
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Student Registry system using WEB

Graduation Project
COM-400

Student: Ozan DURMAZ (980450)

Supervisor: Ümit iLHAN

Nicosia-2003

ACKNOWLEDGEMENT

All the thanks are to Almighty Allah who made me able to do and complete this

project successfully. It is the result of the continuous support and help of my

parents and other family members who took care of me and encouraged in every

way. I am thankful to my respectable teacher Mr. Umit ilhan to guide me towards

the completion of this project. In the end I am thankful to all of my friends and

especially to Tariq Javed who helped me to complete my program and

documentation.

ABSTRACT

An Active Server Page is a standard HTML file whose functionality is extended with

additional features such as server-side scripts, objects and components.

Additionally, an Active Server Page contains HTML tags that can interpreted and

displayed by any web browser. Since an Active Server Page contains server-side

scripts, web pages can be created with dynamic content.

ASP technology provides several built-in objects. Scripts can be made very

powerful, by using these built-in objects accessible to an Active Server Page.

These built-in ASP objects retrieve information from and send information to

browsers. From the perspective of the Web Server, an Active Server Page is very

different from a normal HTML page.

When a request is made for an Active Server Page, the browser receives a normal

HTML page, which is the output of the asp file being processed. This enables an

Active Server Page to be compatible with all browsers.

"

ii

CONTENTS

ACKNOWLEDGEMENT i

ABSTRACT ii

TABLE OF CONTENT iii

INTRODUCTION iv

CHAPTER ONE: What is WEB 1

2.1 What is HTML 3

2.1.1 The HEAD Element 5

2.1.2 The TITLE Element 6

2.1.3 The BODY Element 8

CHAPTER TWO: SQL 12

3.1 What you Need to run SQL 13

3.1.1 TCP/IP 20

3.1.2 Need to Know 27

CHAPTER THREE: Why program Access? 29

4.1 Visual Basic (VB) 41

CHAPTER FOUR: Step By Step Programming 47

CONCLUSION 56
"'

REFERENCE 57

APENDIX A II CODING ~ 58

APENDIX B II TEST RESULT 90

iii

INTRODUCTION

The frantic pace of progress on the Internet has slowed considerably in

recent years as the medium has started to mature. Email and Web URLs are

becoming as common as business cards and brochures. As part of the Internet,

the World Wide Web is the predominant force in the growth of the global

computer network. Its language, much richer than a few years ago, is still quite

simple. The Web interface is attractive and friendly and is adaptable to many

uses. There are Web sites for selling products, selling ideas, keeping up

appearances, informing publics, distributing policy, delivering education, not to

mention the vast array of sites devoted just to killing time.

HyperText Markup Language (HTML) is the language that puts the face on

the Web. It consists of a variety of elements called tags, which are used for

everything from defining a title to outlining a frame, from creating headings to

inserting line breaks, from inserting an image to including a custom Java applet.

ASP enables the inclusion of executable scripts directly in HTML files.

HTML development and scripting development becomes the same process,

freeing the programmer to focus directly on the look and feel of a Web site,

weaving dynamic elements into our pages as appropriate.

iV

CHAPTER 1:

WHAT IS THE WORLD WIDE WEB

The World Wide Web (Web) is a network of information resources. The

Web relies on three mechanisms to make these resources readily available
to the widest possible audience:

1. A uniform naming scheme for locating resources on the Web
2. Protocols, for access to named resources over the Web

3. Hypertext, for easy navigation among resources

The ties between the three mechanisms are apparent throughout this
specification.

Introduction to URls

Every resource available on the Web -- HTML document, image, video
clip, program, etc. -- has an address that may be encoded by a Universal
Resource Identifier, or "URI".

URls typically consist of three pieces:

1. The naming scheme of the mechanism used to access the resource.
2. The name of the machine hosting the resource.

3. The name of the resource itself, given as a path.

Consider the URI that designates the W3C Technical Reports page:
http://www.w3.org/TR

This URI may be read as follows: There is a document available via the
HTTP protocol (see [RFC2616]), residing on the machine www.w3.org,

accessible via the path "/TR". Other schemes you may see in HTML
documents include "mailto" for email and "ftp" for FTP.

1

Here is another example of a URI. This one refers to a user's mailbox:
.. .this is text...
For all comments, please send email to

Joe Cool.

Fragment identifiers

Some URls refer to a location within a resource. This kind of URI ends

with "#" followed by an anchor identifier (called the fragment ıdentilleij. For
instance, here is a URI pointing to an anchor named section_2:

http://somesite.com/html/top.html#section_2

Relative URls

A relative UR/doesn't contain any naming scheme information. Its path

generally refers to a resource on the same machine as the current

document. Relative URls may contain relative path components (e.g., " .. "

means one level up in the hierarchy defined by the path), and may contain
fragment identifiers.

Relative URls are resolved to full URls using a base URI. As an

example of relative URI resolution, assume we have the base URI

"http://www.acme.com/support/intro.html". The relative URI in the following
markup for a hypertext link:
Suppliers

"
"http://www.acme.com/support/suppliers.html", while the relative URI in

the following markup for an image

would expand to the full URI "http://www.acme.com/icons/logo.gif".
In HTML, URls are used to:

• Link to another document or resource

• Link to an external style sheet or script

• Include an image, object, or applet in a page,

2

• Create an image map

• Submit a form

• Create a frame document

• Cite an external reference

• Refer to metadata conventions describing a document

• Please consult the section on the URI type for more information about

URls.

What is HTML?

To publish information for global distribution, one needs a universally
understood language, a kind of publishing mother tongue that all computers

may potentially understand. The publishing language used by the World

Wide Web is HTML (from HyperText Markup Language).

HTML gives authors the means to:

• Publish online documents with headings, text, tables, lists, photos, etc.

• Retrieve online information via hypertext links, at the click of a button.

• Design forms for conducting transactions with remote services, for use in
searching for information, making reservations, ordering products, etc.

• Include spread-sheets, video clips, sound clips, and other applications
directly in their documents.

A brief history of HTML

HTML was originally developed by Tim Berners-Lee while at CERN,
••

and popularized by the Mosaic browser developed at NCSA. During the

course of the 1990s it has blossomed with the explosive gro"'l1h of the Web.
During this time, HTML has been extended in a number of ways. The

Web depends on Web page authors and vendors sharing the same

conventions for HTML. This has motivated joint work on specifications for
HTML.

HTML 2.0 (November 1995 was developed under the aegis of the

Internet Engineering Task Force (IETF) to codify common practice in late

1994. HTML+ (1993) and HTML 3.0 (1995 proposed much richer versions of

3

HTML. Despite never receiving consensus in standards discussions, these

drafts led to the adoption of a range of new features. The efforts of the World

Wide Web Consortium's HTML Working Group to codify common practice in

1996 resulted in HTML 3.2 (January 1997 Changes from HTML 3.2 are

summarized in Appendix A

Most people agree that HTML documents should work well across

different browsers and platforms. Achieving interoperability lowers costs to

content providers since they must develop only one version of a document.

If the effort is not made, there is much greater risk that the Web will devolve

into a proprietary world of incompatible formats, ultimately reducing the

Web's commercial potential for all participants.

Each version of HTML has attempted to reflect greater consensus

among industry players so that the investment made by content providers

will not be wasted and that their documents will not become unreadable in a

short period of time.

HTML has been developed with the vision that all manner of devices

should be able to use information on the Web: PCs with graphics displays of

varying resolution and color depths, cellular telephones, hand held devices,

devices for speech for output and input, computers with high or low

bandwidth, and so on.

Internationalization

This version of HTML has been designed with the help of experts in the
field of internationalization, so that documents may be written in every~
language and be transported easily around the world. This has been

accomplished by incorporating which deals with the internationalization of
HTML.

One important step has been the adoption of the ISO/IEC:10646

standard as the document character set for HTML. This is the world's most
inclusive standard dealing with issues of the representation of international

characters, text direction, punctuation, and other world language issues.

HTML now offers greater support for diverse human languages within a

document. This allows for more effective indexing of documents for search

4

engines, higher-quality typography, better text-to-speech conversion, better

hyphenation, etc.

Separate structure and presentation

HTML has its roots in SGML which has always been a language for the

specification of structural markup. As HTML matures, more and more of its

presentational elements and attributes are being replaced by other

mechanisms, in particular style sheets. Experience has shown that

separating the structure of a document from its presentational aspects

reduces the cost of serving a wide range of platforms, media, etc., and
facilitates document revisions.

Consider universal accessibility to the Web

To make the Web more accessible to everyone, notably those with
disabilities, authors should consider how their documents may be rendered

on a variety of platforms: speech-based browsers, braille-readers, etc. We

do not recommend that authors limit their creativity, only that they consider
alternate renderings in their design.

Furthermore, authors should keep in mind that their documents may be

reaching a far-off audience with different computer configurations. In order

for documents to be interpreted correctly, authors should include in their

documents information about the natural language and direction of the text,
how the document is encoded, and other issues related to
internationalization.

The HEAD element
...

<!-- %head.misc; defined earlier onas "SCRIPTJSTYLEIMETAILINKIOBJECT"-->
<!ENTITY% head.content "TITLE & BASE?">

<!ELEMENT HEAD O O (%head.content;) +(%head.misc;)-- document head -->
<!ATTLIST HEAD

%i18n;

profile %URI;
-- lang, dir --

#IMPLIED -- named dictionary of meta info --
>

5

profile = ur/[CT]
This attribute specifies the location of one or more meta data profiles,

separated by white space. For future extensions, user agents should
consider the value to be a list even though this specification only considers

the first URI to be significant. Profiles are discussed below in the section on
meta data.

Attributes defined elsewhere

The HEAD element contains information about the current document,

such as its title, keywords that may be useful to search engines, and other

data that is not considered document content. User agents do not generally

render elements that appear in the HEAD as content. They may, however,
make information in the HEAD available to users through other mechanisms.

The TITLE element

<l='The TITLEelement is not considered part of the flow ot.text,

It should be"displayşıd.'forexample asth~ page header or

window title. Exactly one title is required per document.
-->

<!ELEMENT TITLE - - (#PCDATA),-(%head,misc;) -- documenttitle -->
. ~ ~ 6

<!ATTLIST TITLE %i18n>

Every HTML document must have a TITLE element in the HEAD
section.

Authors should use the TITLE element to identify the contents of a

document. Since users often consult documents out of context, authors

should provide context-rich titles. Thus, instead of a title such as

"Introduction", which doesn't provide much contextual background, authors..
should supply a title such as "Introduction to Medieval Bee-Keeping"
instead.

For reasons of accessibility, user agents must always make the content

of the TITLE element available to users (including TITLE elements that

occur in frames). The mechanism for doing so depends on the user agent
(e.g., as a caption, spoken).

6

Titles may contain character entities (for accented characters, special

characters, etc.), but may not contain other markup (including comments).

Here is a sample document title;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">
<HTML>

<HEAD>

<TITLE>A study of population dynamics</TITLE>

... ot/Jer /Jead elements. ..

</HEAD>

<BODY>

... doctıment body ..

</BODY>

</HTML>

The title attribute
title = text[CS]

This attribute offers advisory information about the element for which it is
set.

Unlike the TITLE element, which provides information about an entire
document and may only appear once, the title attribute may annotate any

number of elements. Please consult an element's definition to verify that it
supports this attribute.

Values of the title attribute may be rendered by user agents in a variety

of ways. For instance, visual browsers frequently display the title as a "tool
tip" (a short message that appears when the pointing device pauses over an

object). Audio user agents may speak the title information in a similar

context. For example, setting the attribute on a link allows user agents
..•

(visual and non-visual) to tell users about the nature of the linked resource:
...some text...

Here's a photo of

me scuba diving last summer

...some more text. ..

7

The title attribute has an additional role when used with the LINK

element to designate an external style sheet. Please consult the section on

links and style sheets for details.

The document body

The BODY element

<!ELEMENTBODY O O (%block;jSCRIPT)+ +(INSIDEL) -- documentbody-->
<!ATTLISFBODY

%attrs; -- %coreattrs, %i18n, %events --

onload %Script; #IMPLIED -- the document has been loaded --
onunload %Script; #IMPLIED =.the document has been removed --

background = uri[CT]
Deprecated. The value of this attribute is a URI that designates an

image resource. The image generally tiles the background (for visual
browsers).

text = co/or[CI]
Deprecated. This attribute sets the foreground color for text (for visual

browsers).

link = co/or[CI]
Deprecated. This attribute sets the color of text marking unvisited

hypertext links (for visual browsers).

vlink = color[CI]
Deprecated. This attribute sets the color of text marking visited hypertext

links (for visual browsers). '"
alink = color[CI]
Deprecated. This attribute sets the color of text rnarkinq-hypertext links

when selected by the user (for visual browsers).

The body of a document contains the document's content. The content

may be presented by a user agent in a variety of ways. For example, for
visual browsers, you can think of the body as a canvas where the content

appears: text, images, colors, graphics, etc. For audio user agents, the

same content may be spoken. Since style sheets are now the preferred way

8

to specify a document's presentation, the presentational attributes of BODY

have been deprecated.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/htm14/loose.dtd">

<HTML>

<HEAD>
<TITLE>A study of population dynamics</TITLE>

</HEAD>
<BODY bgcolor="white" text="black"

link="red" alink="fuchsia" vlink="maroon">

... document body ..

</BODY>

</HTML>

Using style sheets, the same effect could be accomplished as follows:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<HTML>

<HEAD>
<TITLE>A study of population dynamics</TITLE>

<STYLE type="text/css">

BODY { background: white; color: black}

A:link { color: red }

A:visited { color: maroon }

A:active { color: fuchsia }

</STYLE>

</HEAD>

<BODY>

... document body...

</BODY>

</HTML>

Using external (linked) style sheets gives you the flexibility to change

the presentation without revising the source HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

9

<HTML>

<HEAD>

<TITLE>A study of population dynamics</TITLE>

<LINK rel="stylesheet" type="text/css" href="smartstyle.css">

</HEAD>

<BODY>

... document body ..

</BODY>

</HTML>

Introduction to style sheets

Style sheets represent a major breakthrough for Web page designers,

expanding their ability to improve the appearance of their pages. In the

scientific environments in which the Web was conceived, people are more
concerned with the content of their documents than the presentation. As

people from wider walks of life discovered the Web, the limitations of HTML

became a source of continuing frustration and authors were forced to

sidestep HTML's stylistic limitations. While the intentions have been good -­
to improve the presentation of Web pages -- the techniques for doing so

have had unfortunate side effects. These techniques work for some of the

people, some of the time, but not for all of the people, all of the time. They
include:

• Using proprietary HTML extensions
4'

• Converting text into images

• Using images for white space control

• Use of tables for page layout

• Writing a program instead of using HTML

These techniques considerably increase the complexity of Web pages,
offer limited flexibility, suffer from interoperability problems, and create
hardships for people with disabilities.

Style sheets solve these problems at the same time they supersede the

limited range of presentation mechanisms in HTML. Style sheets make it

10

Jıııe,cify the amount of white space between text lines, the amount

ed, the colors used for the text and the backgrounds, the font

and a host of other details.
--=-nnle, the following short CSS style sheet (stored in the file

sets the text color of a paragraph to green and surrounds it

border:

y link this style sheet to their source HTML document with the

PUBLIC "-//W3C//DTD HTML 4.01//EN"

ial.css" rel="stylesheet" type="texVcss">

ial">This paragraph should have special green text.

11

CHAPTER 2:

OVERVIEW OF SQL * PLUS

SQL*Plus is a program of working with an ORACLE database. With it
you can (among other things):

• create tables in the database

• store information in the tables

• change information in the tables

• retrieve information in a form you choose, performing calculations on
it and combining it in new ways

• maintain the database itself.

This Guide describes a command language called SQL*Plus,

pronounced "Sequel Plus." ("SQL" stands for "Structured Query Language.")

The SQL*Plus program accepts SQL*Plus commands from your keyboard,

executes them through the ORACLE RDBMS, and formats the results as you
specify.

WHO CAN USE SQL Plus

The SQL*Plus command language is designed to be easy to write and

read. For example, to display the name, job, and salary of each employee in
the EMP table, you might enter the following command:

SELECT ENAME,JOB,SAL
FROM EMP;

Similarly, to remove employees in Department 1 O from the EMP table,
you might enter this command:

DELETE FROM EMP

WHERE DEPTN0=1 O;

12

The SQL *Plus command language is powerful enough to serve the

needs of users with some database experience, yet easy enough for new

users who are just learning to use the ORACLE RDBMS.

Other Ways of Working with the ORACLE RDBMS

Since one must learn the SQL*Plus command language to use

SQL*Plus, some users may prefer to work with the ORACLE RDBMS

through Easy*SQL. Like SQL*Plus, Easy*SQL is an additional option that
run's with the ORACLE RDBMS. New users may find the system of menus,
panels, and boxes in Easy*SQL easier to learn

Although Easy*SQL may be "easier" to use than SQL*Plus, it is also
more limited. For example, while SQL*Plus allows you to join any

reasonable number of tables in a query, Easy*SQL allows you to join only

three. Similarly, you can grant access to your tables to other users with
SQL*Plus but not with Easy*SQL.

Your choice of SQL*Plus or Easy*SQL will be depend on your need of

the extra functions of SQL*Plus, versus your desire for the simplicity of
Easy*SQL.

WHAT YOU NEED TO RUN SQL*Phis
"Equipment and soft ware:

The computer on whirh you run ORACLE and SQL/'Plus is called your

host computer ORACLE and SQL*Plus can run on many different kinds of
host computers.

Your host computer must have an operating system to manage the
computer's resources and to mediate between the computer hardware and

programs such as SQL"Plus. Different computers use different operating

systems. For information about your host computer's operating system, see
the user's manuals provided with the computer

13

Before you can begin using SOL "Plus, both ORACLE and SOL *Plus

must be installed on your computer

Information:
A few aspects of ORACLES and SOL "'Plus differ from one type of host

computer and operating system to another. These topics are discussed ml

another document, the ORACLE Installation and User's Guide, which is3

published in a separate version for each host computer and operating­

system that SOL"Plus supports. You should have a copy of the ORACLE

Installation and User's Guide available for reference as you work through' this

Guide. You will be referred to appropriate parts of the ORACLE Installation
and User's Guide when you need information that is kept I there.

You will need a user name that identifies you as an authorized
ORACLE i user, and a password that proves you are the legitimate owner of
your user name.

If your host computer's operating system is meant to be shared by

several people (if it is a multi-user system), you will need a user name and

password to gain admittance to the operating system. These,may or may not

be the same as the ones you use with ORACLE. If you need to distinguish

between them, speak of the "system user name and password" and the
"ORACLE user name and password".

. Each table in the database is "owned" by a specific ORACLE user
name. In order to use the sample tables, you must haveyour own copies of

them associated with your l!Ser name.

Getting Resources from the Database
Administrator:

If your host computer runs a timesharing system,, your organization

should have a person called a database administrator (a OBA for short) who

supervises use of the ORACLE RDBMS. The OBA should be able to give you

your system and ORACLE user name and password, and prepare the

system so that you can perform the exercises in this Guide.

14

Doing It Yourself:

If your host computer is meant to be used by one person at a time, you
may be expected to perform the DBA's functions for yourself. This section t

outlines the process of getting ready to work with SQL "'Plus.

Instructions for installing the ORACLE RDBMS and SQL*Plus may be

found in the ORACLE Installation and User's Guide for your host computer

and operating system.

You may use the ORACLE user name SCOTT and the password

TIGER. If you want to define your own user name and password, you may do

so at any time; see the discussion of the GRANT riommand.

Since some of the exercises in this Guide change the contents of the

sample tables, you must make your own copies of these tables to use when

you work through the exercises. You can do this by running a pre-planned

procedure file named DEMOBLD. For instructions on how to run DEMOBLD.

just you run:

SQL> @C:\orawin\dbs\demobld.sql;

When You're Done Working with This Guide:
When you finish using this Guide, and so have no more use for the

sample tables, you may remove them by running a pre-planned procedure

named DEMODROP. DEMODROP is explained in the ORACLE Installation

and User's Guide for your specific computer system, along with DEMOBLD.

About the LOGIN.SQL file:
If the ORACLE RDBMS has just been installed on your single-user

computer, or if you are a new user of the ORACLE RDBMS... on a multiuser

system, you may skip this section. If the ORACLE RDBMS has been used

before on your single-user computer, or if you have been using the ORACLE

RDBMS on your multi-user system, this section contains information that

may be important to you.

Just as the ORACLE RDBMS stores data in tables, the operating

system stores data in flies; and if the operating system is a timesharing

system, each file is "owned" by a specific system user name. One such file,

15

named LOGIN.SOL, contains commands that SOL *Plus will execute

automatically when you start it. For the exercises in this guide perform

correctly, your copy of LOGIN.SOL must be set up in a certain in way.

DEMOBLD creates a copy of LOGIN.SOL that contains the appropriate

commands. If you already have a file named LOGIN.SOL, DEMOBLD

preserves that file by changing its name to LOGIN.OLD.

If you run an ORACLE apphcation that depends on the contents of your

original LOGIN.SOL file, that application may not run correctly with the

LOGIN.SOL file created by DEMOBLD. You can run such an application by

changing the name of LOGIN.SOL to something else (e.g., LOGIN.NEW),

then changing the name of LOGIN.OLD back to

LOGIN.SOL. For instructions on renaming files, see the user's manual

for your host computer's operating system.

Remember to change the name of DEMOBLD's LOGIN file back to

LOGIN.SOL before you resume working with the exercises in this Guide.

DEMODROP deletes LOGIN.SOL. If a file named LOGIN.OLD exists

when DEMODROP is run, DEMODROP changes its name to LOGIN.SOL.

THE COMMAND LINE

The SOL-Plus prompt (SOL>) means that SOL*Plus is ready
for you to enter a command.

The blinking underline or rectangular block after the SOL> is your

computer's cursor or pointer. The cursor indicates the place where the next
input you enter will appear on your screen

The line on which the SOL> prompt appears is called the command
line. To tell SOL*Plus what to do, you enter commands to the right of the

SOL>. At the end of each line/press [Return]. If you have finished the
command, SOL*Plus will process it, then display a new SOL> prompt,
indicating that it is ready for another command.

16

If you press [Return] before finishing a command, SOL *Plus will move

the cursor to the next line and prompt you with a line number 2, 3, 4, and so

on. Continue entering the command on the new lines.

There are two kinds of commands you can enter on the command line:

• SOL commands, for working with information in the database

• SOL*Plus commands, for formatting results, setting options, and editing and

storing SOL commands

The rest of this chapter discusses general rules for using these commands.

ENTERING SQL COMMANDS

The commands you use to work with our database are part of the SOL

command language. In Exercise 2-2, you will enter a SOL command to

display all the information in the sample table EMP

To Display the EMP Table

1. On the command line, enter the first lineof the command:

SQL> SELECT *;

2. SOL"Plus will display a '2', its prompt for the second line. Enter the second line

of the command:

2.FROM EMP;

The semicolon means that this is the end of the command. Press [Return}.

3. SOL*Plus will process the command and display the results on the screen.

SOL> SELECT •

2 FROM EMP;
4. After displaying the results, SOL*Plus will display its prompt SOL>, again

The SELECT command is the most important single SOL command
because it is your chief means of requesting a display of information from

tables. A SELECT command is often called a query.

17

SQL Command Syntax:

Just as a spoken language'has syntax rules that govern the way words

are assembled into sentences, SQL*Plus has syntax rules that govern how

words are assembled into Commands. There are only a few such rules, but

you must follow them to make your commands be understood.

Ending a Command:
All SQL commands must end with a semicolon (;). The semicolon is a

signal that you want SQL*Plus to process the command. After entering the
semicolon, press [Return].

If you mistakenly press [Return] before entering the semicolon, SQL­

'Tlus will prompt you for the next line of your command. Enter the semicolon

and press [Return] again to end the command.

Continuing a Command Across Multiple Line:
SQL does not care how the words that compose a command are

divided into lines. You may enter your command on a single line or on as
many lines as you want.

Thus, the query you entered in Exercise

SOL> SELECT*

2 FROM EMP;

may be entered on one line:

SQL> SELECT* FROM EMP;

18

on several lines:

SQL> SELECT

2*

3FROM

4 EMP;

as long as individual words are not split between lines.

In this Guide, you will find most SQL commands divided into clauses,

one clause on each line. In Exercise 2-2, for example, the SELECT and

FROM clauses were placed on separate lines. Many users find this most

convenient. But you may choose whatever line division makes your query

most readably to you.

Spelling and spacing:

The words in a SQL command must be spelled correctly. They must also be
separated from each other by a space or tab.

You may use additional spaces or tabs between-words, if you wish, to
make -your commands more readab\e. You wi\\ see examp\es ot spacing and

indentation throughout this Guide. When you enter the commands in the

exercises, you do not have to space them as shown, but you may find them
clearer if you do.

When case is significant:
The case (capitals or lowercase) of the words in a command is usually

not significant in SQL"Plus.-A few special situations where case is significant
will be pointed out when we reach them.

For the sake of clarity, all table names, column names, and commands in
this Guide appear in capital letters.

The SQL Buffer:
When you enter a SQL command, it is stored in a part of memory called

the SQL buffer. It remains there until you enter a new command. This means

that if you want to edit or re-run the current command, you may do so without

19

re-entering it. See Chapter 4 for details about editing or rerunning a

command.

The semicolon, which you must enter to indicate the end of a SQL

command, is not stored in the buffer as part of the command.

Introduction to TCP/IP
Summary: TCP and IP were developed by a Department of Defense

(DOD) research project to connect a number different networks designed by

different vendors into a network of networks (the "Internet"). It was initially

successful because it delivered a few basic services that everyone needs
(file transfer, electronic mail, remote logon) across a very large number of

client and server systems. Several computers in a small department can use

TCP/IP (along with other protocols) on a single·LAN.

The IP component provides routing from the department to the

enterprise network, then to regional networks, and finally to the global
Internet. On the battlefield a communications network will sustain damage,

so the DQD designed TCP/IP to be robust and automatically recover from

any node or phone line failure. This design allows the construction of very
large networks with less central management. However, because of the

automatic recovery, network problems can go undiagnosed and uncorrected
for long periods of time.

As with all other communications protocol, TCP/IP is composed of
layers:

.IP - is responsible foı:; moving packet of data from node to node. IP

forwards each packet based on a four byte destination address (the IP

number). The Internet authorities assign ranges of numbers to different

organizations. The organizations assign groups of their numbers to

departments. IP operates on gateway machines that move data from
department to organization to region and then around the world.

. TCP - is responsible for verifying the correct delivery of data from client

to server. Data can be lost in the intermediate network. TCP adds

20

support to detect errors or lost data and to trigger retransmission until the

data is correctly and completely received .

. Sockets - is a name given to the package of subroutines that provide

access to TCP/IP on most systems.

Network of Lowest Bidders

The Army puts out a bid on a computer and DEC wins the bid. The Air

Force puts out a bid and IBM wins. The Navy bid is won by Unisys. Then the

President decides to invade Grenada and the armed forces discover that
their computers cannot talk to each other. The DOD must build a "network"

out of systems each of which, by law, was delivered by the lowest bidder on
a single contract.

Department LAN

The Internet Protocol was developed to create a Network of Networks

(the "Internet"). Individual rnachines are first connected to a LAN (Ethernet

or Token Ring). TCP/IP shares the LAN with other uses (a Novell file server,

Windows for Workgroups peer systems). One device provides the TCP/IP
connection between the LAN and the rest of the world.

To insure that all types of systems from all vendors can communicate,

TCP/IP is absolutely standardized on the LAN. However, larger networks
based on long distances and phone lines are more volatile. In the US, many

large corporations would wish to reuse large internal networks based on

IBM's SNA. In Europe, the national phone companies traditionally

standardize on X.25. However, the sudden explosion of high speed

21

microprocessors, fiber optics, and digital phone systems has created a burst

of new options: ISDN, frame relay, FDDI, Asynchronous Transfer Mode

(ATM). New technologies arise and become obsolete within a few years.

With cable TV and phone companies competing to build the National

Information Superhighway, no single standard can govern citywide,

nationwide, or worldwide communications.

The original design of TCP/IP as a Network of Networks fits nicely within

the current technological uncertainty. TCP/IP data can be sent across a

LAN, or it can be carried within an internal corporate SNA network, or it can

piggyback on the cable TV service. Furthermore, machines connected to­

any of these networks can communicate to any other network through

gateways supplied by the network vendor.

Addresses

Each technology has its own convention for transmitting messages

between two machines within the same network. On a LAN, messages are

sent between machines by supplying the six byte unique identifier (the
"MAC" address). In an SNA network, every machine has Logical Units with

their own network address. DECNET, Appletalk, and Novell IPX all have a

scheme for assigning numbers to each local network and to each
workstation attached to the network.

On top of these local or vendor specific network addresses, TCP/IP

assigns a unique number to every workstation in the world. This "IP number"
•

is a four byte value that, by convention, is expressed by converting each

byte into a decimal number (O to 255) and separating thş bytes with a.
period. For example, the PC Lube and Tune server is 130.132.59.234.

An organization begins by sending electronic mail to

Hostmaster@INTERNIC.NET requesting assignment of a network number.

It is still possible for almost anyone to get assignment of a number for a

small "Class C" network in which the first three bytes identify the network

and the last byte identifies the individual computer. The author followed this

procedure and was assigned the numbers 192.35.91.* for a network of

22

computers at his house. Larger organizations can get a "Class B" network

where the first two bytes identify the network and the last two bytes identify

each of up to 64 thousand individual workstations. Yale's Class B network is

130.132, so all computers with IP address 130.132.*.* are connected

through Yale.

The organization then connects to the Internet through one of a dozen

regional or specialized network suppliers. The network vendor is given the

subscriber network number and adds it to the routing configuration in its own

machines and those of the other major network suppliers.

There is no mathematical formula that translates the numbers

192.35.91 or 130.132 into "Yale University" or "New Haven, CT." The

machines that manage large regional networks or the central Internet routers

managed by the National Science Foundation can only locate these

networks by looking each network number up in a table. There are

potentially thousands of Class B networks, and millions of Class C networks,

but computer memory costs are low, so the tables are reasonable.

Customers that connect to the Internet, even customers as large as IBM, do

not need to maintain any information on other networks. They send all

external data to the regional carrier to which they subscribe, and the regional

carrier maintains the tables and does the appropriate routing.

New Haven is in a border state, split 50-50 between the Yankees and

the Red Sox. In this spirit, Yale recently switched its connection from the

Middle Atlantic regional network to the New England carrier. When the

switch occurred, tables in the other regional areas and in the national spine

had to be updated, so that traffic for 130.132 was routed through Boston

instead of New Jersey. The large network carriers handle the paperwork and

can perform such a switch given sufficient notice. Durinğ a conversion

period, the university was connected to both networks so that messages

could arrive through either path.

Subnets:

Although the individual subscribers do not need to tabulate network

numbers or provide explicit routing, it is convenient for most Class B

23

networks to be internally managed as a much smaller and simpler version of

the larger network organizations. It is common to subdivide the two bytes

available for internal assignment into a one byte department number and a

one byte workstation ID.

The enterprise network is built using commercially available TCP/IP

router boxes. Each router has small tables with 255 entries to translate the

one byte department number into selection of a destination Ethernet

connected to one of the routers. Messages to the PC Lube and Tune server

(1 ~0.132.59.234) are sent through the national and New England regional

networks based on the 130.132 part of the number.

Arriving at Yale, the 59 department ID selects an Ethernet connector in

the C& IS building. The 234 selects a particular workstation on that LAN.

The Yale network must be updated as new Ethernets and departments are

added, but it is not effected by changes outside the university or the
'

movement of machines within the department.

A Uncertain Path

Every time a message arrives at an IP router, it makes an individual

decision about where to send it next. There is concept of a session with a
preselected path for all traffic. Consider a company with facilities in New

York, Los Angeles, Chicago and Atlanta. It could build a network from four

phone lines forming a loop (NY to Chicago to LA to Atlanta to NY). A

24

message arriving at the NY router could go to LA via either Chicago or

Atlanta. The reply could come back the other way.

How does the router make a decision between routes? There is no

correct answer. Traffic could be routed by the "clockwise" algorithm (go NY

to Atlanta, LA to Chicago). The routers could alternate, sending one

message to Atlanta and the next to Chicago. More sophisticated routing

measures traffic patterns and sends data through the least busy link.

If one phone line in this network breaks down, traffic can still reach its

destination through a roundabout path. After losing the NY to Chicago line,

data can be sent NY to Atlanta to LA to Chicago. This provides continued

service though with degraded performance. This kind of recovery is the

primary design feature of IP. The loss of the line is immediately detected by

the routers in NY and Chicago, but somehow this information must be sent

to the other nodes. Otherwise, LA could continue to send NY messages

through Chicago, where they arrive at a "dead end." Each network adopts

some Router Protocol which periodically updates the routing tables

throughout the network with information about changes in route status.

If the size of the network grows, then the complexity of the routing

updates will increase as will the cost of transmitting them. Building a single

network that covers the entire US would be unreasonably complicated.

Fortunately, the Internet is designed as a Network of Networks. This means

that loops and redundancy are built into each regional carrier. The regional

network handles its own problems and reroutes messages internally.

Its Router Protocol updates the tables in its own routers, but no routing

updates need to propaqate-from a regional carrier to the NSF spine or to the

other regions (unless, of course, a subscriber switches permanently from

one region to another).

Undiagnosed Problems

IBM designs its SNA networks to be centrally managed. If any error

occurs, it is reported to the network authorities. By design, any error is a

problem that should be corrected or repaired. IP networks, however, were

designed to be robust. In battlefield conditions, the loss of a node or line is a

25

normal circumstance. Casualties can be sorted out later on, but the network

must stay up. So IP networks are robust. They automatically (and silently)

reconfigure themselves when something goes wrong. If there is enough

redundancy built into the system, then communication is maintained.

In 1975 when SNA was designed, such redundancy would be

prohibitively expensive, or it might have been argued that only the Defense

Department could afford it. Today, however, simple routers cost no more

than a PC. However, the TCP/IP design that, "Errors are normal and can be

largely ignored," produces problems of its own.

Data traffic is frequently organized around "hubs," much like airline

traffic. One could imagine an IP router in Atlanta routing messages for

smaller cities throughout the Southeast. The problem is that data arrives

without a reservation. Airline companies experience the problem around

major events, like the Super Bowl. Just before the game, everyone wants to

fly into the city. After the game, everyone wants to fly out. Imbalance occurs

on the network when something new gets advertised. Adam Curry

announced the server at "mtv.com" and his regional carrier was swamped

with traffic the next day. The problem is that messages come in from the

entire world over high speed lines, but they go out to mtv.com over what was

then a slow speed phone line.

Occasionally a snow storm cancels flights and airports fill up with

stranded passengers. Many go off to hotels in town. When data arrives at a

congested router, there is no place to send the overflow. Excess packets are

simply discarded. It becomes the responsibility of the sender to retry the

data a few seconds later ~and to persist until it finally gets through. This

recovery is provided by the TCP component of the Internet protocol.

TCP was designed to recover from node or line failures where the

network propagates routing table changes to all router nodes. Since the

update takes some time, TCP is slow to initiate recovery. The TCP

algorithms are not tuned to optimally handle packet loss due to traffic

congestion. Instead, the traditional Internet response to traffic problems has

been to increase the speed of lines and equipment in order to say ahead of

growth in demand.

26

TCP treats the data as a stream of bytes. It logically assigns a

sequence number to each byte. The TCP packet has a header that says, in

effect, "This packet starts with byte 379642 and contains 200 bytes of data."

The receiver can detect missing or incorrectly sequenced packets. TCP

acknowledges data that has been received and retransmits data that has

been lost. The TCP design means that error recovery is done end-to-end

between the Client and Server machine. There is no formal standard for

tracking problems in the middle of the network, though each network has

adopted some ad hoc tools.

Need to Know

There are three levels of TCP/IP knowledge. Those who administer a

regional or national network must design a system of long distance phone

lines, dedicated routing devices, and very large configuration files. They
must know the IP numbers and physical locations of thousands of subscriber

networks. They must also have a formal network monitor strategy to detect
problems and respond quickly.

Each large company or university that subscribes to the Internet must
have an intermediate level of network organization and expertise. A half

dozen routers might be configured to connect several dozen departmental

LANs in several buildings. All traffic outside the organization would typically

be routed to a single connection to a regional network provider.

However, the end user can install TCP/IP on a personal computer

without any knowledge of either the corporate or regional network. Three
••

pieces of information are required:

1. The IP address assigned to this personal computer

2. The part of the IP address (the subnet mask) that distinguishes other

machines on the same LAN (messages cari be sent to them directly)

from machines in other departments or elsewhere in the world (which are
sent to a router machine)

3. The IP address of the router machine that connects this LAN to the rest
of the world.

27

In the case of the PCL T server, the IP address is 130.132.59.234.

Since the first three bytes designate this department, a "subnet mask" is

defined as 255.255.255.0 (255 is the largest byte value and represents the

number with all bits turned on). It is a Yale convention (which we

recommend to everyone) that the router for each department have station

number 1 within the department network. Thus the PCLT router is

130.132.59.1. Thus the PCLT server is configured with the values:

• My IP address: 130.132.59.234

• Subnet mask: 255.255.255.0

• Default router: 130.132.59.1

The subnet mask tells the server that any other machine with an IP

address beginning 130.132.59.* is on the same department LAN, so

messages are sent to it directly. Any IP address beginning with a different

value is accessed indirectly by sending the message through the router at

130.132.59.1 (which is on the departmental LAN).

Additional information is available in self-study courses from SRA (1-800-

SRA 1277

28

CHAPTER 3:

WHY PROGRAM ACCESS ?
As the premiere database management system, Microsoft Access is

used by millions all over the world. If it's so good at storing and retrieving

information, why would anyone want to go to the trouble of programming an

application created by Access? Although Access, with all its wizards and

other versatile tools, can produce an amazingly complete and detailed
finished application, it cannot provide all necessary capabilities and services
to all users without some help.

By design. Access is meant to provide the most universally useful

database features, which it does with remarkable thoroughness. However,

each user or organization is bound to have special needs and processes

that require enhancing the Access database tables, forms, reports, data

access pages, and queries. As a bonus, programming Access can create a
foolproof user interface and significant error-trapping procedures that can

ensure vital database validity. Here are some examples of tasks you can
perform with Access:

• Suppose your database is quite large and you need to make the same

change to a lot of records at once. With Visual Basic procedures in an

Access application, you can run through the entire recordset very efficiently

in one operation rather than change the values one by one in a form.

• Suppose you're operating a mail-order book business and need to..
add state tax to the orders within your own 'state. You would need to look at

the value in the State field of each customer's address. You can create an

Access program that can do this for you. It can also add the tax if the
customer is in your home state or omit it, if not.

• The validity of your database is very important. You can add procedures

that catch errors in data entry and display meaningful messages to the user.

If the error is not significant, you can display a reminder to return to and

29

complete the data entry at a later time. You can even add a procedure that

doesn't allow the user to move on until the error is corrected.

• Suppose you want to extract certain records, such as those for

customers from a particular state, but each time you run the program you

want to see the list of customers from a different state. Using Visual Basic

code in Access, you can add a prompt to enter the desired value when you

run the program.

These are only a few examples of how you can benefit by programming

Access.

Access as a Front-End Development Tool
Back in the old days, if a non-computer person wanted a system to

manage an important database, he or she had to hire an expensive

programmer/consultant. With the advent of tools such as Access and Excel,

someone with little programming expertise, but a clear picture of the
requirements, can create a sophisticated application in a short amount of

· time. Access replaces the high-priced programmer who sat between the
end user and the computer.

Technical Note: A Short History Lesson

The growth of computer hardware and software has evolved through
several generations since the early 1950s, when Honeywelt introduced the

first truly electronic computers. The transition from one generation to the next

was clearly defined in the early years. For example, the step from vacuum
"'tubes to transistors and then the next step to integrated circuits were quite

distinct and dramatic.

Programming technology was no less evolutionary. In the first

generation, programmers were forced to write Instructions in machine code

consisting solely of numbers. At least they were permitted to use decimal

numbers rather than the binary code the computer understands. The second

generation opened up the world of assembly languages which were different

for each model of computer. Numeric machine code had been replaced by

three-tetter codes that were a little easier for humans to keep track of.

30

In the early 1950s, the third generation of programmino languages was

born. Thanks to the late Dr. Grace Hopper, the concept of a language

translator made programming possible in plain language.

FORTRANT(FORmula TRANslation),COBOL (Commmon business oriented

language),BASIC (Beginners all-purpose Symbolic instruction Code), and

many others became quite popular in the 1950s and 1960s. The compilers

andinterpreters translated the high-level code into binary for machine

consumptiori.

The early BASIC, developed at Dartmouth College in the early 1966s for

instructional use, was a conversational procedural language.That is, each

instruction the student entered was immediately irtterpreted and executed.

The object-orianted Visual Basic of today is quite different. Programs written

in VB are first compiled intomachine language and thenexecuted as a

package.

Thefourth-generation languages, often referred to as 4G/s,brought forth

many front -end applications that served as intermediaries between the user

and the program generator. Access is an example of a fourth-gerteraticin

language. ıt creates code in the background to carry out what you tell it,

interactively, to do that's producedis event driven; that is, nothing will happen

while the program is ruraiing unless something else happens first-the user

clicks a button, presses a key, moves the mouse pointer, or takes some other

action.

The fifth generation is a bit fuzzier. It includes expert and knowledge­

based systems, artificial intelligence, and language-translation machines.

Many expert systems, such as programs for medical diagnosis and oil

exploration, were quite successful because their scope was extremely
limited.

Much research has been poured into creating computers and programs

that can think and reason as well as humans. In 1981, Japan announced Its

plan to capture and store all human knowledge by developing the fifth
generation of computers. These intelligent supercomputers would be able to

learn, reason, and make decisions. They also would be able to converse with

humans in natura! language and understand pictures. Their natural language

capabilities would even accurately translate idiomatic phrases into other

31

languages. Naysayers and skeptics had a good time making jokes about

trying to translate English to Russian and back.One such joke had the

computer translate the saying "out of siqht.out of mind" to Russian and

back. When returned to English, it became ''an invisible maniac."

It seems unlikely that anyone will ever be able to store all human

knowledge into one machine, as the Japanese planned, and expect it to be

able to reason using that body of knowledge. But, who knows?

As versatile as Access is, building a well-suited, totally responsive and

integrated application for a specific use still requires some customization

through additional programming. Access employs three programming

languages to enable you to add the fine-tuning to an application. The

Structured Query Language (SQL) is the language Access uses behind the

scenes in queries that can extract, manipulate, and relate data from one or

more tables. Macros consist of lists of actions that execute in response to an

event such as a button click or when data in a form changes. Visual Basic

code is a highly flexible and comprehensive language you can use to

develop complete user-interactive applications. Each of these language

components is discussed in detail in later chapters. In addition, other

universal languages such as Hypertext Markup Language (HTML) and Visual

Basic Scripting can be used with Access applications.

Creating End-User Applications
Endvseris a term often used to describe someone who has the need

to use the computer for database management or other intricate efforts but
••

lacks the time or training to learn all the nuances and complexities of the
system. Therefore, a developer, the one who does have the time and...
training, creates a system that is simple on the outside but quite complex on
the inside.

An end-user application provides smooth movement through all the
computerized activities of the supported organization and responds quickly

and appropriately to user actions. The developer also attempts to program

responses to all foreseeable error conditions, whether caused by the user,

invalid data, or the system itself.

32

Displaying Information
Message boxes, such as the one shown in Figure 1.1, are an important

part of any application. Although the message in the figure is just for fun,
message boxes provide relevant and helpful information about current

activity or explain the reason for an error condition. In cases in which the

user tries to delete a record or a value, a message might ask him or her to

confirm the deletion. Message boxes do not require input from the user, only

that the box be closed before proceeding.

Wı• t,.... r.~

A message box migQt contain up to three command buttons with

various labels such as OK, Cancel, and Retry. Message boxes can display a

choice of icons that indicate the type of messaqe, such as -information or

warning, and also have a custom caption in the title bar.

Responding to User Actions and Input
Access provides many special tools called wizards that ask you for

information about what you want to build and create the complete package

behind the scenes using the specifications you enter. One of them is the

33

Access Command Button Wizard, which attaches actions to a command

button's OnClick event property.

This results in a procedure that's executed when the user clicks the

button. An example is a command button on a form that closes the form and

returns to the previous window.

Another important aspect of user interaction is requesting information from

the user (for example, a query that extracts records meeting a certain

condition, such as customers whose addresses are in California). The

procedure displays a dialog box and asks the user to enter the state code,

which is then used as the selection criterion in the query.Dialog boxes differ

from message boxes in that they require a user response. Dialog boxes

ask questions, offer options, and acquire additional information. You're

certainly familiar with Access's dialog boxes, and now you'll get a chance to

create your own with Access programming.

Trapping Errors
In addition to the data validation rules you specify in the table definition,

you can create procedures that alert the user to data errors such as conflicts

between two values. For example, the user checks the Paid check box on a

customer form and then enters a value in the Amount Due field. The

procedure could test the value in the Paid field (Yes or No) and, if Yes, set

the GotFocus property of the Amount Due text box to No. This would prevent

the user from even reaching the Amount Due field. The procedure also could

set the Amount Due to zero when the Paid field is checked.

The user cannot always interpret the cryptic error messages that
Access displays. In trying to make the application foolproof, it helps to

intercept these error messages and substitute a more helpful message.

Access assigns a code number to each type of trappable error, which your

procedure can decode to select a more appropriate custom message. For
example, user errors on data entry such as entering data in one field that is

not compatible with data entered in another field can cause form errors.

Forms have an OnError event property to which you can attach the substitute

message procedure.

34

Frustrating system and runtime errors are less predictable, but just as

disabling for the user. With programming, you can create error-handling

procedures to help solve the problem that caused the error, or at least give

the user some information about why the error occurred and how to respond

to it.

Peter's Principle: Building Error Traps

You and your users will be a lot happier if you get in the habit of building

error traps throughout your application. As you create the application, make

mental notes about all the places in the system where the user or the system
could possibly make an error. Then add code that executes in the event of an

error, even if it's just to stop the procedure and display an error message to

the puzzled user. You'll notice when you examine wizard-created procedures

that they abound in error-contingency plans.

Returning Results of Calculations and Comparisons

With the Access Expression Builder, you can specify some rather
complex expressions as the source of the data for a text box via the text

box's Control Source property. Using a function is a shortcut to creating

the expression. Many commonly-used functions are included with Access,

such as financial functions that compute interest rates or payment amounts.

Other functions return mathematical values such as average, standard

deviation, or trigonometric -xaıue. You can create your own functions using

macros or Visual Basic code that will return any type of value you need. After
you've built the function, ,you can refer to it by name from other forms and

reports in the database.

Most functions also will accept arguments in place of actual values, so

they can be used to calculate the result based on a value specified by the
user. For example, suppose you've built a function to compute the annual

income from a bond after the user has entered the annual rate. The annual

rate is the argument of the function. When the user enters a rate, the function

calculates the resulting income.

35

Following Conditional Branching and Loops
Conditional branching and looping procedures are a very important part

of programming an application. Figure 1.2 illustrates three popular branching

techniques. Conditional branching refers to determining the next course of

action based on the outcome of a comparison. For example, if the Balance
Due field contains a positive value greater than zero, go to the procedure that

prints invoices; if not, go on to the next step in the regular path.

Another case of conditional branching is accomplished with the Select

Case statement. When you have a list of several alternatives, the Select

Case statement specifies which action to take with each of the different
values. For example, salesmen have a graduated scale of commission

depending on their sales volume. Each sales volume interval has its own

Case statement to compute the amount of commission. When computing the

amount of commission a salesman has earned, the procedure reads the
total sales and jumps to the matching Case statement.

Looping procedures enable you to perform a series of operations on an

entire recordset. For example, to update the current inventory in a retail

store, you process the transaction against the master list, one record at a
time. Items sold are subtracted from the number in stock, and items received

are added. After the loop is begun, it continues until the end of the recordset

is reached, updating where necessary and skipping the records with no
matching transactions.

Sharing Data with Other Applications and the Web
The boundaries between Microsoft Office 2000 applications have

"dimmed almost to the point of being invisible. For example. Access can

easily import charts and graphs from Excel, and Word can use an Access..
database as a data source for creating form letters with mail merge.

New features enable you to send a database via email as well as to

create hyperiinks that you can click to jump to another location. The
destination might be in another file in your system or as far away as the
World Wide Web.

"Linking with Other Office Applications," describes exchanging data

with other Microsoft applications. Chapter 18, "Working in a Multiuser

36

Environment," discusses sharing and controlling databases in a workgroup

settings. Chapter 20, "Posting Your Database on the Web," gives more

information about HTML and publishing dynamic Access data on the Web.

Understanding the Access Programming Languages
Access speaks three programming languages fluently: Structured

Query Language (SQL), macros, and Visual Basic (VB). SQL is the

language Access uses behind the scenes in query design. Macros are lists

of actions that are to be followed when the user clicks a button or some
other specific event occurs.

Visual Basic is a much more comprehensive and complex language

that can be used to do almost anything while the application is running. It

consists of objects, collections, events, methods, procedures, statements,
and properties.

"Writing Visual Basic Procedures," presents more details about Visual
Basic program structure and syntax. Appendix A, "What's New in

Programming Access 2000?," highlights the new programming and
application development features and capabilities that appear in Access
2000.

Structured Query Language (SQL)
The queries you create in the Access Design View grid are

implemented in SQL code. While you're building a query, you can look at the

SQL code any time by switching to SQL view. To switch the view, select it

from the View menu or click the View toolbar button and then choose SQL
\il

View from the pull-down menu.

The query concerns the decision to reorder certain products, When the In.
Stock amount falls below the reorder level plus 1, the product is placed on

order. The query is based on two related tables: the list of products in the

Products table and the supplier information in the Supplier table. The tables
are linked by the Supplier ID field.

37

The complete SQL statement is as follows:

SELECT Products.[Product ID], Products.Description,

Suppliers.[Supplier Name], Products.[Cat Code], Products.[ln Stock],

Products.[Re-order], Products.Supplier, Products.[Unit Cost],

Suppliers.[Contact Name], Suppliers.City, Suppliers.State,

Suppliers.PostalCode, Suppliers.Address, Suppliers.[Supplier ID],

Suppliers.PhoneNumber

FROM Suppliers INNER JOIN Products ON [Suppliers].

[Supplier ID]=[Products].[Supplier]

WHERE ((([Products].[Cat Code]) Not Like "1 *") And

(([Products].[ln Stock])<[Re-order]+1))

ORDER BY [Products].[Supplier], [Products].[Unit Cost] DESC;

In the first section of the SQL code, the SELECT operator lists which

fields are to be included in the query result. The fields are named using both
the table and field names with the dot operator between them. In the

expression SELECT Products. [Product ID], the operator tells Access to look

in the Products table for the Product ID field. Field names that contain a

space or a dash must be enclosed in square brackets.
"Reviewing Access Database Elements," for more information about the

naming conventions used in Access.

The FROM and INNER JOIN operators specify the relationship between

the two tables:

Suppliers is the parent table, which has a one-to-many relationship with

the Products table. The linking fields are specified by the ON operator: The

Supplier ID field in the Suppliers table is linked to the Supplier field in the
Products table. In other words, you can look up supplier information for a

product by finding a record in the Suppliers table that has the same supplier

code as the record in the Products table.

38

The WHERE operator lists the selection criteria specified in the criteria

row of the Design View grid. This shows that the answer table should

include records for all the products that need to be reordered (except fish
products).

The final operator, ORDER BY, specifies the sort order: in ascending

order by supplier and, secondarily, in descending order of unit cost.

"Programming with SQL," takes a closer look at the SQL language, its uses,

and its components.

Macro Coding
Unlike macros found in other applications, Access macros are not

merely recordings of keystrokes. An Access macro consists of a list of

actions that are carried out, step-by-step, in response to an event. For

example, a macro can run when the user presses a command button, when

a form closes, or when a text box control in a form gets focus. A macro also

can execute when a specific condition occurs. Such a conditional macro

might display a message box when data entered into a field has a certain
value.

Macros are created in a special macro grid in the Macro Builder
window. To begin a new macro, use one of the following methods:

• Choose New in the Macros page of the Database window.

• Click Build (...) next to one of the properties on the property sheet
and then choose Macro Builder in the Choose Builder dialog box.

If you start a macro from the Macro Builder, you're asked to name the
"macro before proceeding. The macro grid displays at least two columns with

two optional columns available, as needed (see Figure 1.5). The default

columns are Action and Comment. To add the Macro Name and Condition
columns, choose Macro Names or Conditions from the View menu.

To enter the action that's to take place when the macro runs, choose

from the Action pull-down menu. ApplyFilter, Beep, CancelEvent,

GoToPage, Maximize, and ShowAIIRecords are just a few of the more than

39

50 macro actions in the list. Many of the actions have additional arguments

that can be specified in a pane that opens below the grid when an action is

selected.

The active window (the message box in the upper-right comer) is

displayed when the word Dog is entered in the Type field of the MacroEx

form shown in the upper-left window and Tab is pressed to move on. The

macro condition tells Access to carry out the specified action if the value
"Dog" is entered in the Type field. The large bottom window shows the

macro code in the macro design window. The macro is named DogMacro,

and the action is the command MsgBox, which displays a message box. The

action arguments below the grid pane specify the text of the massege box
and whether to beep when the message appears.

The last two lines in the Action Arguments pane. Type and Title,
specify what kind of icon you want displayed in the message box and enable

you to add a custom title, respectively. You can choose to display no icon or

the Critical, Warning?, Warning!, or Information icon. The default for Type is
None, and the default for Title is Microsoft Access.

After you've built the macro, you attach it to the event property of the
button, text box, or other control. To attach a macro, set the event property

the macro is meant to respond to, such as Onupdate, OnClick, or

OnGotFocus, to the macro. The names of all the macros in the database
appear in the control's property pull-down menu. Conditional macros can be

attached to a text box in a form and respond to one or more specific values.
"Macros are useful for straightforward responses to events, but they do

have some limitations. For example, you cannot use a macro ...to set up error

handling or to loop through a recordset to process transactions. A macro

does not return a value; therefore, it cannot be used to retrieve user input or

to return a calculated value or the result of a comparison.

40

Visual Basic (VB)
Everything you can do with macros you can do with Visual Basic (and a

whole lot more). VB code takes the form of a procedure, which is a block of

code that performs a specific operation or calculates and returns a value.
There are two kinds of procedures:

subprocedures and functions.

Subprocedures carry out one or more operations but do not return any
values, whereas functions not only carry out the operations but also return

values. Access provides many event procedure examples in the VB Help

topics that you can copy and paste into a control event property. Then you

can make changes in the code to fit your application, such as changing
variable names. You can also use the Access Code Builder to create your

own custom procedures that will perform any actions you want.

The following is a pair of simple subprocedures that move focus between

the two pages of a form when you click the command buttons named Pagel
and Page2:

Private Sub Page1_Click()

Me.GoToPagel

End Sub

Private Sub Page2_Click()

Me.GoToPage End Sub

The GoToPage method moves the focus to the specified

page in the current form. Access provides many built-in functions for all

types of operations: Math, Text, Error Handling, Program Flow, Database,
and several other categories. You can view the list of built-in functions in the

Expression Builder dialog box ,Functions return values to the program:

character strings, numeric values, and true/false values. For example, the

41

function lsNull() is often used to find out whether a field has a value. lsNull()

returns True if the field is empty or False if it has a value.

custom functions can be created in the Expression Builder dialog box or in the

Code Builder window. The following custom function displays the initials

extracted from the first and last names in a form:

Private Function Initials() AsString

' Display initials.

Initials= Left(FirstName, 1) & Left(LastName, 1)

End Function

The Initials function uses the built-in Left () function to extract the first

character of each name. The & symbol concatenates the two letters to form

the returned value, Initials. After building and naming the function, you can
use it as the control source property instead of the whole expression by

entering =Initials() in the property sheet.

Macros can be converted into VB functions very easily. Select the macro in
the database window and choose ToolslMacro. Then choose Convert

Macros to Visual Basic.

Notice the underline "continuation character" that can be used when a long

VB statement does not fit on the screen. Access ignores the character and

treats the multiple lines as a single statement.
This has been a very brief introduction to VB procedures. The remaining

chapters go into much more detail about how to construct and use

subprocedures and functions.

42

Deciding Language to Use
Each of Access's programming languages has special capabilities as

well as some common functionality. For example, a query constructed in the

Design View grid is coded in SQL but could just as well be programmed as

an object in VB. As shown earlier, a macro easily can be converted to a VB
procedure.

Queries are the primary means of viewing, changing, and analyzing

data from one or more tables in a database. The three major types of
queries are select, action, and SQL. Select çaeoes retrieve information,

calculate totals, and build crosstabs but do not change the data in the tables.

Action qveries affect data in tables. Both select and action queries can be

used as control sources in form, report, and data access page designs.
There are four types of action queries:

• The make-table query creates a new table from data already existing in
one or more tables.

• The delete query deletes entire records from one or more tables
based on the selection criteria.

• The append query adds complete records or only specific fields to one
or more tables.

• The update query changes data in existing tables based on
information in the Design View grid.

SOL çoer/es accomplish more complex tasks and are coded using
I!<

SQL statements rather than created in the query Design View grid. These
include the following types:

• The an/oa qveıy combines corresponding fields from one or more
tables or

queries into a single field. For example, you have retail pet supply stores in
several shopping centers around town and want to combine the sales data
from all of them into one table.

43

• ,rıe pass-through query 'ıNOTKs cfüec\\')' 'ıN\\rı \ab\es \n an OD~C ~Open

Database Connectivity) database by dealing with the server rather than
linking to the tables from Access.

• 'The data-de1initionquery makes changes to a tab\e detinition, such as

creating and deleting tables, adding fields, and creating indexes.

• The subqueıy builds a SELECT statement within an existing select or

action query. The subquery selects a subset of the records already extracted
by the main query.

If you want to perform any of these tasks for working with tables, you

must use the SQL language. The first three are built into the SQL view of the
query window. A subquery is built by entering the SQL SELECT statement in
the Criteria row of the Design View grid.

'The choice bet\Neen macrns and Visua\ Basic code de\lends an 'Nhat
you want to do. Macros can perform simple tasks such as previewing a

report and hiding a toolbar. Also, macros are easy to build. In the Macro

Builder window, you're coached in creating the syntax and the argument
ne'i\n,X,c:,n. 'e,c:,~e 'ı.:a'ac.¥...'ac. <::an 'oe üe>ne c:,n\'I -·,'\.n a ~"a.C'<C>~C:,'(e'k"a~'Ç>\e'

performing some startup action when the database first opens or assigning

an action to a K.eystroK.eor a Key combination).

Programming in VB has many advantages, and for some tasks, you must

use VB instead of a macro. Here are some examples:

• One advantage is that VB procedures are contained within the form or

report definition, whereas macros are separate objects, listed in the Macros

tab of the database window. If you move or copy a form or report to another

database, the VB procedures automatically move with it, but not the macros.

They must be moved or copied separately.
...

• If none of the built-in functions do exactly what you want, you can build

custom function procedures with VB. Custom functions can also take the

lace of complicated expressions wherever they're used. Once created,

custom 1unctionsare avai\ab\e from the Expression Bui\der.

• Macros process an entire set of records at once, giving you no opportunity

o control individual transactions. By using VB procedures, you can step

throuqh the records and process them one at a time, varying the action

depending on the values encountered.

• The arguments set for a macro cannot be changed while the macro is

running. While a VB procedure is running, you can pass arguments to it or

specify variables as the arguments.

• As mentioned earlier, a VB procedure can detect an error, intercept the

error message, and replace it with a more meaningful message to the user.

• VB is extremely flexible when creating and manipulating database object

definitions. You can change properties as well as add and delete controls.

In summary, the choice between building queries using the Design View

grid and coding in SQL depends on the type of query you want to build. The

line between the two techniques is clear. On the other hand, it's not so clear

whether to use a macro or VB to carry out actions. Macros are simple to

create and easy to use, but there are many advantages to using VB almost

exclusively.

Access 2000 has migrated from the Visual Basic for Applications (VBA)

language used in Access 97 to the more standard Visual Basic. While

modules created with Access 97 are successfully converted to VB, many of

the objects, properties, and methods have been replaced by new language

elements. For purposes of backward compatibility, most of these replaced

elements have been hidden rather than removed. By default, they do not

appear in the Object Browser lists, but you can view them by setting one of

the Object Browser options. Appendix B, "Converting from Earlier Versions

of Access," contains more tnformation about conversion considerations and

potential problems.

45

How Do the Wizards Fit In?
he talented wizards provided by Access give you an additional step up

award creating custom databases. Access, itself, is an application front-end

evelopment environment, and with the added expertise of the wizards,

database development becomes quick and easy.

The wizards all create VB code in the background that you can edit and

augment in order to complete or add fine-tuning to the database. Chapter 4,

"Creating an Application with a Wizard," snows now to create a new
database beginning with one of the Database Wizard's templates.

"Examining and Modifying the Wizard's Code," examines the code
generated by the wizard and makes some changes that modify the objects

in the database.

46

CHAPTER 4:

STEP 1: MAIN :MENU

Main Menu
This is the index page of our website. It consist of three frames. In the upper

frame, university name is being displayed, the left frame contains all the links to••
other pages. The right frame is our main frame where all the pages will open

after clicking a link from left pane. The left pane has the following links to.other

pages of the website.

47

STEP 2:NEW STUDENTS.

Enter the NewStudent Details Below:

-Last Name:

Address

Phone Number:

~Az]
[c:;~?~~:'~f'{T... .. J
[7i4siss ···· ı
l~;.~~;i;~~.~~iii.~s~y;J
~-~

i Reçııster! J

·I'

Student Registered Successfully.

..•

New Student Link
By clicking this link, a page will be opened in the main frame with blank fields to

register a new student. The fields will accept student number, first name, last

48

name, address, phone number, email address, class, Gender and department

values. By clicking the Register button, the fields will be checked if they have

been filled or not. If any information is missing, a page with error message and

missing fields will be displayed. If all the information have been added then by

clicking Register button, the student data will be transferred to the database and

a Registration Successful message will be displayed.

The fields in Red are missing:

Student Number.
First Name of Student
Last Name of Student.
Address of Student.
Phone Number of Student.

Please Go Back and Fill the Specified Fields ...

[~,<~ Back J

STEP 3: STUDENTS DETAILS.

Eııter:Studeııt Number toSee the Details..,

I <<< Bı;~k,J

49


~~~·

Student Detail Link ~~
By clicking this link, a page with a blank field to accept student numbe~

Ç(;'

(,~: 
o} .•. : 
-.J 

AoS:,<o' D.e ':, .
:~ 

displayed. The user will enter the student number. Click Search will search for
the student data with specified student number. If the data is found then it will

be displayed in a suitable manner and if related data not found then an error

page will be displayed saying that there is no student registered with specified

student number. We will have the option to go back and re-enter the student

number and search again.

NoSnıdent'Reglstered with Student Number:'980451.;:
· , · Try Again •. ·,s:,, ···

The Details'for Student.Number: 9804.50

First Name: OZAN
Last Name: DURMAZ
Address GUZELYURT
Phone Number 7145158
EmailAddress: ozan cirnhorn 1905(@va.hoo. Gorn
Class: 4
Sex: male
Department: computer engineering

50



STEP 4:COURSE REGISTRATION 

is a registered Student with Number
980450 

Select J st Course:

Select2nd Course:

.Select 3rd .Course

Select 4th'Course

Select5th.Course:

Select Semester Number:

Course Registration Link 
This link gives us to search for the student for which we want to register the

courses. If the student is not found, appropriate message will be displayed.

If the student found, another page will appear with the available courses. We

can select the courses and their grades from the combo boxes and click OK. If
the user have selected two or more similar courses, an error will be displayed to

go back and recheck the entries. If the courses have been selected

appropriately then the Courses Registered message will be displayed and the
data will be transferred to the database.

51



You have selected two or more similar
courses or ,,,. ou Have .not entered Semester 

Number,
Please go back and ,recheck ... 

f~«<Back :]

STEP 5: SHOW TRANSCRIPT 

Show Transcript Link 

o see the transcript, again we have to search with the student number. If not

ound an error page will be displayed saying that there is no student registered
tth this student number. If the student is registered then the program will check

·• the specified student has registered courses or not. If no registered course

52



found, again error will be displayed and if found, the student's transcript will be

displayed. This page contain all the basic information about the student, will

calculate G.P.A and C.G.P.A for each semester and will display in the standard

format of the transcript. In the end of the page, the issued date will be

displayed.

.No'StudentRegistered with Student'Nujiıber: 980'451
· Try Again... ., ·

.[<_« Bı:ıck I

STEP 6: GPA I CGPA 

STUDENTSGPAI.CGPARESULT

Student Number

,SJCGPA
® GPA 

Enter Semester No.

fcıvl... K.'.·.:ı~

53 



GPA/CGPA Link

This link will display page with a blank field to accept student number and two

option button to select either CGPA or GPA. If GPA is selected the user must
enter semester number for which he want to see the transcript. Click OK button

to GPA or CGPA as defined earlier. If the semester number is not specified then

the CGPA will be displayed by default. If GPA is selected and the semester

number is entered then the courses for semester and the GPA will be displayed.

.··-_. ,·,: 
DURJ:vlAZ.,
GUZELYURT

TheSrudenr's Record

1c~~i~~;;;~:ı?~~~;.!?iid;!~;,~diı;
f0Ms320 p , !AA . 13
!MAT-301 · !1 ,, '!De · ii
r-····
fCOM-310 n !DD j3

t~~~s~.~<llll~i~.~~~!l\r?r:~~ !~~~~~~ i
ıCOM-320 tl .jAA j3
ı:.:; ; ,. ' )' '.·····,·.···· ,,, ''' ' ,. t ,, i ' ' p.v.Lr'.T-301 · ,;il, ;DC 3 
r················r· ··:c-· ,.. ., .
iCOM-310 . !1< !DD l3
icoiv.i=21i· ;1 ·~ /cB :3
jGOM-301 :2 ----!BB -·!3
iTE • '· !2 jBA ]3
!COM-252 :2 iDD i3 .
c·············-----···················· :·
jCOM-101 ıcc 3 
[MP.N-402 12 !AA i3
jENG=2lO . :1 . !BA~j:3 __.,

Tiıe CGPA is 2.6

54



No record found, Please Check . .the Student 
No. andtry again! 

I ·«<Backj

STEP 7: E-MAIL 

PleaseSelectthe Name to Send :E~l\i~n.:.

Ozan Durmaz

}Jr· Urnit.Ilhan

[«<Beck.]

Email Link 

By clicking this link, we will see two option. One is to mail Mr. Umit ilhan and
other to mail to Mr. Ozan Durmaz. By selecting any one of them, Microsoft
Outlook Express will open where we can mail to specified name.

55 



CONCLUSION 

HTML is hyper text language and ASP is used to build active pages.

These two things have brought a revolutionary change in the world of

internet. The world has become a global village because of the internet and

ASP has provided the mean to communicate more effectively. We conclude
that although ASP has a great deal of functionality, we still need some more
flexibility and functionality in writing server side code. For this purpose more

developments are needed.

56



REFERENCE 

(1) Lecture Notes of COM 340 given by Mr Umit ILHAN,2003

(2) www.farukcubukcu.com ASP program and exerces programs.

(3) www.msdn.microsoft.com/library,Microsofts official library site,2002

(4) ASP.NET,Web Developers Guide,Syngress,USA,2002

(5) Microsoft ASP Developers site,Retrieved 2002 from World Wide

Web:http://www.microsoft.com/ASP/.

(6) www.asptoday.com,forum pages, Retrieved 2002 from web.

(7) aspnedir.com, web pages, Retrieved 2002 from world web.

(8) aspindir.com, web pages, Retrieved 2002 from world web.

57



APENDIX A: 

CODING: 

STEP 1 :MEAN MENU 
<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

<meta name="Progld" content="FrontPage.Editor.Document">

<meta http-equiv="Content-Type" content="texUhtml; charset=windows-1252">

<title>New Page 2</title>

<base target="contents">

</head>

<body background="images/renk1 .jpg">

<p align=center>

<h2;&nbsp; NEAR EAST UNIVERS1TY</h2>

</P>

&n bsp; </body></html>

<html>

<head>

<meta name="GENERA TOR" content="Microsoft FrontPage 5.0">

<meta name="Progld" content="FrontPage. Editor. Document">

<meta http-equiv="Content-Type" content="texUhtml; charset=windows-1252">

<title>New Page 2</title>

<base target="main">

<script language="JavaScript" fptype="dynamicanimation">
•

<!--

function dynAnimation() {}

function clickSwaplmg() {}

//-->

</script>

58



<script language="JavaScript1 .2" fptype="dynamicanimation"

src="file :///D :/Program %20 Files/Microsoft%200ffice/Office 10/fpclass/a nimate .js

>

</script>

</head>

<body background="images/renk1.jpg" onload="dynAnimation()">
<p>

<a title="Click here to Register New Student..." target="main"

href="NewStudent.htm" dynamicanimation="fpAnimformatRolloverFP1"

fprolloverstyle="color: #008000" onmouseover="rollln(this )"
onmouseout="rollOut(this )" language="Javascript1.2">
New Student</a></p>

<p>

<a title="Click here to Check the Student Details... " target="main"

href="CheckDetail.htm" dynamicanimation="fpAnimformatRolloverFP1"
fprolloverstyle="color: #008000" onmouseover="rollln(this )"

onmouseout="rollOut(this )" language="Javascript1.2">
Student Detail</a></p>
<p>

<a title="Click here to Register Courses... " target="main" href="Department.htm"

dynamicanimation="fpAnimformatRolloverFP1" fprolloverstyle="color: #008000"
onmouseover="rollln(this )" onmouseout="rollOut(this )"
language="Javascript1.2">

Couse Registration</a></p>
<p>

<a title="Click here to see the Transcript ... " target="main"

href="CheckTranscript.htm" dynamicanimation="fpAnimformatRolloverFP1"

fprolloverstyle="color: #008000" onmouseover="roll I n(this)"

onmouseout="rollOut(this )" language="Javascript1.2">
Show Transcript</a>
</p>

59



<p>

<a target="main" title="Click here to Check GPA/CGPA. .. " href="st_gpa.htm"

dynamicanimation="fpAnimformatRolloverFP1" fprolloverstyle="color: #008000"

onmouseover="rollln(this)" onmouseout="rollOut(this)"

language="Javascript1 .2">

GPA/CGPA</a></p>

<p>

<a target="main" title="Click here to Assign grades ... " href="CheckAssign.htm"

dynamicanimation="fpAnimformatRolloverFP1" fprolloverstyle="color: #008000"

onmouseover="roll I n(this )" onmouseout="rollOut(this )"

language="Javascript1 .2">

Assign Grades</a></p>

<br><br>

<p>

<a target="main" title="Click here to Send E-mail ... " href="SendMail.htm">

<img src="images\em.gif" width="96" height="64"></a></p>

</body>

</html>

<html>

<head>

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

<meta name="Progld" content="FrontPage.Editor.Document">

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 2</title> t,

<base target="_self">
</head>

<body bgproperties="fixed" background="images/AKM2.jpg">
</body>

</html>

60 



STEP 2:NEW STUDENTS //HTML 

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">
<TITLE></TITLE>
</HEAD>

<BODY bgcolor="#CCFFFF">
<center>

<h2><font color=green>Enter the New Student Details Below:</font></h2>
<form method="post" action="NewStudent.asp">

<table border=O>
<tr>

</tr>

<tr>

</tr>

<tr>

</tr>

<tr>

</tr>

<tr>

</tr>

<td>Student Number:</td>

<td><input type=text name="StNo" size="20"></td>

<td>First Name:</td>

<td><input type=text name="FirstName" size="20"></td>

<td>Last Name:</td>

<td><input type=text name="LastName" size="20"></td>

<td>Address:</td>

<td><input type=text name="Address" size="20"></td>

<td>Phone Number:</td>

<td><input type=text name="PhoneNumber" size="20"></td>

61



<tr>

</tr>

<tr>

</tr>

<tr>

</tr>

<tr>

<td>Email Address:</td>

<td><input type=text name="EmailAddress" size="20"></td>

<td>Class:</td>

<td><input type=text value=1 size=6 name="ClasslD"></td>

<td>Gender:</td>

<td>

<select name="Sex">

<option value="male">male

<option value="female">female

<ltd> 

<td>Department:</td>
<td>

<select name="Department">

<option value="Computer">Computer Engineering

<option value="Electrical">Electrical Engineering

<option value="Mechanical">Mechanical Engineering
<option value="Civil">Civil Engineering

<ltd> 

</tr>

</table>
<br>

<input type=submit value="Register!">
</form>
</center>

</BODY>

</HTML>

62 



STEP 2.1 NEW STUDENTS//ASP 

<%@ Language=VBScript %>

<%StNo=Request.Form ("StNo")

FirstName=Request.Form ("FirstName")

LastName=Request.Form ("LastName")

Address=Request.Form ("Address")

ClasslD=Request.Form ("ClasslD")

Department=Request.Form ("Department")
Sex=Request.form("Sex")

PhoneNumber=Request.Form ("PhoneNumber")

Email=Request.Form ("Email")
%>

<%flag=true%>

<%if StNo="" or FirstName="" or LastName="" or Address="" or
PhoneNumber="" then

flag=false
end if%>

<%if flag=false then%>

<HTML>

<HEAD>.

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">
</HEAD>

"'<BODY bgcolor="#CCFFFF">

<h2>The fields in <font color=red>Red</font> are missing:</h2><br>
...

<font color=red><h3>

<%if StNo="" then%>Student Number.<%end if%><br>

<%if FirstName="" then%>First Name of Student<%end if%><br>

<%if LastName="" then%>Last Name of Student.<%end if%><br>
<%if Address="" then%>Address of Student.<%end if%><br>

<%if PhoneNumber="" then%>Phone Number of Student.<%end if%><br>
</h3></font>
<br><br>

63 



<h2>Please Go Back and Fill the Specified Fields ... </h2>

<br>

<center>

<input type=button value="<<< Back" onClick="{history.back()}">

</center>

</BODY>

</HTML>

<%end if%>

<%if flag=true then%>

<HTML>

<HEAD>

<%set db=server.createobject("adodb.connection")

db.Open "provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\PROJE-

400\Studentlist.MDB;Persist Security lnfo=False"

sql="insert into Students (StNo, FirstName, LastName,

Address,PhoneNumber,Email, ClasslD, Sex, Department)values ("'&StNo&"',

"'&FirstName&"',"'&LastName&"',"'&Address&"',"'&PhoneNumber&"',"'&Email&"',

'"&ClasslD&"',"'&Sex&"',"'&Department&"')"

db.execute sql

%>

</HEAD>

<BODY bgcolor="#CCFFFF">

<center>

<br><br>

<font color=green>

<h 1 >Student Registered Successfully. </h 1 >

</font>

<br><br><br>

<form action=NewStudent. htm>

<input type=submit value=" OK ">

</form>

64



</BODY>

</HTML>

<%end if%>

STEP 3: STUDENTS DETAILS//HTML 

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">
<TITLE></TITLE>
</HEAD>

<BODY bgcolor="#CCFFFF">

<form method="post" action="StDetail.asp">
<center>

<font color=blue><h2>&nbsp;</h2><h2>Enter Student Number to See the
Details...</h2></font>

&nbsp;<p><br>

Student No.<input type=text name="number" size="20">
<input type=submit value="Search"> </p>
<br><br><br>

<input type=button value="<<< Back" onClick="{history.back()}">
</center>
</form>

</BODY>

</HTML>

STEP 3.1: STUDENTS DETAILS//ASP 

<%@ Language=VBScript %>
<%

number=request.form("number")

set db=server.createobject("adodb.connection")

65 



db.Open "provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\PROJE-

400\Studentlist.MDB;Persist Security lnfo=False"

sql="select * from Students where StNo = "'&number&""'
set rs1 =db.execute(sql)

%>

<%if rs1 .eof and rs1 .bof then%>
<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">
</HEAD>

<BODY bgcolor="#CCFFFF">
<center>

<h2>No Student Registered with Student Number: <%=number%><br>
Try Again...</h2>

<br><br>

<input type=button value="<<< Back" onClick="{history.back()}">

</center>
</BODY>

</HTML>

<%end if%>

<%if not rs1 .eof and not rs1 .bof then%>

<html>

<head></head>

<body bgcolor="#CCFFFF">

<center>

<font color="blue">

<h2>The Details for Student Number: <%=number%></h2>

<table border=O>
<tr>

<td>First Name:</td>

<td><%Response.Write rs1 .fields("FirstName")o/o></td>
</tr>

66 



<tr>

</tr>

<tr>

</tr>

<tr>

</tr>

<tr>

<td>Last Name:</td>

<td><%Response.Write rs1 .fields("LastName")%></td>

<td>Address:</td>

<td><%Response.Write rs1 .fields("Address")%></td>

<td>Phone Number:</td>

<td><%Response.Write rs1 .fields("PhoneNumber")%></td>

<td>Email Address:</td>

<td><a href="mail to:<%Response.Write

rs1 .fields("Email")%>"><%Response.Write rs1 .fields("Email")%></td>

<ltr> 

<tr>

<!tr> 

<tr>

</tr>

<tr>

<td>Class:</td>

<td><%Response.Write rs1 .fields("ClasslD")%></td>

<td>Sex:</td>

<td><%Response.Write rs1 .fields("Sex")%></td>

<td>Department:</td>

<td><%Response.Write rs1 .fields("Department")%></td>
</tr>

</table>
</center>

</font> </body>

</html>

<%end if%>

67 

,,



STEP 4: COURSE REGISTRATION II HTML 
<html>

<head>

<title>"new page.asp"</title>

</head>

<body link="#339933" vlink="#996600" alink="#CC9900" bgcolor="#CCFFFF">
<font face="Arial"><br><br><br>

<FORM action="StRegistration .asp" Method="post">

<CENTER>

<H2><font color=blue>Enter Student Number to Register
Courses...</font></H2>
<br><br>

<P>Student Number:<INPUT Name="stno" size="20" >

<input type="submit" value="Search" name="ok"></P>
<br><br><br>

<input type="button" value="<<< Back" onClick="{history.back()}">

</FORM>

</CENTER>

</html>

STEP 4.1: COURSE REGISTRATION//ASP-1 
<%@ Language=VBScript %>

<%name=request. form("name")

number=request.form("stno")

set db=server.createobject("adodb.connection")

db.Open "provider=Microsoft.Jet.OLEDB.4 .O; Data Source=D:\PROJE-

400\Studentlist. MDB;Persist Security lnfo=False"

sql="select * from Grade where StNo = "'&number&"' "

sql1 ="select* from Students where StNo = "'&number&"'"

sql2="select Code from Course"

68 



set rs=db.execute(sql)

set rs1 =db.Execute(sql1)

set rs2=db.Execute (sql2)%>

<%if rs1 .eof and rs1 .bof then%>

<HTML>

<HEAD>

<title>No Found</title>

</HEAD>

<BODY bgcolor="#CCFFFF">

<center>

<h 1 ><font color=red>

The Student is not registered , please try again.

</font></h 1 >

<br><br>

<input type=button onClick="{history.back()}" value="<<< Back">

</center>

</BODY>

</HTML>

<%end if%>

<%if not rs1 .eof and not rs1 .bof then%>

<html>

<head><title>Student Record</title></head>

<body bgcolor="#CCFFFF">

<h2><center><font color=blue>

<%Response.Write rs1 .fields("FirstName")o/o>&nbsp

<%Response.Write rs1 .fields("LastName")%></font>

&nbsp is a registered Student with Number

<font color=blue><%Response.Write rs1 .fields("StNo")%>

</font></h2></center>

69 



<form action="Register.asp" method="post">

<!--for test only-->

<input type=hidden name="number" value=<%=number%>>

<br><br>

<!--combo boxes start here-->

<center>

<table border=O>

<tr>

<td>Select 1st Course:</td>

<td>

<SELECT name="course1 ">

<%while not rs2.eof%>

<OPTION value="<%=rs2.fields("Code")%>"><%=rs2.fields("Code")%>

<%rs2. move next

wend%>

</SELECT>

</td>

<td>Grade:</td>

<td><select name="grade1 ">

<option value="AA">AA

<option value="BA">BA

<option value="BB">BB

<option value="CB">CB

<option value="CC">CC

<option value="DC">DC"

<option value="DD">DD

<option value="FD">FD

<option value="FF">FF

</select></td>

</tr>

<tr>

<td>Select 2nd Course:</td>

<td>

<%rs2.movefirst%>

70



<SELECT name=coursez>

<%while not rs2.eof%>

<OPTION value="<%=rs2.fıelds("Code")%>"><%=rs2.fields("Code")%>

<%rs2.movenext

wend%>

</SELECT>

<ltd> 

<td>Grade:</td>

<td><select name="grade2">

<option value="AA">AA

<option value="BA">BA
<option value="BB">BB

<option value="CB">CB

<option value="CC">CC

<option value="DC">DC

<option value="DD">DD

<option value="FD">FD

<option value="FF">FF
</select></td>

</tr>

<tr>

<td>Select 3rd Course:</td>
<td>

<%rs2.movefirst%>

<SELECT name="course3">

<%while not rs2.eof%> .
<OPTION value="<%=rs2.fields("Code")%>"><%=rs2.fields("Code")%>
<%rs2.movenext

wend%>
</SELECT>

<ltd> 

<td>Grade:</td>

71 



<td><select name="grade3">

<option value="AA">AA

<option value="BA">BA

<option value="BB">BB

<option value="CB">CB

<option value="CC">CC

<option value="DC">DC

<option value="DD">DD

<option value="FD">FD

<option value="FF">FF

</select></td>

<!tr> 

<tr>

<td>Select 4th Course:</td>
<td>

<%rs2.movefirst%>

<SELECT name="course4">
<%while not rs2.eof%>

<OPTION value="<%=rs2.fields("Code")o/o>"><%=rs2.fields("Code")%>
<%rs2.movenext
wend%>

</SELECT>
</td>

<td>Grade:</td>

<td><select name="grade4">

<option value="AA">AA

<option value="BA">BA

<option value="BB">BB

<option value="CB">CB

<option value="CC">CC
<option value="DC">DC

<option value="DD">DD

<option value="FD">FD

<option value="FF">FF

72 



<I ~e\ec\><I\~>

</tr>

<tr>

<td>Select 5th Course:</td>
<td> 

<%rs2.movefirst%>

<SELECT name="course5">

<%while not rs2.eof%>

<OPTION value="<%=rs2.fields("Code")%>"><%=rs2.fields("Code")%>
<%rs2.movenext

wend%>

</SELECT>

<ltd> 

<td>Grade:</td>

<td><select name="grade5">

<option value="AA">AA

<option value="BA">BA

<option value="BB">BB

<option value="CB">CB

<option value="CC">CC

<option value="DC">DC

<option value="DD">DD

<option value="FD">FD

<option value="FF">FF

</select></td>
</tr>

<tr>

<td>Select Semester Number:</td>
<td>

<select name="Semester">

<option value="1 ">1

<option value="2">2

<option value="3">3

73 



<option value="4 ">4

<option value=''5">5

<option value=''6">6

<option value="?"> 7

<option value="8">8

</select>

<ltd> 

</tr>

</table>

<BR><br><br>

<input type=submit value="Register!">
</center>

</form>

</body>

</html>

<%end if%>

STEP 4.2: COURSE REGISTRATION//ASP-2 

<%@ Language=VBScript %>

<%course1=Request.Form ("course1")

course2=Request.Form("course2")

course3=Request.Form ("course3")
course4=Request. Form ("course4")

course5=Request.Form ("course5")

semester=Request. Form ("Seme'ster")

number=Request.Form ("number")

grade1=Request.Form ("grade1")

grade2=Request.form("grade2")

grade3=Request.Form ("grade3")
grade4=Request.Form ("grade4")

grade5=Request.Form ("grade5")
%> 

74 



<%flag=false%>

<%if course1 =course2 or course1 =course3 or course1 =course4 or

course1 =courseô or course2=course3 or course2=course4 or course2=course5

or course3=course4 or course3=course5 or course4=course5 or semester=""

then

flag=true

end if%>

<%if flag=true then%>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0">

</HEAD>

<BODY bgcolor="#CCFFFF">

<center>

<h 1 ><font color=red>

You have selected two or more similar courses or You Have not entered

Semester Number, <br>

Please go back and recheck ... </font></h 1 >

<br><br>

<input type=button value="<<< Back" onClick="{history.back()}">

</center>

</BODY>

</HTML>

<%end if%>

<%if flag=false then%>

<html>

<head><title>Registration</title>

<%set db=server.createobject("adodb.connection")

db.Open "provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\PROJE-

400\Studentlist.MDB;Persist Security lnfo=False"

75



sql1 ="insert into Grade (StNo, Course, Donem, Grade,CreditHr)values

("'&number&'", rn&course1&"',"'&semester&"',"'&grade1&"','3')"

sql2="insert into Grade (StNo, Course, Donem, Grade,CreditHr)values

("'&number&"', '"&course2&"',"'&semester&"',"'&grade2&"','3')"

sql3="insert into Grade (StNo, Course, Donem, Grade,CreditHr)values

("'&number&"', "'&course3&'","'&semester&"',"'&grade3&"','3')"

sq14="insert into Grade (StNo, Course, Donem, Grade,CreditHr)values

("'&number&"', "'&course4&"',"'&semester&"',"'&grade4&"','3')"

sql5="insert into Grade (StNo, Course, Donem, Grade,CreditHr)values

("'&number&"', "'&course5&"',"'&semester&"',"'&grade5&"','3')"

db.execute sql1

db.execute sql2

db.execute sql3

db.execute sql4

db.execute sql5%>

</head>

<body bgcolor="#CCFFFF">

<center>

<h3><font color=blue> The following course have been registered ... </font></h3>
<br>

<%=course1 %>: <%=grade1 %><br>

<%=course2%>: <%=grade2%><br>

<%=course3%>: <%=grade3%><br>

<%=course4%>: <%=grade4%><;br>

<%=course5%>: <%=grade5%><br>

<form action="Department.htm">

<input type=submit value=" OK ">
</form>

center>

dy>

tml>

end if%>

76 



STEP 5: SHOW TRANSCRIPT//HTML 

<HTML> 

<HEAD> 

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0"> 
<TITLE></TITLE> 

</HEAD> 

<BODY bgcolor="#CCFFFF"> 

<form method="post" action="StTranscript.asp" id=form1 name=form1 > 
<center> 

<font color=blue><h2>Enter Student Number to See the 
Transcript... </h2></font> 
<br><br> 

Student No. <input type=text name="number" size="20"> 

<input type=submit value="Search" id=submit1 name=submit1 > 
<br><br><br> 

<input type=button value="<<< Back" onClick="{history.back()}"> 
</center> 

</form> 

</BODY> 

</HTML> 

STEP 5.1.1: SHOW TRANSCRIPT I/ASP 

<%@ Language=VBScript %> 
<% 

number=request.form("number") 

set db=server.createobject("adodb.connection") 

db.Open "provider=Microsoft.Jet.OLEDB.4.0;Data Source=8:\PROJE- 
400\Studentlist.MDB;Persist Security lnfo=False" 

sql="select * from Students where StNo = "'&number&""' 

sqlO="select * from Grade where StNo = "'&number&""' 

77 



set rs=db.execute(sq\) 

set rsO=db.Execute (sqlO) 

%> 

<%if rs.eof and rs.bof then%> 

<HTML> 

<HEAD> 

<META NAME="GENERA TOR" Content="Microsoft FrontPage 5.0"> 
</HEAD> 

<BODY bgcolor="#CCFFFF"> 

<center> 

<h2>No Student Registered with Student Number: <%=number%><br> 
Try Again ... </h2> 

<br><br> 

<input type=button value="<<< Back" onClick="{history.back()}" id=button1 
name=button 1 > 

</center> 

</BODY> 

</HTML> 

<%end if%> 

<%if (not rs.eof and not rs.bof) and (rsO.eof and rsO.bof) then%> 
<HTML> 

<HEAD> 

<META NAME="GENERA TOR" Content="Microsoft FrontPage 5.0"> 
tjHEAD> ~ 

<BODY bgcolor="#CCFFFF"> 

<center> 

<h2> The Student with Student Number:<%=number%> has no registered 
Courses ... </h2> 

<br><br> 

<input type=button value="<<< Back" onClick="{history.back()}" id=button1 
name=button 1 > 

</center> 

78 



</BODY> 

</HTML> 

<%end if%> 

<%if not rsO.eof and not rsO.bof then%> 
<html> 

<head> 

<% 

sql1="select * from Grade where StNo = "'&number&"' and Donem='1"' 

sql2="select * from Grade where StNo = "'&number&"' and Donem='2"' 
sql3="select * from Grade where StNo = "'&number&"' and Donem='3"' 

sql4="select * from Grade where StNo = "'&number&"' and Donem='4"' 

sql5="select * from Grade where StNo = "'&number&"' and Donem='5"' 

sql6="select * from Grade where StNo = "'&number&"' and Donem='6"' 
sql?="select * from Grade where StNo = "'&number&"' and Donem='?"' 

sql8="select * from Grade where StNo = "'&number&"' and Donem='B"' 

set rs1 =db.execute(sql1) 

set rs2=db.execute(sql2) 

set rs3=db.execute(sql3) 

set rs4=db.execute(sql4) 

set rs5=db.execute(sql5) 

set rs6=db.execute(sql6) 
set rs7=db.execute(sql7) 

set rs8=db.execute(sql8) 
%> 

..• 

</head> 

<body bgcolor="#CCFFFF"> 
<center> 

<h1>NEAR EAST UNIVERS1TY</h1><br> 

<h2> Transcript of Academic Record</h2><br><br> 

<h3>LEFK0SA-MERS1N 1 O-TURKEY Tel:(90)(392)2236464 

Fax:(90)(392)2236461 <br>E-mail:info@neu.edu.trwww.neu.edu.tr</h3> 

79 



<hr> 

</center> 

<!--table for name, surname, no etc--> 

<table border=O><!--outer table--> 

<tr><td> 

<table border=O> 

<tr> 

<td>Name:</td> 

<td><%Response.Write rs.fields("FirstName")o/o></td> 

</tr> 

<tr> 

<td>Surname:</td> 

<td><%Response.Write rs.fields("LastName")o/o></td> 

</tr> 

<tr> 

<td>Student No:</td> 

<td><o/oresponse.write rs.fields("StNo")o/o></td> 

</tr> 

</table> 

</td> 

<td &nbsp</td> 

<td> 

<table border=O> 

<tr> 

<td>Faculty:</td> 

<td>Engineering</td> 

</tr> 

<tr> 

<td>Department:</td> 

<td><%Response.Write rs.fields("Department")%> 

</tr> 

80 



<tr> 

<td>Degree Awarded:</td> 

<td>B.Sc.</td> 

</tr> 

</table> 

</td></tr></table><!--outer table--> 

<hr> 

<!--outer table starts here--> 

<table> 

<tr> 

<td> 

<!--first table--> 

<%if not rs1 .eof and not rs1 .bof then%> 

<table border==1 > 

<tr> 

<td>C.CODE</td> 

<td>COURSE NAME</td> 

<td>GRA</td> 

<td>CRE</td> 

<td>C.RAT</td> 

</tr> 

<%while not rs1 .eof%> 

<tr> 

<td><%Response.Write RS1 .Fields ("Course")%>&nbsp;</td> 

<td>later</td> 

<td><%Response.Write rs1 .fields("Grade")%>&nbsp;</td> .• 
<td><%Response. Write rs 1 . fields("CreditHr")%>&nbsp;</td> 
<td><% 

cr1 ==RS 1.Fields("Grade") 

if cr1 =="AA" then credit==4.0 end if 
if cr1 =="BA" then credit==3.5 end if 

if cr1 =="BB" then credit==3.0 end if 

if cr1 =="CB" then credit==2.5 end if 

if cr1 =="CC" then credit==2.0 end if · 

81 



if cr1 ="DC" then credit=1.5 end if 

if cr1 ="DD" then credit=1.0 end if 

if cr1 ="FD" then credit=0.5 end if 

if cr1 ="FF" then credit=O.O end if 

CRA T1 =credit*rs1 .fields("CreditHr") 

CRA TTotal1 =CRATTotal1 +CRA T1 

%> 

<%=CRA T1 %> &nbsp;</td> 
</tr> 

<%RS1 .MoveNext 

Wend 

%> 

<tr> 

<td>Standing:</td> 

<td>Satisfactory</td> 

<td>Total:</td> 

<td><% 

rs1 .movefirst 

while not rs1 .eof 

cr1 =RS1 .Fields("Grade") 

if cr1 ="AA" then credit=4.0 end if 
if cr1 ="BA" then credit=3.5 end if 
if cr1 ="BB" then credit=3.0 end if 
if cr1 ="CB" then credit=2.5 end if 
if cr1 ="CC" then 'credit=z.O end if 
if cr1 ="DC" then credit=1.5 end if 
if cr1 ="DD" then credit=1.0 end if 
if cr1 ="FD" then credit=0.5 end if 
if cr1 ="FF" then credit=O.O end if 

CreditTotal1 =CreditTotal1 +RS1 .Fields("CreditHr") 

rs1 .movenext 

wend%> 

<%=CreditTotal1 %> &nbsp;</td> 

82 



<td><o/o=CRA TTotal1 o/o>&nbsp;</td> 
</tr> 

<tr> 

<td>GPA:</td> 

<td> 

<%GPA 1 =CRATTotal1/CreditTotal1 %> 

<%=GPA 1 %> &nbsp;</td> 

<td>Previous Total:</td> 

<td>O.O</td> 

<td>O.O</td> 

</tr> 

<tr> 

<td>C.G.P.A:</td> 

<td> 

<%CGPA 1 =GPA 1 %> 

<o/o=CGPA 1 %> &nbsp;</td> 

<td>Grand Total:</td> 

<td> 

<%GrandTotalCRE=CreditT ota I 1 +0%> 

<%=GrandTotalCRE%> &nbsp;</td> 
<td> 

<%GrandTotalCRAT=CRA TTotal1 +0%> 

<%=GrandTotalCRAT%> &nbsp;</td> 
</tr> 

</table> 

<%end if%> 

STEP 6:GPA/CGPA //HTML 
<html> 

<head> 

<title>STUDENTS GPA</title> 

</head> 

<body bgcolor="#CCFFFF" text="#OOOOOO" link="#339933" vlink="#996600" 
alink="#CC9900"> 

8} 



</tr> 

<tr> 

</tr> 

<tr> 

<CENTER> 

<H2>STUDENTS GPA I CGPA RESULT </H2> 
<p align="center''>&nbsp;</p> 

<form method="post'' action="cgpResult.asp"> 
<table border=O> 
<tr> 

<td>Student Number:</td> 

<td><input name="number" size="20" ><ltd> 

<td align=right><input type="radio" name="point" value="CGPA" ></td> 
<td align=left>CGPA</td> 

<td align=right><input type="radio" name="point" value="GPA" 
CHECKED></td> 

<td align=left>GPA</td> 
</tr> 
<tr> 

</tr> 

<tr> 

<td>Enter Semester No. </td> 

<td></td> 

<td align=right><input type="text" name="Donem" value=O 
size="20"></td> 
</tr> 

<tr> 

<td></td> 

<td><input type="submit" value="OK"></td> 
</tr> 

</table> 

</form> 

</CENTER> 

84 



<br><p align="right">&nbsp;</p></FORM> 

<p>&nbsp; </p></body> 

</html> 

STEP 6.1: GPA/CGPA//ASP 

<%@ Language=VBScript %> 

<%name=request.form("name") 

number=request.form("number") 

point=Request.Form ("point") 

if point="GPA" then 

dd=Request.Form("Donem") 
end if 

set db=server.createobject("adodb.connection") 

db.Open "provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\PROJE- 
400\Studentlist.MDB;Persist Security lnfo=False" 
if dd=O then 

sql="select * from Grade where StNo = "'&number&""' 

sql1 ="select* from Students where StNo = "'&number&""' 
end if 

if dd<>O then 

sql="select * from Grade where StNo="'&number&"' and Donem="'&dd&"'" 
sql1 ="select* from Students where StNo="'&number&""' 
end if 

set rs=db.execute(sql) 

set rs1 =db.Execute(sql1 )%> 

<%if rs.eof and rs.bof then%> 
<html> 

<head><title>No Record</title></head> 
<body bgcolor="#CCFFFF"> 

<br> 

<center> 

<h1>No record found, Please Check the Student No. and try again/</h1> 
<br> 

<br> 

85 



<input type=button value="<<<Back" onClick="{history.back()}"> 
</center> 

</body> 
</html> 

<%end if%> 

<%if not rs.eat and not rs.bot then%> 
<HTML> 

<HEAD> 

<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0"> 
</HEAD> 

<BODY bgcolor="#CCFFFF"> 
<center> 

<h 1 > The Student's Record</h 1 > 
<table border=2 align=center> 
<tr> 

<th>Course Name</th><th>Donem</th><th>Grade</th><th>Credits</th> 
<!tr> 

<%while not rs.eat%> 
<tr> 

<td><%Response. Write RS. Fields ("Course")%>&nbsp;</td> 

<td><%Response.Write RS.Fields ("Donem")%>&nbsp;</td> 
<td><%Response. Write Rs. fields ("Grade")%>&nbsp;</td> 

<td><%Response. Write Rs. fields ("CreditHr")%>&nbsp;</td> 
<!tr> 

<%RS.MoveNext 
Wend 
%> 

</table> 

</center> 

86 



<%rs.MoveFirst%> 

<%while not rs.eof 

cr=RS.Fields("Grade") 

if cr="AA" then 

if cr="BA" then 

if cr="BB" then 

if cr="CB" then 

if cr="CC" then 

if cr="DC" then 

if cr="DD" then 

if cr="FD" then 

if cr="FF" then 

credit=4.0 end if 

credit=3.5 end if 

credit=3.0 end if 

credit=2.5 end if 

credit=2.0 end if 

credit=1.5 end if 

credit=1.0 end if 

credit=0.5 end if 

credit=O.O end if 

Toplam1 =Toplam1 +RS.Fields("CreditHr") 

Toplam2=Toplam2+credit*Rs.fields("CreditHr") 
rs.movenext 

wend%> 

<%ave=Toplam2/Toplam 1 %> 

<center> 

<%if dd=O then%> 

<p>The CGPA is: 

<%end if%> 

<%if dd<>O then%> 

The GPA is: 

<%end if%> " 

<%Response. Write ave%><br> 

</center> 

<br><br> 

<table border=O align=left> 

<tr> 

<td>First Name:</td> 

<td><%Response.Write rs1 .fields("FirstName")%></td> 
<!tr> 

87 



<tr> 

</tr> 

<tr> 

</tr> 

<tr> 

</tr> 

<tr> 

<td>Last Name:</td> 

<td><%Response. Write rs 1 . fields("LastName")%></td> 

<td>Address:</td> 

<td><%Response.Write rs1 .fields("Address")%></td> 

<td>Phone Number:</td> 

<td><%Response.Write rs1 .fields("PhoneNumber")%></td> 

<td>Email Address:</td> 

<td><a href="mail to:<%Response.Write 

rs1 .fields("Email")%>"><%Response.Write rs1 .fields("Email")%></td> 

</tr> 

<tr> 

</tr> 

<tr> 

</tr> 

<tr> 

</tr> 

</table> 

<td>Class:</td> 

<td><%Response.Write rs1 .fields("Classl0")%></td> 

<td>Sex:</td> 

<td><%Response.Write rs1 .fields("Sex")%></td> 

<td>Department:</td> 

<td><%Response.Write rs1 .fields("Department")%></td> 

</BODY> 

</HTML> 

<%end if%> 

88 



STEP7:E-MEALllHTML 

<HTML> 
<HEAD> 
<META NAME="GENERATOR" Content="Microsoft FrontPage 5.0"> 

<TITLE></TITLE> 

</HEAD> 
<BODY bgcolor="#CCFFFF"> 

<center> 

<h 1 ><u><font color=green> 
Welcome to Mailing List of NEU.</font></u></h1> 

<br><br><br> 
<h2><font color=blue>Please Select the Name to Send E-Mail ... 

</h2></font> 

<br><br> 
<a href=mailto:"ozan_sdn@yahoo.com">Ozan Durmaz</a><br><br> 

<a href=mailto:"uilhan@hotmail.com">Mr. Umit llhan</a> 

<br><br><br><br> 
<input type=button value="<<< Back" onClick="{history.back(}}"> 

</center> 

</BODY> 

</HTML> 

89 



APENDIX B: 

TEST RESULTS: 

DATABASE 1:COURSE REGISTRATION. 

Create table by entering data 

Course 

DATABASE 2: NEW STUDENTS LIST. 

Create table by entering data 
Course 

Grade 

.... .;. .. 
71451.?B;ozan_cirnbom190?@YahQQ-~Qrn . 

.. 9 . 
.••. -0: arzayas@yffo.comc;.,_ __ __c. 

o: 
o 

90 



DATABASE 3: COURSE LIST. 

Create table by entering data 

Grade 

91 


