf( ’--- Region Division with PCA ...\n’ );

elseif (mode == 2)

fprintf( ’--- Region Division with LDA ...\n’ );

else

fprintf( ’*** Error: Unsupported mode %d! Exiting ...\n’, method );

exit( 1 );

end

performance=[];

isUseForehead=regionSelection( 1 );

isUseEye=regionSelection( 2 );

isUseNose=regionSelection( 3 );

isUseMouth=regionSelection( 4 );

isUseChin=regionSelection( 5 );

isUseWholeFace=regionSelection( 6 );

trainSetSize = (numImagesPerPerson - testSetSize);

allDecisions=[];

for curRun=1:numRuns;

if (isUseForehead)

imageDirPath=strcat( mainPath, databaseName, ’\’,

’forehead’, ’\’ );

if (mode == 1)
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fprintf( ’--- Performing PCA (Region Division) on FOREHEAD

region ...\n’ );

F=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on FOREHEAD

region ...\n’ );

F=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

end

end

if (isUseEye)

imageDirPath=strcat( mainPath, databaseName, ’\’, ’eye’, ’\’ );

if (mode == 1)

fprintf( ’--- Performing PCA (Region Division) on EYE

region ...\n’ );

E=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on EYE

region ...\n’ );

E=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

end

end

if (isUseNose)

imageDirPath=strcat( mainPath, databaseName, ’\’, ’nose’, ’\’ );

if (mode == 1)

fprintf( ’--- Performing PCA (Region Division) on NOSE

region ...\n’ );

N=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on NOSE

region ...\n’ );

N=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

end

end
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if (isUseMouth)

imageDirPath=strcat( mainPath, databaseName, ’\’, ’mouth’, ’\’ );

if (mode == 1)

fprintf( ’--- Performing PCA (Region Division) on MOUTH

region ...\n’ );

M=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on MOUTH

region ...\n’ );

M=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

end

end

if (isUseChin)

imageDirPath=strcat( mainPath, databaseName, ’\’, ’chin’, ’\’ );

if (mode == 1)

fprintf( ’--- Performing PCA (Region Division) on CHIN

region ...\n’ );

C=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on CHIN

region ...\n’ );

C=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

end

end

if (isUseWholeFace)

imageDirPath=strcat( mainPath, databaseName, ’\’, ’full’, ’\’ );

if (mode == 1)

fprintf( ’--- Performing PCA (Region Division) on the

WHOLE FACE ...\n’ );

W=pca_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,

numImagesPerPerson, imageDirPath );

elseif (mode == 2)

fprintf( ’--- Performing LDA (Region Division) on the

WHOLE FACE ...\n’ );

W=lda_RegionDivisionTest( testsets, trainsets, numPersons,

numRuns, curRun, testSetSize,
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numImagesPerPerson, imageDirPath );

end

end

numCorrectDecisions=0;

decisionsForCurrentRun=[];

for i=1:(testSetSize*numPersons)

bestDistanceValues=[];

bestDistanceIndices=[];

% Keep track of how many regions have been included in testing

%

numRegions=0;

if (isUseForehead)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(F(i,:));

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);

end

if (isUseEye)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(E(i,:));

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

end

if (isUseNose)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(N(i,:));

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);

end

if (isUseMouth)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(M(i,:));

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

end

if (isUseChin)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(C(i,:));

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);
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end

if (isUseWholeFace)

numRegions = numRegions + 1;

[bestVals bestIdxs]=sort(W(i,:));

bestDistanceValues(numRegions,:)=bestVals(1:numBestValues);

bestDistanceIndices(numRegions,:)=bestIdxs(1:numBestValues);

end

if (method == 1)

% Do Weighted Majority Voting

% First, we pick the distance values in the first column,

% which are the smallest and the corresponding indices from

% the index matrix

%

bestOfBestValues = bestDistanceValues( :, 1 );

bestOfBestIndices = bestDistanceIndices( :, 1 );

weightContributions = min( bestOfBestValues ) ./ bestOfBestValues;

weightIndices = ceil( bestOfBestIndices / trainSetSize );

% Weights for all persons in the database

personWeights = zeros( numPersons, 1 );

for j=1:numRegions

personID = weightIndices( j );

personWeights( personID ) = personWeights( personID ) +

weightContributions( j );

end

[maxPersonWeight maxPersonID] = max( personWeights );

if (maxPersonID == ceil( i / testSetSize ))

numCorrectDecisions = numCorrectDecisions + 1;

decisionsForCurrentRun = [decisionsForCurrentRun 1];

else

decisionsForCurrentRun = [decisionsForCurrentRun 0];

end

elseif (method == 2)

% Do Regular Majority Voting

%

personIDMatrix = ceil( bestDistanceIndices / trainSetSize );

% Weight for each person

personWeights = zeros( numPersons, 1 );

for j=1:numRegions

curRegion_personID = personIDMatrix( j, : );

for k=1:numBestValues

curID = curRegion_personID( k );

personWeights( curID ) = 1 + personWeights( curID );

end

end
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[maxPersonWeight maxPersonID] = max( personWeights );

% Compare the person ID corresponding to the matrix location

% that has the highest weight contribution with the person ID

% of the current test subject. Note that we do not have the

% information about which particular face image we are

% dealing. We only know the ID of the test subject because of

% the order of the test case, meaning the first 3 test

% subjects would belong to Person 1, the next 3 would belong

% to Person 2 and so on. If the particular face image needs

% to be known, we will need to modify this program so that

% that information is carried along with other argument

% values

%

if (maxPersonID == ceil( i / testSetSize ))

numCorrectDecisions = numCorrectDecisions + 1;

decisionsForCurrentRun = [decisionsForCurrentRun 1];

else

decisionsForCurrentRun = [decisionsForCurrentRun 0];

end

end

end

fprintf( ’--- Number of correct decisions/#Tests: %d/%d\n’,

numCorrectDecisions, (testSetSize*numPersons) );

fprintf( ’--- Training set size=%d, number of persons=%d\n’,

trainSetSize, numPersons );

P = ( numCorrectDecisions / (testSetSize*numPersons) ) * 100;

if (method == 1)

disp( sprintf( ’>>> Performance of Region-Division with Weighted

Majority Voting using PCA = %3.2f’, P ))

elseif (method == 2)

disp( sprintf( ’>>> Performance of Region-Division with Majority

Voting using PCA = %3.2f’, P ))

end

performance = [performance P]

allDecisions = [allDecisions decisionsForCurrentRun];

end
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A.9 pcacomp.m

% PCA Performance Comparison

%

diary pca-statistics.txt

% Syntax: TESTT(X1,X2,TST,ALPHA,TAIL)

%

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’PCA Comparison Results (1 training, 9 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

% PCA Experiments (neudb, Weighted Majority Voting, regions=[full ])

% 1 & 9 & 49.4 &

%

fullFaceAverage=[58.52 57.04 40.74 54.07 37.04 57.04 40.74

57.04 44.44 47.41 ];

fullFaceDecisions=[1 1 1 0 1 ... 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 ];

% PCA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin ])

%

fiveRegionAverage=[45.93 45.19 43.70 37.78 29.63 42.96 37.04 41.48

39.26 35.56 ];

fiveRegionDecisions=[0 1 0 0 0 ... 0 0 0 0 0 1 0 1 1 0 1 0 0 ];

% PCA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin full ])

%

sixRegionAverage=[48.15 44.44 48.89 41.48 41.48 41.48 34.81 43.70

45.19 50.37 ];

sixRegionDecisions=[0 0 1 0 ... 0 0 0 0 0 0 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )

94



fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’PCA Comparison Results (5 training, 5 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

% PCA Experiments (neudb, Weighted Majority Voting, regions=[full ])

% 5 & 5 & 65.2 &

%

fullFaceAverage=[69.33 58.67 64.00 65.33 66.67 68.00 61.33 65.33

68.00 65.33 ];

fullFaceDecisions=[1 1 0 0 ... 1 0 1 1 1 1 1 1 0 0 1 ];

% PCA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin ])

%

fiveRegionAverage=[65.33 72.00 66.67 73.33 66.67 70.67 65.33 64.00

58.67 70.67 ];

fiveRegionDecisions=[1 1 1 0 ... 1 0 1 1 1 1 0 0 1 0 1 ];

% PCA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin full ])
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%

sixRegionAverage=[74.67 78.67 70.67 62.67 66.67 73.33 62.67 65.33

65.33 74.67 ];

sixRegionDecisions=[1 0 0 0 1 ... 1 0 1 1 1 0 1 1 0 0 1 0 0 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’PCA Comparison Results (9 training, 0 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

fullFaceAverage=[60.00 86.67 86.67 80.00 53.33 73.33 73.33

66.67 53.33 80.00 ];

fullFaceDecisions=[1 1 0 1 ... 1 0 1 0 1 1 1 0 1 1 ];
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fiveRegionAverage=[60.00 93.33 80.00 93.33 66.67 86.67 80.00

66.67 73.33 80.00 ];

fiveRegionDecisions=[1 1 0 1 ... 1 0 1 1 1 1 1 1 1 0 ];

sixRegionAverage=[73.33 93.33 66.67 80.00 80.00 100.00 80.00

66.67 86.67 86.67 ];

sixRegionDecisions=[1 0 1 1 ... 1 1 1 1 1 1 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

diary off
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A.10 ldacomp.m

% Syntax: TESTT(X1,X2,TST,ALPHA,TAIL)

%

% Please note that long output lines have been clipped in order to

% make all content fit the available space

%

diary lda-statistics.txt

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’LDA Comparison Results (1 training, 9 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

% LDA Experiments (neudb, Weighted Majority Voting, regions=[full ])

%

fullFaceAverage=[11.85 14.81 14.07 25.93 42.96 8.89 10.37 37.78

7.41 8.89 ];

fullFaceDecisions=[0 0 0 0 0 ... 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ];

% LDA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin ])

%

fiveRegionAverage=[19.26 11.85 15.56 28.15 23.70 32.59 16.30

24.44 17.04 20.00 ];

fiveRegionDecisions=[0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 ];

% LDA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin full ])

%

sixRegionAverage=[13.33 16.30 20.74 25.93 27.41 36.30 10.37 27.41

18.52 22.96 ];

sixRegionDecisions=[0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )
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fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’LDA Comparison Results (5 training, 5 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

% LDA Experiments (neudb, Weighted Majority Voting, regions=[full ])

% 5 & 5 & 78.5 &

fullFaceAverage=[81.33 76.00 77.33 76.00 80.00 68.00 84.00 76.00

81.33 85.33 ];

fullFaceDecisions=[1 1 0 0 0 ... 1 0 1 1 0 1 0 0 1 ];

% LDA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin ]) 5 & 5 & 85.6 &

fiveRegionAverage=[88.00 86.67 78.67 82.67 82.67 93.33 82.67 86.67

85.33 89.33 ];

fiveRegionDecisions=[1 0 1 1 1 ... 1 1 1 0 1 1 1 1 1 1 1 0 1 ];

% LDA Experiments (neudb, Regular Majority Voting, regions=[forehead

% eye nose mouth chin full ]) 5 & 5 & 88.3 &

sixRegionAverage=[92.00 92.00 84.00 86.67 82.67 93.33 86.67 86.67
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86.67 92.00 ];

sixRegionDecisions=[1 1 1 1 ... 1 0 1 1 1 1 1 1 1 0 1 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’------------------------------------------------\n’ );

fprintf( 1, ’LDA Comparison Results (9 training, 0 test)\n’ );

fprintf( 1, ’------------------------------------------------\n’ );

clear all;

conflevel85=0.15;

conflevel95=0.05;

conflevel99=0.01;

fullFaceAverage=[73.33 80.00 73.33 86.67 73.33 100.00 80.00

66.67 73.33 80.00 ];

fullFaceDecisions=[1 1 1 0 ... 1 1 0 1 1 1 1 0 1 1 ];

fiveRegionAverage=[80.00 100.00 100.00 100.00 86.67 100.00 93.33

93.33 93.33 93.33 ];
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fiveRegionDecisions=[1 1 0 1 1 ... 0 1 1 1 1 1 1 1 1 ];

sixRegionAverage=[80.00 100.00 100.00 100.00 100.00 93.33 93.33

93.33 100.00 93.33 ];

sixRegionDecisions=[1 1 0 1 ... 1 1 1 1 1 1 1 1 ];

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionAverage,

fullFaceAverage)\n\n’ )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( fiveRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (fiveRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( fiveRegionDecisions, fullFaceDecisions, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionAverage,

fullFaceAverage)\n\n’ )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel85 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel95 )

testt( sixRegionAverage, fullFaceAverage, 0, conflevel99 )

fprintf( 1, ’\n\n>>> Comparison of (sixRegionDecisions,

fullFaceDecisions)\n\n’ )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel85 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel95 )

testt( sixRegionDecisions, fullFaceDecisions, 0, conflevel99 )

diary off
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A.11 setuppath.m

%

% Set up the path to the Matlab directory that contains all software

%

cd ’C:\Documents and Settings\Administrator\Desktop\software’;

addpath ’C:\Documents and Settings\Administrator\Desktop\software’;

mainPath=’C:\Documents and Settings\Administrator\Desktop\software\’
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A.12 run neu lda rmv regiondivision.m

An example script that runs 10 randomly generated experiments on the NFID database
using LDA and majority voting using five regions of the face.

close all;

clear all;

setuppath

regionSelection=[1 1 1 1 1 0];

numPersons=15

numImagesPerPerson=10

databaseName=’neudb’;

numRuns=10

numBestValues=4

mode=2 % LDA

method=2 % Regular Majority Voting

fileinfo=’np15_nr10_nbv4’

mainmain

% End of script
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A.13 run orl pca wmv full.m

An example script that runs 10 randomly generated experiments on the ORL database
using PCA using only the whole face.

close all;

clear all;

setuppath

regionSelection=[0 0 0 0 0 1];

numPersons=40

numImagesPerPerson=10

databaseName=’orldb’;

numRuns=10

numBestValues=1

mode=1 % PCA

method=1 % weighted Majority Voting

fileinfo=’np40_nr10_nbv1’

mainmain

% End of script
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