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INTRODUCTION 

Image Processing is becoming a widely acknowledged technology. Many 

everyday processes use automated vision systems, all of which rely upon image 

processing techniques. Image Processing, in general terms, refers to the manipulation, 

improvement and analysis of pictorial information. In this case, pictorial information 

means a two-dimensional visual image. Digital image processing is concerned with the 

improvement of quality of a picture that is digitally represented, as that represented in 

the digital computer. 

From the 19§0's through today, the evolution of the digital computer has 

certainly been largely responsible for enabling the proliferation of digital image 

processing applications. Costly mainframe computers are no longer a requirement of the 

digital image processing equation like they were in the 1960's. The advent of 

microprocessors, leading to the personal computer, has allowed stand-alone digital 

image processing applications to become viable. 

"' In this project, applications of image processing is discussed. The aim of the 

project is to inform you about the real life applications of image processing and new 

techniques used in image processing. 

The first chapter represents the background of image processing. This chapter 

includes history, basically description of image processing, importance and future of 

image processing. 

Chapter two is assigned for the techniques that are used in image processing. 

These techniques can be sorted as; 

Image compression, image restoration, image recognition and edge detection. 

Chapter three represents the applications of image processing in real life. 

Chapter four is assigned to applications of image processing to Mine Warfare 

Sonar Systems 
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CHAPTER ONE : IMAGE PROCESSING BACKGROUND 

1.1 Overview 
In this chapter the definition of image process~, history, future and importance 

in real life will be present. 

1.2 Definition 

1.2.1 Signals and Systems 

Whether analog or digital, information is represented by the fundamental 

quantity in electrical engineering: the signal. Stated in mathematical terms, a signal is 

merely a function. Analog signals are continuous-valued; digital signals are discrete 

valued. The independent variable of the signal could be time (speech, for 

example ),space (images), or the integers. 

1.2.2 Analog Sinals 

Analog signals are usually signals defined over continuous independent 

variable(s). SPEECH is produced by your vocal cords exciting acoustic resonances in 

your vocal tract. The result is pressure waves propagating in the air, and the speech 

signal thus corresponds to a function having independent variables of space and time 

and a value corresponding to air pressure: sxt (Here we use vector notation x to denote 

spatial coordinates). When you record someone talking, you are evaluating the speech 

signal at a particular spatial location, xO say. An example of the resulting waveform sx0t 

is shown in Figure 1.1 [1]. 
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Figure 1.1 A speech signal's amplitude relates to tiny air pressure variations. 

Shown is a recording of the vowel "e" (as in "speech") 

1.2.3 Digital Signals 

The word "digital" means discrete-valued and implies the signal has an integer 

valued independent variable. Digital information includes numbers and symbols 

(characters typed on the keyboard, for example). Computers rely on the digital 

representation of information to manipulate and transform information. Symbols do not 

have a numeric value, and each is represented by a unique number. The ASCII character 

code has the upper- and lowercase characters, the numbers, punctuation marks, and 

various other symbols represented by a seven-bit integer. For example, the ASCII code 

represents the letter a as the number 97 and the letter A as 65. 

Signals can be represented by discrete quantities instead of as a function of a 

continuous variable. These discrete time signals do not necessarily have to take real 

number values. Many properties of continuous valued signals transfer almost directly to 
the discrete domain. 

So far, we have treated what are known as analog signals and systems. 

Mathematically, analog signals are functions having continuous quantities as their 

independent variables, such as space and time. Discrete-time signals are functions 

defined on the integers; they are sequences. This result is important because discrete- 
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time signals can be manipulated by systems instantiated as computer programs. 

Subsequent modules describe how virtually all analog signal processing can be 
performed with software. 

As important as such results are, discrete-time signals are more general, 

encompassing signals derived from analog ones and signals that aren't. For example, the 

characters forming a text file form a sequence, which is also a discrete-time signal. As 

with analog signals, we seek ways of decomposing real-valued discrete-time signals 

into simpler components. With this approach leading to a better understanding of signal 

structure, we can exploit that structure to represent information (create ways of 

representing information with signals) and to extract information (retrieve the 

information thus represented). For symbolic-valued signals, the approach is different: 

We develop a common representation of all symbolic-valued signals so that we can 

embody the information they contain in a unified way. From an information 

representation perspective, the most important issue becomes, for both real-valued and 
symbolic-valued signals, efficiency. 

1.2.3.1 Real and Complex Valued Signals 

The discrete-time signals as stem plots to emphasize the fact they are functions 

defined only on the integers. We can delay a discrete-time signal by an integer just as 

with analog ones. A delayed unit sample has the expression 8Dn-m, and equals one 
whenn=m. 

1.2.3.2 Discrete Time Cosine Signal 

Figure 1.2 shows The Discrete Time Cosine Signal [I] 

Sn 

Figure 1.2 The Discrete Time Cosine Signal 



Figure 1.3 Unit Sample 

1.2.3.3 Sinusoids 

As opposed to analog complex exponentials and sinusoids that can have their 

frequencies be any real value, frequencies of their discrete-time counterparts yield 

unique waveforms only when flies in the interval minus infinity to plus infinity. 

1.2.3.4 Unit Sample 

The second-most important discrete-time signal is the unit sample, which is 

defined in figure 1.3 [I] 
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1.2.4 Image Processing 

Image processing and analysis is a combination of the visual enhancement of an 

image and the numerical evaluation of some aspect of the acquired image that would not 

be apparent in its analog form. The processing of a digital image refers to its actual 

refinement procedure. The analysis of a digital image encompasses the translation of the 

newly improved image's features into useful data. The necessity for this technology is 

due primarily to the difference between human visions and "computer vision." This 

contrast is most pronounced when comparing the type of information obtained from 

images and the methods used. Human vision is fundamentally qualitative and 

comparative, but not quantitative. Humans judge the relative size and shape of objects 

by mentally manipulating them to the same orientation and overlapping them to perform 

a comparison. Humans are particularly poor at assessing the color or brightness of 

features within images without direct comparison by positioning them adjacently. 

Progressive variations in brightness are typically dismissed as being representative of 
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fluctuations in illumination, which the human visual system compensates automatically. 

In a gray scale image where the image is an array of intensities in a two-dimensional 

(2-D) space, the variation of intensity can provide you with a sense of texture, trend, 

edges, and anomalies on a surface. In a controlled environment, the variation of 

intensity is not merely changes in illumination, but an index of physical characteristics 

of a material. 

Digital image analysis is a powerful method for gathering information. Relying 

on the convenience of computers, image processing and analysis methods have been 

used extensively in other disciplines for some time. However, their potential impact has 

started to be recognized in civil engineering only in the past few years. The 

advancement of technology and decline in cost of computers have provided numerous 

opportunities for significant advances in geotechnical and materials engineering. 

Researchers have applied digital image analysis in geotechnical engineering to study: 

cohesion less soil fabric, membrane penetration, mineral 

phase percentages in granular rocks, pavement cracking, particular shape, and 

morphological analysis of geotextiles. This field of study continues to grow in its form 

of applications as equipment becomes cheaper and better. 

Computer based digital image analysis may involve aspects of mathematical 

morphology, stereology, and image processing. After thirty years of development, 

mathematical morphology has become one of the major tools in 2-D image processing. 

Mathematical morphology is the use of systematic numerical algorithms that extract 

qualitative and quantitative information from digital spatial data. Mathematical 

morphology also discards excess information in a controlled way. The removal of 

irrelevant detail makes images easier for analysis. Stereological methods are precise 

tools for obtaining quantitative information about 3-D microscopic structures, based 

mainly on observations made on sections of a specimen. It has been demonstrated that 

without stereology, material science cannot evolve into a truly quantitative science. The 

information extracted using these methods may lead to a better understanding of an 

observed structure and related phenomena. 
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1.2.5 Digital Image Analysis 

After acquisition and storage, the digital image can be subjected to a number of 

processes that require handling of the image matrix. A digital image is a two 

dimensional (2-D) matrix (or array, see figure 1.4 [8]) where its elements are called 

pixels (picture elements). The pixel values are a light intensity function f(x, y) where x 

and y are denote spatial coordinates and the function "f' is a measure of brightness ( or 

gray level) or color of the image at that point. In a gray scale image the value of O 

denotes black (or lowest intensity) and the value of 255 denotes white (or highest 

intensity). A pixel usually denotes a dot on a computer display or monitor depending on 
the screen resolution. 

Pixel. f{x, y) 

Figure 1.4 Matrix representation of an image 

Image processing is a manipulation of matrices in the form of algorithms. Most 

processing functions can be implemented in a software application. The only reason to 

have specialized image-processing hardware is the need for speed in some applications. 

However, with high-speed desktop computers and storage devices becoming so 

accessible and affordable, specialized hardware is often not necessary. Today's image 

processing systems are a blend of off-the-shelf computers and specialized image 

processing accessories with overall operation being orchestrated by software running on 
the host computer. 
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1.3 History 
In early 1960's pursuing lunar science program in NASA and a ranger program in 

NANA. In late 1960's image processing started to used by medical diagnostic imaging 

filed. Such as X-ray, computed tomography (CT), magnetic resonance imagery (MRI), 

positron emission tomography (PET) and ultrasound imaging. 
In early 1970's Land sat (earth image) is used to analyse agricultural land-use 

and meteorological imagery. 
In 1980's image processing is used for biological image, television broadcasting, 

military uses and to automate manufacturing processes. 

1.4 Future 
In think in near future there will be more application areas of image processing. 

With more powerful and faster computers the applications will be more wider. 

1.5 Importance 
Nowadays when understand the importance of image processing more. Such a way 

that we can send more probes to Mars or other planets, collect information and we 

can analyse the data with image processing. 

1.6 Summary 
In this chapter, definition of image processing, signals and systems, history, future 

and importance of image processing was discussed. 
In the next chapter, image processing techniques will be discussed. 
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CHAPTER TWO: IMAGE PROCESSING TECHNIQUES 

2.1 Overview 

In this chapter we will discuss the image processing techniques. These 

techniques are; 

Image Compression, image restoration, image enhancement, image recognition 

and edge detection. 

2.2 Image Compression 

Uncompressed multimedia (graphics, audio and video) data requires 

considerable storage capacity and transmission bandwidth. Despite rapid progress in 

mass-storage density, processor speeds, and digital communication system performance, 

demand for data storage capacity and data-transmission bandwidth continues to outstrip 

the capabilities of available technologies. The recent growth of data intensive 

multimedia-based web applications have not only sustained the need for more efficient 

ways to encode signals and images but have made compression of such signals central 

to storage and communication technology. 

For still image compression, the 'Joint Photographic Experts Group' or JPEG 

standard has been established by ISO (International Standards Organization) and IEC 

(International Electro-Technical Commission). The performance of these coders 

generally degrades at low bit-rates mainly because of the underlying block-based 

Discrete Cosine Transform (DCT) scheme. More recently, the wavelet transform has 

emerged as a cutting edge technology, within the field of image compression. Wavelet 

based coding provides substantial improvements in picture quality at higher 

compression ratios. Over the past few years, a variety of powerful and sophisticated 

wavelet-based schemes for image compression, as discussed later, have been developed 

and implemented. Because of the many advantages, the top contenders in the upcoming 

JPEG-2000 standard are all wavelet-based compression algorithms. 



2.2.1 Why do we need compression? 

The figures in Table 2.1 show the qualitative transition from simple text to full 

motion video data and the disk space, transmission bandwidth, and transmission time 

needed to store and transmit such uncompressed data. 

Table 2.1. Multimedia data types and uncompressed storage space, transmission 

bandwidth, and transmission time required. The prefix kilo- denotes a factor of 1000 

rather than 1024. 

Multimedia 

Data 

, ,Transmission 
· Uncompressed 'l'I'ransmlsslon- 

Bits/Pixel or Time (using a 
Size/Duration 11 , Size Bandwidth 

Bits/Sample ' 28.8K 
(B for bytes) (b for bits) 

'Modem) 

P
-- 

Varying 32-64 
Apageoftext lll"x8.5" I . 1,4-8KB l.l-2.2sec 

resolution Kb/page 

Telephone f:-F-rF F . 10 sec 8 bps . 80 KB 64 Kb/sec 22.2 sec 
quality speech 

1Grayscale F--~-F- 512 x 512 8 bpp 262 KB j2.1 Mb/image 11 min 13 sec 
Image 

Colorimage j512x512 ~~1629 
,- · -rr 1 · -- -- jMb/image 

l
~Med-ical-~1--11; ·rl41.3 

2048 x 1680 12 bpp 5.16 MB 
!Image I jMb/image 

~~- 2048x2048 b4~11258MB [~~O- i---- -···-o- 1- . -rr \Mb/image 

640 X 480, 1 ~~---- 

Full-motion [min \...,..1 i..-- 24 bpp 11.66 GB 1221 Mb/sec 

3 min 39 sec 

23 min 54 sec . 

58 min 15 sec 

5 days 8 hrs 
Video (30 

frames/sec) 

10 
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The examples above clearly illustrate the need for sufficient storage space, large 

transmission bandwidth, and long transmission time for image, audio, and video data. 

At the present state of technology, the only solution is to compress multimedia data 

before its storage and transmission, and decompress it at the receiver for play back. For 

example, with a compression ratio of 32:1, the space, bandwidth, and transmission time 

requirements can be reduced by a factor of 32, with acceptable quality. 

2.2.2 What are the principles behind compression? 

A common characteristic of most images is that the neighboring pixels are 

correlated and therefore contain redundant information. The foremost task then is to 

find less correlated representation of the image. Two fundamental components of 

compression are redundancy and irrelevancy reduction. Redundancy reduction aims at 

removing duplication from the signal source (image/video). Irrelevancy reduction 

omits parts of the signal that will not be noticed by the signal receiver, namely the 

Human Visual System (HVS). In general, three types ofredundancy can be identified: 

• Spatial Redundancy or correlation between neighboring pixel values. 

• Spectral Redundancy or correlation between different color planes or spectral 
bands. 

• Temporal Redundancy or correlation between adjacent frames in a sequence of 
images (in video applications). 

Image compression research aims at reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. Since we 

will focus only on still image compression, we will not worry about temporal 
redundancy. 
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2.2.3 What are the different classes of compression techniques? 

Two ways of classifying compression techniques are mentioned here. 

(a) Lossless vs. Lossy compression: In lossless compression schemes, the 

reconstructed image, after compression, is numerically identical to the original image. 

However lossless compression can only achieve a modest amount of compression. An 

image reconstructed following lossy compression contains degradation relative to the 

original. Often this is because the compression scheme completely discards redundant 

information. However, lossy schemes are capable of achieving much higher 

compression. Under normal viewing conditions, no visible loss is perceived (visually 

lossless). 

(b) Predictive vs. Transform coding: In predictive coding, information already sent or 

available is used to predict future values, and the difference is coded. Since this is done 

in the image or spatial domain, it is relatively simple to implement and is readily 

adapted to local image characteristics. Differential Pulse Code Modulation (DPCM) is 

one particular example of predictive coding. Transform coding, on the other hand, first 

transforms the image from its spatial domain representation to a different type of 

representation using some well-known transform and then codes the transformed values 

(coefficients). This method provides greater data compression compared to predictive 

methods, although at the expense of greater computation. 

2.2.4 What does a typical image coder look like? 

A typical lossy image compression system is shown in Fig. 2. l , It consists of 

three closely connected components namely (a) Source Encoder (b) Quantizer, and (c) 

Entropy Encoder. Compression is accomplished by applying a linear transform to 

decorrelate the image data, quantizing the resulting transform coefficients, and entropy 

coding the quantized values. 
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Figure 2.1 A Typical Lossy Signal/Image Encoder 

2.2.4.1 Source Encoder (or Linear Transformer) 

Over the years, a variety of linear transforms have been developed which 

include Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT) and many-more, each with its own advantages and 

disadvantages. 

2.2.4.2 Quantizer 

A quantizer simply reduces the number of bits needed to store the transformed 

coefficients by reducing the precision of those values. Since this is a many-to-one 

mapping, it is a lossy process and is the main source of compression in an encoder. 

Quantization can be performed on each individual coefficient, which is known as Scalar 

Quantization (SQ). Quantization can also be performed on a group of coefficients 

together, and this is known as Vector Quantization (VQ). Both uniform and non 

uniform quantizers can be used depending on the problem at hand. For an analysis on 

different quantization schemes. 

2.2.4.3 Entropy Encoder 

An entropy encoder further compresses the quantized values losslessly to give 

better overall compression. It uses a model to accurately determine the probabilities for 

each quantized value and produces an appropriate code based on these probabilities so 

that the resultant output code stream will be smaller than the input stream. The most 

commonly used entropy encoders are the Huffman encoder and the arithmetic encoder, 



where, C(u) = 0. 707 for u = 0 and = J otherwise. 

although for applications requiring fast execution, simple run-length encoding (RLE) 

has proven very effective. It is important to note that a properly designed quantizer and 

entropy encoder are absolutely necessary along with optimum signal transformation to 
get the best possible compression. 

2.2.5 JPEG : OCT-Based Image Coding Standard 

The idea of compressing an image is not new. The discovery of DCT in 1974 is 

an important achievement for the research community working on image compression. 

The DCT can be regarded as a discrete-time version of the Fourier-Cosine series. It is a 

close relative of DFT, a technique for converting a signal into elementary frequency 

components. Thus DCT can be computed with a Fast Fourier Transform (FFT) like 

algorithm in O(n log n) operations. Unlike DFT, DCT is real-valued and provides a 

better approximation of a signal with fewer coefficients. The DCT of a discrete signal 
xin), n=O, 1, .. , N-1 is defined as: 

In 1992, JPEG established the first international standard for still image 

compression where the encoders and decoders are DCT-based. The JPEG standard 

specifies three modes namely sequential, progressive, and hierarchical for lossy 

encoding, and one mode of lossless encoding. The 'baseline JPEG coder' which is the 

sequential encoding in its simplest form, will be briefly discussed here. Fig. 2.2(a) and 

2.2(b) show the key processing steps in such an encoder and decoder for grayscale 

images. Color image compression can be approximately regarded as compression of 

multiple grayscale images, which are either compressed entirely one at a time, or are 

compressed by alternately interleaving 8x8 sample blocks from each in turn. 

14 
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8 X 8 block! 

ffi-- 
Figure 2.2(a) JPEG Encoder Block Diagram 

Com~ 
I~Da.ta 

Figure 2.2(b) JPEG Decoder Block Diagram 

The OCT-based encoder can be thought of as essentially compression of a 

stream of 8x8 blocks of image samples. Each 8x8 block makes its way through each 

processing step, and yields output in compressed form into the data stream. Because 

adjacent image pixels are highly correlated, the 'forward' DCT (FDCT) processing step 

lays the foundation for achieving data compression by concentrating most of the signal 

in the lower spatial frequencies. For a typical 8x8 sample block from a typical source 

image, most of the spatial frequencies have zero or near-zero amplitude and need not be 

encoded. In principle, the DCT introduces no loss to the source image samples; it 

merely transforms them to a domain in which they can be more efficiently encoded. 

After output from the FDCT, each of the 64 DCT coefficients is uniformly 

quantized in conjunction with a carefully designed 64-element Quantization Table (QT). 

At the decoder, the quantized values are multiplied by the corresponding QT elements 

to recover the original unquantized values. After quantization, all of the quantized 

coefficients are ordered into the "zig-zag" sequence as shown in Fig. 2.3. This ordering 
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helps to facilitate entropy encoding by placing low-frequency non-zero coefficients 

before high-frequency coefficients. The DC coefficient, which contains a significant 

fraction of the total image energy, is differentially encoded. 

Figure 2.3 Zig-Zag sequence 

Entropy Coding (EC) achieves additional compression losslessly by encoding the 

quantized DCT coefficients more compactly based on their statistical characteristics. 

The JPEG proposal specifies both Huffman coding and arithmetic coding. The baseline 

sequential codec uses Huffman coding, but codecs with both methods are specified for 

all modes of operation. Arithmetic coding, though more complex, normally achieves 5- 

10% better compression than Huffman coding. 

2.2.6 Wavelets and Image Compression 

2.2.6.1 What is a Wavelet Transform? 

Wavelets are functions defined over a finite interval and having an average 

value of zero. The basic idea of the wavelet transform is to represent any arbitrary 

function f (t) as a superposition of a set of such wavelets or basis functions. These basis 
functions or baby wavelets are obtained from a single prototype wavelet called the 

mother wavelet, by dilations or contractions (scaling) and translations (shifts). The 



Discrete Wavelet Transform of a finite length signal x(n) having N components, for 

example, is expressed by an N x N matrix. 

2.2.6.2 Why Wavelet-based Compression? 

Despite all the advantages of JPEG compression schemes based on DCT namely 

simplicity, satisfactory performance, and availability of special purpose hardware for 

implementation, these are not without their shortcomings. Since the input image needs 

to be "blocked," correlation across the block boundaries is not eliminated. This results 

in noticeable and annoying "blocking artifacts" particularly at low bit rates as shown in 

Fig. 2.4. Lapped Orthogonal Transforms (LOT) attempt to solve this problem by using 

smoothly overlapping blocks. Although blocking effects are reduced in LOT 

compressed images, increased computational complexity of such algorithms do not 

justify wide replacement ofDCT by LOT. 

(a) (b) 

Figure 2.4(a) Original Lena Image, and (b) Reconstructed Lena with DC component 

only, to show blocking artifacts 

17 



Over the past several years, the wavelet transform has gained widespread 

acceptance in signal processing in general, and in image compression research in 

particular. In many applications wavelet-based schemes (also referred as subband 

coding) outperform other coding schemes like the one based on DCT. Since there is no 

need to block the input image and its basis functions have variable length, wavelet 

coding schemes at higher compression avoid blocking artifacts. Wavelet-based coding 

is more robust under transmission and decoding errors, and also facilitates progressive 

transmission of images. In addition, they are better matched to the HVS characteristics. 

Because of their inherent multiresolution nature, wavelet coding schemes are especially 

suitable for applications where scalability and tolerable degradation are important. 

2.2.6.3 Subband Coding 

The fundamental concept behind Subband Coding (SBC) is to split up the 

frequency band of a signal (image in our case) and then to code each subband using a 

coder and bit rate accurately matched to the statistics of the band. SBC has been used 

extensively first in speech coding and later in image coding because of its inherent 

advantages namely variable bit assignment among the subbands as well as coding error 

confinement within the subbands. 

(a) 

"I 

(b) 

Figure 2.S(a) Separable 4-subband Filterbank, and 2.S(b) Partition of the Frequency 

Domain 

18 



19 

Woods and O'Neil used a separable combination of one-dimensional Quadrature 

Mirror Filterbanks (QMF) to perform a 4-band decomposition by the row-column 

approach as shown in Fig. 2.5(a). Corresponding division of the frequency spectrum is 

shown in Fig. 2.5(b). The process can be iterated to obtain higher band decomposition 

filter trees. At the decoder, the subband signals are decoded, upsampled and passed 

through a bank of synthesis filters and properly summed up to yield the reconstructed 

image. 

2.2.6.4 From Subband to Wavelet Coding 

Over the years, there have been many efforts leading to improved and efficient 

design of filterbanks and subband coding techniques. Since 1990, methods very similar 

and closely related to subband coding have been proposed by various researchers under 

the name of Wavelet Coding (WC) using filters specifically designed for this purpose. 

Such filters must meet additional and often conflicting requirements. These include 

short impulse response of the analysis filters to preserve the localization of image 

features as well as to have fast computation, short impulse response of the synthesis 

filters to prevent spreading of artifacts (ringing around edges) resulting from 

quantization errors, and linear phase of both types of filters since nonlinear phase 

introduce unpleasant waveform distortions around edges. Orthogonality is another 

useful requirement since orthogonal filters, in addition to preservation of energy, 

implement a unitary transform between the input and the subbands. But, as in the case 

of 1-D, in two-band Finite Impulse Response (FIR) systems linear phase and 

orthogonality are mutually exclusive, and so orthogonality is sacrificed to achieve linear 

phase. 



2.3 Image Restoration 

Digitized images typically suffer from a range of imperfections including 

geometric distortion, nonuniform contrast, and noise. These all introduce errors into 

p( r , t) 1 k h · · "'d l" S · un ess steps are ta en to restore t e Image to Its I ea state. ome geometnc 

distortions are caused by defects in the microscope optics, but most are introduced in 

later stages of digitization. Video signals adhering to the RS-170 standard, for example, 

consist of rectangular pixels with a 4:3 aspect ratio. A circle imaged by a video camera 

appears uniaxially distorted into an ellipse when digitized and displayed by a computer, 

whose pixels are square. The analysis routines we describe below are most easily 

implemented for images consisting of square pixels. While many digitizing boards 

attempt to correct for uniaxial distortion, they often leave a residual anisotropy of a few 

percent. Both uniform and nonuniform geometric distortions can be measured by 

creating images of standard grids, identifying features in the images with features in the 

standards, and determining how far the image features are displaced from their ideal 

locations in an undistorted image. The algorithms we describe below for locating 

colloidal spheres also are useful for locating features in such calibration standards. 

Standard image processing texts describe algorithms for measuring apparent distortions 

in the calibration grid image and removing the distortion by spatial warping. Many 

image processing packages such as IDL include efficient implementations. 

A.(x +,, y + J ). . . (2) 

Contrast gradients can arise from nonuniform sensitivity among the camera's 

pixels. More significant variation often is due to uneven illumination. Long wavelength 

modulation of the background brightness complicates the design of criteria capable of 

locating spheres' images throughout an entire image. Subtracting off such a background 

is not difficult if the features of interest are relatively small and well separated as is 

frequently the case for colloidal images. Under these circumstances, the background is 

reasonably well modeled by a boxcar average over a region of extent 2w+ 1, where w is 

an integer larger than a single sphere's apparent radius in pixels, but smaller than an 
intersphere separation: 

1 
) - ~- .. ,~ ~ ... 4.w(:r, ..,, - (2w + lr i,1=-w 

,.1) 
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w ( l :) ) , 1 . . 1 +1 
.4.>,,.t._x,y)= B.~ A(:r+1,r+;)o:p - 4):l I 

1,1=-w n 

(3) 

While long-wavelength contrast variations waste the digital imaging system's dynamic 

range, noise actually destroys information. Coherent noise from radio frequency 

interference (RFI) can be removed with Fourier transform techniques but is best 

avoided with proper electrical shielding. Digitization noise in the CCD camera and the 

frame grabber, however, is unavoidable. Such noise tends to be purely random with a 
X Rj 1 

correlation length n pixel. Convolving an image A(x,y) with a Gaussian surface of 
,\ 

revolution of half width n strongly suppresses such noise without unduly blurring the 

image: 

B= 
with normalization 

The difference between the noise-reduced and background images is an estimate of the 

ideal image. Since both eqn. (2) and eqn. (3) can be implemented as convolutions of the 

image A(x,y) with simple kernels of support 2w + 1, we can compute both in a single 

step with the convolution kernel 

(4) 

The normalization constant 

[ l :l w ( -~ _ 1 ._-, •• 1 B 
Ko - B . L e s: p I\ - -::>.!) - (2w+1F 

1 = - w facilitates comparison among images 

filtered with different values of w. The correlation length of the noise generally is not 

used as input parameter, with ,\, r\nstead being set to unity. The efficacy of the filter can 

be judged from the example in Fig. 1 (b ). 
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In practice, the image A(x,y) must be cast from an array of bytes to a higher precision 

data format, such as a floating point array, before convolution. This scaling, together 

with the actual convolution operation can be implemented in hardware with an array 

processor such as the Data Translation DT-2878. Further speed enhancement is realized 

by decomposing the circularly symmetric two-dimensional convolution kernel K(i,j) 

into four one-dimensional convolution kernels, so that filtering can be computed in 

O(w) operations rather than. O(m2). 

2.4 Image Recognition 

2.4.1 Pattern recognition methods in image understanding 

• Pattern recognition methods frequently appear in image understanding[8] . 

• Classification-based segmentation of multispectral images (satellite images, 

magnetic resonance medical images, etc.) is a typical example. 

• Supervised methods are used for classification, a priori knowledge is applied to 

form a training set. 

• In the image understanding stage, feature vectors derived from local 

multispectral image values of image pixels are presented to the classifier which 

assigns a label to each pixel of the image. 

• Image understanding is then achieved by pixel labeling. 

• Thus the understanding process segments a multispectral image into regions of 

known labels. 

• Training set construction, and therefore human interaction, is necessary for 

supervised classification methods, but if unsupervised classification is used, 

training set construction is avoided. 

• As a result, the clusters and the pixel labels do not have a one-to-one 

correspondence with the class meaning. 



• Post-processing classification improvement 

o Pixel labels resulting from pixel classification in a given neighborhood 

form a new feature vector for each pixel, and a second-stage classifier 

based on the new feature vectors assigns final pixel labels. 

o The contextual information is incorporated in the labeling process of the 
second-stage classifier learning. 

' ., 
'• 

• This implies the image is segmented, but labels are not available to support 
image understanding. 

• Fortunately, a priori information can often be used to assign appropriate labels to 

the clusters without direct human interaction . 

• 

2.4.2 Contextual image classification 

• The method presented above works well in non-noisy data, and if the spectral 
properties determine classes sufficiently well. 

• If noise or substantial variations in in-class pixel properties are present, the 

resulting image segmentation may have many small ( often one-pixel) regions, 
which are misclassified. 

• Several standard approaches can be applied to avoid this misclassification, 

which is very common in classification-based labeling. 

• All of them use contextual information to some extent 

• Post-processing filter to a labeled image 

o Small or single-pixel regions then disappear as the most probable label 

from the local neighborhood is assigned to them. 

o This approach works well if the small regions are caused by noise. 

o Unfortunately, the small regions can result from true regions with 

different properties in the original multispectral image, and in this case 

such filtering would worsen labeling results. 

o Post-processing filters are widely used in remote sensing applications 
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i = 0, ... , k "' ,,.. 

• Context may also be introduced in earlier stages, merging pixels into 

homogeneous regions and classifying these regions. 

• Another contextual pre-processing approach is based on acquiring pixel feature 

descriptions from a pixel neighborhood. 

o Mean values, variances, texture description, etc. may be added to ( or 

may replace) original spectral data. 

o This approach is very common in textured image recognition. 

• The most interesting option is to combine spectral and spatial information in the 

same stage of the classification process. 

o The label assigned to each image pixel depends not only on multispectral 

gray level properties of the particular pixel but also considers the context 

in the pixel neighborhood. 

• The last approach is discussed in more detail. 

• Contextual classification of image data is based on the Bayes minimum error 

classifier. 

• For each pixel x0, a vector consisting of (possibly multispectral) values f(xi) of 

pixels in a specified neighborhood N(xo) is used as a feature representation of 

the pixel xo. Each pixel is represented by the vector . "• 

e = (f(xo), /(xi), ... ' f(xk)) 

• Some more vectors are defined which will be used later. 

• Let labels (classification) of pixels in the neighborhood N(x0) be represented by 

a vector 

24 



• and omegas denotes the assigned class. 

• Further, let the labels in the neighborhood excluding the pixel xo be represented 

by a vector 

• Theoretically, there may be no limitation on the neighborhood size, but the 

majority of contextual information is believed to be present in a small 

neighborhood of the pixel xo. 

• Therefore, a 3 x 3 neighborhood in 4-connectivity or in 8-connectivity is usually 

considered appropriate. 

• Also, computational demands increase exponentially with growth of 

neighborhood size. 

(a) 

J(~ I ~ X: ' ~ I Xn . xt 

~1~ ru 

Figure 2.6 Pixel neighborhoods used in contextual image classification, pixel indexing 

scheme: (a) 4-neighborhood, (b) 8- neighborhood. 

• A conventional minimum error classification method assigns a pixel x0 to a class 

omega, if the probability of xo being from the class omega, is the highest of all 

possible classification probabilities 
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1. For each image pixel, determine a feature vector ( ( equation (8.15)). 

2. From the training set, determine parameters of probability distributions 
p((lws) and P(ws)- 

.. 

if P(wrJ/(Xo)) = max P(wsl/(Xo)) 
s=l, ... ,R 

• A contextual classification scheme uses the feature vector xi instead of xo, and 

the decision rule remains similar 

if P(wrl() = max P(wsl() 
s=l, ... ,R 

• The a posteriori probability P( omegajxi) can be computed using the Bayes 

formula 

P(wsJ() = p((Jws)P(ws) 
p(() 

• Note that each image pixel is classified using a corresponding vector xi from its 

neighborhood, and so there are as many vectors xi as there are pixels in the 

image. 

• The basic contextual classification algorithm can be summarized as 

3. Compute maximum a posteriori probabilities P( Wr I() and label ( clas 
sify) all pixels in the image according to Equation (8.19). An image 
classification results. 

• A substantial limitation in considering larger contextual neighborhoods is 

exponential growth of computational demands with increasing neighborhood 

size. 

• A recursive contextual classification overcomes these difficulties. 
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• The main trick of this method is in propagating contextual information through 

the image although the computation is still kept in small neighborhoods. 

• Spectral and neighborhood pixel labeling information are both used in 

classification. 

• Context from a distant neighborhood can propagate to the labeling thetas of the 

pixel xo 

(a) 

~ l~I 

Data 

Data Labels 

Data (c) 

Labels 

Labels 

(b) 

Data 

Labels 

Figure 2. 7 Principles of contextual classification: (a) Conventional non-contextual 

method (b) contextual method ( c) recursive contextual method- step 1 of previous 

algorithm ( d) first application of step 2 ( e) second application of step 2. 
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• The vector -eta of labels in the neighborhood may further improve the 

contextual representation. 
• Clearly, if the information contained in the spectral data in the neighborhood is 

unreliable ( e.g. based on spectral data, the pixel xo may be classified into a 

number of classes with similar probabilities) the information about labels in the 

neighborhood may increase confidence in one of those classes. 

• If a majority of surrounding pixels are labeled as members of a class omega, the 

confidence that the pixel x0 should also be labeled omega, increases. 

• More complex dependencies may be found in the training set - for instance 

imagine a thin striped noisy image. Considering labels in the neighborhood of 

the pixel x0, the decision rule becomes 

if P( Wr It T)) = max P( Wslt ij) 
s=l, ... ,R 

• After several applications of the Bayes formula the decision rule transforms into 

if p((ltJr)P(wrliJ) = max p((l'1s)P(wsl'1) 
s=l, ... ,R 

where eta, is a vector eta with thetas=omega-. 

• Assuming all necessary probability distribution parameters were determined in 

the learning process, the recursive contextual classification algorithm follows: 
, l 
' . .. 

1. Determine an initial image pixel labelling using the non-contextual clas 
sification scheme, equation ( 8.18) 

2. Update labels in each image pixel xe, applying the current label vectors 
'1, ij, and local spectral vector! to the decision rule Equation (8.22). 

3. Terminate the algorithm if the labels of all pixels in the image are stable, 
repeat step (2) otherwise. 
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• There is a crucial idea incorporated in the algorithm of recursive contextual 

image classification that will be seen several times throughout this chapter; this 

is the idea of information propagation from distant image locations without 

the necessity for expensive consideration of context in large neighborhoods. 

2.5 Edge Detection 
Edges are very important to any vision system (biological or machine). 

• They are fairly cheap to compute. 

• They do provide strong visual clues that can help the recognition 

process. 

• Edges are affected by noise present in an image though. 

An edge may be regarded as a boundary between two dissimilar regions in an image. 

These may be different surfaces of the object, or perhaps a boundary between light and 

shadow falling on a single surface. 

In principle an edge is easy to find since differences in pixel values between regions are 

relatively easy to calculate by considering gradients. 

2.5.1 Representing Lines 

The representation usually used for a line in two dimensions is of the form ,I .. 
"' 

y = m:r. + C 
where m is the gradient of the line and c is the intercept of the line with the y axis 

(Fig 2.8). 
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Another alternative representation of an edge or line (again, see Fig 2.8) is by the vector 

· (n,rl) h · di · ( 11 1· d) 1 h d d · parr , w ere n IS a irection vector usua y norma ise a ong t e e ge an d IS a 

vector from the origin to the closest point on the line. ,I ... 
~. - . 

)' y 
C 

._ ,..,.. 
X 

@.) )' = mx + c (t,) Altem.ati•e form of (c) Vector representation 
quabon of line Lim equation of a line 

Figure 2.8 Line representation 

An alternative representation of a line is 

r; ~c:.ose+ ysinft 
where r is the perpendicular distance from the line to the origin and is the angle the line 

makes with the x axis, as shown in Fig 20. 

-oo < m < -l-oo 
The latter form has the advantage that the gradient m, with a range - - has 

:J < (i < 'lT' 
been replaced by the range of angles - - 

This is easier to deal with computationally. 

(This will be important later -- see Hough Transforms). 

Thus, the length of d is the perpendicular distance of the line from the origin. 

This form of line representation is useful for both two- and three-dimensional lines, and 

indeed for three-dimensional lines this form is preferable. 

Another advantage of this form of line representation is that the line can be 

parametrised. 
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p ;;; UT LU, 

Thus, we can specify the position of any point on the line, such as the end of an edge, 

by its distance t along the line. Therefore the coordinates of a point p(p(:z:, y) or 

p(r.e, Yi z)) 
are 

2.5.2 Extracting Edges from Images 

Many edge extraction techniques can be broken up into two distinct phases: 

• Finding pixels in the image where edges are likely to 

occur by looking for discontinuities in gradients. 

Candidate points for edges in the image are usually referred to as edge points, 

edge pixels, or edgels. 

• Linking these edge points in some way to produce 

descriptions of edges in terms of lines, curves etc. 

2.5.3 Detecting Edge Points 

2.5.3.1 Gradient based methods 

An edge point can be regarded as a point in an image where a discontinuity (in 

gradient) occurs across some line. A discontinuity may be classified as one of three 

types (see Fig 2.9): ,I 
" 
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(a} Con,e x roof 
eL~e 

(t,) Conc?1.•1e roof 
odgti 

,)~) Concave ramp 
edge 

(l;) Sar tdge 

Figure 2.9 The C Compilation Model 

A Gradient Discontinuity 
-- where the gradient of the pixel values changes across a line. This type of 

discontinuity can be classed as 

• roof edges 

• ramp edges 

• convex edges 

• concave edges 

by noting the sign of the component of the gradient perpendicular to the edge on 

either side of the edge. 

Ramp edges have the same signs in the gradient components on either side of 

the discontinuity, while roof edges have opposite signs in the gradient 

components. 

A Jump or Step Discontinuity 
-- where pixel values themselves change suddenly across some line. 

A Bar Discontinuity 
-- where pixel values rapidly increase then decrease again (or vice versa) across 

some line. 
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For example, if the pixel values are depth values, 

• jump discontinuities occur where one object occludes 

another ( or another part of itself). 

• Gradient discontinuities usually occur between adjacent 

faces of the same object. 

If the pixel values are intensities, 

• a bar discontinuity would represent cases like a thin black 

line on a white piece of paper. 

• Step edges may separate different objects, or may occur 

where a shadow falls across an object. 

The gradient is a vector, whose components measure how rapidly pixel values are 

changing with distance in the x and y directions. 

Thus, the components of the gradient may be found using the following approximation: 
H:i:: + ri;i;1 y) - H:i::1 Y) 

d:r 
f(x, !J + r~) - f(x, y) 

di; 

Ufl.:i::,y) = b..r. 
:):0, 

= 

where 'i.r and dymeasure distance along the x andy directions respectively. 

rl 1. 
In (discrete) images we can consider .-.x and Yin terms of numbers of pixels between two 

dr. = ,1.y = 1 points. Thus, when · (pixel spacing) and we are at the point whose pixel 

coordinates are (iJ) 
L\.t = f(i + 1, j) -f(i1j), 
'~Y = f(i, j + 1) -f(i1j). 

we have 
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In order to detect the presence of a gradient discontinuity we must calculate the change 

in gradient at (ij). We can do this by finding the following gradient magnitude 

measure, 

lri - IS'+ s: -y ;r, yi 

and the gradient direction, , given by 

2.5.3.2 Implementation: 

The difference operators in Eqn. 44 correspond to convolving the image with the two 

masks in Fig. 2.10. 

This is easy to compute: 

• The top left-hand comer of the appropriate mask is superimposed over each 

pixel of the image in tum, 

• A value is calculated for ar.or ~~'by using the mask coefficients in a weighted 

sum of the value of pixel (ij) and its neighbours. 

• These masks are referred to as convolution masks or sometimes convolution 

kernels. 

1! .. 

Figure 2.10 Edge operator convolution masks 

Instead of finding approximate gradient components along the x and y directions we can 
also approximate gradient components along directions at 45°and 135°to the axes 
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INTRODUCTION 

Image Processing is becoming a widely acknowledged technology. Many 

everyday processes use automated vision systems, all of which rely upon image 

processing techniques. Image Processing, in general terms, refers to the manipulation, 

improvement and analysis of pictorial information. In this case, pictorial information 

means a two-dimensional visual image. Digital image processing is concerned with the 

improvement of quality of a picture that is digitally represented, as that represented in 

the digital computer. 

From the 19§0's through today, the evolution of the digital computer has 

certainly been largely responsible for enabling the proliferation of digital image 

processing applications. Costly mainframe computers are no longer a requirement of the 

digital image processing equation like they were in the 1960's. The advent of 

microprocessors, leading to the personal computer, has allowed stand-alone digital 

image processing applications to become viable. 

"' In this project, applications of image processing is discussed. The aim of the 

project is to inform you about the real life applications of image processing and new 

techniques used in image processing. 

The first chapter represents the background of image processing. This chapter 

includes history, basically description of image processing, importance and future of 

image processing. 

Chapter two is assigned for the techniques that are used in image processing. 

These techniques can be sorted as; 

Image compression, image restoration, image recognition and edge detection. 

Chapter three represents the applications of image processing in real life. 

Chapter four is assigned to applications of image processing to Mine Warfare 

Sonar Systems 



2 

CHAPTER ONE : IMAGE PROCESSING BACKGROUND 

1.1 Overview 
In this chapter the definition of image process~, history, future and importance 

in real life will be present. 

1.2 Definition 

1.2.1 Signals and Systems 

Whether analog or digital, information is represented by the fundamental 

quantity in electrical engineering: the signal. Stated in mathematical terms, a signal is 

merely a function. Analog signals are continuous-valued; digital signals are discrete 

valued. The independent variable of the signal could be time (speech, for 

example ),space (images), or the integers. 

1.2.2 Analog Sinals 

Analog signals are usually signals defined over continuous independent 

variable(s). SPEECH is produced by your vocal cords exciting acoustic resonances in 

your vocal tract. The result is pressure waves propagating in the air, and the speech 

signal thus corresponds to a function having independent variables of space and time 

and a value corresponding to air pressure: sxt (Here we use vector notation x to denote 

spatial coordinates). When you record someone talking, you are evaluating the speech 

signal at a particular spatial location, xO say. An example of the resulting waveform sx0t 

is shown in Figure 1.1 [1]. 
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Figure 1.1 A speech signal's amplitude relates to tiny air pressure variations. 

Shown is a recording of the vowel "e" (as in "speech") 

1.2.3 Digital Signals 

The word "digital" means discrete-valued and implies the signal has an integer 

valued independent variable. Digital information includes numbers and symbols 

(characters typed on the keyboard, for example). Computers rely on the digital 

representation of information to manipulate and transform information. Symbols do not 

have a numeric value, and each is represented by a unique number. The ASCII character 

code has the upper- and lowercase characters, the numbers, punctuation marks, and 

various other symbols represented by a seven-bit integer. For example, the ASCII code 

represents the letter a as the number 97 and the letter A as 65. 

Signals can be represented by discrete quantities instead of as a function of a 

continuous variable. These discrete time signals do not necessarily have to take real 

number values. Many properties of continuous valued signals transfer almost directly to 
the discrete domain. 

So far, we have treated what are known as analog signals and systems. 

Mathematically, analog signals are functions having continuous quantities as their 

independent variables, such as space and time. Discrete-time signals are functions 

defined on the integers; they are sequences. This result is important because discrete- 
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time signals can be manipulated by systems instantiated as computer programs. 

Subsequent modules describe how virtually all analog signal processing can be 
performed with software. 

As important as such results are, discrete-time signals are more general, 

encompassing signals derived from analog ones and signals that aren't. For example, the 

characters forming a text file form a sequence, which is also a discrete-time signal. As 

with analog signals, we seek ways of decomposing real-valued discrete-time signals 

into simpler components. With this approach leading to a better understanding of signal 

structure, we can exploit that structure to represent information (create ways of 

representing information with signals) and to extract information (retrieve the 

information thus represented). For symbolic-valued signals, the approach is different: 

We develop a common representation of all symbolic-valued signals so that we can 

embody the information they contain in a unified way. From an information 

representation perspective, the most important issue becomes, for both real-valued and 
symbolic-valued signals, efficiency. 

1.2.3.1 Real and Complex Valued Signals 

The discrete-time signals as stem plots to emphasize the fact they are functions 

defined only on the integers. We can delay a discrete-time signal by an integer just as 

with analog ones. A delayed unit sample has the expression 8Dn-m, and equals one 
whenn=m. 

1.2.3.2 Discrete Time Cosine Signal 

Figure 1.2 shows The Discrete Time Cosine Signal [I] 

Sn 

Figure 1.2 The Discrete Time Cosine Signal 



Figure 1.3 Unit Sample 

1.2.3.3 Sinusoids 

As opposed to analog complex exponentials and sinusoids that can have their 

frequencies be any real value, frequencies of their discrete-time counterparts yield 

unique waveforms only when flies in the interval minus infinity to plus infinity. 

1.2.3.4 Unit Sample 

The second-most important discrete-time signal is the unit sample, which is 

defined in figure 1.3 [I] 

r 1, 
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1.2.4 Image Processing 

Image processing and analysis is a combination of the visual enhancement of an 

image and the numerical evaluation of some aspect of the acquired image that would not 

be apparent in its analog form. The processing of a digital image refers to its actual 

refinement procedure. The analysis of a digital image encompasses the translation of the 

newly improved image's features into useful data. The necessity for this technology is 

due primarily to the difference between human visions and "computer vision." This 

contrast is most pronounced when comparing the type of information obtained from 

images and the methods used. Human vision is fundamentally qualitative and 

comparative, but not quantitative. Humans judge the relative size and shape of objects 

by mentally manipulating them to the same orientation and overlapping them to perform 

a comparison. Humans are particularly poor at assessing the color or brightness of 

features within images without direct comparison by positioning them adjacently. 

Progressive variations in brightness are typically dismissed as being representative of 
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fluctuations in illumination, which the human visual system compensates automatically. 

In a gray scale image where the image is an array of intensities in a two-dimensional 

(2-D) space, the variation of intensity can provide you with a sense of texture, trend, 

edges, and anomalies on a surface. In a controlled environment, the variation of 

intensity is not merely changes in illumination, but an index of physical characteristics 

of a material. 

Digital image analysis is a powerful method for gathering information. Relying 

on the convenience of computers, image processing and analysis methods have been 

used extensively in other disciplines for some time. However, their potential impact has 

started to be recognized in civil engineering only in the past few years. The 

advancement of technology and decline in cost of computers have provided numerous 

opportunities for significant advances in geotechnical and materials engineering. 

Researchers have applied digital image analysis in geotechnical engineering to study: 

cohesion less soil fabric, membrane penetration, mineral 

phase percentages in granular rocks, pavement cracking, particular shape, and 

morphological analysis of geotextiles. This field of study continues to grow in its form 

of applications as equipment becomes cheaper and better. 

Computer based digital image analysis may involve aspects of mathematical 

morphology, stereology, and image processing. After thirty years of development, 

mathematical morphology has become one of the major tools in 2-D image processing. 

Mathematical morphology is the use of systematic numerical algorithms that extract 

qualitative and quantitative information from digital spatial data. Mathematical 

morphology also discards excess information in a controlled way. The removal of 

irrelevant detail makes images easier for analysis. Stereological methods are precise 

tools for obtaining quantitative information about 3-D microscopic structures, based 

mainly on observations made on sections of a specimen. It has been demonstrated that 

without stereology, material science cannot evolve into a truly quantitative science. The 

information extracted using these methods may lead to a better understanding of an 

observed structure and related phenomena. 
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1.2.5 Digital Image Analysis 

After acquisition and storage, the digital image can be subjected to a number of 

processes that require handling of the image matrix. A digital image is a two 

dimensional (2-D) matrix (or array, see figure 1.4 [8]) where its elements are called 

pixels (picture elements). The pixel values are a light intensity function f(x, y) where x 

and y are denote spatial coordinates and the function "f' is a measure of brightness ( or 

gray level) or color of the image at that point. In a gray scale image the value of O 

denotes black (or lowest intensity) and the value of 255 denotes white (or highest 

intensity). A pixel usually denotes a dot on a computer display or monitor depending on 
the screen resolution. 

Pixel. f{x, y) 

Figure 1.4 Matrix representation of an image 

Image processing is a manipulation of matrices in the form of algorithms. Most 

processing functions can be implemented in a software application. The only reason to 

have specialized image-processing hardware is the need for speed in some applications. 

However, with high-speed desktop computers and storage devices becoming so 

accessible and affordable, specialized hardware is often not necessary. Today's image 

processing systems are a blend of off-the-shelf computers and specialized image 

processing accessories with overall operation being orchestrated by software running on 
the host computer. 
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1.3 History 
In early 1960's pursuing lunar science program in NASA and a ranger program in 

NANA. In late 1960's image processing started to used by medical diagnostic imaging 

filed. Such as X-ray, computed tomography (CT), magnetic resonance imagery (MRI), 

positron emission tomography (PET) and ultrasound imaging. 
In early 1970's Land sat (earth image) is used to analyse agricultural land-use 

and meteorological imagery. 
In 1980's image processing is used for biological image, television broadcasting, 

military uses and to automate manufacturing processes. 

1.4 Future 
In think in near future there will be more application areas of image processing. 

With more powerful and faster computers the applications will be more wider. 

1.5 Importance 
Nowadays when understand the importance of image processing more. Such a way 

that we can send more probes to Mars or other planets, collect information and we 

can analyse the data with image processing. 

1.6 Summary 
In this chapter, definition of image processing, signals and systems, history, future 

and importance of image processing was discussed. 
In the next chapter, image processing techniques will be discussed. 
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CHAPTER TWO: IMAGE PROCESSING TECHNIQUES 

2.1 Overview 

In this chapter we will discuss the image processing techniques. These 

techniques are; 

Image Compression, image restoration, image enhancement, image recognition 

and edge detection. 

2.2 Image Compression 

Uncompressed multimedia (graphics, audio and video) data requires 

considerable storage capacity and transmission bandwidth. Despite rapid progress in 

mass-storage density, processor speeds, and digital communication system performance, 

demand for data storage capacity and data-transmission bandwidth continues to outstrip 

the capabilities of available technologies. The recent growth of data intensive 

multimedia-based web applications have not only sustained the need for more efficient 

ways to encode signals and images but have made compression of such signals central 

to storage and communication technology. 

For still image compression, the 'Joint Photographic Experts Group' or JPEG 

standard has been established by ISO (International Standards Organization) and IEC 

(International Electro-Technical Commission). The performance of these coders 

generally degrades at low bit-rates mainly because of the underlying block-based 

Discrete Cosine Transform (DCT) scheme. More recently, the wavelet transform has 

emerged as a cutting edge technology, within the field of image compression. Wavelet 

based coding provides substantial improvements in picture quality at higher 

compression ratios. Over the past few years, a variety of powerful and sophisticated 

wavelet-based schemes for image compression, as discussed later, have been developed 

and implemented. Because of the many advantages, the top contenders in the upcoming 

JPEG-2000 standard are all wavelet-based compression algorithms. 



2.2.1 Why do we need compression? 

The figures in Table 2.1 show the qualitative transition from simple text to full 

motion video data and the disk space, transmission bandwidth, and transmission time 

needed to store and transmit such uncompressed data. 

Table 2.1. Multimedia data types and uncompressed storage space, transmission 

bandwidth, and transmission time required. The prefix kilo- denotes a factor of 1000 

rather than 1024. 

Multimedia 

Data 

, ,Transmission 
· Uncompressed 'l'I'ransmlsslon- 

Bits/Pixel or Time (using a 
Size/Duration 11 , Size Bandwidth 

Bits/Sample ' 28.8K 
(B for bytes) (b for bits) 

'Modem) 

P
-- 

Varying 32-64 
Apageoftext lll"x8.5" I . 1,4-8KB l.l-2.2sec 

resolution Kb/page 

Telephone f:-F-rF F . 10 sec 8 bps . 80 KB 64 Kb/sec 22.2 sec 
quality speech 

1Grayscale F--~-F- 512 x 512 8 bpp 262 KB j2.1 Mb/image 11 min 13 sec 
Image 

Colorimage j512x512 ~~1629 
,- · -rr 1 · -- -- jMb/image 

l
~Med-ical-~1--11; ·rl41.3 

2048 x 1680 12 bpp 5.16 MB 
!Image I jMb/image 

~~- 2048x2048 b4~11258MB [~~O- i---- -···-o- 1- . -rr \Mb/image 

640 X 480, 1 ~~---- 

Full-motion [min \...,..1 i..-- 24 bpp 11.66 GB 1221 Mb/sec 

3 min 39 sec 

23 min 54 sec . 

58 min 15 sec 

5 days 8 hrs 
Video (30 

frames/sec) 
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The examples above clearly illustrate the need for sufficient storage space, large 

transmission bandwidth, and long transmission time for image, audio, and video data. 

At the present state of technology, the only solution is to compress multimedia data 

before its storage and transmission, and decompress it at the receiver for play back. For 

example, with a compression ratio of 32:1, the space, bandwidth, and transmission time 

requirements can be reduced by a factor of 32, with acceptable quality. 

2.2.2 What are the principles behind compression? 

A common characteristic of most images is that the neighboring pixels are 

correlated and therefore contain redundant information. The foremost task then is to 

find less correlated representation of the image. Two fundamental components of 

compression are redundancy and irrelevancy reduction. Redundancy reduction aims at 

removing duplication from the signal source (image/video). Irrelevancy reduction 

omits parts of the signal that will not be noticed by the signal receiver, namely the 

Human Visual System (HVS). In general, three types ofredundancy can be identified: 

• Spatial Redundancy or correlation between neighboring pixel values. 

• Spectral Redundancy or correlation between different color planes or spectral 
bands. 

• Temporal Redundancy or correlation between adjacent frames in a sequence of 
images (in video applications). 

Image compression research aims at reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. Since we 

will focus only on still image compression, we will not worry about temporal 
redundancy. 
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2.2.3 What are the different classes of compression techniques? 

Two ways of classifying compression techniques are mentioned here. 

(a) Lossless vs. Lossy compression: In lossless compression schemes, the 

reconstructed image, after compression, is numerically identical to the original image. 

However lossless compression can only achieve a modest amount of compression. An 

image reconstructed following lossy compression contains degradation relative to the 

original. Often this is because the compression scheme completely discards redundant 

information. However, lossy schemes are capable of achieving much higher 

compression. Under normal viewing conditions, no visible loss is perceived (visually 

lossless). 

(b) Predictive vs. Transform coding: In predictive coding, information already sent or 

available is used to predict future values, and the difference is coded. Since this is done 

in the image or spatial domain, it is relatively simple to implement and is readily 

adapted to local image characteristics. Differential Pulse Code Modulation (DPCM) is 

one particular example of predictive coding. Transform coding, on the other hand, first 

transforms the image from its spatial domain representation to a different type of 

representation using some well-known transform and then codes the transformed values 

(coefficients). This method provides greater data compression compared to predictive 

methods, although at the expense of greater computation. 

2.2.4 What does a typical image coder look like? 

A typical lossy image compression system is shown in Fig. 2. l , It consists of 

three closely connected components namely (a) Source Encoder (b) Quantizer, and (c) 

Entropy Encoder. Compression is accomplished by applying a linear transform to 

decorrelate the image data, quantizing the resulting transform coefficients, and entropy 

coding the quantized values. 
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Figure 2.1 A Typical Lossy Signal/Image Encoder 

2.2.4.1 Source Encoder (or Linear Transformer) 

Over the years, a variety of linear transforms have been developed which 

include Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT) and many-more, each with its own advantages and 

disadvantages. 

2.2.4.2 Quantizer 

A quantizer simply reduces the number of bits needed to store the transformed 

coefficients by reducing the precision of those values. Since this is a many-to-one 

mapping, it is a lossy process and is the main source of compression in an encoder. 

Quantization can be performed on each individual coefficient, which is known as Scalar 

Quantization (SQ). Quantization can also be performed on a group of coefficients 

together, and this is known as Vector Quantization (VQ). Both uniform and non 

uniform quantizers can be used depending on the problem at hand. For an analysis on 

different quantization schemes. 

2.2.4.3 Entropy Encoder 

An entropy encoder further compresses the quantized values losslessly to give 

better overall compression. It uses a model to accurately determine the probabilities for 

each quantized value and produces an appropriate code based on these probabilities so 

that the resultant output code stream will be smaller than the input stream. The most 

commonly used entropy encoders are the Huffman encoder and the arithmetic encoder, 



where, C(u) = 0. 707 for u = 0 and = J otherwise. 

although for applications requiring fast execution, simple run-length encoding (RLE) 

has proven very effective. It is important to note that a properly designed quantizer and 

entropy encoder are absolutely necessary along with optimum signal transformation to 
get the best possible compression. 

2.2.5 JPEG : OCT-Based Image Coding Standard 

The idea of compressing an image is not new. The discovery of DCT in 1974 is 

an important achievement for the research community working on image compression. 

The DCT can be regarded as a discrete-time version of the Fourier-Cosine series. It is a 

close relative of DFT, a technique for converting a signal into elementary frequency 

components. Thus DCT can be computed with a Fast Fourier Transform (FFT) like 

algorithm in O(n log n) operations. Unlike DFT, DCT is real-valued and provides a 

better approximation of a signal with fewer coefficients. The DCT of a discrete signal 
xin), n=O, 1, .. , N-1 is defined as: 

In 1992, JPEG established the first international standard for still image 

compression where the encoders and decoders are DCT-based. The JPEG standard 

specifies three modes namely sequential, progressive, and hierarchical for lossy 

encoding, and one mode of lossless encoding. The 'baseline JPEG coder' which is the 

sequential encoding in its simplest form, will be briefly discussed here. Fig. 2.2(a) and 

2.2(b) show the key processing steps in such an encoder and decoder for grayscale 

images. Color image compression can be approximately regarded as compression of 

multiple grayscale images, which are either compressed entirely one at a time, or are 

compressed by alternately interleaving 8x8 sample blocks from each in turn. 

14 
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8 X 8 block! 

ffi-- 
Figure 2.2(a) JPEG Encoder Block Diagram 

Com~ 
I~Da.ta 

Figure 2.2(b) JPEG Decoder Block Diagram 

The OCT-based encoder can be thought of as essentially compression of a 

stream of 8x8 blocks of image samples. Each 8x8 block makes its way through each 

processing step, and yields output in compressed form into the data stream. Because 

adjacent image pixels are highly correlated, the 'forward' DCT (FDCT) processing step 

lays the foundation for achieving data compression by concentrating most of the signal 

in the lower spatial frequencies. For a typical 8x8 sample block from a typical source 

image, most of the spatial frequencies have zero or near-zero amplitude and need not be 

encoded. In principle, the DCT introduces no loss to the source image samples; it 

merely transforms them to a domain in which they can be more efficiently encoded. 

After output from the FDCT, each of the 64 DCT coefficients is uniformly 

quantized in conjunction with a carefully designed 64-element Quantization Table (QT). 

At the decoder, the quantized values are multiplied by the corresponding QT elements 

to recover the original unquantized values. After quantization, all of the quantized 

coefficients are ordered into the "zig-zag" sequence as shown in Fig. 2.3. This ordering 
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helps to facilitate entropy encoding by placing low-frequency non-zero coefficients 

before high-frequency coefficients. The DC coefficient, which contains a significant 

fraction of the total image energy, is differentially encoded. 

Figure 2.3 Zig-Zag sequence 

Entropy Coding (EC) achieves additional compression losslessly by encoding the 

quantized DCT coefficients more compactly based on their statistical characteristics. 

The JPEG proposal specifies both Huffman coding and arithmetic coding. The baseline 

sequential codec uses Huffman coding, but codecs with both methods are specified for 

all modes of operation. Arithmetic coding, though more complex, normally achieves 5- 

10% better compression than Huffman coding. 

2.2.6 Wavelets and Image Compression 

2.2.6.1 What is a Wavelet Transform? 

Wavelets are functions defined over a finite interval and having an average 

value of zero. The basic idea of the wavelet transform is to represent any arbitrary 

function f (t) as a superposition of a set of such wavelets or basis functions. These basis 
functions or baby wavelets are obtained from a single prototype wavelet called the 

mother wavelet, by dilations or contractions (scaling) and translations (shifts). The 



Discrete Wavelet Transform of a finite length signal x(n) having N components, for 

example, is expressed by an N x N matrix. 

2.2.6.2 Why Wavelet-based Compression? 

Despite all the advantages of JPEG compression schemes based on DCT namely 

simplicity, satisfactory performance, and availability of special purpose hardware for 

implementation, these are not without their shortcomings. Since the input image needs 

to be "blocked," correlation across the block boundaries is not eliminated. This results 

in noticeable and annoying "blocking artifacts" particularly at low bit rates as shown in 

Fig. 2.4. Lapped Orthogonal Transforms (LOT) attempt to solve this problem by using 

smoothly overlapping blocks. Although blocking effects are reduced in LOT 

compressed images, increased computational complexity of such algorithms do not 

justify wide replacement ofDCT by LOT. 

(a) (b) 

Figure 2.4(a) Original Lena Image, and (b) Reconstructed Lena with DC component 

only, to show blocking artifacts 
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Over the past several years, the wavelet transform has gained widespread 

acceptance in signal processing in general, and in image compression research in 

particular. In many applications wavelet-based schemes (also referred as subband 

coding) outperform other coding schemes like the one based on DCT. Since there is no 

need to block the input image and its basis functions have variable length, wavelet 

coding schemes at higher compression avoid blocking artifacts. Wavelet-based coding 

is more robust under transmission and decoding errors, and also facilitates progressive 

transmission of images. In addition, they are better matched to the HVS characteristics. 

Because of their inherent multiresolution nature, wavelet coding schemes are especially 

suitable for applications where scalability and tolerable degradation are important. 

2.2.6.3 Subband Coding 

The fundamental concept behind Subband Coding (SBC) is to split up the 

frequency band of a signal (image in our case) and then to code each subband using a 

coder and bit rate accurately matched to the statistics of the band. SBC has been used 

extensively first in speech coding and later in image coding because of its inherent 

advantages namely variable bit assignment among the subbands as well as coding error 

confinement within the subbands. 

(a) 

"I 

(b) 

Figure 2.S(a) Separable 4-subband Filterbank, and 2.S(b) Partition of the Frequency 

Domain 
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Woods and O'Neil used a separable combination of one-dimensional Quadrature 

Mirror Filterbanks (QMF) to perform a 4-band decomposition by the row-column 

approach as shown in Fig. 2.5(a). Corresponding division of the frequency spectrum is 

shown in Fig. 2.5(b). The process can be iterated to obtain higher band decomposition 

filter trees. At the decoder, the subband signals are decoded, upsampled and passed 

through a bank of synthesis filters and properly summed up to yield the reconstructed 

image. 

2.2.6.4 From Subband to Wavelet Coding 

Over the years, there have been many efforts leading to improved and efficient 

design of filterbanks and subband coding techniques. Since 1990, methods very similar 

and closely related to subband coding have been proposed by various researchers under 

the name of Wavelet Coding (WC) using filters specifically designed for this purpose. 

Such filters must meet additional and often conflicting requirements. These include 

short impulse response of the analysis filters to preserve the localization of image 

features as well as to have fast computation, short impulse response of the synthesis 

filters to prevent spreading of artifacts (ringing around edges) resulting from 

quantization errors, and linear phase of both types of filters since nonlinear phase 

introduce unpleasant waveform distortions around edges. Orthogonality is another 

useful requirement since orthogonal filters, in addition to preservation of energy, 

implement a unitary transform between the input and the subbands. But, as in the case 

of 1-D, in two-band Finite Impulse Response (FIR) systems linear phase and 

orthogonality are mutually exclusive, and so orthogonality is sacrificed to achieve linear 

phase. 



2.3 Image Restoration 

Digitized images typically suffer from a range of imperfections including 

geometric distortion, nonuniform contrast, and noise. These all introduce errors into 

p( r , t) 1 k h · · "'d l" S · un ess steps are ta en to restore t e Image to Its I ea state. ome geometnc 

distortions are caused by defects in the microscope optics, but most are introduced in 

later stages of digitization. Video signals adhering to the RS-170 standard, for example, 

consist of rectangular pixels with a 4:3 aspect ratio. A circle imaged by a video camera 

appears uniaxially distorted into an ellipse when digitized and displayed by a computer, 

whose pixels are square. The analysis routines we describe below are most easily 

implemented for images consisting of square pixels. While many digitizing boards 

attempt to correct for uniaxial distortion, they often leave a residual anisotropy of a few 

percent. Both uniform and nonuniform geometric distortions can be measured by 

creating images of standard grids, identifying features in the images with features in the 

standards, and determining how far the image features are displaced from their ideal 

locations in an undistorted image. The algorithms we describe below for locating 

colloidal spheres also are useful for locating features in such calibration standards. 

Standard image processing texts describe algorithms for measuring apparent distortions 

in the calibration grid image and removing the distortion by spatial warping. Many 

image processing packages such as IDL include efficient implementations. 

A.(x +,, y + J ). . . (2) 

Contrast gradients can arise from nonuniform sensitivity among the camera's 

pixels. More significant variation often is due to uneven illumination. Long wavelength 

modulation of the background brightness complicates the design of criteria capable of 

locating spheres' images throughout an entire image. Subtracting off such a background 

is not difficult if the features of interest are relatively small and well separated as is 

frequently the case for colloidal images. Under these circumstances, the background is 

reasonably well modeled by a boxcar average over a region of extent 2w+ 1, where w is 

an integer larger than a single sphere's apparent radius in pixels, but smaller than an 
intersphere separation: 

1 
) - ~- .. ,~ ~ ... 4.w(:r, ..,, - (2w + lr i,1=-w 

,.1) 
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w ( l :) ) , 1 . . 1 +1 
.4.>,,.t._x,y)= B.~ A(:r+1,r+;)o:p - 4):l I 

1,1=-w n 

(3) 

While long-wavelength contrast variations waste the digital imaging system's dynamic 

range, noise actually destroys information. Coherent noise from radio frequency 

interference (RFI) can be removed with Fourier transform techniques but is best 

avoided with proper electrical shielding. Digitization noise in the CCD camera and the 

frame grabber, however, is unavoidable. Such noise tends to be purely random with a 
X Rj 1 

correlation length n pixel. Convolving an image A(x,y) with a Gaussian surface of 
,\ 

revolution of half width n strongly suppresses such noise without unduly blurring the 

image: 

B= 
with normalization 

The difference between the noise-reduced and background images is an estimate of the 

ideal image. Since both eqn. (2) and eqn. (3) can be implemented as convolutions of the 

image A(x,y) with simple kernels of support 2w + 1, we can compute both in a single 

step with the convolution kernel 

(4) 

The normalization constant 

[ l :l w ( -~ _ 1 ._-, •• 1 B 
Ko - B . L e s: p I\ - -::>.!) - (2w+1F 

1 = - w facilitates comparison among images 

filtered with different values of w. The correlation length of the noise generally is not 

used as input parameter, with ,\, r\nstead being set to unity. The efficacy of the filter can 

be judged from the example in Fig. 1 (b ). 
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In practice, the image A(x,y) must be cast from an array of bytes to a higher precision 

data format, such as a floating point array, before convolution. This scaling, together 

with the actual convolution operation can be implemented in hardware with an array 

processor such as the Data Translation DT-2878. Further speed enhancement is realized 

by decomposing the circularly symmetric two-dimensional convolution kernel K(i,j) 

into four one-dimensional convolution kernels, so that filtering can be computed in 

O(w) operations rather than. O(m2). 

2.4 Image Recognition 

2.4.1 Pattern recognition methods in image understanding 

• Pattern recognition methods frequently appear in image understanding[8] . 

• Classification-based segmentation of multispectral images (satellite images, 

magnetic resonance medical images, etc.) is a typical example. 

• Supervised methods are used for classification, a priori knowledge is applied to 

form a training set. 

• In the image understanding stage, feature vectors derived from local 

multispectral image values of image pixels are presented to the classifier which 

assigns a label to each pixel of the image. 

• Image understanding is then achieved by pixel labeling. 

• Thus the understanding process segments a multispectral image into regions of 

known labels. 

• Training set construction, and therefore human interaction, is necessary for 

supervised classification methods, but if unsupervised classification is used, 

training set construction is avoided. 

• As a result, the clusters and the pixel labels do not have a one-to-one 

correspondence with the class meaning. 



• Post-processing classification improvement 

o Pixel labels resulting from pixel classification in a given neighborhood 

form a new feature vector for each pixel, and a second-stage classifier 

based on the new feature vectors assigns final pixel labels. 

o The contextual information is incorporated in the labeling process of the 
second-stage classifier learning. 

' ., 
'• 

• This implies the image is segmented, but labels are not available to support 
image understanding. 

• Fortunately, a priori information can often be used to assign appropriate labels to 

the clusters without direct human interaction . 

• 

2.4.2 Contextual image classification 

• The method presented above works well in non-noisy data, and if the spectral 
properties determine classes sufficiently well. 

• If noise or substantial variations in in-class pixel properties are present, the 

resulting image segmentation may have many small ( often one-pixel) regions, 
which are misclassified. 

• Several standard approaches can be applied to avoid this misclassification, 

which is very common in classification-based labeling. 

• All of them use contextual information to some extent 

• Post-processing filter to a labeled image 

o Small or single-pixel regions then disappear as the most probable label 

from the local neighborhood is assigned to them. 

o This approach works well if the small regions are caused by noise. 

o Unfortunately, the small regions can result from true regions with 

different properties in the original multispectral image, and in this case 

such filtering would worsen labeling results. 

o Post-processing filters are widely used in remote sensing applications 
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• Context may also be introduced in earlier stages, merging pixels into 

homogeneous regions and classifying these regions. 

• Another contextual pre-processing approach is based on acquiring pixel feature 

descriptions from a pixel neighborhood. 

o Mean values, variances, texture description, etc. may be added to ( or 

may replace) original spectral data. 

o This approach is very common in textured image recognition. 

• The most interesting option is to combine spectral and spatial information in the 

same stage of the classification process. 

o The label assigned to each image pixel depends not only on multispectral 

gray level properties of the particular pixel but also considers the context 

in the pixel neighborhood. 

• The last approach is discussed in more detail. 

• Contextual classification of image data is based on the Bayes minimum error 

classifier. 

• For each pixel x0, a vector consisting of (possibly multispectral) values f(xi) of 

pixels in a specified neighborhood N(xo) is used as a feature representation of 

the pixel xo. Each pixel is represented by the vector . "• 

e = (f(xo), /(xi), ... ' f(xk)) 

• Some more vectors are defined which will be used later. 

• Let labels (classification) of pixels in the neighborhood N(x0) be represented by 

a vector 
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• and omegas denotes the assigned class. 

• Further, let the labels in the neighborhood excluding the pixel xo be represented 

by a vector 

• Theoretically, there may be no limitation on the neighborhood size, but the 

majority of contextual information is believed to be present in a small 

neighborhood of the pixel xo. 

• Therefore, a 3 x 3 neighborhood in 4-connectivity or in 8-connectivity is usually 

considered appropriate. 

• Also, computational demands increase exponentially with growth of 

neighborhood size. 

(a) 

J(~ I ~ X: ' ~ I Xn . xt 

~1~ ru 

Figure 2.6 Pixel neighborhoods used in contextual image classification, pixel indexing 

scheme: (a) 4-neighborhood, (b) 8- neighborhood. 

• A conventional minimum error classification method assigns a pixel x0 to a class 

omega, if the probability of xo being from the class omega, is the highest of all 

possible classification probabilities 
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1. For each image pixel, determine a feature vector ( ( equation (8.15)). 

2. From the training set, determine parameters of probability distributions 
p((lws) and P(ws)- 

.. 

if P(wrJ/(Xo)) = max P(wsl/(Xo)) 
s=l, ... ,R 

• A contextual classification scheme uses the feature vector xi instead of xo, and 

the decision rule remains similar 

if P(wrl() = max P(wsl() 
s=l, ... ,R 

• The a posteriori probability P( omegajxi) can be computed using the Bayes 

formula 

P(wsJ() = p((Jws)P(ws) 
p(() 

• Note that each image pixel is classified using a corresponding vector xi from its 

neighborhood, and so there are as many vectors xi as there are pixels in the 

image. 

• The basic contextual classification algorithm can be summarized as 

3. Compute maximum a posteriori probabilities P( Wr I() and label ( clas 
sify) all pixels in the image according to Equation (8.19). An image 
classification results. 

• A substantial limitation in considering larger contextual neighborhoods is 

exponential growth of computational demands with increasing neighborhood 

size. 

• A recursive contextual classification overcomes these difficulties. 
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• The main trick of this method is in propagating contextual information through 

the image although the computation is still kept in small neighborhoods. 

• Spectral and neighborhood pixel labeling information are both used in 

classification. 

• Context from a distant neighborhood can propagate to the labeling thetas of the 

pixel xo 

(a) 

~ l~I 

Data 

Data Labels 

Data (c) 

Labels 

Labels 

(b) 

Data 

Labels 

Figure 2. 7 Principles of contextual classification: (a) Conventional non-contextual 

method (b) contextual method ( c) recursive contextual method- step 1 of previous 

algorithm ( d) first application of step 2 ( e) second application of step 2. 
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• The vector -eta of labels in the neighborhood may further improve the 

contextual representation. 
• Clearly, if the information contained in the spectral data in the neighborhood is 

unreliable ( e.g. based on spectral data, the pixel xo may be classified into a 

number of classes with similar probabilities) the information about labels in the 

neighborhood may increase confidence in one of those classes. 

• If a majority of surrounding pixels are labeled as members of a class omega, the 

confidence that the pixel x0 should also be labeled omega, increases. 

• More complex dependencies may be found in the training set - for instance 

imagine a thin striped noisy image. Considering labels in the neighborhood of 

the pixel x0, the decision rule becomes 

if P( Wr It T)) = max P( Wslt ij) 
s=l, ... ,R 

• After several applications of the Bayes formula the decision rule transforms into 

if p((ltJr)P(wrliJ) = max p((l'1s)P(wsl'1) 
s=l, ... ,R 

where eta, is a vector eta with thetas=omega-. 

• Assuming all necessary probability distribution parameters were determined in 

the learning process, the recursive contextual classification algorithm follows: 
, l 
' . .. 

1. Determine an initial image pixel labelling using the non-contextual clas 
sification scheme, equation ( 8.18) 

2. Update labels in each image pixel xe, applying the current label vectors 
'1, ij, and local spectral vector! to the decision rule Equation (8.22). 

3. Terminate the algorithm if the labels of all pixels in the image are stable, 
repeat step (2) otherwise. 
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• There is a crucial idea incorporated in the algorithm of recursive contextual 

image classification that will be seen several times throughout this chapter; this 

is the idea of information propagation from distant image locations without 

the necessity for expensive consideration of context in large neighborhoods. 

2.5 Edge Detection 
Edges are very important to any vision system (biological or machine). 

• They are fairly cheap to compute. 

• They do provide strong visual clues that can help the recognition 

process. 

• Edges are affected by noise present in an image though. 

An edge may be regarded as a boundary between two dissimilar regions in an image. 

These may be different surfaces of the object, or perhaps a boundary between light and 

shadow falling on a single surface. 

In principle an edge is easy to find since differences in pixel values between regions are 

relatively easy to calculate by considering gradients. 

2.5.1 Representing Lines 

The representation usually used for a line in two dimensions is of the form ,I .. 
"' 

y = m:r. + C 
where m is the gradient of the line and c is the intercept of the line with the y axis 

(Fig 2.8). 
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Another alternative representation of an edge or line (again, see Fig 2.8) is by the vector 

· (n,rl) h · di · ( 11 1· d) 1 h d d · parr , w ere n IS a irection vector usua y norma ise a ong t e e ge an d IS a 

vector from the origin to the closest point on the line. ,I ... 
~. - . 

)' y 
C 

._ ,..,.. 
X 

@.) )' = mx + c (t,) Altem.ati•e form of (c) Vector representation 
quabon of line Lim equation of a line 

Figure 2.8 Line representation 

An alternative representation of a line is 

r; ~c:.ose+ ysinft 
where r is the perpendicular distance from the line to the origin and is the angle the line 

makes with the x axis, as shown in Fig 20. 

-oo < m < -l-oo 
The latter form has the advantage that the gradient m, with a range - - has 

:J < (i < 'lT' 
been replaced by the range of angles - - 

This is easier to deal with computationally. 

(This will be important later -- see Hough Transforms). 

Thus, the length of d is the perpendicular distance of the line from the origin. 

This form of line representation is useful for both two- and three-dimensional lines, and 

indeed for three-dimensional lines this form is preferable. 

Another advantage of this form of line representation is that the line can be 

parametrised. 
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p ;;; UT LU, 

Thus, we can specify the position of any point on the line, such as the end of an edge, 

by its distance t along the line. Therefore the coordinates of a point p(p(:z:, y) or 

p(r.e, Yi z)) 
are 

2.5.2 Extracting Edges from Images 

Many edge extraction techniques can be broken up into two distinct phases: 

• Finding pixels in the image where edges are likely to 

occur by looking for discontinuities in gradients. 

Candidate points for edges in the image are usually referred to as edge points, 

edge pixels, or edgels. 

• Linking these edge points in some way to produce 

descriptions of edges in terms of lines, curves etc. 

2.5.3 Detecting Edge Points 

2.5.3.1 Gradient based methods 

An edge point can be regarded as a point in an image where a discontinuity (in 

gradient) occurs across some line. A discontinuity may be classified as one of three 

types (see Fig 2.9): ,I 
" 
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(a} Con,e x roof 
eL~e 

(t,) Conc?1.•1e roof 
odgti 

,)~) Concave ramp 
edge 

(l;) Sar tdge 

Figure 2.9 The C Compilation Model 

A Gradient Discontinuity 
-- where the gradient of the pixel values changes across a line. This type of 

discontinuity can be classed as 

• roof edges 

• ramp edges 

• convex edges 

• concave edges 

by noting the sign of the component of the gradient perpendicular to the edge on 

either side of the edge. 

Ramp edges have the same signs in the gradient components on either side of 

the discontinuity, while roof edges have opposite signs in the gradient 

components. 

A Jump or Step Discontinuity 
-- where pixel values themselves change suddenly across some line. 

A Bar Discontinuity 
-- where pixel values rapidly increase then decrease again (or vice versa) across 

some line. 
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For example, if the pixel values are depth values, 

• jump discontinuities occur where one object occludes 

another ( or another part of itself). 

• Gradient discontinuities usually occur between adjacent 

faces of the same object. 

If the pixel values are intensities, 

• a bar discontinuity would represent cases like a thin black 

line on a white piece of paper. 

• Step edges may separate different objects, or may occur 

where a shadow falls across an object. 

The gradient is a vector, whose components measure how rapidly pixel values are 

changing with distance in the x and y directions. 

Thus, the components of the gradient may be found using the following approximation: 
H:i:: + ri;i;1 y) - H:i::1 Y) 

d:r 
f(x, !J + r~) - f(x, y) 

di; 

Ufl.:i::,y) = b..r. 
:):0, 

= 

where 'i.r and dymeasure distance along the x andy directions respectively. 

rl 1. 
In (discrete) images we can consider .-.x and Yin terms of numbers of pixels between two 

dr. = ,1.y = 1 points. Thus, when · (pixel spacing) and we are at the point whose pixel 

coordinates are (iJ) 
L\.t = f(i + 1, j) -f(i1j), 
'~Y = f(i, j + 1) -f(i1j). 

we have 
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In order to detect the presence of a gradient discontinuity we must calculate the change 

in gradient at (ij). We can do this by finding the following gradient magnitude 

measure, 

lri - IS'+ s: -y ;r, yi 

and the gradient direction, , given by 

2.5.3.2 Implementation: 

The difference operators in Eqn. 44 correspond to convolving the image with the two 

masks in Fig. 2.10. 

This is easy to compute: 

• The top left-hand comer of the appropriate mask is superimposed over each 

pixel of the image in tum, 

• A value is calculated for ar.or ~~'by using the mask coefficients in a weighted 

sum of the value of pixel (ij) and its neighbours. 

• These masks are referred to as convolution masks or sometimes convolution 

kernels. 

1! .. 

Figure 2.10 Edge operator convolution masks 

Instead of finding approximate gradient components along the x and y directions we can 
also approximate gradient components along directions at 45°and 135°to the axes 
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respectively. In this case the following equations are used: 

1 = f(i + 1, j + 1) - f(i, j), 
" = f(i, j + 1)- f(i + 1,j). 

This form of operator is known as the Roberts edge operator and was one of the first 

operators used to detect edges in images. The corresponding convolution masks are 

given by; 

Figure 2.11. The C Compilation Model 

Many edge detectors have been designed using convolution mask techniques, often 

~ X: ~ using mask sizes or even larger. 

An advantage of using a larger mask size is that errors due to the effects of noise are 

reduced by local averaging within the neighbourhood of the mask. 

An advantage of using a mask of odd size is that the operators are centred and can 

therefore provide an estimate that is biased towards a centre pixel (ij). 

One important edge operator of this type is the Sobel edge operator. The Sobel edge 

operator masks are given in Fig 2.12. 

1 2 1 
0 0 0 
-1 -2 -1 

Figure 2.12 Sobel edge operator convolution masks 
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All of the previous edge detectors have approximated the first order derivatives of pixel 

values in an image. 

2.5.3.3 Second Order Methods 

It is also possible to use second order derivatives to detect edges. 

A very popular second order operator is the Laplacian operator. 

The Laplacian of a function j(x,y), denoted 
. .. . o~ t(~, u) tr' f(~, y) 

v'f(z,y) = "'.. + -.· 

is defined by: 

Once more we can use discrete difference approximations to estimate the derivatives 

and represent the Laplacian operator with the~ x ~ convolution mask shown in Fig 2.13. 

0 1 0 
1 -4 1 
0 1 0 

Figure 2.13 Laplacian operator convolution mask 

However there are disadvantages to the use of second order derivatives. 

• (We should note that first · derivative operators exaggerate the effects of 

noise.) Second derivatives will exaggerated noise twice as much. 

• No directional information about the edge is given. 
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• Gaussian smoothing is performed by convolving an image with a Gaussian 

operator which is defined below. 

• By using Gaussian smoothing in conjunction with the Laplacian operator, or 

another Gaussian operator, it is possible to detect edges. 

The problems that the presence of noise causes when using edge detectors means we 

should try to reduce the noise in an image prior to or in conjunction with the edge 

detection process. 

We have already discussed some methods of reducing or smoothing noise in the Image 

Processing Section. 

Some of these methods may be of use here. 

Another smoothing method is Gaussian smoothing 

Lets look at the Gaussian smoothing process first. 

The Gaussian distribution function in two variables, g(x,y ), is illustrated in Fig. 2.14 

and is defined by 

g (~ y)· ;;; _i_c-(.e•+!l")/'lu• 
· i 2·iro-1 

where 7is the standard deviation representing the width of the Gaussian distribution. 

• The shape of the distribution and hence the amount of smoothing can be 

controlled by varying 7. 

• In order to smooth an image j{x,y), we convolve it with g(x,y) to produce a 

smoothed image s(x,y) i.e. s(x,y) = j{x,y)*g(x,y). 
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Figure 2.14 The Gaussian distribution in two variables 

Having smoothed the image with a Gaussian operator we can now take the Laplacian of 

the smoothed image: 

• Therefore the total operation of edge detection after smoothing on the 

. . . . v1, (f(x, y) • g(x, y)) 
ongmal image IS . 

• It is simple to show that this operation can be reduced to convolving the 

original image fix,y) with a "Laplacian of a Gaussian" (LOG) operator 
v"g(:i:, y) 

· , which is shown in Fig. 2.15. 
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Figure 2.15 The LOG operator 

Thus the edge pixels in an image are determined by a single convolution operation. 

This method of edge detection was first proposed by Marr and Hildreth at MIT who 

introduced the principle of the zero-crossing method. 

The basic principle of this method is to find the position in an image where the second 

derivatives become zero. These positions correspond to edge positions as shown in 

Fig. 2.16. 
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(b) Gaussian Smoothing of t'(x) 
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Figure 2.16 Steps of the LOG operator 



• The Gaussian function firstly smooths or blurs any step edges. 

• The second derivative of the blurred image is taken; it has a zero-crossing at 

the edge. 

• NOTE: Blurring is advantageous here: 

1. Laplacian would be infinity at (unsmoothed) step edge. 

2. Edge position still preserved. 

NOTE also: 

• LOG operator is still susceptible to noise, but the effects of noise can be 

reduced by ignoring zero-crossings produced by small changes in image 

intensity. 

• LOG operator gives edge direction information as well as edge points - 

determined from the direction of the zero-crossing. 

A related method of edge detection is that of applying the Difference of Gaussian 

(DOG) operator to an image. 

• computed by applying two Gaussian operators with different values of eto an 

image and forming the difference of the resulting two smoothed images. 

• It can be shown that the DOG operator approximates the LOG operator 

• Evidence exists that the human visual system uses a similar method. 

•:'''' 

Another important recent edge detection method is the Canny edge detector. 

Canny's approach is based on optimising the trade-off between two performance 

criteria: 

• Good edge detection -- there should be low probabilities of failing to mark 

real edge points and marking false edge points. 

• Good edge localisation -- the positions of edge points marked by the edge 

detector should be as close as possible to the real edge. 
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The optimisation can be formulated by maximising a function that is expressed in terms 

of 

• The signal-to-noise ratio of the image, 

• The localisation of the edges 

• A probability that the edge detector only produces a single response to each 

actual edge in an image. 

2.6 Summary 

In this chapter, we discussed image processing techniques such as; 

Image compression, image restoration, image enhancement, image recognition and edge 

detection. 

In the next chapter applications of image processing will be discussed. 
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CHAPTER THREE: APPLICATIONS OF IMAGE PROCESSING 

3.1 Overview 

In this chapter we will discuss real life applications of image processing 

techniques. 

The applications can be sorted as; 

• Medical Diagnostic Imaging 

• Remote Sensing I Earth Resources 

• Space Expolaration 

3.2 Image Processing For Medical Applications 

Image processing is very important in medical applications. In determining 

temperature field of various characteristics, one may choose between the following 

general methods, while their relative advantages and disadvantages must be decided in 

the light of the testsbeeing done: 

• The selection of the temperature interval to be tested and, within that decision 

over the choice of the number and the widths of the isostrips. 

• Determining the temperature at specified points of the surface under test 

• A comparison between temperature distibutions along the horizontal and vertical 
lines 

• Determining the temperature distribution and mean temperature in smaller 

specified areas of the syrface tested 

• Pattern Classification 

- choosing therapy for peptic ulcers 

- diagnosing breast cancer 

- interpereting tissue sections and blood chemistry 
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• Image Analysis 

- interperetind radiograms 

- recognising macromolecules 

- monitoring diabetic retinopathies 

3.3 Image Processing For Space Exploration 

Image restoration techniques are normally used to increase the definiton of CCD 

image. Optical aberrations, seeing and tracking efficiency affect the images obtained 

with a CCD detector reducing its sharpness. The blurred image of a star, planet or 

galaxy can be significantly improves by deconvolving its Point Spread Function (PSF) 

in such a way that the end result is a sharper and more detailed image. 

Several algorithms can be applied to the original image with impressive results. 

The best are the so-called inteactive techniques. The PSF of the image has to be 

determined before using any image restoration algorithm. This usually consists in 

isolatiig a non-saturated star in the image to be treated and using this information as its 

PSF. The software works in an iterative way calculating several appriximations of the 

deconcolved image. Best examples of these algorithms are Maximum Entropy 

Deconvolution (MEM), Lucy-Richardson Deconvolution (LR) and Van-Cittert 

Deconvolution (VC). Direct algorithms can also be used with good results, such as the 

Weiner algorithm. There are however several drawbacks associated with the application 

of these algorithms ( deconvolved images are usually noisy and they can not be used for 

photometry). 

Image restoration techniques can improve the apparent sharpness of a CCD 

image by two to three times, meaning that medium size telescopes will perform like big 

telescopes. 

We can use Image Processing for exploring the space as shown below. 
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Figure 3.1 Space exploration using Image Processing 

3.4 Geographical Information System Applications 

• Major geopolotical boundaries: National, shoreline, major lakes and rivers, state, 

country 

• Latitude and longitude grids 

• User definable map bases 

• Data combined into a single, common projection 

• Map projections: Pseudo and true Mercantor, polar stereographic, Lambert 

Conformal 

• Native sensor projectors: Geostationary, polar orbiting, radar. 
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3.5 Weather Graphics Applications 

• Contours and plots of meteorological data 

• Temporal and spatial meteorograms: Historical trace of surface and upper air 
parameters 

• Thermodynamic diagrams: Skew T/log-P and Stuve 

• Hodographs: Vertical wind soundings 

• Cross-sections: Surface and full vertical isentropic 

• Space/time graphs: Series of station model plots over time 

• Weather watch and warning outlines 

3.6 Weather Data Applications 

• Observed parameters: Temperature, dew point, wind speed and direction, 
pressure, cloud information 

• Derived Parameters: Equivalent potential temperature, rmxmg ratio, stability 
indices, potential temperature 

• Future movement predictions 

3. 7 Climate Analysis Tools 

• Dynamic analysis and additional processing of grindded data 

• Time/ space analysis 

• Relational or arithmetic operations 

• Filtering with user-selected wave lengths 
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3.8 Military 

• Mine Warfare Sonar detection systems 

• Air detection systems 

• Land mines detection systems 

3.9 Summary 

In this chapter we discussed the applications of image processing in some fields 

of life. 

In the next chapter we will discuss the applications of image processing to Mine 

Warfare Sonar detction systems. 
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CHAPTER FOUR: APPLICATION OF IMAGE PROCESSING TO 

MINE WARFARE SONAR 

4.1 Overview: 

In this chapter we will discuss applications of image processing to Mine Warfare 

Sonar. 

4.2 Introduction: 

Sonar information collected while searching for, or identifying, underwater 

mmes is often presented to the operator in the form of a two dimensional image. This is 

a result of the three dimensional nature of the search domain and the human use of 

vision as the primary source of sensory information. The heavy human reliance on 

visual information has made human beings highly skilled at the detection and 

classification of objects in images. Despite human expertise at comprehending 

visual information, sonar imagery still presents many challenges since it lies outside the 

normal scope of human visual experience. Signal or image processing can be applied to 

the sonar data to help human operators detect and classify mine-like objects in the 

operational environment. The processing of sonar data can be broken into two 

domains. The first domain is the use of signal processing (mostly one-dimensional) 

techniques to enhance the creation of sonar imagery. For example, the use of 

adaptive beam forming techniques to enhance the contrast of mine-like objects in 

sonar imagery lies in this first domain. The second domain is the use of image 

processing (two or higher dimensional) techniques on sonar imagery to aid or automate 

the detection and classification of mine-like objects. Both of these domains are vitally 

important to mine warfare sonar. This project examines image processing techniques 

and methodologies that have the potential to aid or automate the detection and 

classification of mine-like objects in sonar imagery. Such techniques may already 

have shown promise in the literature and are worth consideration and discussion, or may 

be potential new methods from other fields that might be applied to the field of mine 

warfare sonar. This project examines image-processing techniques tailored for three 

different types of sonar imagery. Sector-scan sonar images, side-scan sonar images and 
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the three- dimensional images produced by the AMI project. The image processing 

techniques examined in this report can be grouped into four categories as follows: 

• Enhancement techniques: Techniques that have the potential to enhance 

the contrast of mine-like objects in sonar images. Examples of this are the 

removal of noise and clutter, background normalisation, and the processing of 

sonar imagery to make best use of available knowledge of the human visual 

system. 

• Segmentation techniques (low-level classification): Techniques that have 

the potential to classify individual pixels as belonging to background 

reverberation, clutter, highlights or shadows. This type of processing is 

usually not concerned with whether each pixel belongs to a mine-like object or 

not, but is often performed as a prelude to more advanced computer-aided 

detection and classification (CADCAC) techniques. 

• Computer-aided detection (CAD): Techniques that may be useful to detect 

mine- like objects in sonar imagery. Confirmation of whether the object is 

actually a mine and its specific type are left to the human operator or 

subsequent processing methods. 

• Computer-aided classification (CAC): Techniques which may be able to 

positively identify a mine-like object as a mine and determine the type and 

orientation of the mine involved. 

The above grouping is only a rough guide to image processing techniques, as a great 

deal of overlap is often found, and some techniques defy being grouped in this way. 
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This section will examine image processing techniques that may enhance the 

utility of sector scan sonar systems for mine warfare sonar. Sector-scan sonar imagery 

is produced by a sensor array that electronically scans a horizontally narrow beam to 

insonify an arc in a set direction. A two-dimensional image results which can be 

used to detect mine-like objects floating in the water column or resting on the 

seabed. During the formation of the image, any movement of the sensor array, or 

objects in the environment is assumed negligible. The images are formed fairly rapidly, 

generally within the order of a few seconds, and the human operators watch for 

objects in the images that persist for successive scans. Once an object is detected in a 

wide-angle view, the sonar settings may be changed to resolve a narrow field more 

highly. Under the right conditions, a mine-like object may be positively classified 

in this way. 

4.3.1 General Concepts 

An important general concept for processing sector-scan sonar imagery is the 

fact that temporal information is available. Human operators detect the presence of 

mine-like objects by watching for patterns in the image that persist for successive 

scans. In the same way, the image processing techniques to be applied to these images 

should make use of this temporal information whenever possible. The most successful 

techniques in the literature, as will be shown below, make use of multiple time frames 

to detect mine-like objects. Hence processing algorithms for sector-scan sonar should 

tend to be three-dimensional to make best use of the information available. A related 

concept is the matter of vessel movement. If information is known about the motion of 

the vessel, this should be incorporated into the CADCAC techniques to simplify 

and speed up processing. As will be shown below, use of vessel movement 

information can aid image enhancement and CADCAC techniques by removing the 

problem of tracking targets stationary relative to the seabed. 
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4.3.2 Enhancement 

Enhancement techniques for sector-scan images divided into two 

categories. Techniques that do not make use of temporal information and techniques 

that do make use of temporal information. Usually sector scan images have a high 

degree of contrast, and hence most attempts at detecting and classifying mine-like 

objects in these images have used only simple enhancement techniques. For non 

temporal techniques, median filtering is common. Median filtering was developed to 

handle image noise with so-called long tail statistics. This is due to the fact that the 

median filter is a maximum likelihood estimator of a signal in the presence of noise 

with a Laplacian distribution . Backscatter and sonar clutter are considered to fit in 

this category. For certain types of noise, median filtering can be a powerful noise 

removal technique. Figures 4.1 and 4.2 illustrate the point. Figure 4.1 shows a binary 

image corrupted by Salt and Pepper noise. In this case, 20% of pixels in the image have 

been set to 1 or O randomly. Figure 4.2 shows the result of applying a 3 by 3 median 

filter to the corrupted image. Note that the majority of noise pixels have been removed 

and the object in the image has become clearer. 

Figure 4.1 Image degraded by noise. 
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Figure 4.2 Image cleaned by median filter. 

For more complicated images, or images degraded by noise with more 

complex distributions, plain median filters have a number of disadvantages. The 

most important disadvantage is the relatively high computational cost. Petillot et al. 

found that simple local averaging of sector-scan images could produce results 

similar to median filtering at a greatly reduced computational cost. This seems to be at 

odds with the assumption that noise in sonar imagery is non-Gaussian and can be 

assumed to work well only under certain conditions. Median filters also have the 

disadvantage of tending to blur edges in the image, although they are more capable of 

preserving edges as compared with linear filters. In the example of Figure 4.1, the 

median filter has degraded the comers of the object in the image. The symmetry and 

sharp edges of a mine are a major factor used to distinguish them from natural 

formations. The current use of median filters for sector-scan imagery appears to be at 

odds with this concept. Research has been done recently in the main stream image 

processing community detailing new forms of median filters (more generally, 

nonlinear filters) that have greater ability to remove noise while preserving edges 

without a great increase in computational load. These filters seem to have not been 



applied as yet to sonar imagery. Consideration should be made to examining the 

efficiency of median filters and whether advantages can be gained by using superior 

median filter variants or the wide variety of other non-linear edge preserving filters 

developed by the image processing community to handle noise distributions with long 

tail statistics. 

The multi-resolution nature of the wavelet transform has many similarities to 

fractals and the way humans process images and is increasingly finding more 

applications in society. The wavelet transform divides the data into a number of 

different channels where each channel describes image information with a different 

spatial-frequency characteristic. Figures 4.3 and 4.4 show the way a correctly tailored 

wavelet transform can be used to extract an image neatly into a number of channels. 

Figure 4.3 shows a geometrical shape that contains lines of varying widths and 

directions. In the comers of the image, the lines are wide and diagonal. In the top and 

bottom middle of the image, the lines are predominantly horizontal, while in the left 

and right middle of the image, the lines are mostly vertical. In the centre of the 

image the lines are diagonal. Figure 4.4 shows a single level wavelet decomposition 

of Figure 4.3 using a bio orthogonal spline wavelet. Each quadrant of the image 

represents a different channel of the wavelet transform. Note how the various 

components of the image have been extracted to divide the vertical, horizontal and 

diagonal information present. 

Figure 4.3 A geometrical form. 
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Figure 4.4 A Wavelet Transform of Figure 4.3 

Tailoring the wavelet type and size to suit the dimensions of mine-like objects 

in the image might enable the mine-like object and clutter to appear in different sets 

of channels in the wavelet decomposition. This has the potential to enable 

effective removal of the clutter without degrading the image of the mine-like object. 

The size of the base wavelet used for the noise removal could also be scaled 

according to the current sonar range setting to provide consistent performance without 

operator input. Enhancement techniques that make use of temporal information 

have recently appeared in the sector-scan sonar literature. Most temporal 

enhancement techniques attempt to separate stationary objects from non-stationary 

objects and clutter. If the vessel motion is known, this motion can be corrected 

for within the image and this would enable mine-like objects be treated as 

stationary in the computational image domain. Temporally varying features, such as 

clutter, ambient biological noise, and fish could then be suppressed. Azimi-Sadjadi et 

al. compared a number of successive frames using a technique known as Recursive 

High Order Correlation., an extension of the standard concept of cross-correlation. 

Although computationally intensive, this method makes no assumptions about the 

objects being enhanced. Representing the sonar information in a three-dimensional 
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format allows simple filtering operations to be performed in the temporal dimension 

of the data. The literature indicates that only 10 or so frames may be required to remove 

static objects from non- static ones. More complicated techniques involving linking 

spatial and temporal information are a worthwhile research direction, and the wavelet 

transform seems an excellent basis. 

4.3.3 Segmentation 

Sector-scan images generally do not show shadow effects to the same degree as 

side- scan imagery. For this reason, classifying pixels as either .highlight. or 

.background. usually performs basic segmentation. Chantler et al. chose an optimal 

threshold for each pixel using an iterative method. The resulting binary image can be 

operated on to close gaps or to remove incorrectly classified clutter. The high level of 

contrast of sector-scan imagery generally reduces the effectiveness of low-level 

segmentation techniques, rendering them for the most part unnecessary. However, 

some form of adaptive threshold where the threshold level is set according to the local 

statistical properties of the image, followed by clustering could be beneficial. 

4.3.4 Computer-Aided Detection 

Human operators use a number of visual cues to detect mine-like objects in 

sector-scan sonar imagery. Since the sonar images update every second or so, the 

operator looks for objects that remain present in many consecutive images and display a 

size and form consistent with mine-like objects. CAD techniques recently developed in 

the literature also make use of this temporal information. A very illustrative method is 

that of Chantler and Stoner. For objects discovered in the sonar image, a number of 

static features are computed that describe the shape and size properties of the object. 

Over consecutive scans, the feature measures for each object are computed. For any 

particular object, another set of temporal features is determined. These temporal 

features describe the changes in the static features over time. For example, a set of 

returns from a diver would be expected to display a lot of variation over time as the 

divers position shifts, hence the static features derived from the divers image would 

vary markedly from scan to scan. However a mine-like object would display little 

variation in its returns and hence the static features derived would remain relatively 

constant. This difference may not be very prominent using the static features from one 
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scan, but by creating temporal features derived from the static features, the differences 

become easier to detect. Chantler and Stoner reported a marked detection improvement 

when temporal features were used. 

In an operational environment, the mine-hunting vessel is generally in motion, 

which presents new opportunities or challenges. If the motion of the vessel is not 

known, the mine-like objects in the image must be matched with their occurrence in 

subsequent scans. This is a motion-tracking problem and has been looked at in the 

literature. Lane et al. and Chantler et al. reported that satisfactory results were achieved 

using concepts borrowed from the field of optical flow estimation. To estimate optical 

flow, a cost function is created which is optimised to estimate the motion of each pixel 

from one image to the next image. Certain assumptions are made regarding the 

brightness versus motion model used and the results typically contain some noise. By 

grouping and filtering the results, the motion of objects over many frames can be 

determined and those objects can be tracked. The objects that they sort to track 

displayed varying temporal returns, unlike mine-like objects, so the system they 

developed may be more complicated than is required for mine warfare sonar. If vessel 

motion is known to some degree the problem becomes much easier, since the computer 

knows the predicted location of the object in the next scan. Schweizer et al. used 

multiple detection algorithms to achieve an acceptable classification accuracy. 

Certain types of detectors may make better use of a priori information, or provide 

alternative feature discrimination. This increases the robustness of the detection results 

and improves accuracy. 

Sector-scan CAD systems are still in their infancy and so a great deal of research 

can be done to improve them. More research needs to be done to determine the 

optimal temporal and static features to use for the detection of mine-like objects. 

Recently, certain powerful classification methods such as Residual Vector 

Quantisation have been applied to sector-scan mine warfare sonar with some success. 

It may be worthwhile to investigate whether features derived from the wavelet 

decomposition of a sonar image, specifically tailored for the dimensions of mine-like 

objects, can form good discriminators. 

.. , 
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4.3.5 Computer-Aided Classification 

Once the operator has detected the presence of a mine-like object, the system is 

switched to a high-resolution mode, imaging only the vicinity of the detection. The 

operator then looks for signs that the object is actually a mine. Symmetry, the presence 

of straight or curved edges, and regular formations may be used to determine the 

identity of the target. The target may not appear to have a recognisable form in any one 

scan, so the operator may be forced to observe the object for a period of time to identify 

it. Foresti et al. extracted information about edge orientations and their angular 

relations to other edges in the object and used this information to classify 

targets as man-made or natural. Foresti et al. developed a way to combine edge 

detected information such that the effects of noise corrupting the edge orientation 

estimates can be greatly reduced and a stable estimate of the object shape can be 

obtained. In terms of mine warfare sonar, a similar concept could be used to determine 

the exact shape and orientation of the mine-like object and this boundary information 

could be encoded in a suitable way and compared to a database of encoded mine shapes. 

In this way, a classification of the mine type may be possible. There is considerable 

literature in the main stream image processing community describing robust, orientation 

and scale invariant methods for encoding boundary shapes, these techniques may be 

useful to help mine warfare sonar. Ongoing research in the image processing 

community into noise resistant edge detectors might also be useful to help the operator 
to classify the mine-like objects detected. 

4.4 Side-Scan Sonar 

This section will examine image processing techniques that may enhance the 

utility of side-scan sonar systems for mine warfare sonar applications. Side-scan sonar 

images are formed by a sensor array fixed on a moving platform. The sensor array 

forms a narrow image of a swath of the environment perpendicular to the motion of the 

imaging platform. As the platform moves, an image of the environment on either side of 

the platform is obtained. The image formation process ends when the imaging platform 

has left the zone of interest. Temporal information is used in the formation of a side 

scan sonar image, but since only one image is obtained for each region within the 
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zone of interest, the use of temporal techniques such as those recommended for sector 
.Fe.ah' nVag-e,<r /S h'o/" poss/ok. 

4.4.1 General Concepts 

Side-scan sonar images display many features similar to optical imagery from a 

purely image processing point of view. These images generally have a fairly even 

distribution of pixel values, and may often display a wide range of texture effects due to 

sea-floor characteristics. Mine-like objects in side-scan images can sometimes display 

low levels of contrast and often the acoustical shadow region appears larger and more 

prominent than the object itself. For this reason more research has been done to apply 

image processing techniques to side-scan images when compared to sector-scan images. 

The bulk of the research in the literature has concentrated on the presence of shadow 
~\.fo"\<:, ~\.~Q.\l."~Q. \:)'j TI\\."\\.~-\\.'f..~ ~~\~'-\<:,, \.'.\\.~ ':>\\.a.Q.~'N'i> ~\.~(l\l."~(l ~'j TI\\."\\.~-\'\.'f..~ ~\:)\~'-\',, Q.\.~ 

often found to contain a great deal of information regarding the shape and size of the 

object, and it is generally considered crucial to use shadow information in any 

image processing-based CADCAC technique for side-scan imagery. 

4.4.2 Enhancement 

Most side-scan sonar image enhancement methods are designed to remove 

clutter and other forms of noise, without distorting or damaging the shape of the 

highlight and shadow regions associated with the mine-like object. Recently a 

promising technique has arisen which is based on concepts from the mature field of 

image restoration. In many works, clutter in side-scan images was suppressed using a 

concept known as Total Variation Minimisation. (TVM). This technique is based 

on altering the image to minimise a functional consisting of two terms. The first term in 

the functional assures image fidelity and the preservation of shadow and highlight 

information. The second term in the functional is designed to smooth the image and 

hence reduce noise. The optimisation of this functional forms a multi-dimensional 

minimisation problem almost identical to the image restoration problem. In all of these 

references, TVM was shown to be very efficient at suppressing clutter in the images 

while preserving edge information for use by later CADCAC techniques. Despite 

highly impressive results, the form of TVM techniques used so far has been fairly basic. 

In the field of image processing the TVM functional is related to the Constrained Least 
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4.4.3 Segmentation 

For side-scan sonar images, segmentation is often used to separately classify 

pixels as belonging to highlights, background, or shadow regions before higher level 

CADCAC techniques are used to search for mine-like objects. After each pixel has been 

classified into one of the three choices, the pixels are often clustered together with 

their neighbours to remove incorrectly classified pixels. There exists a large variety of 

'., 

Square Error. functional, and a great deal of research has been done into adaptive, 

intelligent algorithms and cost function variants to best solve this problem. The 

considerations involved are often identical; the removal of noise while preserving edge 

information. Many of these algorithms are designed to best preserve edge information in 

terms of human visual criteria. This is a vital consideration when human operators will 

examine the side-scan imagery. A worthwhile research direction would be to look at 

whether adaptive algorithms could be used to better enhance the TVM technique for 

side-scan images. Aridgides et al. used an adaptive linear finite impulse response (FIR) 

filter to suppress clutter. This is a well-known technique in both the signal and 

image processing communities but requires a model of the mine-like object to be 

enhanced. Such filters can adapt to the local clutter statistics in the image to achieve 

good results. Fernandez and Aridgides extended this concept to form an adaptive 

order-statistic filter, which like the median filter is tailored for noise with long tail 

statistics. Huynh et al. examined the wavelet transform as a way to remove noise from 

side-scan sonar imagery. It was shown that wavelet and wavelet packet de-noising 

techniques could improve the quality of side-scan images and the optimal wavelet type 

and size was investigated. They found the best performance was obtained when the 

wavelets were tailored to the size of expected mine-like objects. This success should 

encourage the consideration of other wavelet-based noise cleaning techniques from the 

optical imagery field as suitable methods for the enhancement of side-scan images. 
..I 

image processing techniques for segmentation and many of these have been applied 

to this problem. 

Hoelscher-Hoebing and Kraus used Expectation Maximisation. This one of 

many iterative approaches where pixels are classified based on how well their local 

gray-level statistics match statistical models of the intended classes. Relating the image 

to a Markov random field model is then used to perform clustering. This method 
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produced interesting results, yet has the disadvantage of requmng estimates of the 

probability density functions (PDFs) of the three classes involved. There are many 

related Bayesian techniques for image segmentation that may be used in similar ways. 

Guillaudeux et al. segmented side-scan images using a fuzzy version of k-means 

classification. The use of a fuzzy technique provides a consistent framework for 

measuring how well each pixel matches each class, which can be used in an iterative 

manner to improve results. The concept of fuzzy sets is intended to mimic human 

decision making processes and has been shown to be highly effective in some 

cases. Nagao filtering was then used to group pixels and remove deviations. The Nagao 

filter uses the fuzzy set membership information to cluster pixels, while still preserving 

edge information. This direction of research may prove very useful to the problems of 

mine warfare sonar, and provides a framework for understanding and improving upon 

the way human operators examine such imagery. Szymczak et al. examined the 

adaptation of the TVM approach from image enhancement to an image segmentation 

model for side-scan sonar images. This approach is called .Mumford-Shah. 

segmentation and is based heavily on the TVM functional (see Section 3.2). 

Szymczak et al. achieved satisfactory segmentation results using this methodology. 

This technique may be worth examining because it provides a way to link the 

enhancement and segmentation methodologies into a unified approach. In this way, 

research into techniques to improve the performance of TVM-related functionals in 

the image processing community may be applied to the problem of segmentation 
directly. 

When clustering the segmented pixels, the clustering procedure could make use 

of boundary and edge orientation information to determine whether an uncertain pixel 

should be added to a shadow or not. For example, if a shadow has an otherwise 

straight boundary except for a few pixels of uncertain class, an intelligent algorithm 

may assign a greater than normal probability to these pixels belonging to the 

shadow. Such an algorithm would then favour the correct segmentation of man-made 
objects. 

'I 
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4.4.4 Computer-Aided Detection 

A wide variety of techniques have been used in the literature to attempt to detect 

mine- like objects in side-scan sonar imagery. Dobeck et al used a two-dimensional 

non- linear matched filter. The matched filter was basically a model of a mine-like 

object and the results of the matched filtering were fed into a k-nearest 

neighbour-based neural network classifier and an optimal discriminatory classifier. The 

decisions of these two classifiers were then combined to produce a final decision. The 

use of a non- linear matched filter appears problematic due to the many possible 

orientations of mine-like objects and the various different conditions in the operational 

environment, however an important concept from that investigation was the use 
of multiple classifiers to produce a more robust decision. 

Guo and Szymczak used the wavelet transform to decompose a side-scan image into a 

number of different channels. The image of an object in each channel then forms 

features for a neural network classifier. The neural network classifier uses a set of sub 

networks, each examining a different wavelet channel. This forms an interesting multi 

resolution neural network which detects mine-like objects based on features at various 

different resolutions. This concept is probably an important component of human 

visual detection and classification, and may be a useful research direction. Nelson and 

Tuovila used information about pixel groupings within clutter to create a clutter 

detector. For each object detected in the image, a set of features was sent to a fractal 

based classifier. The classifier was designed to detect clutter and hence could 

be used to remove false positives from the candidate objects. Calder et al. used a 

Bayesian classifier to detect objects against textured background in side-scan sonar 

images. The technique requires models of the various textures present and the objects to 

be detected, and hence is of limited utility if such models do not exist. In conditions 

where accurate statistical models do exist, Bayesian classifiers perform well. As per the 

discussion in the previous section, mine-like objects will have a high probability of 

displaying symmetry or straight edges in their shadows. None of the above detectors of 

objects in side-scan images makes use of this fact. A simple method to incorporate this 

· information would be to create a feature for each potential object that is weighted 

to indicate how many local edge orientations match others. In this way the detector 

could be weighted to detect objects with straight boundaries, and hence a 
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high probability of being man-made. There are of course a variety of ways to include 

geometrical boundary properties as features and many such approaches can be found in 
the image processing literature. 

4.4.5 Computer-Aided Classification 

The difficult problem of classifying mine type and orientation has not 

been greatly researched. Mignotte et al. used a genetic optimisation technique to 

search through a template space. The technique described was not applied to mine 

classification in particular, but is instead a general method. In this template space, 

the shadow shapes from every possible mine type are stored. There are a number of 

permissible transformations that may occur to the basic template to reflect the 

orientation and range of the mine. These transformations are used as genes. in a genetic 

optimization technique. Such techniques attempt to simulate the principles of natural 

selection and evolve. the solution to a cost function. Such a technique may be a useful 

research direction, but genetic optimisation methods have often been criticised as 

being computationally expensive. Galeme et al. extracted and encoded shadow 

boundaries using Fourier descriptors. Fourier descriptors are a result of research in the 

image processing community into the encoding of boundary shapes in such a way that 

is invariant to scale, rotation and translation. Given a well-segmented mine-like object, 

the Fourier descriptors extracted could be compared against those present in a database 
to identify the mine type. 

Galeme et al used this method to classify objects as man-made or natural only, 

but such a technique could be extended to classify mine types. Research continues in the 

image processing community into the best representation of boundary shapes for 

comparison. Recent research has found that using cubic b-spline curves or the wavelet 

transform to represent object contour shapes has many desirable properties and can 
outperform Fourier descriptors. 



4.5.1 General Concepts 

Special compensation can be made for the differences in the data relationships 

along certain dimensions due to the position of the sensor array, however the 

fundamental three-dimensional nature of the data should be used whenever possible. 

With three-dimensional data, the volume of data to process rapidly increases with 

image size and computational time also increases time taken to perform an operation 
can easily get out of hand. 

,,111 ...•. 

4.5. The AMI Project 

This section will examine image processing techniques that may enhance the 

utility of the AMI project. The AMI (Acoustic Mine Imaging) project involves the use 

of a large acoustic array to create a high resolution image at close range of a suspected 

mine for the purposes of positive identification. The images obtained by this method 

are three dimensional in nature, and suffer from poor contrast and the presence of side 

lobe distortion. Image processing concepts can be used to enhance and possibly segment 

these images. In this section, computer-aided detection and classification will not 

be discussed since the detection of a mine-like object is assumed to be already 

performed, and the classification problem is assumed to be handled by a human 

operator. The objective here will therefore be the representation of the object in the best 

form for the human operator. At the time this report was written, the author had 

not had the chance to carefully examine the nature of the images produced by the 

AMI project. Image processing techniques considered would greatly depend on the 

nature of the data; in particular, the effective dynamic range of pixel information will 

have important consequences on the range of techniques available. A low dynamic 

range restricts the options to binary morphology techniques, such as dilation and 
erosion. 
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4.5.2 Enhancement 

At the current time, enhancement and background correction are performed 

using a split-window normalise along each dimension separately. This is not a 

three- dimensional approach and could probably be improved. For noise removal, it 

may be worthwhile to examine whether three-dimensional median filter variants, or 

wavelet transform approaches can improve image quality. If sufficient dynamic 

range exists, some methods of adaptive histogram specification may be appropriate. 

Adaptive histogram specification involves analysing the histogram details in the 

neighbourhood of each pixel and computing a pixel value transformation for that region 

which best emphasises desired details. This may improve the contrast of the imaged 

object. The visual representation of the information in this type of image may also 

benefit from the use of colour to represent pixel distance from the observer in the third 

dimension. Another approach that may prove useful is to weight each pixel value 

dependent upon the statistics and density characteristics of its local region. Pixels 

in regions whose characteristics do not suggest the presence of an object can have their 

contrast reduced, while pixels in regions whose statistical/density characteristics do 

suggest the presence of an object can have their contrast enhanced. For images with low 

dynamic range, noise can sometimes be suppressed by adaptively thresholding the 

object followed by binary operations such as erosion followed by dilation. 

4.5.3 Segmentation 

A simple technique currently used is a neighbour association algorithm applied 

to the data. Each pixel has its local neighbourhood examined to determine whether 

other large valued pixels lie in the immediate vicinity. If none are present, the pixel 

being examined is assumed to be due to noise and removed. This seems a good 

approach to remain as part of a segmentation methodology. This technique has a result 

that is very similar to the Erode and Dilate noise removal technique described in the 

previous section. The problem of segmentation is in effect actually a problem of 

classification (although it may not always be directly treated as such) and hence a 

classification approach will probably produce the optimal results. For each pixel a set 

of features should be extracted detailing local statistics and density aspects in the 

region surrounding the current pixel. Research into the correct features to 

discriminate the object in these images is a logical first step to any segmentation 
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method. These features can then be used to segment the image based on a set of 

heuristic rules or some other type of classifier. Using some heuristic rules to perform 

the segmentation is most probably preferable due to changing operational conditions 

and the speed at which processing needs to be done. Fallowing segmentation, the 

pixels will need to be clustered to remove noise and incorrectly classified pixels. 

The method used will depend on the available processing power. Complicated 

methods of clustering based on various models of the data (such as Markov random 
field) can be used if the necessary 

processing power is available. If processing power is at a premium, simple methods to 
close gaps and remove noise can be used. 

4.6 Summary 

In this section we discussed the Mine Warfare Sonar Detection System. 
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CONCLUSION 

There are many application techniques and fields of image processing. There are 

many applications in different fields. Such as space exploration, photography, medical 

application field, military and defence, remote sensing, law forensics, factory 
automation systems, even in transportation. 

This report has examined various image processing techniques which have the 

potential to aid the detection and classification of mine-like objects in sonar imagery. 
Three types of sonar imagery were looked at in particular: 

• Sector-scan (forward looking) sonar. 

• Side-scan sonar. 

• The AMI project. 

Within each of these sonar-imaging applications, each of the four components of 

any Computer-Aided Detection and Classification (CADCAC) system was examined. 
These components are: 

• Enhancement. 

• Segmentation. 

• Computer-Aided Detection. 

• Computer-Aided Classification. 

For each of these components, image processing techniques with the potential 
to improve the performance of mine warfare sonar systems were discussed. 

I think in future with the developments in technology application fields will be 
wider. 
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