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CHAPTER 3 

 

EXACT A�D APPROACH SOLUTIO� 

 

3.1 Exact Solution of One Dimensional Transient Conduction Problem 

 

The nondimensionalized partial differential equation together with its boundary and initial 

conditions were solved analytically by the method of separation of variables here. The 

method of separation of variables was introduced by J. Fourier in 1820s and was based on 

expanding an arbitrary function in terms of Fourier series. The method has been applied by 

assuming the dependent variable to be a product of a number of functions, each being a 

function of a single independent variable. This reduces the partial differential equation to a 

system of ordinary differential equations, each being a function of a single independent 

variable.  

 

In the case of transient conduction in a plane wall, for example, the dependent variable is 

the solution function which is expressed as � = �(��)�( 
), and the application of the 

method results in two ordinary differential equation, one in �� and the other in 
. 

 

The method is applicable if the geometry is simple and finite (such as a rectangular block, 

a cylinder or a sphere) so that the boundary surfaces has been described by simple 

mathematical functions, and the differential equation and the boundary and initial 

conditions in their most simplified form are linear and involve only one nonhomogeneous 

term. If the formulation involves a number of nonhomogeneous terms, the problem was 

split up into an equal number of simpler problems each involving only one homogeneous 

term, and then combining the solutions by superposition. 

 

The analytical solutions of transient conduction problems typically involve infinite series, 

and thus the evaluation of an infinite number of terms to determine the temperature at a 
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specified location and time. If these infinite series were solved the exact solution can be 

defined as in Table 3.1 below.  

 

Table 3.1: One dimensionless transient heat conduction exact solutions [12] 

Geometry                       Solution                                   ��′ s are the roots of 

Plane wall      � = ∑
4 sin ��

2��+sin(2��)
∞
��� cos(����) ����                        !" = �� tan �� 

Cylinder        � =  ∑   
%

�&

'((�&)

'�
)(�&)*'�

((�&)
 ∞

��� +,(��- .)����          !" = ��
'((�&)

')(�&)
 

Sphere           � = ∑
/(012 �&��&340 �&)

%�&�012(�&)
∞
��� ���� 012(�&5�)

(�&5�)
            !" = 1 − �� cos �� 
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3.2 Approximate and Graphical Solutions 

3.2.1 One Term Approximation Solution  

The analytical solution shown above for one dimensional transient heat conduction in a 

plane wall involves infinite series, which are difficult to evaluate. Therefore, it is suitable 

to simplify the analytical solutions and to present the solutions in tabular or graphical form 

using simple relations. The dimensionless quantities defined above for a plane wall also 

used for a cylinder or sphere by replacing the space variable x by r and the half thickness L 

by the outer radius ro. It has been noted that the characteristic length in the definition of the 

Biot number is taken to be the half-thickness L for the plane wall, and the radius ro for the 

long cylinder and sphere. The terms in the series in Table 3.1 converge rapidly with 

increasing time, and for τ > 0.2, keeping the first term and neglecting all the remaining 

terms in the series results in an error under 2 percent. The solution has been usually used in 

the solution for times with 
 > 0.2, and thus it is very convenient to express the solution 

using this one term approximation, given as  

 

 Plane wall         � = 8� cos(����) ���(
�

         
  > 0.2                                (3.1)

 Cylinder            � =  8�+,(��- .)���(
�

         
  > 0.2                                (3.2) 

Sphere               � = 8�
012(�(5�)

(�(5�)
���(

�
           
  > 0.2                                (3.3) 

Where the constants  8� for three geometries are expressed as  

 

 8� =
4 sin ��

2��+sin(2��)
      for plane wall             (3.4) 

 8� =
%

�(
  

'((�()

'�
)(�()*'�

((�()
          for long cylinder                                         (3.5) 

 8� =
/(012 �(��(340 �()

%�(�012(�()
     for solid sphere                                           (3.6) 

The constants  8� and �� are functions of the Biot number only and their values are listed 

in Table 3.2. Once the Biot number is known, these relations can be used to determine the 

temperature anywhere in the medium. The determination of the constants 8� and �� 

usually requires interpolation. For those who prefer reading charts to interpolating, these 

relations are plotted and the one-term approximation solutions are presented in graphical 
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form, known as the transient temperature charts. It has been noted that the charts are 

sometimes difficult to read, and they are subject to reading errors. Therefore, the relations 

above should be preferred to the charts. 

The transient temperature charts for a large plane wall, long cylinder and sphere has been 

presented by M. P. Heisler in 1947 and are called Heisler charts [1]. 

 

         Table 3.2: Coefficients used in the one term approximate solution of transient one      

     dimensional heat conduction [12]   

 
  

Plane Wall 

 

 

Long Cylinder 

 

Solid Sphere 

Bi λ1 A1 λ1 A1 λ1 A1 

0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298 

0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592 

0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880 

0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164 

0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441 

0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713 

0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978 

0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236 

0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488 

1 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732 

2 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793 

3 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227 

4 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202 

5 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870 

6 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338 

7 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673 

8 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920 

9 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106 

10 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249 

20 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781 

30 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898 

40 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942 

50 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962 

100 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990 

∞ 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000 
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3.2.2 Transient Dimensionless Temperature Charts  

3.2.2.1 Large Plane Wall Charts  

Temperature time charts are useful for rapid estimation of temperature history in solids, 

and for some specific situations such charts can be prepared. Here it has been shown a 

plane wall of thickness 2L, initially at a uniform temperature 9:  and for times t > 0 it is 

subjected to convection from both its surfaces into an ambient at a constant temperature T∞ 

with a heat transfer coefficient h. Because of symmetry, the origin of the x coordinate at 

the centre of the plate has been chosen and only half of the plate has been considered.  

In charts, there are the physical significance of the dimensionless parameters τ and Biot 

number. 

The dimensionless time τ is shown in the form  

 
 =
;<

=� 
=

>(�/=)=�

@AB=C/<
                                                                (3.7) 

Thus, the Fourier number is a measure of the rate of heat conduction compared with the 

rate of heat storage in a given volume element. Therefore, the larger the Fourier number, 

the deeper the penetration of heat into a solid over a given time. 

The physical significance of the Biot number that it is represented the ratio of the “internal 

thermal resistance’’ to the “external thermal resistance’’. 

The solution of the transient heat conduction problem is presented in the graphical from in 

Figure 3.1. Here Figure 3.1 gives the midplane temperature T0 or �, at �� = 0 as a function 

of the dimensionless time 
 for several different values of the parameter 1/Bi. The curve 

for 1/Bi=0 corresponds to the case in which, ℎ → ∞ or the surfaces of the plate are 

maintained at the ambient temperature T∞ for large values of 1/Bi, The Biot number is 

small, the internal conductance of the solid is large in comparison with the heat transfer 

coefficient at the surfaces. Figure 3.2 relates the temperature at six different locations 

within the slab to the midplane temperature T0. Thus, given T0, temperature at these 

locations can be determined. An examination of Figure 3.2 reveals that for values of 1/Bi 

larger than 10 or Bi< 0.1, the temperature distribution within the slab may be considered 
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uniform with an error of less than about 2%; hence for such situation the spatial variation 

of temperature within the medium can be neglected. 

 

Figure 3.1: Midplane dimensionless temperature for plane wall  

 

 

Figure 3.2: Dimensionless temperature distribution for plane wall  
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3.2.2.2 Long Cylinder Charts   

In the previous section transient temperature charts presented for a slab of thickness 2L 

subjected to convection at both surfaces. Now one dimensional, transient heat conduction 

in a long cylinder of radius -,, which is initially at a uniform temperature Ti has been 

considered. Suddenly, at time t=0, the boundary surface at - = -, is subjected to 

convection with a heat transfer coefficient h into an ambient at temperature 9G and 

maintained so for 
 > 0.  

The solution of the transient heat conduction problem is presented in the graphical from for 

long cylinder in Figure 3.3. Here Figure 3.3 gives the midplane temperature �,  as a 

function of the dimensionless time 
 for several different values of the parameter 1/Bi. The 

curve for 1/Bi=0 corresponds to the case in which, ℎ → ∞, or the surfaces of the cylinder 

are maintained at the ambient temperature T∞ . Figure 3.4 relates the temperature at six 

different locations within the cylinder to the cylinder centreline temperature �,. Thus, 

given �,, temperature at these locations can be determined. An examination of Figure 3.4 

reveals that for values of 1/Bi larger than 10 or Bi < 0.1. The temperature distribution 

within the cylinder may be considered uniform with an error of less than about 2%; hence 

for such situation the spatial variation of temperature within the medium can be neglected. 

 

Figure 3.3: Centreline dimensionless temperature for long cylinder 
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Figure 3.4: Dimensionless temperature distribution for long cylinder  
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3.2.2.3 Solid Sphere Charts  

Transient temperature charts similar to those considered for long cylinder can also be 

constructed for the case of a solid sphere. Figure 3.5 gives the midplane temperature �, as 

a function of the dimensionless time 
 for several different values of the parameter 1/Bi. 

The curve for 1/Bi=0 corresponds to the case in which ℎ → ∞ or the surfaces of the sphere 

are maintained at the ambient temperature T∞. Figure 3.6 relates the temperature at six 

different locations within the sphere centreline temperature �,. 

 

Figure 3.5: Midpoint dimensionless temperature for solid sphere  

 

Figure 3.6: Dimensionless temperature distribution for solid sphere 


