
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

FARMER INFORMATION SYSTEM
IN DELPHI PROGRAMMING

Graduation Project
· COM-400

Student: Bulent Durukan (970302)

Supervisor: Ms. Besime Erin

Nicosia- 2002

ACKNOWLEDGEMENTS

Alot of effort and time was put in the preparation of this program, which deals
with farmer real estate management. Credit is due to the Instructor Ms. Besime Erin for
her timely help and persistence throughout the preparation phase of the project.

I would also like to take this opportunity to thank my parents, without whom, I
wouldn't have gone this far, and whose encouragement was as always of great help.
Special credit is due to my friends for their friendly advice and constructive ideas,
which forwarded the completion of this project. And last but not least I would like to
thank almighty God, without whom nothing is possible.

ABSTRACT

The program basically targets those customers who belong to agricultural field.
The main purpose of this program is the registration of critical data to a database, which
is maintained and manipulated within this program. It includes space for vital
information for Critical personal data, which has to be precise and as accurate as
possible, as not to let any margin of error occur.

This program was made in the visual language called Delphi 5 licensed to
Borland Inc.Delphi 5 is a very versatile and flexible language allowing the programmer
maneuvering space in delicate programming issues and not hindering the course of his
creative thinking. It's flexibility arises due to its derivative traits which are taken from
many other famous languages allowing the programmer to manipulate freely his ideas
on a canvas which is not limited in its ability to perform the tasks required.

Since it's a visual programming language, tedious base language programming
is not required as in the case of other non-visual languages, because the base is already
in place in the form of visual components ;only the logic and the its respective
application is required.

Searching and updating capabilities are also provided, to perform vital search
and locate procedures as to delete or update specific data sets. This can be done
according to a wide variety of options, which accompany these functions. Interaction
with other windows based programs is also provided such as the listing of specific data
sets to Excel, which may be required if the user requires some manipulation to be done
when required, Strong listing capabilities are also mingled in the program, as to clearly
show the data when and if required.
A u'ser-friendly interface is provided along with hints where possible of the usage of
various functions. Accomplishment of tasks was not sacrificed at the cost of user
friendliness, as the efficient achievement of goals remains the prime priority of the
programmer.

In this program relational database, which provides sophisticated search and
listing options is used. By that way the user is protected from entering data to the wrong
persons information and confusion risk of records is reduced. The program checks
whether the land number and plot . of land number are same. If they are same the user is
given a message that no two people can own the same land at the same time. This is
done to prevent the goverment from being cheated.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
1. WHAT IS DELPHI?
2. OBJECT PASCAL AND THE VCL

2 .1. The Delphi Workspace
2.2. What is an Object
2.3. Private, Protected, Public and Published Declarations

3. USING COMPONENTS
3 .1. Delphi's Standard Components
3.2. Properties Common to Visual Components

3 .2.1. Position and Size Properties
3.2.2. Display Properties
3.2.3. Parent Properties
3.2.4. Navigation Properties
3.2.5. Drag-and-Drop Properties

3.3. Text Controls
3 .3 .1. Properties Common to All Text Controls
3.3.2. Rich Text Controls

3 .4. Buttons and Similar Controls
3.4.1. Button Controls
3.4.2. Bitmap Buttons
3.4.3. Speed Buttons
3.4.4. Check Boxes
3.4.5. Radio Buttons
3.4.6. Toolbars

3. 5. Handling Lists
3.5.1. List Boxes and Check-List Boxes
3.5.2. Combo Boxes

3. 6. Grouping Components
3. 6.1. Group Boxes and Radio Groups
3.6.2. Panels

3. 7. Visual Feedback
3.7.1. Labels and Static-Text Components

3.8. Grids
3. 9. Graphic Display

3.9.1. Images
3.9.2. Shapes

4. SETTING COMPONENT PROPERTIES
5. USING THE OBJECT INSPECTOR

5 .1. Using Property Editors
5 .2. Working with Events
5.3. Working with Methods

111

I ..
II

Ill

V

1
1
2
2
3
3
3
4
5
5
5
5
6
6
6
7
8
8
8
9
9
9
9
10
10
10
11
11
12
12
12
13
13
13
13
14
14
14
15
15

6. TYPES OF DATABASES 17
6 .1. Local Databases 17
6.2. Connecting to Databases 17
6.3. Understanding Datasets 17
6 .4. What is TDataSet? 18
6. 5. Types of Datasets 19
6. 6. Opening and Closing Datasets 19
6. 7. Browsing a Dataset 20
6.8. Enabling Dataset Editing 21
6.9. Enabling Insertion ofNew Records 21
6.10. Enabling Index-Based Searches and Ranges on Tables 21
6.11. Filtering Records 22
6.12. Updating Records 22
6 .13. Using the Eof and Bof Properties 22

6.13 .1. End-of-File (Eot) 22
6.13.2. Beginning-of-File (Bot) 23

6 .14. Using Locate 23
6 .15. Modifying Data 23

6.15.1. Editing Records 23
6.15.2. DataSet Actions 23
6.15.3. Adding New Records 24
6.15.4. Inserting Records 25
6.15.5. Appending Records 25
6.15.6. Deleting Records 25
6.15.7. Canceling Changes 26

6 .16. Using Dataset Events 26
6.17. Event Description 26

7. FARMER INFORMATION DATABASE 27
8. FARMER INFORMATION SYSTEM 28
9. MAIN MENU 28

9.1. Record Part 37
9.2. Searching Part 46
9.3. Deletion Part 53
9.4. Update Part 60
9.5. List Menu 69

CONCLUSION 79
REFERENCES 80

lV

INTRODUCTION

Delphi 5 is a visual language consisting of VCL components. It is a derivative of

the Pascal Programming language, but the language has been constructed as such that

there are many features and commands inherited by Delphi, which are the comer stones

of other basic or complex programming languages. It is often called Object based Pascal

language since it incorporates features of the famous programming languages in a

modular and an object oriented language.

Object Pascal is a high-level, compiled, strongly typed language that supports

structured and object-oriented design. Its benefits include easy-to-read code, quick

compilation, and the use of multiple unit files for modular programming.

Object Pascal has special features that support Delphi's component framework

and RAD environment. For the most part, descriptions and examples in this language

reference assume that you are using Object Pascal to develop Delphi applications.

Delphi handles many details of setting up projects and source files, such as maintenance

of dependency information among units. The main concept behind the project is the

registration of a certain land mass to an authority as to prevent any misuse of the

specific land mass in question by imposters or any intended or non-intentional misuse of

data. Keeping this in mind, specific fields pertaining to the farmers personal as well as

his professional Information are given.

Since, the goal of this project was the creation of a program which would intake

a large amount of data, both personal as well as documented in official records, some

databases were made which would accommodate a large amount of data and then were

sorted into place. Their construction was imperative to the project as the large amount

of data can, would be manipulated by the end-user, and has to be in a format both easy

to use and efficient. Efficiency is pivotal in the construction of any program as the main

goal of all programmer s is to attain their goal with minimum risk of data loss and

maximum efficiency.

The databases were made in a program accompanying the whole Delphi

package, and these types of databases are called paradox databases.

Specific field for the recognition of land mass were included, as to store enough

information about the land mass as to prevent forgery. Specific fields for the valued

assets of the farmer were also included including livestock as well as stationary assets.

Field relating to official documents such as ID no, Card registration number etc.

V

Description of the type of ownership or rental status is also available for filling by the

end user. This is vital as it describes the exact type of ownership status. Also, specific

filed for the specific location its dimensions is provided, since it is the basic thing in

question. Other very useful features are also provided.

The main concept that shouldn't be lost is that to maxmuze or ensure the

integrity of the end users land mass, correct and authentic data should be registered with

the proper authorities. This program serves as the missing link as it provides itself as

tool for this very purpose.

VI

WHAT IS DELPHI?

Delphi is Borland's best-selling rapid application development (RAD) product

for writing Windows applications. With Delphi, you can write Windows programs more

quickly and more easily than was ever possible before. You can create Win32 console

applications or Win32 graphical user interface (GUI) programs. When creating Win32

GUI applications with Delphi, you have all the power of a true compiled programming

language (Object Pascal) wrapped up in a RAD environment. What this means is that

you can create the user interface to a program (the user interface means the menus,

dialog boxes, main window, and so on) using drag-and-drop techniques for true rapid

application development. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi gives you all

this, and at virtually ho cost: You don't sacrifice program execution speed because
Delphi generates fast compiled code.

Object Pascal and the VCL
Back in 1994 or so, Borland began working on a RAD tool that it code-named

Delphi. When it was decided that the component model architecture was the best way to

implement RAD, it was then necessary to settle 011- the programming language that
would be the heart of the system.

Object Pascal, a set of object-oriented extensions to standard Pascal, is the

language of Delphi. The Visual Component Library (VCL) is a hierarchy of classes­

written in Object Pascal and tied to the Delphi IDE-that allows you to develop

applications quickly. Using Delphi's Component palette and Object Inspector, you can

place VCL components on forms and manipulate their properties without writing code.

All VCL objects descend from TObject, an abstract class whose methods encapsulate

fundamental behavior like construction, destruction, and message handling. Tobject is

the immediate ancestor of many simple classes. Components in the VCL descend from

the abstract class TComponent. Components are objects that you can manipulate on

forms at design time. Visual components-that is, components like TForm and

TSpeedButton that appear on the screen at runtime-e-are called controls, and they

descend from TControl. Despite its name, the VCL consists mostly of nonvisual objects.

The Delphi IDE allows you to add many nonvisual components to your programs by

dropping them onto forms. For example, if you were writing an application that

connects to a database, you might place a TDataSource component on a form. Although

1

TDataSource is nonvisual, it is represented on the form by an icon (which doesn't

appear at runtime). You can manipulate the properties and events of TDataSource in the

Object Inspector just as you would those of a visual control. When you write classes of

your own in Object Pascal, they should descend from TObject. By deriving new classes

from the VCL's base class (or one of its descendants), you provide your classes with

essential functionality and ensure that they work with the VCL.

The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially

displays the Form Designer. It should come as no surprise that the Form Designer

enables you to create forms. In Delphi, a form represents a window in your program.

The form might be the program's main window, a dialog box, or any other type of

window. You use the Form Designer to place, move, and size components as part of the

form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where

you type code when writing your programs. The Object Inspector, Form Designer, Code

Editor, and Component palette work interactively as you build applications.

What is an Object?

An object, or class, is a data type that encapsulates data and operations on data

in a single unit. Before object-oriented programming, data and operations (functions)

were treated as separate elements. You can begin to understand objects if you

understand Object Pascal records. Records (analogous to structures in C) are made of

up fields that contain data, where each field has its own type. Records make it easy to

refer to a collection of varied data elements. Objects are also collections of data

elements. But objects-unlike records-contain procedures and functions that operate

on their data. These procedures and functions are called methods. An object's data

elements are accessed through properties. The properties of Delphi objects have values

that you can change at design time without writing code. If you want a property value to

change at runtime, you need to write only a small amount of code. The combination of

data and functionality in a single unit is called encapsulation. In addition to

encapsulation, object-oriented programming is characterized by inheritance and

polymorphism. Inheritance means that objects derive functionality from other objects

(called ancestors); objects can modify their inherited behavior. Polymorphism means

2

that different objects derived from the same ancestor support the same method and

property interfaces, which often can be called interchangeably.

Private, Protected, Public and Published Declarations

When you declare a field, property, or method, the new member has a visibility

indicated by one of the keywords private, protected, public, or published. The visibility

of a member determines its accessibility to other objects and units.

• A private member is accessible only within the unit where it is declared. Private

members are often used within a class to implement other (public or published) methods

and properties.
• A protected member is accessible within the unit where its class is declared and within

any descendant class, regardless of the descendant class's unit.

• A public member is accessible from wherever the object it belongs to is accessible­

that is, from the unit where the class is declared and from any unit that uses that unit.

• A published member has the same visibility as a public member, but the compiler

generates runtime type information for published members. Published properties appear

in the Object Inspector at design time.

USING COMPONENTS
All components share features inherited from TComponent. By placing

components on forms, you build the interface and functionality of your application. The

standard components included with Delphi are sufficient for most application

development, but you can extend the VCL by creating components of your own.

Delphi's standard components

The Component palette contains a selection of components that handle a wide

variety of programming tasks. You can add, remove, and rearrange components on the

palette, and you can create component templates and frames that group several

components. The components on the palette are arranged in pages according to their

purpose and functionality. Which pages appear in the default configuration depends on

the version of Delphi you are running.

3

..... --------------. ----- -·--·-· - -~--·-

Page name

Standard

Additional

Win32

System

Contents

Standard Windows controls, menus

Additional controls

Windows 9x/NT 4. 0 common controls

Components and controls for system-level access, including
timers, multimedia, and DDE

Internet

applications

Data Access

and reports

Data Controls

Decision Cube

Components for internet communication protocols and Web

Nonvisual components for accessing databases tables, quenes,

Visual, data-aware controls

Controls that let you summarize information from databases and
view it from a variety of perspectives

QReport Quick Report components for creating embedded reports
Dialogs

Win 3.1

Samples

ActiveX

Midas

Windows common dialog boxes

Components for compatibility with Delphi 1.0 projects

Sample custom components

Sample ActiveX controls

Components used for creating multi-tiered database applications

Properties common to visual components

All visual components (descendants of TControl) share certain properties including

• Position and size properties

• Display properties

• Parent properties

• Navigation properties

• Drag-and-drop properties

• Drag-and-dock properties

While these properties are inherited from TControl, they are published-and

hence appear in the Object Inspector-only for components to which they are

applicable. For example, Tlmage does not publish the Color property, since its color is

determined by the graphic it displays.

4

Position and Size Properties

Four properties define the position and size of a control on a form:

• Height sets the vertical size

• Width sets the horizontal size

• Top positions the top edge

• Left positions the left edge

These properties aren't accessible in nonvisual components, but Delphi does

keep track of where you place the component icons on your forms. Most of the time

you '11 set and alter these properties by manipulating the control's image on the form or

using the Alignment palette. You can, however, alter them at runtime.

Display Properties

Four properties govern the general appearance of a control:

• BorderStyle specifies whether a control has a border.

• Color changes the background color of a control.

• Ctrl3D specifies whether a control will have a 3-D look or a flat border.

• Font changes the color, type family, style, or size of text.

Parent Properties

To maintain a consistent appearance across your application, you can make any

'control look like its container-called its parem-by setting the parent... properties to

True. For example, if you place a button on a form and set the button's ParentFont

property to True, changes to the form's Font property will automatically propagate to

the button (and to the form's other children). Later, if you change the button's Font

property, your font choice will take effect and the Parentliont property will revert to

False.

Navigation Properties

Several properties determine how users navigate among the controls in a form:

• Caption contains the text string that labels a component. To underline a character in a

string, include an ampersand (&) before the character. This type of character is called an

accelerator character. The user can then select the control or menu item by pressing Alt

while typing the underlined character.

5

• TabOrder indicates the position of the control in its parent's tab order, the order in

which controls receive focus when the user presses the Tab key. Initially, tab order is

the order in which the components are added to the form, but you can change this by

changing TabOrder. TabOrder is meaningful only if TabStop is True.

• TabStop determines whether the user can tab to a control. If TabStop is True, the

control is in the tab order.

Drag-and-Drop Properties

Two component properties affect drag-and-drop behavior:

• DragMode determines how dragging starts. By default, DragMode is dmManual, and

the application must call the BeginDrag method to start dragging. When DragMode is

dmAutomatic, dragging starts as soon as the mouse button goes down.

• DragCursor determines the shape of the mouse pointer when it is over a draggable

component.

• DockSite

«DragKind

•DragMode

• FloatingDockSiteClass

• AutoSize

Text Controls
Many applications present text to the user or allow the user to enter text. The

type of control used for this purpose depends on the size and format of the information.

Used components:

Edit Edit a single line of text

Memo Edit multiple lines of text

MaskEdit

RichEdit

Adhere to a particular format, such as a postal code or phone number

Edit multiple lines of text using rich text format

Properties Common to All Text Controls

All of the text controls have these properties in common:

• Text determines the text that appears in the edit box or memo control.

• CharCase forces the case of the text being entered to lowercase or uppercase.

• ReadOnly specifies whether the user is allowed to change the text.

6

• MaxLength limits the number of characters in the control.

• PasswordChar hides the text by displaying a single character (usually an asterisk).

• HideSelection specifies whether selected text remains highlighted when the control

does not have focus.

Properties shared by memo and rich text controls Memo and rich text controls, which

handle multiple lines of text, have several properties in common:

• Alignment specifies how text is aligned (left, right, or center) in the component.

-The Text property contains the text in the control. Your application can tell if the text

changes by checking the Modified property.

• Lines contains the text as a list of strings.

• OEMConvert determines whether the text is temporarily converted from ANSI to

OEM as it is entered. This is useful for validating file names.

• WordWrap determines whether the text will wrap at the right margin.

• WantReturns determines whether the user can insert hard returns in the text.

• WantTabs determines whether the user can insert tabs in the text.

• AutoSelect determines whether the text is automatically selected (highlighted) when

the control becomes active.

• Se/Text contains the currently selected (highlighted) part of the text.

• Se/Start and Se/Length indicate. the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.

Rich Text Controls

The rich edit component is a memo control that supports rich text formatting,

printing, searching, and drag-and-drop of text. It allows you to specify font properties,

alignment, tabs, indentation, and numbering.

The following components provide additional ways of capturing input.

ScrollBar

TrackBar

bar)

Up Down

HotKey

Select values on a continuous range

Select values on a continuous range (more visually effective than scroll

Select a value from a spinner attached to an edit component

Enter Ctrl/ Shift/ Alt keyboard sequences

7

Buttons and Similar Controls
A side from menus, buttons provide the most common way to invoke a

command in an application. Delphi offers several button-like controls:

Button

BitBtn

SpeedButton

CheckBox

RadioButton

ToolBar

Present command choices on buttons with text

Present command choices on buttons with text and glyphs

Create grouped toolbar buttons

Present on/off options

Present a set of mutually exclusive choices

Arrange tool buttons and other controls in rows and automatically

adjust their sizes and positions.
CoolBar Display a collection of windowed controls within movable,

resizable bands

Button controls
Users click button controls to initiate actions. Double-clicking a button at design

time takes you to the button's OnClick event handler in the Code editor.

-Set Cancel to True if you want the button to trigger its OnClick event when the user

presses Esc.
-Set Default to True if you want the Enter key to trigger the button's OnClick event.

Bitmap buttons
A bitmap button (BitBtn) is a button control that presents a bitmap image on its

face.
• To choose a bitmap for your button, set the Glyph property.

-Use Kind to automatically configure a button with a glyph and default behavior.

• By default, the glyph is to the left of any text. To move it, use the Layout property.

• The glyph and text are automatically centered in the button. To move their position,

use the Margin property. Margin determines the number of pixels between the edge of

the image and the edge of the button.
• By default, the image and the text are separated by 4 pixels. Use Spacing to increase or

decrease the distance.
• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs

property to 3 to show a different bitmap for each state.

8

Speed Buttons

Speed buttons, which usually have images on their faces, can function in groups.

They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the Grouplndex property of all the buttons

the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a

speed button as selected, set the Down property to True.

• If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set

AllowAllUp to False if you want a group of buttons to act like a radio group.

Check Boxes

A check box is a toggle that presents the user with two, or sometimes three,

choices.

-Set Checked to True to make the box appear checked by default.

-Set AllowGrayed to True to give the check box three possible states: checked,

unchecked, and grayed.

-The State property indicates whether the check box is checked (cbChecked),

unchecked (cbUnchecked), or grayed (cbGrayed).

Radio Buttons

Radio buttons present a set of mutually exclusive choices. You can use

individual radio buttons or the radio group component, which arranges groups of radio

buttons automatically.

Toolbars

T oolbars provide an easy way to arrange and manage visual controls. You can

create a toolbar out of a panel component and speed buttons, or you can use the Too/Bar

component, then right-click and choose New Button to add buttons to the toolbar. The

Too/Bar component has several advantages: Buttons on a toolbar automatically

maintain uniform dimensions and spacing; other controls maintain their relative position

and height; controls can automatically wrap around to start a new row when they do not

fit horizontally; and the Too/Bar offers display options like transparency, pop-up

borders, and spaces and dividers to group controls.

9

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	..
	5
	8

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	WHAT IS DELPHI?
	Object Pascal and the VCL

	Images
	Image 1

	Page 9
	Titles
	The Delphi Workspace
	What is an Object?

	Page 10
	Titles
	Private, Protected, Public and Published Declarations
	USING COMPONENTS
	Delphi's standard components

	Images
	Image 1
	Image 2

	Page 11
	Titles
	Properties common to visual components

	Page 12
	Titles
	Position and Size Properties
	Display Properties
	Parent Properties
	Navigation Properties

	Images
	Image 1

	Page 13
	Titles
	Drag-and-Drop Properties
	Text Controls
	Properties Common to All Text Controls

	Images
	Image 1

	Page 14
	Titles
	Rich Text Controls

	Images
	Image 1

	Page 15
	Titles
	Buttons and Similar Controls
	Button controls
	Bitmap buttons

	Images
	Image 1

