NEAR EAST UNIVERSITY
INSTITUTE OF APPLIED SCIENCES
DEVELOPING AN ECG MONITORING AND ANALYSIS SOFTWARE
Erkan Coşkun
Master Thesis

Department of Computer Engineering

Nicosia - 2008
ACKNOWLEDGEMENT
I would like to thank my supervisor Prof. Dr. Doğan İbrahim for his invaluable advice and belief in my work and myself during this MSc. Degree.
ABSTRACT

An electrocardiogram (ECG or EKG) is produced by an electrocardiograph, which records the electrical activity of the heart over time.
Analysis of the various waves and normal vectors of depolarization and re-polarization yields important diagnostic information. In this thesis a software package has been developed for the monitoring and analysis of the ECG waveforms. The software is user friendly and it implements the most basic ECG analysis such as finding QRS complexes. The most important part of all the waves in the ECG waveform is the QRS complex. The QRS complex is a waveform that appears in most normal and abnormal signals in an ECG.

The software can monitor the signal in real time with different variants and can be used to detect four heart related abnormalities. One of the advantages of the software is to be open source and it can be fed by various data like the computer generated signals using simulation software or MIT-BIH database which is the world-wide database that stores a very large number of ECG waveforms. The cost of commercial available ECG analysis software is extremely high. On the other hand, the software developed by the author costs much less than the commercially available ECG software.

CONTENTS
	ACKNOWLEDGEMENT
	ii

	ABSTRACT
	iii

	CONTENTS
	iv

	LIST OF FIGURES
	viii

	LIST OF TABLES
	xi

	1. INTRODUCTION
	1

	2. PRINCIPALS OF THE HUMAN HEART
	3

	 2.1. Structure of Heart
	3

	 2.2. Direction of Blood Flow
	5

	 2.3. Valves of the Heart
	7

	 2.4. Working Principles of the Heart
	7

	 2.4.1. SA Node
	7

	 2.4.2. AV Node
	7

	 2.4.3. His-Purkinje Network
	8

	 2.5. The Cardiac Cycle
	8

	 2.5.1. Atrial Systole
	9

	 2.5.2. Ventricular Systole
	9

	 2.5.3. Complete Cardiac Diastole
	10

	 2.6. The Heart Rate
	10

	 2.6.1. Control of Heart Rate
	11

	 2.6.2. Heart Rate Variability
	12

	 2.6.3. Maximum Heart Rate
	12

	 2.6.4. Target Heart Rate
	13

	 2.6.5. Heart Rate Reserve
	13

	 2.7. Electrocardiogram
	13

	 2.7.1. ECG Graph Paper
	14

	 2.7.2. Filter Selection
	15

	 2.7.3. ECG Leads
	16

	 2.7.4. Waves and Intervals of the ECG
	17

	 2.7.5. P Wave
	17

	 2.7.6 PR Interval
	18

	 2.7.7. QRS Complex
	18

	 2.7.8. ST Segment
	20

	 2.7.9. T Wave
	20

	 2.7.10. QT Interval
	21

	 2.7.11 U Wave
	21

	3. DATA FOR THE ECG SOFTWARE
	23

	 3.1. Overview
	23

	 3.2. Obtaining Data from MIT-BIH Database
	23

	 3.2.1. PhysioBank
	23

	 3.2.2. ECG Databases
	24

	 3.2.3. MIT-BIH Database
	25

	 3.2.4. Selection Criteria of the Records
	26

	 3.2.5. MIT-BIH Database Record Files
	27

	 3.2.6. Reading the MIT-BIH Database
	28

	 3.2.6.1. Cygwin
	28

	 3.2.6.2. The Basic Functionalities of Cygwin
	29

	 3.2.6.3. The PhysioToolkit Software (WFDB Library)
	29

	 3.2.6.4. WFDB Software
	30

	 3.2.6.4.1. WFDB Library
	31

	 3.2.6.4.2. WFDB Applications
	31

	 3.2.6.5. Installing Cygwin and WFDB Library
	31

	 3.2.6.6. Using Rdsamp Program
	32

	 3.2.6.7. Using Rdsamp Program to Get the First 10 Seconds of Data
	33

	 3.2.6.8. Records in the MIT-BIH Arrhythmia Database
	35

	 3.3. Getting Data from Simulation Algorithms
	36

	 3.3.1. ECGSYN A Realistic ECG Waveform Generator
	36

	 3.3.2. Using ECGSYN A Realistic ECG Waveform Generator
	36

	 3.3.3. ECGSYN Program Parameters
	37

	 3.4. Getting Data from an ECG Device
	38

	 3.4.1. The Device
	38

	 3.4.1.1. The Electrodes
	38

	 3.4.1.1.1. Types of ECG Electrodes
	40

	 3.4.1.1.2. The Attachment of Electrodes to the Subject
	41

	 3.4.1.2. The Block Diagram
	42

	 3.4.1.3. The ECG Unit Software
	45

	 3.4.1.4. Modifying the Hardware and Software
	49

	4. SOFTWARE DOCUMENTATION
	51

	 4.1. Overview
	51

	 4.2. Flow Chart of the Software
	51

	 4.3. Reading the Data
	52

	 4.3.1. Reading the Data from Text Files
	52

	 4.3.2. Functions Created to Read the Data
	53

	 4.3.3. Reading the Data from the ECG Device
	54

	 4.4. Monitoring the ECG
	54

	 4.4.1. GDI Basics and Principles
	54

	 4.4.1.1. System Drawing Namespace
	55

	 4.4.1.2. Graphics Class
	55

	 4.4.1.3. Graphics State
	55

	 4.4.2. Drawing the ECG Line
	56

	 4.5 Models for ECG Analysis
	56

	 4.5.1. QRS Detection
	56

	 4.5.2. QRS Complex Detection Algorithm
	56

	 4.5.2.1. The Low-Pass Filter
	57

	 4.5.2.2. 50Hz Notch Filter
	57

	 4.5.2.3. Differentiator
	57

	 4.5.2.4. Squaring Function
	58

	 4.5.2.5. Moving Window Integrator
	60

	 4.5.2.6. Computation of Heart Rate
	62

	 4.5.2.7. Analysis and Diagnosis of Tachycardia and Bradycardia
	62

	 4.5.2.8. Detecting Normal Sinus Rhythm, Tachycardia, Bradycardia or

 Asytole
	63

	 4.6 Inference Rules for the Expert System
	64

	 4.7 Comparison of the System developed by the Author with Commercial
 Systems
	75

	 4.8 Screen Shots of the Software with Different Heart Beats per Minute
	78

	5. SUGGESTIONS FOR FUTURE IMPROVEMENTS
	82

	 5.1 Overview
	82

	 5.2 Future Improvements about the Software
	82

	 5.2.1 Using DirectX rather than GDI
	82

	 5.2.2 Filtering was done in the hardware
	82

	 5.2.3 The QRS detection algorithm can be updated
	82

	 5.2.4 The system is not designed as a critical application.
	83

	 5.2.5 The software is not platform independent
	83

	 5.2.6 No internet or Network Support
	84

	 5.2.7 No Database Support
	84

	 5.2.8 No Reporting Functionality
	84

	 5.3 Future improvements about the Hardware
	84

	CONCLUSION
	86

	REFERENCES
	87

	APPENDIX 1
	91

	APPENDIX 2
	113

	APPENDIX 3
	117

LIST OF FIGURES
	Figure 2.1 Physical Appearance and Major Components of the Heart
	3

	Figure 2.2 A Simplification of Figure 1.1
	6

	Figure 2.3 Electrical Conduction Operating in the Heart
	6

	Figure 2.4 The Cardiac Cycle
	8

	Figure 2.5 Atrial Systole
	9

	Figure 2.6 Ventricular Systole
	10

	Figure 2.7 Cardiac Diastole
	10

	Figure 2.8 Electrocardiogram
	14

	Figure 2.9 ECG Graph Paper.
	15

	Figure 2.10 The Relationship Between Positive Electrodes, Depolarization
 Wavefronts, and Complexes Displayed on the ECG
	16

	Figure 2.11 Schematic Representation of Normal ECG
	17

	Figure 2.12 Various QRS Complexes with Nomenclature
	18

	Figure 3.1 A Screenshot of Cygwin Console
	30

	Figure 3.2 The Command Line for Rdsamp
	34

	Figure 3.3 The Screenshots When the Program Starts to Generate the ECG
 Signal.
	37

	Figure 3.4 Getting Data from Simulation Algorithm (ECGSYN) Parameters:
 % hrmean:70 bpm
	39

	Figure 3.5 Disposable ECG Electrode
	40

	Figure 3.6 Electrode Clips
	41

	Figure 3.7 Some other Self-Adhesive Electrodes
	41

	Figure 3.8 Placement of the Electrodes
	42

	Figure 3.9 Block Schematic of the ECG Unit
	43

	Figure 3.10 Circuit Diagram of the ECG unit
	44

	Figure 3.11 128 x 64 Graphics LCD Used in the Design
	45

	Figure 3.12 Complete ECG Unit
	45

	Figure 3.13 x,y Coordinates of the LCD Screen
	48

	Figure 3.14 ECG Waveform Displayed by the LCD
	48

	Figure 3.15 Getting Serial Output from the ECG Device
	49

	Figure 4.1 Flow Chart of the Software
	52

	Figure 4.2 Theoretical Frequency Response of the Low-Pass Filter
	58

	Figure 4.3 The Snapshot of the ECG Analysis (Thesis) Software
	59

	Figure 4.4 Matlab Presentation of Differentiated Signal
	60

	Figure 4.5 Matlab Presentation of Differentiated and Square Rooted Signal
	61

	Figure 4.6 Trace line which is Red.
	62

	Figure 4.7 Sinus Normal Sinus Form in ECG
	63

	Figure 4.8 Sinus Bradycardia Form in ECG
	63

	Figure 4.9 Sinus Tachycardia Form in ECG
	64

	Figure 4.10 Asystole Form in ECG
	64

	Figure 4.11 Normal Sinus Rhythm ECG view
	68

	Figure 4.12 Sinus Arrhythmia ECG view
	65

	Figure 4.13 Sinus Bradycardia ECG view
	66

	Figure 4.14 Sinus Tachycardia ECG view
	66

	Figure 4.15 Premature Atrial Contractions ECG view
	67

	Figure 4.16 Unifocal Premature Ventricular Contractions ECG view
	67

	Figure 4.17 Atrial Flutter ECG view
	68

	Figure 4.18 Atrial Fibrillation ECG view
	69

	Figure 4.19 Superventricular Tachycardia ECG view
	70

	Figure 4.20 Ventricular Tachycardia ECG view
	70

	Figure 4.21 Ventricular Fibrillation ECG view
	71

	Figure 4.22 Junctional (Nodal) Rhythm ECG view
	71

	Figure 4.23 Asystole ECG view
	71

	Figure 4.24 First Degree AV Heart Block ECG view
	72

	Figure 4.25 Second Degree AV Heart Block ECG view
	75

	Figure 4.26 Third Degree AV Heart Block ECG view
	73

	Figure 4.27 CardioTouch System Commercial Representation
	73

	Figure 4.28 CardioTouch System Commercial Representation
	76

	Figure 4.29 Thesis System Commercial Representation
	76

	Figure 4.30 The Screenshot of the Software where Beats Per Minute is 79. The

 Used Database is MIT-BIH Database Record No 100
	78

	Figure 4.31 The Screenshot of the Software where Beats Per Minute is 110.
 The Used Source is ECGSYN Output
	79

	Figure 4.32 The Screenshot of the Software where Beats Per Minute is 70 and
 the ‘% Anoise’ Parameter is 1 mV. The Used Source is ECGSYN

 Output
	79

	Figure 4.33 The Screenshot of the Software where the ‘% Anoise’ Parameter is
 5 mV. The Used Source is ECGSYN Output
	80

	Figure 4.34 The Screenshot of the Software where Beats Per Minute is 49. The
 Used Source is ECGSYN Output
	80

	Figure 4.35 The Screenshot of the Software where Beats Per Minute is 52. The
 Used Database is MIT-BIH Database Record No 117
	81

LIST OF TABLES
	Table 2.1 The Three files 100.atr, 100.dat, and 100.hea Together Comprise
 Record 100.
	27

	Table 2.2 Rdsamp Program Parameters
	32

	Table 2.3 The Output of the Rdsamp Program
	34

	Table 2.4 MIT-BIH Record No. 100 Signal Details
	36

	Table 2.5 ECGSYN Parameters
	37

	Table 4.1 Comparison Table
	77

1. INTRODUCTION
Computer analysis of ECG signals is common today. Devices on the market that analyze ECGs such as patient monitors stress test systems and Holter analysis systems do a good job of detecting beats and classifying arrhythmias. Thirty years of research on computer analysis for ECG signals has produced great many methods for detecting QRS complexes and classifying ECG signals but there is still a significant effort required to interpretation of the signals reliably.
In this thesis a software package has been developed for the monitoring and analysis of ECG waveforms. The software has been implemented to be user friendly and it uses one of the most important QRS detection algorithm. The software can monitor the signals in real time with different variants. Also it can be fed by various data sources. It can detect most of the rhythm abnormalities like Bradycardia or Tachycardia.

One of the problems in ECG analysis is to find suitable waveforms to use in the research work. After extensive literature search the author found the MIT-BIH database. This is a world-wide database that stores a very large number of ECG waveforms. It was the first generally available set of standard test material for evaluation of arrhythmia detectors, and has been used for that purpose as well as for basic research into cardiac dynamics at more than 500 sites worldwide.

After finding the MIT-BIH database the next question was, can we simulate our signals automatically with the properties like 140 beats per second and 3 mV noise? A MATLAB program called ECGSYN was developed for this purpose.

Now that we have a very large ECG database MIT-BIH and also we can generate our special signals too, the only thing left was to write the code for the analysis of the ECG waveforms.

One of the basic requirements in any ECG analysis is to find the QRS complexes to analyze the ECG waveform. The most important of all the waves in the ECG waveform is the QRS complex. The QRS complex is a waveform that appears in most normal and abnormal signals in an ECG. Finding QRS complexes is the main and most necessary task for this software. We implemented Pan-Tompkins real time QRS detection algorithm to detect QRS complexes. There are many QRS detection algorithms in the literature. One of the most regular and successful one is the Pan-Tompkins real time QRS detection algorithm which was chosen by author because of its power and simplicity.
The aim of this thesis is to implement ECG monitoring and analysis software which can be fed by three different data sources that are the MIT-BIH database, ECG simulation algorithms and the microcontroller based portable ECG unit which was developed by Prof. Dr. Doğan İbrahim.
As a summary, Chapter 2 provides the structure and working principles of the heart. It explains the heart rate, cardiac cycle, waves and intervals of the ECG. The reader can briefly understand how the heart works after reading Chapter 1.
Chapter 3 is about the data sources of the software. Three data sources which are MIT-BIH, Simulation Algorithms and the microcontroller based ECG device were explained. It describes how to convert the data sources in useful digital format to feed the software. It provides information about Cygwin, WFDB library and Rdsamp program and describes their usage.
Chapter 4 is about the software documentation. It provides the flow chart of the software, the functions to read different data, monitor the ECG and analysis of the waveforms. It provides the implementation of QRS detection algorithm.
Chapter 5 is about future improvements. It gives the answer of ‘how can we make the software better?’

The software developed by the author can be used to detect four heart related abnormalities but as suggestion in the text, this can easily be improved to detect many other abnormalities. Further development of this software requires that the developer continually test the software against as large ECG database much as the MIT-BIH.
2. PRINCIPALS OF THE HUMAN HEART
In an average lifetime, the heart beats more than two and a half billion times without ever pausing to rest. Like a pumping machine, the heart provides the power needed for life.
2.1 Structure of the Heart
Figure 2.1 is a cut-away section through the heart, showing its physical appearance and labeling its major components and blood vessels.
[image: image1.jpg]Brachiocephalic artery Left common carotid artery
Left subclavian artery

Ascending aorta. Aortic arch
Pulmonic / Pulmonary valve

Right branches of

pulmonary artery

Superior vena cava

Right pulmonary
veins

Left pulmonary
veins

LEFT ATRIUM (L.A.)
Aortic valve
RIGHT ATRIUM (R.A.)

Mitral (bicuspid) valve

Tricuspid valve LEFT VENTRICLE
Inferior vena cava L.V.
(LVv)

RIGHT VENTRICLE (R.V.)

Interventricular septum

Figure 2.1 Physical Appearance and Major Components of the Heart
The heart is a muscular cone-shaped organ about the size of a clenched fist of the same person. It is located in the upper body (chest area) between the lungs, and with its pointed end (called the apex) downwards, forwards, and pointing towards the left.

The basic structure of the heart (illustrated above) may be described as follows:

Three layers of tissue form the heart wall. The outer layer of the heart wall is the epicardium, the middle layer is the myocardium, and the inner layer is the endocardium.

The myocardium of the heart wall is a working muscle that needs a continuous supply of oxygen and nutrients to function with efficiency. For this reason, cardiac muscle has an extensive network of blood vessels to bring oxygen to the contracting cells and to remove waste products.

The right and left coronary arteries, branches of the ascending aorta, supply blood to the walls of the myocardium. After blood passes through the capillaries in the myocardium, it enters a system of cardiac (coronary) veins. Most of the cardiac veins drain into the coronary sinus, which opens into the right atrium.

The Heart is divided into separate right and left sections by the interventricular septum, or "septum" when the context is clearly that of the heart. Each of these (right and left) sections is also divided into upper and lower compartments known as atria and ventricles, respectively. The four main chambers of the heart are therefore the:

· Right Atrium (Labeled "RA");

· Right Ventricle (Labeled "RV");

· Left Atrium (Labeled "LA");

· Left Ventricle (Labeled "LV").
The two atria are thin-walled chambers that receive blood from the veins. The two ventricles are thick-walled chambers that forcefully pump blood out of the heart. Differences in thickness of the heart chamber walls are due to variations in the amount of myocardium present, which reflects the amount of force each chamber is required to generate [1].
2.2 Direction of Blood Flow

Deoxygenated blood (from the body) is pumped through the right atrium and the right ventricle (to the lungs), while oxygenated blood (from the lungs) is pumped through the left atrium and the left ventricle (to the body).
· Deoxygenated blood enters the right atrium from the Superior vena cava and the Inferior vena cava.

· Deoxygenated blood leaves the right ventricle by Pulmonary artery, which takes blood to the lungs via the right and left branches of the pulmonary artery.

· Oxygenated blood enters the left atrium from the Pulmonary veins. These may be labeled as "right pulmonary veins" and "left pulmonary veins".

· Oxygenated blood leaves the left ventricle by Ascending aorta, which takes blood to the body via its system of arteries, arterioles, and capillaries. Major arteries leading from the heart (via the ascending aorta) include the brachiocephalic artery, the left common carotid artery, and the left subclavian artery (illustrated above). These are just a few of the main arteries of the body.

It is essential that blood flows in the correct direction through the heart so the structure of the heart includes a series of valves.

· The Tricuspid valve separates the right atrium from the right ventricle.

· The Pulmonic / Pulmonary valve separates the right ventricle from the pulmonary artery.

· The Mitral (also known as the Bicuspid) valve separates the left atrium from the left ventricle.

· The Aortic valve separates the right ventricle from the ascending aorta.
Figure 2.2 is a simplification of Figure 2.1; Figure 2.3 includes additional information about structures concerned with the system of electrical conduction operating in the heart [2].

[image: image2.png]Septum Aorta

Pulmonary Attery

Superior =
uimonary
s e o
Inferior
vena cava

Bicuspid valve
Tricuspid valve

Heart muscle
Semi-unar valves.

{Freventooa fom
lowing n the wron
i "

Figure 2.2 Simplification of Figure 2.1.
[image: image3.png]Innervated by the
Vagus nerve Atrio-ventricular
Node (AVN)

Sino-atrial Node (SAN)
="Pacemaker"

Purkinje fibres

Figure 2.3 Additional Information.
2.3 Valves of the Heart

Pumps need a set of valves to keep the fluid flowing in one direction and the heart is no exception. The heart has two types of valves that keep the blood flowing in the correct direction. The valves between the atria and ventricles are called atrioventricular valves (also called cuspid valves), while those at the bases of the large vessels leaving the ventricles are called semilunar valves.

The right atrioventricular valve is the tricuspid valve. The left atrioventricular valve is the bicuspid, or mitral, valve. The valve between the right ventricle and pulmonary trunk is the pulmonary semilunar valve. The valve between the left ventricle and the aorta is the aortic semilunar valve.

When the ventricles contract, atrioventricular valves close to prevent blood from flowing back into the atria. When the ventricles relax, semilunar valves close to prevent blood from flowing back into the ventricles [3].
2.4 Working Principles of the Heart
The atria and ventricles work together, alternately contracting and relaxing to pump blood through heart. The electrical system of heart is the power source that makes this possible. Heartbeat is triggered by electrical impulses that travel down a special pathway through your heart:
2.4.1 SA node (sinoatrial node) – known as the heart’s natural pacemaker
The impulse starts in a small bundle of specialized cells located in the right atrium, called the SA node. The electrical activity spreads through the walls of the atria and causes them to contract. This forces blood into the ventricles.
The SA node sets the rate and rhythm of your heartbeat. Normal heart rhythm is often called normal sinus rhythm because the SA (sinus) node fires regularly.
2.4.2 AV node (atrioventricular node)
The AV node is a cluster of cells in the center of the heart between the atria and ventricles, and acts like a gate that slows the electrical signal before it enters the ventricles. This delay gives the atria time to contract before the ventricles do.
2.4.3 His-Purkinje Network
This pathway of fibers sends the impulse to the muscular walls of the ventricles and causes them to contract. This forces blood out of the heart to the lungs and body. The SA node fires another impulse and the cycle begins again [4].
2.5 The Cardiac Cycle
Cardiac cycle is the term referring to all or any of the events related to the flow of blood that occur from the beginning of one heartbeat to the beginning of the next (see Figure 2.4). The frequency of the cardiac cycle is the heart rate. Every single 'beat' of the heart involves three major stages: atrial systole, ventricular systole and complete cardiac diastole. The term diastole is synonymous with relaxation of a muscle. Throughout the cardiac cycle, the blood pressure increases and decreases.

[image: image4.jpg]PROTODIASTOLE - (ISOMETRIC m.mm«
JECTION:]

B o, |

i
7R s

i
£00 ~
g ~~<<AORTC PRESSURE
Ee0d
'
| 3%
. pressune
o R s

H

VOLUME (mi)
3

Figure 2.4 The Cardiac Cycle.
The atria and ventricles work together by alternately contracting (squeezing) and relaxing to pump blood through your heart. The heartbeat is triggered by electrical impulses that travel down a special pathway through your heart. The electrical system of your heart is the power source that makes this beating possible [5].
2.5.1 Atrial systole
Atrial systole (see Figure 2.5) is the contraction of the heart muscle (myocardia) of the left and right atria. Both atria contract at the same time. The term systole is synonymous with contraction (movement or stretching) of a muscle. Electrical systole is the electrical activity that stimulates the myocardium of the chambers of the heart to make them contract. This is soon followed by Mechanical systole, which is the mechanical contraction of the heart [6].
[image: image5.png]

Figure 2.5 Atrial Systole.
As the atria contract, the blood pressure in each atrium increases, forcing additional blood into the ventricles. The additional flow of blood is called atrial kick.

Atrial kick is absent if there is loss of normal electrical conduction in the heart, such as during atrial fibrillation, atrial flutter, and complete heart block. Electrical systole of the atria begins with the onset of the P wave on the EKG.
2.5.2 Ventricular systole
Ventricular systole is the contraction of the muscles (myocardia) of the left and right ventricles.
[image: image6.png]

Figure 2.6 Ventricular systole.
2.5.3 Complete cardiac diastole
Cardiac Diastole is the period of time when the heart relaxes after contraction in preparation for refilling with circulating blood. Ventricular diastole is when the ventricles are relaxing, while atrial diastole is when the atria are relaxing. Together they are known as complete cardiac diastole.

Figure 2.7 Cardiac Diastole.
During ventricular diastole, the pressure in the (left and right) ventricles drops from the peak that it reaches in systole. When the pressure in the left ventricle drops to below the pressure in the left atrium, the mitral valve opens, and the left ventricle fills with blood that was accumulating in the left atrium. Likewise, when the pressure in the right ventricle drops below that in the right atrium, the tricuspid valve opens, and the right ventricle fills with blood that was accumulating in the right atrium [7].
2.6 The Heart Rate
Heart rate is a term used to describe the frequency of the cardiac cycle. It is considered one of the four vital signs. Usually it is calculated as the number of contractions (heart beats) of the heart in one minute and expressed as "beats per minute" (bpm). The heart beats up to 120 times in childhood. When resting, the adult human heart beats at about 70 bpm (males) and 75 bpm (females), but this rate varies among people. However, the reference range is nominally between 60 bpm (if less termed bradycardia) and 100 bpm (if greater, termed tachycardia). Resting heart rates can be significantly lower in athletes. The infant/neonatal rate of heartbeat is around 130-150 bpm, the toddler's about 100–130 bpm, the older child's about 90–110 bpm, and the adolescent's about 80–100 bpm.
The body can increase the heart rate in response to a wide variety of conditions in order to increase the cardiac output (the amount of blood ejected by the heart per unit time). Exercise, environmental stressors or psychological stress can cause the heart rate to increase above the resting rate.
The pulse is the most straightforward way of measuring the heart rate, but it can be deceptive when some heart beats do not have much cardiac output. In these cases (as happens in some arrhythmias), the heart rate may be considerably higher than the pulse rate [8].
2.6.1 Control of heart rate
The heart contains two cardiac pacemakers that spontaneously cause the heart to beat. These can be controlled by the autonomic nervous system and circulating adrenaline. The vagus nerve (which is pneumogastric nerve or cranial nerve X) which governs heart rate can be controlled through breathing.
Measuring the pulse at the neck and wrist

1. The pulse rate (which in most people is identical to the heart rate) can be measured at any point on the body where an artery is close to the surface. Such places are wrist (radial artery), neck (carotid artery), elbow (brachial artery), and groin (femoral artery). The pulse can also be felt directly over the heart.

2. Producing an electrocardiogram, or ECG (also abbreviated EKG), is one of the most precise methods of heart rate measurement. Continuous electrocardiographic monitoring of the heart is routinely done in many clinical settings, especially in critical care medicine.
3. It is also possible to measure heart rate acoustically, by listening to the sounds the heart makes while beating. These sounds can be listened to using a stethoscope [9].
 2.6.2 Heart rate variability
Heart rate variability (HRV) is the variation of beat-to-beat intervals. A healthy heart has a large HRV, while decreased or absent variability may indicate cardiac disease. HRV also decreases with exercise-induced tachycardia. HRV has been the focus of increased research to use it as a physiological marker to classify different pathological disorders [10].
2.6.3 Maximum heart rate
Maximum heart rate (also called MHR, or HRmax) is the maximum heart rate that a person should achieve during maximal physical exertion. Research indicates it is most closely linked to a person's age; a person's HRmax will decline as they age. Some research indicates the speed at which it declines over time is related to fitness—the more fit a person is, the more slowly it declines as they age.

HRmax is utilized frequently in the fitness industry, specifically during the calculation of target heart rate when prescribing a fitness regimen. A quick way to estimate MHR is to subtract your age from 220, but HRmax can vary significantly between same-aged individuals so direct measurement using a heart rate monitor (with medical supervision or at least permission and advice) should be used by those seeking maximum safety and effectiveness in their training. People who have participated in sports and athletic activities in early years will have a higher MR than those less active as children. The most accurate way of measuring HRmax for an individual is via a cardiac stress test. In such a test, the subject exercises while being monitored by an electrocardiogram (ECG). During the test, the intensity of exercise is periodically increased (if a treadmill is being used, through increase in speed or slope of the treadmill) until the subject can no longer continue, or until certain changes in heart function are detected in the ECG (at which point the subject is directed to stop). Typical durations of such a test range from 10 to 20 minutes.

Conducting an accurate maximal exercise test requires expensive equipment, and should only be performed in the presence of medical staff due to risks associated with high heart rates. Instead, people typically use predictive formulae to estimate their individual Maximum Heart Rate. The most common formula encountered is:

HRmax = 220 − age (can vary)

(2.1)
2.6.4 Target heart rate
Target heart rate (THR), or training heart rate, is a desired range of heart rate reached during aerobic exercise which enables one's heart and lungs to receive the most benefit from a workout. This theoretical range varies based on one's physical condition, age, and previous training. Below are three ways to calculate one's Target Heart Rate. In each of these methods, there is an element called "intensity" which is expressed as a percentage. THR can be calculated by using a range of 50%–85% intensity.

 Simple method
The simplest method for calculating THR is:

THR = HRmax × %Intensity

(2.2)
Example for someone with a HRmax of 180:
50% Intensity: 180 × 0.50 = 90 bpm
85% Intensity: 180 × 0.85 = 153 bpm
2.6.5 Heart rate reserve
Heart rate reserve (HRR) is a term used to describe the difference between a person's resting heart rate and maximum heart rate.
HRR = HRmax − HRrest [10].

(2.3)
2.7 Electrocardiogram
An electrocardiogram (ECG or EKG, abbreviated from the German Elektrokardiogramm) is a graphic as shown in Figure 2.8, produced by an electrocardiograph, which records the electrical activity of the heart over time. Analysis of the various waves and normal vectors of depolarization and repolarization yields important diagnostic information.

[image: image8.png]

Figure 2.8 Electrocardiogram
· It is the gold standard for the diagnosis of cardiac arrhythmias

· It guides therapy and risk stratification for patients with suspected acute myocardial infarction

· It helps detect electrolyte disturbances (e.g. hyperkalemia and hypokalemia)

· It allows for the detection of conduction abnormalities (e.g. right and left bundle branch block)

· It is used as a screening tool for ischemic heart disease during a cardiac stress test

· It is occasionally helpful with non-cardiac diseases (e.g. pulmonary embolism or hypothermia)

The electrocardiogram does not directly assess the contractility of the heart. However, it can give a rough indication of increased or decreased contractility [11].
2.7.1 [image: image9.png]

 ECG Graph Paper
ECG is normally printed on a graph paper as shown in Figure 2.9
[image: image10.png]One large box represents 0.2
Seconds (200 msec) of Time
and 5 mm of Ampltude

10 mm/Amy \ One small box
Reference Point represents 0.04

Seconds (40 msec) of
Time and 1 mm of
Ampltude

amplitude

Time ———>

Figure 2.9 ECG Graph Paper.

A typical electrocardiograph runs at a paper speed of 25 mm/s, although faster paper speeds are occasionally used. Each small block of ECG paper is 1 mm2. At a paper speed of 25 mm/s, one small block of ECG paper translates into 0.04 s (or 40 ms). Five small blocks make up 1 large block, which translates into 0.20 s (or 200 ms). Hence, there are 5 large blocks per second. A diagnostic quality 12 lead ECG is calibrated at 10 mm/mV [12].
2.7.2 Filter selection
Modern ECG monitors offer multiple filters for signal processing. The most common settings are monitor mode and diagnostic mode. In monitor mode, the low frequency filter (also called the high-pass filter because signals above the threshold are allowed to pass) is set at either 0.5 Hz or 1 Hz and the high frequency filter (also called the low-pass filter because signals below the threshold are allowed to pass) is set at 40 Hz. This limits artifact for routine cardiac rhythm monitoring. The low frequency (high-pass) filter helps reduce wandering baseline and the high frequency (low pass) filter helps reduce 50 or 60 Hz power line noise (the power line network frequency differs between 50 and 60Hz in different countries). In diagnostic mode, the low frequency (high pass) filter is set at 0.05 Hz, which allows accurate ST segments to be recorded. The high frequency (low pass) filter is set to 40, 100, or 150 Hz. Consequently, the monitor mode ECG display is more filtered than diagnostic mode, because its bandpass is narrower.
2.7.3 ECG leads
[image: image11.jpg]

Figure 2.10 The Relationship Between Positive Electrodes, Depolarization Wavefronts (or mean electrical vectors), and Complexes Displayed on the ECG.

An electrocardiogram is obtained by measuring electrical potential between various points of the body using a biomedical instrumentation amplifier. A lead records the electrical signals of the heart from a particular combination of recording electrodes which are placed at specific points on the patient's body.

· When a depolarization wavefront (or mean electrical vector) moves toward a positive electrode, it creates a positive deflection on the ECG in the corresponding lead.

· When a depolarization wavefront (or mean electrical vector) moves away from a positive electrode, it creates a negative deflection on the ECG in the corresponding lead.

· When a depolarization wavefront (or mean electrical vector) moves perpendicular to a positive electrode, it creates an equiphasic (or isoelectric) complex on the ECG. It will be positive as the depolarization wavefront (or mean electrical vector) approaches (A), and then become negative as it passes by (B).

There are two types of leads—unipolar and bipolar. The former have an indifferent electrode at the center of the Einthoven’s triangle (which can be likened to a ‘neutral’ of the wall socket) at zero potential. The direction of these leads is from the “center” of the heart radially outward and includes the precordial (chest) and the limb leads—VL, VR & VF. The latter, in contrast, have both the electrodes at some potential and the direction of the corresponding electrode is from the electrode at lower potential to the one at higher potential, e.g., in limb lead I, the direction is from left to right. These include the limb leads I, II and III [13].
2.7.4 Waves and Intervals of the ECG
The baseline voltage of the electrocardiogram is known as the isoelectric line. A typical ECG tracing of a normal heartbeat (or cardiac cycle) consists of a P wave, a QRS complex and a T wave. A small U wave is normally visible in 50 to 75% of ECGs.

2.7.5 P Wave
During normal atrial depolarization, the mean electrical vector is directed from the SA node towards the AV node, and spreads from the right atrium to the left atrium. This turns into the P wave on the EKG, which is upright in II, III, and aVF (since the general electrical activity is going toward the positive electrode in those leads), and inverted in aVR (since it is going away from the positive electrode for that lead).
[image: image12.png]LLLLL

At tenal i
i i

I I

en st i
el | -Jeginont |71 |
S |

~— 1

v

i

Figure 2.11 Schematic Representation of Normal ECG.
· The relationship between P waves and QRS complexes helps distinguish various cardiac arrhythmias.

· The shape and duration of the P waves may indicate atrial enlargement.

2.7.6 PR interval
The PR interval is measured from the beginning of the P wave to the beginning of the QRS complex. It is usually 0.12 to 0.20 sec (120 to 200 ms).

· A prolonged PR interval may indicate a first degree heart block.

· A short PR interval may indicate an accessory pathway that leads to early activation of the ventricles, such as seen in Wolff-Parkinson-White syndrome.

· A variable PR interval may indicate other types of heart block.

· PR segment depression may indicate atrial injury or pericarditis.

2.7.7 QRS Complex
[image: image13.jpg]

Figure 2.12 Various QRS Complexes with Nomenclature.
T waves.
QRS complex, and P, As an impulse travels along the cardiac muscle fibers, an electric current is generated by the flowing ions. This current spreads into the fluids around the heart, and a minute portion actually flows to the surface of the body. An electrocardiogram is a record of this electrical activity as measured by a device called a galvanometer. Leads (i.e., wires to the galvanometer) are placed on the surface of the body at various points, depending on the type of information desired. An electrocardiogram thus has the prime function of assessing the ability of the heart to transmit the cardiac impulse. Each portion of the cardiac cycle produces a different electrical impulse, causing the characteristic deflections of an electrocardiographic recording needle. The deflections, or waves, on the recording apparatus are, in order, the
As a wave of depolarization passes over the atria, the impulse is recorded as the P wave. As it continues on through the ventricles, it is registered as the QRS complex. The T wave is caused by currents generated as the ventricles recover from the state of depolarization. This repolarization process occurs in the muscle of the ventricles about 0.25 second after depolarization. There are, therefore, both depolarization and repolarization waves represented in the electrocardiogram. The atria repolarize at the same time that the ventricles depolarize. The atrial repolarization wave is, however, obscured by the larger QRS wave.

The QRS complex is a structure on the ECG that corresponds to the depolarization of the ventricles. Because the ventricles contain more muscle mass than the atria, the QRS complex is larger than the P wave. In addition, because the His/Purkinje system coordinates the depolarization of the ventricles, the QRS complex tends to look "spiked" rather than rounded due to the increase in conduction velocity. A normal QRS complex is 0.06 to 0.10 sec (60 to 100 ms) in duration.

Not every QRS complex contains a Q wave, an R wave, and an S wave. By convention, any combination of these waves can be referred to as a QRS complex. However, correct interpretation of difficult ECGs requires exact labeling of the various waves. Some authors use lowercase and capital letters, depending on the relative size of each wave. For example, an Rs complex would be positively deflected, while a rS complex would be negatively deflected. If both complexes were labeled RS, it would be impossible to appeciate this distinction without viewing the actual ECG.

· The duration, amplitude, and morphology of the QRS complex is useful in diagnosing cardiac arrhythmias, conduction abnormalities, ventricular hypertrophy, myocardial infarction, electrolyte derangements, and other disease states.

· Q waves can be normal (physiological) or pathological. Normal Q waves, when present, represent depolarization of the interventricular septum. For this reason, they are referred to as septal Q waves, and can be appreciated in the lateral leads I, aVL, V5 and V6.

· Q waves greater than 1/3 the height of the R wave, greater than 0.04 sec (40 ms) in duration, or in the right precordial leads are considered to be abnormal, and may represent myocardial infarction.

 2.7.8 ST Segment
The ST segment connects the QRS complex and the T wave and has a duration of 0.08 to 0.12 sec (80 to 120 ms). It starts at the J point (junction between the QRS complex and ST segment) and ends at the beginning of the T wave. However, since it is usually difficult to determine exactly where the ST segment ends and the T wave begins, the relationship between the ST segment and T wave should be examined together. The typical ST segment duration is usually around 0.08 sec (80 ms). It should be essentially level with the PR and TP segment.

· The normal ST segment has a slight upward concavity.

· Flat, down sloping, or depressed ST segments may indicate coronary ischemia.

· ST segment elevation may indicate myocardial infarction.

2.7.9 T Wave
The T wave represents the repolarization (or recovery) of the ventricles. The interval from the beginning of the QRS complex to the apex of the T wave is referred to as the absolute refractory period. The last half of the T wave is referred to as the relative refractory period (or vulnerable period).

In most leads, the T wave is positive. However, a negative T wave is normal in lead aVR. Lead V1 may have a positive, negative, or biphasic T wave. In addition, it is not uncommon to have an isolated negative T wave in lead III, aVL, or aVF.

· Inverted (or negative) T waves can be a sign of coronary ischemia, Wellens syndrome, left ventricular hypertrophy, or CNS disorder.

· Tall or "tented" symmetrical T waves may indicate hyperkalemia. Flat T waves may indicate coronary ischemia or hypokalemia.

· The earliest electrocardiographic finding of acute myocardial infarction is sometimes the hyperacute T wave, which can be distinguished from hyperkalemia by the broad base and slight asymmetry.

· When a conduction abnormality (e.g., bundle branch block, paced rhythm) is present, the T wave should be deflected opposite the terminal deflection of the QRS complex. This is known as appropriate T wave discordance.

2.7.10 QT interval
The QT interval is measured from the beginning of the QRS complex to the end of the T wave. A normal QT interval is usually about 0.40 seconds. The QT interval as well as the corrected QT interval is important in the diagnosis of long QT syndrome and short QT syndrome. The QT interval varies based on the heart rate, and various correction factors have been developed to correct the QT interval for the heart rate.

The most commonly used method for correcting the QT interval for rate is the one formulated by Bazett and published in 1920.
Bazett's formula is:

[image: image14.png]

where QTc is the QT interval corrected for rate, and RR is the interval from the onset of one QRS complex to the onset of the next QRS complex, measured in seconds. However, this formula tends to be inaccurate, and over-corrects at high heart rates and under-corrects at low heart rates.

2.7.11 U Wave
The U wave is not always seen. It is typically small, and, by definition, follows the T wave. U waves are thought to represent repolarization of the papillary muscles or Purkinje fibers. Prominent U waves are most often seen in hypokalemia, but may be present in hypocalcaemia, thyrotoxicosis, or exposure to digitalis, epinephrine, and Class 1A and 3 antiarrhythmics, as well as in congenital long QT syndrome and in the setting of intracranial hemorrhage. An inverted U wave may represent myocardial ischemia or left ventricular volume overload [14].
3. DATA FOR THE SOFTWARE

3.1 Overview
In this chapter, the data for the software developed by the author are explained. There are 3 different data s for the software. First one is the MIT-BIH database. MIT-BIH database is a set of records that contains different person heart data information. To read MIT-BIH records some other software like Cygwin and WFBD libraries are needed. The information, installation and using those extra software are explained in this chapter. The second data is the simulation algorithms. The logic of the used algorithms are explained and illustrated. The third data source is a portable ECG device developed by Prof. Dr. Doğan İbrahim. The device is a microcontroller based portable ECG unit which has graphical LCD display and RS232 output. The components of the device and working principles are described in detail in this chapter.
3.2 Obtaining Data from MIT-BIH Database

3.2.1 PhysioBank

PhysioBank is an archive of well-characterized digital recordings of physiologic signals and related data for use by the biomedical research community. PhysioBank currently includes databases of multi-parameter cardiopulmonary, neural, and other biomedical signals from healthy subjects and patients with a variety of conditions with major public health implications, including sudden cardiac death, congestive heart failure, epilepsy, gait disorders, sleep apnea, and aging.

PhysioBank contains over 40 databases that may be freely downloaded

The list of all currently available databases in the PhysioBank archives, organized according to the types of signals and annotations contained in each database are:

· Multi-Parameter Databases. Available signals vary, but may include ECG, continuous invasive blood pressure, respiration, oxygen saturation, and EEG, among others.

· Interbeat (RR) Interval Databases. These contain beat annotations obtained from ECG recordings, but the ECG signals are not available

· Gait Databases

· Neurological Databases

· Image Databases

· Synthetic Data [15].
3.2.2 ECG Databases
Several databases of ECG recordings are generally available for evaluating ECG analyzers. They serve several important needs:

· They contain representative signals. Wide variations in ECG characteristics among subjects severely limit the value of synthesized waveforms for testing purposes. Realistic tests of ECG analyzers require large sets of “real-world'' signals.

· They contain rarely observed but clinically significant signals. Although it is not particularly difficult to obtain recordings of common ECG abnormalities, often those that are most significant are rarely recorded. Both developers and evaluators of ECG analyzers need examples of such recordings.

· They contain standard signals. System comparisons are meaningless unless performance is measured using the same test data in each case, since performance is so strongly data-dependent.

· They contain annotated signals. Typically, each QRS complex has been manually annotated by two or more cardiologists working independently. The reference annotations produced as a result serve as a ``gold standard'' against which a device's analysis can be compared quantitatively.

· They contain digitized, computer-readable signals. It is therefore possible to perform a fully automated, strictly reproducible test in the digital domain if desired, allowing one to establish with certainty the effects of algorithm modifications on performance.

Standards EC38 and EC57 require the use of the following ECG databases:

· AHA DB: The American Heart Association Database for Evaluation of Ventricular Arrhythmia Detectors (80 records, 35 minutes each)

· MIT DB: The Massachusetts Institute of Technology-Beth Israel Hospital Arrhythmia Database (48 records, 30 minutes each)

· ESC DB: The European Society of Cardiology ST-T Database (90 records, two hours each)

· NST DB: The Noise Stress Test Database (12 records, 30 minutes each)

· CU DB: The Creighton University Sustained Ventricular Arrhythmia Database (35 records, 8 minutes each)

Each of these databases represents a very substantial effort by many workers; in particular, the AHA, MIT, and ESC databases each required more than five years of sustained effort by large teams of researchers and clinicians from many institutions. Nevertheless, it should be recognized that even these databases do not fully represent the variety of “real-world'' ECGs observed in clinical practice. Although these databases permit standardized, quantitative, automated, and fully reproducible evaluations of analyzer performance, it is risky to extrapolate from the results of such evaluations to expectations of real-world performance. Such extrapolations can be particularly error-prone if the evaluation data were also used for development of the analysis algorithm, since the algorithm may have been (perhaps unintentionally) ``tuned'' to its training set. It should also be noted that the first four of the databases listed above were obtained from Holter ECG recordings; although the frequency response of the Holter recording technique is not usually a limiting factor in the performance of an ECG analyzer, it may tend to favor devices that are designed to analyze Holter recordings over devices that have been designed to analyze higher-fidelity input signals [16].
3.2.3 MIT-BIH Database

In this context, a database is simply a collection of recordings (records), available as a set of flat files.

MIT-BIH database was the first generally available set of standard test material for evaluation of arrhythmia detectors, and has been used for that purpose as well as for basic research into cardiac dynamics at more than 500 sites worldwide. The database distributed on 9-track half-inch digital tape at 800 and 1600 bpi, and on quarter-inch IRIG-format FM analog tape. In August, 1989, CD-ROM version of the database was produced.

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. Twenty-three recordings were chosen at random from a set of 4000 24-hour ambulatory ECG recordings collected from a mixed population of inpatients (about 60%) and outpatients (about 40%) at Boston's Beth Israel Hospital; the remaining 25 recordings were selected from the same set to include less common but clinically significant arrhythmias that would not be well-represented in a small random sample.

The recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10 mV range. Two or more cardiologists independently annotated each record; disagreements were resolved to obtain the computer-readable reference annotations for each beat (approximately 110,000 annotations in all) included with the database.
MIT-BIH DATABASE developed at MIT and at Boston's Beth Israel Hospital (now the Beth Israel Deaconess Medical Center) and have previously been distributed in CD-ROM format [17].
3.2.4 Selection Criteria of the Records

The source of the ECGs included in the MIT-BIH Arrhythmia Database is a set of over 4000 long-term Holter recordings that were obtained by the Beth Israel Hospital Arrhythmia Laboratory between 1975 and 1979. Approximately 60% of these recordings were obtained from inpatients. The database contains 23 records (numbered from 100 to 124 inclusive with some numbers missing) chosen at random from this set, and 25 records (numbered from 200 to 234 inclusive, again with some numbers missing) selected from the same set to include a variety of rare but clinically important phenomena that would not be well-represented by a small random sample of Holter recordings. Each of the 48 records is slightly over 30 minutes long.

The first group is intended to serve as a representative sample of the variety of waveforms and artifact that an arrhythmia detector might encounter in routine clinical use. A table of random numbers was used to select tapes, and then to select half-hour segments of them. Segments selected in this way were excluded only if neither of the two ECG signals was of adequate quality for analysis by human experts.

Records in the second group were chosen to include complex ventricular, junctional, and supraventricular arrhythmias and conduction abnormalities. Several of these records were selected because features of the rhythm, QRS morphology variation, or signal quality may be expected to present significant difficulty to arrhythmia detectors; these records have gained considerable notoriety among database users.

The subjects were 25 men aged 32 to 89 years, and 22 women aged 23 to 89 years. (Records 201 and 202 came from the same male subject) [18].
3.2.5 MIT-BIH Database Record Files

Each database consists of a set of records (recordings), identified by the record name. In most cases, a record consists of at least three files, which are named using the record name followed by distinct suffixes (extensions) that indicate their contents.

Table 3.1 The Three Files 100.atr, 100.dat, and 100.hea Together Comprise Record 100.

	File Name
	File Type
	Information Inside The File

	100.atr
	Annotation File
	Annotation files contain sets of labels (annotations), each of which describes a feature of one or more signals at a specified time in the record

	100.dat
	Data File
	(signal) file, containing digitized samples of one or more signals; these files can be very large

Table 3.1 (Continue)
	File Name
	File Type
	Information Inside The File

	100.hea
	Header File
	(header) file is a short text file that describes the signals (including the name or URL of the signal file, storage format, number and type of signals, sampling frequency, calibration data, digitizer characteristics, record duration and starting time)

Most records include one or more binary annotation files (in the example, .atr denotes an annotation file). Annotation files contain sets of labels (annotations), each of which describes a feature of one or more signals at a specified time in the record; 100.atr, for example, contains an annotation for each QRS complex (heart beat) in the recording, indicating its location (time of occurrence) and type (normal, ventricular ectopic, etc.), as well as other annotations that indicate changes in the predominant cardiac rhythm and in the signal quality. In other databases, annotations mark other features of the signals [19].
3.2.6 Reading the MIT-BIH Database

In order to use the MIT-BIH database, the data must be converted into easy-to-process text format. To do this task some of the open source software should be installed to the developer’s computer.

3.2.6.1 Cygwin

Cygwin is a Linux-like environment designed for the Windows. It consists of two parts:

· A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing substantial Linux API functionality.

· A collection of tools which provide Linux look and feel.

· Cygwin is not a way to run native Linux apps on Windows.

· Cygwin is not a way to magically make native Windows apps aware of UNIX functionality, like signals, ptys, etc.
Cygwin consists of a library that implements the POSIX (Portable Operating System Interface) system call API (application programming interface) in terms of Win32 system calls, a GNU (operating system) development tool chain to allow basic software development tasks, and a large number of application programs equivalent to common programs on the Unix system. At this point, almost all open-source programs on Unix have been ported to Cygwin, including the X Window System, KDE, Gnome, Apache, TeX, and various others. A mechanism has been created for installing syslogd, sshd, Apache and other daemons as standard Windows services, allowing a Microsoft Windows system to function much like a Unix or Linux server.

3.2.6.2 The Basic Functionalities of Cygwin

· Full-featured /dev and /proc file systems are provided automatically. /proc/registry provides direct filesystem access to the registry.

· Symbolic links are provided, and use .LNK files (Windows shortcuts), with some special Cygwin-specific info in them and the "system" attribute set to speed up processing.

· The Solaris API for handling access control lists (ACLs) is supported and maps to the Windows NT ACL system.

· Special formats of /etc/passwd and /etc/group are provided that include pointers to the Windows equivalent SID's (in the GECOS field), allowing for mapping between Unix and Windows users and groups.

· Various utilities are provided for converting between Windows and Unix file formats, for handling line ending (CRLF/LF) issues, for displaying the DLL's that an executable is linked with, etc [20].
3.2.6.3 PhysioToolkit Software (WFDB Library)

PhysioToolkit is a large library of software for physiologic signal processing and analysis, detection of physiologically significant events using both classical techniques and novel methods based on statistical physics and nonlinear dynamics, interactive display and characterization of signals, creation of new databases, simulation of physiologic and other signals, quantitative evaluation and comparison of analysis methods, and analysis of nonequilibrium and nonstationary processes.
[image: image15.png]10.5vS hiberfil.sys
[nGtpub Kleed323 dil
ATLAB6 S nit108.txt
1SDOS . S¥S ntlde
(TDETECT . COM pagefile.sys
racle sample . txt.dat
PDOXUSRS .NET sanpleiis.txt
Program\ Files sanple5d. Ext
RECYCLER sanple?8. £xt
REDHOUSE sanplendi . txt
Rehber-2007 sanplend5 _txt

dninistratorfshadou-server /cygdrive/c
cd cyguin

dninistratorfshadou-server /cygdrive/c/cyguin
air

Thunbs.db binufdb cyguin.ico 1ib usr wEdb

in cygwin.hat etc top var widb-10.4.4

dninistratorfshadou-server /cygdrivesc/cyguin
cd ufdb

dninistrator@shadou-server /cygdrive/c/cyguin/ufdh

Sqnnoopt8l. sqn
Sannoopt81 sqn
sannoopt82 sqn
sannoopt83 sqn
Sannoopt84sqn
Sannooptd5 sqn
Sannoopt86 sqn
Sannoopt8?.sqn
Sqnnoopt88 sqn

Figure 3.1 A screenshot of Cygwin Console
3.2.6.4 WFDB Software

PhysioToolkit's open-source WFDB software for reading and analyzing PhysioBank data (include MIT-BIH data) is usable with and freely available for most of the popular operating systems.

The WFDB library (a portable set of functions for reading and writing signal, annotation and header files in the formats used in PhysioBank, among others). The advantage of incorporating the WFDB library in software over attempting to write code for reading PhysioBank files (apart from the immediate savings of effort) is that support for new file formats and new file access methods is added to the library from time to time, and thesis software can then incorporate this support simply by recompiling or relinking with the latest version of the WFDB library.

A workable alternative is to use rdsamp and rdann to convert any desired portions of MIT-BIH records into an easy-to-process text format. Sources for these programs are included in the WFDB Software Package; binaries are also available for several popular operating systems [21].
3.2.6.4.1 WFDB Applications

A large set of well-tested, interoperable command-line tools for signal processing and automated analysis is included in the app, convert, and psd directories of the WFDB Software Package.
Two American National Standards, ANSI/AAMI EC38:1998 (Ambulatory Electrocardiographs) and ANSI/AAMI EC57:1998 (Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms) require the use of several of the WFDB applications for evaluation of certain devices and algorithms. For details, see Evaluating ECG Analyzers in the WFDB Applications Guide [22].
3.2.6.5 Installing Cygwin and WFDB library

1.Cygwin is installed in a location “c:\cygwin”
2.The WFDB software package is downloaded as source files.

3.The working directory for the installation is chosen. This directory must not have any spaces in its pathname. Cygwin home directory is selected. (c:\cygwin\home\); the archive of sources (wfdb.tar.gz) in this working directory is saved.

4.Cygwin terminal emulator window opened. By default, the current directory within the Cygwin window will be c:\cygwin\home\username initially.

cd /home/wfdb typed
5.The archive of sources unpacked(using tar, included with Cygwin):

tar xfvz wfdb.tar.gz
6. This creates a directory with a name of the form wfdb-10.m.n within your working directory.

The package configured, and install:

cd wfdb-10.m.n

./configure

make install
7.The binaries will be installed in a bin subdirectory of the installation root directory.

make check

This step compiles a short program that exercises the WFDB library, prints a summary of test results, and prompts to press <Enter>. After the steps have done , the WFDB applications are tested. The tests are very short (typically less than a second each), except that the last one (xform using NETFILES) may take up to a minute if there is a slow or inoperative Internet connection. If any application test fails, its output can be found in the checkpkg subdirectory of the WFDB source tree; compare this output with the files of the same names that can be found in the checkpkg/expected subdirectory.

3.2.6.6 Using rdsamp Program

After installing Cygwin and WFDB libraries rdsamp program is ready to use.
rdsamp reads signal files for the specified record and writes the samples as decimal numbers on the standard output. If no options are provided, rdsamp starts at the beginning of the record and prints all samples. Each line of output contains the sample number and samples from each signal, beginning with channel 0, separated by tabs.
Options include:
Table 3.2 Rdsamp Program Parameters

	Parameter
	Description

	-f
	Begin at the specified time. By default, rdsamp starts at the beginning of the record.

	-h

	Print a usage summary.

	-H

	Read the signal files in high-resolution mode (default: standard mode).

	-l interval
	Limit the amount of output to the specified time interval

Table 3.2 (Continue)
	Parameter
	Description

	time
	Begin at the specified time. By default, rdsamp starts at the beginning of the record.

	-p

	Print times in seconds and milliseconds, and values in physical units. By default, rdsamp prints times in sample intervals and values in A/D units. Use -p -p to obtain higher precision in the sample values (8 decimal places rather than 3).

	-s signal-list

	Print only the signals named in the signal-list (one or more input signal numbers, separated by spaces; default: print all signals). This option may be used to re-order or duplicate signals.

	-t time

	Stop at the specified time. By default, rdsamp stops at the end of the record.

	-v

	Print column headings.

3.2.6.7 Using Rdsamp program to Get the First 50 Seconds Data

To get the MIT-BIH database record as a text file the below command is used and the thesis program is fed.
rdsamp 100 -p -t 50 > c:\mit100.txt
The description of the command is: Read the record whose name is 100 and print the raw signal for the first 50 seconds and store it to the text file which’s name is ‘mit100.txt’ (see Figure 2.2).
[image: image16.png]

Figure 3.2 The Command Line for Rdsamp
Table 3.3 The Output of the Rdsamp Program
	Sample Ch. 1 Ch. 2
	Sample Ch. 1 Ch. 2
	Sample Ch. 1 Ch. 2

	175.006 -0.230 -0.185

175.008 -0.215 -0.175

175.011 -0.215 -0.195

175.014 -0.225 -0.200

175.017 -0.245 -0.205

175.019 -0.235 -0.195

175.022 -0.235 -0.180

175.025 -0.235 -0.180

	175.067 -0.255 -0.215

175.069 -0.265 -0.200

175.072 -0.250 -0.195

175.075 -0.245 -0.205

175.078 -0.245 -0.215

175.081 -0.240 -0.225

175.083 -0.260 -0.225

175.086 -0.260 -0.210

	175.136 -0.260 -0.195

175.139 -0.250 -0.195

175.142 -0.250 -0.195

175.144 -0.245 -0.190

175.147 -0.255 -0.205

175.150 -0.265 -0.205

175.153 -0.250 -0.195

175.156 -0.250 -0.195

Table 3.3 (Continue)

	Sample Ch. 1 Ch. 2
	Sample Ch. 1 Ch. 2
	Sample Ch. 1 Ch. 2

	175.031 -0.240 -0.205

175.033 -0.250 -0.205

175.036 -0.255 -0.205

175.039 -0.250 -0.200

175.042 -0.240 -0.205

175.044 -0.255 -0.210

175.047 -0.260 -0.210

175.050 -0.260 -0.210

175.053 -0.255 -0.205

175.056 -0.250 -0.200

175.058 -0.240 -0.205

175.061 -0.250 -0.210

175.064 -0.245 -0.225
	175.092 -0.255 -0.210

175.094 -0.245 -0.215

175.097 -0.265 -0.225

175.100 -0.275 -0.225

175.103 -0.285 -0.215

175.106 -0.260 -0.195

175.108 -0.265 -0.205

175.111 -0.260 -0.210

175.114 -0.245 -0.215

175.117 -0.265 -0.205

175.119 -0.255 -0.200

175.122 -0.255 -0.195

175.125 -0.245 -0.200

	175.161 -0.245 -0.195

175.164 -0.250 -0.205

175.167 -0.260 -0.210

175.169 -0.255 -0.190

175.172 -0.255 -0.175

175.175 -0.235 -0.195

175.178 -0.245 -0.195

175.181 -0.245 -0.200

175.183 -0.265 -0.200

175.186 -0.255 -0.200

175.189 -0.255 -0.190

175.192 -0.235 -0.190

175.194 -0.235 -0.200

The data represented as follows:

175.006: The number of the data in the signal file

-0.230: The raw signal data for channel1

-0.185: The raw signal data for channel2
3.2.6.8 Records in the MIT-BIH Arrhythmia Database

This section contains notes and statistics that describe the contents of each record. The leads used for the upper and lower signals are given for each record immediately following the record number. Beat counts are given for the first five minutes of each record and the remainder of the record (the EC38-defined ``learning'' and ``test'' periods, respectively). Note that the totals include two types of non-beats (blocked APCs and ventricular flutter waves) for those few records in which they occur. The total duration of each record is about 30 minutes. [23].
Table 3.4 MIT-BIH Record No.100 Signal Details
	Beats
	Before 5:00
	After 5:00
	Total

	Normal
	367
	1872
	2239

	APC
	4
	29
	33

	PVC
	
	
	

	Total
	371
	1902
	2273

3.3 Getting Data from Simulation Algorithms

In this part the ECGSYN program is described and shown how to use it. The ECGSYN program generates ECG signals which are similar to the real subject’s signals. Changing the parameters inside the program causes to generate different type of signals.
3.3.1 ECGSYN - A Realistic ECG Waveform Generator

ECGSYN generates a synthesized ECG signal with user-settable mean heart rate, number of beats, sampling frequency, waveform morphology (P, Q, R, S, and T timing, amplitude,and duration), standard deviation of the RR interval, and LF/HF ratio (a measure of the relative contributions of the low and high frequency components of the RR time series to total heart rate variability). Using a model based on three coupled ordinary differential equations, ECGSYN reproduces many of the features of the human ECG, including beat-to-beat variation in morphology and timing, respiratory sinus arrhythmia, QT dependence on heart rate, and R-peak amplitude modulation. The output of ECGSYN may be employed to assess biomedical signal processing techniques which are used to compute clinical statistics from the ECG [24].
3.3.2 Using ECGSYN - A Realistic ECG Waveform Generator

The steps to use ECGSYN are described below.

The source files “ecgsyn.m” and “derivsecgysn.m” downloaded from [15].
The Matlab program installed to the computer which generates the ECG signal is shown in Figure 3.3.

[image: image17.png]B =]
Fle Edt Vew Web Window Help

]

| 458 | 85| 2 | e Drestory: | cibucuments snaSetngtacninsrtr WAKEVELERDesitogtez v

ECICIEES)
B osreoes | szcizs|aon| | 0.1970
L3 - 2| b1 = [0.25 0.1 0.1 0.1 0.4]

i start] Busy

Figure 3.3 The Screenshots when the Program Starts to Generate the ECG Signal.
3.3.3 ECGSYN program parameters
Using above parameters different types of signals can be generated. For example %hrmean variable 50,70,110 bpm (beat per minute) signals generated. The output of this signals in the software developed by the author is shown in Figure 3.4.

The ECGSYN parameters are given in the following Table:
Table 3.5 ECGSYN Parameters

	Name of the parameter
	Description

	% sfecg:
	ECG sampling frequency [256 Hertz]

	% N:
	approximate number of heart beats [256]

	% Anoise:
	Additive uniformly distributed measurement noise [0 mV]

	% hrmean:
	Mean heart rate [60 beats per minute]

Table 3.5 (Continue)
	Name of the parameter
	Description

	% hrstd:
	Standard deviation of heart rate [1 beat per minute]

	% lfhfratio:
	LF/HF ratio [0.5]

	% sfint:
	Internal sampling frequency [256 Hertz]

3.4 Getting Data from an ECG Device

This section contains information about a portable ECG device developed at the Near East University which provides both graphical LCD based output and RS232 based outputs. The device originally only had LCD output but the hardware and software have been modified by the author to provide RS232 type serial output of the ECG data.

3.4.1 The Device

The device is a microcontroller based portable ECG unit which had only graphical LCD display output. The device consists of:

· The electrodes used to sense the electrical signals on the body,

· The Data Acquisition Unit (DAU) used to remove the noise and amplify the signal

· Data Processing Unit (DPU) used to convert signals to digital

· Display Unit (DU) which shows the ECG waveforms [25].
3.4.1.1 The Electrodes

Electrodes are an important part of any ECG system. They sense the electrical activity in the body and pass the received signals to the amplifiers for amplification and processing.

High quality ECG measurements require:

· Good amplifier design

· Use of good electrodes

· Proper placement of the electrodes on the body

· Good laboratory and clinical practices

An ECG electrode includes:

· The body and casing

· Electrode made of high-conductivity material

· High conductivity wire conductor

· Cavity or similar for electrolytic gel

· Adhesive rim

[image: image18.png]£ ECG SIGNAL PROCESSING
Graph

Normat

140

Dift and sauar

Diftrentsted and squared sgnal

tited signal

s start. ERDLCRBMEORQAS ©

T I e —

Figure 3.4 Getting Data from Simulation Algorihm (ECGSYN) Parameters: % hrmean:70 bpm.
The skin should be cleaned before the electrode is attached to the skin. The length of the electrode wire should not be long otherwise the wire can act as an antenna and pick electrical noise from the surrounding.
If the electrode is not properly placed on the skin we may get baseline drift which is mainly due to the changes in junction potential or motion artefacts. The subject should be stationary with no movement at all and one should ensure that a good contact is established between the electrode and the subject.

Most commonly used electrodes conducting material is made of Ag, Ag-Cl, or SiCl. Choice of the electrode material helps reduce the junction potential and thus provide a smooth signal. Ag-Cl type electrodes are commonly used in electrode designs.

Electrolytic gel enhances conductivity and also reduces the junction potentials. However, some types of gels could irritate the skin and thus it should be used with care. Typically, based on sodium or potassium chloride, concentration in the order of 0.1M is weak enough not to cause any skin irritation. In applications, gel is soaked into a foam pad or applied directly into the electrode housing [25].
3.4.1.1.1 Types of ECG Electrodes

Some of the commonly used ECG electrodes are described in this section.

There are many types of ECG electrodes available in the market. The disposable ones (see Figure 3.5) are made out of a material that is conductive and also adhesive. Usually, polymer is made conductive by adding monovalent metallic ions. The electrode is in the form of small rectangular shaped material having conductive-adhesive polymer mounted on a backing. A small aluminium foil is left at one end of the electrode so that external devices can be connected to this foil. Usually plastic clips (see Figure 3.6) with one face containing a conductor (e.g. metal) are used to make external connection to the electrodes. The other end of the clip is connected to a wire lead to send the signals to the ECG unit. Gel or any kind of adhesives are not required in this type of electrodes. High resistivity of the electrodes make it unsuitable for low-noise applications. These electrodes are used once and then thrown away.

Some other self-adhesive electrodes are shown in Figure 3.7.

 [image: image19.jpg]PP 4y
ey

Figure 3.5 Disposable ECG Electrode [25]
[image: image20.png]

Figure 3.6 Electrode clips [25]
[image: image21.jpg]

[image: image22.jpg]

Figure 3.7 Some Other Self-Adhesive Electrodes [25]
Gold electrodes are highly conductive and they are very suitable for low noise applications. The electrode consists of a gold-plated cavity which is filled with electrolytic gel. Compared to other types of electrodes, gold is more expensive and it causes higher junction potentials to be created, thus causing baseline drifts.
Metal and carbon are also used as ECG electrodes. The problem with these electrodes is that they tend to be bulky and awkward to use. Carbon electrodes have high resistivity and are noisier but they are also flexible and re-usable.
Needle electrodes are invasive, i.e. they have to be inserted into the skin to make measurements. Needle electrodes are used when measurements have to be taken from an organ directly (e.g. from the heart). One advantage of needle electrodes is that very small signals can be detected and measured. Needle electrodes normally consist of a sharp metallic point, an insulated coating, and the wire lead for the external connection [25].
3.4.1.1.1 The attachment of electrodes to the subject

To obtain clear signals it is necessary to attach the electrodes at certain configurations. In Einthoven’s Triangle three electrodes are connected in the form of a triangle as shown in Figure 3.8. Two of the electrodes are placed at the wrists (or arms) and the third one is placed in the leg. A 50-ohm coaxial shielded cable is used to connect the electrodes to the Data Acquisition Unit [26] [27].
[image: image23.jpg]Einthoven’s Triangle
Lead 1 5

Lead 1l Lesall

Right EAR

Figure 3.8 Placement of the Electrodes

3.4.1.2 The Block Diagram

Figure 3.9 shows the block schematic of the portable ECG unit used to get ECG data. The overall system consists of: the electrodes, the Data Acquisition Unit (DAU), Data Processing Unit (DPU), and the Display and RS232 Unit (DU).
The Electrodes are used to sense the electrical potential at pre-determined points of the body. The Data Acquisition Unit removes any electrical noise present in the signal and amplifies the signal several thousand times. The signal is then fed to the Data Processing Unit which converts the signal into digital form and scales it. The signal is finally displayed on a graphical LCD display and sent out through the RS232 port.

The sources of error in the measurement of the ECG signal are:

· Motion artefacts

· 50Hz power line interference

· Noise from other surrounding electrical equipment (e.g. motors etc)
The ECG signal is so small that it is impossible to separate this signal from noise unless an instrumentation amplifier is used at the input of the system. Instrumentation amplifiers are high gain amplifiers with very high Common Mode Rejection Ratios (CMRR).
Data Acquisition Unit

[image: image24.png]Instrumentation p
amplifier filter

|| Notch

filter

Gain

PIC
microcontroller

Graphics
LCD

Data Processing Unit

Display Unit

Figure 3.9 Block Schematic of the ECG Unit [25]
An instrumentation amplifier basically consists of a difference amplifier designed to reject common mode signals. Thus, using an instrumentation amplifier we can reject the signals which are common to both inputs of the amplifier, such as the noise signals [25].
The requirements of a typical ECG system can be summarised as follows:

· Capability to sense signals in the range of 1-5mV

· Very high input impedance, > 5M-ohm

· Very low input leakage current, < 1 micro-Amp

· Flat frequency response of 0.05 – 100Hz

· Noise rejection at 50Hz

· High common mode rejection ratio

Figure 3.10 shows the circuit diagram of the ECG unit.

The Display Unit (DU) consists of a graphical LCD display used to plot the ECG waveform. The display chosen in this design was the popular CRN-12864C graphics LCD using the KS0108B controller.

This display (see Figure 3.11) consists of 128 horizontal and 64 vertical pixels, arranged as a dot-matrix. The pixel size is 0.4mm x 0.56mm the dot pitch is 0.44mm x 0.60mm, and the viewing area is 62.0mm x 44.0mm.

The display operates with a single +5V supply and the current draw is about 4mA. The display is manufactured with two different specifications: with back-light LED, and without back-light LED. The back-light LED helps to see the display in the dark and this option was not chosen in this design [25].
[image: image25.jpg]2K
-_ []
56K 16 5K
() []
LEFT
4.7K 47K 180K
— — UAF42
RIGHT 56K 180 <I
O — 1uF:|: 0. 1uF:|:
3.4K —
— — 3.160M — -
LOW-PA FILTER
1 = OW-PASS = NOTCH FILTER
ANKLE 56K -V -9V

O—I:I—_I_ INSTRUMENTATION AMPLIFIER

+5V
+9V
180K 180K 100K
100K I] — -
- AN
=y 15K
]
3
& 3
+9V -9V k
-9V LEVEL SHIFTING - B —
+5V/ GAIN 1 —

- 4MHz

MICROCONTROLLER

Figure 3.10 Circuit Diagram of the ECG Unit [25]
[image: image26.jpg]s

G w e

--o'o....
'OQ..'...

Figure 3.11 128 x 64 Graphics LCD Used in the Design [25]
[image: image27.png]

Figure 3.12 Complete ECG Unit [25]
3.4.1.3 The ECG Unit Software
The software used in the ECG unit was the PROTON+ Basic, developed by the Crownhill Associates Ltd in UK. PROTON+ is a powerful compiler that generates native code which runs on the PIC series of microcontrollers.

The software of the ECG is quite small. The basic operation of the software is described by the following PDL (program description language):

BEGIN

Declare variables

Configure I/O ports

Configure A/D channel

DO FOREVER

Start A/D converter

Get 128 A/D samples with 10ms delay

Call subroutine DISP

ENDO

END

DISP:

BEGIN

Wait 1 second

Clear the screen

Scale the samples

Display on graphics LCD

Send to RS232 port

Return from subroutine

END

At the beginning of the program the variables used in the program are declared. The following variables are used:

RAMPTR:
a pointer used to index the A/D samples received.

SAMPLES:
an array which stores the A/D samples. This is a word array. i.e.

each sample is 2 bytes long (actually 10 bits wide) and up to 128

samples can be stored in this array

x:

x co-ordinate of the graphics screen

y:

y co-ordinate of the graphics screen

yy:

temporary word variable

XMAX:
maximum value of variable x

YMAX:
maximum value of variable y

I:

temporary variable

Then the input-output ports are configured. PORT A is configured as inputs, and PORT C, PORT D and PORT E are configured as outputs. The A/D converter channel AN0 is then configured for 10 bit operation and pointer RAMPTR is initialised to 0.

The horizontal axis (y axis) of the LCD display is used as the time axis, and the vertical axis (x axis) is used to represent the voltage (the amplitude of the ECG waveform).

The main program loop starts with label Loop. The ECG signal is read and converted into digital using the function ADIn and the signal is stored in array SAMPLES, indexed by variable RAMPTR. The pointer is then incremented by 1 to point to the next location. This process is repeated until all 128 samples are received and a 10ms delay is used between each sample. Thus, each horizontal pixel corresponds to a sample, and the total width of the horizontal axis is 10ms x 128 = 1280ms or 1.28 seconds. In this period, it is expected to see two complete ECG waveforms (each waveform is about 600ms long).

After receiving 128 samples, the program calls to subroutine DISP to plot the ECG waveform. The LCD screen is refreshed at a rate of one second so that it can be seen clearly before cleared. Also, XMAX is defined as 1024 and YMAX is defined as 128. This is because the vertical axis (x axis) is for voltage and the voltage can have 1024 quantization levels in a 10 bit A/D converter. Also the horizontal axis consists of 128 pixels where each pixel corresponds to 10ms. Thus, the maximum value along the horizontal axis is 128. Then, a FOR loop is established and the ECG signal is displayed using the PLOT instruction. Here, the vertical axis is organised such that the 0 point is at pixel location 56 so that any negative going pulses could also be shown on the display, and the x values are configured to be positive vertically. This organisation of the x,y co-ordinates was done using the following assignments:

x = 56 - 56* SAMPLES[y] / XMAX (3.1)
Thus, when the ECG sample value is 0, i.e. SAMPLES[] = 0, then x = 56 and this is plotted starting from x co-ordinate 56 which is as shown in Figure 3.14. Similarly, when the ECG sample value is maximum, i.e. SAMPLES[]=XMAX, then x = 0 and this is plotted starting from x co-ordinate 0 which is at the top left corner of the screen as shown in Figure 3.13. i.e. the ECG signal is plotted between the x co-ordinates x = 0 and x = 56 where x = 56 corresponds to the new x = 0 point, and x = 0 corresponds to the new x = 56 co-ordinate.

Similarly, the horizontal axis (y axis) is scaled by dividing the SAMPLES with YMAX.

The ECG waveform is plotted by using the PLOT instruction where the x co-ordinate should be specified first, followed by the y co-ordinate.

Figure 3.13 x,y co-ordinates of the LCD screen [25]
Figure 3.14 shows a typical ECG waveform displayed on the graphics LCD display. Notice that the vertical resolution of the display is not high enough to display the waveform in detail. It is the author’s opinion that the resolution of the display should be at least 128 x 64 pixels.

[image: image28.jpg]A A S LS T AT DB st

- - o B o S W ;
= o o P v v s
-
o 49 -
. . * - ¥ »
e B B R . -

&
+*
]
8
b
.
-
*
4
*
.
-
8% %

Figure 3.14 ECG Waveform Displayed by the LCD [25]
3.4.1.4 Modifying the hardware and software

The ECG device only had LCD based graphical output. The hardware and software have been modified by the author so that RS232 based serial data can be output from the device. This serial data can then be read by a PC for the analysis of the ECG data.

Hardware modification was very simple (see Figure 3.15 and a 1K resistor was added to bit 0 of PORT B (port RB0) of the microcontroller. This data was then fed to the serial input port (COM1) of a PC so that the ECG data can be collected.

Figure 3.15 Getting Serial Output from the ECG Device [25]
The software of the ECG device was written using the PROTON+ Basic compiler. This software had to be modified to send serial data from port RB0 of the microcontroller.

PROTON+ can provide RS232 type serial output either by using a UART type hardware or by using software only to generate the required serial data. Commands HRSIN/HRSOUT and HSERIN/HSEROUT are used to generate UART based serial output. For software based serial input-output the compiler provides the commands RSOUT and RSIN.

In this thesis the simple software based serial output routine RSOUT was used to generate serial data from the ECG device. Before using RSOUT one has to specify the following serial communication parameters:

· Port pin used for serial communication
· Type of interface used at the output of the port (i.e. true or inverted data)

· Baud rate used

In this application RB0 of port B was selected as the serial port, the interface is inverted since a resistor is used at the output of the port, and the Baud rate was selected as 9600 bps. The following lines of code were added to the beginning of the program for the above configuration selection:

DECLARE RSOUT_PIN PORTB.0

DECLARE RSOUT_MODE INVERTED

DECLARE SERIAL_BAUD 9600
The main program loop was then modified to send out the ECG data through the serial port.
4. SOFTWARE DEVELOPMENT
4.1 Overview
The software developed in this thesis implements the basic ECG analyzing and monitoring. There are three main steps in the software:

· The first step is reading data from one of the 3 sources which is described as the device, the MIT-BIH database, or the simulation algorithms.

· The second step is to monitor the ECG. The GDI functions are used to monitor the ECG. In the same time with monitoring the software is analyzing the ECG and implements the QRS detection using PAN and Willis J. Tompkins algorithm. The first part of this chapter describes the file operations and reading data. The second part describes the GDI functions and monitoring.

· The third part describes the QRS detection. After that the screenshots of the software are presented.

The flow chart of the program developed by the author is given in Figure 4.1. This flow chart describes the logic and implementation steps of the program.

4.2 Flow Chart of the Software

At the beginning of the analysis the data source which is going to be analyzed by the software is selected. Selection is made by user using the data source selection form. The data sources should be the MIT-BIH database, ECGSYN (the simulation algorithm output), or the actual ECG hardware device output. Then the appropriate ECG signal is read and stored by the program using some special stream reader functions. The signal is then normalized (make the signal values to adjust for the graphical area) so that it can be monitored and animated. GDI is used at this stage to make drawing and also animating the signal. The next stage of the analysis is the implementation of the QRS detection algorithm in order to find the elements of the waveform. The most important element of the ECG waveforms is QRS complex. The QRS complexes detected using Pan Tompkins real time QRS detection algorithm. After finding the QRS complexes by implementing algorithm the package finds the R to R interval by in real-time to find the heart rate per minute. In addition, the heart rate per minute is also calculated and output from the program. Finally, the ECG waveform has been analyzed for the detection of any common anomalies, such as fast heart rate, slow heart rate using the simple rules that are created by the author.
[image: image29.png]Lt s
tscoree MITETH?

YES

O

Lt et
s, ELGS VY

-
ECGamiet

Fead fiom MIT-BIH ditbsse

Fead fiom ot fle crssted by
Simnltion algorlans

Mol the signal o montor ECG.

Trglamert QFS dtecton algprits
o fnd e GRS comples

Mibar the ECG using GDI

Find B

Riterval

Findthe heat

S—

Find e prblem (omeal,
tlyearisorbradeartior)

Figure 4.1 Flow Chart of the Software
4.3 Reading the Data
4.3.1 Reading the Data From Text Files

In Chapter 3 the data sources and converting those data sources to the digital format was explained. After converting the data sources to the text file the program needs to read the data. The ability to open up a text file and read its contents an object called "StreamReader" is used. This, as its name suggests, reads streams of text. The StreamReader is an object available to System.IO in Visual Basic library [28].
Dim FILE_NAME As String = "C:\test.txt" 1
Dim objReader As New System.IO.StreamReader(FILE_NAME) 2
The first line just sets up a string variable called FILE_NAME. The path and name of text file stored inside of the string variable.

= "C:\test.txt"
Above line describe that there is a text file called test which is at the location (path) "C:\".

To set up the StreamReader object as:

Dim objReader As New System.IO.StreamReader(FILE_NAME) 3
We've called the variable objReader. Then, after the "As" word comes "New". This means "Create a New Object". The type of object created is a StreamReader object.
System is the main object. IO is an object within System and StreamReader is an object within IO. StreamReader needs the name of a file to read. This goes between a pair of round brackets. VB will then assign all of this to the variable called objReader.
The above function is called to read the data source file and the name of the function is ‘readfile()’. This function has 3 parameters: ‘path’, ‘num’, and ‘whichline’. The ‘path’ variable stores the path of the file like ‘c:\test.txt’. The ‘num’ variable stores the number of lines in the text. The ‘whichline’ parameter is the line number to read. As an example, suppose we want to read the sixth line of the file. Then we have to set ‘whichline‘ variable to ‘6’.

For example readfile(‘C:\text.txt’,450,6) line reads the ‘text.txt’ file which has 450 lines total and reads the sixth line.

4.3.2 Functions Created to Read the Data
The function ‘readfile’ returns the string value of the line which is read. There are 3 parameters on the function ‘readfile’ which are ‘path’, ‘num’ and ‘whichline’. The path variable contains the path of the text file which contains the signal data. The ‘num’ variable stores the number of lines of the signal file. The ‘whichline’ variable tells the function, which line to be read.

The ‘countfile’ function is used to find the number of lines in the text file. There is only one variable called ‘path’ in ‘countfile’ function which is name is ‘path’. The path variable contains the path of the text file which contains the signal data.
To find the length of the signal in seconds we have to divide the number of lines that the file contains to the sampling frequency of the signal. The function ‘howmanyseconds’ provides us the length of the signal in seconds. For example howmanyseconds(560) returns the length of the signal in seconds.
The ‘readall’ function reads the whole file and stores the lines of the file to the array ‘signal_file()’ The ‘i’ variable is the sample index. ‘num’ is the number of lines which the ‘path’ contains.

The MIT-BIH database output is represented as a text file. Also the generated signal by the simulation algorithm is in a form of text file.
4.3.3 Reading the data from the ECG device

The device is sending ECG data to the computer’s serial port using RS232 interface. The software needs to read the serial port to take the signal data.
4.4 Monitoring the ECG

The second step of the software is to monitor the ECG. To draw ECG and make other graphical operations the software used GDI+ functions. In this part first GDI is going to be explained and then the functions that are used in the software are explained.
4.4.1 GDI+ Basics and Principles

GDI+ is the subsystem of the Windows XP operating system that is responsible for displaying information on screens and printers. As its name suggests, GDI+ is the successor to GDI, the graphics device interface included with earlier versions of Windows. GDI+ is an application programming interface (API) that is exposed through a set of classes deployed as managed code. This set of classes is called the managed class interface to GDI+.
A graphics device interface, such as GDI+, allows application programmers to display information on a screen or printer without having to be concerned about the details of a particular display device. The application programmer makes calls to methods provided by GDI+ classes and those methods in turn make the appropriate calls to specific device drivers. GDI+ insulates the application from the graphics hardware, and it is this insulation that allows developers to create device-independent applications [29].
4.4.1.1 System.Drawing Namespace

The System.Drawing namespace provides access to GDI+ basic graphics functionality. More advanced functionality is provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and System.Drawing.Text namespaces [30].
4.4.1.2 Graphics Class
The Graphics class provides methods for drawing to the display device. Classes such as Rectangle and Point encapsulate GDI+ primitives. The Pen class is used to draw lines and curves, while classes derived from the abstract class Brush are used to fill the interiors of shapes. The Graphics class is at the heart of GDI+. To draw anything, you obtain a Graphics object, set its properties, and call its methods (DrawLine, DrawImage, DrawString, and the like) [31].
The following example calls the DrawRectangle method of a Graphics object. The first argument passed to the DrawRectangle method is a Pen object.

[Visual Basic]

Dim graphics As Graphics = e.Graphics

Dim pen As New Pen(Color.Blue) ' Opaque blue

graphics.DrawRectangle(pen, 10, 10, 200, 100)

4.4.1.3 Graphics State

A Graphics object does more than provide drawing methods, such as DrawLine and DrawRectangle. A Graphics object also maintains graphics state, which can be divided into the following categories:

· Quality settings

· Transformations

4.4.2 Drawing the ECG Line
To draw the ECG line in the graphics object we have to normalize the values. Normalization requires to make the coordinate values integer numbers making drawing possible. So after taking the raw signal data value first we multiple the value and than divide the value to get the drawable coordinates. The ‘normalize()’ function is below.

To plot the ECG line we used the PlotOrginalSignal function. In the software there are also PlotDiffSignal() and PlotValue() functions. To plot the differentiated ECG, PlotDiffSignal() function is used. To plot the differentiated and square-rooted ECG, PlotValue() function is used.
4.5 Models for ECG Analysis
4.5.1 QRS Detection

After capturing the ECG signals from source (MIT-BIH database, Computer Generated Signals or the Microcontroller based ECG device) and converting them in to the easy text format, the next step is the identification of different sections of the ECG waveforms. The most important part of all the waves in the ECG waveform is the QRS complex. The QRS complex is a waveform that appears in most normal and abnormal signals in an ECG. The elements of an ECG may include a preliminary P wave; a Q peak (negative amplitude), an R peak (the most prominent feature), an S peak (negative amplitude), and a T wave, as shown below in Figure 2.11.

The accurate detection of the R-peak of the QRS complex is the pre-requisite for the reliable function of ECG-analyzers. The recognition of almost all ECG parameters is based on a fixed point identifiable at each cycle. R-peak is suitable for use as the datum point, because it has the largest amplitude and sharpest waveform that can be extracted from ECG. The time and amplitude measurements can be performed when the apex of the R-peak is detected at each cycle.

4.5.2 QRS Complex Detection Algorithm
There is a large number of recognition algorithms used in ECG-analyzers and, in many cases, the principles of operation vary. Some are based on different types of amplitude triggering, while others examine the signal in the frequency domain [32,33]. The adaptive properties of algorithms to the changing signal may differ and some algorithms use statistical methods for identification. Author implemented the Pan-Tompkins real time QRS detection algorithm [34]. This algorithm uses filtering, differentiation, signal squaring and time averaging to detect the complex
4.5.2.1 The Low-Pass Filter
The filtering is done in hardware side. The low-pass filter was designed using two resistors and two capacitors. The circuit is a 2nd order Butterworth low-pass filter with a cut-off frequency of about fc = 40Hz. [25].
4.5.2.2 50Hz Notch Filter

The notch filter is also done in hardware side. Notch filter used to remove the 50Hz powerline noise from the signal. If the frequency is not 50Hz the filter pass the frequencies [25].

For the captured data from the MIT-BIH database or computer generated signal using simulation algorithms, author supposes that there is no noise in the signal. We can determine the noise of the signal which is generated by ECGSYN program. To test the QRS detection algorithm the generated signals have 0 mV noise. ‘% Anoise’ parameter was set 0 to generate the signals.

4.5.2.3 Differentiator
After filtering, the signal is differentiated to provide the QRS complex slope information. Author used a five-point derivative with transfer function:

H(z) = 0.1 (2 + z-1 – z-3 - 2 z-4) (3.1)

The final equation is given by:

y[n] = 0.1(2 x[n] + x[n-1] - x[n-3] -2 x[n-4]) (3.2)
[image: image30.png]AIM-Spice (Student Version) - [v(3)]
@ fie Edt Vew Control Fomat Window Help
Gl gl Blol @ al 2l

|v(3) [V]

50) [V]

w

5

2

1

o

o D £ o o e

Frequency [Hz]

[Simudation Dore

Figure 4.2 Theoretical Frequency Response of the Low-Pass Filter [25]
This derivative is nearly linear between dc and 30 Hz.

The software is using a function called ‘differentiate’ to differentiate the signal.
There is one another user created function which is called Getrealvalue(). Getrealvalue() function has a one integer variable which tells the function what line will be readed from text file which contains MIT-BIH database raw signal data. The function returns the raw signal number that is double. After capturing the raw data using getrealvalue() function it applicate the calculations that need for differentiation.

The function returns internal2 that contains the differentiated value.
4.5.2.4 Squaring Function

After differentiation, the signal is squared point by point. The equation of this operation is:
y[n] = (x[n])2 (3.3)

This makes all data points positive and does nonlinear amplification of the output of the derivative emphasizing the higher frequencies. In the software the above function is called to get the square root of the signal.

[image: image31.png]£ ECG SIGNAL PROCESSING
Graph

i

Normat
Total# 0

[

Diff

Dift and sauar

Diftrentsted and squared sgnal

tited signal

s start. ERDLCRBMEORQAS ©

T I e —

®E&)S 5 S 1

Figure 4.3 The Snapshot of the ECG Analysis (Thesis) Software

In Figure 4.4 the thesis software has 3 different picture boxes to monitor the ECG. First picture box which is at the top and the biggest one shows the original ECG. The second picture box which is on the bottom left shows the signal which is differentiated and square rooted sample per sample. The picture box which is on the right bottom shows the differentiated signal.

There is one problem when the user see the graphs at the bottom. To draw ECG signal line the software used GDI function named ‘Drawline’.

The Drawline GDI function has 5 parameters. The first parameter is the color of the line. The second parameter x1 is the x coordinate of the first point. The third parameter is y1. It is the y coordinate of the second point. The forth parameter is x2. It is the x coordinate of the second point. The fifth parameter is the y2. It is the y coordinate of the second point. The coordinate values can not be double or real numbers. So we need to round the values. For example if the raw signal data value is -0.260. After we differentiate the signal the value become -0.0020000000000000074. So we have to round the differentiated value. It becomes ‘2’ So the graphs can not been seen with detail. To see them in detail Matlab software can be used.
[image: image32.png]Amplitude

Differentiator

Figure 4.4 Matlab Presentation of Differentiated Signal

4.5.2.5 Moving Window Integrator

The moving window integral extracts more information from the signal to detect a QRS event by averaging a certain number of samples per window. In such cases, the window

must be the same as the widest possible QRS complex, and the length of the window must be selected carefully.

In the software the MIT-BIH database sampling frequency is 360. The QRS detection function receives 20 samples and take the average of it. If the average is above 4000 then the software makes further investigation to understand that it is QRS complex or not.

The equation of this operation is given by:

y[n] = (x[n) + x[n +1] + ... + x[n]) / N, where N=20 (3.4)

[image: image33.png]L)

08

7
5

Gl
cpmuduy

0.
o,
01

00s35vZ
0043z
0043817
0043902
004306
o00+3LLL
o0+3eL
o0+36yL
oos3sE L
o0v3eT
004360
1o30v6
103608
103599
103825
L0308t
103657
Lo3sit
w3z
re
Loasz
Lo3ser
rogeLs
103012
Loae
103586
o0ezzy -
004307 1-
o00+307't-
o00e3eS 1
o0saLgL-
oosatEL-
00+3581-
0043802
o0s3222-
o0s308Z-
00+305Z-

Time

Figure 4.5 Matlab Presentation of Differentiated and Square Rooted Signal
The qrsdet3 function has two parameters. The first parameter is value_after_diffandsquare. This parameter is the value of the signal which is differentiated and square rooted. The ‘check’ variable is sample index. The ‘value_after_diffandsquare’ is received by the qrsdet3 function to sum up all differentiated and square rooted values. And then the function divide the sum to 20 to find the average value of the samples. If the average is greater than ‘3000’ this means that there is a possibility to be a QRS on this place. Because the average of 20 differentiated and square-rooted values average amplitude is higher than other samples. After that algorithm checks the values to find the maximum amplitude (R peak) of the signal. After finding R peak it goes back to find the Q point and than go forward to find S point. If the average values between QR interval and RS interval are big enough then we understand that it is a QRS complex.

We have a go back in the detection algorithm so there was a delay time 0.1/2 seconds. The delay time is related to the sampling frequency.

In the qrsdet3 function there are two functions inside it. First one is ‘traceline’ function which has two parameter basindex and sonindex. Those variables are storing the values of the Q point index and S point index. And make the createsignal() array -50. ‘createsignal’ array is used for the trace line which is red and show the QRS.

[image: image34.png]Normal

 (Trace line which is red)

Figure 4.6 Trace Line which is Red.
4.5.2.6 Computation of Heart Rate

After the R-peaks in the QRS complexes are detected the heart rate is computed by measuring the length of the RR (or Rpeak to Rpeak) interval.

The software calls the function ‘findbpm’ to find the beats per minute. ‘findbpm’ function has one parameter named ‘rrinterval’. ‘rrinterval’ parameter is the value between the difference of the two R-peak’s sample index.

The parameter ‘son’ has the sample index of the second R peak and the ‘bas’ parameter has the sample index for the first R peak of the detected QRS complexes. The software can not find the beats per minute at least 2 QRS complexes detected. Because if there is only one QRS complex we can not find the R to R interval.

4.5.2.7 Analysis and Diagnosis of Tachycardia and Bradycardia

An important analytical and diagnostic tool is a table or knowledge-base for mapping the stages of blood flow and the associated electrical potentials and (re)polarizations into the segments of the waveform. The variations in the time-intervals that these signals extend (longer, shorter, or just-right), render ECG waveform a diagnostic capability tool.
4.5.2.8 Detecting Normal Sinus Rhythm, Tachycardia, Bradycardia or Asytole

The Author assumed that if the beats per minute are below 60 the abnormality is bradycardia and if it is above 100 then it is tachycardia. If it is between 60 and 100 it is normal rhythm. And if it is less then 5 it is asystole. But there may be much more rhythm problems like ’60-Cycle Interference’ or ‘Atrial Fibrillation’. The software can not find other abnormalities. In Chapter 5 the possible abnormalities in the rhythm is described using an expert system in detail.

If we need to summarize: the software can detect these 4 cases:

1- Normal Sinus Rhythm

2- Sinus Bradycardia
3- Sinus Tachycardia
4- Asystole
[image: image35.png]

Figure 4.7 Sinus Normal Sinus Form in ECG
[image: image36.png]BN NSS! [Sau ot e == SV3L

Figure 4.8 Sinus Bradycardia Form in ECG

[image: image37.png]

Figure 4.9 Sinus Tachycardia Form in ECG

[image: image38.png]

Figure 4.10 Asystole Form in ECG

In the software there is a function called ‘rhytm_check’. This function has only one parameter ‘hbr’ which stores the value of beats per minute. The software called the function ‘rhytm_check’ to determine the abnormality. ‘normal_start’ is constant. It is value is 60. ‘normal_end’ is constant also. It is value is 100.
4.6 Inference Rules for the Expert System
The diagnosis can be supported by an expert system in the future. The author design a simple rule based expert system. In Famagusta Government Hospital the author talked to some cardiologists. Those doctors say that they can see the problems immediately. But software can make their life easy. It can be used a decision support system. So if it is decision support system we can talk about the Expert Systems. An expert system is a software system that incorporates concepts derived from experts in a field and uses their knowledge to provide problem analysis to users of the software. The most common form of expert system is a computer program, with a set of rules that analyzes information (usually supplied by the user of the system) about a specific class of problems, and recommends one or more courses of user action.

Expert systems are designed and created to facilitate tasks in the fields of accounting, medicine, process control, financial service, production, human resources etc. Indeed, the foundation of a successful expert system depends on a series of technical procedures and development that may be designed by certain technicians and related experts. [35]
To design ECG analysis software the experts will be doctors and cardiologists. The author make a shortcut rather than talking to experts. Instead of talking to the doctors the author created rules according to the book called ‘Hip and See ECG’ written by Elizabeth Gross Cohn and Mary Gilroy Doohan. [36].
Number of beats per minute will be shown as nobpm

Rule Number 1
If nobpm>60 and nobpm<100 and

If P wave is complete and

If QRS complex is complete and

If T wave is complete and

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all the intervals are within normal limits then this is Normal Sinus Rhythm
[image: image39.png]

Figure 4.11 Normal Sinus Rhythm ECG View

Rule Number 2
If nobpm>60 and nobpm<100 and

If P wave is complete and

If QRS complex is complete and

If T wave is complete and

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If R-R intervals are not within normal limits and

If the intervals rather than R-R intervals are within normal limits then this is Sinus Arrhythmia

[image: image40.png]

Figure 4.12 Sinus Arrhythmia ECG View

Rule Number 3
If nobpm<60 and

If P wave is complete and

If QRS complex is complete and

If T wave is complete and

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all intervals expect the rate within normal limits then this is Sinus Bradycardia
[image: image41.png]BN NSS! [Sau ot e == SV3L

Figure 4.13 Sinus Bradycardia ECG View

Rule Number 4
If nobpm>100 and

If P wave is complete and

If P wave is buried in the previous T wave and

If QRS complex is complete and

If T wave is complete and

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all intervals expect the rate within normal limits then this is Sinus Tachycardia
[image: image42.png]

Figure 4.14 Sinus Tachycardia ECG View

Rule Number 5
If nobpm>60 and nobpm<100 and

If there are extra atrial beats that are created and conducted and on the rate of the underlying rhythm and

If P wave is complete and

If early P waves look different from the normal P waves and

If early P waves are smaller or peaked and

If QRS complex is complete or conducted differently and

If T wave is complete and

If P-R intervals are shorter depending on the distance from the ectopic foci to the AV node

If there is ectopic complexes and

If all intervals expect the rate within normal limits then this is Premature Atrial Contractions
[image: image43.png]

Figure 4.15 Premature Atrial Contractions ECG View

Rule Number 6
If there is untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all intervals may be irregular owing to the premature complexes and compensatory pauses and

If there is no P waves are present before the premature ventricular contraction and

[image: image44.png]

Figure 4.16 Unifocal Premature Ventricular Contractions ECG View

If there is a just one ectopic focus then

This is Unifocal Premature Ventricular Contractions

else

If there is more than one ectopic focus

This is Unifocal Premature Ventricular Contractions

Rule Number 7
If nobpm>60 and nobpm<100 and

If atrial rate is between 240-360 beats per minute and

If atrial rate constant firing of an ectopic focus and

If instead of P waves there is F waves and

If the complexes are incomplete and

If T waves can not be seen and

If QRS complexes are within the normal limits and

If complexes start with F waves as a baseline then this is Atrial Flutter
[image: image45.png]

Figure 4.17 Atrial Flutter ECG View

Rule Number 8
If nobpm>100 and nobpm<160 and

If atrial rate is between 350-600 beats per minute and

If R-R interval is always irregular because of chaotic constant stimulation from the atria and

If instead of P waves there is F waves and

If there is no P waves

If baseline is all f waves

If complexes start with F waves as a baseline then this is Atrial Fibrillation
[image: image46.png]

Figure 4.18 Atrial Fibrillation ECG View

Rule Number 9
If nobpm>160 and nobpm<250 and

If P wave is complete and

If rate is very fast and

If QRS complex is complete and

If T wave is complete and

If P waves are absent or may be buried in the preceding complex and

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If QRS complex and T waves are within normal limits then this is Superventricular Tachycardia
[image: image47.png]

Figure 4.19 Superventricular Tachycardia ECG View

Rule Number 10
If nobpm>100 and nobpm<250 and

If there is only wide, tall, bizarre-looking complexes and

If QRS complex greater than 0.12 second, wide, weird looking and

If rate is very fast

If QRS complex is complete and

If T wave is complete and

If P waves are absent or may be buried in the preceding complex

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If QRS complex and T waves are within normal limits this is Ventricular Tachycardia
[image: image48.png]

Figure 4.20 Ventricular Tachycardia ECG View

Rule Number 11
If nobpm<=0 and

If there is no pulse and

If there is completely uncoordinated electrical activity without any discernible complexes and

If all waves are F waves then this is Ventricular Fibrillation
[image: image49.png]

Figure 4.21 Ventricular Fibrillation ECG View

Rule Number 12
If nobpm>40 and nobpm<60 and

If there is no P wave

If QRS complex is complete

If T wave is complete then this is Junctional (Nodal) Rhythm
[image: image50.png]

Figure 4.22 Junctional (Nodal) Rhythm ECG View

Rule Number 13
If nobpm<5 and

If there is no pulse and

If there is no P wave and

If there is no QRS complex and

If there is no T wave and this is Asystole
[image: image51.png]

Figure 4.23 Asystole ECG View

Rule Number 14
If nobpm>60 and nobpm<100 and

If P wave is complete and

If QRS complex is complete and

If T wave is complete

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all intervals within normal limit expect the P-R interval is greater than 0.20 second then this is First Degree AV Hearth Block
[image: image52.png]

Figure 4.24 First Degree AV Hearth Block ECG View

Rule Number 15
If nobpm>60 and nobpm<100 and

If P wave is complete and

If QRS complex is complete and

If T wave is complete

If there is no untoward, wide, bizarre, ectopic, early, late, different-looking complexes and

If all intervals within normal limit expect the P-R interval is greater than 0.20 second then this is Second Degree AV Hearth Block
[image: image53.png]

Figure 4.25 Second Degree AV Hearth Block ECG View

Rule Number 16
If nobpm>60 and nobpm<100 and

If there is no relationship between the P wave and the QRS complex and T wave and

If p wave (atrail) rate 60-100 beats per minute and

If QRS complexes are narrow and

If P-R intervals are random then this is Third Degree AV Hearth Block
[image: image54.png]

Figure 4.26 Third Degree AV Hearth Block ECG View

There are some popular expert systems for medicine. Mycin is one of them. It is created in Stanford University to diagnose infectious blood diseases and recommend antibiotics.

With ECG analysis software there can be a wizard which is an interactive computer program that helps a user solves a problem. Wizard is going to use Forward Chaining method. In Expert Systems there are two main methods of reasoning when using inference rules: backward chaining and forward chaining. Forward chaining starts with the data available and uses the inference rules to conclude more data until a desired goal is reached. An inference engine using forward chaining searches the inference rules until it finds one in which the if-clause is known to be true. It then concludes the then-clause and adds this information to its data. It would continue to do this until a goal is reached [37].
Author needs some functions for the software to adapt those rules that creates the expert system.

The software needs those functions to run correctly.

1- Calculate the beats per minute. This function is used to calculate the patient’s heart rate. The function returns a number.

2- Check the QRS complex whether is complete or not. This function returns the value True or False.

3- Check the P wave. Is it complete or not? This function returns the value True or False

4- Check the T wave. Is it complete or not? This function returns the value True or False

5- Check that is there any untoward complexes. This function returns the value True or False

6- Check that is there any wide complexes. This function returns the value True or False

7- Check that is there any bizarre complexes. This function returns the value True or False

8- Check that is there any ectopic complexes. This function returns the value True or False

9- Check that is there any early complexes. This function returns the value True or False

10- Check that is there any late complexes. This function returns the value True or False

11- Check that is there any different-looking complexes. This function returns the value True or False

In the future the ECG analysis software can be supported by a rule base expert system using the inference rules that are created above. This will enable a large number of heart related abnormalities to be detected.
4.7 Comparison of the System developed by the Author with Commercial Systems

The comparison between the system developed by the author versus commercial systems will be provided in this section. The comparison can not be made only for the software or the hardware. We have to think the device and the software as a whole system because the success of the software depends on the hardware. The comparison will be made between three popular systems. CardioPlug, CarTouch and the author’s system. CardioPlug and CarTouch are developed by Cardionics SA.

Cardionics SA was founded on 30 April 1969 by the famous Belgian company Union Minière. Cardionics SA purchased an ECG program developed by IBM in collaboration with a group of American cardiologists from Mount Sinaï Hospital in New York. Cromed, a sub-company of Chromalloy American Corporation, ensured the distribution of this ECG system (software and hardware) in the USA [38].
Pictures of the systems compared are given below.

Figure 4.27 CardioPlug System Commercial Representation

Figure 4.28 CardioTouch System Commercial Pepresentation

[image: image57.png]VY
L]

M

Figure 4.29 Thesis System Commercial Representatio
The comparison is made using the most significant and important parameters like screen resolution, storage or view modes. The comparison of the three systems is provided in Table 4.1.
Table 4.1 Comparison Table
	
	CardioPlug System
	CarTouch System
	Thesis System

	Hardware Display
	No hardware display
	240*320 pixels
	128*64 pixels

	Software Display
	High Definition
	No software display
	High Definition

(1024*768 pixel)

	Number of Leads
	12
	12
	3

	Computer Connection
	Yes (USB)
	Yes (RS 232)
	Yes (RS 232)

	Internet or Network Connection
	No
	FTP, E-mail
	No

	Build in Keyboard
	No
	16 alphanumeric keys
	No

	Database Support
	Database with patient identification form
	No
	No. (Can be improved easily)

	Storage Support
	Unlimited
	50 ECG’s
	Unlimited

	Rest ECG acquisition
	Yes
	Yes
	Yes

	View Modes
	2x6, 3x4, 1x12, 1x3 leads
	12 lead view
	1 lead view , 1 differentiated signal view, 1 square rooted signal view.

	QT dispersion analysis

	Yes
	Yes
	No. (Can be improved easily)

	Ecg Analysis
	Yes
	Yes
	Yes

	Transmission, reception and validation of the ECG's
	Yes
	Yes
	No

	Exportation of the ECG's (PDF, JPEG, TIF, PDF and XML)
	Yes
	Yes
	No

	Software Help
	Yes
	Yes
	No

	MIT-BIH Database Analysis
	No
	No
	Yes

	Simulation Algorithm Analysis
	No
	No
	Yes

	Open Source
	No
	No
	Yes

	Price
	2500$
	1250$
	180$

4.8 Screen Shots of the Software with Different Heart Beats per Minute

The following pictures are snapshots from the program developed by the author and they illustrate different heart rates and different data sources.

[image: image58.png]£ ECG SIGNAL PROCESSING
Graph

Normat
Total# 0

[

Diff

Dift and sauar

Diftrentsted and squared sgnal

tited signal

s start. ERDLCRBMEORQAS ©

T I e —

Figure 4.30 The Screenshot of the Software where Beats Per Minute is 79. The Used Database is MIT-BIH Record No 100.

[image: image59.png]£ ECG SIGNAL PROCESSING
Graph

i

Normat
Total# 0

[

Diff

Dift and sauar

Diftrentsted and squared sgnal

tited signal

s start. ERDLCRBMEORQAS ©

T I e —

®E&)S 5 S 1

Figure 4.31 The Screenshot of the Software where Beats Per Minute is 110. The Used Source is ECGSYN Output.

[image: image60.png]£ ECG SIGNAL PROCESSING
Graph

Normat

140

Dift and sauar

Diftrentsted and squared sgnal

tited signal

s start. ERDLCRBMEORQAS ©

T I e —

Figure 4.32 The Screenshot of the Software where Beats Per Minute is 70 and the ‘% Anoise’ Parameter is 1 mV. The Used Source is ECGSYN Output.

[image: image61.png]£ ECG SIGNAL PROCESSING

araph

Diftrentsted and squared sgnal

“J start ER2LCRAMAFORQQ A S

= tezprogran 7 ot w4 - & s

Figure 4.33 The screenshot of the Software where the ‘% Anoise’ Parameter is 5 mV. The Used Source is ECGSYN Output.
[image: image62.png]£ ECG SIGNAL PROCESSING
Graph

Normat
Total# 0

[

Diff

Dift and sauar

Diftrentsted and squared sgnal

tited signal

Jstart, | % 2L CRBMFOQQAS - Y (e, [Pt [fw. [Cw

Figure 4.34 The Screenshot of the Software where Beats Per Minute is 49. The Used Source is ECGSYN Output.
[image: image63.png]£ ECG SIGNAL PROCESSING
Graph

Sinus Bradycard

Normat

140

Dift and sauar

Diftrentsted and squared sgnal

tited signal

Jstat € % 2, CR@F O [®iepogan P terprogan- .| [Mecosioalp.. | [(BShowthediers | TR

o, 233

Figure 4.35 The Screenshot of the Software where Beats Per Minute is 52. The Used Database is MIT-BIH Database Record No 117.

5. SUGGESTIONS FOR FUTURE IMPROVEMENTS

5.1 Overview
In this chapter possible improvements will be explained for the ECG software and hardware.
Although the design of the ECG software was successful it can be improved further by the modifications and additions as listed below. The problems listed above are according to the importance of the problem.

5.2 Future Improvements about the Software
5.2.1
Using DirectX rather than GDI
The software can monitor the ECG not in real time. This is because there is some delay to draw the waveform as a result of calculations. The GDI library is not fastest library in the world but DirectX rendering is much faster than GDI. So what is DirectX? DirectX is a set of low-level application programming interfaces (APIs) for creating games and other high-performance multimedia applications. It includes support for high-performance 2-D and 3-D graphics, sound, and input. With DirectX 9.0, developers can take advantage of DirectX multimedia functionality and hardware acceleration while using managed code. DirectX 9.0 for Managed Code enables access to most of the original unmanaged DirectX functionality [39].
5.2.2 Filtering was done in the hardware

The software has not implemented low pass filtering, or high pass filtering or notch filtering to eliminate the noise. The filtering was left to be done in the hardware.

5.2.3 The QRS detection algorithm can be updated
On 19 January 2005 Z. E. Hadj Slimane and F. Beregsi Reguig published an article called ‘New Algorithm for QRS Detection’ [40]. Their results show that their method performs better than the Pan and Tompkins method. . E. Hadj Slimane and F. Beregsi Reguig’s algorithm results in lower false positives and lower false negatives.

Table 5.1 Comparison of Two Algorithms.

[image: image64.png]Failed Failed

Record Total QRS detection detection detection
(No.) (No. of Beats) methods FP(Beats) FN(Beats) (Beats) (%)
101 1865 Algorithm no.1 5 3 8 043
Algorithm no.2 5 3 8 043
106 2027 Algorithm no.1 0 o o o
Algorithm no.2 5 2 7 0.35
108 1763 Algorithm no.1 6 10 16 091
Algorithm no.2 199 22 221 1254
114 1879 Algorithm no.1 1 1 2 0.11
Algorithm no.2 3 17 20 1.06
116 2412 Algorithm no.1 0 o o o
Algorithm no.2 3 22 25 1.04
121 1863 Algorithm no.1 0 o o o
Algorithm no.2 4 7 11 0.59
203 2082 Algorithm no.1 1 22 23 7
Algorithm no.2 53 30 83
222 2484 Algorithm no.1 1 6 7
Algorithm no.2 101 81 182
228 2053 Algorithm no.1 1 2 3
Algorithm no.2 25 5 30

In table 5.1 algorithm no.1 represents the new algorithm and algorithm no.2 represents the Pan and Tompkins algorithm. The records are MIT-BIH database records. The Pan and Tompkins algorithm is classifying the high slope P waves as a QRS complex and makes long classifying. Those records that are selected have high slope P waves.

In thesis software the algorithm can be change to get more satisfying results.

5.2.4 The system is not designed as a critical application.
The system is not design as a critical system. The term "Critical System" has traditionally referred to systems that were safety and/or life critical [41]. The thesis software is a Critical System according to this definition but it was not designed for specific ECG hardware.

5.2.5 The software is not platform independent

The software was developed to run under the Microsoft Windows operating system which was a limitation. The software can not run different operating systems like Unix, Linux, Macos or Solaris.
5.2.6 No internet or Network Support

The software can not interact with internet. Suppose the doctor can trace the patient’s QRS signals over the internet and if there is abnormal action he/she send an ambulance to the patient home immediately. There is no network support for the software.

5.2.7 No Database Support

There is no database support in the software. The user can not save the patient’s files and critical information like age, sex, the past diseases, or the list of medicines that the patient has allergy or the patient may react badly. The database support should be added the software in the future.

5.2.8 No Reporting Functionality

All the commercial software’s have reporting functions. But thesis software does not have any reporting function. Suppose that the software can give detailed report about the ECG and rhythm abnormalities.

5.3 Future Improvements of the Hardware

The hardware which is designed by Near East University needs some minor modifications. Applying those modifications the hardware can be commercialized easily.
1. It is recommended to use thinner wires for the electrodes. This will make the adhesive last for longer times as it will make the electrodes stick firmly to the subject

2. The complete circuit should be mounted on an etched printed circuit board and housed in a small plastic box with the battery enclosed inside the box and on/off switch provided on the box.

3. A buzzer could be provided in the design which will give sound every-time an ECG waveform is detected

4. A temperature sensor could be added to the design so that both the ECG waveforms and the temperature of the subject can be displayed

5. The heart beat rate of the subject can be derived from the ECG waveform and displayed in text form at the bottom of the display

6. Commercial samples of the ECG unit can be made and suitable manufacturers can be found to manufacture and sell the units for general public use [25].
CONCLUSION
In this thesis a succesful ECG monitoring and analysis software has been developed. The software has been tested with MIT-BIH database and simulation data. The most important data source was the MIT-BIH database. It was the most important data source because it contains various types of ECG signals of many different subjects.
Further development of this software requires that the developer continually test the software against as large database of ECG data as possible. After a lot of testing it was found that the software can be improved with some little modifications in QRS detection algorithm. The software developed by the author was based on the standard Visual Basic language and the basic structure of the software works well. After adding some of the improvements which are described in detail in Chapter 4, the software can easily be commercialized.

The software developed by the author can used to detect four heart related abnormalities. More abnormalities can be detected after adding the inference rules generated by the author.
REFERENCES
[1] Sturucture of Heart. Ivy Rose Holistic Health and the Human Body. Retrived February 2, 2007 from the World Wide Web: http://www.ivy-rose.co.uk/Topics/Heart_Structure.htm

[2] Blood flow. National Heart Lung and Blood Institute. Retrived February 2, 2007 from the World Wide Web: http://www.nhlbi.nih.gov/health/dci/Diseases/hhw/hhw_pumping.html

[3] Working of the heart. American Heart Association. Retrived February 2, 2007 from the World Wide Web: http://www.americanheart.org/presenter.jhtml?identifier=4598

[4] Valves of the heart. Colombia University. Retrived February 2, 2007 from the World Wide Web: http://www.columbia.edu/.../heal/activities/presentations/spring-2003/030502/030502-pulse-and-blood-pressure.pdf
[5] Cardiac Cycle. Wikipedia. Retrived March 10, 2007 from the World Wide Web:

http://en.wikipedia.org/wiki/Cardiac_cycle

[6] Atrial Systole. Utah University. Retrived March 10, 2007 from the World Wide Web: http://library.med.utah.edu/kw/pharm/1Atrial_Systole.html

[7] Ventricular Systole. Wikipedia. Retrived March 12, 2007 from the World Wide Web:http://en.wikipedia.org/wiki/Systole(medicine)

[8] Heart Rate. Wikipedia. Retrived March 12, 2007 from the World Wide Web: http://en.wikipedia.org/wiki/Heart_rate

[9] Control of Heart Rate. Dr I. Kestin, Consultant Anaesthetist, Derriford Hospital, Plymouth, UK. Retrived March 14, 2007 from the World Wide Web: March. http://www.nda.ox.ac.uk/wfsa/html/u03/u03_011.htm
[10] Heart Rate Variability. European Heart Journal (1996) 17, 354-381 Retrived March 14, 2007

[11] Electrocardiogram Retrived March 14, 2007 from the World Wide Web: http://en.wikipedia.org/wiki/Electrocardiogram

[12] ECG Graph Paper. Public Safety Training Center Monroe Community College Rochester, New York Retrived March 15, 2007 from the World Wide Web: http://www.monroecc.edu/depts/pstc/backup/parasegf.htm
[13] ECG Filter Selection. Retrived March 15, 2007 from the World Wide Web: http://en.wikipedia.org/wiki/Electrocardiogram#Filter_selection

[14] Waves and Intervals of the ECG. Frank G. Yanowitz, MD Professor of Medicine
University of Utah School of Medicine Retrived April 10, 2007 from the World Wide Web: http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/index.html

[15] PhysioBank. Retrived June 5, 2007 from the World Wide Web: http://www.physionet.org/physiobank/

[16] ECG Databases. Retrived June 6, 2007 from the World Wide Web: http://www.physionet.org/physiobank/database/#ecg

[17] MIT-BIH Database Retrived June 7, 2007 from the World Wide Web: http://ecg.mit.edu/

[18] Selection Criteria of Records Retrived June 7, 2007 from the World Wide Web:

http://www.doc.ic.ac.uk/~giso/projects/arrhythmia/node7.html
[19] MIT-BIH Database Record Files Retrived June 8, 2007 from the World Wide Web:

http://www.physionet.org/physiobank/database/mitdb/

[20] Cygwin. Retrived June 8, 2007 from the World Wide Web:

http://www.cygwin.com/

[21] PhysioToolkit Software Retrived June 8, 2007 from the World Wide Web: http://www.physionet.org/physiotools/wfdb.shtml

[22] WFDB Applications Retrived June 8, 2007 from the World Wide Web: http://www.physionet.org/physiotools/wag/

[23] Records in the MIT-BIH Arrhythmia Database. Retrived June 8, 2007 from the World Wide Web: http://www.physionet.org/physiobank/database/html/mitdbdir/records.htm#100

[24] ECGSYN - A Realistic ECG Waveform Generator Retrived June 8, 2007 from the World Wide:http://www.physionet.org/physiotools/ecgsyn/

[25] Prof. Dr. İbrahim Doğan (2006) Design of a Microcontroller based portable ECG Unit with a Graphically LCD Display. Page 9. Internal Report, Near East University.
[26] 12 Lead ECG. Retrived June 8, 2007 from the World Wide: http://www.12leadecg.com/full/

[27] 12-Lead ECG System. Retrived June 8, 2007 from the World Wide: http://butler.cc.tut.fi/~malmivuo/ bem/bembook/15/15.htm

[28] Streamreader object. Microsoft Cooperation. Retrived June 15, 2007 from the World Wide Web: http://msdn2.microsoft.com/en-us/library/system.io.streamreader.aspx

[29] Overview of GDI+. Microsoft Cooperation. Retrived July 1, 2007 from World Wide Web: http://msdn2.microsoft.com/en-us/library /ms536380.aspx

[30] System Drawing Name Space. Microsoft Cooperation. Retrived July 1, 2007 from the World Wide Web:http://msdn2.microsoft.com/en-us/library/system.drawing.aspx

[31] Graphics Class. Microsoft Cooperation . Retrived July 2, 2007 from the World Wide Web: http://msdn2.microsoft.com/en-us/library/system.drawing.graphics.aspx

[32] BE304 Laboratory Notes, Michigan Technological University. Retrived July 3, 2007 from the World Wide Web: http://www.biomed.Mtu.edu.au/osoykan/classes/be304/week3/week3.htm

[33] Rapid Interpretation of EKG’s, Dale Dubin, M.D.

[34] Pan, J, Tompkins WJ, A real-time QRS detection algorithm, IEEE T Bio-med Eng 32 page 230-236, 1985

[35] Expert System. American Association for Artificial Intelligence. Retrived December 20, 2007 from the World Wide http://www.aaai.org/AITopics/html/expert.html

[36] ‘Hip and See ECG’ Elizabeth Gross Cohn and Mary Gilroy Doohan.
[37] Forward Chaining and Backward Chaining Retrived December 20, 2007 from the World Wide Web: http://www.aaai.org/AITopics/html/expert.htmlhttp://ai.eecs.umich.edu/cogarch0/common/prop/chain.html

[38] Commercial Devices. Retrived January 31, 2008 from the World Wide Web:

http://www.cardionics.be
[39] DirectX. Microsoft Cooperation. Retrived December 10, 2007 from the World Wide Web: http://msdn.microsoft.com/directx/
[40] Z. E. Hadj Slimane and F. Beregsi Reguig, New Algorithm for QRS Complex Detection Vol. 5, No. 4 (2005) 507-515
[41] Critical System. Wikipedia. Retrived December 11, 2007 from the World Wide Web: http://en.wikipedia.org/wiki/Safety-critical
APPENDIX 1
Source Code
 Dim wid As Integer

 Dim hgt As Integer

 Dim wido As Integer

 Dim hgto As Integer

 Dim widw As Integer

 Dim hgtw As Integer

 Dim total As Double

 Dim backtotal As Double

 Dim forwardtotal As Double

 Dim sindex As Integer

 Dim kackere As Integer

 Dim howmanyqrs As Integer

 Dim verikayit(99999) As Double

 Dim signal_file(999999) As String

 Dim globalfound, di As Integer

 Dim carp, bol As Double

 Dim realvalue As Double

 Dim hbr As Double

 Dim possibble_rhytm_problem As String

 Dim sampling_frequincy As Integer

 Dim signal(50000) As String

 Private m_Ymid As Integer

 Private number_of_lines As Integer

 Private m_Y, m_Y2, m_Y3 As Int32

 Private the_value As String

 Dim the_Value_Original As String

 Dim the_Value_Diff As String

 Private number_of_qrs As Integer

 Dim createsignal(50000) As Integer

 Dim c As Integer

 Dim bm As Bitmap

 Dim bm2 As Bitmap

 Dim bm3 As Bitmap

 Dim bm5 As Bitmap

 Dim gr, gr2, gr3, gr5 As Graphics

 ' Get ready.

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 backtotal = 0

 '---initilize the diff and square box

 wid = 400

 hgt = 300

 bm = New Bitmap(wid, hgt)

 gr = Graphics.FromImage(bm)

 gr.Clear(Color.Black)

 picGraph.Image = bm

 '---initilize original signal box

 wido = 800

 hgto = 400

 bm2 = New Bitmap(wido, hgto)

 gr2 = Graphics.FromImage(bm2)

 gr2.Clear(Color.Black)

 original.Image = bm2

 '---initilize the diff box

 bm3 = New Bitmap(wid, hgt)

 gr3 = Graphics.FromImage(bm3)

 gr3.Clear(Color.Black)

 Picdiff.Image = bm3

 '-------initiliaze the writing box

 widw = 700

 hgtw = 50

 bm5 = New Bitmap(widw, hgtw)

 gr5 = Graphics.FromImage(bm5)

 gr5.Clear(Color.Red)

 picvalue.Image = bm5

 End Sub

 ' Start drawing the graph.

 Private Sub DrawGraph()

 Dim y As Integer = m_Y

 Dim i As Integer

 Dim a As Integer

 Dim val As Double

 For i = 1 To p_number_of_lines

 NewValue(i)

 normalize(CInt(the_value))

 PlotValue(i, bol, the_value, y, m_Y)

 y = m_Y

 Next

 End Sub

 Function normalize(ByVal the_value As Integer) As Double

 carp = CDbl(Replace(CStr(the_value), ".", ",")) * 100000

 If whichsource = "simulate" Then

 bol = Math.Round((carp / 10000000))

 End If

 If whichsource = "mitbih" Then

 bol = Math.Round((carp / 1000000))

 End If

 m_Y = CInt(bol) * (-1)

 Return m_Y

 End Function

 Function normalizeoriginal(ByVal the_value As Integer) As Double

 carp = CDbl(Replace(CStr(the_value), ".", ",")) * 100000

 If whichsource = "simulate" Then

 bol = Math.Round((carp / 10000000))

 End If

 If whichsource = "mitbih" Then

 bol = Math.Round((carp / 1000000))

 End If

 m_Y2 = CInt(bol) * (-1)

 Return m_Y2

 End Function

 Function normalizediff(ByVal the_value As Integer) As Double

 carp = CDbl(Replace(CStr(the_value), ".", ",")) * 100000

 If whichsource = "simulate" Then

 bol = Math.Round((carp / 1000000))

 End If

 If whichsource = "mitbih" Then

 bol = Math.Round((carp / 100000))

 End If

 m_Y3 = CInt(bol) * (-1)

 Return m_Y3

 End Function

 ' Generate the next value.

 Function NewValue(ByVal which_line As Integer) As Integer

 If whichsource = "simulate" Then

 the_value = CStr(readfile(path, number_of_lines, which_line))

 m_Y = CInt(the_value)

 End If

 If whichsource = "mitbih" Then

 Dim chan1 As String

 the_value = CStr(readfile(path, number_of_lines, which_line))

 If channel = "1" Then

 chan1 = Mid(the_value, 9, 7)

 End If

 If channel = "2" Then

 chan1 = Mid(the_value, 17, 7)

 End If

 the_value = chan1

 m_Y = CInt(the_value)

 End If

 Return m_Y

 End Function

 ' Generate the next value.

 Function getrealvalue(ByVal which_line As Integer) As Double

 If whichsource = "simulate" Then

 the_value = Replace(CStr(readfile(path, number_of_lines, which_line)), ".", ",")

 realvalue = CDbl(the_value)

 End If

 If whichsource = "mitbih" Then

 Dim chan1 As String

 the_value = CStr(readfile(path, number_of_lines, which_line))

 If channel = "1" Then

 chan1 = Mid(the_value, 9, 7)

 End If

 If channel = "2" Then

 chan1 = Mid(the_value, 17, 7)

 End If

 the_value = Replace(chan1, ".", ",")

 realvalue = CDbl(the_value)

 End If

 Return realvalue

 End Function

 ' Plot a new value.

 Private Sub writeValue(ByVal i As Integer, ByVal bol As Double, ByVal the_value As String, ByVal old_y As Integer, ByVal new_y As Integer)

 Dim str As String

 Dim detect As String

 Dim bm5 As New Bitmap(700, 50)

 Dim fnt As New Font("Verdana", 7)

 Dim fnt2 As New Font("Verdana", 8)

 Dim fnt3 As New Font("Verdana", 9)

 Dim gr5 As Graphics = Graphics.FromImage(bm5)

 gr5.Clear(Color.Red)

 detect = ""

 'detecting max and min peaks

 If bol <= CInt(p_average_min_peak) Then

 detect = "Detected minimum peak"

 End If

 If CInt(bol) >= CInt(p_average_max_peak) Then

 detect = "Detected maximum peak"

 End If

 '---- WRITING THE VALUES----------------------------------

 str = " Sample:" + CStr(i) + _

 " Sample Value:" + Trim(the_value) + _

 " Round Value:" + CStr(bol) + _

 " Coordinate x1:" + CStr(wid - 2) + _

 " Coordinate y1:" + CStr(old_y + 25) + _

 " Coordinate x2:" + CStr(wid - 1) + _

 " Coordinate y2:" + CStr(new_y + 25)

 gr5.DrawString(str, fnt, New SolidBrush(Color.White), 8, 5)

 gr5.DrawString(detect, fnt2, New SolidBrush(Color.Red), 9, 20)

 gr5.DrawString(detect, fnt2, New SolidBrush(Color.Red), 9, 20)

 picvalue.Image() = bm5

 picvalue.Update()

 '---

 End Sub

 Private Sub PlotValue(ByVal i As Integer, ByVal bol As Double, ByVal the_value As String, ByVal old_y As Integer, ByVal new_y As Integer)

 Dim bm As New Bitmap(wid, hgt)

 Dim gr As Graphics = Graphics.FromImage(bm)

 Dim hgt2 As Integer = 200

 gr.Clear(Color.Black)

 ' Move the old data one pixel to the left.

 gr.DrawImage(picGraph.Image, -1, 0)

 '-----------draw the ecg line

 gr.DrawLine(Pens.LightGreen, wid - 2, (old_y) + hgt2, wid - 1, (new_y) + hgt2)

 picGraph.Image = bm

 picGraph.Update()

 End Sub

 Private Sub PlotOriginalSignal(ByVal i As Integer, ByVal bol As Double, ByVal the_value_original As String, ByVal old_y As Integer, ByVal new_y As Integer)

 Dim bmoriginal As New Bitmap(wido, hgto)

 Dim groriginal As Graphics = Graphics.FromImage(bmoriginal)

 Dim hgt2 As Integer = 200

 groriginal.Clear(Color.Black)

 ' Move the old data one pixel to the left.

 groriginal.DrawImage(original.Image, -1, 0)

 '-----------draw the ecg line-----------------------

 groriginal.DrawLine(Pens.LightGreen, wido - 2, (old_y) + hgt2, wido - 1, (new_y) + hgt2)

 '-------------paint the qrs----------------------------------

 groriginal.DrawLine(Pens.Red, wido - 2, createsignal(i) + 350, wido - 1, createsignal(i) + 350)

 'If createsignal(i) < 0 Then

 'groriginal.DrawLine(Pens.Red, wido - 2, createsignal(i) + hgt2 + 200, wido - 1, createsignal(i) + hgt2 + 200)

 'End If

 original.Image = bmoriginal

 original.Update()

 End Sub

 Private Sub PlotDiffSignal(ByVal i As Integer, ByVal bol As Double, ByVal the_value_diff As String, ByVal old_y As Integer, ByVal new_y As Integer)

 Dim bmdiff As New Bitmap(wido, hgto)

 Dim grdiff As Graphics = Graphics.FromImage(bmdiff)

 Dim hgt2 As Integer = 120

 grdiff.Clear(Color.Black)

 ' Move the old data one pixel to the left.

 grdiff.DrawImage(Picdiff.Image, -1, 0)

 '-----------draw the ecg line

 grdiff.DrawLine(Pens.LightGreen, wido - 2, (old_y) + hgt2, wido - 1, (new_y) + hgt2)

 Picdiff.Image = bmdiff

 Picdiff.Update()

 End Sub

 Private Sub countfile(ByVal path As String)

 Dim oFile As System.IO.File

 Dim fileCounter As Integer

 Dim z As System.DBNull

 Dim filefile As Integer

 Dim strFilePath As String

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 '---count the lines on the file

 Do While Len(oRead.ReadLine) <> 0

 fileCounter = fileCounter + 1

 Loop

 oRead.Close()

 '---------------------------------

 number_of_lines = fileCounter

 End Sub

 Function readfile(ByVal path As String, ByVal num As Integer, ByVal whichline As Integer) As String

 Dim oFile As System.IO.File

 Dim fileCounter As Integer

 Dim z As System.DBNull

 Dim filefile As Integer

 Dim strFilePath As String

 Dim i As Integer

 i = 1

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 Dim rlineIn As String

 Dim x As String

 For i = 1 To p_number_of_lines - 1

 If i <> whichline Then

 x = oRead.ReadLine()

 End If

 If i = whichline Then

 rlineIn = oRead.ReadLine()

 Exit For

 End If

 Next

 oRead.Close()

 Return rlineIn

 End Function

 Private Sub howmanyseconds(ByVal num_of_lines As Integer)

 '1000 millisecond is one second

 Dim contains As Integer

 sampling_frequincy = p_sampling_frequincy

 p_how_many_seconds = CInt(num_of_lines / sampling_frequincy)

 End Sub

 Function readall(ByVal path As String, ByVal num As Integer) As String

 Dim carp, bol As Double

 Dim oFile As System.IO.File

 Dim fileCounter As Integer

 Dim z As System.DBNull

 Dim filefile As Integer

 Dim strFilePath As String

 Dim i As Integer

 i = 1

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(path)

 Dim rlineIn As String

 Dim x As String

 For i = 1 To p_number_of_lines - 1

 signal_file(i) = oRead.ReadLine()

 If whichsource = "simulate" Then

 carp = CDbl(Replace(signal_file(i), ".", ",")) * 100000

 bol = Math.Round((carp / 1000))

 End If

 If whichsource = "mitbih" Then

 If channel = "1" Then

 signal_file(i) = Mid(signal_file(i), 9, 7)

 End If

 If channel = "2" Then

 signal_file(i) = Mid(signal_file(i), 17, 7)

 End If

 carp = CDbl(Replace(signal_file(i), ".", ",")) * 100000

 bol = Math.Round((carp / 1000))

 End If

 signal(i) = CStr(bol)

 Next

 oRead.Close()

 Return rlineIn

 End Function

 Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MenuItem2.Click

 DrawGraph()

 End Sub

 Function findbpm(ByVal rrinterval As Integer) As Double

 Dim hbr As Double

 Dim ara As Double

 ara = rrinterval / p_sampling_frequincy

 hbr = 60 / ara

 Return hbr

 End Function

 Function findrtorinterval(ByVal bas As Integer, ByVal son As Integer) As Integer

 Dim r_to_r As Integer

 r_to_r = son - bas

 ListBox4.Items.Add("R to R interval between " + CStr(bas) + " and " + CStr(son) + ": " + CStr(r_to_r))

 ListBox4.Refresh()

 Return r_to_r

 End Function

 Function rhytm_check(ByVal hbr As Double) As String

 Dim normal_start As Integer

 Dim normal_end As Integer

 normal_start = CInt(TextBox7.Text)

 normal_end = CInt(TextBox8.Text)

 If hbr >= normal_start And hbr <= normal_end Then

 possibble_rhytm_problem = "Normal"

 End If

 If hbr < normal_start Then

 possibble_rhytm_problem = "Sinus Bradycardia"

 End If

 If hbr > normal_end Then

 possibble_rhytm_problem = "Sinus Tachycardia"

 End If

 If hbr < 5 Then

 possibble_rhytm_problem = "Asystole"

 End If

 Return possibble_rhytm_problem

 End Function

 Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MenuItem3.Click

 Dim source As New source

 source.Show()

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button5.Click

 'This button is drawing the differentiated and square rooted qrs line.

 Dim i As Integer

 Dim y As Integer = m_Y

 Dim y1 As Integer = m_Y2

 Dim y3 As Integer = m_Y3

 Dim getdata As Integer

 Dim getdif As Double

 Dim getsquare As Double

 Dim getnormalize As Double

 If whichsource = "mitbih" Then

 For i = CInt(TextBox3.Text) To CInt(TextBox4.Text)

 'get the new value and differentiate

 getdata = NewValue(i)

 getdif = differentiate(i) * 1000

 'take the square root---

 getsquare = squareroot(getdif)

 ListBox3.Items.Add(CStr(getsquare))

 ListBox3.Refresh()

 'normalize the value for the graph

 getnormalize = normalize(CInt(getsquare))

 the_value = CStr(getnormalize)

 kackere = kackere + 1

 qrsdet3(getsquare, i)

 If kackere = 20 Then

 ListBox3.Items.Clear()

 ListBox3.Refresh()

 kackere = 0

 total = 0

 End If

 'plot the value

 writeValue(i, bol, the_value, y, m_Y)

 '-------SHOW THE diff and square root signal to the small box

 PlotValue(i, bol, the_value, y, m_Y)

 y = m_Y

 the_Value_Original = CStr(normalizeoriginal(getdata))

 '-------SHOW THE orıgınal signal to the small box

 PlotOriginalSignal(i, bol, the_Value_Original, y1, m_Y2)

 y1 = m_Y2

 the_Value_Diff = CStr(normalizediff(CInt(getdif)))

 '-------SHOW THE diff signal to the small box

 PlotDiffSignal(i, bol, the_Value_Diff, y3, m_Y3)

 y3 = m_Y3

 Next

 End If

 If whichsource = "simulate" Then

 For i = CInt(TextBox3.Text) To CInt(TextBox4.Text)

 'get the new value and differentiate

 getdata = NewValue(i)

 getdif = differentiate(i) * 1000

 'take the square root---

 getsquare = squareroot(getdif)

 ListBox3.Items.Add(CStr(getsquare))

 ListBox3.Refresh()

 'normalize the value for the graph

 getnormalize = normalize(CInt(getsquare))

 the_value = CStr(getnormalize)

 kackere = kackere + 1

 qrsdet3(getsquare, i)

 If kackere = 20 Then

 kackere = 0

 backtotal = 0

 forwardtotal = 0

 total = 0

 ListBox3.Items.Clear()

 ListBox3.Refresh()

 End If

 'plot the value

 writeValue(i, bol, the_value, y, m_Y)

 '-------SHOW THE diff and square root signal to the small box

 PlotValue(i, bol, the_value, y, m_Y)

 y = m_Y

 the_Value_Original = CStr(normalizeoriginal(getdata))

 '-------SHOW THE orıgınal signal to the small box

 PlotOriginalSignal(i, bol, the_Value_Original, y1, m_Y2)

 y1 = m_Y2

 the_Value_Diff = CStr(normalizediff(CInt(getdif)))

 '-------SHOW THE diff signal to the small box

 PlotDiffSignal(i, bol, the_Value_Diff, y3, m_Y3)

 y3 = m_Y3

 Next

 End If

 '--TO CLEAR THE QRS THAT ARE FOUND AT THE END

 ListBox8.Items.Clear()

 ListBox9.Items.Clear()

 'ListBox10.Items.Clear()

 Label4.Text = CStr(0)

 howmanyqrs = 0

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button6.Click

 'This button is only show the differentiated signal

 Dim i As Integer

 Dim y As Integer = m_Y

 Dim getdif As Double

 Dim getsquare As Double

 Dim getnormalize As Double

 For i = CInt(TextBox3.Text) To CInt(TextBox4.Text)

 'get the new value and differentiate

 getdif = differentiate(i) * 1000

 'normalize the value for the graph

 getnormalize = normalize(CInt(getdif))

 the_value = CStr(getnormalize)

 'plot the value

 PlotValue(i, bol, the_value, y, m_Y)

 y = m_Y

 Next

 End Sub

 Function squareroot(ByVal value As Double) As Double

 'This function is taking square root

 Return value * value

 End Function

 Function differentiate(ByVal whichline As Integer) As Double

 'This function is differentiated the signal

 Dim rlineIn As String

 Dim x As String

 Dim internal1, internal2, internal3 As Double

 Dim s_file(500000) As String

 Dim realvalue(50000) As Double

 Dim n As Integer

 n = 5

 realvalue(n) = getrealvalue(whichline)

 realvalue(n - 1) = getrealvalue(whichline - 1)

 realvalue(n - 2) = getrealvalue(whichline - 2)

 realvalue(n - 3) = getrealvalue(whichline - 3)

 realvalue(n - 4) = getrealvalue(whichline - 4)

 internal1 = ((2 * realvalue(n)) + (realvalue(n - 1)) - (realvalue(n - 3)) - (2 * realvalue(n - 4)))

 internal2 = (0.1 * internal1)

 Return internal2

 End Function

 Function qrsdet3(ByVal value_after_diffandsquare As Double, ByVal check As Integer) As Array

 'Dim total As Double

 Dim z, i, basindex, sonindex As Integer

 Dim ilkihtimal As String

 Dim sec As Double

 Dim qrsvarmi As String

 Dim rtorinterval As Integer

 Dim maxindex As Integer

 Dim veri As Double

 Dim a As Integer

 Dim max As Double

 Dim possible_rhtym_problem As String

 Dim tara As Integer = CInt(qrs_sample_lenght / 2)

 '--initilaze the screen----------------

 qrsvarmi = "no"

 ilkihtimal = "no"

 max = -500

 '---------------writing the diff ans square values and index-----------------

 ListBox2.Items.Add(value_after_diffandsquare)

 ListBox2.Refresh()

 ListBox5.Items.Add(CStr(check))

 ListBox5.Refresh()

 If kackere = 20 Then

 ListBox6.Items.Clear()

 ListBox7.Items.Clear()

 ListBox2.Items.Clear()

 ListBox5.Items.Clear()

 End If

 '---

 Dim storearray(25) As Double

 Dim avrg As Double

 total = total + value_after_diffandsquare

 If kackere = 20 Then

 avrg = total / 20

 TextBox10.Text = CStr(avrg)

 TextBox10.Refresh()

 End If

 If avrg > 3000 Then ' maybe there will be a qrs

 ilkihtimal = "yes"

 For i = (check - tara) To (check + tara)

 veri = squareroot(differentiate(i) * 1000)

 verikayit(i) = veri

 '--------write the values-------------

 ListBox6.Items.Add(CStr(veri))

 ListBox6.Refresh()

 ListBox7.Items.Add(CStr(i))

 ListBox7.Refresh()

 'there is a qrs so start to find the maximum to find the R

 '---------------FIND THE R---------------

 If veri > max Then

 max = veri

 maxindex = i

 End If

 '--

 backtotal = backtotal + veri

 Next

 End If ' ------------->2000

 If ilkihtimal = "yes" Then

 For z = maxindex To maxindex - tara Step -1

 If verikayit(z - 1) < verikayit(z) Then

 basindex = z

 backtotal = backtotal + verikayit(z)

 End If

 Next

 For z = maxindex To maxindex + tara

 If verikayit(z + 1) < verikayit(z) Then

 sonindex = z

 forwardtotal = forwardtotal + verikayit(z)

 End If

 Next

 TextBox12.Text = CStr(backtotal)

 TextBox15.Text = CStr(forwardtotal)

 TextBox12.Refresh()

 TextBox15.Refresh()

 If backtotal > 50000 And forwardtotal > 50000 Then

 If sonindex > sindex + qrs_sample_lenght Then

 qrsvarmi = "yes"

 sec = qrslenght(basindex, sonindex)

 ListBox10.Items.Add("Q index:" + CStr(basindex) + " R peak index:" + _

 CStr(maxindex) + " S peak index:" + CStr(sonindex) + " Lenght of QRS:" + CStr(sec))

 ListBox10.Refresh()

 End If

 End If

 End If

 If qrsvarmi = "yes" Then

 traceline(basindex, sonindex)

 ListBox8.Items.Add(CStr(max))

 ListBox9.Items.Add(Str(maxindex))

 ListBox8.Refresh()

 ListBox9.Refresh()

 '--add find qrs to 1 ---------------

 Label4.Text = CStr(CInt(Label4.Text) + 1)

 Label4.Refresh()

 howmanyqrs = CInt(Label4.Text)

 sindex = sonindex

 '--if howmanyqrs is more then 1 we can find r to r interval

 If howmanyqrs > 1 Then

 rtorinterval = findrtorinterval(CInt(ListBox9.Items.Item(howmanyqrs - 2)), CInt(ListBox9.Items.Item(howmanyqrs - 1)))

 TextBox5.Text = CStr(findbpm(rtorinterval))

 possible_rhtym_problem = rhytm_check(CInt(TextBox5.Text))

 Textbox9.Text = possible_rhtym_problem

 TextBox5.Refresh()

 Textbox9.Refresh()

 Else

 TextBox5.Text = "initial"

 Textbox9.Text = "Detecting"

 TextBox5.Refresh()

 Textbox9.Refresh()

 End If

 End If

 '--

 '------------------------------

 If ListBox6.Items.Count > 0 Then

 TextBox6.Text = "QRS"

 TextBox6.Refresh()

 Else

 TextBox6.Text = ""

 TextBox6.Refresh()

 End If

 '------------------------------------

 End Function

 Sub traceline(ByVal basindex As Integer, ByVal sonindex As Integer)

 Dim i As Integer

 For i = basindex To sonindex

 createsignal(i) = -50

 Next

 End Sub

 Function qrslenght(ByVal basindex As Integer, ByVal sonindex As Integer) As Double

 Dim i As Integer

 Dim howmanyseconds As Double

 Dim lqrs As Integer = sonindex - basindex

 howmanyseconds = lqrs / p_sampling_frequincy

 Return howmanyseconds

 End Function

 Private Sub Form1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Click

 Dim pList() As System.Diagnostics.Process = System.Diagnostics.Process.GetProcessesByName("tez")

 For Each proc As System.Diagnostics.Process In pList

 Dim resp As MsgBoxResult

 resp = MsgBox("Terminate " & proc.ProcessName & "?", _

 MsgBoxStyle.YesNo, "Terminate?")

 If resp = MsgBoxResult.Yes Then

 proc.Kill()

 End If

 Next

 End Sub

End Class

Private FileName As String

 Dim number_of_lines As Integer

 Dim sampling_frequincy As Integer

 Private how_many_seconds As Double

 Private the_value As String

 Private Sub countfile(ByVal path As String)

 Dim oFile As System.IO.File

 Dim fileCounter As Integer

 Dim z As System.DBNull

 Dim filefile As Integer

 Dim strFilePath As String

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 '---count the lines on the file

 Do While Len(oRead.ReadLine) <> 0

 fileCounter = fileCounter + 1

 Loop

 oRead.Close()

 '---------------------------------

 number_of_lines = fileCounter

 End Sub

 Function readfile(ByVal path As String, ByVal num As Integer, ByVal whichline As Integer) As String

 Dim oFile As System.IO.File

 Dim fileCounter As Integer

 Dim z As System.DBNull

 Dim filefile As Integer

 Dim strFilePath As String

 Dim i As Integer

 i = 1

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 Dim rlineIn As String

 Dim x As String

 For i = 1 To number_of_lines - 1

 If i <> whichline Then

 x = oRead.ReadLine()

 End If

 If i = whichline Then

 rlineIn = oRead.ReadLine()

 End If

 Next

 oRead.Close()

 Return rlineIn

 End Function

 Private Sub howmanyseconds(ByVal num_of_lines As Integer)

 '1000 millisecond is one second

 Dim contains As Integer

 sampling_frequincy = CInt(TextBox2.Text)

 how_many_seconds = CInt(num_of_lines / sampling_frequincy)

 End Sub

 Private Sub howmanysecondsmitbih(ByVal num_of_lines As Integer)

 '1000 millisecond is one second

 Dim contains As Integer

 sampling_frequincy = CInt(TextBox9.Text)

 how_many_seconds = CInt(num_of_lines / sampling_frequincy)

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Try

 With OpenFileDialog1

 'With statement is used to execute statements using a particular object, here,_

 'OpenFileDialog1

 .Filter = "Text files (*.txt)|*.txt|" & "All files|*.*"

 'setting filters so that Text files and All Files choice appears in the Files of Type box

 'in the dialog

 If .ShowDialog() = DialogResult.OK Then

 'showDialog method makes the dialog box visible at run time

 FileName = .FileName

 End If

 End With

 Catch es As Exception

 MessageBox.Show(es.Message)

 Finally

 End Try

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 countfile(FileName)

 howmanyseconds(number_of_lines)

 '---filling------------------------------

 TextBox4.Text = CStr(number_of_lines)

 TextBox3.Text = CStr(how_many_seconds)

 p_how_many_seconds = CDbl(how_many_seconds)

 TextBox1.Text = OpenFileDialog1.FileName

 path = TextBox1.Text

 End Sub

 Private Sub RadioButton3_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Button1.Enabled() = True

 Button2.Enabled() = True

 TextBox1.Enabled() = True

 TextBox2.Enabled() = True

 TextBox3.Enabled() = True

 TextBox4.Enabled() = True

 TextBox5.Enabled() = True

 TextBox6.Enabled() = True

 End Sub

 Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click

 countfile(FileName)

 howmanyseconds(number_of_lines)

 '---filling------------------------------

 TextBox4.Text = CStr(number_of_lines)

 TextBox3.Text = CStr(how_many_seconds)

 p_how_many_seconds = CDbl(how_many_seconds)

 TextBox1.Text = OpenFileDialog1.FileName

 path = TextBox1.Text

 'kaç sample gerekli

 Dim how_much_need As Integer

 Dim how_much_beat_need As Integer

 Dim conv As Integer

 Dim carp, bol As Double

 Dim sum_min_peak, sum_max_peak As Integer

 Dim average_min_peak, average_max_peak As Integer

 sum_min_peak = 0

 sum_max_peak = 0

 '----find the number of beats---

 how_much_beat_need = CInt(TextBox18.Text) + 1

 '--------------------------------

 Dim minpeak(how_much_beat_need), maxpeak(how_much_beat_need) As Integer

 '---- find the number of samples-----

 conv = CInt(TextBox2.Text) * 1000

 how_much_need = CInt(conv / 10)

 '------------------------------------

 Dim samples(how_much_need) As Long

 Dim oFile As System.IO.File

 Dim strFilePath As String

 Dim i As Integer

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 For i = 1 To how_much_need

 the_value = oRead.ReadLine()

 carp = CDbl(Replace(the_value, ".", ",")) * 100000

 bol = Math.Round((carp / 1000))

 samples(i) = CInt(bol)

 Next

 Dim sortsamples As New ArrayList(samples)

 sortsamples.Sort()

 '----Find the minimum peaks---------------

 For i = 1 To how_much_beat_need

 minpeak(i) = CInt(sortsamples(i))

 sum_min_peak = sum_min_peak + minpeak(i)

 Next

 average_min_peak = CInt(Math.Round(sum_min_peak / how_much_beat_need)) + 15

 TextBox5.Text = CStr(average_min_peak)

 p_average_min_peak = average_min_peak

 Dim a As Integer

 a = 1

 For i = how_much_need To how_much_need - how_much_beat_need + 1 Step -1

 maxpeak(a) = CInt(sortsamples(i))

 sum_max_peak = sum_max_peak + maxpeak(a)

 a = a + 1

 Next

 average_max_peak = CInt(Math.Round(sum_max_peak / how_much_beat_need)) - 15

 TextBox6.Text = CStr(average_max_peak)

 p_average_max_peak = average_max_peak

 p_number_of_lines = CInt(TextBox4.Text)

 p_sampling_frequincy = CInt(TextBox2.Text)

 ' read all the data and differentiate it !

 oRead = oFile.OpenText(path)

 Dim rlineIn As String

 Dim x As String

 Dim internal1, internal2, internal3 As Double

 Dim s_file(500000) As String

 Dim s_filed(500000) As Double

 Dim n As Integer

 Dim inter As String

 For i = 1 To p_number_of_lines - 1

 s_file(i) = oRead.ReadLine()

 inter = Replace(s_file(i), "-", "")

 s_filed(i) = CDbl(Replace(inter, ".", ","))

 's_filed(i) = CDbl(Replace(s_file(i), ".", ","))

 Next

 n = 5

 For n = 5 To p_number_of_lines - 1

 internal1 = ((2 * s_filed(n)) + (s_filed(n - 1)) - (s_filed(n - 3)) - (2 * s_filed(n - 4)))

 internal2 = 0.1 * internal1

 diffr(n) = internal2

 diffrs(n) = Mid(Replace(CStr(diffr(n)), ",", "."), 1, 8)

 ListBox1.Items.Add(diffrs(n))

 Next

 oRead.Close()

 qrs_sample_lenght = CInt(0.1 * p_sampling_frequincy)

 TextBox20.Text = CStr(qrs_sample_lenght)

 whichsource = "simulate"

 End Sub

 Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Try

 With OpenFileDialog1

 'With statement is used to execute statements using a particular object, here,_

 'OpenFileDialog1

 .Filter = "Text files (*.txt)|*.txt|" & "All files|*.*"

 'setting filters so that Text files and All Files choice appears in the Files of Type box

 'in the dialog

 If .ShowDialog() = DialogResult.OK Then

 'showDialog method makes the dialog box visible at run time

 FileName = .FileName

 End If

 End With

 Catch es As Exception

 MessageBox.Show(es.Message)

 Finally

 End Try

 End Sub

 Private Sub Button3_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click

 Try

 With OpenFileDialog1

 'With statement is used to execute statements using a particular object, here,_

 'OpenFileDialog1

 .Filter = "Text files (*.txt)|*.txt|" & "All files|*.*"

 'setting filters so that Text files and All Files choice appears in the Files of Type box

 'in the dialog

 If .ShowDialog() = DialogResult.OK Then

 'showDialog method makes the dialog box visible at run time

 FileName = .FileName

 End If

 End With

 Catch es As Exception

 MessageBox.Show(es.Message)

 Finally

 End Try

 End Sub

 Private Sub Button4_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button4.Click

 countfile(FileName)

 howmanysecondsmitbih(number_of_lines)

 '---filling------------------------------

 TextBox11.Text = CStr(number_of_lines)

 TextBox10.Text = CStr(how_many_seconds)

 p_how_many_seconds = CDbl(how_many_seconds)

 TextBox7.Text = OpenFileDialog1.FileName

 path = TextBox7.Text

 'kaç sample gerekli

 Dim how_much_need As Integer

 Dim how_much_beat_need As Integer

 Dim conv As Integer

 Dim carp, bol As Double

 Dim sum_min_peak, sum_max_peak As Integer

 Dim average_min_peak, average_max_peak As Integer

 sum_min_peak = 0

 sum_max_peak = 0

 '----find the number of beats---

 how_much_beat_need = CInt(TextBox18.Text) + 1

 '--------------------------------

 Dim minpeak(how_much_beat_need), maxpeak(how_much_beat_need) As Integer

 '---- find the number of samples-----

 conv = CInt(TextBox9.Text) * 1000

 how_much_need = CInt(conv / 10)

 '------------------------------------

 Dim samples(how_much_need) As Long

 Dim chan1, chan2 As String

 Dim oFile As System.IO.File

 Dim strFilePath As String

 Dim i As Integer

 strFilePath = path

 Dim oRead As System.IO.StreamReader

 oRead = oFile.OpenText(strFilePath)

 For i = 1 To how_much_need

 the_value = oRead.ReadLine()

 If TextBox8.Text = "1" Then

 chan1 = Mid(the_value, 9, 7)

 End If

 If TextBox8.Text = "2" Then

 chan1 = Mid(the_value, 17, 7)

 End If

 carp = CDbl(Replace(chan1, ".", ",")) * 100000

 bol = Math.Round((carp / 1000))

 samples(i) = CInt(bol)

 Next

 Dim sortsamples As New ArrayList(samples)

 sortsamples.Sort()

 '----Find the minimum peaks---------------

 For i = 1 To how_much_beat_need

 minpeak(i) = CInt(sortsamples(i))

 sum_min_peak = sum_min_peak + minpeak(i)

 Next

 average_min_peak = CInt(Math.Round(sum_min_peak / how_much_beat_need)) + 15

 TextBox12.Text = CStr(average_min_peak)

 p_average_min_peak = average_min_peak

 Dim a As Integer

 a = 1

 For i = how_much_need To how_much_need - how_much_beat_need + 1 Step -1

 maxpeak(a) = CInt(sortsamples(i))

 sum_max_peak = sum_max_peak + maxpeak(a)

 a = a + 1

 Next

 average_max_peak = CInt(Math.Round(sum_max_peak / how_much_beat_need)) - 15

 TextBox13.Text = CStr(average_max_peak)

 p_average_max_peak = average_max_peak

 p_number_of_lines = CInt(TextBox11.Text)

 p_sampling_frequincy = CInt(TextBox9.Text)

 oRead.Close()

 qrs_sample_lenght = CInt(0.1 * p_sampling_frequincy)

 TextBox19.Text = CStr(qrs_sample_lenght)

 whichsource = "mitbih"

 channel = TextBox8.Text

 End Sub

End Class
APPENDIX 2
The Source Code of the ECG Device

2.1 The Source Code of the ECG Device without Serial RS232 Output

'**

'* Name : ECG.BAS *

'* Version : 1.0 *

'* Notes : This is the ECG processing and display program *

'* *

'**

Include "PROTON_G4.INT"

'

' A/D Variables

'

Dim RAMPTR As Word ' RAM pointer

Dim SAMPLES[128] As Word ' A/D converter samples

'

' LCD variables

'

Dim x As Float

Dim y As Float

Dim yy As Word

Dim XMAX As Float

Dim YMAX As Float

'

' General variables

'

 Dim I As Byte

'

' PORT Directions

'

 TRISA = %11111111 ' All inputs

 TRISC = %00000000 ' All outputs

 TRISD = %00000000 ' All outputs

 TRISE = %00000000 ' All outputs

'

' Set-up A/D converter

'

 ADIN_RES = 10 ' A/D converter 10-bits

 ADIN_TAD = FRC ' Use internal RC oscillator

 ADIN_STIME = 50 ' 50 us sample time

 ADCON1 = %10000010 ' Set PORT A analog right justified

 DelayMS 1000 ' Wait 1 second for LCD to initialize

 Cls ' Clear LCD screen

'

' Read analog data samples and store in RAM

'

 RAMPTR = 0 ' Initialize RAM pointer

'===

'================= START OF MAIN PROGRAM LOOP ====================

Loop:

 SAMPLES[RAMPTR] = ADIn 0 ' Read Channel AN0 (0 to 1023)

 RAMPTR = RAMPTR + 1 ' Increment RAM pointer

 If RAMPTR = 128 Then GoSub DISP ' Display on LCD

 DelayMS 10 ' 10 ms delay between samples

 GoTo Loop ' Repeat

DISP:

 DelayMS 1000 ' Wait 1 sec to freeze screen

 Cls ' Clear LCD screen

 RAMPTR = 0 ' Re-initialize RAM pointer

 XMAX = 1024 ' Initialize max x value

 YMAX = 128 ' Initialize the max y value

 '

 ' Plot the samples. There are 128x64 pixels. First scale the screen

 '

 For yy = 0 To 127

 x=56*SAMPLES[yy]/XMAX ' Scale the x values

 x=56-x ' Offset within the LCD screen

 y=yy*128/YMAX ' Scale the y values

 Plot x,y ' Plot the points

 Next

 Return ' Return from subroutine

 End

2.2 Modified Source Code of the ECG Device with Serial RS232 Output

'**

'* Name : ECG.BAS *

'* Version : 2.0 *

'* Notes : This is the ECG processing and display program *
'* *

'* Program has been modified by adding a RS232 serial output *

'* routine so that the ECG data can be send out in serial format*

'* and can be read by a PC. *
'* *

'**

Include "PROTON_G4.INT"

'

' A/D Variables

'

Dim RAMPTR As Word ' RAM pointer

Dim SAMPLES[128] As Word ' A/D converter samples

'

' LCD variables

'

Dim x As Float

Dim y As Float

Dim yy As Word

Dim XMAX As Float

Dim YMAX As Float

'

' General variables

'

 Dim I As Byte

'

' RS232 port configuration. RS232 port is RB0 and the port

' is configured to operate at 9600 Baud and inverted mode
'

DECLARE RSOUT_PIN PORTB.0

DECLARE RSOUT_MODE INVERTED

DECLARE SERIAL_BAUD 9600
'

' PORT Directions

'

 TRISA = %11111111 ' All inputs

 TRISC = %00000000 ' All outputs

 TRISD = %00000000 ' All outputs

 TRISE = %00000000 ' All outputs

'

' Set-up A/D converter

'

 ADIN_RES = 10 ' A/D converter 10-bits

 ADIN_TAD = FRC ' Use internal RC oscillator

 ADIN_STIME = 50 ' 50 us sample time

 ADCON1 = %10000010 ' Set PORT A analog right justified

 DelayMS 1000 ' Wait 1 second for LCD to initialize

 Cls ' Clear LCD screen

'

' Read analog data samples and store in RAM

'

 RAMPTR = 0 ' Initialize RAM pointer

'===

'================= START OF MAIN PROGRAM LOOP ====================

Loop:

 SAMPLES[RAMPTR] = ADIn 0 ' Read Channel AN0 (0 to 1023)

 RAMPTR = RAMPTR + 1 ' Increment RAM pointer

 If RAMPTR = 128 Then GoSub DISP ' Display on LCD

 DelayMS 10 ' 10 ms delay between samples

 GoTo Loop ' Repeat

DISP:
'

' Send the ECG data to RS232 port (128 bytes, separated with #

' e.g. #50#55#120……)
'
 FOR yy = 0 TO 127

 RSOUT IDEC SAMPLES[yy]

 ' Send out serial data

 NEXT yy
 DelayMS 1000 ' Wait 1 sec to freeze screen

 Cls ' Clear LCD screen

 RAMPTR = 0 ' Re-initialize RAM pointer

 XMAX = 1024 ' Initialize max x value

 YMAX = 128 ' Initialize the max y value

 '

 ' Plot the samples. There are 128x64 pixels. First scale the screen

 '

 For yy = 0 To 127

 x=56*SAMPLES[yy]/XMAX ' Scale the x values

 x=56-x ' Offset within the LCD screen

 y=yy*128/YMAX ' Scale the y values

 Plot x,y ' Plot the points

 Next

 Return ' Return from subroutine

 End

APPENDIX 3
The Source Code of the ECGSYN Program
3.1 ECGSYN.M File
function [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi)

% [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi)

% Produces synthetic ECG with the following outputs:

% s: ECG (mV)

% ipeaks: labels for PQRST peaks: P(1), Q(2), R(3), S(4), T(5)

% A zero lablel is output otherwise ... use R=find(ipeaks==3);

% to find the R peaks s(R), etc.

%

% Operation uses the following parameters (default values in []s):

% sfecg: ECG sampling frequency [256 Hertz]

% N: approximate number of heart beats [256]

% Anoise: Additive uniformly distributed measurement noise [0 mV]

% hrmean: Mean heart rate [60 beats per minute]

% hrstd: Standard deviation of heart rate [1 beat per minute]

% lfhfratio: LF/HF ratio [0.5]

% sfint: Internal sampling frequency [256 Hertz]

% Order of extrema: [P Q R S T]

% ti = angles of extrema [-70 -15 0 15 100] degrees

% ai = z-position of extrema [1.2 -5 30 -7.5 0.75]

% bi = Gaussian width of peaks [0.25 0.1 0.1 0.1 0.4]

% Copyright (c) 2003 by Patrick McSharry & Gari Clifford, All Rights Reserved

% See IEEE Transactions On Biomedical Engineering, 50(3), 289-294, March 2003.

% Contact P. McSharry (patrick@mcsharry.net) or G. Clifford (gari@mit.edu)

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program; if not, write to the Free Software

% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

%

% ecgsyn.m and its dependents are freely availble from Physionet -

% http://www.physionet.org/ - please report any bugs to the authors above.

% set parameter default values

if nargin < 1

 sfecg = 256;

end

if nargin < 2

 N = 40;

end

if nargin < 3

 Anoise = 0;

end

if nargin < 4

 hrmean = 130;

end

if nargin < 5

 hrstd = 1;

end

if nargin < 6

 lfhfratio = 0.5;

end

if nargin < 7

 sfint = 256;

end

if nargin <8

 % P Q R S T

 ti = [-70 -15 0 15 100];

end

% convert to radians

ti = ti*pi/180;

if nargin <9 % z position of attractor

 % P Q R S T

 ai = [1.2 -5 30 -7.5 0.75];

end

if nargin <10 % Gaussian width of each attractor

 % P Q R S T

 bi = [0.25 0.1 0.1 0.1 0.4];

end

% adjust extrema parameters for mean heart rate

hrfact = sqrt(hrmean/60);

hrfact2 = sqrt(hrfact);

bi = hrfact*bi;

ti = [hrfact2 hrfact 1 hrfact hrfact2].*ti;

% check that sfint is an integer multiple of sfecg

q = round(sfint/sfecg);

qd = sfint/sfecg;

if q ~= qd

 error(['Internal sampling frequency (sfint) must be an integer multiple ' ...

'of the ECG sampling frequency (sfecg). Your current choices are: ' ...

'sfecg = ' int2str(sfecg) ' and sfint = ' int2str(sfint) '.']);

end

% define frequency parameters for rr process

% flo and fhi correspond to the Mayer waves and respiratory rate respectively

flo = 0.1;

fhi = 0.25;

flostd = 0.01;

fhistd = 0.01;

fid = 1;

fprintf(fid,'ECG sampled at %d Hz\n',sfecg);

fprintf(fid,'Approximate number of heart beats: %d\n',N);

fprintf(fid,'Measurement noise amplitude: %d \n',Anoise);

fprintf(fid,'Heart rate mean: %d bpm\n',hrmean);

fprintf(fid,'Heart rate std: %d bpm\n',hrstd);

fprintf(fid,'LF/HF ratio: %g\n',lfhfratio);

fprintf(fid,'Internal sampling frequency: %g\n',sfint);

fprintf(fid,' P Q R S T\n');

fprintf(fid,'ti = [%g %g %g %g %g] radians\n',ti(1),ti(2),ti(3),ti(4),ti(5));

fprintf(fid,'ai = [%g %g %g %g %g]\n',ai(1),ai(2),ai(3),ai(4),ai(5));

fprintf(fid,'bi = [%g %g %g %g %g]\n',bi(1),bi(2),bi(3),bi(4),bi(5));

% calculate time scales for rr and total output

sampfreqrr = 1;

trr = 1/sampfreqrr;

tstep = 1/sfecg;

rrmean = (60/hrmean);

Nrr = 2^(ceil(log2(N*rrmean/trr)));

% compute rr process

rr0 = rrprocess(flo,fhi,flostd,fhistd,lfhfratio,hrmean,hrstd,sampfreqrr,Nrr);

% upsample rr time series from 1 Hz to sfint Hz

rr = interp(rr0,sfint);

% make the rrn time series

dt = 1/sfint;

rrn = zeros(length(rr),1);

tecg=0;

i = 1;

while i <= length(rr)

 tecg = tecg+rr(i);

 ip = round(tecg/dt);

 rrn(i:ip) = rr(i);

 i = ip+1;

end

Nt = ip;

% integrate system using fourth order Runge-Kutta

fprintf(fid,'Integrating dynamical system\n');

x0 = [1,0,0.04];

Tspan = [0:dt:(Nt-1)*dt];

[T,X0] = ode45('derivsecgsyn',Tspan,x0,[],rrn,sfint,ti,ai,bi);

% downsample to required sfecg

X = X0(1:q:end,:);

% extract R-peaks times

ipeaks = detectpeaks(X, ti, sfecg);

% Scale signal to lie between -0.4 and 1.2 mV

z = X(:,3);

zmin = min(z);

zmax = max(z);

zrange = zmax - zmin;

z = (z - zmin)*(1.6)/zrange -0.4;

% include additive uniformly distributed measurement noise

eta = 2*rand(length(z),1)-1;

s = z + Anoise*eta;

%%%

function rr = rrprocess(flo, fhi, flostd, fhistd, lfhfratio, hrmean, hrstd, sfrr, n)

w1 = 2*pi*flo;

w2 = 2*pi*fhi;

c1 = 2*pi*flostd;

c2 = 2*pi*fhistd;

sig2 = 1;

sig1 = lfhfratio;

rrmean = 60/hrmean;

rrstd = 60*hrstd/(hrmean*hrmean);

df = sfrr/n;

w = [0:n-1]'*2*pi*df;

dw1 = w-w1;

dw2 = w-w2;

Hw1 = sig1*exp(-0.5*(dw1/c1).^2)/sqrt(2*pi*c1^2);

Hw2 = sig2*exp(-0.5*(dw2/c2).^2)/sqrt(2*pi*c2^2);

Hw = Hw1 + Hw2;

Hw0 = [Hw(1:n/2); Hw(n/2:-1:1)];

Sw = (sfrr/2)*sqrt(Hw0);

ph0 = 2*pi*rand(n/2-1,1);

ph = [0; ph0; 0; -flipud(ph0)];

SwC = Sw .* exp(j*ph);

x = (1/n)*real(ifft(SwC));

xstd = std(x);

ratio = rrstd/xstd;

rr = rrmean + x*ratio;

%%%

function ind = detectpeaks(X, thetap, sfecg)

N = length(X);

irpeaks = zeros(N,1);

theta = atan2(X(:,2),X(:,1));

ind0 = zeros(N,1);

for i=1:N-1

 a = ((theta(i) <= thetap) & (thetap <= theta(i+1)));

 j = find(a==1);

 if ~isempty(j)

 d1 = thetap(j) - theta(i);

 d2 = theta(i+1) - thetap(j);

 if d1 < d2

 ind0(i) = j;

 else

 ind0(i+1) = j;

 end

 end

end

d = ceil(sfecg/64);

d = max([2 d])

ind = zeros(N,1);

z = X(:,3);

zmin = min(z);

zmax = max(z);

zext = [zmin zmax zmin zmax zmin];

sext = [1 -1 1 -1 1];

for i=1:5

 clear ind1 Z k vmax imax iext;

 ind1 = find(ind0==i);

 n = length(ind1);

 Z = ones(n,2*d+1)*zext(i)*sext(i);

 for j=-d:d

 k = find((1 <= ind1+j) & (ind1+j <= N));

 Z(k,d+j+1) = z(ind1(k)+j)*sext(i);

 end

 [vmax, ivmax] = max(Z,[],2);

 iext = ind1 + ivmax-d-1;

 ind(iext) = i;

end

3.2 ECWAVEGEN.M Function

function [QRSwave]=ECGwaveGen(bpm,duration,fs,amp)

%[QRSwave]=ECGwaveGen(bpm,dur,fs,amp) generates an artificial ECG/EKG waveform

% Heart rate (bpm) sets the qrs event frequency (RR interval).

% Duration of the entire waveform (dur) is in units of seconds.

% Sample frequency (fs) sets the sample frequency in Hertz.

% Amplitude (amp) of the QRS event is measured in micro Volts. The

% waveform consists of a QRS complex and a T-wave. No attempt to

% represent a P-wave has been made.

%

% There are two additional parameters that can be changed from within the function.

% They are the parameters that set the QRS width (default 0.1 secs) and the t-wave

% amplitude (default 500 uV).

%Created January 22, 2001 by Floyd Harriott, primary email (fharriott@stellate.com), secondary email (fsh@po.cwru.edu)

%Modified March 19, 2002 by Floyd Harriott, extended default duration so that default settings produce a QRS event rather than

% an error. Allows for the random insertion of PVCs. This file must be edited to include PVCs.

%Algorithm is based in part on the jounal article:

%Ruha, Antti and Seppo Nissila, "A Real-Time Microprocessor QRS Detector System with a 1-ms Timing Accuracy

% for the Measurement of Ambulatory HRV", IEEE Trans. Biomed. Eng. Vol. 44, No. 3, 1997

%The artificial ECG signal they describe is based on the recommendations in the Association for the Advancement

%of Medical Instrumentation (AAMI) "Standard for Cardiac Monitors, Heart Rate Meters and Alarms (draft), Aug. 1981

%Feel free to make modifications, corrections and or suggestions.

if (exist('fs') ~= 1) fs= 200; end %default value, Hz

if (exist('bpm') ~= 1) bpm = 72; end %default value, beats per minute

if (exist('amp') ~= 1) amp = 1000; end %default value, micro volts

if (exist('duration') ~= 1) duration = (60/bpm-0.35)+60/bpm+1/fs; end %default value gives one cycle, seconds

global t_line; %seconds

global sample_freq; % always equal to fs

%Changeable Parameters

d=0.1; %.07 to .120 seconds, QRS width

at=500; %amplitude of t-wave, 400 to 1200 uv

%Should not touch

org_amp=amp;

sample_freq=fs; %duplicated simply to make a global version

RR=(60/bpm); %RR interval, seconds

d1=0.4375*d;

d2=0.5*d;

d3=d-(d1+d2);

dt=0.180; %width of t wave, seconds

qt=0.35; %time from beginning of QRS to end of t-wave

t_line=0:1/fs:duration; %time line, seconds

QRS_wave=zeros(size(t_line)); %QRS waveform

deadspace=RR-qt; %time between t-wave and next QRS

if deadspace < 0

 err_msg=['Bpm must be equal to or less than ' int2str(60/qt) ' inorder to fit one cycle.'];

 error(err_msg);

end

%Calculate PVC parameters and segment

PVCchance=0.1; %How often does PVC happen., percent eg. 0.1=10%

PVCamp=amp; %PVC amplitude, eg. same as normals (amp)

earlyfactor=0.25; %percentage, how much early should PVC happen then normal RR interval

PVCwidth=0.12; %seconds, QRS width of PVC, usually .12 to .17

PVCseg=[QRSpulse(d,60/((1-earlyfactor)*RR-0.4375*PVCwidth),fs,RandAmp(org_amp)) QRSpulse(PVCwidth,bpm*(1-earlyfactor),fs,PVCamp) QRSpulse(d,bpm,fs, RandAmp(org_amp))]; %PVC segment

tPVC=size(PVCseg,2)/fs; %amount of time taken up by PVC segment in seconds

t1=deadspace; %Where does the first QRS start? eg deadspace, or 0

%need enough time to display at least one interval.

if (t1+60/bpm+1/sample_freq > duration)

 err_msg=['The waveform length (duration) must be more than ' sprintf('%.2f%',t1+60/bpm+1/sample_freq) ' second(s) in order to display one QRS event.'];

 error(err_msg);

end

%GENERATION LOOP

while (t1+60/bpm+1/sample_freq <= duration) %space to insert another qrs pulse in time line

%amp=RandAmp(org_amp); %random size on qrs event

 amp=org_amp;

%Segment 1 (Q-R)

qrs_start=t1;

t2=t1+d1;

i_t1=time2index(t1); i_t2=time2index(t2);

left=0; right=0.875*amp;

m1=(right-left)/(t2-t1);

QRS1=m1*index2time(i_t1:i_t2)-(m1*t1-left);

QRSwave(i_t1:i_t2)=QRS1;

%Segment 2 (R-?)

t1=t2; t2=t1+d2;

i_t1=time2index(t1); i_t2=time2index(t2);

left=right; right=-.125*amp;

m2=(right-left)/(t2-t1);

QRS1=m2*index2time(i_t1:i_t2)-(m2*t1-left);

QRSwave(i_t1:i_t2)=QRS1;

%Segment 3 bottom_top (?-S)

t1=t2; t2=t1+d3;

i_t1=time2index(t1); i_t2=time2index(t2);

left=right; right=0;

if (i_t2-i_t1 >0) %at low sampling freq. there may be no sample for this segment

 m3=(right-left)/(t2-t1);

 QRS1=m3*index2time(i_t1:i_t2)-(m3*t1-left);

 QRS1=QRS1(find(QRS1<=0));

 QRSwave(i_t1:i_t1+size(QRS1,2)-1)=QRS1;

elseif i_t2-i_t1==0

 m3=(right-left)/(t2-t1);

 QRS1=m3*index2time(i_t1:i_t2)-(m3*t1-left);

 QRSwave(i_t1)=QRS1(1);

end

%Segment 4, S-T interval

t1=t2; t2=t1+qt+qrs_start-(dt+t2);

i_t1=time2index(t1); i_t2=time2index(t2);

left=right; right=0;

%Segment 5, t-wave

t1=t2; t2=t1+dt;

i_t1=time2index(t1); i_t2=time2index(t2);

t=-1:2/(i_t2-i_t1):1;

QRS1=at*sqrt(1-t.^2);

QRSwave(i_t1:i_t2)=QRS1;

%Segment 6, remaining deadspace

t1=t2; t2=t1+deadspace;

i_t1=time2index(t1); i_t2=time2index(t2);

 %Do we insert a PVC here? Roll the die and find out.

 insertPVC=rand(1); %uncomment following 5 lines if PVCs are desired.

 %if insertPVC<=PVCchance & t2+tPVC+2/sample_freq <= duration %enough space to insert PVC

 % t1=t2; t2=t1+tPVC;

 % i_t1=time2index(t1); i_t2=time2index(t2);

 % QRSwave(i_t1:i_t1+size(PVCseg,2)-1)=PVCseg;

 %end

%stem(QRSwave); % view ECG waveform

t1=t2; %end of this segment becomes beginning of next segment

end %while loop, appending qrs pulses

%_____________________________________%

function index=time2index(t)

%TIME2INDEX converts time (s) to an index value

global t_line;

indexArray=find(t_line>=t);

index=indexArray(1);

%_____________________________________%

function time=index2time(i)

%INDEX2TIME converts a time line index to a time value (seconds)

global sample_freq

time=(i-1).*1/sample_freq;

%_____________________________________%

function RAmp=RandAmp(orgAmp)

RAmp=orgAmp+0.4*orgAmp*rand(1);

3.3 QRSPULSE1.M Function

function [QRS_wave]=QRSpulse(qrswidth,bpm,fs,amp)

%QRSpulse(qrswidth,bpm,fs,amp) artifical QRS pulse generator

% [QRS_wave]=QRSPULSE(fs,bpm,amp,qrswidth) returns a waveform vector.

% fs is the sample frequency, 100 to 500 Hz typical.

% bpm is the number of beats per minute.

% amp is the amplitude of the QRS in micro volts, 500 to 5000 uV.

% qrswidth in seconds, the time period between QRS.

%creates an artifical ECG signal

if (exist('fs') ~= 1) fs= 200; end %default value, Hz

if (exist('bpm') ~= 1) bpm = 72; end %default value, beats per minute

if (exist('amp') ~= 1) amp = 1000; end %default value, micro volts

if (exist('qrswidth') ~= 1)

 d = 0.135; %.07 to .120 seconds, QRS width

else

 d=qrswidth; %.07 to .120 seconds, QRS width

end %default value, micro volts

%things that can change

%d=0.070; %.07 to .120 seconds, QRS width

at=500; %amplitude of t-wave, 400 to 1200 uv

RR=(60/bpm); %RR interval

d1=0.4375*d;

d2=0.5*d;

d3=d-(d1+d2);

dt=0.180; %seconds

qt=0.35;

t_line1=0:1/fs:RR+1; QRS_wave=zeros(size(t_line1));

deadspace=RR-qt;

if deadspace < 0

 err_msg=['Bpm must be less than ' int2str(60/qt) '. '];

 error(err_msg);

end

%Segment 1 bottom-top (Q-R)

t1=0; t2=t1+d1;

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

bottom=0; top=0.875*amp;

QRS1=bottom:(top-bottom)/(i_t2-i_t1):top;

QRS_wave(i_t1:i_t2)=QRS1;

%Segment 2 top-bottom (R-?)

t1=t2; t2=t1+d2;

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

bottom=-.125*amp;

QRS1=top:(bottom-top)/(i_t2-i_t1):bottom;

QRS_wave(i_t1:i_t2)=QRS1;

%Segment 3 bottom_top (?-S)

t1=t2; t2=t1+d3;

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

top=0;

if (i_t2-i_t1 >0)

 QRS1=bottom:(top-bottom)/(i_t2-i_t1):top;

 QRS_wave(i_t1:i_t2)=QRS1;

end

%Segment 4 horizontal line

t1=t2; t2=t1+qt-(dt+t2);

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

bottom=0;

%Segment 5, half circle

t1=t2; t2=t1+dt;

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

t=-1:2/(i_t2-i_t1):1;

QRS1=at*sqrt(1-(t).^2);

QRS_wave(i_t1:i_t2)=QRS1;

%Segment 6, rest of deadspace

t1=t2; t2=t1+deadspace;

i_t1=time2index(t1,t_line1); i_t2=time2index(t2,t_line1);

QRS_wave=QRS_wave(1:i_t2);

%stem(QRS_wave); %one cycle

function index=time2index(t, t_line1)

%TIME2INDEX converts time (s) to an index value

indexArray=find(t_line1>=t);

index=indexArray(1);

3.4 DERIVESECGYSN.M Function

function dxdt = derivsecgsyn(t,x,flag,rr,sfint,ti,ai,bi)

% dxdt = derivsecgsyn(t,x,flag,rr,sampfreq,ti,ai,bi)

% ODE file for generating the synthetic ECG

% This file provides dxdt = F(t,x) taking input paramters:

% rr: rr process

% sfint: Internal sampling frequency [Hertz]

% Order of extrema: [P Q R S T]

% ti = angles of extrema [radians]

% ai = z-position of extrema

% bi = Gaussian width of peaks

% Copyright (c) 2003 by Patrick McSharry & Gari Clifford, All Rights Reserved

% See IEEE Transactions On Biomedical Engineering, 50(3), 289-294, March 2003.

% Contact P. McSharry (patrick AT mcsharry DOT net) or

% G.D. Clifford (gari AT mit DOT edu)

% This program is free software; you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation; either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program; if not, write to the Free Software

% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

%

% ecgsyn.m and its dependents are freely availble from Physionet -

% http://www.physionet.org/ - please report any bugs to the authors above.

xi = cos(ti);

yi = sin(ti);

ta = atan2(x(2),x(1));

r0 = 1;

a0 = 1.0 - sqrt(x(1)^2 + x(2)^2)/r0;

ip = 1+floor(t*sfint);

w0 = 2*pi/rr(ip);

fresp = 0.25;

zbase = 0.005*sin(2*pi*fresp*t);

dx1dt = a0*x(1) - w0*x(2);

dx2dt = a0*x(2) + w0*x(1);

dti = rem(ta - ti, 2*pi);

dx3dt = - sum(ai.*dti.*exp(-0.5*(dti./bi).^2)) - 1.0*(x(3) - zbase);

dxdt = [dx1dt; dx2dt; dx3dt];

1K

(2.4)

Serial output

PIC

y

0,0

x

 0

56

63

Aluminium foil

Backside is adhesive with gel

RB0

PAGE
xi

