
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

FARMER INFORMATION SYSTEM
IN DELPHI PROGRAMMING

Graduation Project
· COM-400

Student: Bulent Durukan (970302)

Supervisor: Ms. Besime Erin

Nicosia- 2002

ACKNOWLEDGEMENTS

Alot of effort and time was put in the preparation of this program, which deals
with farmer real estate management. Credit is due to the Instructor Ms. Besime Erin for
her timely help and persistence throughout the preparation phase of the project.

I would also like to take this opportunity to thank my parents, without whom, I
wouldn't have gone this far, and whose encouragement was as always of great help.
Special credit is due to my friends for their friendly advice and constructive ideas,
which forwarded the completion of this project. And last but not least I would like to
thank almighty God, without whom nothing is possible.

ABSTRACT

The program basically targets those customers who belong to agricultural field.
The main purpose of this program is the registration of critical data to a database, which
is maintained and manipulated within this program. It includes space for vital
information for Critical personal data, which has to be precise and as accurate as
possible, as not to let any margin of error occur.

This program was made in the visual language called Delphi 5 licensed to
Borland Inc.Delphi 5 is a very versatile and flexible language allowing the programmer
maneuvering space in delicate programming issues and not hindering the course of his
creative thinking. It's flexibility arises due to its derivative traits which are taken from
many other famous languages allowing the programmer to manipulate freely his ideas
on a canvas which is not limited in its ability to perform the tasks required.

Since it's a visual programming language, tedious base language programming
is not required as in the case of other non-visual languages, because the base is already
in place in the form of visual components ;only the logic and the its respective
application is required.

Searching and updating capabilities are also provided, to perform vital search
and locate procedures as to delete or update specific data sets. This can be done
according to a wide variety of options, which accompany these functions. Interaction
with other windows based programs is also provided such as the listing of specific data
sets to Excel, which may be required if the user requires some manipulation to be done
when required, Strong listing capabilities are also mingled in the program, as to clearly
show the data when and if required.
A u'ser-friendly interface is provided along with hints where possible of the usage of
various functions. Accomplishment of tasks was not sacrificed at the cost of user
friendliness, as the efficient achievement of goals remains the prime priority of the
programmer.

In this program relational database, which provides sophisticated search and
listing options is used. By that way the user is protected from entering data to the wrong
persons information and confusion risk of records is reduced. The program checks
whether the land number and plot . of land number are same. If they are same the user is
given a message that no two people can own the same land at the same time. This is
done to prevent the goverment from being cheated.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
1. WHAT IS DELPHI?
2. OBJECT PASCAL AND THE VCL

2 .1. The Delphi Workspace
2.2. What is an Object
2.3. Private, Protected, Public and Published Declarations

3. USING COMPONENTS
3 .1. Delphi's Standard Components
3.2. Properties Common to Visual Components

3 .2.1. Position and Size Properties
3.2.2. Display Properties
3.2.3. Parent Properties
3.2.4. Navigation Properties
3.2.5. Drag-and-Drop Properties

3.3. Text Controls
3 .3 .1. Properties Common to All Text Controls
3.3.2. Rich Text Controls

3 .4. Buttons and Similar Controls
3.4.1. Button Controls
3.4.2. Bitmap Buttons
3.4.3. Speed Buttons
3.4.4. Check Boxes
3.4.5. Radio Buttons
3.4.6. Toolbars

3. 5. Handling Lists
3.5.1. List Boxes and Check-List Boxes
3.5.2. Combo Boxes

3. 6. Grouping Components
3. 6.1. Group Boxes and Radio Groups
3.6.2. Panels

3. 7. Visual Feedback
3.7.1. Labels and Static-Text Components

3.8. Grids
3. 9. Graphic Display

3.9.1. Images
3.9.2. Shapes

4. SETTING COMPONENT PROPERTIES
5. USING THE OBJECT INSPECTOR

5 .1. Using Property Editors
5 .2. Working with Events
5.3. Working with Methods

111

I ..
II

Ill

V

1
1
2
2
3
3
3
4
5
5
5
5
6
6
6
7
8
8
8
9
9
9
9
10
10
10
11
11
12
12
12
13
13
13
13
14
14
14
15
15

6. TYPES OF DATABASES 17
6 .1. Local Databases 17
6.2. Connecting to Databases 17
6.3. Understanding Datasets 17
6 .4. What is TDataSet? 18
6. 5. Types of Datasets 19
6. 6. Opening and Closing Datasets 19
6. 7. Browsing a Dataset 20
6.8. Enabling Dataset Editing 21
6.9. Enabling Insertion ofNew Records 21
6.10. Enabling Index-Based Searches and Ranges on Tables 21
6.11. Filtering Records 22
6.12. Updating Records 22
6 .13. Using the Eof and Bof Properties 22

6.13 .1. End-of-File (Eot) 22
6.13.2. Beginning-of-File (Bot) 23

6 .14. Using Locate 23
6 .15. Modifying Data 23

6.15.1. Editing Records 23
6.15.2. DataSet Actions 23
6.15.3. Adding New Records 24
6.15.4. Inserting Records 25
6.15.5. Appending Records 25
6.15.6. Deleting Records 25
6.15.7. Canceling Changes 26

6 .16. Using Dataset Events 26
6.17. Event Description 26

7. FARMER INFORMATION DATABASE 27
8. FARMER INFORMATION SYSTEM 28
9. MAIN MENU 28

9.1. Record Part 37
9.2. Searching Part 46
9.3. Deletion Part 53
9.4. Update Part 60
9.5. List Menu 69

CONCLUSION 79
REFERENCES 80

lV

INTRODUCTION

Delphi 5 is a visual language consisting of VCL components. It is a derivative of

the Pascal Programming language, but the language has been constructed as such that

there are many features and commands inherited by Delphi, which are the comer stones

of other basic or complex programming languages. It is often called Object based Pascal

language since it incorporates features of the famous programming languages in a

modular and an object oriented language.

Object Pascal is a high-level, compiled, strongly typed language that supports

structured and object-oriented design. Its benefits include easy-to-read code, quick

compilation, and the use of multiple unit files for modular programming.

Object Pascal has special features that support Delphi's component framework

and RAD environment. For the most part, descriptions and examples in this language

reference assume that you are using Object Pascal to develop Delphi applications.

Delphi handles many details of setting up projects and source files, such as maintenance

of dependency information among units. The main concept behind the project is the

registration of a certain land mass to an authority as to prevent any misuse of the

specific land mass in question by imposters or any intended or non-intentional misuse of

data. Keeping this in mind, specific fields pertaining to the farmers personal as well as

his professional Information are given.

Since, the goal of this project was the creation of a program which would intake

a large amount of data, both personal as well as documented in official records, some

databases were made which would accommodate a large amount of data and then were

sorted into place. Their construction was imperative to the project as the large amount

of data can, would be manipulated by the end-user, and has to be in a format both easy

to use and efficient. Efficiency is pivotal in the construction of any program as the main

goal of all programmer s is to attain their goal with minimum risk of data loss and

maximum efficiency.

The databases were made in a program accompanying the whole Delphi

package, and these types of databases are called paradox databases.

Specific field for the recognition of land mass were included, as to store enough

information about the land mass as to prevent forgery. Specific fields for the valued

assets of the farmer were also included including livestock as well as stationary assets.

Field relating to official documents such as ID no, Card registration number etc.

V

Description of the type of ownership or rental status is also available for filling by the

end user. This is vital as it describes the exact type of ownership status. Also, specific

filed for the specific location its dimensions is provided, since it is the basic thing in

question. Other very useful features are also provided.

The main concept that shouldn't be lost is that to maxmuze or ensure the

integrity of the end users land mass, correct and authentic data should be registered with

the proper authorities. This program serves as the missing link as it provides itself as

tool for this very purpose.

VI

WHAT IS DELPHI?

Delphi is Borland's best-selling rapid application development (RAD) product

for writing Windows applications. With Delphi, you can write Windows programs more

quickly and more easily than was ever possible before. You can create Win32 console

applications or Win32 graphical user interface (GUI) programs. When creating Win32

GUI applications with Delphi, you have all the power of a true compiled programming

language (Object Pascal) wrapped up in a RAD environment. What this means is that

you can create the user interface to a program (the user interface means the menus,

dialog boxes, main window, and so on) using drag-and-drop techniques for true rapid

application development. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi gives you all

this, and at virtually ho cost: You don't sacrifice program execution speed because
Delphi generates fast compiled code.

Object Pascal and the VCL
Back in 1994 or so, Borland began working on a RAD tool that it code-named

Delphi. When it was decided that the component model architecture was the best way to

implement RAD, it was then necessary to settle 011- the programming language that
would be the heart of the system.

Object Pascal, a set of object-oriented extensions to standard Pascal, is the

language of Delphi. The Visual Component Library (VCL) is a hierarchy of classes­

written in Object Pascal and tied to the Delphi IDE-that allows you to develop

applications quickly. Using Delphi's Component palette and Object Inspector, you can

place VCL components on forms and manipulate their properties without writing code.

All VCL objects descend from TObject, an abstract class whose methods encapsulate

fundamental behavior like construction, destruction, and message handling. Tobject is

the immediate ancestor of many simple classes. Components in the VCL descend from

the abstract class TComponent. Components are objects that you can manipulate on

forms at design time. Visual components-that is, components like TForm and

TSpeedButton that appear on the screen at runtime-e-are called controls, and they

descend from TControl. Despite its name, the VCL consists mostly of nonvisual objects.

The Delphi IDE allows you to add many nonvisual components to your programs by

dropping them onto forms. For example, if you were writing an application that

connects to a database, you might place a TDataSource component on a form. Although

1

TDataSource is nonvisual, it is represented on the form by an icon (which doesn't

appear at runtime). You can manipulate the properties and events of TDataSource in the

Object Inspector just as you would those of a visual control. When you write classes of

your own in Object Pascal, they should descend from TObject. By deriving new classes

from the VCL's base class (or one of its descendants), you provide your classes with

essential functionality and ensure that they work with the VCL.

The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially

displays the Form Designer. It should come as no surprise that the Form Designer

enables you to create forms. In Delphi, a form represents a window in your program.

The form might be the program's main window, a dialog box, or any other type of

window. You use the Form Designer to place, move, and size components as part of the

form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where

you type code when writing your programs. The Object Inspector, Form Designer, Code

Editor, and Component palette work interactively as you build applications.

What is an Object?

An object, or class, is a data type that encapsulates data and operations on data

in a single unit. Before object-oriented programming, data and operations (functions)

were treated as separate elements. You can begin to understand objects if you

understand Object Pascal records. Records (analogous to structures in C) are made of

up fields that contain data, where each field has its own type. Records make it easy to

refer to a collection of varied data elements. Objects are also collections of data

elements. But objects-unlike records-contain procedures and functions that operate

on their data. These procedures and functions are called methods. An object's data

elements are accessed through properties. The properties of Delphi objects have values

that you can change at design time without writing code. If you want a property value to

change at runtime, you need to write only a small amount of code. The combination of

data and functionality in a single unit is called encapsulation. In addition to

encapsulation, object-oriented programming is characterized by inheritance and

polymorphism. Inheritance means that objects derive functionality from other objects

(called ancestors); objects can modify their inherited behavior. Polymorphism means

2

that different objects derived from the same ancestor support the same method and

property interfaces, which often can be called interchangeably.

Private, Protected, Public and Published Declarations

When you declare a field, property, or method, the new member has a visibility

indicated by one of the keywords private, protected, public, or published. The visibility

of a member determines its accessibility to other objects and units.

• A private member is accessible only within the unit where it is declared. Private

members are often used within a class to implement other (public or published) methods

and properties.
• A protected member is accessible within the unit where its class is declared and within

any descendant class, regardless of the descendant class's unit.

• A public member is accessible from wherever the object it belongs to is accessible­

that is, from the unit where the class is declared and from any unit that uses that unit.

• A published member has the same visibility as a public member, but the compiler

generates runtime type information for published members. Published properties appear

in the Object Inspector at design time.

USING COMPONENTS
All components share features inherited from TComponent. By placing

components on forms, you build the interface and functionality of your application. The

standard components included with Delphi are sufficient for most application

development, but you can extend the VCL by creating components of your own.

Delphi's standard components

The Component palette contains a selection of components that handle a wide

variety of programming tasks. You can add, remove, and rearrange components on the

palette, and you can create component templates and frames that group several

components. The components on the palette are arranged in pages according to their

purpose and functionality. Which pages appear in the default configuration depends on

the version of Delphi you are running.

3

..... --------------. ----- -·--·-· - -~--·-

Page name

Standard

Additional

Win32

System

Contents

Standard Windows controls, menus

Additional controls

Windows 9x/NT 4. 0 common controls

Components and controls for system-level access, including
timers, multimedia, and DDE

Internet

applications

Data Access

and reports

Data Controls

Decision Cube

Components for internet communication protocols and Web

Nonvisual components for accessing databases tables, quenes,

Visual, data-aware controls

Controls that let you summarize information from databases and
view it from a variety of perspectives

QReport Quick Report components for creating embedded reports
Dialogs

Win 3.1

Samples

ActiveX

Midas

Windows common dialog boxes

Components for compatibility with Delphi 1.0 projects

Sample custom components

Sample ActiveX controls

Components used for creating multi-tiered database applications

Properties common to visual components

All visual components (descendants of TControl) share certain properties including

• Position and size properties

• Display properties

• Parent properties

• Navigation properties

• Drag-and-drop properties

• Drag-and-dock properties

While these properties are inherited from TControl, they are published-and

hence appear in the Object Inspector-only for components to which they are

applicable. For example, Tlmage does not publish the Color property, since its color is

determined by the graphic it displays.

4

Position and Size Properties

Four properties define the position and size of a control on a form:

• Height sets the vertical size

• Width sets the horizontal size

• Top positions the top edge

• Left positions the left edge

These properties aren't accessible in nonvisual components, but Delphi does

keep track of where you place the component icons on your forms. Most of the time

you '11 set and alter these properties by manipulating the control's image on the form or

using the Alignment palette. You can, however, alter them at runtime.

Display Properties

Four properties govern the general appearance of a control:

• BorderStyle specifies whether a control has a border.

• Color changes the background color of a control.

• Ctrl3D specifies whether a control will have a 3-D look or a flat border.

• Font changes the color, type family, style, or size of text.

Parent Properties

To maintain a consistent appearance across your application, you can make any

'control look like its container-called its parem-by setting the parent... properties to

True. For example, if you place a button on a form and set the button's ParentFont

property to True, changes to the form's Font property will automatically propagate to

the button (and to the form's other children). Later, if you change the button's Font

property, your font choice will take effect and the Parentliont property will revert to

False.

Navigation Properties

Several properties determine how users navigate among the controls in a form:

• Caption contains the text string that labels a component. To underline a character in a

string, include an ampersand (&) before the character. This type of character is called an

accelerator character. The user can then select the control or menu item by pressing Alt

while typing the underlined character.

5

• TabOrder indicates the position of the control in its parent's tab order, the order in

which controls receive focus when the user presses the Tab key. Initially, tab order is

the order in which the components are added to the form, but you can change this by

changing TabOrder. TabOrder is meaningful only if TabStop is True.

• TabStop determines whether the user can tab to a control. If TabStop is True, the

control is in the tab order.

Drag-and-Drop Properties

Two component properties affect drag-and-drop behavior:

• DragMode determines how dragging starts. By default, DragMode is dmManual, and

the application must call the BeginDrag method to start dragging. When DragMode is

dmAutomatic, dragging starts as soon as the mouse button goes down.

• DragCursor determines the shape of the mouse pointer when it is over a draggable

component.

• DockSite

«DragKind

•DragMode

• FloatingDockSiteClass

• AutoSize

Text Controls
Many applications present text to the user or allow the user to enter text. The

type of control used for this purpose depends on the size and format of the information.

Used components:

Edit Edit a single line of text

Memo Edit multiple lines of text

MaskEdit

RichEdit

Adhere to a particular format, such as a postal code or phone number

Edit multiple lines of text using rich text format

Properties Common to All Text Controls

All of the text controls have these properties in common:

• Text determines the text that appears in the edit box or memo control.

• CharCase forces the case of the text being entered to lowercase or uppercase.

• ReadOnly specifies whether the user is allowed to change the text.

6

• MaxLength limits the number of characters in the control.

• PasswordChar hides the text by displaying a single character (usually an asterisk).

• HideSelection specifies whether selected text remains highlighted when the control

does not have focus.

Properties shared by memo and rich text controls Memo and rich text controls, which

handle multiple lines of text, have several properties in common:

• Alignment specifies how text is aligned (left, right, or center) in the component.

-The Text property contains the text in the control. Your application can tell if the text

changes by checking the Modified property.

• Lines contains the text as a list of strings.

• OEMConvert determines whether the text is temporarily converted from ANSI to

OEM as it is entered. This is useful for validating file names.

• WordWrap determines whether the text will wrap at the right margin.

• WantReturns determines whether the user can insert hard returns in the text.

• WantTabs determines whether the user can insert tabs in the text.

• AutoSelect determines whether the text is automatically selected (highlighted) when

the control becomes active.

• Se/Text contains the currently selected (highlighted) part of the text.

• Se/Start and Se/Length indicate. the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.

Rich Text Controls

The rich edit component is a memo control that supports rich text formatting,

printing, searching, and drag-and-drop of text. It allows you to specify font properties,

alignment, tabs, indentation, and numbering.

The following components provide additional ways of capturing input.

ScrollBar

TrackBar

bar)

Up Down

HotKey

Select values on a continuous range

Select values on a continuous range (more visually effective than scroll

Select a value from a spinner attached to an edit component

Enter Ctrl/ Shift/ Alt keyboard sequences

7

Buttons and Similar Controls
A side from menus, buttons provide the most common way to invoke a

command in an application. Delphi offers several button-like controls:

Button

BitBtn

SpeedButton

CheckBox

RadioButton

ToolBar

Present command choices on buttons with text

Present command choices on buttons with text and glyphs

Create grouped toolbar buttons

Present on/off options

Present a set of mutually exclusive choices

Arrange tool buttons and other controls in rows and automatically

adjust their sizes and positions.
CoolBar Display a collection of windowed controls within movable,

resizable bands

Button controls
Users click button controls to initiate actions. Double-clicking a button at design

time takes you to the button's OnClick event handler in the Code editor.

-Set Cancel to True if you want the button to trigger its OnClick event when the user

presses Esc.
-Set Default to True if you want the Enter key to trigger the button's OnClick event.

Bitmap buttons
A bitmap button (BitBtn) is a button control that presents a bitmap image on its

face.
• To choose a bitmap for your button, set the Glyph property.

-Use Kind to automatically configure a button with a glyph and default behavior.

• By default, the glyph is to the left of any text. To move it, use the Layout property.

• The glyph and text are automatically centered in the button. To move their position,

use the Margin property. Margin determines the number of pixels between the edge of

the image and the edge of the button.
• By default, the image and the text are separated by 4 pixels. Use Spacing to increase or

decrease the distance.
• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs

property to 3 to show a different bitmap for each state.

8

Speed Buttons

Speed buttons, which usually have images on their faces, can function in groups.

They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the Grouplndex property of all the buttons

the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a

speed button as selected, set the Down property to True.

• If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set

AllowAllUp to False if you want a group of buttons to act like a radio group.

Check Boxes

A check box is a toggle that presents the user with two, or sometimes three,

choices.

-Set Checked to True to make the box appear checked by default.

-Set AllowGrayed to True to give the check box three possible states: checked,

unchecked, and grayed.

-The State property indicates whether the check box is checked (cbChecked),

unchecked (cbUnchecked), or grayed (cbGrayed).

Radio Buttons

Radio buttons present a set of mutually exclusive choices. You can use

individual radio buttons or the radio group component, which arranges groups of radio

buttons automatically.

Toolbars

T oolbars provide an easy way to arrange and manage visual controls. You can

create a toolbar out of a panel component and speed buttons, or you can use the Too/Bar

component, then right-click and choose New Button to add buttons to the toolbar. The

Too/Bar component has several advantages: Buttons on a toolbar automatically

maintain uniform dimensions and spacing; other controls maintain their relative position

and height; controls can automatically wrap around to start a new row when they do not

fit horizontally; and the Too/Bar offers display options like transparency, pop-up

borders, and spaces and dividers to group controls.

9

Handling Lists

Lists present the user with a collection of items to select from. Several

components display lists: Used the nonvisual TStringList and TlmageList components to

manage sets of strings and images.

Used components:

ListBox A list of text strings

CheckListBox A list with a check box in front of each item

Comboflox An edit box with a scrollable drop-down list

Tree View A hierarchical list

ListView A list of (draggable) items with optional icons, columns, and
headings

DateTimePicker A list box for entering dates or times

MonthCalendar A calendar for selecting dates

List Boxes and Check-list Boxes

List boxes and check-list boxes display lists from which users can select items.

• Items uses a TStringList object to fill the control with values.

• Jtemlndex indicates which item in the list is selected.

• MultiSelect specifies whether a user can select more than one item at a time.

• Sorted determines whether the list is arranged alphabetically.

• Columns specifies the number of columns in the list control.

• IntegralHeight specifies whether the list box shows only entries that fit completely
in the vertical space.

• JtemHeight specifies the height of each item in pixels. The Style property can cause
JtemHeight to be ignored.

-The Style property determines how a list control displays its items. By default, items

are displayed as strings. By changing the value of Style, you can create owner-draw list

boxes that display items graphically or in varying heights.

Combo Boxes

A combo box combines an edit box with a scrollable list. When users enter data

into the control-by typing or selecting from the list-the value of the Text property

changes. Use the Style property to select the type of combo box you need:

10

-Use csDropdown if you want an edit box with a drop-down list. Use csDropDownList

to make the edit box read-only (forcing users to choose from the list). Set the

DropDownCount property to change the number ofitems displayed in the list.

-Use csSimple to create a combo box with a fixed list that does not close. Be sure to

resize the combo box so that the list items are displayed.

-Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes

that display items graphically or in varying heights.

Grouping Components
A graphical interface is easier to use when related controls and information are

presented in groups. Delphi provides several components for grouping components:

Used components:

GroupBox A standard group box with a title

RadioGroup A simple group of radio buttons

Panel A more visually flexible group of controls

Scrolillox A scrollable region containing controls

TabControl A set of mutually exclusive notebook-style tabs

PageControl A set of mutually exclusive notebook-style tabs with corresponding

pages, each of which may contain other controls HeaderControl Resizable column

headers.

Group Boxes and Radio Groups

A group box is a standard Windows component that arranges related controls on

a form. The most commonly grouped controls are radio buttons. After placing a group

box on a form, select components from the Component palette and place them in the

group box. The Caption property contains text that labels the group box at runtime. The

radio group component simplifies the task of assembling radio buttons and making them

work together. To add radio buttons to a radio group, edit the Items property in the

Object Inspector; each string in Items makes a radio button appear in the group box with

the string as its caption. The value of the ltemlndex property determines which radio

button is currently selected. Display the radio buttons in a single column or in multiple

columns by setting the value of the Columns property. To respace the buttons, resize the

radio group component.

11

Panels

The panel component provides a generic container for other controls. Panels can

be aligned with the form to maintain the same relative position when the form is

resized. The BorderWidth property determines the width, in pixels, of the border around

a panel.

Visual Feedback

There are many ways to provide users with information about the state of an

application. For example, some components-including TForm-have a Caption

property that can be set at runtime. You can also create dialog boxes to display

messages. In addition, the following components are especially useful for providing

visual feedback at runtime.

Used component:

Label and StaticText Display non-editable text

StatusBar

window)

ProgressBar

Hint and ShowHint

Display a status region (usually at the bottom of a

Show the amount of work completed for a particular task

Activate fly-by or "tool-tip't-help

HelpContext and HelpFile Link context-sensitive online Help

Labels and Static-Text Components

Labels display text and are usually placed next to other controls. The standard

label component, TLabel, is a non windowed control, so it cannot receive focus; when

you need a label with a window handle, use TStatic'Iext instead. Label properties

include the following:

• Caption contains the text string for the label.

• FocusControl links the label to another control on the form. If Caption includes an

accelerator key, the control specified by FocusControl receives focus when the user

presses the accelerator key.

• ShowAccelChar determines whether the label can display an underlined accelerator

character. If Show Acee/Char is True, any character preceded by an ampersand (&)

appears underlined and enables an accelerator key.

• Transparent determines whether items under the label (such as graphics) are visible.

Help and hint properties

12

Most visual controls can display context-sensitive Help as well as fly-by hints at

runtime. The HelpContext and HelpFile properties establish a Help context number and

Help file for the control. The Hint property contains the text string that appears when

the user moves the mouse pointer over a control or menu item. To enable hints, set

ShowHint to True; setting ParentShowHint to True causes the control's ShowHint

property to have the same value as its parent's.

Grids

Grids display information in rows and columns. If you're writing a database

application, use the TDBGrid or TDBCtrlGrid. Otherwise, use a standard draw grid or
string grid.

Graphic Display

The following components make it easy to incorporate graphics into an
application.

Used components to display:

Image Graphics files

Shape Geometric shapes

Bevel 3D lines and frames
PaintBox

Animate
Graphics drawn by your program at runtime

AVI files

Images

The image component displays a graphical image, like a bitmap, icon, or

metafile. The Picture property determines the graphic to be displayed. Use Center,

AutoSize, Stretch, and Transparent to set display options.

Shapes

The shape component displays a geometric shape. It is a non windowed control

and cannot receive user input. The Shape property determines which shape the control

assumes. To change the shape's color or-add a pattern, use the Brush property, which

holds a TBrush object. How the shape is painted depends on the Color and Style
properties of TBrush.

13

G COMPONENT PROPERTIES

Published properties can be set at design time in the Object Inspector and, in

cases, with special property editors. To set properties at runtime, assign them new

in your application source code

sing the Object Inspector

When you select a component on a form, the Object Inspector displays its

lished properties and (when appropriate) allows you to edit them. Use the Tab key to

toggle between the Value column and the Property column. When the cursor is in the

Property column, you can navigate to any property by typing the first letters of its name.

For properties of Boolean or enumerated types, you can choose values from a drop­

down list or toggle their settings by double-clicking in

Value column. If a plus (+) symbol appears next to a

property name, clicking the , plus symbol displays a list

of sub values for the property. By default, properties in

the Legacy category are not shown; to change the

display filters, right-click in the Object Inspector and

choose View. When more than one component is

selected, the Object Inspector displays all properties­

except Name-that are shared by the selected

components. If the value for a shared property differs

among the selected components, the Object Inspector

displays either the default value or the value from the

first component selected. When you change a shared

property, the change applies to all selected components.

Using Property Editors

Properties give the application developer the illusion of setting or reading the

value of a variable, while allowing the component writer to hide the underlying data

structure or to implement special processing when the value is accessed. There are

several advantages to using properties:

• Properties are available at design time. The application developer can set or change

initial values of properties without having to write code.

14

• Properties can check values or formats as the application developer assigns them.

Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most

common type of error programmers make is to reference a variable that has not been

initialized. By representing data with a property, you can ensure that a value is always

available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can alter

the way information is structured in a property without making the change visible to

application developers.

Working with Events

An event is a special property that invokes code in response to input or other

activity at runtime. Events give the application developer a way to attach specific blocks

of code to specific runtime occurrences, such as mouse actions and keystrokes. The

code that executes when an event occurs is called an event handler. Events allow

application developers to specify responses to different kinds of input without defining

new components.

Working with Methods

Class methods are procedures and functions that operate on a class rather than on

specific instances of the class. For example, every component's constructor method

(Create) is a class method. Component methods are procedures and functions that

operate on the component instances themselves. Application developers use methods to

direct a component to perform a specific action or return a value not contained by any

property. Because they require execution of Gode, methods can be called only at

runtime. Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where

the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An

application developer can call a component's AlignControls method without

knowing how the method works or how it differs from the AlignContro/s method

in another component.

• Methods allow updating of several properties with a single call.

15

Table 1.1. Data types used in Delphi 5 (32-bit programs).

Data Type Size in Bytes Possible Range of Values

-128to 127 Shortlnt 1

Byte 1

Word 2

Longlnt 4

Integer 4

Real 8

Currency 8

Boolean 1

Variant 16

0 to 255

Oto 65,535

-2,147,483,648 to 2,147,483,647

Same as Longlnt

5.0 ¥ 10-324 to 1.7 ¥ 10308 (same as Double)

-922,337,203,685,477.5808 to 922,337,203,685,477.5807

True or False

Varies

Table 1.2. String manipulation functions and procedures.

Name Description

Returns a sub-string within a string.

Deletes part of a string.

Copy

Delete

Formats and returns a string based on the format string and arguments

passed.

Insert Inserts text into a string.

Format

IntToStr Converts an integer value to a string.

Length Returns the length of a string.

LowerCase Converts a string to lowercase.

StrToint Converts a string to an integer. If the string cannot be converted, an

exception is thrown.

StrToXXX Additional conversion functions that convert a string to a floating point,

Currency, Date, or Time value.

Uppercase Converts a string to uppercase.

16

TYPES OF DATABASES

You can connect to different types of databases, depending on what drivers you

have installed with the BDE or ADO. These drivers may connect your application to

local databases such as Paradox, Access, and dBASE or remote database servers like

Microsoft SQL Server, Oracle, and Informix. Similarly, the InterBase Express

components can access either a local or remote version oflnterBase ..

Local Databases

Local databases reside on your local drive or on a local area network. They have

proprietary APis for accessing the data. Often, they are dedicated to a single system.

When they are shared by several users, they use file-based locking mechanisms.

Because of this, they are sometimes called file-based databases. Local databases can be

faster than remote database servers because they often reside on the same system as the

database application. Because they are file-based, local databases are more limited than

remote database servers in the amount of data they can store. Therefore, in deciding

whether to use a local database, you must consider how much data the tables are

expected to hold. Applications that use local databases are called single-tiered

applications because the application and the database share a single file system.

Examples oflocal databases include Paradox, dBASE, FoxPro, and Access.

Connecting to Databases
The Borland Database Engine includes drivers to connect to different databases.

The Standard version of Delphi includes only the drivers for local databases: Paradox,

dBASE, FoxPro, and Access. With the Professional version, you also get an ODBC

adapter that allows the BDE to use ODBC drivers. By supplying an ODBC driver, your

application can use any ODBC-compliant database. Some versions also include drivers

for remote database servers. Use the drivers installed with SQL Links to communicate

with remote database servers such as InterBase, Oracle, Sybase, Informix, Microsoft

SQL server, and DB2.

Understanding Datasets

In Delphi, the fundamental unit for accessing data is the dataset family of

objects. Your application uses datasets for all database access. Generally, a dataset

object represents a specific table belonging to a database, or it represents a query or

17

stored procedure that accesses a database. All dataset objects that you will use in your

database applications descend from the virtualized dataset object, TDataSet, and they

inherit data fields, properties, events, and methods from TDataSet. This chapter

describes the functionality of TDataSet that is inherited by the dataset objects you will

use in your database applications. You need to understand this shared functionality to

use any dataset object. Figure 1.1 illustrates the hierarchical relationship of all the

dataset components:

Figure 1 Delphi Dataset hierarchies

TAOOOommand

TCllentOataSet

What is TDataSet?
TDataSet is the ancestor for all dataset objects you use in your applications. It

defines a set of data fields, properties, events, and methods shared by all dataset objects.

TDataSet is a virtualized dataset, meaning that many of its properties and methods are

virtual or abstract. A virtual method is a function or procedure declaration where the

implementation of that method can be (and usually is) overridden in descendant objects.

An abstract method is a function or procedure declaration without an actual

implementation. The declaration is a prototype that describes the method (and its

parameters and return type, if any) that must be implemented in all descendant dataset

18

/

iects, but that might be implemented differently by each of them. Because TDataSet

contains abstract methods, you cannot use it directly in an application without

erating a runtime error. Instead, you either create instances of TDataSet' s

descendants, such as TTable, TQuery, TStoredProc, and TClientDataSet, and use them

in your application, or you derive your own dataset object from TDataSet or its

descendants and write implementations for all its abstract methods. Nevertheless,

Iliataset defines much that is common to all dataset objects. For example, TDataSet

defines the basic structure of all datasets: an array of Tfield components that correspond

to actual columns in one or more database tables, lookup fields provided by your

application, or calculated fields provided by your application. For more information

about TField components, the following topics are discussed:

• Types of datasets

• Opening and closing datasets

• Navigating datasets

• Searching datasets
• Displaying and editing a subset of data using filters

• Using dataset events

Types of Datasets
To understand the concepts common to all dataset objects, and to prepare for

developing your own custom dataset objects that do not rely on either the Borland

Database Engine (BDE) or ActiveX Data Objects (ADO). To develop traditional, two­

tier client/server database applications using the Borland Database Engine (BDE),. That

section introduces TBDEDataSet and TDBDataSet, and focuses on the shared features

of TQuery, TStoredProc, and TTable, the dataset components used most commonly in

all database applications. With some versions of Delphi, you can develop multi-tier

database applications using distributed datasets.

Opening and Closing Datasets
To read or write data in a table or through a query, an application must first open

a dataset. You can open a dataset in two ways,
-Set the Active property of the dataset to True, either at design time in the Object

Inspector

19

• Call the Open method for the dataset at runtime,

You can close a dataset in two ways,
-Set t he Active property of the dataset to False, either at design time in the Object

Inspector,
• Call the Close method for the dataset at runtime.

Browsing a Dataset
When an application opens a dataset, the dataset automatically enters dsBrowse

state. Browsing enables you to view records in a dataset, but you cannot edit records or

insert new records. You mainly use dsBrowse to scroll from record to record in a

dataset. From dsBrowse all other dataset states can be set. For example, calling the

Insert or Append methods for a dataset changes its state from dsBrowse to dslnsert (note

that other factors and dataset properties, such as CanModify, may prevent this change).

Calling SetKey to search for records puts a dataset in dsSetKey mode. Two methods

associated with all datasets can return a dataset to dsBrowse state. Cancel ends the

current edit, insert, or search task, and always returns a dataset to dsBrowse state. Post

attempts to write changes to the database, and if successful, also returns a dataset to

dsBrowse state. If Post fails, the current state remains unchanged. The following

diagram illustrates the relationship of dsBrowse both to the other dataset modes you can

set in your applications, and the methods that set those modes.

Figure 1.2 Relationship of Browse to other dataset states

E)
r- Close

Poo't; canoe!.
GoloKey, Al'KIK~
ApplyRange. CancelRartge

' I E)
Sell<tW, EdltKey
Se!Range

20

Enabling Dataset Editing

A dataset must be in dsEdit mode before an application can modify records. In

your code you can use the Edit method to put a dataset into dsEdit mode if the read-only

CanModify property for the dataset is True. CanModify is True if the database

underlying a dataset permits read and write privileges. On forms in your application,

some data-aware controls can automatically put a dataset into dsEdit state if

-The control's ReadOnly property is False (the default),

-The AutoEdit property of the data source for the control is True, and

• CanModify is True for the dataset.

Enabling Insertion of New Records

A dataset must be in dslnsert mode before an application can add new records.

In your code you can use the Insert or Append methods to put a dataset into dslnsert

mode if the read-only CanModify property for the dataset is True. CanModify is True if

the database underlying a dataset permits read and write privileges. On forms in your

application, the data-aware grid and navigator controls can put a dataset into dslnsert

state if

-The control's ReadOnly property is False (the default),

-The AutoEdit property of the data source for the control is True, and

• CanModify is True for the dataset.

Enabling Index-Based Searches and Ranges on Tables

You can search against any dataset using the Locate and Lookup methods of

TDataSet. TTable components, however, provide an additional family of GotoKey and

FindKey methods that enable you to search for records based on an index for the table.

To use these methods on table components, the component must be in dsSetKey mode.

dsSetKey mode applies only to TTable components. You put a dataset into dsSetKey

mode with the SetKey method at runtime. The GotoKey, GotoNearest, Find.Key, and

FindNearest methods, which carry out searches, returns the dataset to dsBrowse state

upon completion of the search. You can temporarily view and edit a subset of data for

any dataset by using filters.

21

Filtering Records
Helphi puts a dataset into dsl/ilter mode whenever an application calls the

dataset's OnFilterRecord event handler. This state prevents modifications or additions

to the records in a dataset during the filtering process so that the filter request is not

invalidated. When the OnFilterRecord handler finishes, the dataset is returned to

dsBrowse state.

Updating Records
When performing cached update operations, Delphi may put the dataset into

dsNewValue, dsOldValue, or dsCurValue states temporarily. These states indicate that

the corresponding properties of a field component (New Value, OldValue, and Cur Value,

respectively) are being accessed, usually in an OnUpdateError event handler. Your

applications cannot see or set these states.

Using the Eof and Bof Properties
Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of­

file), are useful for controlling dataset navigation, particularly when you want to iterate

through all records in a dataset.

End of File (Eof)
When Eof is True, it indicates that the cursor is unequivocally at the last row in a

dataset. Eofis set to True when an application

• Opens an empty dataset.

• Calls a dataset' s Last method.
• Calls a dataset' s Next method, and the method fails (because the cursor is currently at

the last row in the dataset.

• Calls SetRange on an empty range or dataset.
Eof is set to False in all other cases; you should assume Eof is False unless one

of the conditions above is met and you test the property directly. Eof is commonly

tested in a loop condition to control iterative processing of all records in a dataset. If

you open a dataset containing records (or you call First) Eofis False. To iterate through

the dataset a record at a time, create a loop that terminates when Eof is True. Inside the

loop, call Next for each record in the dataset. Eof remains False until you call Next

when the cursor is already on the last record.

22

BeginningofFile(Bo~
When Bof is True, it indicates that the cursor is unequivocally at the first row in

a dataset. Bofis set to True when an application

• Opens a dataset.

• Calls a dataset's First method.
• Calls a dataset's Prior method, and the method fails (because the cursor is currently at

the first row in the dataset.

• Calls SetRange on an empty range or dataset.
Bof is set to False in all other cases; you should assume Bof is False unless one

of the conditions above is met and you test the property directly. Like Eof, Bof can be in

a loop condition to control iterative processing of records in a dataset.

Using Locate
Locate moves the cursor to the first row matching a specified set of search

criteria. In its simplest form, you pass Locate the name of a column to search, a field

value to match, and an options flag specifying whether the search is case-insensitive or

if it can use partial-key matching.

MODIFYING DATA
You can use the following dataset methods to insert, update, and delete data:

Editing Records
A dataset must be in dsEdit mode before an application can modify records. In

your code you can use the Edit method to put a dataset into dsEdit mode if the read-only

CanModify property for the dataset is True. CanModify is True if the table(s) underlying

a dataset permits read and write privileges. On forms in your application, some data­

aware controls can automatically put a dataset into dsEdit state if

-The control's ReadOnly property is False (the default),

•TheAutoEdit property of the data source for the control is True, and

• CanModify is True for the dataset.

DataSet Actions
The standard dataset actions are designed to be used with a dataset component

target. TDataSetAction is the base class for descendants that each override the

23

Execute Target and Update Target methods to implement navigation and editing of the

target. The TDataSetAction introduces a DataSource property which ensures actions are

performed on that dataset. If DataSource is nil, the currently focused data-aware control

is used.
• TdataSet.Action ensures that the target is a TDataSource class and has an associated

data set.
• TdataSet. Cancel cancels the edits to the current record, restores the record display to

its condition prior to editing, and turns off Insert and Edit states if they are active.

• TdataSet.Delete deletes the current record and makes the next record the current
/ record.

• TdataSet.Edit puts the dataset into Edit state so that the current record can be

modified.
• TdataSet.First sets the current record to the first record in the dataset.

• TdataSet.Insert inserts a new record before the current record, and sets the dataset into

Insert and Edit states.
• TdataSet.Last sets the current record to the last record in the dataset.

• TdataSet.Ne.xt sets the current record to the next record.

• TdataSet.Post writes changes in the current record to the dataset.

• TdataSet.Prior sets the current record to the previous record.

• TdataSet.Refresh refreshes the buffered data in the associated dataset.

• TDataSet.Append adds a new, empty record to the end of the dataset.

Adding New Records
A dataset must be in dslnsert mode before an application can add new records.

In code, you can use the Insert or Append methods to put a dataset into dslnsert mode if

the read-only CanModify property for the dataset is True. CanModify is True if the

database underlying a dataset permits read and write privileges. On forms in your

application, the data-aware grid and navigator controls can put a dataset into dslnsert

state if
-The control's ReadOnly property is False (the default), and

• CanModify is True for the dataset.

24

Inserting Records
Insert opens a new, empty record before the current record, and makes the empty

record the current record so that field values for the record can be entered either by a

user or by your application code. When an application calls Post (or Applyllpdates

when cached updating is enabled), a newly inserted record is written to a database in

one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a

position based on its index.
• For unindexed tables, the record is inserted into the dataset at its current position.

• For SQL databases, the physical location of the insertion is implementation-specific.

If the table is indexed, the index is updated with the new record

information.

Appending Records
Append opens a new, empty record at the end of the dataset, and makes the

empty record the current one so that field values for the record can be entered either by

a user or by your application code. When an application calls Post (or Apply Updates
'

when cached updating is enabled), a newly appended record is written to a database in

one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a

position based on its index.

• For unindexed tables, the record is added to the end of the dataset.

• For SQL databases, the physical location of the append is implementation-specific.

If the table is indexed, the index is updated with the new record information.

Deleting Records
A dataset must be active before an application can delete records. Delete deletes

the current record from a dataset and puts the dataset in dsBrowse mode. The record that

followed the deleted record becomes the current record. If cached updates are enabled

for a dataset, a deleted record .is only removed from the temporary cache buffer until

you call ApplyUpdates. If you provide a navigator component on your forms, users can

delete the current record by clicking the navigator's Delete button. In code, you must

call Delete explicitly to remove the current record.

25

Canceling Changes

An application can undo changes made to the current record at any time, if it has

not yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and

a user has changed the data in one or more fields, the application can return the record

back to its original values by calling the Cancel method for the dataset. A call to Cancel

always returns a dataset to dsBrowse state. On forms, you can allow users to cancel edit,

insert, or append operations by including the Cancel button on a navigator component

associated with the dataset, or you can provide code for your own Cancel button on the
form.

Using Dataset Events

Datasets have a number of events that enable an application to perform

validation, compute totals, and perform other tasks. The events are listed in the

following table. For more information about events for the TDataSet component, see the
online VCL Reference.

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.

BeforeClose, AfterClose Called before/after a dataset is closed.

Beforelnsert, Afterlnsert Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.

BeforePost, AfterPost Called before/after changes to a table are posted.

BeforeCancel, AfterCancel Called before/after the previous state is canceled.

BeforeDelete, AfterDelete Called before/after a record is deleted.

OnNewRecord Called when a new record is created; used to set default values.

OnCalcFields Called when calculated fields are calculated.

26

FARMER INFORMATION DATABASE

The databases were made in a program accompanying the whole Delphi

kage, and these types of databases are called paradox databases. Two databases are

in this program, which names are Farmer l.db and Farmer3.db. Farmerl.db is used

store farmer information records and Farmer3.db is used to store fixed payment for a
decare.

Field Name Type Size
City A 10
Surname A 10 ;

Tcidentifyno A 10
Taxidentifvno A 10
Landno A 10
Plotoflandno A 10
Name A 10
Town A 15
Village A 10
Managingno A 10
Telephone A 11
Adress A 50
Fathername A 10
Bitrhdate A 10
Bankaccountno A 15
Personno A 2
Lessperson A 2
Moreperson A 2
Recorddate A 10
Reportdate A 10
Landdecare A 5
Landmetre A 3
Quality A 10
Usagetype A 10
Ownrentingasset A 10
Location ofvillage A 11
Solvency A 5
Paymentamount A 15
Applicationdate A 10
Contractdate A 10
Leased ate A 10
Certificateno A 10

Farmerl.DB

Field Name
Fixedpayment

Size

Farmer3.DB

27

ored procedure that accesses a database. All dataset objects that you will use in your

database applications descend from the virtualized dataset object, TDataSet, and they

inherit data fields, properties, events, and methods from TDataSet. This chapter

describes the functionality of TDatqSet that is inherited by the dataset objects you will

use in your database applications. You need to understand this shared functionality to

use any dataset object. Figure 1.1 illustrates the hierarchical relationship of all the

dataset components:

Figure 1 Delphi Dataset hierarchies

TClientDataSet

TADOCommand TNestedTable

What is TDataSet?
TDataSet is the ancestor for all dataset objects you use in your applications. It

defines a set of data fields, properties, events, and methods shared by all dataset objects.

TDataSet is a virtualized dataset, meaning that many of its properties and methods are

virtual or abstract. A virtual method is a function or procedure declaration where the

implementation of that method can be (and usually is) overridden in descendant objects.

An abstract method is a function or procedure declaration without an actual

implementation. The declaration is a prototype that describes the method (and its

parameters and return type, if any) that must be implemented in all descendant dataset

18
/

objects, but that might be implemented differently by each of them. Because TDataSet

contains abstract methods, you cannot use it directly in an application without

generating a runtime error. Instead, you either create instances of TDataSet's

descendants, such as TTable, TQuery, TStoredProc, and TClientDataSet, and use them

in your application, or you derive your own dataset object from TDataSet or its

descendants and write implementations for all its abstract methods. Nevertheless,

TDataSet defines much that is common to all dataset objects. For example, TDataSet

defines the basic structure of all datasets: an array of Tfield components that correspond

to actual columns in one or more database tables, lookup fields provided by your

application, or calculated fields provided by your application. For more information

about TField components, the following topics are discussed:

• Types of datasets

• Opening and closing datasets

• Navigating datasets

• Searching datasets
• Displaying and editing a subset of data using filters

• Using dataset events

Types of Datasets
To understand the concepts common to all dataset objects, and to prepare for

developing your own custom dataset objects that do not rely on either the Borland

Database Engine (BDE) or ActiveX Data Objects (ADO). To develop traditional, two­

tier client/server database applications using the Borland Database Engine (BDE),. That

section introduces TBDEDataSet and TDBDataSet, and focuses on the shared features

of TQuery, TStoredProc, and TTable, the dataset components used most commonly in

all database applications. With some versions of Delphi, you can develop multi-tier

database applications using distributed datasets.

Opening and Closing Datasets
To read or write data in a table or through a query, an application must first open

a dataset. You can open a dataset in two ways,
-Set the Active property of the dataset to True, either at design time in the Object

Inspector

19

• Call the Open method for the dataset at runtime,

You can close a dataset in two ways,

-Set t he Active property of the dataset to False, either at design time in the Object

Inspector,

• Call the Close method for the dataset at runtime.

Browsing a Dataset

When an application opens a dataset, the dataset automatically enters dsBrowse

state. Browsing enables you to view records in a dataset, but you cannot edit records or

insert new records. You mainly use dsBrowse to scroll from record to record in a

dataset. From dsBrowse all other dataset states can be set. For example, calling the

Insert or Append methods for a dataset changes its state from dsBrowse to dslnsert (note

that other factors and dataset properties, such as CanA1odify, may prevent this change).

Calling SetKey to search for records puts a dataset in dsSetKey mode. Two methods

associated with all datasets can return a dataset to dsBrowse state. Cancel ends the -

current edit, insert, or search task, and always returns a dataset to dsBrowse state. Post

attempts to write changes to the database, and if successful, also returns a dataset to

dsBrowse state. If Post fails, the current state remains unchanged. The following

diagram illustrates the relationship of dsBrowse both to the other dataset modes you can

set in your applications, and the methods that set those modes.

Figure 1.2 Relationship of Browse to other dataset states

Insert
A_ooend

~

Open I + Close
Edit . D

Post
(U~)

~-- ~ .

. . - ~ Post :Post (~l
(unsuccessftJ~ Car:ooel

-Delete

Poot~ Qmoei,
GotoKey, AooK~
App!yRange. GanoolRange

f I E:)
SetKey, EdtKey
Sel.Range '

20

Enabling Dataset Editing
A dataset must be in dsEdit mode before an application can modify records. In

your code you can use the Edit method to put a dataset into dsEdit mode if the read-only

CanModify property for the dataset is True. CanModify is True if the database

underlying a dataset permits read and write privileges. On forms in your application,

some data-aware controls can automatically put a dataset into dsEdit state if

-The control's ReadOnly property is False (the default),

-The AutoEdit property of the data source for the control is True, and

• Canlvlodify is True for the dataset.

Enabling Insertion of New Records
A dataset must be in dslnsert mode before an application can add new records.

In your code you can use the Insert or Append methods to put a dataset into dslnsert

mode if the read-only CanModify property for the dataset is True. CanModify is True if

the database underlying a dataset permits read and write privileges. On forms in your

application, the data-aware grid and navigator controls can put a dataset into dslnsert

state if

-The control's ReadOnly property is False (the default),

-The AutoEdit property of the data source for the control is True, and

• CanModify is True for the dataset.

Enabling Index-Based Searches and Ranges on Tables

You can search against any dataset using the Locate arid Lookup methods of

TDataSet. TTable components, however, provide an additional family of GotoKey and

FindKey methods that enable you to search for records based on an index for the table.

To use these methods on table components, the component must be in dsSetKey mode.

dsSetKey mode applies only to TTable components. You put a dataset into dsSetKey

mode with the SetKey method at runtime. The GotoKey, GotoNearest, FindKey, and

FindNearest methods, which carry out searches, returns the dataset to dsBrowse state

upon completion of the search. You can temporarily view and edit a subset of data for

any dataset by using filters.

21

Filtering Records
Helphi puts a dataset into dsl-ilter mode whenever an application calls the

dataset's OnFilterRecord event handler. This state prevents modifications or additions

to the records in a dataset during the filtering process so that the filter request is not

invalidated. When the OnFilterRecord handler finishes, the dataset is returned to

dsBrowse state.

Updating Records
When performing cached update operations, Delphi may put the dataset into

dsNewValue, dsOldValue, or dsCurValue states temporarily. These states indicate that

the corresponding properties of a field component (New Value, OldValue, and CurValue,

respectively) are being accessed, usually in an OnUpdateError event handler. Your

applications cannot see or set these states.

Using the Eof and Bof Properties
Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of­

file), are useful for controlling dataset navigation, particularly when you want to iterate

through all records in a dataset.

End of File (Eof)
When Eof is True, it indicates that the cursor is unequivocally at the last row in a

dataset. Eof is set to True when an application

• Opens an empty dataset.

• Calls a dataset's Last method.
• Calls a dataset' s Next method, and the method fails (because the cursor is currently at

the last row in the dataset.

• Calls SetRange on an empty range or dataset.
Eof is set to False in all other cases; you should assume Eof is False unless one

of the conditions above is met and you test the property directly. Eof is commonly

tested in a loop condition to control iterative processing of all records in a dataset. If

you open a dataset containing records (or you call First) Eofis False. To iterate through

the dataset a record at a time, create a loop that terminates when Eof is True. Inside the

loop, call Next for each record in the dataset. Eof remains False until you call Next

when the cursor is already on the last record.

22

BeginningofFile(Bo~
When Bof is True, it indicates that the cursor is unequivocally at the first row in

dataset. Bof is set to True when an application

• Opens a dataset.

• Calls a dataset's First method.
• Calls a dataset's Prior method, and the method fails (because the cursor is currently at

the first row in the dataset.

• Calls SetRange on an empty range or dataset.
Bof is set to False in all other cases; you should assume Bof is False unless one

of the conditions above is met and you test the property directly. Like Eof, Bof can be in

a loop condition to control iterative processing of records in a dataset.

Using Locate
Locate moves the cursor to the first row matching a specified set of search

criteria. In its simplest form, you pass Locate the name of a column to search, a field

value to match, and an options flag specifying whether the search is case-insensitive or

if it can use partial-key matching.

MODIFYING DATA
You can use the following dataset methods to insert, update, and delete data:

Editing Records
A dataset must be in dslidit mode before an application can modify records. In

your code you can use the Edit method to put a dataset into dsEdit mode if the read-only

CanModify property for the dataset is True. CanModify is True if the table(s) underlying

a dataset permits read and write privileges. On forms in your application, some data­

aware controls can automatically put a dataset into dslidit state if

-The control's ReadOnly property is False (the default),

• The A utolidit property of the data source for the control is True, and

• CanModify is True for the dataset.

DataSet Actions
The standard dataset actions are designed to be used with a dataset component

target. TDataSetAction is the base class for descendants that each override the

23

ExecuteTarget and UpdateTarget methods to implement navigation and editing of the

target. The TDataSetAction introduces a DataSource property which ensures actions are

performed on that dataset. If DataSource is nil, the currently focused data-aware control

is used.
• TdataSet.Action ensures that the target is a TDataSource class and has an associated

data set.
• TdataSet. Cancel cancels the edits to the current record, restores the record display to

its condition prior to editing, and turns off Insert and Edit states if they are active.

• TdataSet.Delete deletes the current record and makes the next record the current
/ record.

• TdataSet.Edit puts the dataset into Edit state so that the current record can be

modified.
• TdataSet.First sets the current record to the first record in the dataset.

• TdataSet.Jnsert inserts a new record before the current record, and sets the dataset into

Insert and Edit states.
• TdataSet.Last sets the current record to the last record in the dataset.

• TdataSet.Next sets the current record to the next record.

• TdataSet.Post writes changes in the current record to the dataset.

• TdataSet.Prior sets the current record to the previous record.

• TdataSet.Refresh refreshes the buffered data in the associated dataset.

• TDataSet.Append adds a new, empty record to the end of the dataset.

Adding New Records
A dataset must be in dslnsert mode before an application can add new records.

In code, you can use the Insert or Append methods to put a dataset into dslnsert mode if

the read-only CanModify property for the dataset is True. CanModify is True if the

database underlying a dataset permits read and write privileges. On forms in your

application, the data-aware grid and navigator controls can put a dataset into dslnsert

state if
-The control's ReadOnly property is False (the default), and

• CanModify is True for the dataset.

24

ing Records
Insert opens a new, empty record before the current record, and makes the empty

RCOrd the current record so that field values for the record can be entered either by a

or by your application code. When an application calls Post (or Apply Updates

when cached updating is enabled), a newly inserted record is written to a database in

one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a

position based on its index.
• For unindexed tables, the record is inserted into the dataset at its current position.

• For SQL databases, the physical location of the insertion is implementation-specific.

If the table is indexed, the index is updated with the new record

information.

Appending Records
Append opens a new, empty record at the end of the dataset, and makes the

empty record the current one so that field values for the record can be entered either by

a user or by your application code. When an application calls Post (or Apply Updates
'

when cached updating is enabled), a newly appended record is written to a database in

one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a

position based on its index.

• For unindexed tables, the record is added to the end of the dataset.

• For SQL databases, the physical location of the append is implementation-specific.

If the table is indexed, the index is updated with the new record information.

Deleting Records
A dataset must be active before an application can delete records. Delete deletes

the current record from a dataset and puts the dataset in dsBrowse mode. The record that

followed the deleted record becomes the current record. If cached updates are enabled

for a dataset, a deleted record .is only removed from the temporary cache buffer until

you call ApplyUpdates. If you provide a navigator component on your forms, users can

delete the current record by clicking the navigator's Delete button. In code, you must

call Delete explicitly to remove the current record.

25

Canceling Changes

An application can undo changes made to the current record at any time, if it has

not yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and

a user has changed the data in one or more fields, the application can return the record

back to its original values by calling the Cancel method for the dataset. A call to Cancel

always returns a dataset to dsBrowse state. On forms, you can allow users to cancel edit,

insert, or append operations by including the Cancel button on a navigator component

associated with the dataset, or you can provide code for your own Cancel button on the
form.

Using Dataset Events

Datasets have a number of events that enable an application to perform

validation, compute totals, and perform other tasks. The events are listed in the

following table. For more information about events for the TDataSet component, see the
online VCL Reference.

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.

BeforeClose, AfterClose Called before/after a dataset is closed.

Beforelnsert, Afterlnsert Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit c·alled before/after a dataset enters Edit state.

BeforePost, AfterPost Called before/after changes to a table are posted.

BeforeCancel, AfterCancel Called before/after the previous state is canceled.

BeforeDelete, AfterDelete Called before/after a record is deleted.

OnNewRecord Called when a new record is created; used to set default values.

OnCalcFields Called when calculated fields are calculated.

26

FARMER INFORMATION DATABASE

The databases were made in a program accompanying the whole Delphi

package, and these types of databases are called paradox databases. Two databases are

used in this program, which names are Farmerl.db and Farmer3.db. Farmerl.db is used

to store farmer information records and Farmer3.db is used to store fixed payment for a

decare.

Field Name Type Size
City A 10
Surname A 10
Tcidentifyno A 10
Taxidentifvno A 10
Landno A 10
Plotoflandno A 10
Name A 10
Town A 15
Village A 10
Managingno A 10
Telephone A 11
Adress A 50
Fathemame A 10
Bitrhdate A 10
Bankaccountno A ~ 15
Personno A 2
Less person A 2
Moreperson A 2
Recorddate A 10
Reportdate A 10
Landdecare A -5
Landmetre A 3
Quality A 10
Usagetype A 10
Ownrentinaasset A 10
Locationofvillage A 11
Solvency A 5
Paymentamount A 15
Applicationdate A 10
Contractdate A 10
Leasedate A 10
Certificateno A 10

Farmerl.DB

Field Name
Fixedpayment

Fanner3.DB

27

FARMER INFORMATION SYSTEM

This program is prepared for manipulating the records of farmers and their lands.

The main purpose- is to use a computer and automate the payments, taxing and other

processes which will reduce the risk of being confused. The advantages of automation

provide the time saving and protect the government from a crime that is done by giving

wrong information.

MAIN MENU
The main window consists of a searching menu. The options or keys which can

be used to search for a specific data set are; City, Land No., Plot of Land No. After

information is entered to these edits, Find Button is clicked. Clicking the find button

locates the dataset specified and if database consists of this record, his name and

surnames are written to edits, if not a message is given which is "This Record not

found". Clicking the clear button clears the fields. Thete is also a panel provided in the

main window, which serves as the launch pad for various sub programs built into the

main window. These are Enter New Record; Search Record, Delete Record, Update

Record, List Record, About and Exit. There are also array drops down menus that serve

specific purposes. These are Record (Enter New Record); Search (Search Record),

Delete (Delete Record), Update (Update Record), List (List Record), About and Exit.
This form is shown below

28

Program Codes;

Unit Unitl;

Interface

Uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Menus, Db, DBTables, StdCtrls, TeEngine, Series, ExtCtrls, TeeProcs,

Chart, jpeg, Mask, DBCtrls, Buttons;

Type

TForml = class (TForm)

procedure FormCreate(Sender: TObject);

procedure F ormActivate(Sender: TObject);

procedure Exitl Click(Sender: TObject);

29

procedure SearchRecord 1 Click(Sender: TObject);

procedure DelteRecord 1 Click(Sender: TObject);

procedure SortREcord 1 Click(Sender: TObject);

procedure ListRecord 1 Click(Sender: TObject);

procedure EnterNewRocord 1 Click(Sender: TObject);

procedure SpeedButton2Click(Sender: TObject);

procedure SpeedButton3Click(Sender: TObject);

procedure SpeedButton4Click(Sender: TObject);

procedure SpeedButton6Click(Sender: TObject);

procedure SpeedButton 1 Click(Sender: TObject);

procedure SpeedButton5Click(Sender: TObject);

procedure FormKeyPress(Sender: TObject; var Key: Char);

procedure FormHide(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure SpeedButton7Click(Sender: TObject);

procedure Exit2Click(Sender: TObject);

private

{ Private declarations }

Bitmap 1, Bitmap2, Bitmap3: TBitmap;

Image I Loaded, Image2Loaded: Boolean;

public

Cut : Boolean;

{ Public declarations }

end;

var

Forml: TForml;

cut.boolean;

implementation

uses Unit2,Unit4,Unit6, Unit5, Unit7, Unit3;

{$R *.DFM}

procedure TForml .FormCreate(Sender: TObject);

begin

bitmap I := Graphics.TBitmap.Create;

30

bitmap2 := Graphics.TBitmap.Create;

bitmap3 : = Graphics. TBitmap. Create;

bitmap l .PixelF ormat : = pf8bit;

bitmap2.Pixe1Format := pf8bit;

bitmap3 .PixelF ormat : = pf8bit;

try

bitmap l .LoadFromFile('d: \farmer\factory. bmp');

bitmap2.LoadF romFile('d: \farmer\handshak. bmp');

ImagelLoaded := true;

Image2Loaded := true;

bitmap3 .Palette := bitmap I .Palette;

bitmap3 .Height := bitmap I .Height;

bitmap3. Width : = bitmap 1. Width;

except

ImagelLoaded := false;

Image2Loaded : = false;

end;

end;

procedure TForml.FormActivate(Sender: TObject);

var

Next: PByteArray;

ToDisplay: PByteArray;

i, j, y: Integer;

begin

if Cut= False Then

begin

if not (ImagelLoaded) then

ShowMessage('Bitmap 1 not loaded');

if not (Image2Loaded) then

ShowMessage('Bitmap2 not loaded');

if((ImagelLoaded) and (Image2Loaded)) then begin

bitmap3. Canvas. CopyRect(Rect(0, 0 ,bitmap3. Width,bitmap3 .Height),

bitmap 1. Canvas,Rect(0, O,bitmap 1. Width,

bitmap I .Height));

31

for i : = 0 to bitmap 1. Width do begin

for y := 0 to bitmap I.Height - 1 do begin

Next:= bitmap2.ScanLine[y];

ToDisplay := bitmap3.ScanLine[y];

if(i < bitmapl.Width- 15) then begin

for j := 1 to 14 do

if((y = 0) or (y = bitmap I.Height - 1)) then

ToDisplay[i+j] := clBlack else

ToDisplay[i+j] := Next[i+ 10-j];

end;

ToDisplay[i] := Next[i];

end;

Sleep(2);

Image! .Canvas.Draw(O,O,bitmap3);

Application.ProcessMessages();

end.;

end.;

end;

Cut.=True;

end;

procedure TForml.ExitlClick(Sender: TObject);

begin

form3. show;

end;

procedure TF orml. SearchRecord 1 Click(Sender: TObject);

begin

form4. table I .refresh;

form4. show;

form I .Hide;

end;

procedure TF orm 1.DelteRecord 1 Click(Sender: TObject);

begin

form6. table I .refresh;

form6.show;

32

form I .Hide;

end;

procedure TF orm 1. SortREcord I Click(Sender: TObject);

begin

form5. table I .refresh;

form5.show;

form I .Hide;

end;

procedure TF orm I .ListRecord I Click(Sender: TObject);

begin

form?. Table I .Refresh;

form7.Show;

form I .Hide;

end;

procedure TF orm I .Enter NewRocord 1 Click(Sender: TObject);

begin

form2.show;

forml.hide;

form2. CleanAll;

form2.BitBtn2.Enabled:=False;

form2.Bitbtn3 .Enabled:=False;

form.2 .BitBtn I .Enabled: =True;

form2.Bitbtn4 .Enabled: =True;

end;

procedure TF orm 1. SpeedButton2Click(Sender: TObject);

begin

form2.show;

forml .hide;

form2. CleanAll;

form2.BitBtn2 .Enabled: =False;
form2 .Bitbtn3 .Enabled: =False;

form2 .BitBtn I .Enabled: =True;

form2.Bitbtn4.Enabled:=True;

end;

33

procedure TF orm 1. Speed.Button3Click(Sender: TObject);

begin

form4. table I .refresh;

form4. show;

forml .Hide;

end;

procedure TF orm 1. Speed.Button4Click(Sender: TObject);

begin

form6. table I .refresh;

form6.show;

forml .Hide;

end;

procedure TForml.SpeedButton6Click(Sender: TObject);

begin

form7.Tablel.Refresh;

form7.Show;

forml .Hide;

end;

procedure TF orm 1. Speed.Button 1 Click(Sender: TObject);

begin

Halt;

end;

procedure TForml .Speed.Button5Click(Sender: TObject);

begin

form5. table I .refresh;

form5. show;

form l.Hide;

end;

procedure TForml.FormKeyPress(Sender: TObject; var Key: Char);

var

i: integer;

begin

if (key in ['0' .. '9']) or (Key=#13) or (key=#8) then

begin

34

for i:=O to ComponentCount-1 do

begin

if Components[i] is TEdit then

with Components[i] as TEdit do

begin

ifTag=O then ReadOnly := False;

end;

end;

end else

for i:=O to ComponentCount-1 do

begin

if Components[i] is TEdit then

with Components[i] as TEdit do

begin

if Tag=O then ReadOnly := True;

end;

end;

end;

procedure TForml .FormHide(Sender: TObject);

begin

Edit 1. text:=";

Edit2.text:=";

Edit3. text:=";

table I .Close;

end;

procedure TForml .BitBtnl Click(Sender: TObject);

var

ended,found: boolean;

begin

Table l.open;

found: =false;

ended=false;

table I .First;

while (not found) do

35

begin

if (edit 1. text=table 1 city. Text) and (edit2. text=table llandno. Text)and

(edit3. text=table 1 parselno. Text) then

begin found:=true; end else

begin

tablel .Next;

if table l .Eof=true then

begin

found:=true;

ended:=true;

end;

end;

end;

if (not found) or (not ended) then

else

begin

beep;

messagedlg('This record is not found. ',mtinformation,[mbok],O);

table I .close;

end;

end;

procedure TForml .BitBtn2Click(Sender: TObject);

begin

edit 1. text:=";

edit2. text:=";

edit3 . text:=";

table 1. close;

end;

procedure TF orml. SpeedButton7Click(Sender: TObject);

begin

form3. show;

end;

procedure TForml.Exit2Click(Sender: TObject);

36

begin

Halt;

cut:=True;

end;

end.

RECORD PART
This is an important unit, which consists of farmer information. Farmer

information records data have Residence Information, Farmer's Personal Information,

and Land Information. This field has been incorporated into the program as to record

the personal data and the data pertaining to the farmer's assets. It is worth mentioning

here that there are 3 specific errors designed in the system.

First of all, no two can be alike in the same Identification Number. If it is written

same identification number, an error is given which is " Somebody has this

Identification Number, please check again this number".

Second of all, the Plot No. and Plot of land no. are unique and no two can be

alike in the same city, as this means the existence of the same property under the

ownership of two different people. This is impossible. If the Plot No. exists and Plot of

land no. are written, an error is given which is" This record is written before.".

Third of all, the field Solvency of corporative, accepts a fixed amount, and gives

the respective payment amount. The payment amount can be modified for a decare by
\

pressing the Change button, which is shown in below;

There are also 2 drop down menus, Saving and Location of Land. The farmer

depicts the type of ownership (rental or owned) and the farmer shows, the land of place.

There are four buttons provided in this form, which are Enter Record, Save, Cancel,

Main menu. The Enter record button, when pressed diminishes the main menu button

and allows the user to enter data sets. The cancel button nullifies the data. And the main

menu, returns the unit to the main menu. The save button saves the data and is also used

37

to find who has the same land number and plot ofland number in the same city. If there

is a record according to these fields, a message is given which is "Somebody has these

Land and Plot of Land Number". Then, there are two buttons, which are Cancel and

Retry. Cancel button is used to clean the editboxes and if wrong number is entered,

Retry Button is used to make correct the mistake for this reason, if it is necessary. A

figure is shown for new record which is below;

Program Codes;

unit Unit2;

Interface

38

Uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls,

ComCtrls, Tabnotbk, Mask, Db, DBTables, ExtCtrls, Buttons;

Type

TF orm2 = class(TF orm)

procedure FormCreate(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure FormKeyPress(Sender: TObject; var Key: Char);

procedure Edit19Exit(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtnlClick(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure Editl lExit(Sender: TObject);

private

{ Private declarations }

public

Procedure CleanAll;

Procedure RecordTable;

{ Public declarations }

end;

var

Form2: TForm2;

implementation

uses Unitl, Unitl 1;

{$R *.DFM}

procedure TF orm2.F ormCreate(Sender: TObject);

begin

label84. caption: =datetostr(date);

end;

procedure TF orm2. CleanAll;

var i : integer;

begin

for i:=O to ComponentCount-1 do

39

begin

if Components[i] is TEdit then

with Components[i] as TEdit do

begin

if Tag=O then text:=";

end;

end;

memol.text:=";

Groupboxl .Enabled:=False;

Groupbox2.Enabled:=False;

Groupbox4.Enabled:=False;

end;
procedure TForm2.RecordTable;

begin

table 1. append;

tablelcity.text:=editl .text;

table 1 town. text: =edit2. text;

table 1 village. text: =edit3. text;

table1Managingno.text:=edit4.text;

table 1telephone.text:=edit10.text;

table 1 address. text:=memo 1. Text;

table 1 name. text: =edit7. text;

tablelsurname.text:=edit8.text;

tablelfathername.text:=edit9.text;

table 1 birthdate. text: =edit79. text;

table 1 tcidentifyno. text: =edit 11. text;

table 1 taxidentifyno.text:=edit 12.text;

table 1 bankaccountno. text: =edit 13. text;

table 1 personno.text:=edit 14.text;

table llessperson. text: =edit 15. text;

table 1 moreperson. text: =edit 16. text;

tablellandno.text:=editl 7.text;

table 1 parselno. text: =edit 18. text;

table 1 landdecare. text:=edit20. text;

40

table 1 landmetre. text: =edit21. text;

tablelquality.text:=edit22.text;

table 1 usage. text: =edit23. text;

table 1 solvency. text: =edit 19. text;

table 1 paymentamount. text: =edit24. text;

table! appdate. text: =edit 80. text;

table 1 contractdate.text:=edit81. Text;

table 1 leasedate. text: =edit82. Text;

table 1 certificateno. text: =edit25. Text;

tablelreportdate.text:=edit83. Text;

table 1 recorddate. Value: =label84. Caption;

if combobox2.Itemlndex=l then

begin

table 1 ownrentingasset. text: =Rented';

end

else

begin

table 1 ownrentingasset. text: ='Own Asset';

end;

if comboboxl .Itemlndex= 1 then

begin

table 1 villageposition. Text:='Out Village';

end

else

begin

table 1 villageposition. Text:='In Village';

end;

table I .refresh;

end;

procedure TForm2.BitBtn2Click(Sender: TObject);

begin

CleanAll;

BitBtn2.Enabled:=False;

Bitbtn3 .Enabled:=False;

41

BitBtn 1.Enabled:=True;

Bitbtn4 .Enabled: =True;

end;

procedure TForm2.FormKeyPress(Sender: TObject; var Key: Char);

var

i: integer;

begin

if (key in ['0' .. '9']) or (key=#8) or (key='-') then

begin

for i:=O to ComponentCount-1 do

begin

if Components[i] is TEdit then

with Components[i] as TEdit do

begin

ifTag=O then ReadOnly := False;

end;

end;

end else

for i:=O to ComponentCount-1 do

begin

if Components[i] is TEdit then

with Components[i] as TEdit do

begin

if Tag=O then ReadOnly := True;

end;

end;

end;

procedure TF orm2.Edit 19Exit(Sender: TObject);

var

check I ,check2,check3 :variant;

result: Currency;

begin

table3 .Refresh;

if edit 19. text<>" then

42

begin

if edit21. text=" then

check 1: =(strtoint(Edit20. text)) else
check 1: =(strtoint(Edit20. text))+(strtoint(Edit21. text)/1000);

check2: =strtoint(Edit 19 .text);

if check 1 <check2 then

begin
messagedlg('Amount of land is less then solvency of

cooperative',mtWarning,[mbok],O);

Edit19.text:=";

Edit 19. setfocus;

end else

begin
check3: =strtoint(table3 fixed payment. text);

result: =check2 *check3;
edit24. text: =formatCurr('# ,###' ,Result)+'TL';

Edit80. setfocus;

end;

end;

end;
procedure TForm2.Button3Click(Sehder: TObject);

begin

forml l.show;

form I I .refresh;

end;
procedure TForm2.BitBtn3Click(Sender: TObject);

var ,

found,ended: boolean;

Button:integer;

begin

found:=false;

ended: =false;

table I .First;
if messagedlg('Save this record?' ,mtwarning,[mbyes,mbno],O)=mryes then

43

begin

while (not found) do

begin

if (edit 1. text=table 1 city. Text) and (edit 17. text=table l landno. Text)and

(edit 18. text=table 1 parselno. Text) or (edit 11. text=table 1 tcidentifyno. text) then

begin

found=true;

end

else

begin

table l.Next;

if table l .Eof=true then

begin

found:=true; ended:=true;

end;

end;

end;

if (not found) or (not ended) then

begin

Button:=messagedlg('Somebody has these land and plot ofland

number!' ,mt Warning, [mbcancel,mbRetry], 0);

ifButton=2 Then

begin

CleanAll;

BitBtn2 .Enabled: =False;

Bitbtn3 .Enabled:=False;

BitBtn l .Enabled.=True;

Bitbtn4 .Enabled: =True;

end;

end

else

Record Table;

end;

end;

44

procedure TForm2.BitBtn1Click(Sender: TObject);

begin

Group box I .Enabled: =true;

Groupbox2.Enabled:=true;

Groupbox4 .Enabled: =true;

BitBtn2.Enabled:=True;

Bitbtn3 .Enabled: =True;

BitBtnl .Enabled:=False;

Bitbtn4 .Enabled: =False;

edit 1. SetF ocus;

end;

procedure TForm2.BitBtn4Click(Sender: TObject);

begin

Form2.Close;

form 1. show;

Groupboxl .Enabled:=False;

Groupbox2 .Enabled: =False;

Groupbox4.Enabled:=False;

end;

procedure TForm2.Editl 1Exit(Sender: TObject);

begin

if (table 1.Locate('tcidentifyno' ,edit 11. text,[]))=true then

begin

Showmessage('Somebody has this identification number, please check again this

number');

editl 1.text:=";

edit 11. setfocus;

end;

end;

end.

45

SEARCHING PART
There is a whole range of searching options are available, such as by name, by

surname, by identify number, by tax identify number, by land number and by plot of

land number. After one of searching options is clicked, which name is written to instead

of the search button's name. Then this button is used to search the record in the

database. If it consists of this record, farmer informations are shown in the edit boxes. If

it does not consists of a message is given which is" This record not found".

There are also buttons, which can show first, last, prior, and next data sets

available to the user from the table. They are linked to the specific database. First button

sets the current record to the first record in the dataset. Last button sets the current

record to the last record in the dataset. Next button sets the current record to the next

record. Prior button sets the current record to the previous record. Whenever this menu

is opened, fields' enabled is false. Because of this, the user cannot change the records

over the form. This form is shown below;

46

Program Codes;

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, ExtCtrls,

Db, DB Tables, StdCtrls, Mask, ComCtrls, DBCtrls, DBActns, ActnList, Buttons, jpeg;

type

TForm4 = class(TForm)

procedure RadioButton5Click(Sender: TObject);

procedure RadioButton6Click(Sender: TObject);

procedure RadioButton7Click(Sender: TObject);

procedure RadioButton8Click(Sender: TObject);

procedure RadioButton9Click(Sender: TObject);

procedure RadioButtonl OClick(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure BitBtnl Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure FormActivate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form4: TForm4;

implementation

uses Unitl;

{$R *.DFM}

procedure TForm4.RadioButton5Click(Sender: TObject);

begin

button4.Caption:='Search By Name';

47

edit 1. text.=";

edit 1. SetF ocus;

end;

procedure TF orm4 .RadioButton6Click(Sender: TObject);

begin

button4.Caption:='Search By Name';

editl.text:=";

edit 1. SetF ocus;

end;

procedure TForm4.RadioButton7Click(Sender: TObject);

begin

button4.Caption:='Search By Identify Number';

edit 1. text=";

edit 1. SetF ocus;

end;

procedure TForm4.RadioButton8Click(Sender: TObject);

begin

button4.Caption:='Search By Tax Identify Number';

edit l.text.=";

edit 1. SetF ocus;

end;

procedure TForm4.RadioButton9Click(Sender: TObject);

begin

button4.Caption:='Search By Land Number';

editl.text:=";

edit 1. SetF ocus;

end;

procedure TF orm4 .RadioButton 1 OClick(Sender: TObject);

begin

button4.Caption:='Search By Plot of Land Number';

editl .text:=";

edit 1. SetF ocus;

end;

procedure TForm4.Button4Click(Sender: TObject);

48

begin

if radiobuttonS. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer Name');

edit 1. SetF ocus;

end else

if (tablel .Locate('name',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit 1. Text:=";

edit 1. SetF ocus;

table 1. cancel;

end;

end else

if radiobutton6. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer Surname');

editl . SetF oeus;

end else

if (tablel .Locate('sumame',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

editl. Text:=";

editl. SetFocus;

table 1. cancel;

end;

end else

ifradiobutton7 .Checked=true then

begin

if edit 1. text=" then

49

begin

showmessage('Please Enter Farmer T.C. Identify Number');

edit 1. SetF ocus;

end else

if (table l .Locate('tcidentifyno' ,edit 1. text,[]))=False then

begin

showmessage('This Record Not Found');

editl.Text:=";

edit 1. SetF ocus;

table 1. cancel;

end;

end else

if radiobutton8. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Tax Identify Number');

editl.SetFocus;

end else

if (table l .Locate('taxidentifyno' ,edit 1. text,[]))=False then

begin

showmessage('This Record Not Found');

editl.Text:=";

edit 1. SetF ocus;

table 1. cancel;

end;

end else

if radiobutton9. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Land Number');

edit 1. SetF ocus;

end else

50

if (table 1.Locate('landno', edit 1. text,[]))= False then

begin

showmessage('This Record Not Found');

editl .Text:=";

edit 1. SetF ocus;

tablel .cancel;

end;

end else

if radiobutton 10. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Plot of Land Number');

edit 1. SetF ocus;

end else

if (table 1.Locate('parselno', edit 1. text,[]))=False then

begin

showmessage('This Record Not Found');

editl.Text:=";

edit 1. SetF ocus;

table 1. cancel;

end;

end else

showmessage(' Choice one of Options');

editl .text:=";

end;

procedure TForm4.BitBtn1Click(Sender: TObject);

begin

table 1. refresh;

form4.close;

form 1. show;

end;

procedure TForm4.BitBtn2Click(Sender: TObject);

begin

51

table I .Prior;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

else

if Table 1.Bof=true then

showmessage('Beginning of the file encountered');

end;

procedure TF orm4 .BitBtn3 Click(Sender: TObject);

begin

table l.next;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

else

if Table 1. eof=true then

showmessage('Ending of the file encountered');

end;

procedure TForm4.BitBtn4Click(Sender: TObject);

begin

table I .First;

if table 1.lsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm4.BitBtn5Click(Sender: TObject);

begin

table I .Last;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm4.FormActivate(Sender: TObject);

begin

Edit 1. Text.=";

Edit 1. SetF ocus;

radiobutton5. Checked: =True;

end;

52

DELETION PART
Searching options are also used to delete the record in this menu, as it is in the

searching menu. There is a button, which is Delete Record. It deletes the current record

from the database. Before the record is deleted, a message is given to user which is

''Delete this record?". There are two alternatives which are Yes and No. If user presses

to yes, record is removed from the database and to No, process is cancelled. First, last,

prior, and next buttons are also used to set available record to the user from the table.

This menu of fields' enabled is also false, whenever this menu is opened. This form is

shown below;

53

Program Codes;

unit Unit6;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls,

DBCtrls, Mask, ComCtrls, Db, DB Tables, Buttons, jpeg, ExtCtrls;

type

TForm6 = class(TForm)

procedure Button4Click(Sender: TObject);

procedure RadioButton5Click(Sender: TObject);

procedure RadioButton6Click(Sender: TObject);

procedure RadioButton7Click(Sender: TObject);

procedure RadioButton8Click(Sender: TObject);

procedure RadioButton9Click(Sender: TObject);

procedure RadioButtonlOClick(Sender: TObject);

procedure BitBtnl Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

procedure FormActivate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form6: TForm6;

implementation

uses Unitl, Unit4;

{$R *.DFM}

procedure TForm6.Button4Click(Sender: TObject);

begin

54

if radiobutton5. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer Name');

edit 1. setfocus;

end else

if (tablel .Locate('name',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit 1. Text:=";

edit 1. setfocus;

tablel .cancel;

end;

end else

if radiobutton6. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer Surname');

edit 1. setfocus;

end else

if (tablel .Locate('surname',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit I.Text:=";

edit 1. setfocus;

table 1. cancel;

end;

end else

if radiobutton7. Checked=true then

begin

if edit 1. text=" then

begin

55

showmessage('Please Enter Farmer T.C. Identify Number');

edit 1. setfocus;

end else

if (tablel .Locate('tcidentifyno',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit lText.=";

edit 1. setfocus;

tablel .cancel;

end;

end else

if radiobutton8. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Tax Identify Number');

edit 1. setfocus;

end else

if (tablel .Locate('taxidentifyno',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit lText.=";

edit 1. setfocus;

table 1. cancel;

end;

end else if radiobutton9. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Land Number');

edit 1. setfocus;

end else

if (tablel .Locate('landno',editl .text,[]))=False then

begin

56

showmessage('This Record Not Found');

editl .Text:=";

edit 1. setfocus;

tablel .cancel;

end;

end else

if radiobutton 10. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Plot of Land Number');

edit 1. setfocus;

end else

if (tablel .Locate('parselno',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

editl .Text:=";

edit 1. setfocus;

table 1. cancel;

end;

end else

begin

· showmessage(' Choice one of options');

editl .text:=";

end;

end;

procedure TForm6.RadioButton5Click(Sender: TObject);

begin

button4.Caption:='Search By Name';

edit 1. text:=";

Edit 1. SetF ocus;

end;

procedure TForm6.RadioButton6Click(Sender: TObject);

begin

57

button4.Caption:='Search By Surname';

edit I.text:=";

Edit 1. SetF ocus;

end;

procedure TF orm6 .RadioButton7Click(Sender: TObject);

begin

button4.Caption:='Search By Identify Number';

editl .text:=";

Edit 1. SetF ocus;

end;

procedure TForm6.RadioButton8Click(Sender: TObject);

begin

button4.Caption:='Search By Tax Identify Number';

edit I.text:=";

Edit 1. SetF ocus;

end;

procedure TForm6.RadioButton9Click(Sender: TObject);

begin

button4.Caption:='Search By Land Number';

edit 1. text:=";

Edit 1. SetF ocus;

end;

procedure TF orm6 .RadioButton 1 OClick(Sender: TObject);

begin

button4.Caption:='Search By Plot of Land Number';

edit 1. text:=";

Edit 1. SetF ocus;

end;

procedure TForm6.BitBtnlClick(Sender: TObject);

begin

tablel .refresh;

form6.close;

form 1. show;

end;

58

procedure TForm6.BitBtn2Click(Sender: TObject);

begin

tablel .Prior;

if table l .IsEmpty=true then

showmessage('Record is Empty')

else

if Table l .Bof=true then

showmessage('Beginning of the file encountered');

end;

procedure TForm6.BitBtn3Click(Sender: TObject);

begin

table 1. next;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

else

if Table 1. eof=true then

showmessage('Ending of the file encountered');

end;

procedure TF orm6 .BitBtn4Click(Sender: TObject);

begin

table 1. first;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm6.BitBtn5Click(Sender: TObject);

begin

table Llast;

if table l .lsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm6.BitBtn6Click(Sender: TObject);

begin

if messagedlg('Delete this record?',mtinformation,[mbyes,mbno],O)=mryes then

begin

59

if (table l .IsEmpty= true) then

showmessage('Record is Empty')

else

begin

table 1. delete;

table 1. prior;

table I .refresh;

end;

editl .texr=";

end;

end;
procedure TForm6.FormActivate(Sender: TObject);

begin

Edit I.Text:=";
\

Edit 1. SetF ocus;

radiobutton5. Checked:=True;

end;

end.

UPDATE PART
The same searching options are also used to update the record in this menu, as it

is in the searching menu. Whenever this menu is activated, fields' enabled is true. So, if

the user wants to change some information or if there is any mistake in the record, there

is button, which is Update Record. It updates the current record in the database. Before

the record is updated, a message is given which is" Update this record?". There are also

two alternatives which are Yes and No. If user presses to yes, record is updated in the

database and to No, process is cancelled. Before returning the main menu, if the user

does not press the update button, changes are not updated, this is cancelled. This form is

shown below;

60

Program Codes;

unit Unit5;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Db,

DB Tables, StdCtrls, DBCtrls, Mask, ComCtrls, Buttons, jpeg, ExtCtrls;

type

TFormS = class(TForm)

procedure RadioButtonSClick(Sender: TObject);

procedure RadioButton7Click(Sender: TObject);

procedure RadioButton6Click(Sender: TObject);

61

procedure RadioButton8Click(Sender: TObject);

procedure RadioButton9Click(Sender: TObject);

procedure RadioButtonlOClick(Sender: TObject);

procedure BitBtn 1 Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtnSClick(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

procedure F ormActivate(Sender: TObject);

procedure FormKeyPress(Sender: TObject; var Key: Char);

procedure ButtonlClick(Sender: TObject);

procedure DBEdit20Exit(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

F orm5: TF orm5;

implementation

uses Unitl, Unitl i,

{$R *.DFM}

procedure TForm5.RadioButton5Click(Sender: TObject);

begin

button4.Caption:='Search By Name';

editl .text=";

edit 1. setfocus;

end;

procedure TForm5.RadioButton7Click(Sender: TObject);

begin

button4.Caption:='Search By Identify Number';

edit l.text=";

62

edit 1. setfocus;

end;

procedure TF orm5 .RadioButton6Click(Sender: TObject);

begin

button4.Caption:='Search By Surname';

editl .text.=";

edit 1. setfocus;

end;

procedure TF orm5 .RadioButton8Click(Sender: TObject);

begin

button4.Caption:='Search By Tax Identify Number';

edit I.text:=";

edit 1. setfocus;

end;

procedure TF orm5 .RadioButton9Click(Sender: TObject);

begin

button4.Caption:='Search By Land Number';

edit 1. text:=";

edit 1. setfocus;

end;

procedure TF orm5 .RadioButton 1 OClick(Sender: TObject);

begin

button4.Caption:='Search By Plot of Land Number';

editl .text:=";

edit 1. setfocus;

end;

procedure TForm5.BitBtn1Click(Sender: TObject);

begin

table 1. edit;

table 1. Cancel;

table l.refresh;

form5.close;

form 1. show;

end;

63

procedure TForm5.BitBtn4Click(Sender: TObject);

begin

table l.first;

if table 1. IsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm5.BitBtn5Click(Sender: TObject);

begin

table I .last;

if table 1.lsEmpty=true then

showmessage('Record is Empty')

end;

procedure TForm5.BitBtn2Click(Sender: TObject);

begin

table I .Prior;

if tablel .IsEmpty=true then

showmessage('Record is Empty')

else if Table l.Bof=true then

showmessage('Beginning of the file encountered');

end;

procedure TForm5.BitBtn3Click(Sender: TObject);

begin

table I .next;

if table 1.lsEmpty=true then

showmessage('Record is Empty')

else if Table 1. eof=true then

showmessage('Ending of the file encountered');

end;

procedure TF orm5 .Button4Click(Sender: TObject);

begin

if radiobutton5. Checked=true then

begin

if edit I .text=" then
begin

64

showmessage('Please Enter Farmer Name');

edit 1. setfocus;

end else

if (tablel .Locate('name',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit I.Text:=";

edit 1. setfocus;

table 1. cancel;

end;

end else

if radiobutton6.Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer Surname');

edit 1. setfocus;

end else

if (tablel .Locate('surname',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

edit lText.=";

edit 1. setfocus;

tablel .cancel;

end;

end else

if radiobutton7. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Farmer T.C. Identify Number');

edit 1. setfocus;

end else

if (table 1.Locate('tcidentifyno', edit 1. text,[]))=False then

65

begin

showmessage('This Record Not Found');

edit 1. Text:=";

edit 1. setfocus;

table l.cancel;

end;

end else

if radiobutton8. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Tax Identify Number');

edit 1. setfocus;

end else

if (table l .Locate('taxidentifyno' ,edit 1. text,[]))=F alse then

begin

showmessage('This Record Not Found');

edit 1. Text:=";

edit 1. setfocus;

table I.cancel;

end;

end else if radiobutton9. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Land Number');

edit 1. setfocus;

end else

if (table l .Locate('landno', edit 1. text,[]))= False then

begin

showmessage('This Record Not Found');

editl.Text:=";

edit 1. setfocus;

table 1. cancel;

66

end;

end else

if radiobutton 10. Checked=true then

begin

if edit 1. text=" then

begin

showmessage('Please Enter Plot of Land Number');

edit 1. setfocus;

end else

if (tablel .Locate('parselno',editl .text,[]))=False then

begin

showmessage('This Record Not Found');

editl. Text.=";

edit 1. setfocus;

table 1. cancel;

end;

end else

begin

showmessage(' Choice one of Options');

edit 1. text=";

end;

end;

procedure TForm5.BitBtn6Click(Sender: TObject);

begin

if messagedlg('Update this record?' ,mtinformation,[mbyes,mbno],O)=mryes then

begin

table I .edit;

table 1. U pdateRecord;

table Lrefresh;

end;

end;

procedure TForm5.FormActivate(Sender: TObject);

begin

Editl.Text:=";

67

Edit! .SetFocus;

radiobutton5. Checked:=True;

end;

procedure TFormS.FormKeyPress(Sender: TObject; var Key: Char);

var

i : integer;

begin

if (key in ['0' .. '9']) or (key=#8) or (key='-') then

begin

for i:=O to ComponentCount-1 do

begin

if Components[i] is TDbEdit then

with Components[i] as TDbEdit do

begin

if Tag=O then ReadOnly := False;

end;

end;

end else

for i:=O to ComponentCount-1 do

begin

if Components[i] is TDbEdit then

with Components[i] as TDbEdit do

begin

if Tag=O then ReadOnly := True;

end;

end;

end;

procedure TForm5.ButtonlClick(Sender: TObject);

begin

forml Lshow;

form! I .refresh;

end;

procedure TF orm5 .DBEdit20Exit(Sender: TObject);

var

68

checkl ,check2,check3: longint;

result: Currency;

begin

table3 .Refresh;

if dbedit20.text<>" then

begin

check 1: =strtoint(DbEdit20. text);

check2: =strtoint(DbEdit 16. text);

if check 1 <check2 then

begin

messagedlg('Amount of land is less then solvency of

cooperative',mtWarning,[mbok],O);

DbEdit20.text:=";

DbEdit20. setfocus;

end;

check2: =strtoint(DbEdit20. text);

check3: =strtoint(table3fixedpayment. text);

result: =check2 * check3;
Dbedit21.text:=formatCurr('#,###',Result)+'TL';

DbEdit79. setfocus;

end;

end;

end.

LIST MENU
This is unit laced with a grid that directly shows the contents of the database.

This is basically a listing tool; it has many options that let the user choose the mode of

the search such as searches as by name, by surname, by identify number, by tax identify

number, by land number and by plot of land number. This results in the depiction of the

results in the grid according to the method chosen.
There are also several buttons provided with the unit, which are List by

Identification Information, List by General Information, List by Land Information and

List by Summary. They result in the depiction of the results in the grid.

69

There is also a button used to load the data obtained after performing a search

and loading it into an excel application. Where it can be manipulated and stored, printed

in a hard copy format or otherwise -saved in another format as deemed suitable by the

user. This form is shown below;

Program Codes;

unit Unit7;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls,

ExtCtrls, DBCtrls, Grids, DBGrids, Db, DBTables, Buttons;

type

TForm7 = class(TForm)

procedure EditlChange(Sender: TObject);

70

procedure RadioGroup 1 Click(Sender: TObject);

procedure BitBtn 1 Click(Sender: TObject);

procedure FormActivate(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn5Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObject);

private

{ Private declarations }

public

V: Variant;

{ Public declarations }

end;

var

Form7: TForm7;

implementation

uses Unitl,ComObj;

{$R *.DFM}

procedure TForm7.Edit1Change(Sender: TObject);

begin

//Enumerate according byname

if radiogroup 1.Itemlndex=O then

begin

table 1.Inde:xName:='byname';

table 1.EditRangeStart;

table 1.FieldByName('name').asstring:=edit 1. text;

table 1.EditRangeEnd;

tablel.FieldByName('name').asstring:=editl.text+ chr(212);

tablel .ApplyRange;

end;

//Enumerate acoording surname

ifradiogroup 1.Itemlndex= 1 then

begin

71

table 1.IndexName:='bysurname';

table 1.EditRangeStart;

table 1.FieldByN ame(' surname'). as string: =edit 1. text;

table 1.EditRangeEnd;
table 1.FieldByName('surname').asstring:=edit I .text+ chr(212);

table 1. ApplyRange;

end;
//Enumerate acoording T.C. Identify Number

if radiogroup 1.Itemlndex=2 then

begin

table 1.IndexN ame: ='byidentifyno';

table l .EditRangeStart;

tablel.FieldByName('tcidentifyno').asstring:=editl.text;

table 1.EditRangeEnd;
tablel .FieldByName('tcidentifyno').asstring:=editl .text+ chr(212);

tablel .ApplyRange;

end;

//Enumerate acoording Tax Identify Number

if radiogroup 1.Itemlndex=3 then

begin

table 1.IndexName:='bytaxno';

table 1.EditRangeStart;

table 1.FieldByN ame('taxidentifyno'). asstring: =edit 1. text;

table 1.EditRangeEnd;
tablel.FieldByName('taxidentifyno').asstring:=editl.text+ chr(212);

table I .Apply Range;

end;

I /Enumerate acoording Land Number

if radiogroup 1.Itemlndex=4 then

begin

table 1.IndexName:='bylandno';

tablel .EditRangeStart;

tablel .FieldByName('landno').asstring:=editl .text;

table 1.EditRangeEnd;

72

tablel .FieldByName('landno').asstring:=editl .text+ chr(212);

table l .ApplyRange;

end;

//Enumerate acoording Plot of Land Number

if radiogroup l .Itemlndex=S then

begin

table l .IndexName:='byparselno';

table l .EditRangeStart;

tablel.FieldByName('parselno').asstring:=editl.text;

table l .EditRangeEnd;

tablel .FieldByName('parselno').asstring:=edit I .text+ chr(212);

table l .ApplyRange;

end;

//Enumerate acoording Town

if radiogroup l .Itemlndex=6 then

begin

table I .IndexName:='bytown';

table l .EditRangeStart;

table l .FieldBy N ame('town'). as string: =edit 1. text;

table l .EditRangeEnd;

tablel.FieldByName('town').asstring:=editl.text+ chr(212);

table I .Apply Range;

end;

end;

procedure TForm7.RadioGroup I Click(Sender: TObject);

begin

edit I .text:=";

if radiogroup l .Itemlndex=O then

begin

statictextl.Caption:='List By Name';

edit 1. setfocus;

end

else

if radiogroup l .Itemlndex= I then

73

begin

statictext 1. Caption: ='List By Surname';

edit 1. setfocus;

end

else

if radio group l .Itemlndex=2 then

begin

statictextl .Caption:='List By Identify Number';

edit 1. setfocus;

end

else

if radiogroup 1.Itemlndex=3 then

begin

statictextl .Caption:='List By Tax Identify Number';

edit 1. setfocus;

end

else

if radiogroup 1.Itemlrrdex=4 then

begin

statictextl.Caption:='List By Land Number';

edit 1. setfocus;

end

else

if radiogroup l .Itemlndex=5 then

begin

statictextl.Caption:='List By Plot of Land Number';

edit 1. setfocus;

end

else

if radiogroup l .ltemlndex=6 then

begin

statictextl.Caption:='List By Town Name';

edit 1. setfocus;

end;

74

end;

procedure TF orm7 .BitBtn 1 Click(Sender: TObject);

begin

form7.close;

forrnlshow;

end;

procedure TForm7.FormActivate(Sender: TObject);

begin

table I .Refresh;

radiogroup I.Itemlndex=O;

DbGrid4. Visible=False;

DbGrid3. Visible: =False;

DbGrid2. Visible: =False;

DbGrid 1. Visible: =True;

BitBtn2.F ont. Color:=ClBlue;

BitBtn4 .Font. Color:=ClWindowtext;;

BitBtn3 .Font. Color:=ClWindowtext;;

BitBtn5 .Font. Color:=ClWindowtext;;

end;

procedure TForm7.BitBtn4Click(Sender: TObject);

begin

DbGridl .Visible:=False;

DbGrid3. Visible:=False;

DbGrid4. Visible=False;

DbGrid2. Visible: =True;

BitBtn4 .Font. Color: =ClBlue;

BitBtn2.Font.Color:=ClWindowtext;;

BitBtn3 .Font. Color: =ClWindowtext;;

BitBtn5 .Font. Color: =ClWindowtext;;

end;

procedure TForm7.BitBtn3Click(Sender: TObject);

begin

DbGrid 1. Visible:=False;

DbGrid2. Visible: =False;

75

DbGrid4. Visible: =False;

DbGrid3. Visible:=True;

BitBtn3.Font.Color:=ClBlue;

BitBtn2.F ont. Color: =ClWindowtext;;

BitBtn4 .Font. Color:=ClWindowtext;;

BitBtn5 .Font. Color: =ClWindowtext;;

end;

procedure TForm7.BitBtn5Click(Sender: TObject);

begin

DbGrid 1. Visible: =False;

DbGrid3. Visible:=False;

DbGrid2. Visible: =False;

DbGrid4. Visible=True;

BitBtn5 .Font. Color:=ClBlue;

BitBtn2 .Font. Color: =ClWindowtext;;

BitBtn4 .Font. Color: =ClWindowtext;;

BitBtn3 .Font. Color: =ClWindowtext;;

end;

procedure TF orm7 .BitBtn2Click(Sender: TObject);

begin

DbGrid4. Visible: =False;

DbGrid3. Visible: =False;

DbGrid2. Visible: =False;

DbGrid 1. Visible.=True;

BitBtn2.Font.Color:=ClBlue;

BitBtn3 .Font. Color:=ClWindowtext;;

BitBtn4 .Font. Color: =ClWindowtext;;

BitBtn5.Font.Color:=ClWindowtext;;

end;

procedure TForm7.BitBtn6Click(Sender: TObject);

var x,j,i:integer;

begin

tablet.open;

V := CreateOleObject('Excel.Application');

76

V.Visible := True;

V.Workbooks.Add;

V.cells.borders.linestyle:=l;

if DbGrid 1. Visible=True then

x: =DbGrid l .FieldCount else

ifDbGrid2.Visible=True then

x:=DbGrid2.FieldCount else

ifDbGrid3.Visible=True then

x: =DbGrid3 .Field Count else

if DbGrid4. Visible=True then

x: =DbGrid4 .Field Count;

ifDbGrid3.Visible=True then

begin

for j :=0 to x-I do

begin

V. Cells[1, j + 1] : =DbGrid3. Columns.Itemslj]. Title. Caption;

V'Rows.Itemlj+ l].Font.Bold := True;

V.ColumnsLJ+ l].Font.size :=8;

end;

V.Columns[l].ColumnWidth := 8;

V.Columns[2].ColumnWidth := 8;

V.Columns[3].ColumnWidth := 8;

V.Columns[4].ColumnWidth := 8;

V.Columns[5].ColumnWidth := 9;

V.Columns[6].ColumnWidth := 7;

V.Columns[7].ColumnWidth := 7;

V.Columns[8].ColumnWidth := 5;

V.Columns[9].ColumnWidth := 4;

V.Columns[lO].ColumnWidth := 10;

V.Columns[l l].ColumnWidth := 10;

V.Columns[l2].ColumnWidth := 8;

V.Columns[13].ColumnWidth := 9;

V.Columns[l4].ColumnWidth := 7;

V.Columns[l5].ColumnWidth := 14;

77

end else begin

for j :=Oto x-1 do

begin

if DbGrid 1. Visible=True then

V.Cells[l, j + I] :=DbGridl.Columns.ItemsO].Title.Caption

else ifDbGrid2.Visible=True then

V.Cells[l, j + 1] :=DbGrid2.Columns.Items0].Title.Caption

else ifDbGrid4.Visible=True then

V.Cells[l, j + 1] :=DbGrid4.Columns.ItemsO].Title.Caption;

V'Rows.Itemlj+ !].Font.Bold:= True;

V'Columnslj+ 1].ColumnWidth := 10;

V.Columnslj+ l j.Font.size :=8 ;

end;

end;

i := 1;

while not Table l .Eof do

begin

Inc(i);

for j :=Oto x-1 do

begin

if Db Grid 1. Visible=True then

v. Cells[i, j + 1] := DbGrid lFieldsjjj.Asxtring
else ifDbGrid2.Visible=True then

v.Cells[i, j + 1] := DbGrid2.Fields0].AsString
else ifDbGrid3.Visible=True then

v.Cells[i, j + 1] := DbGrid3 .Pieldsjjj.AsString
else ifDbGrid4.Visible=True then

v.Cells[i, j + 1] := Dbfirid-l.Fieldsjjj.Asbtring;
v.Rows.Item[i].Font.Bold := False.;

end;

Tablel .Next;

end;

table 1. Close;

table l.open.end; end.

78

CONCLUSION

During the course of the preparation of this program the programmer learned

some very imperative facts and lessons. The easy of use of visual based languages over

base-type languages was made apparent to the programmer on the very first day. This

project helped immensely in the programming instinct required by a programmer as to

efficiently attain his goal. Efficiency is an important goal as programmers stride to keep

their programs as goal oriented as possible. Sometimes it is very easy to get lost in the

hazardous by products of a problem, but a good programmer always sets his eyes on the

ultimate prize; the achievement of his goal. In the due course of the completion of this

project, the instructors' knowledge and expertise was of immense help, because as the

programmer is a student and lacks sufficient knowledge and experience, an experienced

peer can be very helpful.
The student was made aware of some features of this programming language

previously unknown to him. Thus, increasing and stimulating his programming abilities.

Programming projects such as the one undertaken help materialize the programmers

logic and problem solving abilities. In order to survive in a global competitive

environment, one has to stride to perfect oneself in these qualities

79

REFERENCES

References to Books
(1] .Charlie Calvert, Delphi 5, Sistem Yaymcihk, Istanbul, April 1999

(2] Memik Yaruk, Delphi 5 Pro, Beta Basim Yayim Dagittm, Istanbul, May 2000

(3] Ihsan Karagulle and Zeydin Pala, Delphi 5 Professional Edition, Beta Basim Yayim

Dagrtim, Istanbul, 2000

References to Programming Codes - Online Sources from Web

(1] http://www.programlama.com

(2] Delphi Super Page, http://delphi.icm.edu

(3] Torry's Delphi Pages, http://www.torry.net

(4] VCL, Components http://www.vclcomponents.com

(5] Delphi Turk, http://www.delphiturk.com

[6] Efg's Delphi Library, http://www.efg2.com

[7] Undu - Unofficial Newsletter for Delphi Users, http://www.undu.com

[8] Borland, http://www.borland.com

[9] Bimeks Online, http://www.bimeks.com.tr

[10] Experts Exchange,http://www.experts-exchange.com

80

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	..
	5
	8

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	WHAT IS DELPHI?
	Object Pascal and the VCL

	Images
	Image 1

	Page 9
	Titles
	The Delphi Workspace
	What is an Object?

	Page 10
	Titles
	Private, Protected, Public and Published Declarations
	USING COMPONENTS
	Delphi's standard components

	Images
	Image 1
	Image 2

	Page 11
	Titles
	Properties common to visual components

	Page 12
	Titles
	Position and Size Properties
	Display Properties
	Parent Properties
	Navigation Properties

	Images
	Image 1

	Page 13
	Titles
	Drag-and-Drop Properties
	Text Controls
	Properties Common to All Text Controls

	Images
	Image 1

	Page 14
	Titles
	Rich Text Controls

	Images
	Image 1

	Page 15
	Titles
	Buttons and Similar Controls
	Button controls
	Bitmap buttons

	Images
	Image 1

	Page 16
	Titles
	Speed Buttons
	Check Boxes
	Radio Buttons
	Toolbars

	Images
	Image 1

	Page 17
	Titles
	Handling Lists
	List Boxes and Check-list Boxes
	Combo Boxes

	Images
	Image 1

	Page 18
	Titles
	Grouping Components
	Group Boxes and Radio Groups

	Images
	Image 1

	Page 19
	Titles
	Visual Feedback
	Panels
	Labels and Static-Text Components

	Images
	Image 1

	Page 20
	Titles
	Grids
	Graphic Display
	Images
	Shapes

	Images
	Image 1

	Page 21
	Titles
	G COMPONENT PROPERTIES
	sing the Object Inspector
	Using Property Editors

	Images
	Image 1
	Image 2

	Page 22
	Titles
	Working with Events
	Working with Methods

	Images
	Image 1

	Page 23
	Images
	Image 1

	Tables
	Table 1

	Page 24
	Titles
	TYPES OF DATABASES

	Images
	Image 1

	Page 25
	Titles
	/

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 26
	Titles
	Types of Datasets
	Opening and Closing Datasets

	Images
	Image 1

	Page 27
	Titles
	Browsing a Dataset
	Poo't; canoe!.
	' I
	E)
	E)

	Images
	Image 1
	Image 2

	Page 28
	Titles
	Enabling Dataset Editing
	Enabling Insertion of New Records
	Enabling Index-Based Searches and Ranges on Tables

	Images
	Image 1

	Page 29
	Titles
	Filtering Records
	Updating Records
	Using the Eof and Bof Properties
	End of File (Eof)

	Images
	Image 1

	Page 30
	Titles
	BeginningofFile(Bo~
	Using Locate
	MODIFYING DATA
	Editing Records
	DataSet Actions

	Images
	Image 1

	Page 31
	Titles
	Adding New Records

	Images
	Image 1

	Page 32
	Titles
	Inserting Records
	Appending Records
	Deleting Records

	Images
	Image 1

	Page 33
	Titles
	Canceling Changes
	Using Dataset Events
	Event Description

	Images
	Image 1

	Page 34
	Titles
	FARMER INFORMATION DATABASE

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 35
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 36
	Titles
	Types of Datasets
	Opening and Closing Datasets

	Images
	Image 1

	Page 37
	Titles
	Browsing a Dataset
	. D
	f I
	E:)
	~--
	(unsuccessftJ~ Car:ooel

	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Titles
	Enabling Dataset Editing
	Enabling Insertion of New Records
	Enabling Index-Based Searches and Ranges on Tables

	Images
	Image 1

	Page 39
	Titles
	Filtering Records
	Updating Records
	Using the Eof and Bof Properties
	End of File (Eof)

	Images
	Image 1

	Page 40
	Titles
	BeginningofFile(Bo~
	Using Locate
	MODIFYING DATA
	Editing Records
	DataSet Actions

	Images
	Image 1

	Page 41
	Titles
	Adding New Records

	Images
	Image 1

	Page 42
	Titles
	ing Records
	Appending Records
	Deleting Records

	Images
	Image 1

	Page 43
	Titles
	Canceling Changes
	Using Dataset Events
	Event Description

	Images
	Image 1

	Page 44
	Titles
	FARMER INFORMATION DATABASE

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 45
	Titles
	FARMER INFORMATION SYSTEM
	MAIN MENU

	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Titles
	RECORD PART

	Images
	Image 1
	Image 2

	Page 55
	Images
	Image 1

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Images
	Image 1

	Page 62
	Images
	Image 1

	Page 63
	Titles
	SEARCHING PART

	Images
	Image 1
	Image 2

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1

	Page 67
	Images
	Image 1

	Page 68
	Images
	Image 1

	Page 69
	Images
	Image 1

	Page 70
	Titles
	DELETION PART

	Images
	Image 1
	Image 2

	Page 71
	Images
	Image 1

	Page 72
	Images
	Image 1

	Page 73
	Images
	Image 1

	Page 74
	Images
	Image 1

	Page 75
	Images
	Image 1

	Page 76
	Images
	Image 1

	Page 77
	Titles
	UPDATE PART

	Images
	Image 1

	Page 78
	Images
	Image 1

	Page 79
	Images
	Image 1

	Page 80
	Images
	Image 1

	Page 81
	Images
	Image 1

	Page 82
	Images
	Image 1

	Page 83
	Images
	Image 1

	Page 84
	Images
	Image 1

	Page 85
	Images
	Image 1

	Page 86
	Titles
	LIST MENU

	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1

	Page 92
	Titles
	forrnlshow;

	Images
	Image 1

	Page 93
	Images
	Image 1

	Page 94
	Images
	Image 1
	Image 2

	Page 95
	Images
	Image 1
	Image 2

	Page 96
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2

	Page 97
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

