

CHAPTER I

OVERVIEW OF ZIGBEE

1.1 Background

ZigBee is a specification for wireless personal area networks (WPANs) operating at 868

MHz, 915 MHz and 2.4 GHz. A WPAN is a personal area network (a network for

interconnecting an individual's devices) in which the device connections are wireless.

Using ZigBee, devices in a WPAN can communicate at speeds of up to 250 Kbps while

physically separated by distances of up to 100 meters in typical circumstances and greater

distances in an ideal environment. ZigBee is based on the 802.15.4 specification approved

by the Institute of Electrical and Electronics Engineers Standards Association (IEEE-SA)

[11].

ZigBee provides for high data throughput in applications where the duty cycle is low. This

makes ZigBee ideal for home, business and industrial automation where control devices

and sensors are commonly used. Such devices operate at low power levels, and this, in

conjunction with their low duty cycle (typically 0.1% or less), translates into long battery

life. Applications well suited to ZigBee include heating, ventilation and air conditioning

(HVAC), lighting systems, fire sensing and the detection, intrusion detection and

notification of unusual occurrences. ZigBee is compatible with most topologies including

peer-to-peer, star network and mesh networks [41].

1.2 The Name ZigBee

The name „ZigBee‟ is derived from the erratic zigging patterns many bees make between

flowers when collecting pollen. This is evocative of the invisible webs of connections

existing in a fully wireless environment. The standard itself is regulated by a group known

as the ZigBee Alliance with over 200 members worldwide [27].

http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci837444,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213983,00.html
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci546288,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212436,00.html
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci837226,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci214016,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci499861,00.html
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci214364,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci1048806,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci295031,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212769,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci870743,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci870763,00.html

2

1.3 ZigBee Alliance

The ZigBee Alliance is an association of companies working together to define an open

global standard for making low-power wireless networks. The intended outcome of ZigBee

Alliance is to create a specification defining how to build different network topologies with

data security features and interoperable application profiles. The association includes

companies from a wide spectrum of categories, from chip manufactures to system

integration companies. The number of members in the association is rapidly growing and is

currently over 200. Among the members one can find Philips, Samsung, Motorola and LG.

The first specification was ratified in 2004 and the first generation of ZigBee products had

reached the market in 2005. A big challenge for the alliance is to make the interoperability

to work among different products. To solve this problem, the ZigBee Alliance has defined

different profiles, depending on what type of category the product belongs to. For example

there is a profile called Home Lightning that exactly defines how different brands of home

lightning-products should communicate with each other [28].

1.4 History of ZigBee

 ZigBee-style networks began to be conceived about 1998, when many installers realized

that both WiFi and Bluetooth were going to be unsuitable for many applications. In

particular, many engineers saw a need for self-organizing ad-hoc digital radio networks.

 The IEEE 802.15.4 standard was completed in May 2003.

 In the summer of 2003, Philips Semiconductors, a major mesh network supporter,

ceased the investment. Philips Lighting has, however, continued Philips' participation and

Philips remains a promoter member on the ZigBee Alliance Board of Directors.

 The ZigBee Alliance announced in October 2004 that the membership had more than

doubled in the preceding year and had grown to more than 100 member companies, in 22

countries. By April 2005 membership had grown to more than 150 companies and by

December 2005 membership had passed 200 companies.

http://en.wikipedia.org/wiki/WiFi
http://en.wikipedia.org/wiki/Bluetooth

3

 The ZigBee specifications were ratified on 14 December 2004.

 The ZigBee Alliance announces public availability of Specification 1.0 on 13 June 2005,

known as ZigBee 2004 Specification.

 The ZigBee Alliance announces the completion and immediate member availability of

the enhanced version of the ZigBee Standard in September 2006, known as ZigBee 2006

Specification.

 During the last quarter of 2007, ZigBee PRO, the enhanced ZigBee specification was

finalized [34].

1.5 Evolution of Low-Rate Wireless Personal Area Networks (LR-WPAN)

Standardization

The cellular network was a natural extension of the wired telephony network that became

pervasive during the mid-20th century. As the need for mobility and the cost of laying new

wires increased, the motivation for a personal connection independent of location to that

network also increased. Coverage of large area is provided through (1-2 km) cells that

cooperate with their neighbors to create a seemingly seamless network. Examples of

standards are GSM, IS-136, IS-95. Cellular standards basically aimed at facilitating voice

communications throughout a metropolitan area.

Table 1.1: Review of 802.15 alphabet soup

802.15 Wireless Personal Area Networks (WPAN)

802.15.1 WPANs based on Bluetooth

802.15.2 Coexistence of WPAN‟s and WLAN‟s

802.15.3 High data rates 20Mbps+ on WPAN

802.15.3a High speed PHY enhancements

802.15.3b High speed MAC enhancements

802.15.4 Low data rate, simple multi year battery life

802.15.5 Mesh Networking

4

During the mid-1980s, it turned out that an even smaller coverage area was needed for

higher user densities and the emergent data traffic. The IEEE 802.11 working group for

WLANs is formed to create a wireless local area network standard.

Whereas IEEE 802.11 was concerned with features such as Ethernet matching speed, long

range (100m), complexity to handle seamless roaming, message forwarding and data

throughput of 2-11 Mbps, WPANs are focused on a space around a person or object that

typically extends up to 10m in all directions. The focus of WPANs is low-cost, low power,

short range and very small size. The IEEE 802.15 working group is formed to create

WPAN standard (see Table 1.1). This group has currently defined three classes of WPANs

that are differentiated by data rate, battery drain and quality of service (QoS). The high data

rate WPAN (IEEE 802.15.3) is suitable for multi-media applications that require very high

QoS. Medium rate WPANs (IEEE 802.15.1/Bluetooth) will handle a variety of tasks

ranging from cell phones to PDA communications and have QoS suitable for voice

communications. The low rate WPANs (IEEE 802.15.4/LR-WPAN) is intended to serve a

set of industrial, residential and medical applications with very low power consumption and

cost requirement not considered by the above WPANs and with relaxed needs for data rate

and QoS. The low data rate enables the LR-WPAN to consume very little power [11].

1.6 ZigBee and IEEE 802.15.4

ZigBee technology is a low data rate, low power consumption, low cost, wireless

networking protocol targeted towards automation and remote control applications. IEEE

802.15.4 committee started working on a low data rate standard a short while later. Then

the ZigBee Alliance and the IEEE decided to join forces and ZigBee is the commercial

name for this technology.

ZigBee is expected to provide low cost and low power connectivity for equipment that

needs battery life as long as several months to several years but does not require data

transfer rates as high as those enabled by Bluetooth. In addition, ZigBee can be

implemented in mesh networks larger than is possible with Bluetooth. ZigBee compliant

wireless devices are expected to transmit in the range of 1-100 meters, depending on the RF

5

environment and the power output consumption required for a given application and will

operate in the unlicensed RF worldwide (2.4 GHz global, 915 MHz Americas or 868 MHz

Europe). The data rate is 250 kbps at 2.4 GHz, 40 kbps at 915 MHz and 20 kbps at 868

MHz.

IEEE and ZigBee Alliance have been working closely to specify the entire protocol stack

(see Figure 1.1). IEEE 802.15.4 focuses on the specification of the lower two layers of the

protocol (physical and data link layer). On the other hand, ZigBee Alliance aims to provide

the upper layers of the protocol stack (from network to the application layer) for

interoperable data networking, security services and a range of wireless home and building

control solutions, provide interoperability compliance testing, marketing of the standard,

advanced engineering for the evolution of the standard. This will assure consumers to buy

products from different manufacturers with confidence that the products will work together.

Figure 1.1: Protocol stack structure

IEEE 802.15.4 is now detailing the specification of physical layer (PHY) and medium

access layer (MAC) by offering building blocks for different types of networking known as

”star, mesh and cluster tree”. Network routing schemes are designed to ensure power

PHY LAYER

MAC LAYER

NETWORK/SECURITY

 LAYERS

APPLICATION

FRAMEWORK

APPLICATION/

PROFILES

IEEE

802.15.4

ZigBee

Alliance

Platform

Application

ZigBee Platform Stack

Silicon

ZigBee

6

conservation and low latency through guaranteed time slots. A unique feature of ZigBee

network layer is communication redundancy eliminating ”single point of failure” in mesh

networks. Key features of PHY include energy and link quality detection, clear channel

assessment for improved coexistence with other wireless networks [5].

1.7 ZigBee vs. Other Wireless Standards

Table 1.2 outlines some of the key characteristics of ZigBee and how it stacks up against

other common wireless standards [42].

Table 1.2: ZigBee vs. Other wireless standards

 ZigBee
802.11

(Wi-fi)
Bluetooth

UWB (Ultra

Wide Band)

IR

Wireless

Data Rate 20, 40 and 250 Kbits/s
11 & 54

Mbits/s
1 Mbits/s

100 – 500

Mbits/s

20 – 40

Kbits/s 115

Kbits/s 4 &

6 Mbits/s

Range

(meters)
10 – 100 50 – 100 10 < 10 < 10

Networking

Topology

Ad-hoc,

peer to peer,

star, mesh

Point to

Hub

Ad-hoc,

very small

Networks

Point to

point

Point to

point

Operating

Frequency

868 MHz (Europe)

900-928 MHz (NA), 2.4

GHz (Global)

2.4 and 5

GHz

2.4

GHz

3.1 – 10.6

GHz

800 – 900

nm

Complexity

(Device and

Application

impact)

Low High High Medium Low

Power

Consumption

(Battery

option and

life)

Very low

(low power is a design

goal)

High Medium Low Low

Security

128 AES plus

application layer

secutiry

64 and 128

bit

encyption

7

Other

Information

Devices can join an

existing network in

under 30ms

Device

connection

requires 3 – 5 sec.

Device

connection

requires up to

10 seconds

Typical

Applications

Industrial control and

monitoring, sensor

networks, building

automation, home

control and automation

toys, games

Wireless LAN

connectivity,

broadband

Internet access

Wireless

connectivity

between such as

phones, PDA,

laptops,

headsets

Streaming

video, home

entertainment

applications

Remote

controls,

PC, PDA,

phone,

laptop links

ZigBee looks rather like Bluetooth but is simpler, has a lower data rate and spends most of

its time snoozing. This characteristic means that a node on a ZigBee network should be

able to run for six months to three years on just two AA batteries (see Table 1.3).

The operational range of ZigBee is 1-100m compared to 10m for Bluetooth (without a

power amplifier).

ZigBee sits below Bluetooth in terms of data rate. The data rate of ZigBee is 250 kbps at

2.4 GHz, 40 kbps at 915 MHz and 20 kbps at 868 MHz whereas that of Bluetooth is 1

Mbps.

Table 1.3: Comparison between ZigBee and Bluetooth

Market Name (Standard) ZigBee® (802.15.4) Bluetooth™ (802.15.1)

Application Focus Monitoring & Control Cable Replacement

Bandwidth (Hz) 20 – 250 1000

Battery Life (days) 100 - 1000+ 1 - 7

Network Join Time 0.3 - 18 msec 3 sec

Network Size (# of nodes) 65535

7

System Resources 4 kb - 32 kb 250 kb+

Transmission Range

(meters)
1 - 100+ 1 - 10+

Success Metrics Reliability, Power, Cost Convenience

8

ZigBee uses a basic master-slave configuration suited to static star networks of many

infrequently used devices that talk via small data packets. It allows up to 65535 nodes.

Bluetooth‟s protocol is more complex since it is geared towards handling voice, images and

file transfers in ad-hoc networks. Bluetooth devices can support scatternets of multiple

smaller non-synchronized networks (piconets) and it only allows up to 7 slave nodes in a

basic master-slave piconet set-up.

When ZigBee node is powered down, it can wake up and get a packet in around 15 msec.

whereas a Bluetooth device would take around 3 sec. to wake up and respond.

1.8 ZigBee Wireless Markets and Applications

Table 1.4 [36] shows that ZigBee‟s markets and its applications. As seen below ZigBee has

a big marketing at many sectors in world wide.

Table 1.4: ZigBee wireless markets and applications

Markets Applications

building automation security, HVAC, AMR, lighting and access conrtol

consumer electronics remote control

industrial control asset management, process control, energy management

PC & peripherals mouse, keyboard, Joystick

personal health care patent monitoring

residental / light

commercial control
security, HVAC, lighting and access conrtol

The biggest marketing partition is the building automation in ZigBee applications.

Figure 1.2 shows a typical smart home solutions application using ZigBee [9]. As seen that

figure many applications can be performed.

9

Figure 1.2: Smart home using ZigBee

Zigbee‟s marketing is growing up speedily and its compound annual growth rate is 63%

(see Figure 1.3) [10].

Figure 1.3: Worldwide IEEE 802.15.4 and ZigBee Chipset Revenue

0

50

100

150

200

250

300

350

400

2005 2006 2007 2008 2009 2010 2011 2012

$M

http://www.yeminlisozluk.com/index.php?kelime=speedily

10

There has been many researchers and analysts who studied and developed ZigBee based

products. Some of the important studies in this field are given below:

• Remote-controlled home robot server with ZigBee sensor network [13]

Recently, interest of general public towards ubiquitous home networking has increased

immensely and wireless PAN (personal area network) has attracted strong attentions as

short-distance networking solution. Convenience of wireless PAN technology has attracted

more attentions over traditional wired home network devices such as Ethernet, PLC and

HomePNA since it requires no cabling work. In the future, home servers will be combined

with robots to provide functionalities identical to current home service robots as well as to

implement more effective and spontaneous servers. In this paper, Choi et al. described a

remotely controlled robot for home automation applications, using ZigBee protocol

devices.

• A Wireless solution for greenhouse monitoring and control system based on ZigBee

[20]

With the rapid development of wireless technologies, it is possible for greenhouses to be

equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In

this study, the advantages of ZigBee with other two similar wireless networking protocols

are compared, e.g. Wi-Fi, Bluetooth and the ZigBee protocol is recommended for

greenhouse monitoring and control because of its low-power requirements and the network

capacity.

• ZigBee-based demand-response systems reduce home energy usage [8]

Home automation originally evolved to bring whole-house entertainment and comfort

control into affluent homes. But the advent of wireless technologies combined with low-

power, low-cost hardware has made home automation networks affordable and easy to

install for the average homeowner. Beyond the lifestyle benefits, affordable wireless

11

technology has also enabled manufacturers to embed wireless intelligence into a variety of

energy conservation and management technologies that will have a huge impact on

reducing our energy woes and greenhouse emissions in the near term. Demand response

systems for managing energy usage in homes are among the most promising of these new

technologies. Households consume one-fifth of the nation's energy each year with 60% of

that consumption in the form of electricity. At the same time, utilities are struggling to

manage the peak energy demand dilemma, where about 10% of electric generating capacity

exists only to be used less than one percent of the time. If energy demand can respond

dynamically to the available energy supply, huge cost, reliability and energy efficiency

gains can be achieved within homes and the energy grid without having to build additional

power plants. Homeowners are beginning to adopt wireless home area networks (HANs) to

gain not just whole-house entertainment control but also the ability to better manage their

energy consumption and this without the expense of traditional wired home automation

systems. ZigBee is an ideal candidate in such home energy saving applications.

• Development of ZigBee based street light control system [16]

Industry of street lighting systems are growing rapidly and becoming complex with rapid

growth of industry and cities. To control and maintain complex street lighting system more

economically, various street light control systems are developed. Nevertheless most of the

developed systems have some drawbacks. Therefore new light control systems are going to

be developed which can overcome old systems drawbacks. Various street light control

systems were surveyed and their characteristics analyzed by Lee. Through these efforts, it

was found that common drawbacks of most light control systems are their uneasiness of

handling and difficulty of maintenance. To reduce these drawbacks, new street light control

system has been designed by using Zigbee communication techniques.

• ZigBee-based home security system [2]

AlertMe offering is a subscription-based security system designed to detect events such as

an intruder or a fire and alert users via SMS text messaging or email. The Linux-based Hub

12

at the core of the system stays in constant touch with sensors and other devices scattered

around the home via ZigBee. The Hub in turn communicates via a secure broadband

connection to alertme.com 's servers, which then send out alerts to the customer and

authorized friends and family members.

• ZigBee based wireless sensor network fed with sun batteries [15]

The goal of this project was the producting of supply voltage required for the PicdemZ card

and connected sensors that used the Zigbee based security project in the Department of

Electrical & Electronics Engineering of Ege University by Kok. Low-power was a

requirement here and thus ZigBee was a suitable protocol.

• A home security ZigBee network for remote monitoring application [1]

Security

monitoring systems are popular in home automation and Zigbee is

a new industrial

standard wireless sensor network. This paper introduces

an experimental home security

monitoring and alarming system based on the

Zigbee technology. It is capable of

monitoring door & window

magnetic contacts, smoke, gas leak, water flooding and

providing simple controls

such as turning off the valves and sending alarms

to the

residential area security network etc. The security alarming

system is based on a Zigbee

chip and a low power

consumption micro-controller. The system uses

a control key fob for

activating and de-activating the alarm

easily, supports web interface so that users can access

the

system remotely to control, search or review the history record

and also offers a LCD

panel for simple configuration. The experimental

system has been designed and its wireless

communication test result

shows that the Zigbee wireless network can improve the home

security with low power and easy to implement solution.

• ZigBee-ready modules for sensor networking [6,17]

Fully functional ZigBee-ready modules have been designed, implemented and tested by

many manufacturers. It is shown that ZigBee is suitable for sensor networking where long

battery life, large networks and fast network establishment are the main requirements.

13

• Multi-stage real time health monitoring via ZigBee in smart homes [3]

Dagtas et. al. describe a ZigBee based real-time health monitoring system for use in smart

homes. The main advantage of the proposed system was the ability to detect signals

wirelessly within a Body Area Network (BAN), low-power and reliable operation.

• Implementing a ZigBee Protocol Stack and Light Sensor in TinyOS [19]

Munk-Stander et. al. describe a ZigBee based protocol stack used in light sensing

applications. It is reported that the system had the advantages of low data rate, low power

consumption, security and reliability. Even though the implementation is specialized to the

light sensor application, the protocol stack in itself can be used to implement many other

applications having similar requirements as the ones presented by the authors.

• ZigBee-based IR remote control repeater and its control message frame format [12]

A ZigBee based Infrared (IR) remote control repeater has been designed for consumer

applications. Many legacy consumer devices are controlled via IR remote controls. A user

needs one IR remote control per one legacy consumer device and has to guarantee the line

of sight towards legacy consumer devices. As the ubiquitous home era emerges, all home

devices are required to be controllable at anytime and anywhere. To control IR-based

legacy consumer devices regardless of the line of sight, a small ZigBee-based IR remote

control repeater is attached near the IR receiving part of a legacy consumer device. It

receives the control message via ZigBee protocol and converts the received message into

IR signal which is transmitted to the legacy consumer device. The designed device has the

advantage that a large number of nodes can be connected to the device.

• Remote monitoring of motor operational data using ZigBee wireless protocol [4]

In today‟s market there is only a slight selection of products in the Heating and AC

business that offer wireless technology. The demand for wireless technology that can

display a motors status in an HVAC system is essential, especially for motor developers

and installers. In this document, the criteria necessary for developing such technology and

14

the benefits of developing wireless technology to display and manage a high efficient motor

within a furnace, subjects are described. Existing HVAC systems only provide temperature

information of the thermostat, which is located in the living room. This requires that

technicians search for the furnace, disable the furnace box and diagnose the speed and

power of the electrically commutated motor (ECM). It will be a big help for the technicians

and homeowners if motor information can be provided at the living room.

• ZigBee based dynamic control scheme for multiple legacy IR controllable digital

consumer devices [21]

A universal remote control (URC) unit is an integrated device for controlling many

different consumer electronics (CE) home appliances. To control these various CE devices

based on infrared (IR) control signal, the URC unit has to have many preprogrammed

control codes for controlling them because they are controlled with many different types of

IR profile stated with lead code, control code, carrier frequency, duty cycle, duration and so

forth. In this paper, a dynamic control scheme for multiple legacy IR controllable digital

CE appliances are proposed, which is based on IEEE 802.15.4, especially ZigBee protocol.

The proposed scheme uses two main components. One is a URC unit using ZigBee based

wireless network technology, WPAN. Another is a Z2IR (ZigBee to IR) conversion module

which converts a control message transferred through the ZigBee network into an IR typed

control signal. In this scheme, the list of CE devices to be controlled by the proposed URC,

called as Z-URC (ZigBee based user remote control) is dynamically reconfigured.

• The Impact of ZigBee in a biomedical environment [24]

Thraning described the impact of the ZigBee technology in a biomedical environment in his

thesis. The thesis‟s focus is the evaluation of possible technologies and solutions for

communication between several wireless sensors and a CIP-node with respect to battery

capacity, scalability, fail-safety, security and cost in the design of new applications and

communication principles.

15

• ZigBee suitability for wireless sensor networks in logistic telemetry applications [14]

There has been a quick development in the wireless network area during the last decade.

Mostly these days the focus in the wireless area is on very high speed and long range

applications. This application describes how ZigBee is suitable for wireless sensor

networks in logistic telemetry applications for global managing and monitoring of goods.

The other aim of this thesis was to examine different issues related to ZigBee to see its

fitness for logistic telemetry applications like multi-hop routing issues, routing strategies

and design requirements. ZigBee is relatively new wireless technology, so there are great

deals of promises associated with it.

• ZigBee for building control wireless sensor Networks [25]

Zucatto et. al. describe a method where the stack profile is selected by the ZigBee

coordinator and is chosen on the basis of application areas, such as home control, building

automation or plant control. Aiming the development of a commercial ZigBee product for

home control. In this paper some important aspects of those standards and the main

directives of the stack profile and network topology are described.

• ZigBee-based meter aids energy efficiency [37]

An energy saving ZigBee based plug-in electricity meter is described. The device, called

the plogg, allows home and building owners to monitor how much electricity is being used

by individual appliances and electronic devices so that energy efficiency can be improved.

Recent studies by the British government and the Carbon Trust show that people can save

5-15% of the electricity they use by using smart meters to manage energy demands.

• Remote copy-paste based ZigBee [5]

In today‟s world, the methods for copying data from one computer to another one is not

secure. This paper describes how the data can be copied securely between two computers

using ZigBee devices.

16

CHAPTER 2

IEEE 802.15.4 WIRELESS PERSONAL AREA NETWORK, ZIGBEE

LAYERS AND SECURITY

ZigBee is an IEEE 802.15.4 wireless personal area network technology. In this chapter,

components of IEEE 802.15.4 wireless personal area network, ZigBee‟s physical, medium

access control and routing layers are mentioned. Also given information about ZigBee‟s

security.

2.1 IEEE 802.15.4 Wireless Personal Area Network

The main features of this standard are network flexibility, low cost, very low power

consumption and low data rate. It is developed for applications with relaxed throughput

requirements which cannot handle the power consumption of heavy protocol stacks.

2.1.1 Components of WPAN

A ZigBee system consists of several components. The most basic is the device. A device

can be a full-function device (FFD) or reduced-function device (RFD). A network shall

include at least one FFD, operating as the PAN coordinator.

The FFD can operate in three modes: a personal area network (PAN) coordinator, a

coordinator or a device.

An RFD is intended for applications that are extremely simple and do not need to send

large amounts of data. An FFD can communicate with RFDs or FFDs while an RFD can

only communicate with an FFD [5].

2.1.2 Network Topologies

Figure 2.1 shows three types of topologies that ZigBee supports; star topology, peer to peer

topology and cluster tree [5].

17

2.1.2.1 Star Topology

In the star topology, the communication is established between devices and a single central

controller, called the PAN coordinator. The PAN coordinator may be mains powered while

the devices will most likely be battery powered. Applications that benefit from this

topology include home automation, personal computer (PC) peripherals, toys and games.

Figure 2.1: Topology models

After an FFD is activated for the first time, it may establish its own network and become

the PAN coordinator. Each start network chooses a PAN identifier, which is not currently

used by any other network within the radio sphere of influence. This allows each star

network to operate independently.

2.1.2.2 Peer to Peer Topology

In peer-to-peer topology, there is also one PAN coordinator. In contrast to star topology,

any device can communicate with any other device as long as they are in range of one

another. A peer-to-peer network can be ad-hoc, self-organizing and self-healing.

PAN coordinator
Full Function Device

Star

Mesh

Cluster Tree
Reduced Function Device

18

Applications such as industrial control and monitoring, wireless sensor networks, asset and

inventory tracking would benefit from such a topology. It also allows multiple hops to route

messages from any device to any other device in the network. It can provide reliability by

multipath routing.

2.1.2.3 Cluster Tree Topology

Cluster-tree network is a special case of a peer-to-peer network in which most devices are

FFDs and an RFD may connect to a cluster-tree network as a leave node at the end of a

branch. Any of the FFD can act as a coordinator and provide synchronization services to

other devices and coordinators. Only one of these coordinators however is the PAN

coordinator.

The PAN coordinator forms the first cluster by establishing itself as the cluster head (CLH)

with a cluster identifier (CID) of zero, choosing an unused PAN identifier and broadcasting

beacon frames to neighboring devices. A candidate device receiving a beacon frame may

request to join the network at the CLH. If the PAN coordinator permits the device to join, it

will add this new device as a child device in its neighbor list. The newly joined device will

add the CLH as its parent in its neighbor list and begin transmitting periodic beacons such

that other candidate devices may then join the network at that device. Once application or

network requirements are met, the PAN coordinator may instruct a device to become the

CLH of a new cluster adjacent to the first one. The advantage of this clustered structure is

the increased coverage area at the cost of increased message latency.

2.1.3 LR-WPAN Device Architecture

Figure 2.2 shows an LR-WPAN device [11]. The device comprises a PHY, which contains

the radio frequency (RF) transceiver along with its low-level control mechanism and a

MAC sublayer that provides access to the physical channel for all types of transfer. The

upper layers consists of a network layer, which provides network configuration,

manipulation, message routing and application layer, which provides the intended function

19

of a device. An IEEE 802.2 logical link control (LLC) can access the MAC sublayer

through the service specific convergence sublayer (SSCS).

 Figure 2.2: LR-WPAN device architecture

2.2 Physical Layer

The physical layer (PHY) [5] provides two services: the PHY data service and PHY

management service interfacing to the physical layer management entity (PLME). The

PHY data service enables the transmission and reception of PHY protocol data units

(PPDU) across the physical radio channel.

The features of the PHY are activation and deactivation of the radio transceiver, energy

detection (ED), link quality indication (LQI), channel selection, clear channel assessment

(CCA) and transmitting as well as receiving packets across the physical medium.

The standard offers two PHY options based on the frequency band. Both are based on

direct sequence spread spectrum (DSSS). The data rate is 250 kbps at 2.4 GHz, 40 kbps at

 Upper Layers

802.2.LLC

 SSCS

 MAC

 PHY

Physical

Medium

20

915 MHz and 20 kbps at 868 MHz. The higher data rate at 2.4 GHz is attributed to a

higher-order modulation scheme. Lower frequency provide longer range due to lower

propagation losses. Low rate can be translated into better sensitivity and larger coverage

area. Higher rate means higher throughput, lower latency or lower duty cycle. This

information is summarized in Table 2.1.

Table 2.1: Frequency bands and data rates

PHY

(MHz)

Frequency

band (MHz)

Channel

numbering

Chip rate

(kchips/s)
Modulation

Bit rate

(kb/s)

Symbol rate

(ksymbol/s)
Symbols

868 868-868.6 0 300 BPSK 20 20 Binary

915 902-928 1-10 600 BPSK 40 40 Binary

2450 2400-2483.5 11-26 2000 O-QPSK 250 62.5
16-ary

Orthogonal

There is a single channel between 868 and 868.6 MHz, 10 channels between 902.0 and

928.0 MHz, 16 channels between 2.4 and 2.4835 GHz. Several channels in different

frequency bands enables the ability to relocate within spectrum. The standard also allows

dynamic channel selection, a scan function that steps through a list of supported channels in

search of beacon, receiver energy detection, link quality indication and channel switching.

Receiver sensitivities are -85 dBm for 2.4 GHz and -92 dBm for 868/915 MHz. The

advantage of 6-8 dBm comes from the advantage of lower rate. The achievable range is a

function of receiver sensitivity and transmit power. The maximum transmit power shall

conform with local regulations. A compliant device shall have its nominal transmit power

level indicated by the PHY parameter.

2.2.1 Transmit Power

The transmitter should be capable of transmitting at least -3 dBm. The device should

transmit as low power as possible to reduce interference to other devices and systems. The

definition of dBm is shown in Equation 2.1 [18]:

21

𝑃𝑜𝑤𝑒𝑟𝑑𝐵𝑚 = 10𝑙𝑜𝑔
𝑃𝑜𝑤𝑒𝑟 𝑚𝑊

1𝑚𝑊
 (2.1)

Table 2.2 [38] shows that some dBm – power equations.

Table 2.2: dBm – power equations [30]

dBm Level Power dBm Level Power dBm Level Power

80 dBm 100 kW 20 dBm 100 mW -20 dBm 10 µW

60 dBm 1 kW 15 dBm 32 mW -30 dBm 1.0 µW

50 dBm 100 W 10 dBm 10 mW -40 dBm 100 nW

40 dBm 10 W 6 dBm 4.0 mW -50 dBm 10 nW

36 dBm 4 W 5 dBm 3.2 mW -60 dBm 1.0 nW

33 dBm 2 W 4 dBm 2.5 mW -70 dBm 100 pW

30 dBm 1 W 3 dBm 2.0 mW -80 dBm 10 pW

27 dBm 500 mW 2 dBm 1.6 mW -100 dBm 0.1 pW

26 dBm 400 mW 1 dBm 1.3 mW -111 dBm 0.008 pW

25 dBm 316 mW 0 dBm 1.0 mW -127.5 dBm 0.178 fW

24 dBm 250 mW -1 dBm 794 µW -174 dBm 0.004 aW

23 dBm 200 mW -3 dBm 501 µW -192.5 dBm 0.056 zW

22 dBm 160 mW -5 dBm 316 µW -∞ dBm 0 W

21 dBm 125 mW -10 dBm 100 µW

2.2.2 Receiver Energy Detection (ED)

The receiver energy detection (ED) [5] measurement is intended for use by a network layer

as part of channel selection algorithm. It is an estimate of the received signal power within

the bandwidth of an IEEE 802.15.4 channel. No attempt is made to identify or decode

signals on the channel. The ED time should be equal to 8 symbol periods.

The ED result shall be reported as an 8-bit integer ranging from 0x00 to 0xFF. The

minimum ED value (0) shall indicate received power less than 10 dB above the specified

receiver sensitivity. The range of received power spanned by the ED values shall be at least

40dB. Within this range, the mapping from the received power in decibels to ED values

shall be linear with an accuracy of ±6 dB.

22

2.2.3 Link Quality Indication (LQI)

Upon reception of a packet, the PHY sends the PSDU length, PSDU itself and link quality

(LQ) in the PD-DATA indication primitive. The LQI [5] measurement is a characterization

of the strength and/or quality of a received packet. The measurement may be implemented

using receiver ED, a signal-to-noise estimation or a combination of these methods. The use

of LQI result is up to the network or application layers. The LQI result should be reported

as an integer ranging from 0x00 to 0xff. The minimum and maximum LQI values should be

associated with the lowest and highest quality IEEE 802.15.4 signals detectable by the

receiver and LQ values should be uniformly distributed between these two limits.

2.2.4 Clear Channel Assessment (CCA)

The clear channel assessment (CCA) [5] is performed according to at least one of the

following three methods:

• Energy above threshold. CCA shall report a busy medium upon detecting any energy

above the ED threshold.

• Carrier sense only. CCA shall report a busy medium only upon the detection of a signal

with the modulation and spreading characteristics of IEEE 802.15.4. This signal may be

above or below the ED threshold.

• Carrier sense with energy above threshold. CCA shall report a busy medium only upon

the detection of a signal with the modulation and spreading characteristics of IEEE

802.15.4 with energy above the ED threshold.

2.2.5 PHY Protocol Data Unit (PPDU) Format

The PPDU [5] packet structure is illustrated in Table 2.3. Each PPDU packet consists of the

following basic components:

• PHY Header (PHR), which contains frame length information

23

• Synchronization Header (SHR), which allows a receiving device to synchronize and lock

into the bit stream

• A variable length payload, which carries the MAC sublayer frame.

Table 2.3: Format of the PPDU

Octets:4 1 1 Variable

Preamble SFD Frame length (7 bits) Reserved (1 bit) PSDU

SHR PHR PHY payload

2.3 Medium Access Control Layer

The Medium Access Control (MAC) layer [6] provides the interface between the PHY

layer and the NWK layer. The MAC is responsible for generating beacons and

synchronizing the device to the beacons (in a beacon-enabled network). The MAC layer

also provides association and disassociation services.

2.3.1 MAC Frame Structures

The IEEE 802.15.4 defines 4 MAC frame structures [6]:

• Beacon frame

• Data frame

• Acknowledge frame

• MAC command frame

The beacon frame is used by a coordinator to transmit beacons. The beacons are used to

synchronize the clock of all the devices within the same network. The data and

acknowledgment frames are used to transmit data and accordingly acknowledge the

successful reception of a frame. The MAC commands are transmitted using a MAC

command frame.

24

2.3.1.1 The Beacon Frame

The structure of a beacon frame [6] is shown in Figure 2.3. The entire MAC frame is used

as a payload in a PHY packet. The content of the PHY payload is referred to as the PHY

Service Data Unit (PSDU).

In the PHY packet, the preamble field is used by the receiver for synchronization. The start-

of-frame delimiter (SFD) indicates the end of SHR and start of PHR. The frame length

specifies the total number of octets in the PHY payload (PSDU).

The MAC frame consists of three sections: the MAC header (MHR), the MAC payload and

the MAC footer (MFR). The frame control field in the MHR contains information defining

the frame type, addressing fields and other control flags. The sequence number specifies the

beacon sequence number (BSN). The addressing field provides the source and destination

addresses. The auxiliary security header is optional and contains information required for

security processing.

The MAC payload is provided by the NWK layer. The superframe is a frame bounded by

two beacon frames. The superframe is optionally used in a beacon-enabled network and

helps define GTSs. The GTS field in the MAC payload determines whether a GTS is used

to receive or transmit.

Mac

Layer

MHR MAC Payload MFR

PHY

Layer

 SHR PHR PHY Payload

Figure 2.3: The MAC Beacon Frame Structure

Frame

Control

Sequence

Number

Adressing

Fields

Auxiliary

Security

HDR

Superframe

Specification

GTS

Fields

Pending

Address

Fields

Beacon

Payload
FCS

Preamble

Sequence
SFD

Frame Length

Reserved
PSDU

25

The beacon frame is not only used to synchronize the devices in a network but is also used

by the coordinator to let a specific device in a network know there is data pending for that

device in the coordinator. The device, at its discretion, will contact the coordinator and

request that it transmit the data to the device. This is called indirect transmission. The

pending address field in the MAC payload contains the address of the devices that have

data pending in the coordinator. Every time a device receives a beacon, it will check the

pending address field to see if there is data pending for it.

The beacon payload field is an optional field that can be used by the NWK layer and is

transmitted along with the beacon frame. The receiver uses the Frame Check Sequence

(FCS) field to check for any possible error in the received frame.

2.3.1.2 The Data Frame

The MAC data frame [6] is shown in Figure 2.4. The data payload is provided by the NWK

layer. The data in the MAC payload is referred to as the MAC Service Data Unit (MSDU).

The fields in this frame are similar to the beacon frame except the superframe, GTS and

pending address fields are not present in the MAC data frame. The MAC data frame is

referred to as the MAC Protocol Data Unit (MPDU) and becomes the PHY payload.

MAC

Layer

 MHR MAC Payload MFR

PHY

Layer

 SHR PHR PHY Payload

 Figure 2.4: The MAC Data Frame Structure

Frame

Control

Sequence

Number

Adressing

Fields

Auxiliary

Security HDR
Data Payload FCS

Preamble

Sequence
SFD

Frame Length

Reserved
PSDU

26

2.3.1.3 The Acknowledgment Frame

The MAC acknowledgment frame [6], shown in Figure 2.5, is the simplest MAC frame

format and does not carry any MAC payload. The acknowledgment frame is sent by one

device to another to confirm successful reception of a packet.

 MAC

 Layer

 MHR MFR

PHY

Layer

 SHR PHR PHY Payload

 Figure 2.5: The MAC Acknowledgment Frame Structure

2.3.1.4 The Command Frame

The MAC commands such as requesting association or disassociation with a network are

transmitted using the MAC command frame [6]. The command type field determines the

type of the command (e.g. association request or data request). The command payload

contains the command itself. The entire MAC command frame is placed in the PHY

payload as a PSDU.

2.3.2 Channel Access and Addressing

Two channel-access mechanisms are implemented in 802.15.4. For a non-beacon network,

a standard CSMA-CA (carrier sense medium access with collision avoidance)

communicates with positive acknowledgement for successfully received packets. In a

beacon-enabled network, a superframe structure is used to control channel access. The

superframe is set up by the network coordinator to transmit beacons at predetermined

intervals (multiples of 15.38ms, up to 252s) and provides 16 equal-width time slots

Frame Control
Sequence

Number
FCS

Preamble

Sequence
SFD

Frame Length

Reserved
PSDU

27

between beacons for contention-free channel access in each time slot. The structure

guarantees dedicated bandwidth and low latency. Channel access in each time slot is

contention-based. However, the network coordinator can dedicate up to seven guaranteed

time slots per beacon interval for quality of service.

Device addresses employ 64-bit IEEE and optional 16-bit short addressing. The address

field within the MAC can contain both source and destination address information (needed

for peer-to-peer operation). This dual address information is used in mesh networks to

prevent a single point of failure within the network [7].

The channel Access mechanism used is Carrier Sense Multiple Access with Collision

Avoidance (CSMA-CA). In CSMA-CA, anytime a device wants to transmit, it first

performs a clear channel assessment (CCA) to ensure that the channel is not in use by any

other device. Then the device starts transmitting its own signal. The decision to declare a

channel clear or not can be based on measuring the spectral energy in the frequency

channel of interest or detecting the type of the occupying signal.

When a device plans to transmit a signal, it first goes into receive mode to detect and

estimate the signal energy level in the desired channel. This task is known an energy

detection (ED). In ED, the receiver does not try to decode the signal and only the signal

energy level is estimated. If there is a signal already in the band of interest, ED does not

determine whether or not this is an IEEE 802.15.4 signal [6].

2.3.3 Device Types

ZigBee networks use three device types [7]:

 The network coordinator maintains overall network knowledge. It's the most

sophisticated of the three types and requires the most memory and computing power.

 The full function device (FFD) supports all 802.15.4 functions and features specified by

the standard. It can function as a network coordinator. Additional memory and

computing power make it ideal for network router functions or it could be used in

network-edge devices (where the network touches the real world).

28

 The reduced function device (RFD) carries limited (as specified by the standard)

functionality to lower cost and complexity. It's generally found in network-edge devices.

2.3.4 Power and Beacons

Ultra-low power consumption is how ZigBee technology promotes a long lifetime for

devices with nonrechargeable batteries. ZigBee networks are designed to conserve the

power of the slave nodes. For most of the time, a slave device is in deep-sleep mode and

wakes up only for a fraction of a second to confirm its presence in the network. For

example, the transition from sleep mode to data transition is around 15ms and new slave

enumeration typically takes just 30ms.

ZigBee networks can use beacon or non-beacon environments. Beacons are used to

synchronize the network devices, identify the HAN and describe the structure of the

superframe. The beacon intervals are set by the network coordinator and vary from 15ms to

over 4 minutes. Sixteen equal time slots are allocated between beacons for message

delivery. The channel access in each time slot is contention-based. However, the network

coordinator can dedicate up to seven guaranteed time slots for noncontention based or low-

latency delivery.

The non-beacon mode is a simple, traditional multiple-access system used in simple peer

and near-peer networks. It operates like a two-way radio network, where each client is

autonomous and can initiate a conversation at will, but could interfere with others

unintentionally. The recipient may not hear the call or the channel might already be in use.

Beacon mode is a mechanism for controlling power consumption in extended networks

such as cluster tree or mesh. It enables all the clients to know when to communicate with

each other. Here, the two-way radio network has a central dispatcher that manages the

channel and arranges the calls. The primary value of beacon mode is that it reduces the

system's power consumption.

Non-beacon mode is typically used for security systems where client units, such as

intrusion sensors, motion detectors and glass-break detectors, sleep 99.999% of the time.

29

Remote units wake up on a regular, yet random, basis to announce their continued presence

in the network. When an event occurs, the sensor wakes up instantly and transmits the alert

(Somebody's on the front porch). The network coordinator, powered from the main source,

has its receiver on all the time and can therefore wait to hear from each of these stations.

Since the network coordinator has an infinite source of power it can allow clients to sleep

for unlimited periods of time, enabling them to save power.

Beacon mode is more suitable when the network coordinator is battery-operated. Client

units listen for the network coordinator's beacon (broadcast at intervals between 0.015 and

252s). A client registers with the coordinator and looks for any messages directed to it. If

no messages are pending, the client returns to sleep, awaking on a schedule specified by the

coordinator. Once the client communications are completed, the coordinator itself returns to

sleep.

This timing requirement may have an impact on the cost of the timing circuit in each end

device. Longer intervals of sleep mean that the timer must be more accurate or turn on

earlier to make sure that the beacon is heard, both of which will increase receiver power

consumption. Longer sleep intervals also mean the timer must improve the quality of the

timing oscillator circuit (which increases cost) or control the maximum period of time

between beacons to not exceed 252s, keeping oscillator circuit costs low [7].

2.4 ZigBee Routing Layer

ZigBee routing algorithm can be thought of an hierarchical routing strategy with table

driven optimizations applied where possible. The routing layer is said to start with the well-

studied public domain algorithm, Ad-hoc On Demand Distance Vector (AODV) and

Motorola‟s Cluster-Tree algorithm. In this section; AODV is summarized.

2.4.1 Ad-hoc On Demand Distance Vector (AODV)

The Ad-hoc On Demand Distance Vector (AODV) [22] routing algorithm is a routing

protocol designed for ad-hoc mobile networks (see Figure 2.6). AODV is capable of both

30

unicast and multicast routing. It is an on demand algorithm, meaning that it builds routes

between nodes only as desired by source nodes. It maintains these routes as long as they are

needed by the sources. Additionally, AODV forms trees which connect multicast group

members. The trees are composed of the group members and the nodes needed to connect

the members. AODV uses sequence numbers to ensure the freshness of routes. It is loop-

free, self-starting and scales to large numbers of mobile nodes.

Figure 2.6: Reverse and forward path formation in AODV protocol

AODV builds routes using a route request / route reply query cycle. When a source node

desires a route to a destination for which it does not already have a route, it broadcasts a

route request (RREQ) packet across the network. Nodes receiving this packet update their

information for the source node and set up backwards pointers to the source node in the

route tables. In addition to the source node's IP address, current sequence number and

broadcast ID, the RREQ also contains the most recent sequence number for the destination

of which the source node is aware. A node receiving the RREQ may send a route reply

(RREP) if it is either the destination or if it has a route to the destination with

corresponding sequence number greater than or equal to that contained in the RREQ. If this

is the case, it unicasts a RREP back to the source. Otherwise, it rebroadcasts the RREQ.

timeout

D D

S

S

31

Nodes keep track of the RREQ's source IP address and broadcast ID. If they receive a

RREQ which they have already processed, they discard the RREQ and do not forward it.

As the RREP propagates back to the source, nodes set up forward pointers to the

destination. Once the source node receives the RREP, it may begin to forward data packets

to the destination. If the source later receives a RREP containing a greater sequence number

or contains the same sequence number with a smaller hopcount, it may update its routing

information for that destination and begin using the better route. As long as the route

remains active, it will continue to be maintained. A route is considered active as long as

there are data packets periodically travelling from the source to the destination along that

path. Once the source stops sending data packets, the links will time out and eventually be

deleted from the intermediate node routing tables. If a link break occurs while the route is

active, the node upstream of the break propagates a route error (RERR) message to the

source node to inform it of the now unreachable destination(s). After receiving the RERR,

if the source node still desires the route, it can reinitiate route discovery.

Multicast routes are set up in a similar manner. A node wishing to join a multicast group

broadcasts a RREQ with the destination IP address set to that of the multicast group and

with the 'J' (join) flag set to indicate that it would like to join the group. Any node receiving

this RREQ that is a member of the multicast tree that has a fresh enough sequence number

for the multicast group may send a RREP. As the RREPs propagate back to the source, the

nodes forwarding the message set up pointers in their multicast route tables. As the source

node receives the RREPs, it keeps track of the route with the freshest sequence number and

beyond that the smallest hop count to the next multicast group member. After the specified

discovery period, the source node will unicast a Multicast Activation (MACT) message to

its selected next hop. This message serves the purpose of activating the route. A node that

does not receive this message that had set up a multicast route pointer will timeout and

delete the pointer. If the node receiving the MACT was not already a part of the multicast

tree, it will also have been keeping track of the best route from the RREPs it received.

Hence it must also unicast a MACT to its next hop and so on until a node that was

previously a member of the multicast tree is reached.

32

AODV maintains routes for as long as the route is active. This includes maintaining a

multicast tree for the life of the multicast group. Because the network nodes are mobile, it

is likely that many link breakages along a route will occur during the lifetime of that route.

The papers listed below describe how link breakages are handled. The WMCSA paper

describes AODV without multicast but includes detailed simulation results for networks up

to 1000 nodes. The Mobicom paper describes AODV's multicast operation and details

simulations which show its correct operation. The internet drafts include descriptions of

both unicast and multicast route discovery, as well as mentioning how QoS and subnet

aggregation can be used with AODV. Finally, the IEEE Personal Communications paper

and the Infocom paper details an in-depth study of simulations comparing AODV with the

Dynamic Source Routing (DSR) protocol and examines each protocol's respective strengths

and weaknesses.

2.4.2 Cluster-Tree Algorithm

The cluster-tree protocol [5] is a protocol of the logical link and network layers that uses

link-state packets to form either a single cluster network or a potentially larger cluster tree

network. The network is basically self-organized and supports network redundancy to

attain a degree of fault resistance and self-repair.

Nodes select a cluster head and form a cluster according to the self-organized manner. Then

self-developed clusters connect to each other using the Designated Device (DD).

2.4.2.1 Single Cluster Network

The cluster formation process begins with cluster head selection. After a cluster head is

selected, the cluster head expands links with other member nodes to form a cluster.

2.4.2.2 Multi Cluster Network

To form a network, a Designated Device (DD) is needed. The DD has responsibility to

assign a unique cluster ID to each cluster head. This cluster ID combined with the node ID

33

that the CH assigns to each node within a cluster forms a logical address and is used to

route packets. Another role of the DD is to calculate the shortest route from the cluster to

the DD and inform it to all nodes within the network.

2.5 Zigbee Security

In a wireless network, the transmitted messages can be received by any nearby device,

including an intruder. There are two main security concerns in a wireless network. The first

one is data confidentiality. The intruder device can gain sensitive information by simply

listening to the transmitted messages. Encrypting the messages before transmission will

solve the confidentiality problem. An encryption algorithm modifies a message using a

string of bits known as the security key and only the intended recipient will be able to

recover the original message. The IEEE 802.15.4 standard supports the use of Advanced

Encryption Standard (AES) [35] to encrypt their outgoing messages.

The second concern is that the intruder device may modify and resend one of the previous

messages even if the messages are encrypted. Including a message integrity code (MIC)

with each outgoing frame will allow the recipient to know whether the message has been

changed in transit. This process is known as data authentication.

One of the main constraints in implementing security features in a ZigBee wireless network

is limited resources. The nodes are mainly battery powered and have limited computational

power and memory size. ZigBee is targeted for low-cost applications and the hardware in

the nodes might not be tamper resistant. If an intruder acquires a node from an operating

network that has no tamper resistance, the actual key could be obtained simply from the

device memory. A tamper-resistant node can erase the sensitive information, including the

security keys, if tampering is detected.

34

CHAPTER 3

USING ZIGBEE IN REMOTE MONITORING AND AUTOMATION

3.1 Overview of the Automation

This chapter describes the system that has been developed by the author to measure the

light intensity dynamically in real-time and then to plot it.

The author has used the ZigBee development kit manufactured by Telegesis [29] as the

hardware in the development. Further details about this kit are given in Appendix A.

For measuring the light intensity remotely, a computer (PC), a ZigBee development kit, an

RS-232 [23] serial cable and a battery are used as shown in Figure 3.1.

Figure 3.1: Development kit connected to computer by USB-RS232 cable

The block diagram of the remote monitoring system is shown in Figure 3.2.

35

 Figure 3.2 Block diagram of the remote monitoring system

The ZigBee kit is normally connected to the PC using a standard RS232 type serial cable.

But most computers nowadays do not have serial ports. Because of this, a USB to serial

converter was used to make the connection.

The PC sends commands in ASCII format to the development board and then the

development board communicates with the sensor board in order to receive the results of

the measurement. These results are passed to the program running on the PC, stored in the

database and also plotted in dynamically in real-time.

3.2 The Monitoring Program

In this thesis, Delphi5 and Oracle Database 10g were used as the control and monitoring

programming. Delphi, produced by Borland International, is a powerful development

environment used primarily to build client/server applications for Microsoft Windows with

an emphasis on databases. Based on Object Pascal, it is object-oriented and was designed to

give developers the ability to build applications easily with minimal coding required [26].

The Oracle Database (commonly referred to as Oracle RDBMS or simply Oracle) [29]

consists of a relational database management system (RDBMS) produced and marketed by

Oracle Corporation.

ZigBee

Board

PC

Light

Sensor

Sensor

Board

http://www.borland.com/
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Oracle_Corporation

36

In the project, Delphi has been connected to Oracle Database by Direct Oracle Access 5

(DOA5) component.

All of the program code is listed in Appendix B. The operation of the program is explained

below.

As seen in Figure 3.3, the program consists of a MENU with six items.

Figure 3.3: The program MENU

ComPort is a general component which is used for connecting the computer to the

development kit.

UComPortConnection has been used to communicate with ComPort component with the

program.

UComPortSettingsFrm has been written for setting the com port connections.

UZigbeeChartFrm contains code for the database calling chart.

ZigbeeMainFrm has been used for the main form of the program. It contains code for the

first open page.

Zigbee is the project file which shows that files places and it was created by Delphi.

37

When the system is switched on, six icons are displayed on the grid as shown in Figure 3.4.

Figure 3.4 Icons on the grid

“ “ shows that OracleSession. It is used for connection to database.

“ ” is the timer icon. When „Send Command Automatically‟ check box is clicked;

timer is enabled. The time is measured in 1000 ms

“ ” icon shows OracleDataset. That is for running SQL. There are two OracleDataset

icons as shown; one of them is used for grid and graphic on form1, the other one is used in

UComportConnection form. It is to save the data comes from com port to database.

“ ” is the menu icon.

“ ” is the datasource icon. It is used for bringing data from dataset to grid.

38

Dataset is connected to datasource, datasource is connected to grid.

The following commands should be used for creating a table and for connecting to the

database:

SQL> CREATE TABLE LIGHT(KEY NUMBER, TIME DATE, VALUE NUMBER,

RESISTANCE NUMBER, LIGHT NUMBER, PRIMARY KEY (KEY));

SQL> commit;

SQL> CREATE SEQUENCE LIGHTSEQ;

SQL> commit;

The program saves all data coming from the development kit in a log.txt file. The Oracle

database saves the light intensity values that are sent by the development board.

3.3 Light Intensity Measurement

The sensor board sends the light measurement in units of “mV”. This should be converted

to the units of light, which is Lux. The conversion process is described in this section.

Lux [39] is the SI unit of illuminance and luminous emittance. It is used in photometry as a

measure of the apparent intensity of light hitting or passing through a surface. It is

analogous to the radiometric unit watts per square metre, but with the power at each

wavelength weighted according to the luminosity function, a standardized model of human

brightness perception. It‟s symbol is lx.

1 lm/m2 (lumens per square meter)

= 1 lux (lx)

= 10-4 lm/cm2

= 10-4 phot (ph)

= 9.290 x 10-2 lm/ft2

= 9.290 x 10-2 foot-candles (fc)

http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Illuminance
http://en.wikipedia.org/wiki/Luminous_emittance
http://en.wikipedia.org/wiki/Photometry_(optics)
http://en.wikipedia.org/wiki/Radiometry
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Luminosity_function

39

The light intensity is sensed using a light dependent resistor with a voltage source. The

light intensity is inversely proportional to the resistance of teh sensor. Thus, as the light

intensity increases, the resistance of teh sensor is reduced. For measuring the light intensity

(Lux), some calculations are needed as the development kit sends the measured light

intensity as a hexadecimal value in “mV”.

The output of the light sensor is read by sending command string:

ATSREM12:000D6F00000DC449?

The sensor board responds with a 4-digit hexadecimal value, such as:

 S12:02C6

 OK

First of all it is necessary to convert this hexadecimal value into decimal:

Vo = 02C6 = (16³x0) + (16²x2) + (16¹x12) + (16⁰x6) = 710 mV

After that we must find R (resistance of the sensor) using the following formula:

R = (33000/Vo) – 10

The manufacturer specifies that [33], in this formula Vcc = 3.3 = 33000 mV.

Inserting the voltage in the formula which was sent by the sensor board;

R = (33000/710) – 10 = 36.48 Kohm

Figure 3.5 shows the resistance-light intensity graph [40] of the light sensor used in this

study. The type used was the A905014 (indicated with number 14).

http://www.yeminlisozluk.com/index.php?kelime=intensity

40

Figure 3.5 A9050-14 light sensor R-Lux graphic

It is now necessary to convert the measured resistance value into lux. Looking at Figure

3.5, it is not easy to derive a single equation to cover the entire range of the measurement.

The graph was therefore divided into six sections and different straight line equations were

used for to define the resistance-lux relationships in each section.

The ranges are for resistance (KΩ)

 1000000 – 10000

 10000 – 1000

 1000 – 100

 100 – 10

 10 – 5

 5 – 0.01

Using A905014 graph, six linear equations are found as shown in Table 3.1 and Table 3.2.

A9050…

10000

1000

10

1

0,1

1 10 1000 0,1

100

0,01
100

R/KΩ

14

13

12

Lux

41

Table 3.1: Linear equation calculations

R(y) Lux(x) m = (y2-y1) / (x2-x1) (y-y1) = m(x-x1)

 m = (1000000-10000) / (0,1-0,2) (y-10000) = -9900000(x-0.2)

1000000 0.1 m = (990000) / (-0,1) y-10000 = -9900000x + 1980000

10000 0.2 m = -9900000 y = -9900000x + 1970000

 x = (1970000-y) / 9900000

 m = (10000-1000) / (0.2-1) (y-1000) = -11250(x-1)

10000 0.2 m = (9000) / (-0.8) y - 1000 = -11250x + 11250

1000 1 m = -11250 y = -11250x + 12250

 x = (12250-y) / 11250

 m = (1000-100) / (1-20) (y-1000) = -47.36(x-1)

1000 1 m = (900) / (-19) y - 1000 = -47.36x + 47.36

100 20 m = -47.36 y = -47.36x + 1047.36

 x = (1047.36-y) / 47.36

 m = (100-10) / (20-300) (y-100) = -0.32(x-20)

100 20 m = (90) / (-280) y - 100 = -0.32x + 6.4

10 300 m = -0.32 y = -0.32x + 106.4

 x = (106.4-y) / 0.32

 m = (10-5) / (300-1000) (y-10) = -0.0071(x-300)

10 300 m = (5) / (-700) y - 10 = -0.0071x + 2.13

5 1000 m = -0.0071 y = -0.0071x + 12.13

 x = (12.13-y) / 0.0071

 m = (5-01) / (1000-100000) (y-5) = -0.00005(x-1000)

5 1000 m = (4.99) / (-99000) y - 5 = -0.00005x + 0.05

0.01 100000 m = -0.00005 y = -0.00005x + 5.05

 x = (5.05-y) / 0.00005

Table 3.2: A905014 light sensor‟s equations

R/KΩ (y) Equations

1000000 > y > 10000 Lux(x) = (1970000-y) / 9900000

9999.99 > y > 1000 Lux(x) = (12250-y) / 11250

999.99 > y > 100 Lux(x) = (1047.36-y) / 47.36

99.99 > y > 10 Lux(x) = (106.4-y) / 0.32

9.99 > y > 5 Lux(x) = (12.13-y) / 0.0071

4.99 > y > 0.01 Lux(x) = (5.05-y) / 0.00005

42

If y = 36.48 Kohm → 99.99 > y > 10

 → Lux = (1047.36-y) / 47.36

 → Lux = (1047.36-36.48) / 47.36

 → Lux = 21.34 lx

3.4 Graphical User Interface of the Automation Program

Figure 3.6 shows the main window of the program. There are three main menus: „Settings‟,

„Graphics‟ and „Exit‟. Settings menu is used for configuring the serial port and database,

graphics menu is used for calling values from the database and exit is for closing the

program.

Figure 3.6 Main page of interface program

When the „Graphics‟ menu is clicked from the GUI main page, the window shown in

Figure 3.7 opens to display the instantaneous light intensity values.

43

Figure 3.7 Instantaneous data values

The display period can be chosen from a ComboBox as minutes, tens of minutes, hours, or

days. Measurement values can be collected automatically and then sent by ticking the

CheckBox “Send Command Automatically”. Figure 3.8 shows an example of collecting

data at hourly intervals.

Figure 3.8: An hour time period light graphic

The development kit communicates with the computer using standard AT commands [30].

AT commands are also known as Hayes AT commands. There are different views to

understand the meanings of "AT". Some call it "Attention Telephone", whereas others

44

interpret it as "Attention Terminal" commands. Hayes is the “AT command” developer

manufacturer. AT commands are issued to the modem to control the modem‟s operation

and software configuration. AT commands can only be entered while the modem is in

command mode.

AT Command Format: A command line is a string of characters sent from a data terminal

equipment (DTE) to the modem (data communications equipment (DCE)) while the

modem is in a command state. A command line has a prefix, a body and a terminator. Each

command line (with the exception of the A/ command) must begin with the character

sequence AT and must be terminated by a carriage return. Commands entered in upper case

or lower case are accepted, but both the A and T must be of the same case, i.e., “AT” or

“at”.

Appendix C and Appendix D give a listing of the ZigBee AT commands and S-register

values [31]. Some of the important AT commands are given below:

ATI: This command displays the product identification information.

Identification of the kit;

Telegesis ETRX2

R209X

000D6F00000C53A2

In this example, two nodes are found, they are module carrier boards which have on board

sensors:

FFD:000D6F00000DC449

FFD:000D6F00000DC47D

AT+IDENT: It plays a tune on the remote devboard.

AT+IDENT:000D6F00000DC449

AT+IDENT:000D6F00000DC47D

45

ATZ: Reset software

This command resets the software on the ZigBee development kit, it restores the default

values.

ATSREM12:000D6F00000DC449? command was defined in Delphi. It is the main

command used in the project, it gets the light intensity values from the MCB. Because of

that, some information is given below [31];

ATSREM: Remote S-register Access (see Appendix C, AT commands)

S12: A/D1 Reading Light Sensor (see Appendix D, S-Register)

000D6F00000DC449: Node ID (founded using AT+SN command)

?: Used for what or how much

ZigBee has lots of advantages than other wireless standards (eg. range, battery life,

integrity and speed). In this thesis, ZigBee‟s that features have been performed and checked

the results. Table 3.3 shows, its working conditions and results.

Table 3.3: ZigBee‟s working conditions

ZigBee’s

Features

Standard

Values
Areas

Result of

Measurements

Transmission

Range
10 – 100 m

Clear day 90 m

Open office 70 m

Maze type office 50 m

Temperature -40 ℃ – +85 ℃

-20 ℃ (in fridge) Working

25 ℃ (at home) Working

+50 ℃ (hot area

using stove)
Working

Battery Life Up to 3 years -
Using since 1 year and

continious working

Network Join

Time
0.3 - 18 msec - Less than 1 sec.

46

Table 3.4 shows that the list of global lux illumimance examples from dark night to direct

sunlight [39].

Table 3.4: Global lux illuminance examples

Illuminance Example

10
-5

 lux Light from the brightest star (Sirius)

10
-4

 lux Total starlight, overcast sky

0.002 lux Moonless clear night sky with airglow

0.010 lux Quarter moon

0.270 lux Full moon on a clear night

0.270 lux Full moon overhead at tropical latitudes

3.400 lux Dark limit of civil twilight under a clear sky

50 lux Family living room

80 lux Hallway/toilet

100 lux Very dark overcast day

320 lux Recommended office lighting (Australia)

400 lux Sunrise or sunset on a clear day. Well-lit office area.

500 lux Lighting level for an office according to the European law

1,000 lux Overcast day; typical TV studio lighting

10,000-25,000 lux Full daylight (not direct sun)

32,000-130,000 lux Direct sunlight

This thesis‟s automation program measures, monitores and stores the light intensity value.

By using that feature, the light can be monitored and controlled. In today‟s world, energy

is consumed away and if energy could be produced efficiently by clean methods, these

would naturally be preferred. Because of this, unlimited natural resources and energy must

be used and the biggest one is the sun. By ZigBee technology, the light and temperature

values can be measured and controlled. Table 3.5 shows the light illimunance

measurements.

http://en.wikipedia.org/wiki/Sirius
http://en.wikipedia.org/wiki/Starlight
http://en.wikipedia.org/wiki/Airglow
http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Twilight
http://en.wikipedia.org/wiki/Sunrise
http://en.wikipedia.org/wiki/Sunset
http://en.wikipedia.org/wiki/TV_studio
http://en.wikipedia.org/wiki/Daylight
http://en.wikipedia.org/wiki/Sunlight
http://www.yeminlisozluk.com/index.php?kelime=energy
http://www.yeminlisozluk.com/index.php?kelime=could
http://www.yeminlisozluk.com/index.php?kelime=produced
http://www.yeminlisozluk.com/index.php?kelime=efficiently
http://www.yeminlisozluk.com/index.php?kelime=clean
http://www.yeminlisozluk.com/index.php?kelime=methods
http://www.yeminlisozluk.com/index.php?kelime=these
http://www.yeminlisozluk.com/index.php?kelime=would
http://www.yeminlisozluk.com/index.php?kelime=naturally
http://www.yeminlisozluk.com/index.php?kelime=preferred

47

Table 3.5: Thesis‟s lux illimunance measurements

Measured

Decimal Value

Lux

Intensity Value

Measured

Areas

1200 277.820
Office lighting

(Türk Telekom office)

391 100.000 Overcast raining day

360 77.290 Toilet / home corridor

327 48.300 Apartment corridor

34 1.830 Twilight (05.00 am)

1 0.198 Clear night

3.5 Results

The aim of this thesis was to study the potential of using ZigBee based products in remote

monitoring and control applications. A remote light intensity measuring application was

developed for this purpose, using a commercially available ZigBee development system.

The results show that the ZigBee is a suitable communications protocol for remote control

and monitoring applications. In particular:

ZigBee is very easy to configure and use compared to other automation based

communications protocols. For example, Bluetooth requires “pairing” of devices before

they can be used to exchange data. ZigBee requires no “pairing” and devices can simply

talk with each other when they are addressed correctly.

ZigBee is fast, having a connection time of around 3 msec., as compared to over 3 sec. in

Bluetooth and Infrared. This makes the ZigBee suitable in real-time control and monitoring

applications. [42]

ZigBee devices are normally in “sleep” mode and thus their power consumption is

extremely small. The author operated the ZigBee sensor board for over a month with a

small AA type battery without the loss of any performance. This point is perhaps one of the

48

most important feature of the ZigBee devices and one of the reasons making ZigBee the

communication protocol of the future.

Although only one node was used in this study, in theory the ZigBee supports up to 65535

nodes. This feature makes ZigBee suitable in complex sensor based automation

applications where large numbers of sensors may be needed. For example, in many process

based industries it is required to monitor the temperature of a large number of processes

remotely. ZigBee would be ideal candidate in such applications.

Finally, the light monitoring program has been working correctly and the light intensity

readings were measured, stored in the database and also plotted dynamically in real-time.

49

CONCLUSION

The ZigBee technology is currently used by many companies around the world. The main

ZigBee applications are in: Building Automation (security, heating-ventilating-air

conditioning (HVAC), automatic meter reading (AMR), lighting and access control),

Residental Light Commercial Control (security, HVAC, lighting and access control),

Industrial Control (process control, asset and energy management), Consumer Electronics

(remote control), PC & Peripherals (mouse, keyboard, joystick), Personal Health Care

(patent monitoring) and telecom services (mobile commerce, info services, object

interaction).

This thesis has analysed the theory and potential use of the ZigBee protocol devices in

remote monitoring and automation applications. In this thesis, a ZigBee based remote light

intensity measuring system has been developed to read the light intensity levels and then a

GUI based program was developed on a PC to plot the measured values dynamically in

real-time. Although only one node was used in this application, in theory the number of

nodes can be increased to 65535. Also, systems can be developed to monitor and control

other physical quantities such as temperature, humidity, force, acceleration and so on.

It is the author‟s opinion that the ZigBee protocol and related devices are suitable for

remote data collection, remote control, and remote monitoring applications. It is shown that

ZigBee has several advantages compared to most other remote automation communication

standards, such as the Bluetooth and Infrared.

One very important factor for the success of ZigBee is the interoperability where a ZigBee

device from one manufacturer is fully compatible with ZigBee devices of other

manufacturers.

The three major advantages of ZigBee are [43]:

 low price; the price for one IEEE 802.15.4 transceiver chip is currently as low as less

than $3;

50

 long covering range, the typical range of a ZigBee device is around 100 meters (see

Table 3.3);

 extremely low power consumption, ZigBee devices can be operated for months with a

small battery (see Table 3.3).

There are many factors that play an important role in selecting ZigBee as a wireless

technology for different solutions like Wireless Sensor Networks (WSN) in logistic

telemetry applications [20].

The author‟s conclusions for the use of the ZigBee protocol in remote data logging, remote

monitoring and remote control applications are:

* First of all, unlike other wireless technology of its own kind, ZigBee is more cost

effective, covers more range by using the batteries which last for months or years.

* The operational frequency band is very important as it provides different frequency bands

to different areas, making it suitable to be accepted as a global standard.

* Support for Mesh networking is an important and promising feature provided by the

ZigBee so that it can be used in the logistic telemetry applications rather than using the

other technologies of its own kind.

* ZigBee supports different kinds of topologies (e.g. star, mesh, cluster tree), offering

flexibility to the user.

51

REFERENCES

[1] CHEN, Dechuan and M. Wang. (2006) “A Home Security ZigBee Network for Remote

Monitoring Application”, Hangzhou Dianzi University, China, Retrieval November 2008.

[2] CRITCHLOW, Adrian and P. Beart. (2006) “ZigBee-Based Home Security System”,

Cambridge, UK, <http://www.alertme.com>, Retrieval November 2008.

[3] DAGTAS, Serhan, G. Pekhteryev and Z. Sahinoglu. (2007) “Multi-Stage Real Time

Health Monitoring via ZigBee in Smart Homes”, IEEE International Conference on

Advanced Information Networking and Applications Workshops (AINA Workshops),

Retrieval November 2008.

[4] EDDISON, Maung, W. Naing and L. D. Morales. (2008), “Remote Monitoring of

Motor Operational Data Using ZigBee Wireless Protocol”, Final Proposal, College of

Engineering, Technology, Computer Science, Purdue University, Fort Wayne Campus,

Retrieval November 2008.

[5] ERGEN, Sinem Coleri. (2004) “ZigBee / IEEE 802.15.4 Summary”,

<http://www.sinemergen.com/zigbee.pdf>, Retrieval November 2007.

[6] FARABANI, Shanin. (2008) “ZigBee Wireless Networks and Transceivers”. ISBN:

9780080558479. Publisher: Elsevier. Retrieval January 2009.

[7] GALEEV, Mikhail. (2004) “Home Networking with ZigBee”,

<http://www.embedded.com/columns/technicalinsights/18902431?_requestid=55243>,

Retrieval November 2008.

[8] GOHN, Bob. (2008) “ZigBee-Based Demand-Response Systems Reduce Home Energy

Usage”, VP Marketing, Ember, Digital Home Design Line,

<http://www.embedded.com/design/212200752>, Retrieval November 2008.

http://www.alertme.com/
http://www.sinemergen.com/zigbee.pdf
http://bookstore.ellibs.com/bookstore.php?_event=search&_publisher=Elsevier

52

[9] GOTOMY. (2008) “The Smart Home will be flat”,

<http://gotomy.wordpress.com/2008/12/17/the-smart-home-will-be-flat/>, Retrieval

January 2009.

[10] GRAZIER, Mark. (2008) “Zigbee Made Easy”, Texas Instruments,

<http://www.arrownac.com/manufacturers/texas-

instruments/npi/products/cc2480a/cc2480a-presentation.ppt>, Retrieval January 2009.

[11] GUTIERREZ, Jose. (2003) “Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-

WPANs)”, ISBN 0-7381-3677-5 SS95127, Published by The Institute of Electrical and

Electronics Engineers, New York, USA. Retrieval September 2008.

[12] HAN, Jinsoo, I. Han and K. Park. (2008) “ZigBee-Based IR Remote Control Repeater

and Its Control Message Frame Format”, Consumer Electronics, IEEE International

Symposium on 14-16 April 2008, Page(s):1-4, Digital Object Identifier:

10.1109/ISCE.2008.4559495, Retrieval November 2008.

[13] JAE-MIN, Choi and oth. (2006) “Remote-Controlled Home Robot Server with ZigBee

Sensor Network” International Joint Conference, Page(s):3739-3743, Digital Object

Identifier 10.1109/SICE.2006.315025, Retrieval December 2007.

[14] JAVED, Kamran. (2006) “A Survey on Designing Wireless Sensor Networks (WSN)

for Logistic Telemetry Applications”, Master Thesis, Halmstad University, Sweden,

<http://dspace.hh.se/dspace/bitstream/2082/549/1/0612%20KJ.pdf>, Retrieval May 2007.

[15] KÖK, Mesut. (2007) “ZigBee Based Wireless Sensor Network Feed with Sun

Batteries”, Master Thesis, Ege University, İzmir, Retrieval November 2008.

[16] LEE, J.D. and oth. (2006) “Development of ZigBee Based Street Light Control

System”, ISBN: 1-4244-0177-1, Changwon, South Korea, , Retrieval November 2008.

http://gotomy.wordpress.com/2008/12/17/the-smart-home-will-be-flat/
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Jose%20A.%20Gutierrez
http://dspace.hh.se/dspace/bitstream/2082/549/1/0612%20KJ.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(lee%20%20j.%20d.%3cIN%3eau)&valnm=Lee%2C+J.D.&reqloc%20=others&history=yes

53

[17] LÖNN, Johan, J. Olsson and S. Gong. (2008) “ZigBee-Ready Modules for Sensor

Networking”, Master Thesis, Linköping University, Sweden, Retrieval November 2008.

[18] LÖNN, Johan and J. Olsson, (2008) “ZigBee for Wireless Networking”,

<http://www.diva-portal.org/diva/getDocument?urn_nbn_se_liu_diva-2885-

1__fulltext.pdf>, Retrieval December 2008.

[19] MUNK-STANDER, Jacob, M. Skovgaard and T. Nielsen. (2005) “Implementing a

ZigBee Protocol Stack and Light Sensor in TinyOS” Department of Computer Science,

University of Copenhagen, Retrieval November 2008.

[20] QIAN, Zhang and oth. (2007) “Wireless Solution for Greenhouse Monitoring and

Control System Based on ZigBee”, ISSN:1673-565X, Pages:1584-1587, Zhejiang

University, Hangzhou, China, , Retrieval November 2008.

[21] PARK, Wan-Ki, I. Han and K. Park. (2007) “ZigBee-Based Dynamic Control Scheme

for Multiple Legacy IR Controllable Digital Consumer Devices”, Electronics &

Telecommunication, Consumer Electronics, ISBN: 0098-3063, INSPEC Accession

Number: 9392454, Digital Object Identifier: 10.1109/TCE.2007.339521, Rosemont, IL,

USA, Retrieval August 2008.

[22] PERKINS, Charles and oth. “Ad-hoc On Demand Distance Vector”,

<http://moment.cs.ucsb.edu/AODV/>, Retrieval December 2007.

[23] STRANGIO, Christopher. (2006) “The RS232 Standard”,

<http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html>, Retrieval

November 2008.

[24] THRANING, Bård. (2005) ”The Impact of ZigBee in a Biomedical Environment”,

Master Thesis in Information and Communication Technology, Agder University College,

Grimstad, Retrieval November 2008.

http://www.diva-portal.org/diva/getDocument?urn_nbn_se_liu_diva-2885-1__fulltext.pdf
http://www.diva-portal.org/diva/getDocument?urn_nbn_se_liu_diva-2885-1__fulltext.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=30
http://moment.cs.ucsb.edu/AODV/
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html

54

[25] ZUCATTO, Fabio and oth. (2007) “ZigBee for Building Control Wireless Sensor

Networks”, ISBN: 978-1-4244-0661-6, University of Sao Paulo, Sao Paulo, Brazil,

Retrieval November 2008.

[26] DELPHI FORUM Web Site. <http://www.delphiturkiye.com/forum/>, Retrieval

February 2007.

[27] WISEGEEK Web Site. (2007) “What is ZigBee”, <http://www.wisegeek.com/what-is-

zigbee.htm>, Retrieval March 2007.

[28] ZIGBEE ALLIANCE Web Site. (2006) “ZigBee Specification”,

<http://www.zigbee.org/Products/TechnicalDocumentsDownload/tabid/237/Default.aspx>,

Retrieval March 2007.

[29] WIKIPEDIA Web Site. (2008) “Oracle Database”,

<http://en.wikipedia.org/wiki/Oracle_database>, Retrieval March 2008.

[30] PCTEL. “V.90/K56Flex Series AT Command Guide”,

<http://linmodems.technion.ac.il/pctel-linux/Pctel.ATCommand.Guide.6.23.00.pdf>,

Retrieval June 2008.

[31] TELEGESIS Web Site. (2007) “ETRX1 and ETRX2 AT-Command Dictionary”,

<http://www.telegesis.com/downloads/general/TG-ETRX-R212-Commands.pdf>,

Retrieval July 2008.

[32] TELEGESIS Web Site. (2007) “ETRX1DVKA Development Kits Product Manual”,

<http://www.telegesis.com/pdf/TG-ETRX1DVK-TM-01-107.pdf>, Retrieval August 2008.

[33] TELEGESIS Web Site. (2008) “ETRX2DVKA Development Kits Product Manual”

<http://www.telegesis.com/downloads/general/TG-ETRX2DVK-PM-005-300-MG.pdf>,

Retrieval September 2008.

http://www.delphiturkiye.com/forum/
http://en.wikipedia.org/wiki/Oracle_database
http://linmodems.technion.ac.il/pctel-linux/Pctel.ATCommand.Guide.6.23.00.pdf
http://www.telegesis.com/downloads/general/TG-ETRX-R212-Commands.pdf
http://www.telegesis.com/pdf/TG-ETRX1DVK-TM-01-107.pdf
http://www.telegesis.com/downloads/general/TG-ETRX2DVK-PM-005-300-MG.pdf

55

[34] WIKIPEDIA Web Site. (2008) “ZigBee”, <http://en.wikipedia.org/wiki/ZigBee>,

Retrieval September 2008.

[35] FIPS PUBS. (2001) “Advanced Encryption Standard (AES)”, U.S. Department of

Commerce/N.I.S.T, Springfi eld, Virginia,

<http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>, Retrieval November 2008.

[36] FUTURE ELEC. Web Site. (2007) “A Fast Start to Wireless Networking”,

<http://www.future-mag.com/0701/070120.asp>, Retrieval November 2008.

[37] METERING Web Site. (2008) “ZigBee-Based Meter Aids Energy Efficiency”,

<http://www.metering.com/node/12032>, Energy Optimizers Limited (EOL), Boston, MA,

U.S.A. and Cambridge, England, Retrieval November 2008.

[38] WIKIPEDIA Web Site. (2008) “dBm”, <http://en.wikipedia.org/wiki/DBm>, Retrieval

November 2008.

[39] WIKIPEDIA Web Site. (2008) “Lux”, <http://en.wikipedia.org/wiki/Lux>, Retrieval

November 2008.

[40] MERCATEO Web Site. (2003) “Sensors, Ambient Light Sensing Applications”,

<http://images.mercateo.com/pdf/Schuricht/A90X0_DATA_E.pdf>, Retrieval December

2008.

[41] SEARCH MOBILE COMP. Web Site. (2006), “What is ZigBee”,

<http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci1127402,00.html>,

Retrieval January 2009.

[42] SOFTWARE TECH. GROUP Web Site. (2009) “How does ZigBee Compare with

Other Wireless Standarts”, <http://www.stg.com/wireless/ZigBee_comp.html>, Retrieval

February 2009.

http://www.future-mag.com/0701/070120.asp
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Lux
http://images.mercateo.com/pdf/Schuricht/A90X0_DATA_E.pdf
http://searchmobilecomputing.techtarget.com/sDefinition/0,,sid40_gci1127402,00.html

56

[43] INDUSTRIAL EMB. Web Site. (2009). “Ember Unveils Industry's Highest

Performance ZigBee Chips”, <http://www.industrial-

embedded.com/news/Industry+News/17697>, Retrieval June 2009.

http://www.industrial-embedded.com/news/Industry+News/17697
http://www.industrial-embedded.com/news/Industry+News/17697

57

APPENDIX A

TELEGESIS ETRX2DVK DEVELOPMENT KIT FOR ZIBGEE

A.1 Development Kit Functional Summary

The Telegesis ETRX2DVK Development Kit (see Figure A.1) has been designed to enable

fast and simple evaluation and development of the low cost, low power, meshing solution

provided by the ETRX2 module [4].

Figure A.1: ETRX2DVK development kit

A.1.1 Development Kit Features

This ETRX2 Development Kit provides genuine quick and easy, out-of-the-box

construction of a working mesh network.

Included in the kit are both a full Development Board and two Module Carrier Boards with

the following features:

58

 • 2 LEDs

 • 2 buttons

 • On board 3.3V voltage regulator

 • Supply Voltage 6-12 Volts

 • Beeper

 • Light Sensor

The carrier boards allow one to quickly experiment with sensors and actuators and are ideal

for demonstrations and prototyping. They can either be battery or mains powered. The

module‟s serial port can be accessed via pads or by plugging the Module Carrier Board

onto the development board [26].

A.1.2 Development Kit Contents

The ETRX2DVK Development Kit consists of [26]:

 • 1 x ETRXDV Development Board

 • 1 x ETRX2HW Module with a Harwin 1.27mm pitch, 2x10 connector

 • 2 x ETRX2MCB Module Carrier Boards fitted with ETRX2 Modules

 • 2 x AA Battery Holders with leads

 • 1 x Universal Multi Plug Power Supply Unit

 • 1 x Serial Cable

A.1.3 The ETRXDV Development Board

The ETRXDV Development Board‟s features are [26]:

• Size: 100mm x 80mm

• On-board 3.3V voltage regulator

• RS232 Level Converter

• Breakout of all pins of the ETRX2 module

• 4 LED‟s, 4 buttons and a beeper which can be connected to the I/O of the ETRX2

module

59

• In-circuit programming connector for the ETRX2

• The ETRX2 Module is connected to the ETRX Development board by the 2x8,

1.27mm pitch Harwin connector allowing a plug-in solution

• The second ETRX2 module can be used to set up standalone functionality or can be

used in user‟s prototypes

• Devboard Supply voltage 6V – 12V

• ETRX2 Module operating temperature range -40
0

C to +85
0

C

A.2 Absolute Maximum Ratings of the Devboard and MCB

The absolute maximum ratings given above (see Table A.1) should under no circumstances

be violated. Stress exceeding one or more of the limiting values may cause permanent

damage to the device [4].

Table A.1: Absolute maximum ratings

Parameter Min. Max. Units

Supply Voltage Vdd -0.3 12 V

Voltage on any I/O pin -0.3 3.6 V

Storage Temperature range -50 150 ℃

A.3 Operating Conditions of the Devboard and MCB

Typical values at 5V 25°C.

Table A.2: Operating conditions

Parameter Min. Typ. Max. Units Condition

Supply Voltage, VDD 4 5 6 V

Supply Current 120 mA TX with PA-Module

Operating ambient

Temperature range
-40 25 85 ℃

The voltage regulators used are protected against overtemperature and overcurrent (see

Table A.2) [4].

60

A.4 Interoperability

The R2xx or R3xx Telegesis AT-Command line Interpreter is based on a private

application profile and uses the Ember meshing and self-healing stack, so interoperability

with wireless mesh networking solutions from other manufacturers is unlikely when using

the default firmware. Interoperating with other solutions that use EmberZNet can be

possible [4].

A.5 Overview of the ETRX2DVK Development Kits

The ETRX2DVK development kits have been designed to allow quick evaluation and

prototyping using the ETRX2 wireless mesh networking modules.

Two versions of the development kit are available, the functional summaries can be seen at

the start of this chapter for full kit details. For a full evaluation of ZigBee technology

without using the prototypes it is recommended to use more than a single development kit

to set up an experimental network [4].

Figure A.2: The development board

61

A.5.1 The Development Board

The ETRX development board which is part of both development kits hosts a RS232 level

converter as well as a voltage regulation circuitry (see Figure A.2). Furthermore it hosts an

ISP programming connector for the ETRX2, a reset switch, 4 buttons, 4 LED‟s and a

beeper, all of which can be connected to the I/Os of the module [26].

A.5.2 The Module Carrier Board (MCB)

The module carrier boards (of which there are two in the ETRX2DVK) simply host a

voltage regulator, two LED‟s, two buttons, a beeper, a light sensor (see Figure A.3).

Table A.3: MCB Pin/Function table

Pin Function

I/O0 Button

I/O1 Button

I/O3 Beeper

I/O5 Green LED

I/O7 Red LED

Figure A.3: The MCB

62

The module carrier board is a cut down version of the development board and due to its

small form factor is ideal to be powered using the attached battery packs and distributed in

the field to evaluate mesh networking capabilities [4].

A.6 Setting up the Hardware

In the development kits there are three versions of the module. Two of the ETRX2DVKs

have an ETRX2HW which has an SMT connector on the bottom of the module so that it

can be plugged directly into the appropriate 2x10, 1.27mm pitch receptacle on the

devboard. But other one has 2x10 connector and 2x8 plug (see Figure A.4 & Figure A.5). It

is not plugged directly. Figure A.6 shows that samples [26].

Figure A.4: 2x10 1.27mm SMT connector Figure A.5: 2x8 1.27mm receptacle

Earlier versions of the development kit were using a 2x8 connector instead of the 2x10

connector used on the current devboard. The 2x10 plug is Harwin part number M50-

3601042.

Figure A.6: 16&20 – pin plugs with 16&20 – pin sockets

63

In analogy to this when connecting a module with a 2x10 pinheader to an old style

development kit, just have the 4 unconnected pins sticking out at the antenna end [26].

A.6.1 Development Board Connectors Description

Figure 6.4 shows the location of the connectors described below.

I/O breakout: JP6 gives access to all the I/O on the ETRX2 module. The individual pins

are labelled on the circuit board.

Programming Connector: The 10 way programming connector (JP1) allows the

connection of any AVR ISP programmer to allow the in-circuit programming of the

ETRX1 module.

Serial Port: The serial port allows connectivity to a PC. This provides access to the

command line interface and the bootloader for firmware updates.

Power connector: Connect a power supply or battery pack from 5VDC to 12VDC here.

The Voltage is regulated down to 3.3V on the devboard.

Power Jumper: JP3 connects the ETRX2 module to the power supply. It is possible to

measure the current consumption of the module across this jumper.

I/O connection: JP7 can be used to connect the I/O pins as shown in Table A.4. [4]

Table A.4: I/O Connectivity on development board

Pin Devboard Functionality Default

I/O0 Button4 connected

I/O1 Button3 connected

I/O2 Button2 connected

I/O3 Button1 or Beeper Beeper connected

I/O4 LED4 connected

I/O5 LED3 connected

I/O6 LED2 connected

I/O7 LED1 connected

A/D1 Pinheader A/D1 connected

A/D2 Pinheader A/D1 connected

64

A.6.2 Module Carrier Board (MCB) Connectors Description

Table A.5 shows the location of the connectors described below.

Power connector: Connect a power supply or battery pack from 5 VDC to 12 VDC here.

The voltage is regulated down to 3.3 V on the devboard.

RS232 Port: If required an RS232 connection is possible via JP2. The pinout of JP2 is as

follows (see Figure A.10), where Pin 1 is the one nearest to the power connector.

Table A.5: I/O Connectivity on MCB

Pin MCB

1 3.3V

2 TXD

3 RDX

4 GND

For connecting a MCB to a PC‟s serial port, level conversion of the RS232 signals is

required via a MAX232 (or equivalent) circuit.

Table A.6 shows the connectivity of the module to the peripherals on board the MCB [4].

Table A.6: I/O Connectivity on MCB

Pin MCB

I/O0 Button 1

I/O1 Button 2

I/O2 Not Connected

I/O3 Beeper

I/O4 Not Connected

I/O5 Green LED

I/O6 Not Connected

I/O7 Red LED

A/D1 Light Sensor

A/D2 Not Connected

65

APPENDIX B

PROGRAM LISTING

ComPort

unit ComPort;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

 TypInfo;

const

 version = '1.5';

 NUL = #0; SOH = #1; STX = #2; ETX = #3; EOT = #4; ENQ = #5;

ACK = #6; BEL = #7; BS = #8;

 TAB = #9; LF = #10; VT = #11; FF = #12; CR = #13; SO = #14;

SI = #15; DLE = #16;

 DC1 = #17; DC2 = #18; DC3 = #19; DC4 = #20; NAK = #21; SYN =

#22; ETB = #23; CAN = #24;

 EM = #25; SUB = #26; ESC = #27; FS = #28; GS = #29; RS =

#30; US = #31;

 DefaultTerminator = #13#10;

type

 EComError = class(Exception);

{$M+}

 TParity = (ptNONE, ptODD, ptEVEN, ptMARK, ptSPACE);

 TStopBit = (sbONE, sbONE5, snTWO);

 TReceiveMode = (rmRAW, rmTERM);

{$M-}

 TCommThread = class;

 TReceiveNotify = procedure(CharsReceived: DWORD) of object;

 TLineEventNotify = procedure(EventWord: DWORD; ModemStatus: DWORD) of

object;

 TReceiveProc = procedure(Data: string) of object;

 TStatusChanged = procedure(Status: boolean) of object;

66

 TComPort = class(TComponent)

 private

 { Private declarations }

 FPortID: string;

 FBaud: DWORD;

 FDataBits: byte;

 FParity: TParity;

 FStopBits: TStopBit;

 FReceiveMode: TReceiveMode;

 ComThread: TCommThread;

 FOpen: boolean;

 FReceiveCallBack: TReceiveProc;

 FOnCTSChanged,

 FOnDSRChanged,

 FOnRingChanged,

 FOnRLSDChanged: TStatusChanged;

 FOnError,

 FOnPortOpen,

 FOnPortClose: TNotifyEvent;

 FWinQSizeIn,

 FWinQSizeOut: DWORD;

 FTerminator: string;

 RxBuf: string;

 procedure ReceiveNotify(NReceived: DWORD);

 procedure EventNotify(EventMask, ModemStatus: DWORD);

 procedure SetTerminator(TermStr: string);

 function GetTerminator: string;

 protected

 { Protected declarations }

 public

 { Public declarations }

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 procedure Open;

 procedure Close;

 procedure Send(Data: string);

 procedure SetDTR(Status: boolean);

 procedure SetRTS(Status: boolean);

 function NextToken(var s: string; Separator: char): string;

 function StrToParity(sParity: string): TParity;

 function ParityToStr(ParityMember: TParity): string;

 function StopbToStr(Stopmember: TStopBit): string;

67

 function StrToStopb(sStopBit: string): TStopBit;

 published

 { Published declarations }

 property Port: string read FPortID write FPortID;

 property Baud: DWORD read FBaud write FBaud;

 property DataBits: byte read FDatabits write FDataBits;

 property Parity: TParity read FParity write FParity;

 property StopBits: TStopBit read FStopBits write FStopBits;

 property WinQSizeIn: DWORD read FWinQSizeIn write FWinQSizeIn;

 property WinQSizeOut: DWORD read FWinQSizeOut write FWinQSizeOut;

 property ReceiveMode: TReceiveMode read FReceiveMode write

FReceiveMode;

 property Terminator: string read GetTerminator write SetTerminator;

 // events

 property OnPortOpen: TNotifyEvent read FOnPortOpen write FOnPortOpen;

 property OnPortClose: TNotifyEvent read FOnPortClose write

FOnPortClose;

 property ReceiveCallBack: TReceiveProc read FReceiveCallBack

 write FReceiveCallBack;

 property OnCTSChanged: TStatusChanged read FOnCTSChanged

 write FOnCTSChanged;

 property OnDSRChanged: TStatusChanged read FOnDSRChanged

 write FOnDSRChanged;

 property OnRingChanged: TStatusChanged read FOnRingChanged

 write FOnRingChanged;

 property OnRLSDChanged: TStatusChanged read FOnRLSDChanged

 write FOnRLSDChanged;

 property OnError: TNotifyEvent read FonError write FOnError;

 end;

 TCommThread = class(TThread)

 private

 DCB: TDCB;

 hCloseEvent: THandle;

 RXOvLap,

 TXOverLap: TOverLapped;

 FEventMask: DWORD;

 FModemStatus: DWORD;

 protected

 hCom: THandle;

 FOnReceive: TReceiveNotify;

 FLineEvent: TLineEventNotify;

68

 ErrorMask: DWORD;

 procedure Execute; override;

 procedure EventHandler;

 destructor Destroy; override;

 public

 constructor Create(APort: string);

 procedure SetCommPars(ABaudRate: DWORD;

 AByteSize: byte;

 AParity: DWORD;

 NStopBits: TStopBit);

 function HandleValid: boolean;

 function WriteComm(var buf; ByteCount: integer): DWORD;

 procedure ReadComm(var buf; CharsToRead: DWORD);

 procedure SignalTerminate;

 procedure ClearComm;

 end;

procedure EnumPorts(PortList: TStringlist);

implementation

procedure EnumPorts(PortList: TStringlist);

var

 MaxPorts : integer;

 hPort : THandle;

 PortNumber : integer;

 PortName : string;

begin

 if PortList = nil then EXIT;

 case Win32PlatForm of

 VER_PLATFORM_WIN32_NT: MaxPorts := 256;

 VER_PLATFORM_WIN32_WINDOWS: MaxPorts := 9;

 end;

 for PortNumber := 1 to MaxPorts do

 begin

 if PortNumber > 9 then

 PortName := '\\.\COM' + IntToStr(PortNumber)

 else

 PortName := 'COM' + IntToStr(PortNumber);

 hPort := CreateFile(PChar(PortName),

69

 GENERIC_READ or GENERIC_WRITE,

 0,

 nil,

 OPEN_EXISTING,

 0,

 0);

 if not (hPort = INVALID_HANDLE_VALUE) then

 PortList.Add(PortName);

 CloseHandle(hPort);

 end;

end;

function TComPort.ParityToStr(Paritymember: TParity): string;

begin

 Result := GetEnumName(TypeInfo(TParity), integer(ParityMember));

end;

function TComPort.StrToParity(sParity: string): TParity;

begin

 Result := TParity(GetEnumValue(TypeInfo(TParity), sParity));

end;

function TComPort.StopbToStr(Stopmember: TStopBit): string;

begin

 Result := GetEnumName(TypeInfo(TStopBit), integer(StopMember));

end;

function TComPort.StrToStopb(sStopBit: string): TStopBit;

begin

 Result := TStopBit(GetEnumValue(TypeInfo(TStopBit), sStopBit));

end;

constructor TComPort.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 FOpen := false;

 FPortID := 'COM1';

 FBaud := 9600;

 FParity := ptNONE;

 FDataBits := 8;

 FOpen := false;

 FWinQSizeIn := 8192;

 FWinQSizeOut := 8192;

70

 FReceiveMode := rmTERM;

 FTerminator := DefaultTerminator;

 RxBuf := '';

end;

destructor TComPort.Destroy;

begin

 if FOpen then

 Close;

 inherited Destroy;

end;

procedure TComPort.Open;

begin

 if not FOpen then

 begin

 ComThread := TCommThread.Create(FPortID);

 if not comThread.HandleValid then

 raise EComError.Create('TCOMPORT : com' + FPortID +' CannotOpen'+

#13

 + SysErrorMessage(GetLastError));

 ComThread.FOnReceive := Self.ReceiveNotify;

 ComThread.FLineEvent := Self.EventNotify;

 ComThread.SetCommPars(Fbaud, FDataBits, DWORD(FParity), FStopBits

);

 SetUpComm(ComThread.hCom, FWinQSizeIn, FWinQSizeOut);

 FOpen := true;

 ComThread.Resume;

 if Assigned(FOnPortOpen) then

 FOnPortOpen(Self);

 end;

end;

procedure TComPort.Close;

begin

 if FOpen then

 begin

 FOpen := false;

 ComThread.FOnReceive := nil;

 ComThread.FLineEvent := nil;

 ComThread.SignalTerminate;

 ComThread.WaitFor;

 if Assigned(FOnPortClose) then

71

 FOnPortClose(Self);

 end;

end;

procedure TComPort.SetDTR(Status: boolean);

begin

 if FOPen then

 case Status of

 true: EscapeCommFunction(ComThread.hCom, Windows.SETDTR);

 false: EscapeCommFunction(ComThread.hCom, Windows.CLRDTR);

 end;

end;

procedure TComPort.SetRTS(Status: boolean);

begin

 if FOpen then

 case Status of

 true: EscapeCommFunction(ComThread.hCom, Windows.SETRTS);

 false: EscapeCommFunction(ComThread.hCom, Windows.CLRRTS);

 end;

end;

procedure TComPort.EventNotify(EventMask, ModemStatus: DWORD);

begin

 if (EventMask and EV_CTS) > 0 then

 if Assigned(FOnCTSChanged) then

 FOnCTSChanged((ModemStatus and MS_CTS_ON) = 0);

 if (EventMask and EV_DSR) > 0 then

 if Assigned(FOnDSRChanged) then

 FOnDSRChanged((ModemStatus and MS_DSR_ON) = 0);

 if (EventMask and EV_RLSD) > 0 then

 if Assigned(FOnRLSDChanged) then

 FOnRLSDChanged((ModemStatus and MS_RLSD_ON) = 0);

 if (EventMask and EV_RING) > 0 then

 if Assigned(FOnRingChanged) then

 FOnRingChanged((ModemStatus and MS_RING_ON) = 0);

 if (EventMask and EV_ERR) > 0 then

 if Assigned(FOnError) then

 FOnError(Self);

end;

procedure TComPort.ReceiveNotify(NReceived: DWORD);

var

 TempBuf : string;

72

 TermPos : integer;

begin

 SetLength(TempBuf, NReceived);

 ComThread.ReadComm(TempBuf[1], NReceived);

 if FOpen and Assigned(FReceiveCallBack) then

 case FReceiveMode of

 rmRAW: FReceiveCallBack(TempBuf);

 rmTERM: begin

 RxBuf := RxBuf + TempBuf;

 TermPos := Pos(FTerminator, RxBuf);

 if TermPos > 0 then

 begin

 TempBuf := Copy(RxBuf, 1, TermPos

 + length(FTerminator) - 1);

 FReceiveCallBack(TempBuf);

 Delete(RxBuf, 1, TermPos + length(FTerminator) - 1);

 end

 end;

 end;

end;

procedure TComPort.Send(Data: string);

begin

 if FOpen then

 ComThread.WriteComm(Data[1], Length(Data));

end;

procedure TComPort.SetTerminator(TermStr: string);

var

 Temp : string;

begin

 FTerminator := '';

 if Length(TermStr) > 0 then

 Delete(TermStr, 1, 1);

 while length(TermStr) > 0 do

 begin

 Temp := NextToken(TermStr, '#');

 try

 FTerminator := FTerminator + Chr(StrToInt(Temp));

 except

 FTerminator := DefaultTerminator;

 raise EComError.Create('invalid string end.' + #13

73

 + 'format : #<ascii>#<ascii>#<...>' + #13

 + 'example: #13#10');

 end;

 end;

 if Length(FTerminator) = 0 then

 raise EComError.Create('Final string can not to be empty.');

end;

function TComPort.GetTerminator: string;

var

 i : integer;

begin

 Result := '';

 if Length(FTerminator) > 0 then

 for i := 1 to Length(FTerminator) do

 Result := Result + '#' + IntToStr(ord(FTerminator[i]))

end;

function TComPort.NextToken(var s: string; Separator: char): string;

var

 Sep_Pos : byte;

begin

 Result := '';

 if length(s) > 0 then begin

 Sep_Pos := pos(Separator, s);

 if Sep_Pos > 0 then begin

 Result := copy(s, 1, Pred(Sep_Pos));

 Delete(s, 1, Sep_Pos);

 end

 else begin

 Result := s;

 s := '';

 end;

 end;

end;

constructor TCommThread.Create(APort: string);

begin

 hCom := CreateFile(PChar(APort),

 GENERIC_READ or GENERIC_WRITE,

 0,

 nil,

 OPEN_EXISTING,

 FILE_FLAG_OVERLAPPED,

74

 0);

 if hCom = INVALID_HANDLE_VALUE then EXIT;

 GetCommState(hCom, DCB);

 with DCB do begin

 Baudrate := 9600;

 ByteSize := 8;

 Parity := EVENPARITY;

 StopBits := ONESTOPBIT;

 Flags := 1;

 end;

 SetUpComm(hCom, 512, 512);

 SetCommState(hCom, DCB);

 SetCommMask(hCom, EV_RXCHAR

 or EV_CTS

 or EV_RLSD

 or EV_DSR

 or EV_RING

 or EV_ERR);

 ClearComm;

 inherited Create(true);

 Priority := tpHIGHER;

 FreeOnTerminate := true;

end;

destructor TCommThread.Destroy;

begin

 CloseHandle(hCom);

end;

procedure TCommThread.SetCommPars(ABaudRate: DWORD;

 AByteSize: byte;

 AParity: DWORD;

 NStopBits: TStopBit);

begin

 GetCommState(hCom, DCB);

 with DCB do begin

 Baudrate := ABaudRate;

 ByteSize := AByteSize;

 Parity := AParity;

 StopBits := DWORD(NStopBits);

 Flags := 1;

 end;

 SetCommState(hCom, DCB);

end;

75

function TCommThread.HandleValid: boolean;

begin

 Result := not (hCom = INVALID_HANDLE_VALUE);

end;

procedure TCommThread.EventHandler;

var

 ComStat : TComStat;

 CharsToRead : DWORD;

begin

 ClearCommError(hCom, ErrorMask, @ComStat);

 if (FEventMask and EV_RXCHAR) > 0 then

 begin

 CharsToRead := ComStat.cbInQue;

 if Assigned(FOnReceive) then

 FOnReceive(CharsToRead);

 FEventMask := FEventMask and not EV_RXCHAR;

 end;

 if (FEventMask > 0)

 and Assigned(FLineEvent) then

 FLineEvent(FEventMask, FModemStatus);

end;

procedure TCommTHread.ClearComm;

begin

 PurgeComm(hCom, PURGE_RXCLEAR

 or PURGE_TXCLEAR

 or PURGE_RXABORT

 or PURGE_TXABORT);

 EscapeCommFunction(hCom, Windows.CLRDTR);

 EscapeCommFunction(hCom, Windows.CLRRTS);

end;

procedure TCommThread.SignalTerminate;

begin

 FonReceive := nil;

 SetEvent(hCloseEvent);

end;

procedure TCommThread.Execute;

var

 HandlesToWaitFor: array[0..2] of THandle;

 ovlap : TOverLapped;

76

 EvHandle,

 EvSignal : DWORD;

begin

 hCloseEvent := CreateEvent(nil, true, False, nil);

 FillChar(OvLap, sizeof(OvLap), 0);

 OvLap.hEvent := CreateEvent(nil, true, true, nil);

 EvHandle := ovLap.hEvent;

 HandlesToWaitFor[0] := hCloseEvent;

 HandlesToWaitFor[1] := OvLap.hEvent;

 repeat

 WaitCommEvent(hCom, FEventMask, @ovlap);

 GetCommModemStatus(hCom, FModemStatus);

 evSignal := WaitForMultipleObjects(2, @HandlesToWaitFor, False,

INFINITE);

 case EvSignal of

 WAIT_OBJECT_0: begin

 Priority := tpLOWEST;

 SetCommMask(hCom, 0);

 Terminate;

 end;

 WAIT_OBJECT_0 + 1: Synchronize(EventHandler)

 end;

 until Terminated;

 CloseHandle(OvLap.hEvent);

 CloseHandle(hCloseEvent)

end;

procedure TCommThread.ReadComm(var buf; CharsToRead: DWORD);

var

 ByteCount : DWORD;

begin

 if CharsToRead > 0 then begin

 FillChar(RXOvLap, SizeOf(RXOvLap), 0);

 Readfile(hCom, Buf, CharsToRead, ByteCount, @RXOvLap)

 end

end;

function TCommThread.WriteComm(var buf; ByteCount: integer): DWORD;

begin

 FillChar(TXOverLap, SizeOf(TXOverLap), 0);

 WriteFile(hCom, Buf, ByteCount, Result, @TXOverLap);

end;

end.

77

UComPortConnection

unit UComPortConnection;

interface

uses Windows, Classes, SysUtils, ExtCtrls, Graphics, ComPort, Dialogs,

Oracle, OracleData, stdctrls;

const

 LF = #10;

 CR = #13;

 CRLF = CR+LF;

 type

 TComPortConnection = class

 private

 ComPort:TComPort;

 public

 Memo : TMemo;

 OracleDataSet:TOracleDataSet;

 constructor Create;

 function ConnectComPort(Port:String; BaudRate:integer;

DataBit:integer; Parity:String; StopBit:String):boolean;

 procedure SendData(Line : String);

 procedure ReceiveData(Data:string);

 procedure DoReceive;

 end;

 var

 ComPortConnection : TComponent;

 ComData : String;

implementation

uses UZigbeemainfrm;

constructor TComPortConnection.Create;

begin

 inherited;

 Memo:=nil;

 OracleDataSet:=nil;

end;

function TComPortConnection.ConnectComPort(Port:String; BaudRate:integer;

DataBit:integer; Parity:String; StopBit:String):boolean;

78

begin

 ComPort:=TComPort.Create(ComPortConnection);

 ComPort.ReceiveMode:=rmRAW;

 ComPort.ReceiveCallBack:=ReceiveData;

 ComPort.Close;

 ComPort.Port:= Port;

 ComPort.Baud:= Baudrate;

 ComPort.DataBits:= DataBit;

 ComPort.Parity:= ComPort.StrToParity('pt'+Parity);

 ComPort.StopBits:= ComPort.StrToStopb('sb'+StopBit);

 try

 ComPort.Open;

 Memo.Lines.add('Sys ' + DateTimeToStr(Now) + '--> '+

 Port+' Port Opened ('+

 IntToStr(Baudrate)+','+

 IntToStr(DataBit)+','+

 Parity+','+

 Stopbit+')');

 Result := True;

 except

 Memo.Lines.Add('Sys ' + DateTimeToStr(Now) + '--> ComPort Not

Opened ');

 Result := False;

 end;

end;

procedure TComPortConnection.ReceiveData(Data:string);

begin

 ComData:=ComData+Data;

 DoReceive;

 Memo.Lines.Add(Data);

end;

procedure TComPortConnection.DoReceive;

var

 IntValue:Real;

 StrValue : String;

 Resistance : Real;

 Light:Real;

 Key : Integer;

79

begin

 if (Pos(CRLF, ComData)>0) and (Pos('ATI', ComData)>0) and (Pos('ATI',

ComData)< Pos(CRLF, ComData)) then

 begin

 Delete(ComData,1, Pos(CRLF, ComData)+1);

 end else

 if (Pos(CRLF, ComData)>0) and (Pos('OK', ComData)>0) and (Pos('OK',

ComData)< Pos(CRLF, ComData)) then

 begin

 Delete(ComData,1, Pos(CRLF, ComData)+1);

 end else

 if (Pos(CRLF, ComData)>0) and (Pos('ATSREM12:', ComData)>0) and

(Pos('ATSREM12:', ComData)< Pos(CRLF, ComData)) then

 begin

 Delete(ComData,1, Pos(CRLF, ComData)+1);

 end else

 if (Pos(CRLF, ComData)>0) and (Pos('S12:', ComData)>0) and

(Pos('S12:', ComData)< Pos(CRLF, ComData)) then

 begin

 StrValue :=Copy(ComData,1, Pos(CR, ComData)-1);

 Delete(ComData,1, Pos(CRLF, ComData)+1);

 Delete(StrValue, 1, Pos(':', StrValue));

 IntValue := StrToInt('$'+StrValue);

 if IntValue=0 then

 begin

 IntValue:= StrToFloat('0' + DecimalSeparator + '1');

 end;

 Resistance := round(((33000/IntValue)-10)*1000)/1000;

 Light := 0;

 if (Resistance < 1000000) and (Resistance > 10000) then

 begin

 Light := Round(((1970000-Resistance)/9900000)*1000)/1000;

 //Lux(x) = (1970000-y) / 9900000

 end else

80

 if (Resistance < StrToFloat('9999' + DecimalSeparator + '99')) and

(Resistance > 1000) then

 begin

 Light := Round(((12250-Resistance)/11250)*1000)/1000;

 //Lux(x) = (12250-y) / 11250

 end else

 if (Resistance < StrToFloat('999' + DecimalSeparator + '99')) and

(Resistance > 100) then

 begin

 Light := Round(((StrToFloat('1047' + DecimalSeparator +

'36')-Resistance)/StrToFloat('47' + DecimalSeparator + '36'))*1000)/1000;

 //Lux(x) = (1047.36-y) / 47.36

 end else

 if (Resistance < StrToFloat('99' + DecimalSeparator + '99')) and

(Resistance > 10) then

 begin

 Light := Round(((StrToFloat('106' + DecimalSeparator + '4')-

Resistance)/StrToFloat('0' + DecimalSeparator + '32'))*1000)/1000;

 //Lux(x) = (106.4-y) / 0.32

 end else

 if (Resistance < StrToFloat('9' + DecimalSeparator + '99')) and

(Resistance > 5) then

 begin

 Light := Round(((StrToFloat('12' + DecimalSeparator + '13')-

Resistance)/StrToFloat('0' + DecimalSeparator + '0071'))*1000)/1000;

 //Lux(x) = (12.13-y) / 0.0071

 end else

 if (Resistance < StrToFloat('4' + DecimalSeparator + '99')) and

(Resistance > StrToFloat('0' + DecimalSeparator + '01')) then

 begin

 Light := Round(((StrToFloat('5' + DecimalSeparator + '05')-

Resistance)/StrToFloat('0' + DecimalSeparator + '00005'))*1000)/1000;

 //Lux(x) = (5.05-y) / 0.00005

 end;

 OracleDataSet.SQL.Clear;

 OracleDataSet.SQL.Add('SELECT LIGHTSEQ.NEXTVAL FROM DUAL ');

 OracleDataSet.Open;

 Key:=OracleDataSet.FieldByName('NEXTVAL').AsInteger;

 OracleDataSet.Close;

 OracleDataSet.SQL.Clear;

 OracleDataSet.SQL.Add('SELECT A.*, A.ROWID FROM LIGHT A');

 OracleDataSet.Open;

 OracleDataSet.Append;

 OracleDataSet.FieldByName('KEY').AsInteger:=Key;

81

 OracleDataSet.FieldByName('TIME').AsDateTime :=Now;

 OracleDataSet.FieldByName('VALUE').AsFloat:=IntValue;

 OracleDataSet.FieldByName('RESISTANCE').AsFloat:=Resistance;

 OracleDataSet.FieldByName('LIGHT').AsFloat:=Light;

 OracleDataSet.Post;

 OracleDataSet.Close;

 form1.ShowGrid;

 end else

 begin

 Delete(ComData,1, Pos(CRLF, ComData)+1);

 end;

end;

procedure TComPortConnection.SendData(Line : String);

begin

 ComPort.Send(Line);

 //Memo.Lines.Add('Send ' + DateTimeToStr(Now) + '--> '+ Line);

 //Memo.Lines.Add(Line);

end;

end.

82

UComPortSettingsFrm

unit UComPortSettingsFrm;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

 StdCtrls, Inifiles;

type

 TForm2 = class(TForm)

 GroupBox1: TGroupBox;

 ComboBox1: TComboBox;

 ComboBox2: TComboBox;

 ComboBox3: TComboBox;

 ComboBox4: TComboBox;

 ComboBox5: TComboBox;

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 Label4: TLabel;

 Label5: TLabel;

 BtConnect: TButton;

 CheckBox1: TCheckBox;

 GroupBox2: TGroupBox;

 Edit1: TEdit;

 Edit2: TEdit;

 Label6: TLabel;

 Label7: TLabel;

 BtSave: TButton;

 Edit3: TEdit;

 Label8: TLabel;

 procedure FormCreate(Sender: TObject);

 procedure BtConnectClick(Sender: TObject);

 procedure BtSaveClick(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

83

var

 Form2: TForm2;

implementation

uses UZigbeeMainFrm;

{$R *.DFM}

procedure TForm2.FormCreate(Sender: TObject);

var fini:Tinifile;

begin

 fini:=TIniFile.Create(GetCurrentDir+'\settings.ini');

 if fini<>nil then

 begin

 ComboBox1.Text:=fini.ReadString('Com', 'Comport', '1');

 ComboBox2.Text:=fini.ReadString('Com', 'Baudrate', '1');

 ComboBox3.Text:=fini.ReadString('Com', 'Databit', '1');

 ComboBox4.Text:=fini.ReadString('Com', 'Parity', '1');

 ComboBox5.Text:=fini.ReadString('Com', 'Stopbit', '1');

 if fini.ReadString('Com', 'AutoOpenport', '1') = 'E' then

 CheckBox1.Checked := True

 else

 CheckBox1.Checked := False;

 Edit1.Text:=fini.ReadString('Database', 'Username', '1');

 Edit2.Text:=fini.ReadString('Database', 'Password', '1');

 Edit3.Text:=fini.ReadString('Database', 'Databasename', '1');

 end;

end;

procedure TForm2.BtConnectClick(Sender: TObject);

var fini:Tinifile;

 AutoOpenport : String ;

begin

 if CheckBox1.Checked then

 AutoOpenport := 'E'

 else

 AutoOpenport := 'H';

 fini:=TIniFile.Create(GetCurrentDir+'\settings.ini');

 fini.DeleteKey('Com', 'Comport');

 fini.DeleteKey('Com', 'Baudrate');

 fini.DeleteKey('Com', 'Databit');

 fini.DeleteKey('Com', 'Parity');

 fini.DeleteKey('Com', 'Stopbit');

 fini.DeleteKey('Com', 'AutoOpenport');

84

 fini.WriteString('Com', 'Comport', ComboBox1.Text);

 fini.WriteString('Com', 'Baudrate', ComboBox2.Text);

 fini.WriteString('Com', 'Databit', ComboBox3.Text);

 fini.WriteString('Com', 'Parity', ComboBox4.Text);

 fini.WriteString('Com', 'Stopbit', ComboBox5.Text);

 fini.WriteString('Com', 'AutoOpenport', AutoOpenport);

 FreeAndNil(fini);

 Form1.OpenPort;

end;

procedure TForm2.BtSaveClick(Sender: TObject);

var fini:Tinifile;

begin

 fini:=TIniFile.Create(GetCurrentDir+'\settings.ini');

 fini.DeleteKey('Database', 'Username');

 fini.DeleteKey('Database', 'Password');

 fini.DeleteKey('Database', 'Databasename');

 fini.WriteString('Database', 'Username', Edit1.Text);

 fini.WriteString('Database', 'Password', Edit2.Text);

 fini.WriteString('Database', 'Databasename', Edit3.Text);

 FreeAndNil(fini);

end;

end.

85

UZigbeeChartFrm

unit UZigbeeChartFrm;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

 StdCtrls, ExtCtrls, TeeProcs, TeEngine, Chart, DBChart, Series, Db,

 OracleData, Oracle, Grids, DBGrids;

type

 TForm3 = class(TForm)

 Panel1: TPanel;

 Panel2: TPanel;

 Button1: TButton;

 Chart1: TChart;

 Series1: TLineSeries;

 DBGrid1: TDBGrid;

 DataSource1: TDataSource;

 GroupBox1: TGroupBox;

 GroupBox2: TGroupBox;

 Label1: TLabel;

 Label3: TLabel;

 Edit1: TEdit;

 Edit2: TEdit;

 Label2: TLabel;

 Label4: TLabel;

 Edit3: TEdit;

 Edit4: TEdit;

 OracleDataSet1: TOracleDataSet;

 procedure Button1Click(Sender: TObject);

 procedure FormShow(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form3: TForm3;

implementation

86

uses UZigbeeMainFrm;

{$R *.DFM}

procedure TForm3.Button1Click(Sender: TObject);

begin

 OracleDataSet1.Session := Form1.OracleSession1;

 OracleDataSet1.Close;

 OracleDataSet1.SQL.Clear;

 OracleDataSet1.SQL.Add('SELECT KEY, TO_CHAR(TIME,''DD.MM.YYYY

HH24:MI:SS'') AS TIME, TO_CHAR(TIME, ''HH24:MI:SS'') AS HOURS, LIGHT');

 OracleDataSet1.SQL.Add('FROM LIGHT');

 OracleDataSet1.SQL.Add('WHERE TIME >= TO_DATE('''+Edit1.Text+'

'+Edit2.Text+''',''DD.MM.YYYY HH24:MI:SS'')');

 OracleDataSet1.SQL.Add('AND TIME <= TO_DATE('''+Edit3.Text+'

'+Edit4.Text+''',''DD.MM.YYYY HH24:MI:SS'')');

 OracleDataSet1.SQL.Add('ORDER BY TIME');

 OracleDataSet1.Open;

 Series1.Clear;

 while not OracleDataSet1.Eof do

 begin

 Series1.AddXY(OracleDataSet1.fieldbyname('KEY').AsInteger,

 OracleDataSet1.fieldbyname('LIGHT').AsInteger,

TimeToStr(OracleDataSet1.fieldbyname('HOURS').AsDateTime),

 clTeeColor);

 OracleDataSet1.Next;

 end;

 DataSource1.DataSet:=OracleDataSet1;

 end;

procedure TForm3.FormShow(Sender: TObject);

var strnow : String;

begin

 strnow := DateTimeToStr(Now);

 Edit1.Text:= Copy(strnow, 1, Pos(' ',strnow)-1);

 Edit2.Text:= '00:00:00';

 Edit3.Text:=Copy(strnow, 1, Pos(' ',strnow)-1);

 Delete(strnow, 1, Pos(' ',strnow));

 Edit4.Text:= strnow;

end;

end.

87

UZigbeeMainFrm

unit UZigbeeMainFrm;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

 Inifiles, StdCtrls, ToolWin, ComCtrls, Menus, Buttons,

 ExtCtrls, UComPortConnection, TeEngine, Series, TeeProcs, Chart,

DBChart,

 Oracle, Grids, DBGrids, Db, OracleData;

const

 LF = #10;

 CR = #13;

 CRLF = CR+LF;

type

 TForm1 = class(TForm)

 MainMenu1: TMainMenu;

 Settings1: TMenuItem;

 ComPortandDatabaseSettings1: TMenuItem;

 GroupBox1: TGroupBox;

 MemoPortLog: TMemo;

 DataSource1: TDataSource;

 Graphics1: TMenuItem;

 Chart1: TChart;

 Series1: TLineSeries;

 Exit1: TMenuItem;

 OracleSession1: TOracleSession;

 OracleDataSet1: TOracleDataSet;

 OracleDataSetComPort: TOracleDataSet;

 DBGrid1: TDBGrid;

 GroupBox3: TGroupBox;

 Label1: TLabel;

 Edit1: TEdit;

 Button1: TButton;

 GroupBox2: TGroupBox;

 ComboBox1: TComboBox;

 Label2: TLabel;

 CheckBox1: TCheckBox;

 Timer1: TTimer;

 procedure FormCreate(Sender: TObject);

88

 procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

 procedure ComPortandDatabaseSettings1Click(Sender: TObject);

 Procedure OpenPort;

 procedure ShowGrid;

 procedure Graphics1Click(Sender: TObject);

 procedure Exit1Click(Sender: TObject);

 procedure Button1Click(Sender: TObject);

 procedure ComboBox1Change(Sender: TObject);

 procedure Timer1Timer(Sender: TObject);

 procedure CheckBox1Click(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form1: TForm1;

 ComPortConnection:TComPortConnection;

implementation

uses UComPortSettingsFrm, UZigbeeChartFrm;

{$R *.DFM}

Procedure TForm1.OpenPort;

var fini:Tinifile;

begin

 fini:=TIniFile.Create(GetCurrentDir+'\settings.ini');

 if fini <> nil then

 begin

 if fini.ReadString('Com', 'AutoOpenport', '1')='E' then

 begin

 ComPortConnection:=TComPortConnection.Create;

 ComPortConnection.Memo:=MemoPortLog;

 ComPortConnection.OracleDataSet:=OracleDataSetComPort;

 ComPortConnection.OracleDataSet.Session:=OracleSession1;

89

 ComPortConnection.ConnectComPort(fini.ReadString('Com',

'Comport', '1'),

strtoint(fini.ReadString('Com', 'Baudrate', '1')),

 strtoint(fini.ReadString('Com', 'Databit', '1')),

 fini.ReadString('Com', 'Parity', '1'),

 fini.ReadString('Com', 'Stopbit', '1'));

 end;

 end;

 FreeAndNil(fini);

end;

procedure TForm1.FormCreate(Sender: TObject);

var

fini:Tinifile;

begin

 ComboBox1.ItemIndex :=0;

 Timer1.Enabled:=False;

 fini:=TIniFile.Create(GetCurrentDir+'\settings.ini');

 OracleSession1 := TOracleSession.Create(nil);

 OracleSession1.LogonDatabase :=fini.ReadString('Database',

'Databasename', '1');

 OracleSession1.LogonUsername :=fini.ReadString('Database',

'Username', '1');

 OracleSession1.LogonPassword :=fini.ReadString('Database',

'Password', '1');

 OracleSession1.Connected := True;

 OracleDataSet1.Session:=OracleSession1;

 OpenPort;

 ShowGrid;

 FreeAndNil(fini);

end;

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);

var SaveLog : TStringList;

 FileHandle: Integer;

begin

 if not FileExists(GetCurrentDir+'\log.txt') then

 begin

 FileHandle:=FileCreate(GetCurrentDir+'\log.txt');

90

 FileClose(FileHandle);

 end;

 SaveLog := TStringList.Create;

 SaveLog.LoadFromFile(GetCurrentDir+'\log.txt');

 SaveLog.AddStrings(MemoPortLog.Lines);

 SaveLog.SaveToFile(GetCurrentDir+'\log.txt');

 FreeAndNil(SaveLog);

end;

procedure TForm1.ComPortandDatabaseSettings1Click(Sender: TObject);

begin

 Form2.Show;

end;

procedure TForm1.ShowGrid;

begin

 OracleDataSet1.Close;

 OracleDataSet1.SQL.Clear;

 OracleDataSet1.SQL.Add('SELECT KEY, TO_CHAR(TIME,''DD.MM.YYYY

HH24:MI:SS'') AS TIME, TO_CHAR(TIME, ''HH24:MI:SS'') AS HOURS, LIGHT');

 OracleDataSet1.SQL.Add('FROM LIGHT');

 if ComboBox1.ItemIndex=0 then

 begin

 OracleDataSet1.SQL.Add('WHERE SYSDATE <= TIME + interval ''1''

MINUTE');

 end else

 if ComboBox1.ItemIndex=1 then

 begin

 OracleDataSet1.SQL.Add('WHERE SYSDATE <= TIME + interval ''10''

MINUTE');

 end else

 if ComboBox1.ItemIndex=2 then

 begin

 OracleDataSet1.SQL.Add('WHERE SYSDATE <= TIME + interval ''1''

HOUR');

 end else

 if ComboBox1.ItemIndex=3 then

 begin

 OracleDataSet1.SQL.Add('WHERE SYSDATE <= TIME + interval ''1''

DAY');

 end;

91

 OracleDataSet1.SQL.Add('ORDER BY TIME');

 OracleDataSet1.Open;

 Series1.Clear;

 while not OracleDataSet1.Eof do

 begin

 Series1.AddXY(Form1.OracleDataSet1.fieldbyname('KEY').AsInteger,

 OracleDataSet1.fieldbyname('LIGHT').AsInteger,

TimeToStr(OracleDataSet1.fieldbyname('HOURS').AsDateTime),

 clTeeColor);

 OracleDataSet1.Next;

 end;

 DataSource1.DataSet:=OracleDataSet1;

end;

procedure TForm1.Graphics1Click(Sender: TObject);

begin

 Form3.Show;

end;

procedure TForm1.Exit1Click(Sender: TObject);

begin

 Application.Terminate;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

 ComPortConnection.SendData(Edit1.Text+CRLF);

end;

procedure TForm1.ComboBox1Change(Sender: TObject);

begin

 ShowGrid;

end;

procedure TForm1.Timer1Timer(Sender: TObject);

begin

 ComPortConnection.SendData('ATSREM12:000D6F00000DC449?'+CRLF);

end;

92

procedure TForm1.CheckBox1Click(Sender: TObject);

begin

 if CheckBox1.Checked then

 begin

 Timer1.Enabled:= True;

 Timer1.Interval:=1000;

 end else

 begin

 Timer1.Enabled:= False;

 end;

end;

end.

93

Zigbee

program Zigbee;

uses

 Forms,

 UZigbeeMainFrm in 'UZigbeeMainFrm.pas' {Form1},

 ComPort in 'ComPort.pas',

 UComPortSettingsFrm in 'UComPortSettingsFrm.pas' {Form2},

 UComPortConnection in 'UComPortConnection.pas',

 UZigbeeChartFrm in 'UZigbeeChartFrm.pas' {Form3};

{$R *.RES}

begin

 Application.Initialize;

 Application.CreateForm(TForm1, Form1);

 Application.CreateForm(TForm2, Form2);

 Application.CreateForm(TForm3, Form3);

 Application.Run;

end.

94

APPENDIX C

AT Commands

95

APPENDIX D

96

S-Registers

97

APPENDIX E

Development board schematic I

98

Development board schematic II

99

APPENDIX F

Module carrier board schematic

