
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Hotel Management System

Graduation Project
COM-400

Student: Polat Bayur (20001532)

Supervisor: Mss.Besime Erin

Nicosia - 2002

ACKNOWLEDGEMENTS

"First, I would like to thank my supervisor Miss Besime Erin for her valuable advices,
encouragement and endless support.

Second, I would like to acknowledge special thank to the Near East University for

offering me a suitable environment during my study. And also I will never forget the

teacher's support and help.

Third, I would like to dedicate my research to my parents and the rest of the family who

are always motivate me with all the love.

I gratefully acknowledge the role of my friends those who set behind me while I'm

preparing this project. "

ii

ABSTRACT

The success of a database is completely dependent on the logical database design.

Even ifwe buy expensive and fast hardware and software, the quality of the database design

will dictate whether a project will succeed. In a way, it is the Achilles heel of a project.

A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from growing

too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The process of designing a database begins with an analysis of what information the

database must hold and what are the relationships among components of that information.

Often, the structure of the database, called the database schema, is specified in one of

several languages or notations suitable for expressing designs. After due consideration, the

design is committed to a form in which it can be input to a Database Management System

(DBMS), and the database takes on physical existence.

Databases today are essential to every business. They are used to maintain internal

records, to present data to customers and clients on the World-Wide-Web, and to support

many other commercial processes. Databases are likewise found at the core of many

scientific investigations. They represent the data gathered by astronomers, by investigators

of the human genome, and by bio-chemists exploring the medicinal properties of proteins,

along with many other scientists.

The power of databases comes from a body of knowledge and technology that has

developed over several decades and is embodied in specialized software called a database

management system, or DBMS, or more colloquially a database system." A DBMS is a

powerful tool for creating and managing large amounts of data efficiently and allowing it to

persist over long periods of time-safely. These systems are among the most complex types

of software available.

TABLE OF CONTENTS

ACKNOWLEDGMENT 1

ABSTRACT ····· 11

TAIJLE OF CONTENTS m

INTRODUCTION .. 1

1. DATABASE MANAGEMENT SYSTEM 2

1.1. The Evolution of Database Systems 3

1.1.1 Early Database Management Systems 3

1.1.2 Relational Database Systems 4

5

5

6

6

7

8

10

15

15

16

17

1.1.3 Smaller and Smaller Systems

1.1.4 Bigger and Bigger Systems

1.2. Outline of Database-System Studies .

1.3. Database Design

1.3.1 Database Design Methodologies .

1.4. Entity Attribute Relation .

1.5. Rules To Guide Logical Database Design .

2. DELPID PROGRAMMING LANGUAGE .

2.1. Creating projects .

2.2. Code Editor .

2.3. Understanding Datasets

2.3.1 Opening And Closing Datasets 18

2.4. Developing The Application User Interface 19

2.4.1 Controlling application behavior 19

19 2.4.2 Using The Main Form

111

3. HOW IS THE SYSTEM WORKS 22

3.1. Main Menu 22

3.2. Reception Menu 23

3.2.1 Phone List

3.2.2 Search Menu

23

24

26

27

31

31

33

33

34

35

35

37

38

42

43

45

47

50

52
52
52
53

53
54

55

3.2.3 The Confirmation Submenu

3.2.4 The Lists Submenu .

3.3. Reservation Form .

3.4. Registration Form .

3 .5. The Rooms Form .

3.6. The Employees form .

3. 7. The Accounts Form .

4. THE SOFTWARE CODE .

4.1. Main Menu .

4.2. Reception Menu .

4.2.1 Search Menu

4.2.2 The Confirmation Form

4.2.3 The Lists Submenu .

4.3. Registration Form .

4.4. The Accounts Form .

4.5. Constructing a Package

5. STRUCTURED QUERY LANGUAGE (SQL) .

5 .1. Optional Elements

5 .1.1 Syntax choices

5.1.2 Table Names

5.1.3 Column Names

5.1.4 Date Formats

5.1.5 Time Formats

IV

5.1.6 Boolean Literals 56

5.1.7 Table Correlation Names 56

5.1.8 Column Correlation Names 57

5.2. DML Statement List 57

5.3.1 From Statement

5.3.2 Where Statement

5 .3 .3 Order By Statement

5.3.4 Group By Statement

5.3.5 Having Statement

57

58

58

60

60

61

61

62

63

64

66

67

5.2.1 Select Statement

5.2.2 Delete Statement

5.2.3 Insert Statement

5.2.4 Update Statement .

5.3. Clause List .

CONCLUSION
REFERENCES

V

1

INTRODUCTION

A database system is a collection of information organized in such a way that a

computer program can quickly select desired pieces of data You can think of a database as

an electronic filing system. Traditional databases are organized by fields, records, and files.
A field is a single piece of information; a record is one complete set of fields; and a file is a

collection of records.

Delphi Programming Language is a rich, efficient and very organized database

system design. Borland Delphi is an object-oriented, visual programming environment for

rapid development of 32-bit applications for deployment on Windows and Linux. Using

Delphi, you can create highly efficient applications with a minimum of manual coding.

The aim of the project is to develop a Hotel Management System using Delphi

programming Language. Toe project contains introduction, five chapters and conclusion.

Chapter One describes the Database Management Systems. The evaluation of the DBMS,

the relational database system and the database design.

Chapter Two is voted to the Delphi Programming Language, describing how we can get the

most efficiency of this programming language.

Chapter Three describing how is the system works. That means, when new customer comes

to get a room on a hotel how the system deals with him/her.

Chapter Four is describing how is the Delphi code written. The procedures and their brief

description of how they works are given as well.

Chapter Five describes the main elements and the general statements of the Structured

Query Language (SQL).

Conclusion shows the advantages of using Delphi programming Language over other

programming languages.

Chapter One
DATABASE MANAGEMENT SYSTEM

Databases today are essential to every business. They are used to maintain

internal records, to present data to customers and clients on the World-Wide-Web, and

to support many other commercial processes. Databases are likewise found at the core of

many scientific investigations. They represent the data gathered by astronomers, by

investigators of the human genome, and by bio-chemists exploring the medicinal

properties of proteins, along with many other scientists.

The power of databases comes from a body of knowledge and technology that

has developed over several decades and is embodied in specialized software called a

database management system, or DBMS, or more colloquially a database system." A

DBMS is a powerful tool for creating and managing large amounts of data efficiently

and allowing it to persist over long periods of time-safely. These systems are among the

most complex types of software available.

The capabilities that a DBMS provides the user are:

1. Persistent storage. A DBMS supports the storage of very large amounts of data that

exists independently of any processes that are using the data. However, the DBMS goes

far beyond the system in providing exibility, such as data structures that support efficient

access to very large amounts of data.

2. Programming interface. A DBMS allows the user or an application program to access

and modify data through a powerful query language.

3. Transaction management. A DBMS supports concurrent access to data, i.e.,

simultaneous access by many distinct processes. Databases today are essential to every

business. They are used to maintain internal records, to present data to customers and

clients on the World-Wide Web, and to support many other commercial processes.

Databases are likewise found at the core of many scientific investigations. They

represent the data gathered by astronomers, by investigators of the human genome, and

by biochemists exploring the medicinal properties of proteins, along with many other

scientists.

To avoid some of the undesirable consequences of simultaneous access, the

DBMS supports isolation, the appearance that transactions execute one-at-a-time, and

atomicity, the requirement that transactions execute either completely or not at all. A

2

3

DBMS also supports durability, the ability to recover from failures or errors of many

types.

1.1. The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of

information that exists over a long period of time, often many years. In common

parlance, the term database refers to a collection of data that is managed by a DBMS.

The DBMS is expected to:

1. Allow users to create new databases and specify their schema (logical structure of the

data), using a specialized language called a data-definition language.

2. Give users the ability to query the data (a query is database lingo for a question about

the data) and modify the data, using an appropriate language, often called a query

language or data-manipulation language.

3. Support the storage of very large amounts of data I many gigabytes or more I over a
long period of time, keeping it secure from accident or unauthorized use and allowing

efficient access to the data for queries and database modifications.

4. Control access to data from many users at once, without allowing the actions of one

user to affect other users and without allowing simultaneous accesses to corrupt the data

accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960's.

These systems evolved from file systems, which provide some of item (3) above; file

systems store data over a long period of time, and they allow the storage of large

amounts of data. However, file systems do not generally guarantee that data cannot be

lost if it is not backed up, and they don't support efficient access to data items whose

location in a particular file is not known. Further, file systems do not directly support

item (2), a query language for the data in files. Their support for (1) a schema for the

data is limited to the creation of directory structures for files. Finally, file systems do

not satisfy (4). When they allow concurrent access to files by several users or processes,

a file system generally will not prevent situations such as two users modifying the same

file at about the same time, so the changes made by one user fail to appear in the file.

4

The first important applications ofDBMS's were ones where data was composed

of many small items, and many queries or modifications were made. Here are some of

these applications.

1.1.2 Relational Database Systems

Database systems should present the user with a view of data organized as tables

called relations. Behind the scenes, there might be a complex data structure that allowed

rapid response to a variety of queries. But, unlike the user of earlier database systems,

the user of a relational system would not be concerned with the storage structure.

Queries could be expressed in a very high-level language, which greatly increased the

efficiency of database programmers.

Example 1.1: Relations are tables. Their columns are headed by attributes, which

describe the entries in the column. For instance, a relation named Accounts, recording

bank accounts, their balance, and type might look like:

accountNo balance type

12345

67890

1000.00

2846.92

savings

checking

Heading the columns are the three attributes: accountNo, balance, and type.

Below the attributes are the rows, or tuples. Here we show two tuples of the relation

explicitly, and the dots below them suggest that there would be many more tuples, one

for each account at the bank. The first tuple says that account number 12345 has a

balance of one thousand dollars, and it is a savings account. The second tuple says that

account 67890 is a checking account with $2846.92.

Suppose we wanted to know the balance of account 67890. We could ask this

query in SQL as follows:

SELECT balance

FROM Accounts

WHERE accountNo = 67890;

For another example, we could ask for the savings accounts with negative balances by:

SELECT accountNo

FROM Accounts

WHERE type= 'savings' AND balance< O;

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte isn't much data Corporate databases often occupy

hundreds of gigabytes. Further, as storage becomes cheaper people find new reasons to

store greater amounts of data. For example, retail chains often store terabytes (a terabyte

is 1000 gigabytes, or 1000,000,000,000 bytes) of information recording the history of

every sale made over a long period of time.

Further, databases no longer focus on storing simple data items such as integers

or short character strings. They can store images, audio, video, and many other kinds of

data that take comparatively huge amounts of space. For instance, an hour of video

consumes about a gigabyte. Databases storing images from satellites can involve

petabytes (1000 terabytes, or 1000,000,000,000,000 bytes) of data.

Handling such large databases required several technological advances. For

example, databases of modest size are today stored on arrays of disks, which are called

secondary storage devices (compared to main memory, which is "primary" storage). One

could even argue that what distinguishes database systems from other software is, more

We do not expect that these two examples are enough to make the reader an

expert SQL programmer, but they should convey the high-level nature of the SQL

"select-from-where" statement. In principle, they ask the DBMS to

1. Examine all the tuples of the relation Accounts mentioned in the FROM clause,

2. Pick out those tuples that satisfy some criterion indicated in the WHERE clause, and

3. Produce as an answer certain attributes of those tuples, as indicated in the SELECT

clause.

In practice, the system must "optimize" the query and second an efficient way to

answer the query, even though the relations involved in the query may be very large.

1.1.3 Smaller and Smaller Systems

Originally, DBMS's were large, expensive software systems running on large

computers. The size was necessary, because to store a gigabyte of data required a large

computer system. Today, many gigabytes fit on a single disk, and it is quite feasible to

run a DBMS on a personal computer. Thus, database systems based on the relational

model have become available for even very small machines, and they are beginning to

appear as a common tool for computer applications, much as spreadsheets and word

processors did before them.

5

6

than anything else, the fact that database systems routinely assume data is too big to _tin

main memory and must be located primarily on disk at all times. The following two

trends allow database systems to deal with larger amounts of data, faster.

1.2. Outline of Database-System Studies
Ideas related to database systems can be divided into three broad categories:

1. Design of databases. How does one develop a useful database? What kinds of

information go into the database? How is the information structured? What assumptions

are made about types or values of data items? How do data items connect?

2. Database programming. How does one express queries and other operations on the

database? How does one use other capabilities of a DBMS, such as transactions or

constraints, in an application? How is database programming combined with

conventional programming?

3. Database system implementation. How does one build a DBMS, including such

matters as query processing, transaction processing and organizing storage for efficient

access?

1.3. Database Design

The success of a database is completely dependent on the logical database

design. Even if we buy expensive and fast hardware and software, the quality of the

database design will dictate whether a project will succeed. In a way, it is the Achilles

heel of a project. A good Database Design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from

growing too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The database design process can be divided into six steps:

1. Requirement analysis.

2. Conceptual database design.

3. Logical database design.

4. Schema refinements.

5. Physical database design.

7

6. Security database design

. In this chapter I will describe in brief the Logical Database Design because it is

the step directly before the writing a code.

Logical database design uses several rules or concepts which are reasonably well

understood and accepted. Disagreement arises in formulating a particular methodology,

the place to start and the sequence of steps to follow in applying those rules, After a

brief discussion of database design methodologies, this section presents several

concepts, principles, or rules which are generally recognized and applied regardless of

the particular methodology used.

1.3.1 Database Design Methodologies

A database design methodology specifies a sequence of steps to follow in

developing a "good" database design--one that meets user needs for information and

that satisfies performance constraints. Each step consists of the application of a set of

techniques or rules that may be formalized to varying degrees and embodied in software

tools. A methodology should he (I) usable in a wide variety of design situations and (2)

reproducible in different designers. The second objective implies that the methodology

be teachable, and that those trained in applying the methodology would arrive at the

same end result. This is not evident in the present state of the art. Logical database

design remains very much than art.

A database design methodology consisting of four steps;

1. User Information Requirements-involving the users in analyzing organizational

needs, setting the scope of interest, investigating what people do (organizational tasks;

usage patterns), and determining the data elements needed to perform those tasks,

2. Conceptual Design---developing a high-level diagrammatic representation of a logical

data structure; a structure which includes object domains, events, entities, attributes, and

relationships: a structure which seeks to model the users' world.

3. Implementation Design-refining the conceptual design, checking for satisfaction of

user needs and for consistency, and adjusting it to meet processing and performance

constraints in a particular computer and DBMS environment.

4. Physical Design---developing record storage designs, clustering, and establishing

access paths.

The techniques and rules in the steps of a methodology are applied iteratively

in the process of unfolding, growing, and refining a database design. For a starting point,

some suggest applying the methodology to individual user application areas or local

views. Different user views may contain related complementary parts or overlapping

pans. Multiple local views are then consolidated into a global logical structure or

conceptual schema. The process of consolidation seeks to resolve inconsistencies, and to

integrate related pieces. Even within a local view, there may be redundant, overlapping,

and inconsistent pads. The rules of a methodology are intended to assist the designer in

asking the right questions and representing the data structure in a coherent and consistent

way regardless of the scope of the design activity, and regardless of whether it begins

with individual local views or a global perspective. The product of the design activity

will grow as it unfolds over the area of interest; and it will be refined as the rules are

applied to focus attention on particular aspects of an infinitely complex reality and to

resolve ambiguities and inconsistencies in the developing database structure.

1.4. Entity Attribute Relation

Perhaps the most significant difference among methodologies or approaches to

logical database design is found in the point at which data items are clustered or grouped

into records. The top division of the taxonomy of data structures presented in Chapter 4

reflects this division. The number of basic constructs distinguishes the two approaches:

Those which presume an early clustering are often called "Entity Attribute-Relation" or

"E-A-R" approaches; the alternative is called the "Object Relation" or "0-R" approach.

Historically data processing has always worked with records. Programming lan­

guages such as COBOL and FORTRAN cluster data items into records. The formation

of records as a contiguous set of data items is necessary for efficient data processing. A

record is the unit of access for getting data in and out of programs. Data is moved to and

from secondary storage in blocks of records. Earlier data processing systems forced a

"unit record" view, that is, all data for an application had to reside in a single sequence

of records (this reflected the technology of the day, which used what was called "unit

record equipment"). Even today, with DBMSs supporting a multi file data structure, data

exists in the form of records in most organizations. Users are very familiar and

comfortable with a record-oriented view of their data. Most designers today use an E-A­

R approach to logical database design.

The major problem with the E-A-R approach to logical database design is that it

allows the relationships among data items within a record to be hidden. It does not force

8

9

the designer to explicitly consider and defme inter record structures. This accounts for

the recent emphasis in the literature on record decomposition and normalization based

on an analysis of functional and multi valued dependencies. These techniques are all

aimed at uncovering and making explicit the relationships among individual data items

within records.

The end result of repeatedly applying record decomposition rules is irreducible

varies-----at which point there exists at most one non-identifier data item within each

record. By then the designer will have considered all inter item relationships.

At the implementation or physical level, data items must be clustered into

records for efficient data processing. Even at the logical level, it is still relevant and

useful to think of attributes which cluster around and describe entities, whether the

attribute items are considered as part of entity records or as individual object domains. It

is relatively unimportant whether the design activity starts with records which are

decomposed to analyze inter item relationships, or starts with object domains which are

clustered to form records. In practice a designer will do both. It is important that certain

rules and concepts be applied in the design process. Early formation of records is

dangerous only if it inhibits the designer from properly analyzing intra record relation­

ships among data items, and from considering alternative groupings of items into records

-Ideally, the formation of records should be part of the implementation phase of database

design since it is done primarily for system convenience and processing efficiency. In

fact, it is desirable to have software tools to perform the clustering, leaving the designer

to concentrate on defming the individual data objects, relationships, and performance
factors and constraints.

In a strict application of the object-relation approach to logical design, all object

domains are treated equally. In the E-A-R approach, attention is initially focused on

entities, then on the attributes of those entities, which may tum out to be other entities.

In fact, the distinction between attributes and entities is often confusing and arbitrary

Again, regardless of the approach taken, it is important for the designer to focus

attention on the more important parts of the users' world being modeled in the data

structure. This is automatically done in the E-A-R approach but can also be done in the

0-R approach. The designer needs a high level of abstraction when developing a data

structure and may start out by representing the main entities as boxes labeled with a
name only.

