
NEAR EAST UNIVERSITY

1988

GRADUATE SCHOOL OF APPLIED
AND SOCIAL SCIENCES

FEATURE-AVERAGE BASED FACE
RECOGNITION USING NEURAL NETWORKS

Akram ABU GARAD

Master Thesis

Department of Electrical and Electronic
Engineering

Nicosia - 2005

h' U' ~ ~;· ... s1 'A/it /7 ·~,/' "..<:
I/_«;- '• ')· \

~ -q;- t0,

l~ LIBRARY -:

Akram ABU GARAD: Feature-Average Based Face Recog~ LEnzs"::/
Using Neural Networks -~~

Approval of Director of Graduate School of
Applied and Social Sciences

Prof. Dr. Fahreddin M. SADIKOGLU

We certify this thesis is satisfactory fcir,- the award of the degree
of Master of Science in Electrical and Electronic Engineering

Examining Committee in Charge:

Prof. Dr. Fahreddin M. SADIKOGLU, Dean of Engineering
Faculty, NEU

~)--

Assoc. Prof. Dr. Rahib A~YEV,
r / ~

~.2~ -

Vice Chairman of Computer
Engineering Department,
NEU

Electrical & Electronic
Engineering Department,
NEU

~oc. Prof. ~ KHA~HMAN,

~

Chairman of Electrical
& Electronic Engineering
Department, Supervisor,
NEU

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my supervisor, Assoc. Prof. Dr.

Adnan KHASHMAN, for his invaluable supervision, support and encouragement,

which have helped me to complete this work.

Thanks also to my family for their constant love and support throughout the

year.

Finally, I would like to thank my brother Tayser Abu Jarad for his spiritual and

financial support.

I

ABSTRACT

The technology of face recognition has become mature lately. Systems for face

recognition have become true in real life applications. Face recognition relates to

identifying or verifying individuals by their faces.

This thesis attempts to develop an automatic face recognition system based on

the important facial features from multi-expression sequence face images.

The design of this automated face recognition system is based on feature

average based using back propagation neural networks. The face recognition system has

been separated into three major phases; feature extraction, averaging and face

recognition. Feature extraction phase has been implemented on assumption the locations

of the essential features of the face are known. Averaging process is the most important

phase in this work. The average phase has been implemented to reduce the dimensions

of features matrices and to take the mean of the features from multi expression faces.

The face recognition classification has been applied using back propagation neural

networks. The system has been simulated using Matlab software tools. A real-life

application using the developed system has been implemented using 90 image

sequences obtained from 15 subjects showed an overall rate of 100% recognition and

accuracy of 93%.

II

TABLE OF CONTENTS

ACKN"OWLEDGEJ\IBNTS 1

ABSTRACT II

TABLE OF CONTENTS ID
LIST OF ABBREVIATIONS VI

LIST OF FIGURES VII

LIST OF TABLES IX

IN"TRODUCTION 1

CHAPTER 1 FACE RECOGNITION OVERVIEW 3

1.1 Overview 3

1.2 Biometrics 3

1.3 Pattern Recognition :·········· 5

1.4 Face Recognition 6

1.5 Real-Life Applications of Face Recognition 8

1.6 Summary 9

CHAPTER 2 FACE RECOGNITION METHODS 10

2.1 Overview : .. 10

2.2 Principal Component Analysis (PCA) 10

2.2.1 Eigenspace Projection · 10

2.2.1.1 Create Eigenspace 11

2.2.1.2 Project Training Images 12

2.2.1.3 Identify Test Images 13

2.3 Linear Discriminant Analysis (LDA) 13

2.4 Independent Component Analysis (ICA) 16

2.5 Locally Linear Embedding (LLE) 17

2.6 Hidden Markov Models (HMM) 18

2.6.1 One-Dimensional HMM 18

2.6.2 Pseudo and Embedded Two-Dimensional HMM 20

2.7 Neural Networks 23

2.8 Summary 24

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS 25

3 .1 Overview 25

III

3.2 Introduction to Artificial Neural Networks 25

3.3 Teaching an Artificial Neural Network 27

3.3.1 Supervised Leaming 27

3.3.2 Unsupervised Learning 29

3.3.3 Learning Laws 30

3.4 Multilayer Perceptron 32

3.5 Back Propagation Neural Network 33

3 .5 .1 Structure of Back propagation Network 34

3.5.2 Back Propagation Network Algorithm 35

3.5.2.1 Feed Forward Calculation 36

3.5.2.2 Error Back Propagation Calculation '. 37

3 .5 .3 Discussion Some Important Issues 40

3.5.3.1 Input Normalization and Weights Initialization 40

3.5.3.2 Training Conversion Criteria 41

3.5.3.3 Techniques and Arising Problems 42

3.5.3.4 Generalization 43

3.6 Summary 43

CHAPTER 4 FEATURE-AVERAGE BASED FACE RECOGNITION 44

4.1 Overview 44

4.2 Image Acquisition 44

4.2.1 Capturing Device 44

4.2.2 Environmental Prerequisites 45

4.3 Database Collection 45

4.4 Automatic Face Recognition System 45

4.4.1 General Architecture 45

4.4.2 Phases of the Automatic Face Recognition System 47

4.4.2.1 Preprocessing 4 7

4.4.2.2 Facial Features Extraction 47

4.4.2.3 Resizing by Averaging 48

4.4.2.4 Implement Averaging Method 51

4.4.2.5 Patterns Vectorizing 52

4.4.2.6 Classification Using Back Propagation 52

4.5 Experimental Results 55

IV

4.5.l Training the Face Images 55

4.5.2 Testing the Face Images 56

4.5.3 Recognition Performance with Glasses 57

4.5.4 Experiments on ORL Face Database 58

4.6 Comparison with Other Face Recognition Methods 59

4. 7 Analysis and Discussion 60

4.8 Software Tools (MATLAB) 61

4.9 Summary 61

CONCLUSION 62

REFERENCES 63

APPENDICES 1-1

Appendix I Matlab Source Code 1-1

Appendix Il Database 11-1

V

LIST OF ABBREVIATIONS

AFR: Automatic Face Recognition

ANN: Artificial Neural Network

ATM: Automatic Transfer Machine

BP: Back Propagation

HCI: Human Computer Interaction

HMM: Hidden Markov Model

ICA: Independent Component Analysis

LDA: Linear Discriminant Analysis

LLE: Locally Linear Embedding

LMS: Least Mean Square

MLP: Multilayer Perceptron

MSE: Mean Square Error

NN: Neural Network

PCA: Principle Component Analysis

PIN: Password Identification Number

PR: Pattern Recognition

SOM: Self Organization Map

VI

LIST OF FIGURES

Figure 1.1 Block Diagram of a Pattern Recognition System 6

Figure 1.2 Block Diagram of a typical Face Recognition System 7

Figure 2.1 Left-to-Right States of a One-Dimensional HMM 19

Figure 2.2 Image Sampling Technique for One-Dimensional HMM 19

Figure 2.3 States of a pseudo Two-Dimensional HMM 20

Figure 2.4 Image Sampling Techniques for Pseudo Two-Dimensional HMM 21

Figure 2.5 HMM Training Scheme 21

Figure 2.6 HMM Recognition Block Diagram 22

Figure 2.7 Neural Network Face Recognition System 24

Figure 3.1 Single - Input Artificial Neuron 27

Figure 3.2 Architecture of Supervised Artificial Neural Network 28

Figure 3.3 Architecture of Unsupervised Artificial Neural Network 30

Figure 3.4 Architecture of Multilayer Perceptron 33

Figure 3.5 Block Diagram of Back Propagation Network 34

Figure 3.6 Back Propagation Network Architecture 35

Figure 3.7 A model Neuron Structure 36

Figure 3.8 Sigmoid Activation Function 37

Figure 3.9 Typical Curve between Overall Error and A single Weight 3 8

Figure 4.1 Block Diagram of Feature-Average Based Face Recognition Using Back

Propagation Neural Networks 46

Figure 4.2 The Face Image in Different Facial Expression: (a) Natural. (b) Smiley. (c)

Sad. (d) Surprised 47

Figure 4.4 Extracted Facial Features Dimensions in Pixels 48

Figure 4.5 Averaging Process 49

Figure 4.6 Architecture of the Back Propagation Neural Networks 53

Figure 4.7 Flowchart of Neural Network Training 54

Figure 4.8 Examples of Training Set Face Images 55

Figure 4.9 Examples of Test Set Face Images 56

Figure 4.10 Mean Square Error vs. Iteration Graph 56

Figure 4.11 Training Set and Test Set with Eye Glasses 57

Figure 4.12 Open and Closed Eyes Test Set Face 57

VII

Figure 4.13 Training Set and Test Set with Dark Glasses 58

Figure 4.14 ORL Face Database Training Set.. 59

Figure 4.15 ORL Face Database Test Set.. 59

VIII

LIST OF TABLES

Table 1.1 Application of Face Recognition Technology 9

Table 4.1 Resizing Process 50

Table 4.2 Final Parameters of Training 55

Table 4.3 Recognition Rates, Accuracy and Run Time of Training and Test Sets 56

Table 4.4 Recognition Accuracy of Face with and without Eye Glasses 57

Table 4.5 Recognition Accuracy of Face Open and Closed Eyes 57

Table 4.6 Recognition Accuracy of Face with and without Dark Glasses 58

Table 4.7 Recognition Rate, Recognition Accuracy and Run Time of Training and Test

Sets of ORL Database 59

Table 4.8 Results of Different Methods of Face Recognition Using ORL Database 60

IX

INTRODUCTION

In the modem information age, human information is valuable. It can be used for the

security and important social issues. Therefore, identification and authentication

methods have developed into a main technology in various areas, such as entrance

control in building and access control for computers.

Face recognition is a natural and straightforward biometric method that human

beings use to identify each other. Humans are able to detect and identify faces in a scene

with little or no effort. Face recognition has a high identification or recognition rate of

greater .than 90% for huge face databases with well-controlled pose and illumination

conditions. This high rate can be used for replacement of lower security requirement

environment and could be successfully employed in different applications.

Automatic face recognition is a vast and modem research area of computer

vision, reaching from face detection, face localization, face tracking, extraction of face

orientation and facial features and facial expressions.

The objectives of the work presented within this thesis are to develop an

automatic face recognition system using feature-average based method. The face

recognition system using back propagation neural networks implementation on multi

expression image sequence (natural, smiley, sad, and surprised). Instead of recognizing

a face from a single view, a sequence of images showing face expressions is used as the

face database. The developed method recognizes faces by using the essential face

features (eyes, nose, and mouth) from different face expressions (natural, smiley, sad,

and surprised). The averages of these features are then determined and represented as

pattern vectors. These vectors will be used as the input to the neural network classifier

(Back Propagation Algorithm) for training process.

This thesis is organized into four chapters. The first 3 chapters present

background information on the face recognition, face recognition methods and artificial

neural networks. The final chapter describes the developed automatic face recognition

system.

Chapter 1 is an introduction to face recognition system. Biometrics technologies,

pattern recognition, and face recognition and their applications are also presented in this

chapter.

1

In Chapter 2 commonly used face recognition methods are presented.

Approaches such as Principle Component Analysis (PCA), Linear Discriminant

Analysis (LDA), Independent Component Analysis (ICA), Locally Linear Embedding

(LLE), Hidden Markov Model (HMM) and Neural Networks.

Chapter 3 is based around the classifier (Back Propagation) that is used in this

research. Background about neural networks and back propagation algorithm are

discussed in this chapter.

Chapter 4 is presents the suggested face recognition system that is developed by

the author. In this chapter all the phases of this face recognition system from capturing

the image to classifying the face (recognized or unrecognized) with the computational

and mathematical forms are discussed in detail.

2

CHAPTER ONE

FACE RECOGNITION OVERVIEW

1.1 Overview

Face recognition is important not only because it has a lot of potential applications in

research fields such as Human Computer Interaction (HCI), biometrics and security, but

also because it is a typical Pattern Recognition (PR) problem whose solution would help

solving other classification problems.

This chapter provides background information about biometrics technologies,

pattern recognition, and' face recognition system and their applications.

1.2 Biometrics

Biometrics, the science of using individual personal characteristics to verify or recover

identity, is set to become the successor to the Personal Identification Number (PIN).

The term biometrics refers to a range of authentication systems. Biometrics is defined as

the capture and use of physiological or behavioral characteristics for personal

identification and I or individual verification purposes.

Biometrics definition is: a measurable physical characteristic or personal trait

used to recognize the identity, or verify the claimed identity, of a person through

automated means" [1]. Biometrics represent the most secure way to identify individuals

because instead of verifying identity and granting access based on the possession or

knowledge of cards, passwords, or tokens, verifying an identity is established (i.e.

access is granted) using a physical and unique biometric characteristic.

Passwords or PINs used alone are responsible for fraud on corporate computer

networks and the Internet because they can be guessed or stolen. Plastic cards, smart

cards or computer token cards used alone are also not secure because they can be

forged, stolen or lost, or become corrupted or unreadable. One can lose his card or

forget a password, 'but he/she cannot lose or forget the fingers, eyes, or face.

The technique of using biometric methods for identification can be widely

applied to forensics, automatic transfer machine (ATM) banking, communication, time

and attendance, and access control.

3

Biometric technologies include:

• Face Recognition

• Finger Print Identification

• Hand Geometry Identification

• Iris Identification

• Voice Recognition

• Signature Recognition

• Retina Identification

Among these methods, there are multiple benefits to face recognition over other

biometric methods. While the other biometrics requires some voluntary action, face

recognition can be used passively. This has advantages for both ease of use and for

covert use such as police surveillance. Face images also allow easy audits and

verification performed by human operators when logging biometrics records. Regarding

data acquisition, it is also easier to acquire good face images than good fingerprints. It

turns out that about 5% of all people can not provide a good enough fingerprint for a

reader to use for verification. The reasons include cut skin, bandaged finger, callused

finger, dry skin, dry humidity, diseased skin, old skin, oriental skin, narrow finger and

smudged sensor on reader. Similar disadvantage caused by the damage of epidermis

tissue happens to hand geometry identification too. Using fingerprint scanners or palm

readers can also transmit germs through a hand rest. In contrast, a face recognition

system is totally hygienic and requires no maintenance because the face is measured

from a distance.

Iris scans can provide very high accuracy rates for person identification.

However, because the iris is so small, it takes two expensive camera motion drives with

high resolution to find the iris. As the camera view has to be narrow to capture the

resolution of the iris, the whole process is highly sensitive to body motion and as a

consequence one has to be somewhat steady in order not to get rejected. Retina readers

sense the retinal vein patterns in t~e back of ones eye. This requires an individual to

look into an eyepiece while some light is being reflected off the back of the eye to

capture the vein patterns. Although retina scanning yields very high accurate

identification rates, most people would still resist having intrusive measurement inside

their eyes. Both iris and retina scanning have lack in failing to identify people who wear

vanity contact lens which cover the iris and retina or people blinking while their picture

4

is being taken. Glare from glasses can also prevent the scanners from finding the iris or

the retina. In contrast, an automated face recognition system only requires either one or

two inexpensive cameras and the cameras do not need to move because they capture a

large enough field of vision to cover the range of people's heights whether they are

standing or sitting. A good face recognition algorithm works even with some glare

reflected from the glasses or with the eyes closed.

Voice recognition for surveillance purposes suffer also as it is not reliable in

noisy environments like public places or across phone lines with variable acoustic

properties. The voice recognition systems are also sensitive to hoarse throat conditions

when people are sick with colds. A tape recording of the correct person's voice can fool

voice recognition systems that do not have a challenge-response process. The signature

is used for legally binding documents, but it usually turns out that people vary their

signatures greatly from time to time and from mood to mood. There are also concerns of

pen and reading surfaces wearing poorly over time. This reduces the reliability of

signature identification systems.

Face recognition is thus easier to be operated indoors and outdoors by detecting

and cropping the area containing suspicious face pattern from complex background [2].

One can also consider the possibility to combine different biometric techniques with

face recognition in order to build multi-modal person authentication systems.

1.3 Pattern Recognition

The study of how machines can observe the environment, learn to distinguish patterns

of interest and make reasonable decisions about the categories of the patterns.

A pattern is the description of any member of a category representing a pattern

class. For convenience, patterns are usually represented by a vector such as:

X I

X 2

X=

where each element x,, , represents a feature of that pattern. It is often useful to think of

a pattern vector as a point in an n-dimensional Euclidean space.

5

Given a pattern; its recognition or classification may be supervised classification

or unsupervised classification. Supervised pattern recognition is characterized by the

fact that the correct classification of every training pattern is known. In the unsupervised

case however, one is faced with the problem of actually learning the pattern classes

present in the given data. This problem is also known as "learning without a teacher".

A pattern recognition system can be utilized in several different applications as

image preprocessing/segmentation, computer vision, speech recognition, automated

target recognition, optical character recognition, man and machine diagnostics,

fingerprint identification, industrial inspection, financial forecast, and medical

diagnosis. Also face recognition is a pattern recognition task performed specifically on

faces.

A typical pattern recognition system block diagram is shown in Figure 1.1. A

pattern recognition system contains sensor, preprocessing mechanism, feature extraction

mechanism (manual or automated), classification or description algorithm, and set of

examples (training set) already classified or described

Feedback/ Ada_gtation

Classification I Cla~s
Algorithm Assignment

Feature
Extraction Sensor Preprocessing

Description
Algorithm

Description

Figure 1.1 Block Diagram of a Pattern Recognition System

1.4 Face Recognition

Face recognition may seem an easy task for humans, and yet computerized face

recognition system still can not achieve a completely reliable performance. The

difficulties arise due to large variation in facial appearance, head size, orientation and

change in environment conditions. Such difficulties make face recognition one of the

6

fundamental problems in pattern analysis. In recent years there has been a growing

interest in machine recognition of faces due to potential application.

To design a complete conventional human face recognition system should

include three stages:

• Detection of an image pattern as a subject and then as a face against either

uniform or complex background;

• Detection of facial landmarks for normalizing the face images to account for

geometrical changes; and

• Identification and verification of face images using appropriate classification

algorithms.

In Figure 1.2, the block diagram of a typical face recognition system is given.

Normalized
Face Image Feature Vector

Classified as
"recognized" or
"unrecognized"

Face Image Feature
Extractor

Pre-processing Classifier

Training
Sets

Face
Database

Figure 1.2 Block Diagram of a typical Face Recognition System

In the block diagram, pre-processing means of early vision techniques, face

images are normalized and if desired, they are enhanced to improve the recognition

performance of the system. Some or all of the following pre-processing steps may be

implemented in a face recognition system:

• Image size normalization

• Histogram equalization, illumination normalization

• Median filtering

• High-pass filtering

• Background removal

• Translational and rotational normalizations

7

After performing some pre-processing (if necessary), the normalized face image

is presented to the feature extraction module in order to find the key features that are

going to be used for classification.

Extracted features of the face image are compared with the ones stored in a face

library (or face database). After doing this comparison, face image is classified as either

recognized or unrecognized.

Training sets are used during the "learning phase" of the face recognition

process. The feature extraction and the classification modules adjust their parameters in

order to achieve optimum recognition performance by making use of training sets.

After being classified as "unrecognized", face images can be added to a library

(or to a database) with their feature vectors for later comparisons. The classification

module makes direct use of the face library [3].

1.5 Real-Life Applications of Face Recognition

An Automated Face Recognition (AFR) system can be utilized in several different

application domains. These domains impact many aspects of human life. In the industry,

the AFR is applicable to photo-security systems, ATM banking building access, and

telecommunication workstation access. In government, the AFR system can meet the

needs in immigration control, border control, full-time monitoring, and airport/seaport

security.

The AFR can improve criminal identification for forensic purpose and counter

terrorism techniques. This is of importance to the intelligence agencies and police

departments. Defense requirements, such military troop entrance control, battlefield

monitoring, and military personnel authentication, are applicable domains for this

technique.

In medicine, the AFR can be useful in studies of the autonomic nervous system,

the psychological reaction of patient, and intensive care monitoring by detecting and

analyzing facial expressions.

8

Some of the applications areas of face recognition technologies have been listed

in Table 1.1.

Table 1.1 Application of Face Recognition Technology [4]

Areas Specific Applications

Driver's Licenses, Entitlement Programs Immigration,
Biometrics

National ID, Passports, Voter Registration Welfare Fraud.

Desktop Logan Application Security, Database Security,
Information Security

File Encryption Intranet Security, Internet Access, Medical

Records Secure Trading Terminals

Advanced Video Surveillance, CCTV Control Portal
Law Enforcement and

Control, Post-Event Analysis Shoplifting and Suspect
Surveillance

Tracking and Investigation

Access Control Facility Access, Vehicular Access

Smart Cards Stored Value Security, User Authentication

Video Game, Virtual Reality, Training Programs, Human-
Entertainment

Robot-Interaction, Human-Computer-Interaction

1.6 Summary

This chapter described brief information as a background on biometric technologies,

pattern recognition, and face recognition and their real life applications.

The commonly used face recognition methods will be presented in the next

chapter.

9

CHAPTER TWO

FACE RECOGNITION METHODS

2.1 Overview
Face recognition is an example of advanced object recognition. The Face recognition is

a widely explored field, and over the past 30 years, numerous algorithms have been

proposed for face recognition.
This chapter presents, in detail, information about the commonly used face

recognition methods that exist today such as Principle Component Analysis (PCA),

Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA), Locally

Linear Embedding (LLB), Hidden Markov Model (HMM) and Neural Network (NN).

2.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [5], also known as Karhunen-Loeve (KL) and

Eigenspace projection for face recognition is based on the information theory approach.

Principal component analysis is a dimensionality reduction technique which is used for

compression and recognition problems. The scheme is based on an information theory

approach that decomposes face images into a small set of characteristic feature images

called eigenfaces, which may be thought of as the principal components of the initial

training set of face images. Recognition is performed by projecting a new image onto

the subspace spanned by the eigenfaces and then classifying the face by comparing its

position in the face space with the positions of known individuals.

2.2.1 Eigenspace Projection

Eigenspace is calculated by identifying the eigenvectors of the covariance matrix

derived from a set of training images. The eigenvectors corresponding to non-zero

eigenvalues of the covariance matrix form an orthonormal basis that rotates and/or

reflects the images in the N-dimensional space. Specifically, each image is stored in a

vector of size N.

i [i i y X = X1 .••••. XN (2.1)

where xi is raw training image.

10

The images are mean centered by subtracting the mean image from each image

vector.

-i i h 1 + ;
x = x - m , w ere m = - "'-' x p i=1

(2.2)

where x; , m and P are mean centered training image, mean image and number of

training images respectively.

These vectors are combined, side-by-side, to create a data matrix of size Nx.P

(where Pis the number of images).

X [-1 I -2 I I -P] = X X ••.•. X (2.3)

where X is data matrix of mean centered training images

The data matrix X is multiplied by its transpose to calculate the covanance

matrix.

(2.4)

where Q is covariance matrix

This covariance matrix has up to P eigenvectors associated with non-zero

eigenvalues, assuming P<N. The eigenvectors are sorted, high to low, according to their

associated eigenvalues. The eigenvector associated with the largest eigenvalue is the

eigenvector that finds the greatest variance in the images. The eigenvector associated

with the second largest eigenvalue is the eigenvector that finds the second most variance

in the images. This trend continues until the smallest eigenvalue is associated with the

eigenvector that finds the least variance in the images.

Identifying images through eigenspace projection takes three basic steps:

• The eigenspace must be created using training images.

• The training images are projected into the eigenspace.

• The test images are identified by projecting them into the eigenspace and

comparing them to the projected training images.

2.2.1.1 Create Eigenspace

The following steps create an eigenspace:

• Center data: Each of the training images must be centered. Subtracting the

mean image from each of the training images centers the training images as

11

shown in equation (2.2). The mean image is a column vector such that each

entry is the mean of all corresponding pixels of the training images.

• Create data matrix: Once the training images are centered, they are combined

into a data matrix of size NxP, where P is the number of training images and

each column is a single image as shown in equation (2.3).

• Create covariance matrix: The data matrix is multiplied by its transpose to

create a covariance matrix as shown in equation (2.4). Covariance is also known

as the angle measure. It calculates the angle between two normalized vectors.

The covariance between images A and B is:

A B
cov(A,B) = jiATI • fBTI (2.5)

Covariance is a similarity measure. By negating the covariance value, it

becomes a distance measure

• Compute the eigenvalues and eigenvectors: The eigenvalues and

corresponding eigenvectors are computed for the covariance matrix.

nv =AV (2.6)

here V is the set of eigenvectors associated with the eigenvalues A.

• Order eigenvectors: Order the eigenvectors vi E V according to their

corresponding eigenvalues Ai EA from high to low. Keep only the

eigenvectors associated with non-zero eigenvalues. This matrix of eigenvectors

is the eigenspace V , where each column of V is an eigenvector.

V = [V1 I V2 I I Vp] (2.7)

2.2.1.2 Project Training Images

Each of the centered training images (.i)is projected into the eigenspace. To project an

image into the eigenspace, calculate the dot product of the image with each of the

ordered eigenvectors.

-i pT-i
X = X (2.8)

where xi is projected centered training image.

12

Therefore, the dot product of the image and the first eigenvector will be the first

value in the new vector. The new vector of the projected image will contain as many

values as eigenvectors.

2.2.1.3 Identify Test Images

Each test image is first mean centered by subtracting the mean image, and is then

projected into the same eigenspace defined by V .

=i i 1 f i y = y - m , where m = - L.J x
p i=l

(2.9)

and

where /, i, and yi are raw test image, mean centered test image, and projected

centered test image respectively.

The projected test image is compared to every projected training image and the

training image that is found to be closest to the test image is used to identify the training

image. The images can be compared using any number of similarity measures; the most

common is the L2 norm.

L2 norm: The L2 norm is also known as the Euclidean norm or the Euclidean

distance when its square root is calculated. The L2 norm of an image A and an image B

1s:

N

L2(A,B) = L(4 -BJ
i=l

2

(2.11)

2.3 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis [6] is a dimensionality reduction technique which is used

for classification problems. LDA is also known as Fisher's Discriminant Analysis and it

searches for those vectors in the underlying space that best discriminate among classes.

Linear Discriminant Analysis creates a linear combination of independent

features which yields the largest mean differences between the desired classes. The

basic idea of LDA is to find a linear transformation such that feature clusters are most

separable after the transformation which can be achieved through scatter matrix

analysis.

13

The goal of LDA is to maximize the between-class scatter matrix measure while

minimizing the within-class scatter matrix measure. LDA groups images of the same

class and separates images of different classes. Images are projected from N

dimensional space (where N is the number of pixels in the image) to C-1 dimensional

space (where C is the number of classes of images). To identify a test image, the

projected test image is compared to each projected training image, and the test image is

identified as the closest training image.

The training images are projected into a subspace. The test images are projected

into the same subspace and identified using a similarity measure. Following are the

steps to follow to find the LDA of a set of images by first projecting the images into any

orthonormal basis.

• Compute means: Compute the mean of the images in each class (m;) and the

total mean of all images (m).

• Center the images in each class: Subtract the mean of each class from the

images in that class.

\:Ix E xi, xi Ex, 1 = x-mi (2.12)

• Center the class means: Subtract the total mean from the class means.

,h = m -m
l

(2.13)

• Create a data matrix: Combine the all images, side-by-side, into one data

matrix.

• Find an orthonormal basis for this data matrix: This can be accomplished by

using a Orthogonal-triangular decomposition or by calculating the full set of

eigenvectors of the covariance matrix of the training data. Let the orthonormal

basis be U.

• Project all centered images into the orthonormal basis: Create vectors that

are the dot product of the image and the vectors in the orthonormal basis.

(2.14)

Project the centered means into the orthonormal basis:

in= UT ,h.
l (2.15)

• Calculate the within class scatter matrix: The within class scatter matrix

measures the amount of scatter between items within the same class. For the ia,

14

class a scatter matrix (S;) is calculated as the sum of the covariance matrices of

the projected centered images for that class.

(2.16)

The within class scatter matrix (Sw) is the sum of all the scatter matrices.

C

s; = Lsi
i=l

(2.17)

where C is the number of classes.

• Calculate the between class scatter matrix: The between class scatter matrix

SB measures the amount scatter between classes. It is calculated as the sum of

the covariance matrices of the projected centered means of the classes, weighted

by the number of images in each class.
C

S """' - -T B = L.J nimimi
i=l (2.18)

where n; is the number of images in the class.

• Solve the generalized eigenvalue problem: Solve for the generalized

eigenvectors (V) and eigenvalues (A) of the within class and between class

scatter matrices.

(2.19)

• Keep the first C -1 eigenvectors: Sort the eigenvectors by their associated

eigenvalues from high to low and keep the first C -1 eigenvectors. These are

the Fisher basis vectors.

• Project images onto eigenvectors: Project all the rotated original (i.e. Not

centered) images onto the Fisher basis vectors. First project the original images

into the orthonormal basis, and then project these projected images onto the

Fisher basis vectors. The original rotated images are projected onto this line

because these are the points that the line has been created to discriminate, not the

centered images.

15

2.4 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) [7] is a statistical method for transforming an

observed multidimensional random vector into its components that are statistically as

independent from each other as possible. ICA is a special case of redundancy reduction

technique and it represents the data in terms of statistically independent variables. ICA

of a random vector consists of searching for a linear transformation that minimizes the

statistical dependence between its components.

The goal of ICA is to provide an independent image decomposition and

representation. In other words, the goal is to minimize the statistical dependence

between the basis vectors.
ICA is a generalization of PCA in the sense that ICA de-correlates the high

order moments of input while PCA encodes the second-order moments only. In the task

of face recognition, ICA can be superior to PCA owing to its ability to represent the

high-order statistics of face images. While the reconstructed face images with a few

leading eigenfaces lose the details and look like low pass filtered versions, the

corresponding residue images contain high-frequency components and are less sensitive

to illumination variation. Since these residue images still contain rich information for

the individual identities, face features are extracted from these residue faces by ICA.

The basic steps to derive the independent component analysis method are as

follows:

• Collect xi ofanndimensionaldatasetx,i=l,2, ... ,m

• Mean correct all the points: Calculate mean mx and subtract it from each data

point, xi - mx

• Calculate the covariance matrix:

(2.20)

• The ICA of x factorizes the covariance matrix C into the following form:

C = FMT where I),. is a diagonal real positive matrix.

• F transforms the original data X into Z such that the components of the new data

Z are independent: X = F Z. Derive the ICA transformation F by using the

algorithm which consists of three operations: whitening, rotation, and

normalization.

16

• Compare the test image's independent components with the independent

components of each training image by using a similarity measure. The result is

the training image which is the closest to the test image.

2.5 Locally Linear Embedding (LLE)

Dimensionality reduction is an important and necessary preprocessing of

multidimensional data, such as face images. The purposes of reducing dimensionality of

observation data are to compress the data to reduce storage requirements, to eliminate

noise, to extract features from data for recognition, and to project data to a lower

dimensional space.

For face images, recently developed Locally Linear Embedding (LLE) [8]

method is used as nonlinear dimensionality reduction. The locally linear embedding

(LLE) algorithm's attractive properties are:

• Only two parameters to be set

• Optimizations not involving local minima,

• Preservation of local geometry of high dimensional data in the embedded space

• A single global coordinate system of the embedded space.

The LLE algorithm is given as follows:

In LLE, the basic assumption is that the neighborhood of a given data point is

locally linear. In other words, a data-point can be reconstructed as a linear combination

of its neighboring points. When projecting to a low dimensional subspace, LLE

preserves this locally linear structure. To enforce the linear structure, the following

reconstruction error is defined:

(2.21)

In this equation, J::\ are the original data points and WiJ are the weights used for

reconstruction. In contrast to a linear method, the second sum is only over the neighbors

of point i, denoted N(i). From the local reconstruction in the high dimensional space,

one can define a similar reconstruction error in the low dimensional space:

(2.22)

Putting everything together, this creates the following embedding procedure:

• First, build the neighborhood map N(i).

17

• Second, using the neighborhood map determines the reconstruction weights Wu

• Finally, using the neighborhood map and the reconstruction weights, determine

the embedded values f.
Several key points are worth mentioning. The construction of the neighborhood

map is done under the constraint L J Wu = 1 . Also, a regularization term is typically

used when calculating the weight matrix to prevent numerical errors and to allow

embedding when the number of neighbors exceeds the number of dimensions. Finally,

this entire method is computationally feasible and involves solving some linear

equations and an eigenvalue problem.

2.6 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) [9] have been successfully used for speech recognition

and more recently in action recognition where data is essentially one dimensional over

time. In order to use HMM for recognition, an observation sequence is obtained from

the test signal and then the likelihood of each HMM generating this signal is computed.

The HMM which has the highest likelihood then identifies the test signal. Finding the

state sequence which maximizes the probability of an observation is done using the

Viterbi algorithm, which is a simple dynamic programming optimization procedure.

2.6.1 One-Dimensional HMM

HMM has been extensively used for speech recognition, where data is naturally one

dimensional along the time axis. The equivalent fully-connected two-dimensional HMM

would lead to a very high computational cost problem.

Samaria has proposed using the lD continuous HMM for face recognition [10].

For a frontal face the states of the Markov model include forehead, eyes, nose, mouth,

and chin, each representing a state. These states always occur in the same order, from

top to bottom, even if faces undergo small rotations in the image plane. Each facial

region will be assigned to a state, in a left-to-right one dimensional hidden Markov

model (Figure 2.1). Only transitions between adjacent states in a top to bottom manner

are allowed.

18

all a22 a44 a55 a33

Forehead Mouth Chin Eyes Nose

Figure 2.1 Left-to-Right States of a One-Dimensional HMM [11]

An observation sequence is generated from a face image (Xx Y) usmg a

sampling window (MxL) with overlap (Figure 2.2). The observation sequence is

composed of vectors that represent the consecutive horizontal strips, where each vector

contains the pixel values from the associated strips. The goal of the training stage is to

optimize the hidden Markov model parameters to best describe the observations. This is

done by maximizing the probability of the observed sequence given a set of variable

parameters. Recognition is done by matching the test image against each of the trained

models. To do this the image is converted to an observation sequence and then model

likelihoods for all database images are computed. The model with the highest likelihood

reveals the identity of the unknown face.

~t

l-·J- l . . LI
y

,~: ·,.l. ~~'il'

Ll.

Figure 2.2 Image Sampling Technique for One-Dimensional HMM [11]

19

2.6.2 Pseudo and Embedded Two-Dimensional HMM

A more flexible HMM, that allows for shifts in both horizontal and vertical directions, is

obtained by using a pseudo two-dimensional HI\1M. It has been designed specifically to

deal with two-dimensional signals and has recently been proposed for face recognition

applications. The structure is not fully connected in two-dimensions, hence it is pseudo

two-dimensional. States are linked as in a one-dimensional HMM to form vertical

superstates. Each superstate in the one-dimensional HMM is represented by an

embedded one-dimensional HMM (Figure 2.3).

Forehead

Eyes

Nose

Mouth

Chin

Figure 2.3 States of a pseudo Two-Dimensional HMM [11]

Samaria introduced an equivalent one-dimensional HMM and used it for face

recognition [10]. The observation sequence is generated by letting a window (PxL) scan

the image (XxY) from left to right, and top to bottom (Figure 2.4). Each sample

overlaps other samples both in horizontal (P) and vertical (M) direction. The intensities

of the pixels inside each block were used as observation vectors.

20

Qi

y

Q :r

~·
Figure 2.4 Image Sampling Techniques for Pseudo Two-Dimensional HMM [11]

After extracting blocks from each image in the training set, the observation

vectors are obtained to train each of the HMMs. For face recognition each individual in

the database is represented by one HMM face model. A set of images representing

different instances of the same face are used to train each HMM.

Model .--. Initialization
llllllll::,

ta . Block - Feature . ~ - ~
Extraction Extraction ...

~ Model
Reestimation

, ..
No

Model
Convergence Yes .

Tr
Da

Model
Parameters

Figure 2.5 HMM Training Scheme [11]

The general HMM training scheme (Figure 2.5) is a variant of the K-means

iterative procedure for clustering data. First the initial parameter values are computed

iteratively using the training data and the prototype model. The goal of this stage is to

21

find a good estimate for the observation probability. Good initial estimates of the

parameters are essential for rapid and proper convergence to the global maximum of the

likelihood function. On the first cycle the data is uniformly segmented, matched with

each model state and the initial model parameters are extracted. On successive cycles

the set of training observation cycles are segmented into states using the Viterbi

algorithm [12]. The result of segmenting each of the training sequences, for each of the

N states, is a maximum likelihood estimate of the set of observations that occur within

each state according to the current model.

The model parameters are re-estimated using the Baum-Welch re-estimation

procedure [13]. This procedure adjusts the model parameters so as to maximize the

probability of observing the training data, given each corresponding model. The

resulting model is then compared to the previous model by computing a distance score

that reflects the statistical similarity of the HMM. If the model distance score exceeds a

threshold then the old model is replaced by the new model and the training loop is

repeated. If the model distance score falls below the threshold, then model convergence

is assumed and the final parameters are saved. HMM recognition block diagram has

been shown in Figure 2.6.

Test
Image

Probability
Computation Block

Extraction

Feature
Extraction

Probability
Computation

.-----~ Model
I Maximum I Recognized

Selection _.

Probability
Computation

Figure 2.6 HMM Recognition Block Diagram [11]

22

The face recognition begins by looking within each rectangular window in the

test image, extracting observation vectors. After extracting the observation vectors as in

the training phase, the probability of the given observation sequence given each face

model is computed using a simple Viterbi recognizer. The model with the highest

likelihood is selected and this model reveals the identity of the unknown face.

2. 7 Neural Networks

Recognition of visual objects is performed effortlessly in our everyday life by humans.

A previously seen face is easily recognized regardless of various transformations like

change in size and position. It is known that humans process a natural image in less than

150 ms. The brain thus performs these tasks at very high speed. Neural networks are

attempts to create face recognition systems that are based on the way humans detect and

recognize faces.

The multilayer perceptron (MLP) neural network is a good tool for classification

purposes. It can approximate almost any regularity between its input and its output. The

weights are adjusted by supervised training procedure called back-propagation (BP).

Back-propagation is a kind of gradient descent method, which searches for an

acceptable local minimum in order to achieve minimal error. Error is defined as the root

mean square of differences between real and desired outputs from the neural network.

Often even a simple network can be very complex and difficult to train. A

typical image recognition network requires as many input nodes as there are pixels in

the image. Cottrell and Flemming used two MLP networks working together [14]. The

first one operates in an auto-association mode and extracts features for the second

network, which operates in the more common classification mode. In this way the

hidden layer output constitutes a compressed version of the input image and can be used

as input to the classification network.

One of the more successful face recognition with neural networks is a result of

combining local image sampling, a self organizing map (SOM) neural network and a

convolutional neural network (Figure 2.7) [15]. SOM is an unsupervised learning

process which learns the distribution of a set of patterns without having any class

information. A pattern is projected from an input space to a position in the map and

information is thereby coded as the location of an activated node. Unlike most other

classification or clustering techniques SOM preserves the topological ordering of

23

classes. This feature makes it useful in classification of data which includes a large

number of classes.

r---------------------------------

I ---------------------1 I
I I
I I
I I
I I
I I
I I

Multi
Layer

Perceptron
Style

Classifier Self- Feature
Extraction
Layers

Organizing H·;
Map ;-;, ,...._ __,

I I. Nearest _
Neighbor l·Jc1assification
Classifier ·

"i I r-,.
Image

Sampling ,_.:,·._

I Karhunen- I Y:
!I I

Lo eve
Transform

:1 I
I I

· ··., \ .
'----------' I I

: : _ Convolutional Neural Network : . __ \ ·~------------------ ... _

I
I
I

Dimensionality
Reduction Multi-

Layer
Perceptron

Figure 2.7 Neural Network Face Recognition System [15]

2.8 Summary

This chapter presented known face recognition methods such as Principle Component

Analysis (PCA), Linear Disciminant Analysis (LDA), Independent Component Analysis

(ICA), Locally Linear Embedding (LLE), Hidden Markov Model (HMM) and Neural

Network (NN).

The next chapter will present in detail neural networks as classifiers. Neural

networks will be used as part of the face recognition system that is developed in this

thesis.

24

CHAPTER THREE

ARTIFICIAL NEURAL NETWORKS

LIBRARY

3.1 Overview

The idea of face recognition comes from real life. The human brain can memorize and

recognize the face of any person. The neural networks model the human brain.

Neural network (NN) algorithms for face recognition work by applying the input

face after preprocessing to the back propagation neural network. The network is trained

to output the presence or absence of a face.

The basic concepts and the algorithms which are used in artificial neural

networks will be presented in this chapter. Back propagation algorithm will be

explained in detail since the algorithm will be used in the developed face recognition

system.

3.2 Introduction to Artificial Neural Networks

An artificial neural network (ANN) is a system composed of many simple processing

elements operating in parallel whose function is determined by network structure,

connection strengths, and the processing performed at computing element or nodes.

Neural network architecture is inspired by the architecture of biological nervous

systems, which use many simple processing elements operating in parallel to obtain

high computation rates.
An artificial neural network is a massively parallel distributed processor that has

a natural propensity for storing experiential knowledge and making it available for use.

It resembles the brain in two respects:

• Knowledge is acquired by the network through a learning process.

• Intemeuron connection strengths known as synaptic weights are used to store the

knowledge [16].

The neuron is a "many inputs one output" unit. The output can be excited or not

excited, just two possible choices. The signals from other neurons are summed together

and compared against a threshold to determine if the neuron shall excite. The input

signals are subject to attenuation in the synapses which are junction parts of the neuron.

25

ANN draws much of their inspiration from the biological nervous system. It is

therefore very useful to have some knowledge of the way this system is organized. Most

living creatures, which have the ability to adapt to a changing environment, need a

controlling unit which is able to learn. Higher developed animals and humans use very

complex networks of highly specialized neurons to perform this task. The control unit -

or brain - can be divided in different anatomic and functional sub-units, each having

certain tasks like vision, hearing, motor and sensor control.

The brain is connected by nerves to the sensors and actors in the rest of the

body. The brain consists of a very large number of neurons, about 1011 in average.

These can be seen as the basic building bricks for the central nervous system. The

neurons are interconnected at points called synapses. The complexity of the brain is due

to the massive number of highly interconnected simple units working in parallel, with

an individual neuron receiving input from up to 10000 others [17).

Structurally the neuron can be divided in three major parts: the cell body (soma),

the dendrites, and the axon. The cell body contains the organelles of the neuron and also

the 'dendrites' are originating there. These are thin and widely branching fibers,

reaching out in different directions to make connections to a larger number of cells

within the cluster. Input connections are made from the axons of other cells to the

dendrites or directly to the body of the cell. These are known as axondentrititic and

axonsomatic synapses.
There is only one axon per neuron. It is a single and long fiber, which transports

the output signal of the cell as electrical impulses (action potential) along its length. The

end of the axon may divide in many branches, which are then connected to other cells.

The branches have the function to fan out the signal to many other inputs [18],[19).

A single-input neuron artificial network is shown in Figure 3.1. The scalar input

p is multiplied by the scalar weight w to form wp, one of the terms that is sent to the

summer. The other input, 1, is multiplied by a bias b and then passed to the summer.

The summer output net, often referred to network input, goes into an activation function

f, which produces the scalar neuron output. This is the simplest form of the artificial

neuron and is known as a perceptron.

26

General Neuron

input output

bias

1

Figure 3.1 Single - Input Artificial Neuron

The neuron output is calculated by equation 3.1:

output= f(wp + b) (3.1)

The simple model for artificial neuron in the Figure 3.1 can indicate the same

way of the biological neuron. The weight w corresponds to the strength of a synapse,

the cell body is represented by the summation and the activation function, and the

neuron output represents the signal in the axon.

3.3 Teaching an Artificial Neural Network

Artificial neural networks learning algorithms can be divided into two main groups that

are supervised (Associative learning) and unsupervised (Self-Organization)

3.3.1 Supervised Learning

The vast majority of artificial neural network solutions have been trained with

supervision. In this mode, the actual output of a neural network is compared to the

desired output. Weights, which are usually randomly set to begin with, are then adjusted

by the network so that the next iteration, or cycle, will produce a closer match between

the desired and the actual output. The learning method tries to minimize the current

errors of all processing elements. This global error reduction is created over time by

continuously modifying the input weights until acceptable network accuracy is reached.

The supervised artificial neural network needs teacher to describe what the

network should have given as response. The difference between target (desired output)

and the actual output, the error is determined and back propagated through the network

to adjust the network. The basic architecture of supervised artificial neural network is

shown in Figure 3.2.

27

Target

Input Neural

Network

Output

Adjustment

Figure 3.2 Architecture of Supervised Artificial Neural Network

With supervised learning, the artificial neural network must be trained before it

becomes useful. Training consists of presenting input and output data to the network.

This data is often referred to as the training set. That is, for each input set provided to

the system, the corresponding desired output set is provided as well. In most

applications, actual data must be used. This training phase can consume a lot of time. In

prototype systems, with inadequate processing power, learning can take weeks. This

training is considered complete when the neural network reaches a user defined

performance level. This level signifies that the network has achieved the desired

statistical accuracy as it produces the required outputs for a given sequence of inputs.

When no further learning is necessary, the weights are typically frozen for the

application. Some network types allow continual training, at a much slower rate, while

in operation. This helps a network to adapt to gradually changing conditions.

Training sets need to be fairly large to contain all the needed information if the

network is to learn the features and relationships that are important. Not only do the sets

have to be large but the training sessions must include a wide variety of data. If the

network is trained just one example at a time, all the weights set so meticulously for one

fact could be drastically altered in learning the next fact. The previous facts could be

forgotten in learning something new. As a result, the system has to learn everything

together, finding the best weight settings for the total set of facts. For example, in

teaching a system to recognize pixel patterns for the ten digits, if there were twenty

examples of each digit, all the examples of the digit seven should not be presented at the

same time.

28

Target

Input Neural

Network

Output

Adjustment

Figure 3.2 Architecture of Supervised Artificial Neural Network

With supervised learning, the artificial neural network must be trained before it

becomes useful. Training consists of presenting input and output data to the network.

This data is often referred to as the training set. That is, for each input set provided to

the system, the corresponding desired output set is provided as well. In most

applications, actual data must be used. This training phase can consume a lot of time. In

prototype systems, with inadequate processing power, learning can take weeks. This

training is considered complete when the neural network reaches a user defined

performance level. This level signifies that the network has achieved the desired

statistical accuracy as it produces the required outputs for a given sequence of inputs.

When no further learning is necessary, the weights are typically frozen for the

application. Some network types allow continual training, at a much slower rate, while

in operation. This helps a network to adapt to gradually changing conditions.

Training sets need to be fairly large to contain all the needed information if the

network is to learn the features and relationships that are important. Not only do the sets

have to be large but the training sessions must include a wide variety of data. If the

network is trained just one example at a time, all the weights set so meticulously for one

fact could be drastically altered in learning the next fact. The previous facts could be

forgotten in learning something new. As a result, the system has to learn everything

together, finding the best weight settings for the total set of facts. For example, in

teaching a system to recognize pixel patterns for the ten digits, if there were twenty

examples of each digit, all the examples of the digit seven should not be presented at the

same time.

28

How the input and output data is represented, or encoded, is a major component

to successfully instructing a network. Artificial networks only deal with numeric input

data. Therefore, the raw data must often be converted from the external environment.

Additionally, it is usually necessary to scale the data, or normalize it to the network's

paradigm. This pre-processing of real-world stimuli, be they cameras or sensors, into

machine readable format is already common for standard computers. Many conditioning

techniques which directly apply to artificial neural network implementations are readily

available. It is then up to the network designer to find the best data format and matching

network architecture for a given application.

After a supervised network performs well on the training data, then it is

important to see what it can do with data it has not seen before. If a system does not

give reasonable outputs for this test set, the training period is not over. Indeed, this

testing is critical to insure that the network has not simply memorized a given set of data

but has learned the general patterns involved within an application.

One of the most commonly used supervised neural network model is back

propagation network that uses back propagation learning algorithm. Back propagation

algorithm is one of the well-known algorithms in neural networks [20].

3.3.2 Unsupervised Learning

Unsupervised learning is the great promise of the future. Currently, this learning method

is limited to networks known as self-organizing maps. These kinds of networks are not

in widespread use. They are basically an academic novelty. Yet, they have shown they

can provide a solution in a few instances, proving that their promise is not groundless.

They have been proven to be more effective than many algorithmic techniques for

numerical aerodynamic flow calculations. They are also being used in the lab where

they are split into a front-end network that recognizes short, phoneme-like fragments of

speech which are then passed on to a back-end network. The second artificial network

recognizes these strings of fragments as words.

For an unsupervised learning rule, the training set consists of input training

patterns only. Therefore, the network is trained without benefit of any teacher. The

network learns to adapt based on the experiences collected through the previous training

patterns. The basic architecture of an unsupervised system is shown in Figure 3 .3.

29

Input Neural

Network
Output -----.---+-

Adjustment

Figure 3.3 Architecture of Unsupervised Artificial Neural Network

This promising field of unsupervised learning is sometimes called self

supervised learning. These networks use no external influences to adjust their weights.

Instead, they internally monitor their performance. These networks look for regularities

or trends in the input signals, and makes adaptations according to the function of the

network. Even without being told whether it's right or wrong, the network still must

have some information about how to organize itself. This information is built into the

network topology and learning rules. An unsupervised learning algorithm might

emphasize cooperation among clusters of processing elements. In such a scheme, the

clusters would work together. If some external input activated any node in the cluster,

the cluster's activity as a whole could be increased. Likewise, if external input to nodes

in the cluster was decreased, that could have an inhibitory effect on the entire cluster.

Competition between processing elements could also form a basis for learning.

Training of competitive clusters could amplify the responses of specific groups to

specific stimuli. As such, it would associate those groups with each other and with a

specific appropriate response. Normally, when competition for learning is in effect, only

the weights belonging to the winning processing element will be updated [21].

3 .3 .3 Learning Laws

Many learning laws are in common use. Most of these laws are some sort of variation of

the best known and oldest learning law, Hebb's Rule. Research into different learning

functions continues as new ideas routinely show up in trade publications. Some

researchers have the modeling of biological learning as their main objective. Others are

experimenting with adaptations of their perceptions of how nature handles learning.

Either way, man's understanding of how neural processing actually works is very

limited. Leaming is certainly more complex than the simplifications represented by the

learning laws currently developed. A few of the major laws are presented as examples.

30

Hebb's Rule:

The first, and undoubtedly the best known, learning rule were introduced by Donald

Hebb. The description appeared in his book The Organization of Behavior in 1949. His

basic rule is: If a neuron receives an input from another neuron and if both are highly

active (mathematically have the same sign), the weight between the neurons should be

strengthened [22].

Hopfield Law:
It is similar to Hebb's rule with the exception that it specifies the magnitude of the

strengthening or weakening. It states, "if the desired output and the input are both active

or both inactive, increment the connection weight by the learning rate, otherwise

decrement the weight by the learning rate [23].

The Delta Rule:
This rule is a further variation of Hebb's Rule. It is one of the most commonly used.

This rule is based on the simple idea of continuously modifying the strengths of the

input connections to reduce the difference (the delta) between the desired output value

and the actual output of a processing element. This rule changes the synaptic weights in

the way that minimizes the mean squared error of the network. This rule is also referred

to as the Widrow-Hoff Learning Rule and the Least Mean Square (LMS) Learning Rule

[24]. The way that the Delta Rule works is that the delta error in the output layer is

transformed by the derivative of the transfer function and is then used in the previous

neural layer to adjust input connection weights. In other words, this error is back

propagated into previous layers one layer at a time. The process of back-propagating the

network errors continues until the first layer is reached. The network type called

Feedforward, Back-propagation derives its name from this method of computing the

error term. When using the delta rule, it is important to ensure that the input data set is

well randomized. Well ordered or structured presentation of the training set can lead to

a network which can not converge to the desired accuracy. If that happens, then the

network is incapable of learning the problem.

31

The Gradient Descent Rule:

This rule is similar to the Delta Rule in that the derivative of the transfer function is still

used to modify the delta error before it is applied to the connection weights. Here,

however, an additional proportional constant tied to the learning rate is appended to the

final modifying factor acting upon the weight. This rule is commonly used, even though

it converges to a point of stability very slowly. It has been shown that different learning

rates for different layers of a network help the learning process converge faster. In these

tests, the learning rates for those layers close to the output were set lower than those

layers near the input [25].

Kohonen's Learning Law:

This procedure, developed by Teuvo Kohonen, was inspired by learning in biological

systems. In this procedure, the processing elements compete for the opportunity to

learn, or update their weights. The processing element with the largest output is

declared the winner and has the capability of inhibiting its competitors as well as

exciting its neighbors. Only the winner is permitted an output, and only the winner plus

its neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training period. The

usual paradigm is to start with a larger definition of the neighborhood, and narrow in as

the training process proceeds. Because the winning element is defined as the one that

has the closest match to the input pattern, Kohonen networks model the distribution of

the inputs. This is good for statistical or topological modeling of the data and is

sometimes referred to as self-organizing maps or self-organizing topologies [26].

3.4 Multilayer Perceptron

The multilayer perceptron (MLP) is a hierarchical structure of several perceptrons. A

single perceptron is not very useful because of its limited mapping ability. No matter

what activation function is used, the perceptron is only able to represent an oriented

ridge-like function. The perceptrons can, however, be used as building blocks of a

larger, much more practical structure. A typical multilayer perceptron (MLP) network

consists of a set of source nodes forming the input layer, one or more hidden layers of

computation nodes, and an output layer of nodes. The input signal propagates through

the network layer-by-layer. The signal-flow of such a network with one hidden layer is

shown in Figure 3 .4 [16].

32

Input Layer Hidden Layer Output Layer
i k j

P1 •• l~euron,
, ~ j Neuron I ~ 01

P2~ ')l"I Neuron
w~/

K \ J '

Neuron
Neuron

Figure 3.4 Architecture of Multilayer Perceptron

The supervised learning problem of the multilayer perceptron can be solved with

the back-propagation algorithm. The algorithm consists of two steps. In the forward

pass, the predicted outputs corresponding to the given inputs. In the backward pass,

partial derivatives of the cost function with respect to the different parameters are

propagated back through the network. The chain rule of differentiation gives very

similar computational rules for the backward pass as the ones in the forward pass. The

network weights can then be adapted using any gradient-based optimization algorithm.

The whole process is iterated until the weights have converged [16]. The multilayer

perceptron network can also be used for unsupervised learning by using the so called

auto-associative structure. This is done by setting the same values for both the inputs

and the outputs of the network. The extracted sources emerge from the values of the

hidden neurons. This approach is computationally rather intensive. The multilayer

perceptron network has to have at least three hidden layers for any reasonable

representation and training such a network is a time consuming process.

3.5 Back Propagation Neural Network

In the artificial neural networks, there are several network architectures and training

algorithms are available, the back-propagation algorithm is most popular algorithm.

Back propagation neural network architecture is very popular because it can be applied

to many different tasks.

33

Feedback Path Back Propagation

Algorithm Network

Network
Inputs

Network
Outputs

Desired
Output

Training Set

Figure 3.5 Block Diagram of Back Propagation Network

In Figure 3.5 the block diagram of back propagation network is shown. The

back-propagation algorithm is a supervised learning algorithm for artificial neural

networks. It extends the weight update rule used in the simple perceptron learning

algorithm to multilayer feed forward artificial neural network.

The name "back-propagation" derives from the manner in which information is

propagated across the network on each pass of the algorithm, the errors at the output

nodes are passed back to the hidden nodes using the network connections, and the

resulting information is used to update the connection weights.

3.5.1 Structure of Back propagation Network

Feed-forward neural networks trained by back propagation consist of several layers of

simple processing elements called neurons, interconnections, and weights that are

assigned to those interconnections. Each neuron contains the weighted sum of its inputs

filtered by a sigmoid transfer function. The neurons are interconnected in such a way

that information relevant to the I/0 mapping is stored in the weights. The various layers

of neurons in back propagation networks receive, process, and transmit information on

the relationships between the input parameters and corresponding responses. Aside from

the input and output layers, these networks incorporate one or more "hidden".

Architecture of back propagation network is shown in Figure 3.6.

34

Forward Pass

Input Layer Hidden Layers Output Layer

Backward Pass

Figure 3.6 Back Propagation Network Architecture

3.5.2 Back Propagation Network Algorithm

In the back propagation learning algorithm, the network begins with a random set of

weights. An input vector is fed forward through the network, and the output values are

calculated using this initial weight set. Next, the calculated output is compared with the

measured output data, and the squared difference between this pair of vectors

determines the overall system error. The network attempts to minimize this error using

the gradient descent approach, in which the network weights are adjusted in the

direction of decreasing error.

The steps of back propagation algorithm can be listed as the following:

Step 1: Initialize hidden and output weights to small random values.

Step 2: Input training vector.

Step 3: Calculate outputs of hidden neurons.

Step 4: Calculate outputs of output neurons.

Step 5: Calculate the differences between the results of outputs of output neurons and

targets.

35

Step 6: Back propagate the error to update the hidden and the output weights.

Step 7: Repeat the steps 3, 4, 5, and 6 until reaching the goal error.

Step 8: Upon conversion save hidden and output weights for use in feed forward

calculations.

3.5.2.1 Feed Forward Calculation

When a back propagation network is cycled, the activations of the input units are passed

forward to the output layer through the connecting weights. The starting point for most

neural networks is a model neuron, as in Figure 3.7.

This neuron consists of multiple inputs and a single output. Each input is

modified by a weight, which multiplies with the input value. The neuron will combine

these weighted inputs and, with reference to activation function determine its output.

WjJ

P1 ------ - net, lj:_1 O· ~ J

,- ~ rvcur ou \ P2

Sigmoid
Function

Pi

Figure 3.7 A model Neuron Structure

The main idea in feed forward calculation is passing inputs forward and all

outputs are computed through sigmoid function. The output of each neuron is a function

of its inputs.

In particular, the output of the jth neuron in any layer is described by two sets of

equations 3.2 and 3.3:

net . = "'""" p. w .. J L...,; l jl
(3.2)

0 J = frh (net J) (3.3)

For every neuron, j, in a layer, each of the i inputs, PJ, to that layer is multiplied by a

previously established weight, wu. These are all summed together, resulting in the

36

internal value of this operation, net; This value is then sent through an activation

function.js;

The activation function is usually the sigmoid function, which has an input to

output mapping as shown in Figure 3.8. The resulting output, OJ, is an input to the next

layer or it is a response of the neural network if it is the last layer.

Output Value

1

-0.5 0 0.5 1

Figure 3.8 Sigmoid Activation Function

The output of the neuron with sigmoid activation function is given by equation

3.4:

1
OJ =f(netJ)= (l+exp(-netJ)) (3.4)

The derivative of the sigmoid function can be obtained as follows equation 3.5:

8/(netJ) =OJ *(l-OJ)=f(netJ)*(l-f(netJ))
anetJ

(3.5)

3.5.2.2 Error Back Propagation Calculation

The error back propagation calculations are applied only during the training of the

neural network. The vital elements in these calculations are the error signal, learning

rate, momentum factor, and weight adjustment.

• Signal Error:

During the network training, the feed forward output state calculation is combined with

backward error propagation and weight adjustment calculations that represent the

network's learning. Central to the concept of training a neural network is the definition

of network error.

37

Rumelhart and McClelland define an error term that depends on the difference

between the output values an output neuron is supposed to have, called the target value

Tj, and the value it actually has as a result of the feed forward calculations, Oj [27]. The

error term represents a measure of how well a network is training on a particular

training set.

A method called gradient descent is used to minimize the total error on the

patterns in the training set. In gradient descent, weights are changed in proportion to the

negative of an error derivative with respect to each weight given by equation 3.6:

~Wp =-~[~i] (3.6)

where r; is the learning rate and E is the average over all training instances of the sum

over all output neurons (total error).

Weights move in the direction of steepest descent on the error surface defined by

the total error (summed across patterns) given by equation 3.7:

E=L L (Tp- -Op-)2 . 'l]
p J

(3.7)

where O Pi the actual output response to pattern p and T Pi is the target output value.

Figure 3.9 illustrates the concept of gradient descent using a single weight. After

the error on each pattern is computed, each weight is adjusted in proportion to the

calculated error gradient back propagated from the outputs to the inputs. The changes in

the weights reduce the overall error in the network.

Error

W·· Jl

Figure 3.9 Typical Curve between Overall Error and A single Weight [26]

38

The aim of the training process is to minimize this error over all training

patterns. From equation 3.2, it can be seen that the output of a neuron in the output layer

is a function of its input, or OJ = fth (net J). The first derivative of this function

0 J = ft~ (net J) is an important element in error back propagation. For output layer

neurons, a quantity called the error signal is represented by D.. Pi which is defined in

equation 3.8:

D.. Pi = ft~ (net Pi)* (TpJ - 0 Pi)= (TpJ - 0 Pi)* 0 Pi * (1- 0 Pi) (3.8)

This error value is propagated back and appropriate weight adjustments are

performed. This is done by accumulating the D.. 's for each neuron for the entire training
set, add them, and propagate back the error based on the grand total ~ . This is called

batch (epoch) training.

• Learning Rate and Momentum Factor
There are two essential parameters that do affect the learning capability of the neural

network. First the learning rate coefficient r; which defines the learning 'power' of a
neural network. Second the momentum factor a which defines the speed at which the
neural network learns. This can be adjusted to a certain value in order to prevent the

neural network from getting caught in what is called local energy minima. Both rates

can have a value between O and 1.
The larger the learning rate r; the larger the weight changes on each epoch, and

the quicker the network learns. However, the size of the learning rate can also influence

whether the network achieves a stable solution. If the learning rate gets too large, then

the weight changes no longer approximate a gradient descent procedure. Oscillation of

the weights is often the result.
The ideal case is using the largest learning rate possible without triggering

oscillation. This would offer the most rapid learning and the least amount of time spent

waiting at the computer for the network to train. One method that has been proposed is a

slight modification of the back propagation algorithm so that it includes a momentum

term.

39

• Weight Adjustment

Each weight has to be set to an initial value. Random initialization is usually performed.

Weight adjustment is performed in stages, starting at the end of the feed forward phase,

and going backward to the inputs of the hidden layer.

The weights that feed the output layer and the hidden layer are updated using

equation 3.9. This also includes the bias weights at the output layer neurons. However,

in order to avoid the risk of the neural network getting caught in local minima, the

momentum term can be added as in equation 3.10.

w1;(n+l) = WJi(n)-r;!:.pJQ;i

wji(n + 1) = wji(n)- (1- a)r;jj_pjo;i + a[owp(n)]

(3.9)

(3.10)

where the subscript n is the learning epoch and OW Ji (n) stands for the previous weight

change. The bias weights at the output and hidden layer neurons are updated, similarly

[28].

3.5.3 Discussion Some Important Issues

There are some issues, which may cause some problem in neural networks, if totally

ignored. For example input normalization before feeding data into a neural network is

crucial. Moreover, appropriate weights initialization is needed. Also the other issues are

very important in neural networks like training conversion criteria, various

techniques/problems and generalization.

3.5.3.1 Input Normalization and Weights Initialization

The contribution of an input will depend heavily on its variability relative to other

inputs. If for example one of the inputs has range of O to 1 and another has a range of O

to 1000, then the contribution of the first input will be swamped by the second input. So

it is essential to rescale the inputs so their variability reflects their importance. For lack

of any prior information (regarding the importance of each input), it is common to

normalize each input to the same range or the same standard deviation [29].

Typically inputs are normalized to same small ranges, like [0,1] or [-1,1]. In

particular any scaling that gathers input values around zero works better. So instead of a

[-1, 1] scale, it might be preferable to normalize the inputs so as to have mean value of 0

and standard deviation of 1.

40

Weights initialization follows nearly the same path as input normalization. The

mam emphasis in the neural network literature on initial values has been on the

avoidance of saturation, hence the desire to use small random values. Symmetry

breaking in the weight space is needed in order to make neurons compute different

functions. If all" nodes have identical weights then they would respond identically.

Therefore the gradient, which updates the weights, would be the same for each neuron.

This way the weights would remain identical even after the update and this means no

learning. A special case is to initialize all weights of every neuron to 0. Then in every

neuron the gradient of a zero function would be zero and thus weights would remain

zero until training is terminated.

Small weights (as well as small inputs) are needed to avoid immediate saturation

because large weights could amplify a moderate input to produce an extremely large

weighted sum at the inputs of the next layer. This would put the nodes into the flat

regions of their nonlinearities and learning would be very slow because of the very

small derivatives [30].

3.5.3.2 Training Conversion Criteria

Stopping of training when the back propagation network is trained has to be known.

Since various "learning rate - momentum factor- number hidden neurons"-schemes are

being tested to adapt the stopping criteria to each case in the network to get a good

efficient learning.

Four basic termination conditions when training an artificial neural network:

• Fixed number of iterations: Iterations, also called epochs, refer to the number of

times the total training set is being presented in the neural network.

• Use threshold for the error: Empirically estimate a certain value for the error,

which considered being acceptable.

• Early stopping: Divide the available data into training and validation sets.

Commonly use a large number of hidden units and very small initial values.

Compute the validation error rate periodically during training. Finally, stop

training when the validation errors rate "start to go up". However, it is important

to stress that the validation error is not a good estimate of the generalization

error. The most common method for getting an unbiased estimate of the

,,
:,1

41

generalization error is to run the ANN on a third set of data,

all during the training process [31][32][33].

3.5.3.3 Techniques and Arising Problems

Multilayer Neural Networks have error surfaces with multiple local mrnJtj.

complexity of these surfaces increases as the number of weights (and so n •.. _

increases. Therefore, there is only one deepest global minimum among many sh

deep local minimums. This means that the training procedure might get trapped into tae

latter "small" minima. In fact this is the case but there are two perspectives in relative

bibliography that try to explain why artificial neural networks are still so much efficien
and powerful tool [32].

• Many weights' means that error surfaces exist in high multidimensional spaces

(one dimension for each weight). Someone would say that during back

propagation one of the weights might fall in local minimum. But, other weights

would not! Intuitively, the more the weights, the more dimensions exist, which
provide "escape roots" from local minimums.

• Another perspective is the one, based on which sigmoid function behaves as

linear when the weights are close to zero. This is the case during the first

iterations of the neural network training. So in first steps the network simulates a

smooth function. By the time the weights are "heavily" updated and the
simulated function has much more complex error surface.

Back propagation's main problem is that it is sensitive to the so-called

'overfitting' of the training data at the cost of decreasing generalization accuracy over

other unseen examples. It is said that when the overfitting case is faced the artificial

neural network adopts the idiosyncrasies of the training data. This means that the

performance over unseen examples decreases. Especially when the training set is not

representative of the general distribution of all possible examples, the performance

drops dramatically. In order to avoid overfitting, caused by the repetitive feed of the

same group of training examples onto the artificial neural networks, the 'early stopping'
technique is used.

It is necessary to remind that in 'early stopping' the total number of iterations of

the training procedure is such that produces the lowest error over the validation set,

since this is the best indicator over unseen examples. In other words, the number of

42

iterations that yields the best performance over the validation set is needed. Another,

potentially useful technique is called 'weight decay' or commonly regularization. This

way, weights are kept small and the error surface smooth.

3.5.3.4 Generalization

Generalization is the ability of capturing the underlying function [31], during the

training phase, and hence producing correct outputs in response to novel patterns

(patterns that has not seen before). A system then is said to generalize well. If

performance in new patterns is poor then poor is the generalization as well.

Minimizing the generalization error is not equivalent to selecting a model where

the bias is zero. This is because the model variance penalty may be too high. This is

called the bias/variance trade-off. Variance and bias are well-understood issues when it

comes to regression problems (function approximation using Neural Networks).

However, in classification there is a correspondence but it is surely more complex

subject.

There are a few conditions that are typically necessary-although not sufficient

for good generalization:

• In order to generalize well, a system needs to be sufficiently powerful to

approximate the target function. If it is too simple to fit even the training data

then generalization to new data is also likely to be poor.

• The inputs contain sufficient information pertaining to the target, so that really

existence a concept (unknown and complex mathematical function) that relates

inputs with corrects outputs.

• In general, the training set must be a representative subset of the theoretical

population. A poor set of training data may contain misleading regularities not

found in the underlying function/classifier.

3.6 Summary

This chapter presented a general overview of artificial neural networks (ANN).

The back propagation algorithm was also presented in detail since the algorithm is to be

used in our face recognition system as a classifier.

The previous 3 chapters gave a background to understand the developed method for

face recognition system which will be explained in the next chapter.

43

CHAPTER FOUR

FEATURE-AVERAGE BASED FACE RECOGNITION

4.1 Overview

An automatic system for the feature based face recognition must deal with three basic

problems: detection of the human face in an image, extraction the essential features of

the facial image; and finally the classification.

This chapter presents discussion of thesis topic about face recognition using

back propagation neural networks. The method describes face recognition using back

propagation neural networks approach implementation on multi-expression image

sequence (natural, smiley, sad, and surprised). Instead of recognizing a face from a

single view, a sequence of images showing face expressions is used as the face

database. All the stages of face recognition system starting from capturing image to

classifying the face (Recognized or Unrecognized) will be explained in detail in this
chapter.

4.2 Image Acquisition

This stage does the capturing of the images using peripheral capturing devices. The

image can be obtained from many sources. There are obvious ways to obtain digitized

images: scanning a photo camera made picture, saving web-cam generated static or

dynamic images, capturing with high quality video camera, or using other sources (e.g.

manual scratches, painted images and results of other digital image processing

procedures).

4.2.1 Capturing Device

The acquisition of the image is the first step of the image processing procedure. The

input has to be a digital format picture.

The easiest and quickest way to obtain a digital image is using digital photo

cameras. Good digital cameras are considered to have resolution above 3 mega-pixels.

They can be used for image capturing, in a digital system, if they have an appropriate

interface. This is satisfied by 99% of the cameras: they have at least one of the serial,

fire-wire, analog (composite), or -the most frequent- USB interfaces. The digital photo

camera that used in this work has 6.6 mega-pixels resolution.

44

4.2.2 Environmental Prerequisites

The environmental condition of the image acquisition has many effects on the

algorithms that are used in further steps. If they are not insuring satisfactory conditions,

then the captured images may not be usable

In this research, to determine a good results, some condition and constrain are

considered. These conditions are:

• No physical obstruction

• The light source is the same for all face images

• The head is straight in its normal vertical position without rotation or tilting

• Camera position will be at the same distance from the face (150 to 200 cm)

• The hair doesn't cover important face features

These conditions are used in different processing steps and are considered as

insured by the environment.

4.3 Database Collection

The database of images which are being used in the experiments only contains the faces

and the dimension of images as a fixed dimension (lOOxlOO). The database contains 90

face images in the same resolution and the same lightning conditions. The 90 images

database comprises 6 different facial expressions of 15 persons. Four out of the 6 facial

expressions (natural, smiley, sad and surprised) will be reduced by averaging to one

face image, thus providing 15 averaged face images for training the neural network.

Generalizing the neural network will be implemented using the remaining 2 facial

expressions, thus providing 30 face images for testing the trained neural network.

In addition to 90 image database, other faces will also be used for generalization.

These include some images of persons with eye glasses and dark glasses. Finally, the

developed system is implemented using ORL face database [34].

4.4 Automatic Face Recognition System

4.4.1 General Architecture

The block diagram of the proposed automatic system of face recognition is shown in

Figure 4.1. The steps of the system are:

• The first step is extracting the main features of the face (eyes, nose, and mouth)

for each facial expression (natural, smiley, sad and surprised) of each subject.

45

• The second step is taking the average of each feature for all the facial

expressions of the face of the subject.

• The third step is reducing the dimensions of the matrices of each feature by

averagmg.

• The fourth step is representing the averaged features as vectors, instead of the

matrix representation.

• The final step is classifying the subjects recognized or unrecognized by using a

back propagation neural network.

Natural

V
E
C
T
0
R
I
z
I
N
G

Classifier
(Back

Propagation
Algorithm)
Training

Training
·Results

Feature
Matrices

Size
Reduction

Feature
Averaging

Feature
Extraction

Sad

Surprised

(a) TRAINING

Classifier
~face Feature

(Back cognized Feature H Matrices Vectorizing Propagation or Extraction Size
Algorithm) nrecognized Reduction

Test Test Image
(Different
Expression)

(b) GENERALIZATION

Figure 4.1 Block Diagram of Feature-Average Based Face Recognition Using Back

Propagation Neural Networks

46

4.4.2 Phases of the Automatic Face Recognition System

4.4.2.1 Preprocessing

The preprocessing in any face recognition system is an important stage. The face images

sizes have been standardized by resize the images to dimension (lOOxlOO) for each

subject with different facial expression such as natural, smiley, sad, and surprised. The

dimension of face images bas to be the same to locate the features positions. Different

facial expression grayscale images (natural, smiley, sad, and surprised) are shown in

Figure 4.2.

100

100

(a) (b) (c) (d)

Figure 4.2 The Face Image in Different Facial Expression: (a) Natural. (b) Smiley. (c)

Sad. (d) Surprised.

4.4.2.2 Facial Features Extraction

In this stage, the locations of main facial features (eyes, nose, and mouth) are assumed

as known. The facial features (eyes, nose, and mouth) for each facial expression of the

face images in the database have been extracted. The extracted facial features dimension

for each feature has to be same. The extracted facial features of one face image from the

database are shown in Figure 4.3.

Figure 4.3 Extracted Features in Different Facial Expression.

47

The dimension of matrices of the extracted facial features is shown in Figure

4.4.

• Right eye dimension is l 5x30 pixels.

• Left eye dimension is 15x30 pixels.

• Nose dimension is 21x30 pixels.

• Mouth dimension is 18x51 pixels.

51

Figure 4.4 Extracted Facial Features Dimensions in Pixels

4.4.2.3 Resizing by Averaging

The size of extracted facial features dimension is very large so it is not practical to use it

in the process. The larger number of input means data longer processing time. To reduce

the time processing, reducing the size of the extracted facial features is a must. By using

interpolation, the dimension can be reduced according to the size of the interpolation.

The reduced matrices pixel values are calculated from a weighted average of

pixels in the nearest 3-by-3 neighborhood as shown in Figure 4.5. The output matrices

dimension after interpolation process will be 1/3 of the input matrices. For example, the

15x30 input matrices will be after interpolation 5x10.

48

Figure 4.5 Averaging Process

For averaging the following equation is used:

I +I +I +I +I +I +I +I +I Q = (m,n) (m+l.n) (m.n+I) (m+J,n+I) (m-1.n-l) (m,n-1) (m-1,n) (m+l,n-1) (m-1.n+I)
(m,n) 9

where O is output matrices and I is input matrices.

By taking the average of the nearest 3-by-3 neighbor pixels the dimension of

output matrices will be resized as in the following matrices. Table 4.1 summarizes the

image database resizing process.

Resized right eye matrix dimension is (5x10)

.7272 .5800 .5464 .5133 .5072 .4911 .4636 .4427 .4418 .4632

.6667 .6645 .6645 .6370 .6048 .5699 .5412 .4980 .4819 .4963

.7338 .7246 .6253 .5407 .5455 .5381 .4941 .4584 .4340 .4649

.7743 .6488 .5490 .5320 .4340 .3756 .3638 .3882 .3952 .4309

.7207 .5329 .4824 .4815 .3939 .3285 .3246 .3978 .3908 .4057

Resized left eye matrix dimension is (5x10)

.5281 .4693 .3991 .3582 .3695 .3834 .4052 .4627 .5756 .7020

.5442 .4972 .4723 .4876 .5342 .5721 .5956 .6275 .6597 .6536

.4797 .4501 .4336 .4776 .5168 .5486 .5582 .6031 .6915 .7272

.4466 .4031 .3778 .3673 .3734 .4514 .5660 .6131 .5795 .7115

.4532 .3643 .3813 .3068 .2924 .3373 .4819 .5115 .5577 .6388

49

0~

s1aXJd ZLZ = IB:JOJ. s1aXJd SttZ = IB:JOJ.

sjoxtd ZOI = L IX9 spx~d816= l~X81 q:inow

sjoxtd Ol = 01 XL sjoxtd 0£9 = O£Xll aso_N:

spxrd 0~ = 0 IX~ spxtd O~t = 0£X~1 a,(3: ua,:

sjoxrd o~ = 01x~ sjoxrd O~t = O£X~1 a,(3: :iq~m:

3.lll:JB3i{ pa~B.13AV 3.lll:JB3~ papB.1:JX'J{ 3.lll:JB3~ lBPB.tl

06SL" 806L" S908" Ll6L" 89EL" OZOL" L6t9· PL6S" 6E8S" LPLS" 9S9S" tLss· LZP9" S869" LE89" ts99· opz9·

L999" 08L9" 8St9· E989" LOzL· 6S[L" 9EL9" 9619" Ll6S" S68S" L86s· 8119" IEZ9" l98S" PZ6Y 6EIY 906t"

-zss SEW l[8E" O!St" ZLW 89IS" zoos· 9ESP" 6Lff 8!Zt" Otff PPW E8Zt" sow S68E" LSOP" 989S"

o-ss 9EE9" -sss 08LP" SPW lt9t· Silt" !OW !OW O!W Z9W t8W LZSP" L69t· !8IS" t1s9· 860L"

zzrs: 9tll" P9SL" S80L" SOE9" t9SS" 06ES" z-zs: !8ZS" ozzs ZO[S" LOIS" 98tS" E8[9" S[69" 6SOL" 96Z9"

Z88~ LZt9" ZE69" 6ZZL" SSZL" SPL9" sz9s· [l9Y 01st· L6PP" IP6P" 8E9S" SEZ9" 8St9" IEE9" Z6!9" OE6S"

(L 1x9) S! UO!SU.JW!P xµ:iBm qmom paZJS3lJ:

oozs· OZPL" EOZL" E989" ZES9" ppp9· 90L9" 8Z69" 6SZL" 806L"

08L8" OS88" ttts· 9SSL" 86ll" OSIL" LOtl· t008" EZ98" 6868"

9S8L" 86Z6" !116" IEE8" S69L" 69SL" El6L" 9E98" 8ZL8" SEZ8"

680L" Otss· t9Z6" SIL8" ZZI8" S96L" OLE8" L6S8" Z9E8" !98L"

SZ9L" 9608" 9LL8" LE68" Z9E8" 8tl8" 6Lt8· 88t8" ZES8" IE08"

S8ZL" 69LL" L998" ZE68" LZE8" 1908" !Ets· LE88" t8t8· 8Etl"

LI9S" l!OL" 88S8" Sl68" LZE8" Ll08" 6PE8" OIL8" LLSL" ESE9"

(OJXL) S! uotsnounp xprem osou paZJS3lJ:

4.4.2.4 Implement Averaging Method

For each facial feature (right eye, left eye, nose, and mouth) of each face image, the

average for the different facial expressions (natural, smiley, sad, and surprised) of this

feature will be calculated from the following equations.

Averaged Right Eye
1 4

A R E=-LR E, - - 4 i=l - I

i = 1,2,3,4

Averaged Left Eye
1 4

A L E=-LL E, - - 4 i=} - I

i = 1,2,3,4

Averaged Nose
1 4

A_N=-LN;,
4 i=I

i = 1,2,3,4

Averaged Mouth
1 4

A_M=-LM;,
4 i=l

i = 1,2,3,4

The averaged facial features are combined, side-by-side, to create a data

matrices of size 272x15 as following:

A R E A_R_Ep2 A R E - - pl - - pl5

A_L_Epl A_L_Ep2 A_L_E plS

PATIERNS J
A Npl A N A _N pl5 - p2

A M pl A M 2 A_M pl5 - p

51

4.4.2.5 Patterns Vectorizing

To prepare the training set patterns to starting the training the neural network, the

matrices of the features (right eye, left eye, nose, and mouth) have been vectorized as

patterns.

The dimension of each pattern from the 15 averaged faces will be a vector of

272 pixels as following.

patteml

(personl)

pattern2 pattern15
(person2) (personl5)

' average average
of of
right right
eye eye

average average
of of
left left
eye eye

average average
of of
nose nose

average average
of of
mouth mouth

...................
(272xl) (272xl)

average
of
right
eye

average
of
left
eye

average
of
nose

average
of
mouth

(272xl)

4.4.2.6 Classification Using Back Propagation

Establishing back propagation neural network to classify the patterns (features) as

recognized or not recognized.

Back Propagation algorithm is the most commonly used neural network. This is

due to its simplicity and efficiency. The back propagation network is suitable for

solving pattern recognition problems [16].

The Back-Propagation neural network that is used in the developed system

comprises an input layer, a hidden layer and an output layer. The input layer receives

input (with 272 neurons) directly that carries the values of the averaged features.

52

The size of the input layer should match exactly the size of the input pixels

numbers (272). The number of neurons in the hidden layer is 65 neurons. The number

of neurons in the output layer is 15 neurons which is the number of persons.

The desired output for each digit is 1 on the corresponding node and O on all

other nodes. The back propagation neural network here works as classifier. The number

of patterns equal to number of faces (15).

Each pattern contains 272 values representing the average of facial features of

one person. Figure 4.6 shows the back propagation neural network architecture.

FORWARD PASS

Input Layer
~

Hidden Layer
~

BACKWARD PASS

Figure 4.6 Architecture of the Back Propagation Neural Networks.

53

The flowchart of back propagation algorithm that used as classifier in face

recognition system is shown in Figure 4.7.

START

Read Patterns, Targets and

Neural Network Parameters

Initiate random hidden & output weights

PATTERN=l:15

Calculate the output for each

·pattern

Calculate the sum of MSE for all the

Initiate Iteration

Calculate the change of weights

Update the Weights

NO

Display MSE and

Iteration

Save Final Weights

Figure 4.7 Flowchart of Neural Network Training

54

4.5 Experimental Results

4.5.1 Training the Face Images

Figure 4.8 shows some sample images from the training set database. The database

contains 15 subject face images with 4 different facial expressions. Appendix II shows

all image databases.

Figure 4.8 Examples of Training Set Face Images

The essential parameters and their values that used in the training have been

listed in the Table 4.2.

Table 4.2 Final Parameters of Training

Number of Input Neurons 272

Number of Hidden Neurons 65

Number of Output Neurons 15

Initial Weights Values Range -0.3 to 0.3

Learning Rate (ETA) 0.0495

Momentum Factor (ALPHA) 0.41

Error 0.001

Number of Training Iteration 3188

Maximum Iteration 5000

Processing Time (Extracting and Resizing) 7 .5 Seconds X

Training Time 265 Seconds w

* Time results were obtained using a 1.6 GHz PC with 256 Mb of RAM,
Windows XP and the Matlab 6.5 software.

55

4.5.2 Testing the Face Images

All images in the test set are tested without using the same images that used in the

training set. Some example of test set database is shown in Figure 4.9.

Figure 4.9 Examples of Test Set Face Images

The recognition rates, recognition accuracy and running time of the training set

and test set is show in Table 4.3. The recognition accuracy is the average of the 15

person's images training or test results.

Table 4.3 Recognition Rates, Accuracy and Run Time of Training and Test Sets

Image Set Recognition Rate Recognition Accuracy Run Time

Training Set (15/15) 100% 95.6%
0.032 Second" Testing Set (30/30) 100% 93%

* Time results were obtained using a 1.6 GHz PC with 256 Mb of RAM, Windows XP and the
Matlab 6.5 software.

In Figure 4.10 the mean square error (MSE) vs. iteration graph with 15 averaged
face images training set is shown.

ERROR GRAPH
o.51--r---.----,---,----.----,--~

0.45

04 ~

o:: 0.35 \
Ei \
~ 0.3 \

! 0.25 \
C1J 0.2 z
<(

~ 0.15

0.1~ \

0.05 ~ "'-
'

500 1000 1500 2000 2500 3000 3500
ITERATIOI~

Figure 4.10 Mean Square Error vs. Iteration Graph

56

4.5.3 Recognition Performance with Glasses

In the experiment, the effect of the presence of facial detail such as glasses on

recognition performance was tested. In Figure 4.11 the training set of the subject and the

test set which contains faces with and without glasses of the subject.

Figure 4.11 Training Set and Test Set with Eye Glasses

The recognition accuracy of the test set of this subject with and without eye

glasses is shown in Table 4.4.

Table 4.4 Recognition Accuracy of Face with and without Eye Glasses

l Recognition Accuracy of Face without Glasses I 96% I
Recognition Accuracy of Face with Eye Glasses I 86%

The closed eyes face test image in the Figure 4.12 also was tested. The

recognition accuracy of the test set of this subject with and without eye glasses is shown

in Table 4.5.

Figure 4.12 Open and Closed Eyes Test Set Face

Table 4.5 Recognition Accuracy of Face Open and Closed Eyes

l Recognition Accuracy of Face without Glasses I 96% I
Recognition Accuracy Face with Closed Eyes I 80%

57

In Figure 4.13, the train set and the test set of another subject with dark glasses

are shown.

Figure 4.13 Training Set and Test Set with Dark Glasses

The recognition accuracy of the test set of this subject with and without dark
glasses is shown in Table 4.6.

Table 4.6 Recognition Accuracy of Face with and without Dark Glasses

I Recognition Accuracy of Face without Glasses I 90% I
Recognition Accuracy of Face with Glasses I 63 %

4.5.4 Experiments on ORL Face Database

There are 10 different images of 40 distinct subjects in the ORL face database [34]. For

the subjects, the images were taken with slightly varying lightings, facial expressions

(open/closed eyes, smiling/ non-smiling) and facial details (glasses/no-glasses). All the
subjects are in frontal position but with some pose variation.

To implementation on developed face recognition system, 4 different images of

15 distinct subjects and one image of the same 15 subjects from ORL face database as

training set and test set respectively. Some example images from ORL face database

training set are shown in Figure 4.14. Appendix II shows all the images of ORL face

database, which are used in training and testing.

58

Figure 4.14 ORL Face Database Training Set [34]

In Figure 4.15 some examples of ORL face database test set images, which are
used for testing the neural network.

Figure 4.15 ORL Face Database Test Set [34]

Training and test recognition rates, accuracy rates and running time of the
system by applying the ORL face database are shown in Table 4.7.

Table 4.7 Recognition Rate, Recognition Accuracy and Run Time of Training and Test

Sets of ORL Database
Image Set Recognition Rate Recognition Accuracy Run Time

Training Set (15/15) 100% 95.6%
0.032 Second" Testing Set (15/15) 100% 93.5%

* Time results were obtained using a 1.6 GHz PC with 256 Mb of RAM, Windows XP and the
Matlab 6.5 software.

4.6 Comparison with Other Face Recognition Methods

A comparison has been drawn between the developed method and 2 of the most
efficient methods; namely, PCA (Eigenfaces) and LDA (Fisherfaces).

The ORL face database has been used for comparison the results of the face
recognition methods. The recognition rates and accuracies of the face recognitio
methods using ORL face database are listed in table 4.8.

59

Table 4.8 Results of Different Methods of Face Recognition Using ORL Database

Method Recognition Rate Recognition Accuracy

PCA (Eigenfaces) 64%-96% [5] 79.1 % [35]
LDA (Fisherfaces) 99.4% [6] 81% [35]
Feature-Average 100% 93.5%

4. 7 Analysis and Discussion

In experimental results on our database, the developed system recognized with a good

recognition accuracy all the 15 person's images in the test set.

In training process, a combination of a minimum error MSE and high accuracy

of recognition is an important factor in the classifying process. Minimum error and high

accuracy are determined by varying the back propagation parameters (learning rate,

momentum factor, and hidden layer neurons number).

Selecting the important features of the face, which are usually not changeable

allowed the reduction of the dimensions of the data thus providing less processing time

in the system. Compressing the selected facial features also decreased the processing

time.

Averaging the facial features of the four different facial expressions (natural,

smiley, sad and surprised) made the system convenient to respond correctly to other

face expressions.

Experimental results have shown that, the presence of some details in the face

such as eye glasses did not cause a major problem to the system, whereas the presence

of dark glasses (sun glasses) which decreased the recognition accuracy, because the

dark sun glasses cover 2 essential features from the 4 features of the face.

The performance of the system has been illustrated by the implementation using

the other database such as ORL face database, which contains images with small

variations in illumination and orientation. The result of the method has been compared

with 2 other efficient face recognitions methods namely, PCA (Eigenfaces) and LDA

(Fisherfaces) using ORL database.

The efficiency of the method suggested in this thesis has been shown where

100% recognition rates with high recognition accuracy have been obtained.

60

4.8 Software Tools (MATLAB)

This section contains a simple description of the tools that were used. The

implementation has been done using Matlab version 6.5, Image Processing Toolbox,

and Neural Networks Toolbox.

Matlab is a simulation environment for doing numerical computations with

matrices and vectors. It handles a wide range of computing tasks in engineering and

science, and has several built-in interfaces that let you quickly access and manipulate

data. The Matlab environment integrates mathematical computing, visualization and a

powerful technical language. A large user community spread throughout industry,

government and academia makes Matlab a recognized standard worldwide for technical

computing. Matlab is used in a variety of application areas including signal and image

processing, neural networks, control system design, earth and life sciences, finance and

economics and instrumentation. The open architecture makes it easy to use Matlab to

explore data and create custom tools. One interesting feature is that Matlab applications

can be converted to standalone applications using the C and C++ compiler.

In addition there are several toolboxes available to expand the capabilities of

Matlab. The image processing toolbox extends the Matlab computing environment to

provide functions and interactive tools for enhancing and analyzing digital images and

developing image processing algorithms. The Neural Network Toolbox is one of these

toolboxes. The neural network toolbox makes it easier to use neural network algorithms.

4.9 Summary

This chapter explained in detail the developed face recognition system. The

experimental results were also discussed in this chapter, which demonstrated the

successful implementation of the developed method.

61

CONCLUSION

Face recognition is a difficult problem because faces can vary substantially in their

orientation, lighting, scale and facial expression. In this work, I presented an approach

for feature-average based face recognition using back propagation neural networks.

As the thesis relies on feature based face recognition, the dimensionality

reduction of the features matrices are applied by selecting the essential features of the

faces (eyes, nose, and mouth). Also the dimension of the features matrices are reduced

by implementing interpolation (averaging). Both feature selecting and feature averaging

have been used to provide efficient face recognition while keeping minimal time cost.

Averaging the facial features of the four different facial expressions (natural,

smiley, sad and surprised) made the system convenient to response correctly to other

face expressions.

Experimental results have shown that, the presence of small details such as eye

glasses do not cause a major problem to the system, but the presence of dark glasses

(sun glasses) decreased the recognition accuracy.

By using the back propagation neural networks as classifier, the performance of

the neural system can be monitored by changing the parameters: learning rate,

momentum factor, and hidden layer neurons number.

Implementing the system on ORL face database which contains face images

with small variations in illumination and orientation made the system suitable for real

life application.

Training processing time of neural network consumed 265 seconds. The

processing time for testing one face consumed 0.032 seconds. The developed face

recognition system achieved 100% recognition rates on our database and on ORL

database. The system also has high recognition accuracy (93%) using both database.

Based on the findings and experimental results in this thesis, the following

problems are suggested for further research:

• Recognition of more facial expression by adding more expressions.

• Considering large variation in illumination and orientation.

• Detecting the face and the facial features automatically to develop a complete

automatic face recognition system.

62

REFERENCES

[1] Stephen Cobb (1996), The NCSA Guide to PC and LAN Security, New York,

McGraw-Hill.
[2] Sung, K. K. and T. Poggio (1994), Example-based Leaming for View-based

Human Face Detection, MIT AI Lab. technical report, Dec.

[3] Atalay I. (1996), "Face Recognition using Eigenfaces". M. Sc. thesis, Istanbul

Technical University.
[4] R. Chellappa, C.L.Wilson, and S. Sirohey (1995). Human and Machine

Recognition of Faces: A survey. PIEEE, 83(5):705-740, May.

[5] Turk, M., Pentland, A. (1991): Eignefaces for Recognition. Journal of

Cognitive Neuroscience, Vol. 3, 72-86

[6] Belhumeur, P., Hespanha, J., Kriegrnan D. (1996): Eigenfaces vs. Fisherfaces:

Face Recognition using class specific linear projection. In Proc. ECCV, 45-58

[7] M. A. 0. Vasilescu, D. Terzopoulos: Multilinear (2002): Image Analysis for

Facial Recognition, Proceedings of International Conference on Pattern

Recognition
[8] S.T. Roweis and L.K. Saul (2000). Nonlinear dimensionality reduction by

locally linear embedding. Science, 290, pp. 2323-2326.

[9] L. R. Rabiner (1989). A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition, Proc. of the IEEE, Vol.77, No.2,

pp.257-286.
[10] Ferdinando Silvestro, Samaria (1994). "Face Recognition Using Hidden

Markov Models". PhD thesis, Univ. of Cambridge

[11] Ara V. Nefian (1999). "A Hidden Markov Model-Based Approach for Face

Detection and Recognition". PhD thesis, Georgia Institute Technology

[12] Andrew J. Viterbi (1967). Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Transactions on

Information Theory 13(2):260-267.

[13] L. E. Baum, T. Peterie, G. Souled, and N. Weiss (1970). "A maximization

technique occurring in the statistical analysis of probabilistic functions of

Markov chains," Ann. Math. Statist., vol. 41, no. 1, pp. 164--171.

63

[14] G. W. Cottrell and M. Flemming (1990). "Face Recognition Using

Unsupervised Feature Extraction" in Proceedings International Neural Network

Conference, pp. 322-325.

[15] Steve Lawrence, C. Lee Giles, Ah Chung Tsoi and Andrew D. Baek (1997).

"Face Recognition: A Convolutional Neural Network Approach", IEEE

Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113.

[16] Simon Haykin (1999). Neural Networks: A Comprehensive Foundation,

Prentice Hall Inc., New Jersey.

[1 7] http://www. teco .edu/-albrecht/neuro/htrnl/node 7 .html

[18] Andreas Zell (1994). Simulation NeuronalerNetze. Addison-Wesley.

[19] Murray L. Barr & John A. Kiernan (1988). The Human Nervous System. An

Anatomical Viewpoint. Fifth Edition. Harper International.

[20] Rumelhart, D.E., Hinton, G.E., and Williams, R.J (1985). "Leaming Internal

Representations by Error Propagation", Institute for Cognitive Science Report

8506, San Diego, University of California.

[21] http://www.dacs.dtic.mil/techs/dacs_reports/text/neural_nets.txt

[22] Hebb, D. 0 (1949). The Organization of Behavior, Wile, New York.

[23] Hopfield, John J. (1986). "Physics, Biological Computation and

Complimentarity", The Lessons of Quantum Theory, Elsevier Science

Publishers, B.B.

[24] Widrow, Bernard (1960). "An Adaptive 'Adaline' Neuron Using Chemical

'Memistors"', Technical Report Number 15 53-2, Stanford Electronics

Laboratories, October.

[25] http://www. dacs .dtic.mil/techs/ dacs _reports/text/neural_ nets. txt

[26] Kohonen, T. (1988). Self-Organization and Associative Memory, Second

Edition, Springer-Verlag, New York.

[27] Rumelhart, D. E., & McClelland, J. L. (Eds.) (1986). Parallel distributed

processing: Explorations in the microstructure of cognition (Vol. 1).

Cambridge, MA: MIT Press.

[28] Martin T., Howard B., Mark Beale (1996). Neural Network Design, PWS

Publishing Company, Boston.

[29] http ://www.faqs.org/faqs/ai-faq/neural-nets/

[30] http://www.ee.surrey.ac.uk/Teaching/Courses/eem.pat/MScThesis.pdf

64

[31] Russell D. Reed, Robert

Learning in Feedforwar,

MIT Press.

[32] Thomas Mitchell (19

__ .. ""'"' ll (1999). Neural Smithing: Supervised

"' ial Neural Networks (A Bradford Book), The

Learning, McGraw-Hill Editions

International, New Y orx

[33] Rich Caruana, Steve Lawrecce. :::_,ee Giles (2000). Overfitting in Neural Nets:

d Early Stopping, Neural Information

.-,,1.,.....,,:1 •..• , Xovember 28-30.

[34] Cambridge University, Olivetti Research Laboratory face database,

http://www. uk.research. an.com f::a:edarabase.html

[35] Xiaoguang Lu, Yunhong ~~a::g and Anil K. Jain, (2003). "Combining

Classifiers for IEEE International Conference on

APPENDICES

Appendix I Matlab Source Code

clear all
close all
clc
image_ number = 15;
face_expression = 4;
PATTERNS=[];
t = cputime;
cd('D:\TRAINSET\')

% Initiate Processing time for feature extraction
% Change the directory to get the images in

for i = 1:image_number
r_eye_t = zeros(5,10);
l_eye_t= zeros(5,10);
nose_t = zeros(7,10);
mouth_t = zeros(6, 17);

% Start for loop to read the face images
% Preallocate empty matrices

for j = I :face_ expression % Start for loop to read the different facial expression images
train _image= strcat(['subject' int2str(i),'_' int2str(j),'.jpg']);
colour_image = irnread(train_image);
face= rgb2gray(colour_image); %Convert the colour image to grayscale image

r_eye = imcrop(face,[10 18 29 14]);
r _ eye=double(r _ eye)/25 5;
for m=2:3:14;

for n=2:3:29;
reyer(m,n)=(r _ eye(m,n)+r _ eye(m+ 1,n)+r _ eye(m,n+ 1)+r _ eye(m+ l ,n+ 1)+r _ eye(m-1,n- l)+r _ eye(m,n-
1)+r _ eye(m-1,n)+r _ eye(m+ l ,n-1)+r _ eye(m-1,n+ 1))/9;
% Take the average for each 9 pixel to resize the
% dimension of matrices
end

% Crop selected skin region (right eye)
% Normalize the values of matrices between (0,1)
% start for loop to read matrices

end
s = nonzeros(reyer);
r _ eye_r = reshape(s,5,10);

!_eye= imcrop(face,[62 18 29 14]); % Crop selected skin region (left eye)
I_ eye=double(l_ eye)/25 5;
for m=2:3:14;
for n=2:3:29;

leyer(m,n)=(l_ eye(m,n)+l_ eye(m+ l ,n)+l_eye(m,n+ 1)+l_ eye(m+ 1,n+ l)+l_eye(m-1,n-l)+l_ eye(m,n
l)+l _ eye(m-1,n)+l_ eye(m+ 1,n-l)+l_ eye(m-1,n+ 1))/9;
end

end
s 1 = nonzeros(leyer);
l_eye_r = reshape(sl,5,10);

nose= imcrop(face,[38 38 29 20]); % Crop selected skin region (nose)
nose= double(nose)/255;
for m=2:3:20;

for n=2:3:29;
mose(m,n)=(nose(m,n)+nose(m+ l ,n)+nose(m,n+ 1)+nose(m+ l ,n+ 1)+nose(m-1,n- l)+nose(m..n-
1)+nose(m-1,n)+nose(m+ l ,n-1)+nose(m-1,n+ 1))/9;
end

end
s2 = nonzeros(mose);

nose_r = reshape(s2,7,10);

mouth= imcrop(face,[27 70 50 1
mouth=double(mouth)/25 5;
for m=2:3: 17;

for n=2:3:50;
rmouth(m,n)=(mouth(m,n)+mou
1)+mouth(m.n-I)+mouth(m-1,n

end
end
s3 = nonzeros(rmouth);
mouth_r = reshape(s3,6,l 7);

r_eye_t = r_eye_t + r_eye_r;
l_eye_t = l_eye_t + l_eye_r;
nose_t = nose_t + nose_r;
mouth_t = mouth_t + mouth_r;
end
avg_r _ eye = r _eye_ t/face _ expression;
avg_l_eye = l_eye_t/face_expressior:.:
avg_nose = nose_t/face_expression;
avg_ mouth = mouth_ t/face _ expression;

r_eye_ v = reshape(avg_r_eye,[],1);
l_eye_ v = reshape(avg_l_eye,[],l);
nose_v = reshape(avg_nose,[],l);
mouth_ v = reshape(avg_ mouth.j], 1);

pattern=[r_eye_v; l_eye_v; nose_v; mou:::_· -
[row col]= size(pattern);
pattern! =pattern-0.5 *ones(row, 1);
PATTERNS= [PATTERNS patteml];
end
PATTERNS
features_ face_ extraction_ time = cputime - -

(m+ l ,n+ 1)+mouth(m- l .n-
1 :.::...,::.2.{ ,:..r l.n-rl))/9;

~:=c.:J:::he 4 different right eye
::he 4 different left eye
::he 4 different nose
: the 4 different mouth

,-ec~rize the features

__:_,~ vectors side-by-side to create a data matrices

• culate feature extraction time

disp(sprintf('WHAT IS THE TOLERANCE OF PROGRA_,.\,1 YOU NEED'));
TOLERANCE = input('IF LOW ENTER l .::IF l,EDIU~ ENTER 2\nIF HIGH ENTER 3\nENTER
YOUR CHOICE : I);
ifTOLERANCE==l

threshold=O. 7;
elseif TOLERANCE=2

threshold=0.8;
else if TOLERAN CE=3

threshold=0.9;
end

goalerr=0.001;
maxiter=5000;
ETA=0.0495;
ALPHA= 0.41;
% Desired Output %
TARGET= eye(l5,15);
PATTERN=15;
a= -0.3; b = 0.3;
hidw =a+ (b-a) * rand(65,row);
outw =a+ (b-a) * rand(l 5,65);
dhidw=O;

% error
% Max iteration
% Learning Rate
% Momentum Factor

% Desired output
% Pattern numbers

% Selection the weighi

% Initiate the cazage c:- - -

doutw=O;
hidb =a+ (b-a) * rand(65,1);
outb =a+ (b-a) * rand(15,1);
dhidb=O;
doutb=O;

PATTERNS;
TARGET;

fork= 1 : PATTERN
outl(:,k) = PATTERNS(:,k);
neth= (hidw * outl(:,k))+hidb;
out2(:,k) = logsig(neth);
neto = (outw*out2(:,k))+outb;
out3(:,k) = logsig(neto);
out3(:,k);
end
e = TARGET- out3;
error= 1/2*(mean(diag(e). *diag(e)));
iter=l;
t = cputime;

while error>= goalerr & iter<maxiter
for k= 1 :PATTERN

dfout2 = dlogsig(neth, out2(:,k));
dfout3 = dlogsig(neto, out3(:,k));

dout = -2*diag(dfout3) * e(:,k);
dhid = diag(dfout2)* outw'* dout;

oldoutw = outw;
oldhidw = hidw;
oldoutb = outb;
oldhidb = hidb;

% Initiate the change of output weight as zero
% Selection the bias weights values between 0.3 and -0.3

% Initiate the change of hidden bias weight as zero
% Initiate the change of output bias weight as zero

% Forward pass, compute outputs outl

% Forward pass, compute outputs out2

% Forward pass, compute outputs out3

% Calculate the error

% Initiate the iteration
% Initiate training time calculation

% Compare the error with goal error

% Calculate the signal error

% Adjustments at output layer
% Adjustments at hidden layer

outw = outw - (1-ALPHA)*(ET A *dout*out2(:,k)') + ALPHA *doutw ; % Update Weight of output layer
hidw = hidw - (1-ALPHA)*(ETA*dhid*outl(:,k)') + ALPHA *dhidw; % Update Weight of hidden layer
outb = outb - (1-ALPHA)*(ETA*dout) + ALPHA*doutb; % Update bias Weight ofoutput layer
hidb = hidb - (1-ALPHA)*(ETA *dhid) + ALPHA *dhidb; % Update bias Weight of hidden layer

dhidw = hidw - oldhidw;
doutw = outw - oldoutw;
dhidb = hidb - oldhidb;
doutb = outb - oldoutb;

outl(:,k) = PATTERNS(:,k);
neth = (hidw * outl(:,k))+hidb;
out2(:,k) = logsig(neth);
neto = (outw*out2(:,k))+outb;
out3(:,k) = logsig(neto);
end

out3;
e = TARGET - out3;
error= 1/2*(mean(diag(e). *diag(e)));
disp(sprintf('ITERATION N0.%5d MSE IS%12.6:f0/o',iter,error));
mse(iter)=error;
iter=iter+ 1;

end
out3;

I-3

out_ out=diag(out3);
thidw = hidw;
toutw = outw;
thidb = hidb;
toutb = outb;

training_ time =cputime - t; % output training time
disp(sprintf('PROCESSING TIME IS %7.2f,training_time));
plot(mse,'k');
title('ERROR GRAPH');
xlabel('ITERA TION');
ylabel('MEAN SQUARE ERROR');

%%%%%%%%%RESULTS OF TRAINSET FACE IMAGES%%%%%%%%%

PATTERNS= [PATTERNS patteml];
for k= 1 :PATTERN
outl(:,k) = PATTERNS(:,k);
neth = (hidw * outl(:,k))+hidb;
out2(:,k) = logsig(neth);
neto = (outw*out2(:,k))+outb;
out3(:,k) = logsig(neto);
end
out3;
out_ out=diag(out3)

% Calculate forward pass

%%%%%%%%%%RESULT OF TESTSET FACE IMAGES%%%%%%%%%%
test_number = 30;
TEST_RESULTS=[];

cd('D:\TESTSET\') % change the directory to get the images in

fork= 1 :test_number % Start for loop to read test faces
test_image = ['test_subject' int2str(k) '.jpg'];

color_image = imread(test_image);
%save rgb version, for display later

facel = rgb2gray(color_image);

r_eye_test = imcrop(facel,[10 18 29 14]); % Crop selected skin region
r _eye_ test=double(r _ eye _test)/255;
for m=2:3:14;

for n=2:3:29;
reyer _ test(m,n)=(r _eye_ test(m,n)+r _eye_ test(m+ l ,n)+r _eye_ test(m,n+ 1)+r _eye_ test(m+ l ,n+ 1)+r _eye_ te
st(m-1,n- l)+r _eye_ test(m,n-1)+r _eye_ test(m-1,n)+r _eye_ test(m+ l ,n-1)+r _eye_ test(m-1,n+ 1))/9;

end
end
tt = nonzeros(reyer _test);
r_eye_tt = reshape(tt,5,10);

l_eye_test = imcrop(facel,[62 18 29 14]);
I_ eye_ test=double(l_ eye_ test)/255;
for m=2:3:14;

for n=2:3:29;
leyer _ test(m,n)=(I_ eye_ test(m,n)+ l _eye_ test(m+ l ,n)+ l _eye_ test(m.n+ 1)+ l _eye_ test(m+ l ,n+ 1)+ l _eye_ tes
t(m-1,n- l)+l _ eye _test(m,n-1)+l_ eye_ test(m-1,n)+l_ eye_ test(m+ l ,n-1)+l_ eye_ test(m-1,n+ 1))/9;

end
end
ttl = nonzeros(leyer _test);

I-4

l_eye_tt= reshape(ttl,5,10);

nose_test = imcrop(facel,[38 38 29 20]);
nose_ test=double(nose_ test)/25 5;
for m=2:3:20;

for n=2:3:29;
mose _ test(m,n)=(nose_ test(m,n)+nose _ test(m+ l ,n)+nose _ test(m,n+ 1)+nose_ test(m+ l ,n+ 1)+nose_ test(m-
1,n- l)+nose_ test(m,n-1)+nose _test(m-1,n)+nose _ test(m+ l ,n-1)+nose_ test(m-1,n+ 1))/9;

end
end
tt2 = nonzeros(mose_test);
nose_tt = reshape(tt2,7,10);

mouth_test = imcrop(facel ,[27 70 50 17]);
mouth_test=double(mouth_test)/255;
for m=2:3:l 7;

for n=2:3:50;
rmouth _ test(m,n)=(mouth _ test(m,n)+mouth _ test(m+ l ,n)+mouth _ test(m,n+ 1)+mouth_ test(m+ l ,n+ 1)+mo
uth _ test(m-1,n-l)+mouth_ test(m,n-1)+mouth_ test(m-1,n)+mouth _ test(m+ l ,n-1)+mouth_ test(m-
1,n+ 1))/9;

end
end
tt3 = nonzeros(rmouth_test);
mouth_tt = reshape(tt3,6, 17);

r_ eye_ v _t = reshape(r_eye_tt,[], l);
]_eye_ v _t = reshape(l_eye_tt,[], l);
nose_ v _t = reshape(nose_tt,[],l);
mouth_ v _t = reshape(mouth_tt,[],l);

pattem2=[r_eye_ v_t; l_eye_ v_t; nose_ v_t; mouth_ v_t];
pattem3=pattem2-0.5*ones(row, 1);

t = cputime; % Initiate test time calculation

test_ outl = pattem3; % Calculate the forward pass for test images
test_neth = (thidw * test_ outl)+thidb;
test_out2 = logsig(test_neth);
test_ neto = (toutw * test_ out2)+toutb;
test_ out3 = logsig(test_neto)

for i=l:PATTERN
iftest_out3(i,:)>=threshold & i = 1

disp(sprintf('THE PERSON IS ABED'));
disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 2
disp(sprintf('THE PERSON IS JERAD'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 3
disp(sprintf('THE PERSON IS ABUELFADEL'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 4
disp(sprintf('THE PERSON IS MAJED'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 5

I-5

disp(sprintf('THE PERSON IS ABUKAREM'));
disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 6
disp(sprintf('THE PERSON IS EY AD'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 7
disp(sprintf('THE PERSON IS MOHAMMED'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 8
disp(sprintf('THE PERSON IS ABUJAZAR'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 9
disp(sprintf('THE PERSON IS FERMI'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 10
disp(sprintf('THE PERSON IS DA WOD'));
disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 11
disp(sprintf('THE PERSON IS MAJDY'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 12
disp(sprintf('THE PERSON IS IBRAHIM'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 13
disp(sprintf('THE PERSON IS SAMEH'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 14
disp(sprintf('THE PERSON IS SHADY'));

disp(sprintf('THE PERCENTAGE OF RECOGNITION IS %4.2f,test_out3(i,:)*100));

elseiftest_out3(i,:)>=threshold & i = 15
disp(sprintf('THE PERSON IS AFEEF'));

disp(sprintf('THE PERCENT AGE OF RECOGNITION IS %4.2f ,test_ out3(i,:)*100));

end
end

if test_ out3(1 :PATTERN,:)<threshold
disp(sprintf('THE PERSON IS UNRECOGNIZED'));

end
TEST_ RE SUL TS=[TEST _RESULTS test_ out3];

end
TEST _RESULTS;
test_result=diag(TEST _RESULTS)
test_time =cputime - t

1-6

Appendix II Database

Person 1 Person 2

II
Person 3 Person 4

Person 5

Person 7

Person 9

Person 11

Person 13

Person 6

Person 8

Person 10

Person 12

Person 14

Person 15

Training Set Database

n.

z-n

z UOSJ::ld M::lN

zt UOSJ::ld

8 UOSJ::lJ

j;, UOSJ::lJ

I UOSJ::ld M::lN

5;1 UOSJ::ld

11 UOSJ::lJ

l UOS1::lJ

£ UOSl::lJ

J71 UOSJ::lJ

01 UOS1::lJ

9 UOS1::lJ

Z UOSl::ld

£1 UOSl::lJ

6 UOS1::ld

5; UOS1::lJ

l UOSl::lJ

