
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Hotel Management System

Graduation Project
COM-400

Student: Polat Bayur (20001532)

Supervisor: Mss.Besime Erin

Nicosia - 2002

ACKNOWLEDGEMENTS

"First, I would like to thank my supervisor Miss Besime Erin for her valuable advices,
encouragement and endless support.

Second, I would like to acknowledge special thank to the Near East University for

offering me a suitable environment during my study. And also I will never forget the

teacher's support and help.

Third, I would like to dedicate my research to my parents and the rest of the family who

are always motivate me with all the love.

I gratefully acknowledge the role of my friends those who set behind me while I'm

preparing this project. "

ii

ABSTRACT

The success of a database is completely dependent on the logical database design.

Even ifwe buy expensive and fast hardware and software, the quality of the database design

will dictate whether a project will succeed. In a way, it is the Achilles heel of a project.

A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from growing

too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The process of designing a database begins with an analysis of what information the

database must hold and what are the relationships among components of that information.

Often, the structure of the database, called the database schema, is specified in one of

several languages or notations suitable for expressing designs. After due consideration, the

design is committed to a form in which it can be input to a Database Management System

(DBMS), and the database takes on physical existence.

Databases today are essential to every business. They are used to maintain internal

records, to present data to customers and clients on the World-Wide-Web, and to support

many other commercial processes. Databases are likewise found at the core of many

scientific investigations. They represent the data gathered by astronomers, by investigators

of the human genome, and by bio-chemists exploring the medicinal properties of proteins,

along with many other scientists.

The power of databases comes from a body of knowledge and technology that has

developed over several decades and is embodied in specialized software called a database

management system, or DBMS, or more colloquially a database system." A DBMS is a

powerful tool for creating and managing large amounts of data efficiently and allowing it to

persist over long periods of time-safely. These systems are among the most complex types

of software available.

TABLE OF CONTENTS

ACKNOWLEDGMENT 1

ABSTRACT ····· 11

TAIJLE OF CONTENTS m

INTRODUCTION .. 1

1. DATABASE MANAGEMENT SYSTEM 2

1.1. The Evolution of Database Systems 3

1.1.1 Early Database Management Systems 3

1.1.2 Relational Database Systems 4

5

5

6

6

7

8

10

15

15

16

17

1.1.3 Smaller and Smaller Systems

1.1.4 Bigger and Bigger Systems

1.2. Outline of Database-System Studies .

1.3. Database Design

1.3.1 Database Design Methodologies .

1.4. Entity Attribute Relation .

1.5. Rules To Guide Logical Database Design .

2. DELPID PROGRAMMING LANGUAGE .

2.1. Creating projects .

2.2. Code Editor .

2.3. Understanding Datasets

2.3.1 Opening And Closing Datasets 18

2.4. Developing The Application User Interface 19

2.4.1 Controlling application behavior 19

19 2.4.2 Using The Main Form

111

3. HOW IS THE SYSTEM WORKS 22

3.1. Main Menu 22

3.2. Reception Menu 23

3.2.1 Phone List

3.2.2 Search Menu

23

24

26

27

31

31

33

33

34

35

35

37

38

42

43

45

47

50

52
52
52
53

53
54

55

3.2.3 The Confirmation Submenu

3.2.4 The Lists Submenu .

3.3. Reservation Form .

3.4. Registration Form .

3 .5. The Rooms Form .

3.6. The Employees form .

3. 7. The Accounts Form .

4. THE SOFTWARE CODE .

4.1. Main Menu .

4.2. Reception Menu .

4.2.1 Search Menu

4.2.2 The Confirmation Form

4.2.3 The Lists Submenu .

4.3. Registration Form .

4.4. The Accounts Form .

4.5. Constructing a Package

5. STRUCTURED QUERY LANGUAGE (SQL) .

5 .1. Optional Elements

5 .1.1 Syntax choices

5.1.2 Table Names

5.1.3 Column Names

5.1.4 Date Formats

5.1.5 Time Formats

IV

5.1.6 Boolean Literals 56

5.1.7 Table Correlation Names 56

5.1.8 Column Correlation Names 57

5.2. DML Statement List 57

5.3.1 From Statement

5.3.2 Where Statement

5 .3 .3 Order By Statement

5.3.4 Group By Statement

5.3.5 Having Statement

57

58

58

60

60

61

61

62

63

64

66

67

5.2.1 Select Statement

5.2.2 Delete Statement

5.2.3 Insert Statement

5.2.4 Update Statement .

5.3. Clause List .

CONCLUSION
REFERENCES

V

1

INTRODUCTION

A database system is a collection of information organized in such a way that a

computer program can quickly select desired pieces of data You can think of a database as

an electronic filing system. Traditional databases are organized by fields, records, and files.
A field is a single piece of information; a record is one complete set of fields; and a file is a

collection of records.

Delphi Programming Language is a rich, efficient and very organized database

system design. Borland Delphi is an object-oriented, visual programming environment for

rapid development of 32-bit applications for deployment on Windows and Linux. Using

Delphi, you can create highly efficient applications with a minimum of manual coding.

The aim of the project is to develop a Hotel Management System using Delphi

programming Language. Toe project contains introduction, five chapters and conclusion.

Chapter One describes the Database Management Systems. The evaluation of the DBMS,

the relational database system and the database design.

Chapter Two is voted to the Delphi Programming Language, describing how we can get the

most efficiency of this programming language.

Chapter Three describing how is the system works. That means, when new customer comes

to get a room on a hotel how the system deals with him/her.

Chapter Four is describing how is the Delphi code written. The procedures and their brief

description of how they works are given as well.

Chapter Five describes the main elements and the general statements of the Structured

Query Language (SQL).

Conclusion shows the advantages of using Delphi programming Language over other

programming languages.

Chapter One
DATABASE MANAGEMENT SYSTEM

Databases today are essential to every business. They are used to maintain

internal records, to present data to customers and clients on the World-Wide-Web, and

to support many other commercial processes. Databases are likewise found at the core of

many scientific investigations. They represent the data gathered by astronomers, by

investigators of the human genome, and by bio-chemists exploring the medicinal

properties of proteins, along with many other scientists.

The power of databases comes from a body of knowledge and technology that

has developed over several decades and is embodied in specialized software called a

database management system, or DBMS, or more colloquially a database system." A

DBMS is a powerful tool for creating and managing large amounts of data efficiently

and allowing it to persist over long periods of time-safely. These systems are among the

most complex types of software available.

The capabilities that a DBMS provides the user are:

1. Persistent storage. A DBMS supports the storage of very large amounts of data that

exists independently of any processes that are using the data. However, the DBMS goes

far beyond the system in providing exibility, such as data structures that support efficient

access to very large amounts of data.

2. Programming interface. A DBMS allows the user or an application program to access

and modify data through a powerful query language.

3. Transaction management. A DBMS supports concurrent access to data, i.e.,

simultaneous access by many distinct processes. Databases today are essential to every

business. They are used to maintain internal records, to present data to customers and

clients on the World-Wide Web, and to support many other commercial processes.

Databases are likewise found at the core of many scientific investigations. They

represent the data gathered by astronomers, by investigators of the human genome, and

by biochemists exploring the medicinal properties of proteins, along with many other

scientists.

To avoid some of the undesirable consequences of simultaneous access, the

DBMS supports isolation, the appearance that transactions execute one-at-a-time, and

atomicity, the requirement that transactions execute either completely or not at all. A

2

3

DBMS also supports durability, the ability to recover from failures or errors of many

types.

1.1. The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of

information that exists over a long period of time, often many years. In common

parlance, the term database refers to a collection of data that is managed by a DBMS.

The DBMS is expected to:

1. Allow users to create new databases and specify their schema (logical structure of the

data), using a specialized language called a data-definition language.

2. Give users the ability to query the data (a query is database lingo for a question about

the data) and modify the data, using an appropriate language, often called a query

language or data-manipulation language.

3. Support the storage of very large amounts of data I many gigabytes or more I over a
long period of time, keeping it secure from accident or unauthorized use and allowing

efficient access to the data for queries and database modifications.

4. Control access to data from many users at once, without allowing the actions of one

user to affect other users and without allowing simultaneous accesses to corrupt the data

accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960's.

These systems evolved from file systems, which provide some of item (3) above; file

systems store data over a long period of time, and they allow the storage of large

amounts of data. However, file systems do not generally guarantee that data cannot be

lost if it is not backed up, and they don't support efficient access to data items whose

location in a particular file is not known. Further, file systems do not directly support

item (2), a query language for the data in files. Their support for (1) a schema for the

data is limited to the creation of directory structures for files. Finally, file systems do

not satisfy (4). When they allow concurrent access to files by several users or processes,

a file system generally will not prevent situations such as two users modifying the same

file at about the same time, so the changes made by one user fail to appear in the file.

4

The first important applications ofDBMS's were ones where data was composed

of many small items, and many queries or modifications were made. Here are some of

these applications.

1.1.2 Relational Database Systems

Database systems should present the user with a view of data organized as tables

called relations. Behind the scenes, there might be a complex data structure that allowed

rapid response to a variety of queries. But, unlike the user of earlier database systems,

the user of a relational system would not be concerned with the storage structure.

Queries could be expressed in a very high-level language, which greatly increased the

efficiency of database programmers.

Example 1.1: Relations are tables. Their columns are headed by attributes, which

describe the entries in the column. For instance, a relation named Accounts, recording

bank accounts, their balance, and type might look like:

accountNo balance type

12345

67890

1000.00

2846.92

savings

checking

Heading the columns are the three attributes: accountNo, balance, and type.

Below the attributes are the rows, or tuples. Here we show two tuples of the relation

explicitly, and the dots below them suggest that there would be many more tuples, one

for each account at the bank. The first tuple says that account number 12345 has a

balance of one thousand dollars, and it is a savings account. The second tuple says that

account 67890 is a checking account with $2846.92.

Suppose we wanted to know the balance of account 67890. We could ask this

query in SQL as follows:

SELECT balance

FROM Accounts

WHERE accountNo = 67890;

For another example, we could ask for the savings accounts with negative balances by:

SELECT accountNo

FROM Accounts

WHERE type= 'savings' AND balance< O;

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte isn't much data Corporate databases often occupy

hundreds of gigabytes. Further, as storage becomes cheaper people find new reasons to

store greater amounts of data. For example, retail chains often store terabytes (a terabyte

is 1000 gigabytes, or 1000,000,000,000 bytes) of information recording the history of

every sale made over a long period of time.

Further, databases no longer focus on storing simple data items such as integers

or short character strings. They can store images, audio, video, and many other kinds of

data that take comparatively huge amounts of space. For instance, an hour of video

consumes about a gigabyte. Databases storing images from satellites can involve

petabytes (1000 terabytes, or 1000,000,000,000,000 bytes) of data.

Handling such large databases required several technological advances. For

example, databases of modest size are today stored on arrays of disks, which are called

secondary storage devices (compared to main memory, which is "primary" storage). One

could even argue that what distinguishes database systems from other software is, more

We do not expect that these two examples are enough to make the reader an

expert SQL programmer, but they should convey the high-level nature of the SQL

"select-from-where" statement. In principle, they ask the DBMS to

1. Examine all the tuples of the relation Accounts mentioned in the FROM clause,

2. Pick out those tuples that satisfy some criterion indicated in the WHERE clause, and

3. Produce as an answer certain attributes of those tuples, as indicated in the SELECT

clause.

In practice, the system must "optimize" the query and second an efficient way to

answer the query, even though the relations involved in the query may be very large.

1.1.3 Smaller and Smaller Systems

Originally, DBMS's were large, expensive software systems running on large

computers. The size was necessary, because to store a gigabyte of data required a large

computer system. Today, many gigabytes fit on a single disk, and it is quite feasible to

run a DBMS on a personal computer. Thus, database systems based on the relational

model have become available for even very small machines, and they are beginning to

appear as a common tool for computer applications, much as spreadsheets and word

processors did before them.

5

6

than anything else, the fact that database systems routinely assume data is too big to _tin

main memory and must be located primarily on disk at all times. The following two

trends allow database systems to deal with larger amounts of data, faster.

1.2. Outline of Database-System Studies
Ideas related to database systems can be divided into three broad categories:

1. Design of databases. How does one develop a useful database? What kinds of

information go into the database? How is the information structured? What assumptions

are made about types or values of data items? How do data items connect?

2. Database programming. How does one express queries and other operations on the

database? How does one use other capabilities of a DBMS, such as transactions or

constraints, in an application? How is database programming combined with

conventional programming?

3. Database system implementation. How does one build a DBMS, including such

matters as query processing, transaction processing and organizing storage for efficient

access?

1.3. Database Design

The success of a database is completely dependent on the logical database

design. Even if we buy expensive and fast hardware and software, the quality of the

database design will dictate whether a project will succeed. In a way, it is the Achilles

heel of a project. A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from

growing too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The database design process can be divided into six steps:

1. Requirement analysis.

2. Conceptual database design.

3. Logical database design.

4. Schema refinements.

5. Physical database design.

7

6. Security database design

. In this chapter I will describe in brief the Logical Database Design because it is

the step directly before the writing a code.

Logical database design uses several rules or concepts which are reasonably well

understood and accepted. Disagreement arises in formulating a particular methodology,

the place to start and the sequence of steps to follow in applying those rules, After a

brief discussion of database design methodologies, this section presents several

concepts, principles, or rules which are generally recognized and applied regardless of

the particular methodology used.

1.3.1 Database Design Methodologies

A database design methodology specifies a sequence of steps to follow in

developing a "good" database design--one that meets user needs for information and

that satisfies performance constraints. Each step consists of the application of a set of

techniques or rules that may be formalized to varying degrees and embodied in software

tools. A methodology should he (I) usable in a wide variety of design situations and (2)

reproducible in different designers. The second objective implies that the methodology

be teachable, and that those trained in applying the methodology would arrive at the

same end result. This is not evident in the present state of the art. Logical database

design remains very much than art.

A database design methodology consisting of four steps;

1. User Information Requirements-involving the users in analyzing organizational

needs, setting the scope of interest, investigating what people do (organizational tasks;

usage patterns), and determining the data elements needed to perform those tasks,

2. Conceptual Design---developing a high-level diagrammatic representation of a logical

data structure; a structure which includes object domains, events, entities, attributes, and

relationships: a structure which seeks to model the users' world.

3. Implementation Design-refining the conceptual design, checking for satisfaction of

user needs and for consistency, and adjusting it to meet processing and performance

constraints in a particular computer and DBMS environment.

4. Physical Design---developing record storage designs, clustering, and establishing

access paths.

The techniques and rules in the steps of a methodology are applied iteratively

in the process of unfolding, growing, and refining a database design. For a starting point,

some suggest applying the methodology to individual user application areas or local

views. Different user views may contain related complementary parts or overlapping

pans. Multiple local views are then consolidated into a global logical structure or

conceptual schema. The process of consolidation seeks to resolve inconsistencies, and to

integrate related pieces. Even within a local view, there may be redundant, overlapping,

and inconsistent pads. The rules of a methodology are intended to assist the designer in

asking the right questions and representing the data structure in a coherent and consistent

way regardless of the scope of the design activity, and regardless of whether it begins

with individual local views or a global perspective. The product of the design activity

will grow as it unfolds over the area of interest; and it will be refined as the rules are

applied to focus attention on particular aspects of an infinitely complex reality and to

resolve ambiguities and inconsistencies in the developing database structure.

1.4. Entity Attribute Relation

Perhaps the most significant difference among methodologies or approaches to

logical database design is found in the point at which data items are clustered or grouped

into records. The top division of the taxonomy of data structures presented in Chapter 4

reflects this division. The number of basic constructs distinguishes the two approaches:

Those which presume an early clustering are often called "Entity Attribute-Relation" or

"E-A-R" approaches; the alternative is called the "Object Relation" or "0-R" approach.

Historically data processing has always worked with records. Programming lan­

guages such as COBOL and FORTRAN cluster data items into records. The formation

of records as a contiguous set of data items is necessary for efficient data processing. A

record is the unit of access for getting data in and out of programs. Data is moved to and

from secondary storage in blocks of records. Earlier data processing systems forced a

"unit record" view, that is, all data for an application had to reside in a single sequence

of records (this reflected the technology of the day, which used what was called "unit

record equipment"). Even today, with DBMSs supporting a multi file data structure, data

exists in the form of records in most organizations. Users are very familiar and

comfortable with a record-oriented view of their data. Most designers today use an E-A­

R approach to logical database design.

The major problem with the E-A-R approach to logical database design is that it

allows the relationships among data items within a record to be hidden. It does not force

8

9

the designer to explicitly consider and defme inter record structures. This accounts for

the recent emphasis in the literature on record decomposition and normalization based

on an analysis of functional and multi valued dependencies. These techniques are all

aimed at uncovering and making explicit the relationships among individual data items

within records.

The end result of repeatedly applying record decomposition rules is irreducible

varies-----at which point there exists at most one non-identifier data item within each

record. By then the designer will have considered all inter item relationships.

At the implementation or physical level, data items must be clustered into

records for efficient data processing. Even at the logical level, it is still relevant and

useful to think of attributes which cluster around and describe entities, whether the

attribute items are considered as part of entity records or as individual object domains. It

is relatively unimportant whether the design activity starts with records which are

decomposed to analyze inter item relationships, or starts with object domains which are

clustered to form records. In practice a designer will do both. It is important that certain

rules and concepts be applied in the design process. Early formation of records is

dangerous only if it inhibits the designer from properly analyzing intra record relation­

ships among data items, and from considering alternative groupings of items into records

-Ideally, the formation of records should be part of the implementation phase of database

design since it is done primarily for system convenience and processing efficiency. In

fact, it is desirable to have software tools to perform the clustering, leaving the designer

to concentrate on defming the individual data objects, relationships, and performance
factors and constraints.

In a strict application of the object-relation approach to logical design, all object

domains are treated equally. In the E-A-R approach, attention is initially focused on

entities, then on the attributes of those entities, which may tum out to be other entities.

In fact, the distinction between attributes and entities is often confusing and arbitrary

Again, regardless of the approach taken, it is important for the designer to focus

attention on the more important parts of the users' world being modeled in the data

structure. This is automatically done in the E-A-R approach but can also be done in the

0-R approach. The designer needs a high level of abstraction when developing a data

structure and may start out by representing the main entities as boxes labeled with a
name only.

1.5. Rules To Guide Logical Database Design

Even though there is no widespread acceptance of any particular design

methodology, there is general recognition of many underlying rules and concepts used in

logical database design. They relate to conceptual design and part of implementation

design.
A good database designer will generally know these rules and apply them, often

intuitively, wherever they are relevant in the process of developing, checking, and

refining a database design.
The following rules are presented here in a reasonably logical order, but there is

no implication that they should be applied in any strict sequence. There is also no

implication that these rules are sufficient or complete for the database design task. While

progress is being made in formalizing the principles and process of database design, it

still depends heavily on human intelligence and experience. Even experienced designers

can arrive at different database designs, which purport to model the same user

environment.

ENTITY: Clearly identify the entities to be represented in the database. An entity is any

object (person, place, thing), event, or abstract concept within the scope of interest about

which data is collected. An entity is the object of decisions and actions within an

organization. Entities are the pivotal elements in a data structure and must be well

defined. Staff out by focusing on the main entities, gradually expanding the logical data

structure view to include related entities. When looking at an existing database, clearly

define the primary entity, which is described in each file (record type).

INCLUSION: Specify the criteria for including (or excluding) entity instances from a

defined class of entities. The ENTITY rule names a class of entities and the

INCLUSION rule specifies the conditions for membership in that class. For example,

does the EMPLOYEE entity class include managers, job applicants, rejected job

applicants, those fired or laid off, those who quit, or employees on definite or indefinite

leave'? Consideration of these other "EMPLOYEES" may suggest broadening the name

of the entity class, or it may give rise to another entity class. Narrowing (sub setting) or

broadening the definition of the entity class represents movement along the

generalization hierarchy.

10

ATTRIBUTE: Identify the attributes of each entity. Initially focus on the major

attributes of each entity. Some will be clear and obvious, some will seem to be artificial,

and some may also relate to other entities. Include all attributes, which assist in

understanding the nature of the entity being described. Include at least one attribute from

each set of similar attributes.

ATTRIBUTE CHARACTERISTICS: Define the characteristics of each attribute.

Clearly define the characteristics of each attribute. Initially focus on name, type, (size),

existence, uniqueness, and some indication of the nature of the value set. When

describing an existing database, specify any encoding of data item values. Description of

other characteristics can be deferred until later in the database design process.

Eventually plan to describe one attribute per page in the fmal database documentation.

DERIVED ATTRIBUTE: Identify and defme derived attributes. The values of an

attribute may be derived from the values of other attributes in the database. Specify the

derivation rule, which may be an expression for a derived item or a statistical calculation

across instances of an entity type or a repeating group.

IDENTIFIER: Designate the attribute(s), which uniquely identify entity instances in

each entity class. An entity identifier may be a single attribute (EMPNO) or multiple

attributes (UNIT and JOECODE for POSITION). There may be multiple identifiers for

the same entity (EMPNQ and SOCIAL SECURITY NUMBER). Indicate if the

identifier is not guaranteed to be unique. The identifier can be a good clue to

understanding the nature of the entity described in an existing file.

RELATIONSHIP: identify the primary relationships between entities.

RELATIONSHIP CHARACTERISTICS: Define the characteristics of interentity

relationships, particularly exclusivity and exhaustibility (or dependency). Exclusivity

refers to whether instances of one entity type can be related to at most one or more than

one instance of another entity type. Since it is defined in both directions there are four

possibilities: 1:1. l:Many, Many: I, Many: Many. Exhaust stability (also called

dependency or personality) specifies whether or not an instance of one entity type must

be related to an instance of another entity type. Indicate if there is some condition on the

dependency of a relationship. Also indicate if there is some minimum or maximum

11

12

cardinality on the "many" side of a relationship. (See section 6.3.3 for more detail on

these characteristics.)

FOREIGN IDENTIFIER: indicate the basis for each relationship by including, as an

attribute in one entity type, the identifier from each related entity type.' Every

relationship is based upon common domain(s) in the related entity records. At the logical

level, it is necessary to include the identifier of a related entity as a foreign identifier. In

the storage structure, if the common domain is not explicitly stored in a related record,

then some form of physical pointer is necessary to represent the relationship.

DERIVED RELATIONSHIPS: Suppress derived relationships. The logical database

design should not include relationships, which can be derived from other relationships.

For example, it is reasonable to think of organizational units as possessing a pool of

skills. Furthermore, such information can be retrieved from the database. However, such

a relationship should not be defined since it is derived from the ORGANIZATION­

EMPLOYEE relationship and the EMPLOYEE-SKILL relationship. An organizational

unit only possesses skills because it has employees who possess skills.

REPEATING GROUP: isolate any multi-valued data item or repeating group of data

items within a record. This rule ensures that a record only contains atomic (single­

valued) data items, thus allowing only flat files. This is also called first normal form.

The real importance of this rule is to force the designer to explicitly recognize a

"something-to-many" relationship and possibly a new entity type. If a repeating group of

data items becomes a new entity record type, the identifier of its parent record must

propagate down into the new record. If the relationship was actually many-to-many, the

propagated identifier becomes part of the identifier of the new record; if the relationship

was one-to-many, the propagated identifier becomes a foreign identifier in the new

record (but not part of the identifier). Multi-valued data items or nested repeating groups

of data items may be included in the storage structure of a record.

PARTIAL DEPENDENCY: Each attribute must be dependent upon the whole record

(entity) identifier. An attribute that is dependent upon only part of the identifier should

be removed from the record, and placed in a record where that part of the identifier is the

whole identifier. Suppose we had a record with the following data items: EMPNO,

SKILLCODE, SKILL DESCRIPTION, and PROFICIENCY. The identifier would have

to be the first two data items jointly since PROFICIENCY relates to both of them

together. However, DESCRIPTION relates only to the SKILLCODE and, therefore,

should not be in this record. A record with no partial dependencies is said to be in

second normal form.

TRANSITIVE DEPENDENCY: Each attribute within a record must be directly

dependent upon the entity identifier. Any attribute, which is not directly dependent upon

the record identifier, should be removed from the record, and related directly to the

object on which it is functionally dependent. For example, if the EMPLOYEE record

contained UNIT and BOSS, and the employee was moved to another organizational unit,

it would not be sufficient to update the employee's UNIT-the BOSS data item would

also have to be changed. The update anomaly results because BOSS is directly

dependent upon UNIT and not EMPNO. BOSS does not belong in the EMPLOYEE

record even if processing is faster and easier; it belongs in the ORGANIZATIONAL

UNIT record. A record with no partial or transitive dependencies is said to be in third

normal form. Restated: An attribute should be dependent upon the identifier, the whole

identifier, and nothing but the identifier.

Application of the previous three rules to arrive at third normal form requires an

examination of every attribute in a record. A record not in third normal form produces

undesirable update anomalies. To identify these anomalies, the designer can ask; If a

given attribute is updated, what other attributes must change, or if another attribute is

updated, what effect will it have on the given attribute?

NAMING: Assign names to entities, attributes, and relationships using a consistent,

well-defined naming convention. When describing an existing database, watch for

naming inconsistencies- different names for the same object, or the same name used to

refer to different objects.

STORAGE & ACCESS: Suppress any consideration of physical storage structures and

access mechanisms in describing the logical structure of the data. This includes any

stored ordering on the records in a file, and whether or not a data item is indexed. Do not

be concerned with questions of how to find or access a particular record in a file,

13

perhaps along a relationship Remember, all relationships are inherently bi-directional.

14

Chapter 2
DELPHI PROGRAMMING LANGUAGE

Borland Delphi is an object-oriented, visual programming environment for rapid

development of 32-bit applications for deployment on Windows and Linux. Using

Delphi, you can create highly efficient applications with a minimum of manual coding.

Delphi provides a comprehensive class library called the Visual Component

Library (VCL), Borland Component Library for Cross Platform (CLX), and a suite of

Rapid Application Development (RAD) design tools, including application and form

templates, and programming wizards. Delphi supports truly object-oriented

programmmg.
This chapter briefly describes the Delphi development environment and how it

fits into the development life cycle.

2.1. Creating projects
All of Delphi's application development revolves around projects. When you

create an application in Delphi you are creating a project. A project is a collection of

files that make up an application. Some of these files are created at design time. Others

are generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the

Project Manager. The Project Manager lists, in a hierarchical view, the unit names, the

forms contained in the unit (if there is one), and shows the paths to the files in the

project.
Although you can edit many of these files directly, it is often easier and more

reliable to use the visual tools in Delphi.
At the top of the project hierarchy, is a group file. You can combine multiple

projects into a project group. This allows you to open more than one project at a time in

the Project Manager.
Project groups let you organize and work on related projects, such as applications

that function together or parts of a multi-tiered application. If you are only working on

one project, you do not need a project group file to create an application.

Project files, which describe individual projects, files, and associated options,

have a .dpr extension. Project files contain directions for building an application or

shared object. When you add and remove files using the Project Manager, the project

15

file is updated. You specify project options using a Project Options dialog which has

tabs for various aspects of your project such as forms, application, compiler. These

project options are stored in the project file with the project.

Units and forms are the basic building blocks of a Delphi application. A project

can share any existing form and unit file including those that reside outside the project

directory tree. This includes custom procedures and functions that have been written as

standalone routines.

If you add a shared file to a project, realize that the file is not copied into the

current project directory; it remains in its current location.. Adding the shared file to the

current project registers the file name and path in the uses clause of the project file.

Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the

project reside.

2.2. Code Editor

Delphi Code editor is a full-featured ASCII editor. If using the visual

programming environment, a form is automatically displayed as part of a new project.

You can start designing your application interface by placing objects on the form and

modifying how they work in the Object Inspector. But other programming tasks, such as

writing event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their

properties can be viewed and edited as text in the Code editor. You can adjust the

generated code in the Code editor and add more components within the editor by typing

code.

As you type code into the editor, the compiler is constantly scanning for changed

and updating the form with the new layout. You can then go back to the form, view and

test the changes you made in the editor and continue adjusting the form from there.

The Delphi code generation and property streaming systems are completely open

inspection. The source code for everything that is included in your final executable file­

all of the VCL objects, CLX objects, RTL sources, all of the Delphi project files can be

viewed and edited in the Code editor.

16

2.3. Understanding Datasets

The fundamental unit for accessing data is the dataset family of objects. Your

application uses datasets for all database access. A dataset object represents a set of

records from a database organized into a logical table. These records may be the records

from a single database table, or they may represent the results of executing a query or

stored procedure.
All dataset objects that you use in your database applications descend from

TDataSet, and they inherit data fields, properties, events, and methods from this class.

This chapter describes the functionality of TDataSet that is inherited by the dataset

objects you use in your database applications. You need to understand this shared

functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and

methods are virtual or abstract. A virtual method is a function or procedure declaration

where the implementation of that method can be (and usually is) overridden in

descendant objects. An abstract method is a function or procedure declaration without

an actual implementation. The declaration is a prototype that describes the method (and

its parameters and return type, if any) that must be implemented in all descendant dataset

objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an

application without generating a runtime error. Instead, you either create instances of the

built-in TDataSet descendants and use them in your application, or you derive your own

dataset object from TDataSet or its descendants and write implementations for all its

abstract methods.

TDataSet defines much that is common to all dataset objects. For example,

TdataSet defines the basic structure of all datasets: an array of TField components that

correspond to actual columns in one or more database tables, lookup fields provided by

your application, or calculated fields provided by your application. For information

about TField components, see Chapter 19, 'Working with field components."

17

2.3.1 Opening And Closing Datasets

To read or write data in a dataset, an application must first open it. You can open

a dataset in two ways,

• Set the Active property of the dataset to True, either at design time in the Object

Inspector, or in code at runtime:

Cust'Iable.Active : = True;

• Call the Open method for the dataset at runtime,

CustQuery. Open;

When you open the dataset, the dataset first receives a Be/ ore Open event, then it

opens a cursor, populating itself with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can

read the data and navigate through it. You can close a dataset in two ways,

• Set the Active property of the dataset to False, either at design time in the Object

Inspector, or in code at runtime,

CustQuery.Active := False;

• Call the Close method for the dataset at runtime,

CustTable.Close;

Just as the dataset receives BeforeOpen and AfterOpen events when you open it,

it receives a BeforeClose and AfterClose event when you close it. handlers that respond

to the Close method for a dataset. You can use these events, for example, to prompt the

user to post pending changes or cancel them before closing the dataset. The following

code illustrates such a handler:

procedure TForml. CustTable VerifyBeforeClose(DataSet: TDataSet);

begin

if {CustTable.State in [dsEdit, dslnsertj) then begin
case MessageDlg{'Post changes before closing?', mtCorifirmation, mbYesNoCancel, OJ
of

mr Yes: CustTable.Post; { save the changes}

mrNo: CustTable.Cancel; { abandon the changes}

mrCancel: Abort; { abort closing the dataset}

end;

end;

end;

18

2.4. Developing The Application User Interface

With Delphi, you design a user interface (UI) by selecting components from the

component palette and dropping them onto forms. You get the components to do what

you want by setting their properties and coding their event handlers.

2.4.l Controlling application behavior
Tnpplication, TScreen, and TForm are the classes that form the backbone of all

Delphi applications by controlling the behavior of your project. The TApplication class

forms the foundation of an application by providing properties and methods that

encapsulate the behavior of a standard program. TScreen is used at runtime to keep track

of forms and data modules that have been loaded as well as maintaining system-specific

information such as screen resolution and available display fonts.

Instances of the TForm class are the building blocks of your application's user

interface. The windows and dialog boxes in your application are based on TForm.

2.4.2 Using The Main Form
TForm is the key class for creating GUI applications. When you open Delphi

displaying a default project or when you create a new project, a form is displayed on

which you can begin your UI design.
The first form you create and save in a project becomes, by default, the project's

main form, which is the first form created at runtime. As you add forms to your projects,

you might decide to designate a different form as your application's main form. Also,

specifying a form as the main form is an easy way to test it at runtime, because unless

you change the form creation order, the main form is the first form displayed in the

running application.

To change the project main form,

1. Choose Projectltjptions and select the Forms page.

2. In the Main Form combo box, select the form you want to use as the project's main

form and choose OK.
Now if you run the application, the form you selected as the main form is

displayed.

19

Adding forms
To add a form to your project, select FilelNew Form. You can see all your

project's forms and their associated units listed in the Project Manager (ViewjProject

Manager) and you can display a list of the forms alone by choosing ViewjForms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any

other units in the project. Before you can write code that references the new form, you

need to add a reference to it in the referencing forms' unit files. This is called form

linking. A common reason to link forms is to provide access to the components in that

form. For example, you'll often use form linking to enable a form that contains data­

aware components to connect to the data-access components in a data module. To link a

form to another form,

1. Select the form that needs to refer to another.

2. Choose FilejUse Unit.

3. Select the name of the form unit for the form to be referenced.

4. Choose OK.
Linking a form to another just means that the uses clauses of one form unit

contains a reference to the other's form unit, meaning that the linked form and its

components are now in scope for the linking form.

A voiding circular unit references
When two forms must reference each other, it's possible to cause a "Circular

reference" error when you compile your program. To avoid such an error, do one of the

following:
• Place both uses clauses, with the unit identifiers, in the implementation parts of the

respective unit files. (This is what the FilelUse Unit command does.)

• Place one uses clause in an interface part and the other in an implementation part.

(You rarely need to place another form's unit identifier in this unit's interface part.), Do

not place both uses clauses in the interface parts of their respective unit files. This will

generate the "Circular reference" error at compile time.

You can prevent the main form from displaying when your application first starts

up. To do so, you must use the global Application variable (described in the next topic).

To hide the main form at startup,

20

1. Choose Projectlview Source to display the main project file.

2. Add the following lines after the call to Application.CreateForm and before the call to

Application. Run.

21

Chapter T.hrt:e
HOW IS THE SYSTEM WORKS

In this chapter I will describe how the system will deal with the customers who

come to the hotel to have a room or to visit their relatives or friends. The system will

also describe the different processes toward those customers from the reservation till the

payment of their bills.

3 .1. Main Menu

The main menu of the 'Near East Hotel' system software is consisting of

six submenus beside the 'Close' button as follow:

1. Reception.
·"I Reservation. L...

3. Registration.

4. Rooms.

5. Employees.

6. Accounts.

The main menu and its main submenus are shown in figure 3.1. At the bottom of

the main menu there is an animated text showing some information about the program

writer.

Figure 3.1. The main menu.

22

3 2 R ~ +~~ 1\,,f - •• . . e\,;epuvn 1ne11u
When new customer or visitor comes to the hotel, he/she will meet firstly the

receptors who will help him/her and find all the solutions to their queries. The receptors

will do that using the data available in the reception menu. Reception menu consists of

four submenus and the 'Close' button that will return you to the main menu (see figure

3.2). the submenus of the reception menu are as follow:

1. Phone List

2. Search.

3. Confirmation.

4. Lists.

Near East Hotel

Figure 3.2. The reception menu.

3.2.1 Phone List
The receptor will use this window, which is contains the telephone numbers of

all the staffs working on the hotel and all the different departments telephone numbers

are here as well. As you can see in figure 3.3, the receptor cannot add more numbers but

he can change numbers as needed.

23

Near East Hotel

M-oe, L_ _ ____:51~
Vice [. . 616

E~) __ 7_17J
Rooms J 818!

Register [_ ~19

Reseivalim I . ~'!

Accounts I_ ~
Restai.ranl f 440 :,
AclivmM I

Figure 3.3. The hotel phone numbers.

3.2.2 Search Menu
As shown in figure 3.4 the search menu contains three submenus as follow:

1. Customer Name.

2. Room Number.

3. Employee Name.

Near East Hotel
Search By:

Figure 3.4. The search menu.

24

Search By Customer Name

As shown in figure 3.5 the search engine here is very sensitive, as well as you

write the first letter only the names beginning with that letter will be shown in the list.

The receptor will know in which room the resident leave and when he will leave the

hotel.

Near East Hotel

Figure 3.5. Search by customer name.

Search By Room No

It is useful to have the room no when ever you want it. As soon as you write

down the room no the indicator will be indicating to the such room no. The search by the

room no is shown in the figure 3.6.

I .r Search hy Customer Surname .c,Yt?\\:,,~.

Near East Hotel
l'~Bya-~,~- "

Figure 3.6. Search by room no.

25

Search By Employee Name

In the case any of the employees has a visitor or if we need some information

about one of our employees we will use this search engine to find about him. The

employee name will change during writing the letters, so we can find all the employees

starting with any letter. The employee search engine is show in figure 3.7. And figure

3.8 showing the same thing after writing one letter more.

--- --- - --- ~n• ,r Search Bv Employee Name , ,·'

Near East Hotel

.E~ !Name
-~I 7002 IAHMAD ALI

7004!ANAS MEHMET

Figure 3.7. Search by employee.

Near East Hotel

2222323 I 11111 l200l
Occ-date

Figure 3.8. Search by employee after writing one more letter.

3.2.3 The Confirmation Submenu
In this window the receptor can dedicated weather the coming person has a

confirmation or not. Unconfirmed customers are not allowed to have a room in the hotel.

The receptor will simply write down the reservation no then the program will tell if this

person has confirmation or not and also the program will show the name and surname of

that person. The confirmation window is shown in the figure 3.9. . -

26

Near East Hotel

~-r.
CeafinudM @ I,

Name

s-

Figure 3.9. The confirmation window.

3.2.4 The Lists Submenu
The lists submenu is containing some queries that may come into consideration.

Figure 3.10 show that the lists submenu is consisting of two submenu beside the "close"

push button that will return you back to the reception menu. These two submenus is:

1. Rooms.

2. Reservation.

Near East Hotel

![:=:~:~:~:· ·:~~Rooms~:~~:.·~:::::· ~~::::JI
- Reservation I

Close]

Figure 3.10. The lists submenu.

27

Rooms Lists
Inside this submenu the receptor will find some very useful queries about the

rooms that help customers choose the suitable room and also help controlling the rooms.

The rooms submenu contains the following lists:
1. All Rooms List: when this button pressed all the rooms in the hotel will be

displayed (see figure 3.11).

---------- @
R nr,, t ct ._ ·,_ :lm-· ',,,. ~,,!&--"'"'!"

Near East Hotel mAU~= R,,.,. ••• Rmmu
ii 3 • Empty Rooms

I(Che I BackTnMenu

ROOIIHID RIICIIII-\IP8 ~ Alane-no swaii:in- ,.-
•• 100 SINGLE 10 200 EMPTY r 101 SINGLE 20 300 EMPTY

102 DOUBLE 400 400 CONARMEI

103 SIN6l.E 100 421 OCOJPIED

104 DOUBLE 210 521 CONARMEC '-
116 SINGLE 100 3J2 EMPTY I1C

1tli SINGLE 111 325 RESEf\'IIED

~

Figure 3 .11. All the room list.

2. Reserved Rooms List: when this button pressed the reserved rooms only will

appear at the list. This will help the hotel manager to manage his rooms (see

figure 3.12).
-- - - ~-"r. ~

Near East Hotel

m 1 AR Rooms 11n.·-R.- 3 . EmJ>ty Rnon\$

a.- Bat:k To Menu

IR.,.,...._"IR~ 1Roont1]1ice 1- IS..-. I
~ 106IS1NG1.£ 1 __ 1111 325 JRESERIIED I -

---·- - -- -· -- - --- --

· Figure 3.12. The reserved rooms list.

28

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Hotel Management System

Graduation Project
COM-400

Student: Polat Bayur (20001532)

Supervisor: Mss.Besime Erin

Nicosia - 2002

ACKNOWLEDGEMENTS

"First, I would like to thank my supervisor Miss Besime Erin for her valuable advices,
encouragement and endless support.

Second, I would like to acknowledge special thank to the Near East University for

offering me a suitable environment during my study. And also I will never forget the

teacher's support and help.

Third, I would like to dedicate my research to my parents and the rest of the family who

are always motivate me with all the love.

I gratefully acknowledge the role of my friends those who set behind me while I'm

preparing this project. "

ii

ABSTRACT

The success of a database is completely dependent on the logical database design.

Even ifwe buy expensive and fast hardware and software, the quality of the database design

will dictate whether a project will succeed. In a way, it is the Achilles heel of a project.

A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from growing

too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The process of designing a database begins with an analysis of what information the

database must hold and what are the relationships among components of that information.

Often, the structure of the database, called the database schema, is specified in one of

several languages or notations suitable for expressing designs. After due consideration, the

design is committed to a form in which it can be input to a Database Management System

(DBMS), and the database takes on physical existence.

Databases today are essential to every business. They are used to maintain internal

records, to present data to customers and clients on the World-Wide-Web, and to support

many other commercial processes. Databases are likewise found at the core of many

scientific investigations. They represent the data gathered by astronomers, by investigators

of the human genome, and by bio-chemists exploring the medicinal properties of proteins,

along with many other scientists.

The power of databases comes from a body of knowledge and technology that has

developed over several decades and is embodied in specialized software called a database

management system, or DBMS, or more colloquially a database system." A DBMS is a

powerful tool for creating and managing large amounts of data efficiently and allowing it to

persist over long periods of time-safely. These systems are among the most complex types

of software available.

TABLE OF CONTENTS

ACKNOWLEDGMENT 1

ABSTRACT ····· 11

TAIJLE OF CONTENTS m

INTRODUCTION .. 1

1. DATABASE MANAGEMENT SYSTEM 2

1.1. The Evolution of Database Systems 3

1.1.1 Early Database Management Systems 3

1.1.2 Relational Database Systems 4

5

5

6

6

7

8

10

15

15

16

17

1.1.3 Smaller and Smaller Systems

1.1.4 Bigger and Bigger Systems

1.2. Outline of Database-System Studies .

1.3. Database Design

1.3.1 Database Design Methodologies .

1.4. Entity Attribute Relation .

1.5. Rules To Guide Logical Database Design .

2. DELPID PROGRAMMING LANGUAGE .

2.1. Creating projects .

2.2. Code Editor .

2.3. Understanding Datasets

2.3.1 Opening And Closing Datasets 18

2.4. Developing The Application User Interface 19

2.4.1 Controlling application behavior 19

19 2.4.2 Using The Main Form

111

3. HOW IS THE SYSTEM WORKS 22

3.1. Main Menu 22

3.2. Reception Menu 23

3.2.1 Phone List

3.2.2 Search Menu

23

24

26

27

31

31

33

33

34

35

35

37

38

42

43

45

47

50

52
52
52
53

53
54

55

3.2.3 The Confirmation Submenu

3.2.4 The Lists Submenu .

3.3. Reservation Form .

3.4. Registration Form .

3 .5. The Rooms Form .

3.6. The Employees form .

3. 7. The Accounts Form .

4. THE SOFTWARE CODE .

4.1. Main Menu .

4.2. Reception Menu .

4.2.1 Search Menu

4.2.2 The Confirmation Form

4.2.3 The Lists Submenu .

4.3. Registration Form .

4.4. The Accounts Form .

4.5. Constructing a Package

5. STRUCTURED QUERY LANGUAGE (SQL) .

5 .1. Optional Elements

5 .1.1 Syntax choices

5.1.2 Table Names

5.1.3 Column Names

5.1.4 Date Formats

5.1.5 Time Formats

IV

5.1.6 Boolean Literals 56

5.1.7 Table Correlation Names 56

5.1.8 Column Correlation Names 57

5.2. DML Statement List 57

5.3.1 From Statement

5.3.2 Where Statement

5 .3 .3 Order By Statement

5.3.4 Group By Statement

5.3.5 Having Statement

57

58

58

60

60

61

61

62

63

64

66

67

5.2.1 Select Statement

5.2.2 Delete Statement

5.2.3 Insert Statement

5.2.4 Update Statement .

5.3. Clause List .

CONCLUSION
REFERENCES

V

1

INTRODUCTION

A database system is a collection of information organized in such a way that a

computer program can quickly select desired pieces of data You can think of a database as

an electronic filing system. Traditional databases are organized by fields, records, and files.
A field is a single piece of information; a record is one complete set of fields; and a file is a

collection of records.

Delphi Programming Language is a rich, efficient and very organized database

system design. Borland Delphi is an object-oriented, visual programming environment for

rapid development of 32-bit applications for deployment on Windows and Linux. Using

Delphi, you can create highly efficient applications with a minimum of manual coding.

The aim of the project is to develop a Hotel Management System using Delphi

programming Language. Toe project contains introduction, five chapters and conclusion.

Chapter One describes the Database Management Systems. The evaluation of the DBMS,

the relational database system and the database design.

Chapter Two is voted to the Delphi Programming Language, describing how we can get the

most efficiency of this programming language.

Chapter Three describing how is the system works. That means, when new customer comes

to get a room on a hotel how the system deals with him/her.

Chapter Four is describing how is the Delphi code written. The procedures and their brief

description of how they works are given as well.

Chapter Five describes the main elements and the general statements of the Structured

Query Language (SQL).

Conclusion shows the advantages of using Delphi programming Language over other

programming languages.

Chapter One
DATABASE MANAGEMENT SYSTEM

Databases today are essential to every business. They are used to maintain

internal records, to present data to customers and clients on the World-Wide-Web, and

to support many other commercial processes. Databases are likewise found at the core of

many scientific investigations. They represent the data gathered by astronomers, by

investigators of the human genome, and by bio-chemists exploring the medicinal

properties of proteins, along with many other scientists.

The power of databases comes from a body of knowledge and technology that

has developed over several decades and is embodied in specialized software called a

database management system, or DBMS, or more colloquially a database system." A

DBMS is a powerful tool for creating and managing large amounts of data efficiently

and allowing it to persist over long periods of time-safely. These systems are among the

most complex types of software available.

The capabilities that a DBMS provides the user are:

1. Persistent storage. A DBMS supports the storage of very large amounts of data that

exists independently of any processes that are using the data. However, the DBMS goes

far beyond the system in providing exibility, such as data structures that support efficient

access to very large amounts of data.

2. Programming interface. A DBMS allows the user or an application program to access

and modify data through a powerful query language.

3. Transaction management. A DBMS supports concurrent access to data, i.e.,

simultaneous access by many distinct processes. Databases today are essential to every

business. They are used to maintain internal records, to present data to customers and

clients on the World-Wide Web, and to support many other commercial processes.

Databases are likewise found at the core of many scientific investigations. They

represent the data gathered by astronomers, by investigators of the human genome, and

by biochemists exploring the medicinal properties of proteins, along with many other

scientists.

To avoid some of the undesirable consequences of simultaneous access, the

DBMS supports isolation, the appearance that transactions execute one-at-a-time, and

atomicity, the requirement that transactions execute either completely or not at all. A

2

3

DBMS also supports durability, the ability to recover from failures or errors of many

types.

1.1. The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of

information that exists over a long period of time, often many years. In common

parlance, the term database refers to a collection of data that is managed by a DBMS.

The DBMS is expected to:

1. Allow users to create new databases and specify their schema (logical structure of the

data), using a specialized language called a data-definition language.

2. Give users the ability to query the data (a query is database lingo for a question about

the data) and modify the data, using an appropriate language, often called a query

language or data-manipulation language.

3. Support the storage of very large amounts of data I many gigabytes or more I over a
long period of time, keeping it secure from accident or unauthorized use and allowing

efficient access to the data for queries and database modifications.

4. Control access to data from many users at once, without allowing the actions of one

user to affect other users and without allowing simultaneous accesses to corrupt the data

accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960's.

These systems evolved from file systems, which provide some of item (3) above; file

systems store data over a long period of time, and they allow the storage of large

amounts of data. However, file systems do not generally guarantee that data cannot be

lost if it is not backed up, and they don't support efficient access to data items whose

location in a particular file is not known. Further, file systems do not directly support

item (2), a query language for the data in files. Their support for (1) a schema for the

data is limited to the creation of directory structures for files. Finally, file systems do

not satisfy (4). When they allow concurrent access to files by several users or processes,

a file system generally will not prevent situations such as two users modifying the same

file at about the same time, so the changes made by one user fail to appear in the file.

4

The first important applications ofDBMS's were ones where data was composed

of many small items, and many queries or modifications were made. Here are some of

these applications.

1.1.2 Relational Database Systems

Database systems should present the user with a view of data organized as tables

called relations. Behind the scenes, there might be a complex data structure that allowed

rapid response to a variety of queries. But, unlike the user of earlier database systems,

the user of a relational system would not be concerned with the storage structure.

Queries could be expressed in a very high-level language, which greatly increased the

efficiency of database programmers.

Example 1.1: Relations are tables. Their columns are headed by attributes, which

describe the entries in the column. For instance, a relation named Accounts, recording

bank accounts, their balance, and type might look like:

accountNo balance type

12345

67890

1000.00

2846.92

savings

checking

Heading the columns are the three attributes: accountNo, balance, and type.

Below the attributes are the rows, or tuples. Here we show two tuples of the relation

explicitly, and the dots below them suggest that there would be many more tuples, one

for each account at the bank. The first tuple says that account number 12345 has a

balance of one thousand dollars, and it is a savings account. The second tuple says that

account 67890 is a checking account with $2846.92.

Suppose we wanted to know the balance of account 67890. We could ask this

query in SQL as follows:

SELECT balance

FROM Accounts

WHERE accountNo = 67890;

For another example, we could ask for the savings accounts with negative balances by:

SELECT accountNo

FROM Accounts

WHERE type= 'savings' AND balance< O;

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte isn't much data Corporate databases often occupy

hundreds of gigabytes. Further, as storage becomes cheaper people find new reasons to

store greater amounts of data. For example, retail chains often store terabytes (a terabyte

is 1000 gigabytes, or 1000,000,000,000 bytes) of information recording the history of

every sale made over a long period of time.

Further, databases no longer focus on storing simple data items such as integers

or short character strings. They can store images, audio, video, and many other kinds of

data that take comparatively huge amounts of space. For instance, an hour of video

consumes about a gigabyte. Databases storing images from satellites can involve

petabytes (1000 terabytes, or 1000,000,000,000,000 bytes) of data.

Handling such large databases required several technological advances. For

example, databases of modest size are today stored on arrays of disks, which are called

secondary storage devices (compared to main memory, which is "primary" storage). One

could even argue that what distinguishes database systems from other software is, more

We do not expect that these two examples are enough to make the reader an

expert SQL programmer, but they should convey the high-level nature of the SQL

"select-from-where" statement. In principle, they ask the DBMS to

1. Examine all the tuples of the relation Accounts mentioned in the FROM clause,

2. Pick out those tuples that satisfy some criterion indicated in the WHERE clause, and

3. Produce as an answer certain attributes of those tuples, as indicated in the SELECT

clause.

In practice, the system must "optimize" the query and second an efficient way to

answer the query, even though the relations involved in the query may be very large.

1.1.3 Smaller and Smaller Systems

Originally, DBMS's were large, expensive software systems running on large

computers. The size was necessary, because to store a gigabyte of data required a large

computer system. Today, many gigabytes fit on a single disk, and it is quite feasible to

run a DBMS on a personal computer. Thus, database systems based on the relational

model have become available for even very small machines, and they are beginning to

appear as a common tool for computer applications, much as spreadsheets and word

processors did before them.

5

6

than anything else, the fact that database systems routinely assume data is too big to _tin

main memory and must be located primarily on disk at all times. The following two

trends allow database systems to deal with larger amounts of data, faster.

1.2. Outline of Database-System Studies
Ideas related to database systems can be divided into three broad categories:

1. Design of databases. How does one develop a useful database? What kinds of

information go into the database? How is the information structured? What assumptions

are made about types or values of data items? How do data items connect?

2. Database programming. How does one express queries and other operations on the

database? How does one use other capabilities of a DBMS, such as transactions or

constraints, in an application? How is database programming combined with

conventional programming?

3. Database system implementation. How does one build a DBMS, including such

matters as query processing, transaction processing and organizing storage for efficient

access?

1.3. Database Design

The success of a database is completely dependent on the logical database

design. Even if we buy expensive and fast hardware and software, the quality of the

database design will dictate whether a project will succeed. In a way, it is the Achilles

heel of a project. A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from

growing too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The database design process can be divided into six steps:

1. Requirement analysis.

2. Conceptual database design.

3. Logical database design.

4. Schema refinements.

5. Physical database design.

7

6. Security database design

. In this chapter I will describe in brief the Logical Database Design because it is

the step directly before the writing a code.

Logical database design uses several rules or concepts which are reasonably well

understood and accepted. Disagreement arises in formulating a particular methodology,

the place to start and the sequence of steps to follow in applying those rules, After a

brief discussion of database design methodologies, this section presents several

concepts, principles, or rules which are generally recognized and applied regardless of

the particular methodology used.

1.3.1 Database Design Methodologies

A database design methodology specifies a sequence of steps to follow in

developing a "good" database design--one that meets user needs for information and

that satisfies performance constraints. Each step consists of the application of a set of

techniques or rules that may be formalized to varying degrees and embodied in software

tools. A methodology should he (I) usable in a wide variety of design situations and (2)

reproducible in different designers. The second objective implies that the methodology

be teachable, and that those trained in applying the methodology would arrive at the

same end result. This is not evident in the present state of the art. Logical database

design remains very much than art.

A database design methodology consisting of four steps;

1. User Information Requirements-involving the users in analyzing organizational

needs, setting the scope of interest, investigating what people do (organizational tasks;

usage patterns), and determining the data elements needed to perform those tasks,

2. Conceptual Design---developing a high-level diagrammatic representation of a logical

data structure; a structure which includes object domains, events, entities, attributes, and

relationships: a structure which seeks to model the users' world.

3. Implementation Design-refining the conceptual design, checking for satisfaction of

user needs and for consistency, and adjusting it to meet processing and performance

constraints in a particular computer and DBMS environment.

4. Physical Design---developing record storage designs, clustering, and establishing

access paths.

The techniques and rules in the steps of a methodology are applied iteratively

in the process of unfolding, growing, and refining a database design. For a starting point,

some suggest applying the methodology to individual user application areas or local

views. Different user views may contain related complementary parts or overlapping

pans. Multiple local views are then consolidated into a global logical structure or

conceptual schema. The process of consolidation seeks to resolve inconsistencies, and to

integrate related pieces. Even within a local view, there may be redundant, overlapping,

and inconsistent pads. The rules of a methodology are intended to assist the designer in

asking the right questions and representing the data structure in a coherent and consistent

way regardless of the scope of the design activity, and regardless of whether it begins

with individual local views or a global perspective. The product of the design activity

will grow as it unfolds over the area of interest; and it will be refined as the rules are

applied to focus attention on particular aspects of an infinitely complex reality and to

resolve ambiguities and inconsistencies in the developing database structure.

1.4. Entity Attribute Relation

Perhaps the most significant difference among methodologies or approaches to

logical database design is found in the point at which data items are clustered or grouped

into records. The top division of the taxonomy of data structures presented in Chapter 4

reflects this division. The number of basic constructs distinguishes the two approaches:

Those which presume an early clustering are often called "Entity Attribute-Relation" or

"E-A-R" approaches; the alternative is called the "Object Relation" or "0-R" approach.

Historically data processing has always worked with records. Programming lan­

guages such as COBOL and FORTRAN cluster data items into records. The formation

of records as a contiguous set of data items is necessary for efficient data processing. A

record is the unit of access for getting data in and out of programs. Data is moved to and

from secondary storage in blocks of records. Earlier data processing systems forced a

"unit record" view, that is, all data for an application had to reside in a single sequence

of records (this reflected the technology of the day, which used what was called "unit

record equipment"). Even today, with DBMSs supporting a multi file data structure, data

exists in the form of records in most organizations. Users are very familiar and

comfortable with a record-oriented view of their data. Most designers today use an E-A­

R approach to logical database design.

The major problem with the E-A-R approach to logical database design is that it

allows the relationships among data items within a record to be hidden. It does not force

8

9

the designer to explicitly consider and defme inter record structures. This accounts for

the recent emphasis in the literature on record decomposition and normalization based

on an analysis of functional and multi valued dependencies. These techniques are all

aimed at uncovering and making explicit the relationships among individual data items

within records.

The end result of repeatedly applying record decomposition rules is irreducible

varies-----at which point there exists at most one non-identifier data item within each

record. By then the designer will have considered all inter item relationships.

At the implementation or physical level, data items must be clustered into

records for efficient data processing. Even at the logical level, it is still relevant and

useful to think of attributes which cluster around and describe entities, whether the

attribute items are considered as part of entity records or as individual object domains. It

is relatively unimportant whether the design activity starts with records which are

decomposed to analyze inter item relationships, or starts with object domains which are

clustered to form records. In practice a designer will do both. It is important that certain

rules and concepts be applied in the design process. Early formation of records is

dangerous only if it inhibits the designer from properly analyzing intra record relation­

ships among data items, and from considering alternative groupings of items into records

-Ideally, the formation of records should be part of the implementation phase of database

design since it is done primarily for system convenience and processing efficiency. In

fact, it is desirable to have software tools to perform the clustering, leaving the designer

to concentrate on defming the individual data objects, relationships, and performance
factors and constraints.

In a strict application of the object-relation approach to logical design, all object

domains are treated equally. In the E-A-R approach, attention is initially focused on

entities, then on the attributes of those entities, which may tum out to be other entities.

In fact, the distinction between attributes and entities is often confusing and arbitrary

Again, regardless of the approach taken, it is important for the designer to focus

attention on the more important parts of the users' world being modeled in the data

structure. This is automatically done in the E-A-R approach but can also be done in the

0-R approach. The designer needs a high level of abstraction when developing a data

structure and may start out by representing the main entities as boxes labeled with a
name only.

1.5. Rules To Guide Logical Database Design

Even though there is no widespread acceptance of any particular design

methodology, there is general recognition of many underlying rules and concepts used in

logical database design. They relate to conceptual design and part of implementation

design.
A good database designer will generally know these rules and apply them, often

intuitively, wherever they are relevant in the process of developing, checking, and

refining a database design.
The following rules are presented here in a reasonably logical order, but there is

no implication that they should be applied in any strict sequence. There is also no

implication that these rules are sufficient or complete for the database design task. While

progress is being made in formalizing the principles and process of database design, it

still depends heavily on human intelligence and experience. Even experienced designers

can arrive at different database designs, which purport to model the same user

environment.

ENTITY: Clearly identify the entities to be represented in the database. An entity is any

object (person, place, thing), event, or abstract concept within the scope of interest about

which data is collected. An entity is the object of decisions and actions within an

organization. Entities are the pivotal elements in a data structure and must be well

defined. Staff out by focusing on the main entities, gradually expanding the logical data

structure view to include related entities. When looking at an existing database, clearly

define the primary entity, which is described in each file (record type).

INCLUSION: Specify the criteria for including (or excluding) entity instances from a

defined class of entities. The ENTITY rule names a class of entities and the

INCLUSION rule specifies the conditions for membership in that class. For example,

does the EMPLOYEE entity class include managers, job applicants, rejected job

applicants, those fired or laid off, those who quit, or employees on definite or indefinite

leave'? Consideration of these other "EMPLOYEES" may suggest broadening the name

of the entity class, or it may give rise to another entity class. Narrowing (sub setting) or

broadening the definition of the entity class represents movement along the

generalization hierarchy.

10

ATTRIBUTE: Identify the attributes of each entity. Initially focus on the major

attributes of each entity. Some will be clear and obvious, some will seem to be artificial,

and some may also relate to other entities. Include all attributes, which assist in

understanding the nature of the entity being described. Include at least one attribute from

each set of similar attributes.

ATTRIBUTE CHARACTERISTICS: Define the characteristics of each attribute.

Clearly define the characteristics of each attribute. Initially focus on name, type, (size),

existence, uniqueness, and some indication of the nature of the value set. When

describing an existing database, specify any encoding of data item values. Description of

other characteristics can be deferred until later in the database design process.

Eventually plan to describe one attribute per page in the fmal database documentation.

DERIVED ATTRIBUTE: Identify and defme derived attributes. The values of an

attribute may be derived from the values of other attributes in the database. Specify the

derivation rule, which may be an expression for a derived item or a statistical calculation

across instances of an entity type or a repeating group.

IDENTIFIER: Designate the attribute(s), which uniquely identify entity instances in

each entity class. An entity identifier may be a single attribute (EMPNO) or multiple

attributes (UNIT and JOECODE for POSITION). There may be multiple identifiers for

the same entity (EMPNQ and SOCIAL SECURITY NUMBER). Indicate if the

identifier is not guaranteed to be unique. The identifier can be a good clue to

understanding the nature of the entity described in an existing file.

RELATIONSHIP: identify the primary relationships between entities.

RELATIONSHIP CHARACTERISTICS: Define the characteristics of interentity

relationships, particularly exclusivity and exhaustibility (or dependency). Exclusivity

refers to whether instances of one entity type can be related to at most one or more than

one instance of another entity type. Since it is defined in both directions there are four

possibilities: 1:1. l:Many, Many: I, Many: Many. Exhaust stability (also called

dependency or personality) specifies whether or not an instance of one entity type must

be related to an instance of another entity type. Indicate if there is some condition on the

dependency of a relationship. Also indicate if there is some minimum or maximum

11

12

cardinality on the "many" side of a relationship. (See section 6.3.3 for more detail on

these characteristics.)

FOREIGN IDENTIFIER: indicate the basis for each relationship by including, as an

attribute in one entity type, the identifier from each related entity type.' Every

relationship is based upon common domain(s) in the related entity records. At the logical

level, it is necessary to include the identifier of a related entity as a foreign identifier. In

the storage structure, if the common domain is not explicitly stored in a related record,

then some form of physical pointer is necessary to represent the relationship.

DERIVED RELATIONSHIPS: Suppress derived relationships. The logical database

design should not include relationships, which can be derived from other relationships.

For example, it is reasonable to think of organizational units as possessing a pool of

skills. Furthermore, such information can be retrieved from the database. However, such

a relationship should not be defined since it is derived from the ORGANIZATION­

EMPLOYEE relationship and the EMPLOYEE-SKILL relationship. An organizational

unit only possesses skills because it has employees who possess skills.

REPEATING GROUP: isolate any multi-valued data item or repeating group of data

items within a record. This rule ensures that a record only contains atomic (single­

valued) data items, thus allowing only flat files. This is also called first normal form.

The real importance of this rule is to force the designer to explicitly recognize a

"something-to-many" relationship and possibly a new entity type. If a repeating group of

data items becomes a new entity record type, the identifier of its parent record must

propagate down into the new record. If the relationship was actually many-to-many, the

propagated identifier becomes part of the identifier of the new record; if the relationship

was one-to-many, the propagated identifier becomes a foreign identifier in the new

record (but not part of the identifier). Multi-valued data items or nested repeating groups

of data items may be included in the storage structure of a record.

PARTIAL DEPENDENCY: Each attribute must be dependent upon the whole record

(entity) identifier. An attribute that is dependent upon only part of the identifier should

be removed from the record, and placed in a record where that part of the identifier is the

whole identifier. Suppose we had a record with the following data items: EMPNO,

SKILLCODE, SKILL DESCRIPTION, and PROFICIENCY. The identifier would have

to be the first two data items jointly since PROFICIENCY relates to both of them

together. However, DESCRIPTION relates only to the SKILLCODE and, therefore,

should not be in this record. A record with no partial dependencies is said to be in

second normal form.

TRANSITIVE DEPENDENCY: Each attribute within a record must be directly

dependent upon the entity identifier. Any attribute, which is not directly dependent upon

the record identifier, should be removed from the record, and related directly to the

object on which it is functionally dependent. For example, if the EMPLOYEE record

contained UNIT and BOSS, and the employee was moved to another organizational unit,

it would not be sufficient to update the employee's UNIT-the BOSS data item would

also have to be changed. The update anomaly results because BOSS is directly

dependent upon UNIT and not EMPNO. BOSS does not belong in the EMPLOYEE

record even if processing is faster and easier; it belongs in the ORGANIZATIONAL

UNIT record. A record with no partial or transitive dependencies is said to be in third

normal form. Restated: An attribute should be dependent upon the identifier, the whole

identifier, and nothing but the identifier.

Application of the previous three rules to arrive at third normal form requires an

examination of every attribute in a record. A record not in third normal form produces

undesirable update anomalies. To identify these anomalies, the designer can ask; If a

given attribute is updated, what other attributes must change, or if another attribute is

updated, what effect will it have on the given attribute?

NAMING: Assign names to entities, attributes, and relationships using a consistent,

well-defined naming convention. When describing an existing database, watch for

naming inconsistencies- different names for the same object, or the same name used to

refer to different objects.

STORAGE & ACCESS: Suppress any consideration of physical storage structures and

access mechanisms in describing the logical structure of the data. This includes any

stored ordering on the records in a file, and whether or not a data item is indexed. Do not

be concerned with questions of how to find or access a particular record in a file,

13

perhaps along a relationship Remember, all relationships are inherently bi-directional.

14

Chapter 2
DELPHI PROGRAMMING LANGUAGE

Borland Delphi is an object-oriented, visual programming environment for rapid

development of 32-bit applications for deployment on Windows and Linux. Using

Delphi, you can create highly efficient applications with a minimum of manual coding.

Delphi provides a comprehensive class library called the Visual Component

Library (VCL), Borland Component Library for Cross Platform (CLX), and a suite of

Rapid Application Development (RAD) design tools, including application and form

templates, and programming wizards. Delphi supports truly object-oriented

programmmg.
This chapter briefly describes the Delphi development environment and how it

fits into the development life cycle.

2.1. Creating projects
All of Delphi's application development revolves around projects. When you

create an application in Delphi you are creating a project. A project is a collection of

files that make up an application. Some of these files are created at design time. Others

are generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the

Project Manager. The Project Manager lists, in a hierarchical view, the unit names, the

forms contained in the unit (if there is one), and shows the paths to the files in the

project.
Although you can edit many of these files directly, it is often easier and more

reliable to use the visual tools in Delphi.
At the top of the project hierarchy, is a group file. You can combine multiple

projects into a project group. This allows you to open more than one project at a time in

the Project Manager.
Project groups let you organize and work on related projects, such as applications

that function together or parts of a multi-tiered application. If you are only working on

one project, you do not need a project group file to create an application.

Project files, which describe individual projects, files, and associated options,

have a .dpr extension. Project files contain directions for building an application or

shared object. When you add and remove files using the Project Manager, the project

15

file is updated. You specify project options using a Project Options dialog which has

tabs for various aspects of your project such as forms, application, compiler. These

project options are stored in the project file with the project.

Units and forms are the basic building blocks of a Delphi application. A project

can share any existing form and unit file including those that reside outside the project

directory tree. This includes custom procedures and functions that have been written as

standalone routines.

If you add a shared file to a project, realize that the file is not copied into the

current project directory; it remains in its current location.. Adding the shared file to the

current project registers the file name and path in the uses clause of the project file.

Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the

project reside.

2.2. Code Editor

Delphi Code editor is a full-featured ASCII editor. If using the visual

programming environment, a form is automatically displayed as part of a new project.

You can start designing your application interface by placing objects on the form and

modifying how they work in the Object Inspector. But other programming tasks, such as

writing event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their

properties can be viewed and edited as text in the Code editor. You can adjust the

generated code in the Code editor and add more components within the editor by typing

code.

As you type code into the editor, the compiler is constantly scanning for changed

and updating the form with the new layout. You can then go back to the form, view and

test the changes you made in the editor and continue adjusting the form from there.

The Delphi code generation and property streaming systems are completely open

inspection. The source code for everything that is included in your final executable file­

all of the VCL objects, CLX objects, RTL sources, all of the Delphi project files can be

viewed and edited in the Code editor.

16

2.3. Understanding Datasets

The fundamental unit for accessing data is the dataset family of objects. Your

application uses datasets for all database access. A dataset object represents a set of

records from a database organized into a logical table. These records may be the records

from a single database table, or they may represent the results of executing a query or

stored procedure.
All dataset objects that you use in your database applications descend from

TDataSet, and they inherit data fields, properties, events, and methods from this class.

This chapter describes the functionality of TDataSet that is inherited by the dataset

objects you use in your database applications. You need to understand this shared

functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and

methods are virtual or abstract. A virtual method is a function or procedure declaration

where the implementation of that method can be (and usually is) overridden in

descendant objects. An abstract method is a function or procedure declaration without

an actual implementation. The declaration is a prototype that describes the method (and

its parameters and return type, if any) that must be implemented in all descendant dataset

objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an

application without generating a runtime error. Instead, you either create instances of the

built-in TDataSet descendants and use them in your application, or you derive your own

dataset object from TDataSet or its descendants and write implementations for all its

abstract methods.

TDataSet defines much that is common to all dataset objects. For example,

TdataSet defines the basic structure of all datasets: an array of TField components that

correspond to actual columns in one or more database tables, lookup fields provided by

your application, or calculated fields provided by your application. For information

about TField components, see Chapter 19, 'Working with field components."

17

2.3.1 Opening And Closing Datasets

To read or write data in a dataset, an application must first open it. You can open

a dataset in two ways,

• Set the Active property of the dataset to True, either at design time in the Object

Inspector, or in code at runtime:

Cust'Iable.Active : = True;

• Call the Open method for the dataset at runtime,

CustQuery. Open;

When you open the dataset, the dataset first receives a Be/ ore Open event, then it

opens a cursor, populating itself with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can

read the data and navigate through it. You can close a dataset in two ways,

• Set the Active property of the dataset to False, either at design time in the Object

Inspector, or in code at runtime,

CustQuery.Active := False;

• Call the Close method for the dataset at runtime,

CustTable.Close;

Just as the dataset receives BeforeOpen and AfterOpen events when you open it,

it receives a BeforeClose and AfterClose event when you close it. handlers that respond

to the Close method for a dataset. You can use these events, for example, to prompt the

user to post pending changes or cancel them before closing the dataset. The following

code illustrates such a handler:

procedure TForml. CustTable VerifyBeforeClose(DataSet: TDataSet);

begin

if {CustTable.State in [dsEdit, dslnsertj) then begin
case MessageDlg{'Post changes before closing?', mtCorifirmation, mbYesNoCancel, OJ
of

mr Yes: CustTable.Post; { save the changes}

mrNo: CustTable.Cancel; { abandon the changes}

mrCancel: Abort; { abort closing the dataset}

end;

end;

end;

18

2.4. Developing The Application User Interface

With Delphi, you design a user interface (UI) by selecting components from the

component palette and dropping them onto forms. You get the components to do what

you want by setting their properties and coding their event handlers.

2.4.l Controlling application behavior
Tnpplication, TScreen, and TForm are the classes that form the backbone of all

Delphi applications by controlling the behavior of your project. The TApplication class

forms the foundation of an application by providing properties and methods that

encapsulate the behavior of a standard program. TScreen is used at runtime to keep track

of forms and data modules that have been loaded as well as maintaining system-specific

information such as screen resolution and available display fonts.

Instances of the TForm class are the building blocks of your application's user

interface. The windows and dialog boxes in your application are based on TForm.

2.4.2 Using The Main Form
TForm is the key class for creating GUI applications. When you open Delphi

displaying a default project or when you create a new project, a form is displayed on

which you can begin your UI design.
The first form you create and save in a project becomes, by default, the project's

main form, which is the first form created at runtime. As you add forms to your projects,

you might decide to designate a different form as your application's main form. Also,

specifying a form as the main form is an easy way to test it at runtime, because unless

you change the form creation order, the main form is the first form displayed in the

running application.

To change the project main form,

1. Choose Projectltjptions and select the Forms page.

2. In the Main Form combo box, select the form you want to use as the project's main

form and choose OK.
Now if you run the application, the form you selected as the main form is

displayed.

19

Adding forms
To add a form to your project, select FilelNew Form. You can see all your

project's forms and their associated units listed in the Project Manager (ViewjProject

Manager) and you can display a list of the forms alone by choosing ViewjForms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any

other units in the project. Before you can write code that references the new form, you

need to add a reference to it in the referencing forms' unit files. This is called form

linking. A common reason to link forms is to provide access to the components in that

form. For example, you'll often use form linking to enable a form that contains data­

aware components to connect to the data-access components in a data module. To link a

form to another form,

1. Select the form that needs to refer to another.

2. Choose FilejUse Unit.

3. Select the name of the form unit for the form to be referenced.

4. Choose OK.
Linking a form to another just means that the uses clauses of one form unit

contains a reference to the other's form unit, meaning that the linked form and its

components are now in scope for the linking form.

A voiding circular unit references
When two forms must reference each other, it's possible to cause a "Circular

reference" error when you compile your program. To avoid such an error, do one of the

following:
• Place both uses clauses, with the unit identifiers, in the implementation parts of the

respective unit files. (This is what the FilelUse Unit command does.)

• Place one uses clause in an interface part and the other in an implementation part.

(You rarely need to place another form's unit identifier in this unit's interface part.), Do

not place both uses clauses in the interface parts of their respective unit files. This will

generate the "Circular reference" error at compile time.

You can prevent the main form from displaying when your application first starts

up. To do so, you must use the global Application variable (described in the next topic).

To hide the main form at startup,

20

1. Choose Projectlview Source to display the main project file.

2. Add the following lines after the call to Application.CreateForm and before the call to

Application. Run.

21

Chapter T.hrt:e
HOW IS THE SYSTEM WORKS

In this chapter I will describe how the system will deal with the customers who

come to the hotel to have a room or to visit their relatives or friends. The system will

also describe the different processes toward those customers from the reservation till the

payment of their bills.

3 .1. Main Menu

The main menu of the 'Near East Hotel' system software is consisting of

six submenus beside the 'Close' button as follow:

1. Reception.
·"I Reservation. L...

3. Registration.

4. Rooms.

5. Employees.

6. Accounts.

The main menu and its main submenus are shown in figure 3.1. At the bottom of

the main menu there is an animated text showing some information about the program

writer.

Figure 3.1. The main menu.

22

3 2 R ~ +~~ 1\,,f - •• . . e\,;epuvn 1ne11u
When new customer or visitor comes to the hotel, he/she will meet firstly the

receptors who will help him/her and find all the solutions to their queries. The receptors

will do that using the data available in the reception menu. Reception menu consists of

four submenus and the 'Close' button that will return you to the main menu (see figure

3.2). the submenus of the reception menu are as follow:

1. Phone List

2. Search.

3. Confirmation.

4. Lists.

Near East Hotel

Figure 3.2. The reception menu.

3.2.1 Phone List
The receptor will use this window, which is contains the telephone numbers of

all the staffs working on the hotel and all the different departments telephone numbers

are here as well. As you can see in figure 3.3, the receptor cannot add more numbers but

he can change numbers as needed.

23

Near East Hotel

M-oe, L_ _ ____:51~
Vice [. . 616

E~) __ 7_17J
Rooms J 818!

Register [_ ~19

Reseivalim I . ~'!

Accounts I_ ~
Restai.ranl f 440 :,
AclivmM I

Figure 3.3. The hotel phone numbers.

3.2.2 Search Menu
As shown in figure 3.4 the search menu contains three submenus as follow:

1. Customer Name.

2. Room Number.

3. Employee Name.

Near East Hotel
Search By:

Figure 3.4. The search menu.

24

Search By Customer Name

As shown in figure 3.5 the search engine here is very sensitive, as well as you

write the first letter only the names beginning with that letter will be shown in the list.

The receptor will know in which room the resident leave and when he will leave the

hotel.

Near East Hotel

Figure 3.5. Search by customer name.

Search By Room No

It is useful to have the room no when ever you want it. As soon as you write

down the room no the indicator will be indicating to the such room no. The search by the

room no is shown in the figure 3.6.

I .r Search hy Customer Surname .c,Yt?\\:,,~.

Near East Hotel
l'~Bya-~,~- "

Figure 3.6. Search by room no.

25

Search By Employee Name

In the case any of the employees has a visitor or if we need some information

about one of our employees we will use this search engine to find about him. The

employee name will change during writing the letters, so we can find all the employees

starting with any letter. The employee search engine is show in figure 3.7. And figure

3.8 showing the same thing after writing one letter more.

--- --- - --- ~n• ,r Search Bv Employee Name , ,·'

Near East Hotel

.E~ !Name
-~I 7002 IAHMAD ALI

7004!ANAS MEHMET

Figure 3.7. Search by employee.

Near East Hotel

2222323 I 11111 l200l
Occ-date

Figure 3.8. Search by employee after writing one more letter.

3.2.3 The Confirmation Submenu
In this window the receptor can dedicated weather the coming person has a

confirmation or not. Unconfirmed customers are not allowed to have a room in the hotel.

The receptor will simply write down the reservation no then the program will tell if this

person has confirmation or not and also the program will show the name and surname of

that person. The confirmation window is shown in the figure 3.9. . -

26

Near East Hotel

~-r.
CeafinudM @ I,

Name

s-

Figure 3.9. The confirmation window.

3.2.4 The Lists Submenu
The lists submenu is containing some queries that may come into consideration.

Figure 3.10 show that the lists submenu is consisting of two submenu beside the "close"

push button that will return you back to the reception menu. These two submenus is:

1. Rooms.

2. Reservation.

Near East Hotel

![:=:~:~:~:· ·:~~Rooms~:~~:.·~:::::· ~~::::JI
- Reservation I

Close]

Figure 3.10. The lists submenu.

27

Rooms Lists
Inside this submenu the receptor will find some very useful queries about the

rooms that help customers choose the suitable room and also help controlling the rooms.

The rooms submenu contains the following lists:
1. All Rooms List: when this button pressed all the rooms in the hotel will be

displayed (see figure 3.11).

---------- @
R nr,, t ct ._ ·,_ :lm-· ',,,. ~,,!&--"'"'!"

Near East Hotel mAU~= R,,.,. ••• Rmmu
ii 3 • Empty Rooms

I(Che I BackTnMenu

ROOIIHID RIICIIII-\IP8 ~ Alane-no swaii:in- ,.-
•• 100 SINGLE 10 200 EMPTY r 101 SINGLE 20 300 EMPTY

102 DOUBLE 400 400 CONARMEI

103 SIN6l.E 100 421 OCOJPIED

104 DOUBLE 210 521 CONARMEC '-
116 SINGLE 100 3J2 EMPTY I1C

1tli SINGLE 111 325 RESEf\'IIED

~

Figure 3 .11. All the room list.

2. Reserved Rooms List: when this button pressed the reserved rooms only will

appear at the list. This will help the hotel manager to manage his rooms (see

figure 3.12).
-- - - ~-"r. ~

Near East Hotel

m 1 AR Rooms 11n.·-R.- 3 . EmJ>ty Rnon\$

a.- Bat:k To Menu

IR.,.,...._"IR~ 1Roont1]1ice 1- IS..-. I
~ 106IS1NG1.£ 1 __ 1111 325 JRESERIIED I -

---·- - -- -· -- - --- --

· Figure 3.12. The reserved rooms list.

28

1lnr·t•I• _,:~

Rooms Lists
Inside this submenu the receptor will find some very useful queries about the

rooms that help customers choose the suitable room and also help controlling the rooms.

The rooms submenu contains the following lists:

1. All Rooms List: when this button pressed all the rooms in the hotel will be

displayed (see figure 3.11).

All Rooms

~I Rese. t'\l'ed Rooms
Empty Rooms

Close Back To Menn -
•I 100 !SINGLE 101 200!£MPlY

tot !SINGLE 201 3001£MPlY
102 IDOUBLE I 400
103 \SINGI.£ I 100
104 IDOUBLE I 210
116\SINGLE I 100
lOilSINGLE m

f;,. --
Figure 3.11. All the room list.

28

2. Reserved Rooms List: when this button pressed the reserved rooms only will

appear at the list. This will help the hotel manager to manage his rooms (see

figure 3.12).

- - - !il ··~ -~

Near East Hotel

ti- 1 All Rooms IR··-M~-· Em.pcy Rooms
Bat:k Tn Menu

1,ROOIIH'IO IA~ 1~1-1-. I
•1 106\SINGlE J 1111 325IFE~

--· -·-- --·- - -- ·- ------ -

· Figure 3.12. The reserved rooms list.

3. Empty Rooms List: when this button pressed only empty rooms will be listed,

this will help new customers to know about the empty rooms (see figure 3.13).

Near East Hotel

1fi. All Rnoms 2 Reserved Rooms
rr, Empty Ro<1ms

· Close Back To Menu
!!!!I

•I lOOISINGLE 101 200IEMPTY
101 ISINGLE 201 300\EMPTY
105\SINGI..E 312lEMPTY 100

Figure 3.13. Empty rooms list.

Reservation Lists

Inside this submenu the receptor will find some very useful queries about the

reserved customers and their rooms that they reserved. The reservation submenu

contains the following lists:

1. Reserved Customers: when pressing this button the list of all reserved customers

will displayed (see figure 3.14).

1;:'.i;;, •• .;111_11,L:1::. ~~j::.. -·
Near East Hotel

! , ! Reserved Customers
2 Confi:nnaed Custtllfters
3 Male Reserved Customers

Close Back Tti Menu

R-
.,_ s-- N~ • 1001 HAIWI SUK.UR M 34 TURKEY

1002 MANSOOR l<HAUD M 23 SUDAN
1003 1iSE ozrumo:. F 23 TURKEY
1004 MUSA TE KER M 23 TURKEY

j
~ 1

;j

'
~l:J :- ,,,?'.;,.• --" '!!£a

Figure 3 .14. The reserved customers 1ist.

29

2. Confirmed Customers: when this button pressed only the customers who

confirmed their reservation will appear (see figure 3 .15).

Near East Hotel

I Reserved Customers

~

Conf"innaed Customers
Male Reserved Customers

Back To Menu

1002lMANSOOA

p..,Ji.
•I 1001 IHAIWI M 34ITUAKEY 011

Z!ISUDAN

Figure 3.15. Confirmed customers list.

3. Male Reserved Customers: When this buttons pressed only male customers who

reserved in the hotel will appear (see figure 3.16).

Near East Hotel

1
Reserved Customers

Ji Confirmaed Customers
Male Reserved Customers

Baik To Menu

1004IMUSA TE KER M ZIITURKEY

>I 1001 IHAKAN M 3CITURKEY
1002 IMANSOOR M 23ISUDAN

Figure 3.16. Male reserved list.

30

3.3. Reservation Form
When new customer wants to get a room at ''Near East Hotel" he/she first

has to
reserved and even though it is not enough for him/her to get a room, it is necessary also

to have a confirmation as well.
The customer will get a reservation id and all his information will be recorded to

the reservation table. This information will help the employees to deal with this

customer, for example the confirmation window takes its information from this table,

and also the reservation different lists takes its information from this table.

The reservation entrance form is shown in figure 3 .17. Note that at the bottom of

the form the room information comes automatically when ever you write the room

number.

3.4. Registration Form

Near East Hotel
Res-no 1 , OOf r
Nane jMUS/1. .

s-J:r.~-!,.. •
Gender EI

NJ/IJ r:=:J~:
NaliJnal\, jTURl(EY __ J
Pass-nrl ,~ .. ,

Mhss f:i#i -
Phone [- i,

RMdale jnmn@l
o.ck-ri j11.'1112Wl0

0m...-... 111·112/21Dl
Clll'llilned ~
R- ,...I =--.-_,

Figure 3.18. Reservation entrance form.

This form helps entering information about the customer who want to get in to

the hotel. After ensuring this customer has a confirmed reservation then the customer

will get a registration id. After entering his registration id and reservation id the rest of

his details will come from the reservation table the only new entrance will be the today

date and the date ofleaving and some times the room no.

31

Note that when the room number is entered the room details will appear. The

registration form shown figure 3.19. Note that there is a confirmation button that let us

ensure if the customer has confirmation or no (See figure 3.20).

It is also important to say that all the information entered through this form will

be stored in a separate table called ''register.db".

Near Esat Hotel

Regno!ffl!I ~, •..... --
Name[~

s-jsuKUR _
Germ~ - -- -

Ag& I 34
N....., jTURKEY_
Pan-ro lD11101
Adoteu~
Phone 1 . 52151

, __J

Laa-,,e-dale f2112r.ml

Roontftl I 100

Figure 3 .19. Registration entrance form.

Near Esat Hotel

Rl!!lffl f 1.!IJI --­ Re MMi& fot:-:.;

Ni, Near East Hotel
Sun
Ga,

Naliorl

Pas
t

Add
I

"'"1
eta;

L_..l
~~ . I

R!JOlftffl I 100, I aamwxs I
a-. I

Figure 3.20. Registration entrance form after pressing the confirmation button.

32

3.5. The Rooms Form
All the information related to any of the different rooms in the hotel is entered

through this form that shown in figure 3.21. The information will stored in a separate

table called "rooms".

Near East Hotal

RoomNol ---~

Room Type l !°'' SINGLE
Room Pri:e I ri o.oo -== ·- ii·

Swationj@IGtJI
'OCCUPIED
RESERVED

"'''~MPI'I'

Figure 3 .21. Rooms entrance table.

3.6. The Employees form
This form help entering all the information related to the employees those who

work in the hotel. This information can be use by the manager to best control his

working processes and his budget as well, by knowing their salaries.

Near East Hotel
E~No~ _ _J

N-,~ _J
s- jMEHMET _ __ j'

•L-~I -
Gender Elf
Phone 1""'"'"'-2222323-~1''

HmgOa Ll_1111r.m:1:;­
Mnss j ~~ =

Figure 3.22. The employees entrance form.

33

All this information will stored in a separate table to facilitate get any data easily.

The employees entrance form sown in figure 3.22.

3.7. The Accounts Form
All the financial operations will be done here through this form. The accounts

form is show in figure 3.23. Any customers who get a room at a hotel should get an a

count number. First the account number will be entered then his/her registration id,

when the "reg-id" is entered the reservation id will be appeared automatically and when

the "res-id" is entered all the customer personal information will appear. The customer

"check-in" date will come automatically from the registration table, then we should enter

his leaving date the program will calculate the difference between these two dates and

will show who many days the customer stay in the hotel. Then, other money that he/she

paid for the restaurant and different activities should entered and when the "Calculate

Total" button is pressed the total amount will be calculated.

Figure 3.23. The accounts form.

34

Chapter Four
THE SOFTWARE CODE

The previous chapter has been describing how is the system works, that means

how the system deal with customers, employees and even visitors. This chapter will

describe in brief how the code written and I will concentrate on the new ideas during

writing the software code, the forms generated automatically by the Delphi Compiler

will not taken in consideration.
The program has been written using Delphi Programming Language, which is a

user friendly computer language and its code is written in Pascal Programming

Language. In the next sections I will describe each part separately starting from the main

menu.

4.1. Main Menu
The main menu of the 'Near East Hotel' system software is a collection of

Seven "Push Buttons", each of these buttons hold an address to specific form. For

example to run a registration form the following procedure is considered:

procedure TMain. Button3Click(Sender: TObject);
begin
regist.show
end;

pml ActiveX ' :w.~

a-~r=
ea1atte page: ~. E
Uritdr ..-: 1§\Progam Fias\Borland\D~~'..J

~ ~ ~l.f'Hl)\U,;#)El.PHII\Bn1{DELPHl~r:J

Figure 4.1. How to add an Shockwave component.

35

The nice thing that comes when you run the main menu is the animation that

gives a beautiful look to the main menu. This animation have been done in Flash

Application, and to use in Delphi you have first to add its component (see figure 4.1).

In Delphi "tool bar" there a "Component" dropdown menu choose "Import

Activex" then choose "Sockwave Flash (vertion I)" then choose "Add" and "Ok".

The full code of the main menu is written bellow:

unit main_ menu;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
OleCtils, ShockwaveFlashObjects _ TLB, StdCtrls;

type
TMain = class(TForm)
ShockwaveFlashl: TShockwaveFlash;
Button I: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
Buttons: TButton;
Button6: TButton;
Button?: TButton;
procedure Button7Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Button5Click(Sender: TObject);
procedure Button6Click(Sender: TObject);
procedure ButtonlClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;
var
Main: TMain;
implementation
uses reserve, room, accounts, register, employee, recept;
{$R *.DFM}
procedure TMain.Button7Click(Sender: TObject);
begin
close
end;
procedure TMain.Button2Click(Sender: TObject);
begin
resl.show
end;

36

procedure TMain.Button3Click(Sender: TObject);
begin
regist.show
end;
procedure TMain.Button4Click(Sender: TObject);
begin
rooms.show
end;
procedure TMain.ButtonSClick(Sender: TObject);
begin
empt.show
end;
procedure TMain.Button6Click(Sender: TObject);
begin
account 1. show
end;
procedure TMain.Button 1 Click(Sender: TObject);
begin
recep.show
end;
end.

4 .2. Reception Menu
The reception menu is a collection of 4 "Push Buttons", each of these buttons has an

address to specific form. The unit describing this menu is shown bellow:

unit recept;

interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls;

type
Trecep = class(TForm)
Button 1: TButton;
Button2: TButton;
Button3: TButton;
Button4: TButton;
Label 1: TLabel;
Buttons: TButton;
procedure ButtonSClick(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }

end;

37

var
recep: Trecep;

implementation
uses sname, ssurname, sroomno, employee, semp, phone, confirm, search,
report;
{$R *.DFM}
procedure Trecep.Button5Click(Sender: TObject);
begin
close
end;
procedure Trecep.ButtonlClick{Sender: TObject);
begin
phone 1. show;
end;
procedure Trecep.Button2Click(Sender: TObject);
begin
searchl .show;
end;
procedure Trecep.Button3Click(Sender: TObject);
begin
confirm 1. show;
end;
procedure Trecep.Button4Click(Sender: TObject);
begin
rep.show;
end;
end.

4.2.1 Search Menu
The search menu contains three submenus linked to the menu by "Push Buttons"

just like the reservation menu, these submenus are:

1. Customer Name.

2. Room Number.

3. Employee Name.

Search By Customer Name
The search by customer name is written using SQL commands. In figure 4.2 it is

clear seen that we used one SQL component with the command:

select * from reservation.DB
which will select all the fields in the specific table. Then There are two Data Sources

when connected to the SQL and the other connected to the Tablel which is the

"reservation" table.

38

... ~ : : : : ~ : : : : : : : : : : : ' : : : . . ' -. ' . . . ' : : : : : ~ : ~ : : : : : : : : ; : : : : : : , ' ' ' ' . ' " ' ~ ' ·, ' -. . .. ~ ' .

Figure 4.2. Search by name.

In the text box the following code should be written:

unit sname;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Db, DBTables, Mask, DBCtrls, Grids, DBGrids, ExtCtrls;

type
Tsnamel = class(TForm)
DBGrid2: TDBGrid;
Namebox: TDBEdit;
cold: TTable;
Ql: TQuery;
DSQl: TDataSource;
DS 1: TDataSource;
Buttonl: TButton;
Labell: TLabel;
Label2: TLabel;
procedure Buttonl Click(Sender: TObject);
procedure NameboxChange(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure coldBeforePost(DataSet: TDataSet);
private
{ Private declarations }

public
{ Public declarations }

end;
var
sname 1: Tsname 1;

implementation
{$R *.DFM}
procedure Tsnamel.ButtonlClick(Sender: TObject);
begin
close
end;

, procedure Tsnamel.NameboxChange(Sender: TObject);

39

var
XStr, XSl, XS2: string[lOO];

begin
XStr:=UpperCase(NameBox.Text);
Q l .DisableControls;
QI.Close;
Q l .SQL. Clear;
XS 1 :='select * from reservation.DB D ';
Q l .SQL.Add(XS 1);
XSl:=' where (upper(Name) like"' +XStr+'%")';
Ql.SQL.Add(XSI);
XS 1 :=' order by Name';
Ql.SQL.Add(XSl);
QI.Open;
Q l .EnableControls;
end;
procedure Tsnamel.FormCreate(Sender: TObject);
begin
cold.Open;
end;
procedure Tsnamel .coldBeforePost(DataSet: TDataSet);
begin
Abort;
end;
end.

Search By Room No

In this search engine I have been used another strategy not like the one before,

here there is indicator indicates the place of the matched room no. as shown in figure 4.3

there is no SQL used in this form, only Data Source and Table.

i · .. " " · Room-no AOOlll1fll8 f : .. , .. • 100 SINGLE

) : : : : : : : : . 101 SINGLE
• · · , · 102 DOUBLE

~ IF'honlN,o ISilualian , .••
10 200 EMPTY
20 300 EMPTY

400 400 {l)NflRlf
'"' · · · · · · · µ 1U3IS1N6LE i 150 421 OIXl.lPIE : : : : : : : ~ . :![----~ ::::::~

""~~...C··~-!:.:,;c_.' ~-··'"''

Figure 4.3. Search by room no.

In the text box the following code should be written:

40

unit roomno;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Db, DBTables, StdCtrls, Mask, DBCtrls, Grids, DBGrids;

type
Troomno 1 = class(TForm)
Label 1: TLabel;
Buttonl: TButton;
Tablel: TTable;
DataSource 1: TDataSource;
DBGrid 1: TDBGrid;
Button2: TButton;
edit 1: TEdit;
procedure ButtonlClick(Sender: TObject);

procedure FormCreate(Sender: TObject);
procedure coldBeforePost(DataSet: TDataSet);
procedure Button2Click(Sender: TObject);

private
str 1: string;

{ Private declarations }
public

{ Public declarations }
end;

var
roomno 1: Troomno 1;

implementation
{$R *.DFM}
procedure Troomnol.Form.Create(Sender: TObject);
begin
and;
procedure Troomno l .coldBeforePost(DataSet: TDataSet);
begin
Abort;
end;
procedure Troomno l .Buttonl Click(Sender: TObject);
begin
close
end;
procedure Troomnol.Button2Click(Sender: TObject);
begin
str 1 : =edit 1. text;

table l .Locate('Room-no' ,str 1, [lopartialkey]);
end;
end.

41

4.2.2 The Confirmation Form

As it is clearly seen in the figure 4.3 this form join two tables one as master and

the other as child. But these two tables are both the "reservation.db" table, a question is

that why don't we use this table only one time? Because we need after we write the

reservation id other information to come automatically.

Consider that only "res-id" text field connected to the master table other

information that we want to get automatically must be connected to the other table.

f Confirmation >~} .

: : : : : : : : Near East Hotel: : : : : : .: : .. ,. . ' . .. ~ ~ . . .• ~ •. . . .

........... ~.: .t_HAKAN~~~~
: : : :: : : : ~ : jsuKUR .. .]~ ' ~ , ...•... ·~ ..,.. ~ .. ' ~ ~

Figure 4.3. Confirmation form.

The confirmation code window is shown bellow:

unit confirm;
interface
uses
Windows, Messages, Classes, SysUtils, Graphics, Controls, StdCtrls, Forms,
Dialogs, DBCtrls, DB, Mask, DBTables, ExtCtrls;

type
Tconfirml = class(TForm)
Labell : TLabel;
Label4: TLabel;
Label2: TLabel;
Exit: TButton;
Label3: TLabel;
Label5: TLabel;
EditResno: TDBEdit;
EditConfirmed2: TDBEdit;
EditName2: TDBEdit;
EditSurname2: TDBEdit;
DataSource2: TDataSource;
Table2: TTable;
Table2Resno: TFloatField;
Table2Name: TStringField;
Table2Surname: TStringField;

42

Table2Confinned: TStringField;
DataSource 1: TDataSource;
Tablel: TTable;
Table lResno: TFloatField;
TablelName: TStringField;
Tablel Surname: TStringField;
Table 1 Confirmed: TStringField;
procedure FormCreate(Sender: TObject);
procedure ExitClick(Sender: TObject);
private
{ private declarations }

public
{ public declarations }

end;
var
confirml: Tconfirml ;

implementation
{$R *.DFM}
procedure Tconfirml.FormCreate(Sender: TObject);
begin
Table 1. Open;
Table2.0pen;

end;
procedure T confirm 1.ExitClick(Sender: TObj ect);
begin
close
end;
end.

4.2.3 The Lists Submenu
The lists form is a simple menu containing two "Push Buttons" for the rooms

lists and reservation lists.

Rooms Lists
This lists consisting of three components as seen in figure 4.4 these three

components are:
1. All Rooms List: when this button pressed all the rooms in the hotel will be

displayed. Here a simple SQL command written, this command is:

procedure TMainR. SQLi BtnClick(Sender: TObject);
begin
Qi Dtsabletlontrols;
QI.Close;
QJ.SQL. Clear;
XSQL:='SELECT * FROM Rooms.db';
Qi .SQL.Add(XSQL);
Qi.Open;

43

Ql.EnableControls;
end;

-·r Rooms Lists)lil'r,-- -

N·ear East Hotel

I _. . AllRooms m Res9n-ed Roams

Empty Rooms

Clllllll Back To M1!nu

II
ROCIIMID ~ RCJ1:1D111D1 Alanefto Silaon

~ 100 SINGLE ~ 10l__ 200 EMPTY
101 SINGLE liSQL TOBGridhoo EMPTY

103\SINGLE 150 421 IOCCUPIED
l02ID0UBLE 400 IWNARME'

104IOOUBLE 210 521 ICONFIRMEI
ns !SINGLE 100 312IEMPTY
1~IS1NGLE 111 325 IRESERVEO

Figure 4.4. Rooms Queries.

2. Reserved Rooms List: when this button pressed the reserved rooms only will

appear at the list. The following procedure is wrote to get the reserved rooms

only.
procedure TMainRSQL2BtnClick(Sender: TObject);
begin
QI .DisableControls;
QI.Close;
QJ.SQL.Clear;
XSJ:='SELECT * FROM Rooms.db';
XSQL:=XSI+' WHERE Situation LIKE "RESERVED"'; II added 2 strings rather than I
long string
QI.SQL.Add(XSQL);
QI.Open;
QI.EnableControls;

end;

3. Empty Rooms List: when this button pressed only empty rooms will be listed, To

get this list the following procedure should be written down:

procedure TMainR.SQL3BtnClick(Sender: TObject);
begin
QI. Disab/eControls;
Qi.Close;
Qi .SQL. Clear;
XSI:='SELECT * FROM Rooms.db';

44

XSQL:=XSJ +' WHERE Situation LIKE "EMPTY'''; II added 2 strings rather than
1 long string
Ql .SQL.Add(XSQL);
Ql.Open;
Ql .EnableControls;

end;

4.3. Registration Form
The registration form is a written using information from three different tables as

shown in figure 4.5, the code of the registration form is shown bellow:
t Beg,slerahon •. "i!Jlf,b"

....... "' ' . ' .. ' . ' , "' ' . ~ . ' ' . . . ' ' . . ' " .. ' ' '

...... ; .. , N E tH t , ,. ,. . : : : : : : : : : : : : : : : : : : ear sa o e : : : : : : : : : : .: : : : : : : · :
...... ·•. ' .. , '' .. ' -, •·· ' ' , ' '. ' , .. '.... ' '. '.' . - . • ,. . R~ I 1001:: : : : : : : : : : : : : : : : : i::::::: :_:,:_: : : : : : : : :

ResM I ,001.: : · • : : : : . :fil!:'.l+t1tr!!t:1P :f:F"l .• ~ lrEI .• : · • : : .
' : ~ : : . : : f!:j~.llll T',, ,m:I fl" : : : : : :
..... ~!~ . £: :::::::::::::::::::::::::::::: :::

S · ~UKUR 11 · · · · · · ' · · · · . · · ,. · '. · . ' •• I.B\IIIM. I • • ..•••• " • •• • " • .• , •. " " • .• • " ::::~~~~:~:::::::::::::::::::::::::::::;::::
::::.:::::~! 34i:::::::::::~:~:::::::;:;::::::::::::::; .~. • ..•..• "s~~~~~;; __ '.·.•:.·. ••·•· •.·.! . :\. · ••. •. i
m ~~·.:: ·F~ ,\ .m
I::::: MR~ .c ,~ I~ IPiionlHlo [SiuilliJn 1,:::: : : : : : : :
: : : : : ; _ l00\S1!li \ 10\ ~Pl'lY IL:>:::::'.

Figure 4.5. Registration entrance form.

unit register;
interface
uses
Windows, Messages, Classes, SysUtils, Graphics, Controls, StdCtrls, Forms,
Dialogs, DBCtrls, DB, DBTables, Mask, ExtCtrls, Grids, DBGrids;

type
Tregist = class(TForm)
Table2Resno: TFloatField;
Table2Name: TStringField;
Table2Sumame: TStringField;
Table2Gender: TStringField;
Table2Age: TFloatField;
Table2Nationality: TStringField;
Table2Passno: TStringField;
Table2Address: TStringField;
Table2Phone: TFloatField;
Table2Resdate: TDateField;

45

::;;;:R~:~~~;:;:~::C~'~
: : : ~ :~~t,.-:--~:::::::::: t~: {. $100.~ts:

Figure 4.6. The accounts form.

procedure Taccountl.Button2Click(Sender: TObject);

begin

Tab/el.Edit;

Table] ['genera/-
amount']: =table 1 ['total']+ tab/el ['restaurant']+ table 1 ['activities'];

Tab/el.Post;

end;

The accounts form has the following code:

unit accounts;
interface
uses
Windows, Messages, Classes, SysUtils, Graphics, Controls, StdCtrls, Forms,
Dialogs, DBCtrls, DB, DBTables, Mask, ExtCtrls;

type
Taccountl = class(TForm)
Table2Regno: TFloatField;
Table2Resno: TFloatField;
Table2Checkin: TDateField;
Table2Leavedate: TDateField;
Table2Roomno: TFloatField;
TablelAccno: TFloatField;
TablelRegno: TFloatField;
TablelName: TStringField;
Table 1 Surname: TStringField;
TablelRoomno: TFloatField;
TablelRoomprice: TCurrencyField;

48

DBNavigatorl: TDBNavigator;
Label3: TLabel;
Button 1: TButton~
Button2: TButton;
procedure FormCreate(Sender: TObject);
procedure ButtonlClick(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ private declarations }

public
{ public declarations }

end;
var
regist: Tregist;

implementation
uses confirm;
{$R *.DFM}
procedure Tregist.FormCreate(Sender: TObject);
begin
Tablel.Open;
Table2. Open;

end;
procedure Tregist.Button 1 Click(Sender: TObject);
begin
close
end;
procedure Tregist.Button2Click(Sender: TObject);
begin
confirm 1.show
end;
end.

4.4. The Accounts Form
All the financial operations will be done here through this form. The most

interesting thing in this form that this form takes its information from four different

tables, only the employee writes the accounts id and the registration id then all the

personal and financial information come automatically. The accounts form show in

figure 4.6.

When the "Calculate Total" button pressed the total that the customer should pay will

comes out. The calculation button has the following summation procedure:

47

Table2Checkin: TDateField;
Table2Checkout: TDateField;
Table2Confirmed: TStringField;
Table2Roomno: TFloatField;
TablelRegno: TFloatField;
TablelResno: TFloatField;
TablelName: TStringField;
Table 1 Surname: TStringField;
Table 1 Gender: TStringField;
TablelAge: TFloatField;
Table lNationality: TStringField;
TablelPassno: TStringField;
Table 1 Address: TStringField;
TablelCheckin: TDateField;
Table 1 Checkout: TDateField;
Table lLeavedate: TDateField;
TablelRoomno: TFloatField;
DataSourcel: TDataSource;
Tablel: TTable;
Table2: TTable;
DataSource2: TDataSource;
Table3: TTable;
DataSource3: TDataSource;
EditRegno: TDBEdit;
Label 1 : TLabel;
Label2: Tl.abel;
EditResno: TDBEdit;
Label 15: TLabel;
EditName2: TDBEdit;
EditSumame2: TDBEdit;
Labell6: TLabel;
Labell 7: TLabel;
EditGender2: TDBEdit;
EditAge2: TDBEdit;
Labell8: TLabel;
Labell9: TLabel;
EditNationality2: TDBEdit;
EditPassno2: TDBEdit;
Label20: TLabel;
Label21: TLabel;
EditAddress2: TDBEdit;
EditPhone: TDBEdit;
Label22: TLabel;
EditCheckin2: TDBEdit;
Label24: TLabel;
Label12: TLabel;
EditLeavedate: TDBEdit;
EditRoomno: TDBEdit;
Label 13: TLabel;
DBGridl: TDBGrid;

46

TablelNoofdays: TFloatField;
Table 1 Total: TCurrencyField;
Table I Restaurant: TCurrencyField;
Table 1 Activities: TCurrencyField;
Table 1 Generalamount: TCurrencyField;
DataSource 1 : TDataSource;
Tablel: TTable;
Table2: TTable;
DataSource2: TDataSource;
Label 1: TLabel;
EditAccno: TDBEdit;
EditResno: TDBEdit;
Labell3: TLabel;
Label3: TLabel;
Label4: TLabel;
Label 6: TLabel;
Label?: TLabel;
Label8: TLabel;
Label9: TLabel;
Label 10: TLabel;
Label 11 : TLabel;
EditGeneralamount: TDBEdit;
EditActivities: TDBEdit;
EditRestaurant: TDBEdit;
EditTotal: TDBEdit;
EditRoomprice: TDBEdit;
EditSumame: TDBEdit;
EditName: TDBEdit;
EditRegno: TDBEdit;
Label2: TLabel;
Label14: TLabel;
EditCheckin: TDBEdit;
Labell 5: TLabel;
EditLeavedate: TDBEdit;
EditRoomno2: TDBEdit;
Labell 6: TLabel;
EditNoofdays: TDBEdit;
DBNavigatorl: TDBNavigator;
Label5: TLabel;
Buttonl: TButton;
Table3: TTable;
DataSource3: TDataSource;
Table4: TTable;
DataSource4: TDataSource;
Button2: TButton;
Label 12: TLabel;
Label17: TLabel;
Label18: TLabel;
Labell 9: TLabel;
Label20: TLabel;

49

procedure FonnCreate(Sender: TObjecr);
procedure ButtonlClick(Sender: TObject);
procedure EditNoofdaysChange(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ private declarations }

public
{ public declarations }

end;
var
accountl: Taccountl ;

implementation
{$R *.DFM}
procedure Taccountl.FormCreate{Sender: TObject);
begin
Table l.Open;
Table2.0pen;

end;

procedure Taccountl .Buttonl Click(Sender: TObject);
begin
close
end;
procedure Taccount l .EditN oofdaysChange(Sender: TObj ect);
begin
//EditNoofdaysChange=EditLeavedate-EditCheckin;
end;
procedure Taccountl.Button2Click(Sender: TObject);
begin
Tablel.Edit;
//Table4 .Edit;
Table 1 ['general-amount']:=tablel ['total']+table I ['restaurant']+table I [activities'];
Tablel .Post;
//Table4.Post;
end;
end.

4 .5. Constructing a Package

The last step here is to construct the Package that help this program to work in

different computers the steps of constructing a package is as follow:

• Choose File

• ChooseNew

• Choose Package

• Choose Add

• Select your *.pas files

50

• Choose compile

The following code will wrote down after the operation finishing from packaging.

The code shows all units, forms and applications that uses in the "Near East Hotel":

program hotel;
uses
Forms,
phone in 'phone. pas' {phone 1},
confirm in 'confirm.pas' {confirml},
employee in 'employee. pas' {Emp l},
register in 'register. pas' { regist},
reserve in 'reserve. pas' { res 1},
room in 'room. pas' {Rooms},
sname in 'sname.pas' {snamel},
ssurname in 'ssurname. pas' { ssurnam},
semp in 'semp.pas' {sempl},
accounts in 'accounts.pas' {accountl},
main_ menu in 'main_ menu. pas' {Main},
search in 'search.pas' { searchl},
report in 'report. pas' {Rep},
recept in 'recept. pas' { recep},
roomreport in 'roomreport.pas' {MainR},
resreport in 'resreport. pas' {MainF};

{$R *.RES}

begin
Application.Initialize;
Application. CreateF orm(Tssurnam, ssurnam);
Application. CreateForm(TMain, Main);
Application. CreateF orm(Tconfirm 1, confirm 1);
Application. CreateForm(Taccount 1, accountl);
Application. CreateForm(Tsemp l, semp 1);
Application. CreateForm(TRooms, Rooms);
Application.CreateForm(TMainF, MainF);
Application.CreateForm(Tresl, resl);
Application. CreateForm(TRep, Rep);
Application.CreateFonn(TMainR, MainR);
Application. CreateForm(Tphone 1, phone 1);
Application. CreateF orm(Tregist, regist);
Application. CreateF orm(TEmp 1, Emp 1);
Application. CreateF orm(Tsname 1, sname 1);
Application. CreateForm(Tsearch 1, search I);
Application. CreateForm(Trecep, recep);
Application.Run;

end.

51

Chapter Five
STRUCTURED QUERY LANGUAGE (SQL)

The importance of the SQL is due to its popularity and the simplest

implementation and its powerful effecting on the database.

In this chapter, the main elements, main functions and general statements of the

SQL will be described.

I have wrote a separate chapter to the SQL because in the "Near East Hotel"

software application I have used SQL statements so many times to derive different

quenes.

Each topic contains a pseudo-code prototype of an SQL statement or part of a

statement that demonstrates the language element discussed. These prototype examples

appear at the beginning of topics. Actual SQL statements appear within topics that

demonstrate actual use of the language element discussed. Both the prototype and

example statements appear in Courier New font.

While the local SQL language itself is case-insensitive (language elements and

metadata object names), examples in this help file use the following convention to

differentiate between language and metadata objects. All language elements appear in

uppercase. Metadata names appear in lowercase. Correlation names appear in mixed

case.

5 .1. Optional Elements

Language elements that are available, but that do not have to be used with an

SQL statement for the statement to be valid appear in prototype syntax examples in

brakets ([and]). For example, in the line below, the DISTINCT keyword is optional.

SELECT [DIS11NCT] *

5.1.1 Syntax choices

When there is a choice between one of a number of possible syntax elements,

such choices will be listed in prototype syntax examples separated by the vertical bar

character(/). Unless also enclosed in brackets to make the group of choices optional, one

of the group of choices must be used in the statement. In the prototype syntax example

below, the SQL statement may include either the ASC or the DESC keyword, but not

52

keyword is optional.

ORDER BY column_reference [ASC I DESC]

5.1.2 Table Names

ANSI-standard SQL confines each table name to a single word comprised of

alphanumeric characters and the underscore symbol, "_". Local SQL, however, is

enhanced to support multi-word table names.

Local SQL supports full file and path specifications in table references. Table

references with path or filename extensions must be enclosed in single or double

quotation marks. For example:

SELECT*

FROM 'parts.dhf

SELECT*

FROM "c: \sample\parts.dbf'

Local SQL also supports BDE aliases in table references. For example:

SELECT*

FROM ":pdox:tablel"

If you omit the file extension for a local table name, the table is assumed to be the table

type specified in the BDE configuration. The default table type is specified either in the

default driver setting or in the default driver type for the standard alias associated with

the query.

Finally, local SQL permits table names to duplicate SQL keywords as long as those table

names are enclosed in single or double quotation marks. For example:

SELECT passid

FROM ''password"

5.1.3 Column Names

ANSI-standard SQL confines each column name to a single word comprised of

alphanumeric characters and the underscore symbol, "_". Local SQL, however, is

enhanced to support multi-word column names. Local SQL supports Paradox multi­

word column names and column names that duplicate SQL keywords as long as those

column names are Enclosed in single or double quotation marks prefaced with an SQL

53

table name or table correlation name. For example, the following column name consists

of two words:

SELECT E. ''Emp Id"

FROM employee E

In the next example, the column name is the same as the SQL keyword DATE:

SELECT datelog. "date"

FROM datelog

5.1.4 Date Formats

Local SQL expects date literals to be in a U.S. date format, MM/DD/YY or

MMIDDIYYYY. International date formats are not supported. To prevent date literals

from being mistaken by the SQL parser for arithmetic calculations, enclose them in

quotation marks. This keeps 1/23/1998 from being mistaken for l divided by 23 divided

by 1998.

SELECT*

FROM orders

WHERE (saledate <= "1/23/1998'')

Leading zeros for the month and day fields are optional. If the century is not specified

for the year, the BDE setting FOURDIGITYEAR controls the century. If

FOURDIGITYEAR is set to FALSE and the year is specified with only two digits, years

49 and less will be prefiex with 20 and years 50 and higher with 19. If For example, with

FOURDIGITYEAR set to FALSE, the SQL statement below returns rows where the

SaleDate column contains dates of “5/5/1980” or

“5/5/2030̶ l ;.

SELECT*

FROM orders

WHERE (saledate = "5/5/30'') OR (saledate = ''5/5/80'')

To query using years outside these bounds, specify the century in the date literal.

SELECT*

FROM orders

WHERE (saledate = "5/5/1930'') OR (saledate = ''5/5/2080'')

54

5.1.5 Time Formats
Local SQL expects time literals to be in the format hh:mm: ss AM/PM; where hh

are the hours, mm the minutes, and ss the seconds. When inserting new data with a time

value, the AM/PM designator is optional and is case-insensitive (" AM" is the same as

"am"). The time literal must be enclosed in quotation marks.

INSERT INTO WorkOrder

(JD, StartTime)
VALUES (''BOOJ20", "10:30:00 PM'')
Indicate which half of the day (morning or after noon) a time literal falls under in one of

two ways. If an AM or PM marker is specified, that determines the half of the day. If no

AM/PM designator is specified, the hour field is compared to 12. If the hour is less than

twelve, the time is in the AM; if greater than 12, after noon. The hour field overrides an

AM/PM designator. For example, the time literal !115:03:22 AM" is translated as

"3:03:22 PM".

5.1.6 Boolean Literals
The boolean literal values TRUE and FALSE may be represented with or

without

quotation marks.

SELECT*

FROM transfers
U'HERE (paid= TRUE) AND NOT (incomplete = "FALSE'')

5.1.7 Table Correlation Names
Table correlation names are used to explicitly associate a column with the table

from which it comes. This is especially useful when multiple columns of the same name

appear in the same query, typically in multi-table queries. A table correlation name is

defined by following the table reference in the FROM clause of a SELECT query with a

unique identifier. This identifier, or table correlation name, can then be used to prefix a

column name.
If the table name is not a quoted string, the table name is the default implicit

correlation name. An explicit correlation name the same as the table name need not be

specified in the FROM clause and the table name can prefix column names in other parts

of the statement.

55

SELECT*

FROM customer

LEFT OUTER JOIN orders

ON (customer.custno = orders.custno)

If the table name is a quoted string, you need to do one of the following:

Prefix column names with the exact quoted string used for the table in the FROM
clause.

SELECT*

FROM "customer.db"

LEFT OUTER JOIN "orders.db"

ON ("customer.db".custno = "orders.db'icustno)

Use the full table name as a correlation name in the FROM clause (and prefix all

column references with the same correlation name).

SELECT*

FROM "customer.db" CUSTOMER

LEFT GUIER JOIN "orders.db" ORDERS

ON (CUST01v!ER.custno = ORDERS.custno)

Use a distinct token as a correlation name in the FROM clause (and prefix all

column references with the same correlation name).

SELECT*

FROlvf "customer.db" C

LEFT OUTER JOIN "orders.db" 0

ON (C.custno = O.custno)

5.1.8 Column Con-elation Names

Use the AS keyword to assign a correlation name to a column, aggregated value,

or literal. Column correlation names cannot be enclosed in quotation marks and so

cannot contain embedded spaces.

SELECT SUBS1RING(company FROM 1 FOR 1) AS sub, "Text" AS word
FROM customer

5.2. DML Statement List

Local SQL supports the following data manipulation language (DML)
statements:

56

SELECT Retrieves existing data from a table.

DELETE Deletes existing data from a table.

INSERT Adds new data to a table.

UPDATE Modifies existing data in a table.

5.2.1 Select Statement

Retrieves data from tables.

SELECT [DISIINCTJ * I column list
FROM table _reference

[WHERE predicates}

[ORDER BY order _list]

[GROUP BY group _list}

[HAVING having_ condition]

Description:

Use the SELECT statement to Retrieve a single row, or part of a row, from a

table, referred to as a singleton select. Retrieve multiple rows, or parts of rows, from a

table. Retrieve related rows, or parts of rows, from a join of two or more tables. The

SELECT clause defines the list of items returned by the SELECT statement. The

SELECT clause uses a comma-separated list composed of table columns, literal values,

and column or literal values modified by functions. Literal values in the columns list

may be passed to the SELECT statement via parameters. You cannot use parameters to

represent column names .. Use an asterisk to retrieve values from all columns.

Columns in the column list for the SELECT clause may come from more than
one

table, but can only come from those tables listed in the FROM clause. See Relational

Operators for more information on using the SELECT statement to retrieve data from
multiple tables.

The FROM clause identifies the table(s) from which data is retrieved. The

following statement retrieves data for two columns in all rows of a table.

SELECTcustno, company

FROM orders

Use DISTINCT to limit the retrieved data to only distinct rows. The distinctness

of rows is based on the combination of the columns in the SELECT clause columns list.

57

In lieu of a table, a SELECT statement may retrieve rows from a Paradox-style . QBE

file. This is an approximation of an SQL view.

SELECT*

FROM "customers. qbe"

5.2.2 Delete Statement
Deletes one or more rows from a table.

DELE1E FROM table _reference

[WHERE predicates}

Description
Use DELETE to delete one or more rows from an existing table.

DELE1E FROM "employee.db"
The optional WHERE clause restricts row deletions to a subset of rows in the

table. If no WHERE clause is specified, all rows in the table are deleted.

DELE1E FROM "employee.db"

WHERE (empno IN (SELECT empno FROM ''old_employee.db''))

The table reference cannot be passed to the DELETE statement via a parameter.

5.2.3 Insert Statement
Adds one or more new rows of data in a table

INSERT INTO table _reference

[(columns _list)}

VALUES (update_ atoms)

Description:
Use the INSERT statement to add new rows of data to a table. Use a table

reference in the INTO clause to specify the table to receive the incoming data.

The columns list is a comma-separated list, enclosed in parentheses, of columns

in the table and is optional. The VALUES clause is a comma-separated list of update

atoms, enclosed in parentheses. If no columns list is specified, incoming update values

(update atoms) are stored in fields as they are defined sequentially in the table structure.

Update atoms are applied to columns in the order the update atoms are listed in the

VALUES clause. There must also be as many update atoms as there are columns in the

table.

INSERT INTO "holdings.dbf"

58

VALUES (4094095, ''BORL'~ 5000, 10.500, "1/2/1998'')

If an explicit columns list is stated, incoming update atoms (in the order they

appear in the VALUES clause) are stored in the listed columns (in the order they appear

in the columns list). NULL values are stored in any columns that are not in a columns

list.

INSERT INTO "customer.db"

(custno, company)

VALUES (9842, "Borland International, Inc.'')

To add rows to one table from another, omit the VALUES keyword and use a

subquery as the source for the new rows.

INSERT INTO "customer.db"

(custno, company)

SELECT custno, company

FROM "oldcustomer.db"

Update atom values may be passed to the INSERT statement via parameters.

You cannot use parameters for the table reference and columns list. Note Insertion of

one or multiple rows from one table to another through a subquery is not supported.

5.2.4 Update Statement

Modifies one or more existing rows in a table.

UPDATE table _reference

SET column _ref= update , atom l co/umn_ref = update _atom ... }
[WHERE predicates}

Description:

Use the UPDATE statement to modify one or more column values in one or

more existing rows in a table. Use a table reference in the UPDATE clause to specify the

table to receive the data changes. The SET clause is a comma-separated list of update

expressions. Each expression is composed of the name of a column, the assignment

operator(=), and the update value (update atom) for that column. The update atoms in

any one update expression may be literal values, singleton return values from a

subquery, or update atoms modified by functions. Subqueries supplying an update atom

for an update expression must return a singleton result set (one row) and return only a

single column.

UPDATE salesinfo

59

SET tax.rate = 0. 0825

WHERE (state = "CA';

Update atom values may be passed to the UPDATE statement via parameters.

You cannot use parameters for the table reference and columns list. The optional

WHERE clause restricts updates to a subset of rows in the table. If no \VHERE clause is

specified, all rows in the table are updated using the SET clause update expressions.

5.3. Clause List
Local SQL supports the following SQL statement clauses:

FROM Specifies the tables used for the statement.

WHERE Specifies filter criteria to limit rows retrieved.

ORDER BY Specifies the columns on which to sort the result set.

GROUP BY Specifies the columns used to group rows.

HA VJNG Specifies filter criteria using aggregated data.

5.3.1 From Statement

Specifies the Tables from which a SELECT statement retrieves data.

FROM table _reference [, table _reference ... }

Description:

Use a FROM clause to specify the table or tables from which a SELECT

statement retrieves data. The value for a FROM clause is a comma-separated list of table

names. Specified table names must follow local SQL naming conventions for tables. For

example, the SELECT statement below retrieves data from a single Paradox table.

SELECT*

FROM "customer.db"

See the section Relational Operators for more information on retrieving data

from multiple tables in a single SELECT query. The table reference cannot be passed to

a FROM clause via a parameter.

5.3.2 \Vhere Statement

Specifies filtering conditions for a SELECT or UPDATE statement.

WHERE predicates

60

Description:

Use a WHERE clause to limit the effect of a SELECT or UPDATE statement to

a subset of rows in the table. Use of a WHERE clause is optional. The value for a

WHERE clause is one or more logical expressions, or predicates, that evaluate to TRUE

or FALSE for each row in the table. Only those rows where the predicates evaluate to

TRUE are retrieved by a SELECT statement or modified by an UPDATE statement. For

example, the SELECT statement below retrieves all rows where the STATE column

contains a value of "CA".

SELECT company, state

FROM customer

WHERE state = "CA"

Multiple predicates must be separated by one of the logical operators OR or

AND.

Each predicate can be negated with the NOT operator. Parentheses can be used

to isolate logical comparisons and groups of comparisons to produce different row

evaluation criteria. For example, the SELECT statement below retrieves all rows where

the STATE oolumn contains a value of"CA" and those with a value of"HI".

SELECT company, state

FROM customer

WHERE (state = "CA '1 OR (state = ''HI'')
The SELECT statement below retrieves all rows where the SHAPE column is

"round" or "square". It also returns those rows where the COLOR column is "red",

regardless of the value in the SHAPE column.

SELECT shape, color, cost

FROM objects

WHERE ((shape= ''round") AND (shape= ''square'')) OR (color= "red'')

Subqueries are supported in the WHERE clause. A subquery works like a search

condition to restrict the number of rows returned by the outer, or "parent" query. Column

references cannot be passed to a WHERE clause via parameters. Comparison values

may be passed as parameters. For filtering based on aggregated values, use a HA YING

clause.

61

5.3.3 Order· By Statement

Sorts the rows retrieved by a SELECT statement.

ORDER BY column _reference[, column reference .. .) {ASCjDESCJ
Description

Use an ORDER BY clause to sort the rows retrieved by a SELECT statement

based on the values from one or more columns. The value for the ORDER BY clause is

a comma-separated list of column names. The columns in this list must also be in the

SELECT clause of the query statement. Columns in the ORDER BY list can be from

one or multiple tables. A number representing the relative position of a column in the

SELECT clause may be used in place of a column name. Column correlation names can
also be used in an ORDER BY clause columns list.

Use ASC (or ASCENDING) to force the sort to be in ascending order (smallest

to largest), or DESC (or DESCENDING) for a descending sort order (largest to

smallest). When not specified, ASC is the implied default. The statement below sorts the

result set ascending by the year extracted from the LASTINVOICEDATE column, then

descending by the STATE column, and then ascending by the uppercase conversion of
the COMP ANY column.

SELECT EXTRACT(YEAR FROM Iastinvoicedate) AS YY, state, UPPER(company)
FROM customer

ORDER BY YY DESC, state ASC, 3

See the section Relational Operators for more information on retrieving data

from multiple tables in a single SELECT query. Column references cannot be passed to
an ORDER BY clause via parameters.

5.3.4 Group By Statement

Combines rows with column values in common into single rows.

GROUP BY column _reference{, column reference .. .)

Description

Use a GROUP BY clause to combine rows with the same column values into a

single row. The criteria for combining rows is based on the values in the columns

specified in the GROUP BY clause. The purpose for using a GROUP BY clause is to

combine one or more column values (aggregate) into a single value and provide one or

62

more columns to uniquely identify the aggregated values. A GROUP BY clause can

only be used when one or more columns have an aggregate function applied to them.

The value for the GROUP BY clause is a comma-separated list of columns. Each

column in this list must meet the following criteria:

Be in one of the tables specified in the FROM clause of the query.

Be in the SELECT clause of the query.

Cannot have an aggregate function applied to it.

When a GROUP BY clause is used, all table columns in the SELECT clause of

the query must meet at least one of the following criteria, or it cannot be included in the

SELECT clause:

Be in the GROUP BY clause of the query.

Be in the subject of an aggregate function.

Literal values in the SELECT clause are not subject to the preceding criteria.

The distinctness of rows is based on the columns in the column list specified. All

rows with the same values in these columns are combined into a single row (or logical

group). Columns that are the subject of an aggregate function have their values across all

rows in the group combined. All columns not the subject of an aggregate function retain

their value and serve to distinctly identify the group. For example, in the SELECT

statement below, the values in the SALES column are aggregated (totaled) into groups

based on distinct values in the COMP ANY column. This produces total sales for each

company.

SELECT company, SUM(sales) AS TOTALSALES

FROM salesl998

GROUP BY company

ORDER BY company
A column may be referenced in a GROUP BY clause by a column correlation

name, instead of actual column names. The statement below forms groups using the first

column, COMP ANY, represented by the column correlation name Co.

SELECT company AS Co. SUlvf(sales) AS TOTALSALES

FROM salesl998

GROUP BY Co

ORDER BY 1

63

5.3.5 Having Statement

Specifies filtering conditions for a SELECT statement.
HAVING predicates

Description:

Use a HAVING clause to limit the rows retrieved by a SELECT statement to a

subset of rows where aggregated column values meet the specified criteria. A HA YING

clause can only be used in a SELECT statement when:

The statement also has a GROUP BY clause.

One or more columns are the subjects of aggregate functions.

The value for a HA YING clause is one or more logical expressions, or

predicates, that evaluate to true or false for each aggregate row retrieved from the table.

Only those rows where the predicates evaluate to true are retrieved by a SELECT

statement. For example, the SELECT statement below retrieves all rows where the total

sales for individual total sales exceed $1,000.

SELECT company, SUM(sales) AS TOTALSALES

FROM salesl998

GROUP BY company

HAVING (SUM(sales) >= 1000)
ORDER BY company

Multiple predicates must be separated by one of the logical operators OR or
AND.

Each predicate can be negated with the NOT operator. Parentheses can be used to isolate

logical comparisons and groups of comparisons to produce different row evaluation
criteria.

A SELECT statement can include both a WHERE clause and a HA YING clause.

The WHERE clause filters the data to be aggregated, using columns not the subject of

aggregate functions. The HA YING clause then further filters the data after the

aggregation, using columns that are the subject of aggregate functions. The SELECT

query below performs the same operation as that above, but data limited to those rows
where the ST ATE column is "CA".

SELECT company, SUM(sales) AS TOTALSALES

FROM salesl998

WHERE (state = "CA';

GROUP BY company

64

HAVING (SUM(sales) >= 1000)
ORDER BY company

Sub-queries are supported in the HAVING clause. A sub-query works like a

search condition to restrict the number of rows returned by the outer, or "parent" query.

65

CONCLUSION

The power of databases comes from a body of knowledge and technology that has
developed over several decades and is embodied in specialized software called a database

management system, or DBMS, or more colloquially a database system." A DBMS is a

powerful tool for creating and managing large amounts of data efficiently and allowing it to

persist over long periods of time-safely. These systems are among the most complex types
of software available.

The aim of the project is to develop a hotel management system using Delphi

Programming Language. It is clearly seen that using Delphi, you can create highly efficient
applications with a minimum of manual coding.

In the Project I have described the Database Management System and its attributes

and methods. the importance of the database design also have been described showing how
a good design affecting the programming language.

The Delphi Programming Language is described in a separate chapter showing its

efficiency and its simplest designing, coding and testing.

Chapter Four and Five about the Hotel Management System software that I have

wrote using Delphi. How is the system works and how is the code wrote is fully described.

The last chapter is describing the Structured Query Language (SQL).

66

REFERENCES

I. http://www.ira.uka.de/bibliography/Database .

2. Abiteboul, S., R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley,

Reading, MA, 1995.

3. M. M. Astrahan et al., "System R: a relational approach to database management," ACM

Trans. on Database Systems 1:2 (1976), pp. 97{137.4. P.A. Bernstein et al., "The Asilomar

report on database research,"

4. http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/Asilomar Final.htm.

5. http://www.informatik.uni-trier.de/-ley/db/index.html . A mirror site is found at

http://www.acm.org/sigmod/dblp/db/index.html.

6. Stonebraker, M. and J. M. Hellerstein (eds.), Readings in Database Systems, Morgan­

Kaufinann, San Francisco, 1998.

7. M. Stonebraker, E. Wong, P. Kreps, and G. Held, "The design and implementation of

INGRES," ACM Trans. on Database Systems l :3 (1976), pp. 189/222.

8. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Volume I,

Computer Science Press, New York, 1988.

9. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Volume II,

Computer Science Press, New York, 1989.

10. Marvel Wadbana, Programming With Delphi, Computer Science Press, New York,

1999.

67

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
 ·····

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	CONCLUSION

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION
	1

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	5

	Images
	Image 1

	Page 12
	Titles
	1.2. Outline of Database-System Studies
	1.3. Database Design

	Images
	Image 1

	Tables
	Table 1

	Page 13
	Titles
	7

	Images
	Image 1

	Page 14
	Titles
	1.4. Entity Attribute Relation

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	1.5. Rules To Guide Logical Database Design

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Titles
	Chapter 2
	DELPHI PROGRAMMING LANGUAGE
	2.1. Creating projects

	Images
	Image 1

	Page 22
	Titles
	2.2. Code Editor

	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Page 25
	Titles
	2.4. Developing The Application User Interface

	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2
	Image 3

	Page 27
	Images
	Image 1

	Page 28
	Titles
	Chapter T.hrt:e
	HOW IS THE SYSTEM WORKS
	3 .1. Main Menu

	Images
	Image 1

	Tables
	Table 1

	Page 29
	Titles
	3 2 R ~ +~~ 1\,,f - ŁŁ
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Titles
	Near East Hotel
	E~) __ 7_17J
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 31
	Titles
	Near East Hotel
	Near East Hotel
	l'~Bya-~,~- "

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 32
	Titles
	Near East Hotel
	Near East Hotel
	. -

	Images
	Image 1
	Image 2
	Image 3

	Page 33
	Titles
	~-r.
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 34
	Titles
	Rooms Lists
	Inside this submenu the receptor will find some very useful queries about the
	rooms that help customers choose the suitable room and also help controlling the rooms.
	The rooms submenu contains the following lists:
	displayed (see figure 3.11).
	Figure 3 .11. All the room list.
	figure 3.12).
	· Figure 3.12. The reserved rooms list.
	28

	Tables
	Table 1
	Table 2

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
 ·····

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	CONCLUSION

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION
	1

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	5

	Images
	Image 1

	Page 12
	Titles
	1.2. Outline of Database-System Studies
	1.3. Database Design

	Images
	Image 1

	Tables
	Table 1

	Page 13
	Titles
	7

	Images
	Image 1

	Page 14
	Titles
	1.4. Entity Attribute Relation

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	1.5. Rules To Guide Logical Database Design

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Titles
	Chapter 2
	DELPHI PROGRAMMING LANGUAGE
	2.1. Creating projects

	Images
	Image 1

	Page 22
	Titles
	2.2. Code Editor

	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Page 25
	Titles
	2.4. Developing The Application User Interface

	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2
	Image 3

	Page 27
	Images
	Image 1

	Page 28
	Titles
	Chapter T.hrt:e
	HOW IS THE SYSTEM WORKS
	3 .1. Main Menu

	Images
	Image 1

	Tables
	Table 1

	Page 29
	Titles
	3 2 R ~ +~~ 1\,,f - ŁŁ
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Titles
	Near East Hotel
	E~) __ 7_17J
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 31
	Titles
	Near East Hotel
	Near East Hotel
	l'~Bya-~,~- "

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 32
	Titles
	Near East Hotel
	Near East Hotel
	. -

	Images
	Image 1
	Image 2
	Image 3

	Page 33
	Titles
	~-r.
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 34
	Titles
	Rooms Lists
	Inside this submenu the receptor will find some very useful queries about the
	rooms that help customers choose the suitable room and also help controlling the rooms.
	The rooms submenu contains the following lists:
	displayed (see figure 3.11).
	Figure 3 .11. All the room list.
	figure 3.12).
	· Figure 3.12. The reserved rooms list.
	28

	Tables
	Table 1
	Table 2

	Page 35
	Titles
	m
	All Rooms
	~I Rese. t'\l'ed Rooms
	Close Back To Menn
	-
	f;,.
	--
	Figure 3.11. All the room list.
	· Figure 3.12. The reserved rooms list.
	28

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 36
	Titles
	!!!!I
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 37
	Titles
	Near East Hotel
	Near East Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 38
	Titles
	3.3. Reservation Form
	Near East Hotel
	s-J:r.~-!,.. Ł
	NJ/IJ r:=:J~:
	Mhss f:i#i -
	3.4. Registration Form

	Images
	Image 1
	Image 2

	Page 39
	Titles
	, __J
	a-. I
	--�
	Near Esat Hotel
	Near Esat Hotel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 40
	Titles
	Near East Hotal
	Near East Hotel
	N-,~ _J
	ŁL-~I -
	3.6. The Employees form
	3.5. The Rooms Form

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 41
	Titles
	3.7. The Accounts Form

	Images
	Image 1
	Image 2

	Page 42
	Titles
	Chapter Four
	THE SOFTWARE CODE
	4.1. Main Menu
	a-~r=

	Images
	Image 1
	Image 2
	Image 3

	Page 43
	Images
	Image 1

	Page 44
	Titles
	4 .2. Reception Menu

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Titles
	:![----~ ::::::~

	Images
	Image 1
	Image 2
	Image 3

	Page 48
	Page 49
	Titles
	: : : : : : : : Near East Hotel: : : : : : .: :

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Images
	Image 1
	Image 2

	Page 51
	Titles
	N·ear East Hotel
	II
	44

	Images
	Image 1
	Image 2
	Image 3

	Page 52
	Titles
	-
	. Ł ,. . R~ I 1001:: : : : : : : : : : : : : : : : : i::::::: :_:,:_: : : : : : : : :
	::::~~~~:~:::::::::::::::::::::::::::::;::::
	::::.:::::~! 34i:::::::::::~:~:::::::;:;::::::::::::::;
	.~. Ł ..Ł..Ł "s~~~~~;; __ '.·.Ł:.·. ŁŁ·Ł· Ł.·.! . :\. · ŁŁ. Ł. i
 ; .. , N E tH t , ,. ,. .
	: : : : : : : : : : : : : : : : : : ear sa o e : : : : : : : : : : .: : : : : : : · :
	4.3. Registration Form

	Images
	Image 1
	Image 2

	Page 53
	Titles
	::;;;:R~:~~~;:;:~::C~'~

	Images
	Image 1
	Image 2

	Page 54
	Titles
	4.4. The Accounts Form

	Page 55
	Page 56
	Images
	Image 1

	Page 57
	Titles
	4 .5. Constructing a Package

	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Titles
	Chapter Five

	Images
	Image 1
	Image 2

	Page 60
	Images
	Image 1

	Page 61
	Page 62
	Images
	Image 1

	Page 63
	Titles
	5.2. DML Statement List

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Page 67
	Titles
	5.3. Clause List

	Page 68
	Page 69
	Page 70
	Images
	Image 1

	Page 71
	Images
	Image 1
	Image 2

	Page 72
	Images
	Image 1

	Page 73
	Titles
	CONCLUSION

	Images
	Image 1

	Page 74
	Titles
	REFERENCES

