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ABSTRACT 

ABSTRACT 

Cryptography algorithms are applied to protect a message or file from being read by 

network hackers, eavesdroppers. The encryption programs encrypt the text and will 

change the letters into symbols and other weird characters, so when someone opens the 

file they cannot read it. The interconnection of networks is an increasing trend in 

government and private industry. There is the obvious danger that connections made in 

such an extended network may increase the risk of a security compromise, with the 

owners unaware of the risk. 

Network connections should therefore be protected, at a level based on the risk. The 

assumption must be that the connecting parties are to a certain degree hostile and have to 

be strictly constrained to the access for which the connection was agreed. 

Although cryptography is fascinating and glamorous, because of its association with such 

things as espionage, diplomacy, and the higher levels of the military, it has a limited but 

important role in the area of network security. 

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adleman, 

is the most widely used public-key cryptosystem. It may be used to provide both secrecy 

and digital signatures and its security is based on the intractability of the integer 

factorization. RSA encryption is most commonly used for the transport of symmetric-key 

encryption algorithm keys and for the encryption of small data items. The RSA 

cryptosystem has been patented in the U.S. and Canada. Several standards organizations 

have written, or are in the process of writing, standards that address the use of the RSA 

cryptosystem for encryption, digital signatures, and key establishment. For discussion of 

patent and standards issues related to RSA. The description of RSA algorithm is given in 

the thesis. 
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Introduction 

The origin of the word cryptology lies in ancient Greek. The word cryptology is made up 

of two components: "kryptos", which means hidden and "logos" which means word. 

Cryptology is as old as writing itself, and has been used for thousands of years to safeguard 

military and diplomatic communications. For example, the famous Roman emperor Julius 

Caesar used a cipher to protect the messages to his troops. Within the field of cryptology one 

can see two separate divisions: cryptography and cryptanalysis. The cryptographer seeks 

methods to ensure the safety and security of conversations while the cryptanalyst tries to 

undo the farmer's work by breaking his systems. 

The main goals of modem cryptography can be seen as: user authentication, data 

authentication (data integrity and data origin authentication), non-repudiation of origin, and 

data confidentiality. In the following section we will elaborate more on these services. 

Subsequently we will explain how these services can be realized using cryptographic 

primitives. 

A cryptographic system (or a cipher system) is a method of hiding data so that only 

certain people can view it. Cryptography is the practice of creating and using cryptographic 

systems. Cryptanalysis is the science of analyzing and reverse engineering cryptographic 

systems. The original data is called plaintext. The protected data is called cipher text. 

Encryption is a procedure to convert plaintext into cipher text. Decryption is a procedure to 

convert cipher text into plaintext. A cryptographic system typically consists of algorithms, 

keys, and key management facilities. There are two basic types of cryptographic systems: 

symmetric ("private key") and asymmetric ("public key"). 

Symmetric key systems require both the sender and the recipient to have the same key. 

This key is used by the sender to encrypt the data, and again by the recipient to decrypt the 

data. Key exchange is clearly a problem. How do you securely send a key that will enable 

you to send other data securely? If a private key is intercepted or stolen, the adversary can act 

X 
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as either party and view all data and communications. You can think of the symmetric crypto 

system as akin to the Chubb type of door locks. You must be in possession of a key to both 

open and lock the door. Asymmetric cryptographic systems are considered much more 

flexible. Each user has both a public key and a private key. 

Messages are encrypted with one key and can be decrypted only by the other key. The 

public key can be published widely while the private key is kept secret. If Alice wishes to 

send Bob a secret, she finds and verifies Bob's public key, encrypts her message with it, and 

mails it off to Bob. When Bob gets the message, he uses his private key to decrypt it. 

Verification of public keys is an important step. Failure to verify that the public key really 

does belong to Bob leaves open the possibility that Alice is using a key whose associated 

private key is in the hands of an enemy. Public Key Infrastructures or PKI's deal with this 

problem by providing certification authorities that sign keys by a supposedly trusted party 

and make them available for download or verification. Asymmetric ciphers are much slower 

than their symmetric counterparts and key sizes are generally much larger. You can think of a 

public key system as akin to a Yale type door lock. Anyone can push the door locked, but 

you must be in possession of the correct key to open the door. 

The project is devoted the description of cryptographic algorithms, particularly RSA 

algorithm over network. The Goal of RSA Algorithm is to implement a demonstrable 

application that will perform the encryption and decryption of a text file using RSA 

Algorithm. I will give input as plaintext and it will generate the corresponding ciphertext. 

Ciphertext is decrypted to get the original plain text. 

R.S.A. stands for Rivest, Shamir and Adleman - the three cryptographers who invented 

the first practical commercial public key cryptosystem. Today it is used in web browsers, 

email programs, mobile phones, virtual private networks, secure shells, and many other 

places. Exactly how much security it provides is debatable, but with sufficiently large keys 

you can be confident of foiling the vast majority of attackers. Until recently the use of RSA 

was very much restricted by patent and export laws. However, the patent has now expired 

and US export laws have been relaxed. 
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CHAPTER ONE 

1. OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

1.1 Introduction 

To introduce cryptography, an understanding of issues related to information 

security in general is necessary. Network security manifests itself in many ways 

according to the situation and requirement. Regardless of who is involved, to one degree 

or another, all parties to a transaction must have confidence that certain objectives 

associated with network security have been met. Some of these objectives are mentioned. 

Often the objectives of on security cannot solely be achieved through 

mathematical algorithms and protocols alone, but require procedural techniques and 

abidance of laws to achieve the desired result. One of the fundamental tools used in 

network security is the signature. It is a building block for many other services such as no 

repudiation, data origin authentication, identification, and witnessing, to mention a few. 

Achieving network security in an electronic society requires a vast array of fsecurity 

objectives deemed necessary can be adequately met. The technical means is provided 

through cryptography. Cryptography is not the only means of providing network security, 

but rather one set of techniques. 

1.2 What Does Cryptography mean 

Cryptography means the study of mathematical techniques related to aspects of 

network security such as confidentiality, data integrity, entity authentication, and data 

origin authentication. 

The following are the goals of the Cryptography 

1. Confidentiality is a service used to keep the content of information from all but 

those authorized to have it. There are numerous approaches to providing 

confidentiality, ranging from physical protection to mathematical algorithms. 
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Some information security objectives: 

o Privacy or confidentiality: Keeping information secret from all but those 

who are authorized to see it. 

o Data integrity ensuring: Information has not been altered by unauthorized 

or unknown means. 

o Entity authentication or identification: Corroboration of the identity of an 

entity ( e.g., a person, a computer terminal, a credit card, etc.). 

o Message authentication: Corroborating the source of information; also 

known as data origin authentication. 

o Signature: A means to bind information to an entity. 

o Authorization: Conveyance, to another entity, of official sanction to do or 

be something. 

o Validation: A means to provide timeliness of authorization to use or 

manipulate information or resources. 

o Access control: Restricting access to resources to privileged entities. 

o Certification: Endorsement of information by a trusted entity. 

o Time stamping: Recording the time of creation or existence of 

information. 

o Witnessing: Verifying the creation or existence of information by an entity 

other than the creator. 

o Receipt: Acknowledgement that information has been received. 

o Confirmation: Acknowledgement that services has been provided. 

o Ownership: A means to provide an entity with the legal right to use or 

transfer a resource to others. 

o Anonymity: Concealing the identity of an entity involved in some process. 

o Non-repudiation: Preventing the denial of previous commitments or 

actions. 

o Revocation: Retraction of certification or authorization. 

2 
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2. Data integrity is a service, which addresses the unauthorized alteration of data. 

To assure data integrity, one must have the ability to detect data manipulation by 

unauthorized parties. 

3. Authentication is a service related to identification. This function applies to both 

entities and information itself. Aspect of cryptography is usually subdivided into 

two major classes: entity authentication and data origin authentication. 

4. Non-repudiation is a service, which prevents an entity from denying previous 

commitments or actions. 

A fundamental goal of cryptography is to adequately address these four areas in 

both theory and practice. Cryptography is about the prevention and detection of cheating 

and other malicious activities. A number of basic cryptographic tools (primitives) used to 

provide network security. Examples of primitives include encryption schemes hash 

functions, and digital signature schemes. Figure 1.1 provides a schematic listing of the 

primitives considered and how they relate. 

These primitives should be evaluated with respect to various criteria such as: 

1. Level of security. This is usually difficult to quantify. Often it is given in terms of 

the number of operations required to defeat the intended objective. 

2. Functionality. Primitives will need to be combined to meet various network 

security objectives. Which primitives are most effective for a given objective will 

be determined by the basic properties of the primitives. 



OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

Unkeyed 
Primitives 

Security 
Primitives 

Symmetric-key 
P ri mi lives 

Public-key 
Prlmltivos 

Arbitrary lengt11 
hash functions 

One-way parrnutatluns 

R.a ndo m sequences 

s~,mmetrlc-key 
ciphers 

Arb Itra rv length 
t1 ash functions (MAGs) 

Sign atu FElS 

Pse ud o random 
sequonces 

Identification primitives 

Public-ke>" 
clpners 

Signatures 

lclentiflcatlon primitives 

Bloc~. 
ciphers 

Stroarn 
ctpners 

Figure 1.1 A taxonomy of cryptographic primitives. 

3. Methods of operation. Primitives, when applied in various ways and with various 

inputs, will typically exhibit different characteristics; thus, one primitive could 

provide very different functionality depending on its mode of operation or usage. 

4. Performance. This refers to the efficiency of a primitive in a particular mode of 

operation. 
5. Ease of implementation. This refers to the difficulty of realizing the primitive in a 

practical instantiation. This might include the complexity of implementing the 

primitive in either a software or hardware environment. 

4 
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The relative importance of various criteria is very much dependent on the 

application and resources available. For example, in an environment where computing 

power is limited one may have to trade off a very high level of security for better 

performance of the system as a whole. 

1.3 Basic Functions and Concepts 
A familiarity with basic mathematical concepts used in cryptography will be 

useful. One concept which is absolutely fundamental to cryptography is that of a function 

in the mathematical sense. A function is alternately referred to as a mapping or a 

transformation. 

1.3.1 Function 
A set consists of distinct objects, which are called elements of the set. For 

example, a set X might consist of the elements a, b, c, and this is denoted X = { a; b; c]. If 
x is an element of X (usually written x EX) the image of x is the element in Y which the 

rule f associates with x; the image y of x is denoted by y = f(x). Standard notation for a 

function f from set X to set Y is f: X 7 Y. 

Figure 1.2 A function f from a set X to a set Y. 

• 1-1 Functions: A function is 1 - 1 (one-to-one) if each element in the co domain Y 

is the image of at most one element in the domain X. 

• Onto function: A function is onto if each element in the co domain Y is the image 

of at least one element in the domain. 

• Bijection: If a function f: X 7 Y is 1-1 and Im (f) = Y, then f is cal led a bijection. 
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• One-way functions: A function f from a set X to a set Y is called a one-way 

function if f (x) is easy to compute for all x EX but for essentially all elements 

YE Im (f) it is "computationally infeasible" to find any XE X such that J(x) = y. 

• Trapdoor one-way functions: A trapdoor one-way function is a one-way function 

f: X ~ Y with the additional property that given some extra 

• Permutations: Let S be a finite set of elements. A permutation p on S is a bijection 

from S to itself (i.e., p: S~S). 

• Involutions: Involutions have the property that they are their own inverses. 

(i.e., f: s~ S). 

1.3.2 Basic Terminology and Concepts 

The scientific study of any discipline must be built upon exact definitions arising 

from fundamental concepts. Where appropriate, strictness has been sacrificed for the sake 

of clarity. 

1.3.2.1. Encryption Domains and Co-domains 

• )1. denotes a finite set called the alphabet of definition. 

• 'Jvl denotes a set called the message space. 'Jvl consists of strings of symbols from 

an alphabet. An element of 'Jvl is called a plaintext message or simply a plaintext. 

• C denotes a set called the cypertext space. C consists of strings of symbols from an 

alphabet; differ from the alphabet of 'Jvl. An element of C is called a cypertext. 

1.3.2.2 Encryption and Decryption Transformations 

• '1( denotes a set called the key space. An element of '1( is called a key. 

• Each element eE '1( uniquely determines a bijection from 'Jvl to C, denoted by r.Ee. 

• (])a denotes a bijection from C to 'Jvl and (])a is called a decryption function. 

• The process of applying the transformation r.Ee to a message mE 'Jvl is usually 

referred to as encrypting m or the encryption of m. 

6 
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• The process of applying the transformation Vato a cypertext c is usually referred 

to as decrypting c or the decryption of c. 

• The keys e and dare referred to as a key pair and denoted by ( e; d). 

1.3.2.3 Achieving Confidentiality 

An encryption scheme may be used as follows for the purpose of achieving 

confidentiality. Two parties Alice and Bob first secretly choose or secretly exchange a 

key pair ( e; d). At a subsequent point in time, if Alice wishes to send a message m EM to 

Bob, she computes c = Ee (m) and transmits this to Bob. Upon receiving c, Bob computes 

D, ( c) = m and hence recovers the original message m. 

The question arises as to why keys are necessary. If some particular 

encryption/decryption transformation is exposed then one does not have to redesign the 

entire scheme but simply change the key. Figure 1.3 provides a simple model of a two­ 

party communication using encryption. 

Adversary 

encryption 
Ee(m) "~ c 

C t ------ ------t,.. 
UNSECURED CH-\NNEL 

decryption 
Date),, m 

plaintext 
source 

destination 

Alice Bob 

Figure 1.3 Schematic of a two-party communication. 
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1.3.2.4 Communication Participants 

Referring to Figure 1.3, the following terminology is defined. 

• An entity or party is someone or something, which sends, receives, or 

manipulates information. An entity may be a person, a computer terminal, etc. 

• A sender is an entity in a two-party communication, which is the legitimate 

transmitter of information. 

• A receiver is an entity in a two-party communication, which is the intended 

recipient of information. 

• An adversary is an entity in a two-party communication which is neither the 

sender nor receiver, and which tries to defeat the information security service 

being provided between the sender and receiver. 

1.3.2.5. Channels 

A channel is a means of conveying information from one entity to another. A 

physically secure channel is one, which is not physically accessible to the adversary. An 

unsecured channel is one from which parties other than those for which the information is 

intended can reorder, delete, insert, or read. A secured channel is one from which an 

adversary does not have the ability to reorder, delete, insert, or read. A secured channel 

may be secured by physical or cryptographic techniques. 

1.3.2.6 Security 

A fundamental principle in cryptography is that the sets :M; C; 7(; {P.e: e E 7(}, {<DJ: 

aE 7(} are public knowledge. When two parties wish to communicate securely using an 

encryption scheme, the only thing that they keep secret is the particular key pair ( e; a), 

which they must select. One can gain additional security by keeping the class of 

encryption and decryption transformations secret but one should not base the security of 

the entire scheme on this approach. An encryption scheme is said to be breakable if a 

third party, without prior knowledge of the key pair ( e; d) can systematically recover 

plaintext from corresponding cypertext within some appropriate time frame. 

Trying all possible keys to see which one the communicating parties are using 

can break an encryption scheme. This is called an exhaustive search of the key space. 

8 
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Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements 

for cipher systems. They are given here essentially as Kerckhoffs originally stated them: 

1. The system should be, if not theoretically unbreakable, unbreakable in practice. 

2. Compromise of the system details should not inconvenience the correspondents. 

3. The key should be remember able without notes and easily changed. 

4. The cryptogram should be transmissible by telegraph. 

5. The encryption apparatus should be portable and operable by a single person. 

6. The system should be easy, requiring neither the knowledge of a long list of rules 

nor mental strain. 

1.3.2.7 Network Security in General 
So far the terminology has been restricted to encryption and decryption with the 

goal of privacy in mind. Network security is much broader, encompassing such things as 

authentication and data integrity. 

• A network security service is a method to provide specific aspect of security. 

• Breaking a network security service implies defeating the objective of the 

intended service. 

• A passive adversary is an adversary who is capable only of reading information 

from an unsecured channel. 

• An active adversary is an adversary who may also transmit, alter, or delete 

information on an unsecured channel. 

1.4 Symmetric-key Encryption 
Consider an encryption scheme consisting of the sets of encryption and decryption 

transformations {f:e: eE'1(} and {<Da: d e '1(}, respectively, where '](is the key space. The 

encryption scheme is said to be symmetric-key if for each associated 

encryption/decryption key pair (e; cf), it is computationally easy to determine cf knowing 

only e, and to determine e from cf. Since e = a in most practical symmetric-key encryption 

schemes, the term symmetric key becomes appropriate. 
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The block diagram of Figure 1.4, with the addition of the secure channel, can describe a 

two-party communication using symmetric-key encryption. 

Adversary 

key SECURE CHANNEL 

source 

• 
encryption LJ_ c ---'------H decryption 
E, ( ni) ·'"" c r l UNSECURED CHANNEL o: ( c) cc, m 

1n 

plaintext 
source 

destination 

Alice Bob 

Figure 1.4 Two-party communication using encryption, with a secure channel 

One of the major issues with symmetric-key systems is to find an efficient method 

to agree upon and exchange keys securely. It is assumed that all parties know the set of 

encryption/decryption transformations there are two classes of symmetric-key encryption 

schemes, which are commonly distinguished, block ciphers and stream ciphers. 

1.4.1 Block Ciphers 
A block cipher is an encryption scheme which breaks up the plaintext messages to 

be transmitted into strings ( called blocks) of a fixed length t over an alphabet )l, and 

encrypts one block at a time. Most well-known symmetric-key encryption techniques are 

block ciphers. Two important classes of block ciphers are substitution ciphers and 

transposition ciphers 

10 
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1.4.2 Stream Ciphers 

Stream ciphers form an important class of symmetric-key encryption schemes. 

They are, in one sense, very simple block ciphers having block length equal to one. What 

makes them useful is the fact that the encryption transformation can change for each 

symbol of plaintext being encrypted. In situations where transmission errors are highly 

probable, stream ciphers are advantageous because they have no error propagation. They 

can also be used when the data must be processed one symbol at a time 

1.4.3 The Key Space 

The size of the key space is the number of encryption/decryption key pairs that are 

available in the cipher system. A key is typically a compact way to specify the encryption 

transformation to be used. For example, a transposition cipher of block length t has ti 

Encryption functions from which to select. Each can be simply described by a 

permutation, which is called the key. 

1.5 Digital Signatures 
A cryptographic primitive who is fundamental in authentication, authorization, 

and non-repudiation is the digital signature. The purpose of a digital signature is to 

provide a means for an entity to bind its identity to a piece of information. The process of 

signing entails transforming the message and some secret information held by the entity 

into a tag called a signature. 

1.5.1. Nomenclature and Set-up 

The transformations S)l and o/Jl provide a digital signature scheme for }I. 

• 5l1 is the set of messages, which can be signed. 

• Sis a set of elements called signatures, possibly binary strings of a fixed length. 

• S)l is a transformation from the message set 5l1 to the signature set S, and is called a 

signing transformation for entity JI. 

11 
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• '()Jl is a transformation from the set :M ~S to the set {true, false} o/Jl is called a 

verification transformation for )I. 's signatures, is publicly known, and is used by 

other entities to verify signatures created by )I.. 

1.6 Public-key Cryptography 
The concept of public-key encryption is simple and elegant, but has far-reaching 

consequences. Let { P.e: e E 1(} be a set of encryption transformations, and let { <Da: a E 1(} 
be the set of corresponding decryption transformations, where 1( is the key space. 

Consider any pair of associated encryption/decryption transformations (P.e; <Da) and 

suppose that each pair has the property that knowing P.e it is computationally infeasible, 

given a random ciphertext cEC, to find the message mE:M such that P.e(m) == c. This 

property implies that given e it is infeasible to determine the corresponding decryption 

key a. P.e is being viewed here as a trapdoor one-way function with abeing the trapdoor 
information necessary to compute the inverse function and hence allow decryption. This 

is unlike symmetric-key ciphers where e and a are essentially the same. 

The encryption method is said to be a public-key encryption scheme if for each 

associated encryption/decryption pair ( e; a), one key e (the public key) is made publicly 

available, while the other a(the private key) is kept secret. For the scheme to be secure, it 

must be computationally infeasible to compute £from e. To avoid ambiguity, a common 

convention is to use the term private key in association with public-key cryptosystems, 

and secret key in association with symmetric-key cryptosystems 
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Passive 
Adversary 

t' t . ----·· --------- ---- -- key 
source : UNSECURED CHANNEL 

encryption 
E~ (m) '" c 

C • ~~--~-------~--1,.1 
UNSECURED CHANNEL 

decryption 

D,1 (c) "" tn 

plaintext 
source 

destination 

Alice Bob 

Figure 1.5 Encryption using public-key techniques. 

1. 7 Hash Functions 
One of the fundamental primitives in modern cryptography is the cryptographic 

hash function, often informally called a one-way hash function. A simplified definition 

for the present discussion follows. A hash function is a computationally efficient function 

mapping binary strings of arbitrary length to binary strings of some fixed length, called 

hash-values. For a hash function, which outputs n-bit hash-values and has desirable 

properties, the probability that a randomly chosen string gets mapped to a particular n-bit 

hash-value (image) is 2-n. The basic idea is that a hash-value serves as a compact 

representative of an input string. To be of cryptographic use, a hash function Ii, is typically 

chosen such that it is computationally infeasible to find two distinct inputs which hash to 

a common value and that given a specific hash-value y, it is computationally infeasible to 

find an input x such that /i,(x) = y. The most common cryptographic uses of hash functions 

are with digital signatures and for data integrity Hash functions are typically publicly 

known and involve no secret keys. When used to detect whether the message input has 

been altered, they are called modification detection codes (MDCs). Related to these are 

13 
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hash functions, which involve a secret key, and provide data origin authentication as well 

as data integrity; these are called message authentication codes (MACs). 

1.8 Protocols, Mechanisms 
A cryptographic protocol is a distributed algorithm defined by a sequence of steps 

precisely specifying the actions required of two or more entities to achieve a specific 

security objective. As opposed to a protocol, a mechanism is a more general term 

encompassing protocols, algorithms and non-cryptographic techniques to achieve specific 

security objectives. Protocols play a major role in cryptography and are essential in 

meeting cryptographic goals. Encryption schemes, digital signatures, hash functions, and 

random number generation are among the primitives, which may be utilized to build a 

protocol. 

1.8.1 Protocol and Mechanism Failure 

A protocol failure or mechanism failure occurs when a mechanism fails to meet the 

goals for which it was intended. Protocols and mechanisms may fail for a number of 

reasons: 

1. Weaknesses in a particular cryptographic primitive, which may be amplified by 

the protocol or mechanism. 

2. Claimed or assumed security guarantees, which are overstated or not clearly 

understood. 

3. The oversight of some principle applicable to a broad class of primitives such as 

encryption. 

When designing cryptographic protocols and mechanisms, the following two steps are 

essential: 

1. Identify all assumptions in the protocol or mechanism design. 

2. For each assumption, determine the effect on the security objective if that 

assumption is violated. 

14 
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1.9 Classes of Attacks and Security Models 
Over the years, many different types of attacks on cryptographic primitives and 

protocols have been identified. The attacks these adversaries can mount may be classified 

as follows: 
1. A passive attack is one where the adversary only monitors the communication 

channel. A passive attacker only threatens confidentiality of data. 

2. An active attack is one where the adversary attempts to delete, add, or in some 

other way alter the transmission on the channel. 

A passive attack can be further subdivided into more specialized attacks for deducing 

plaintext from ciphertext. 

1.9.1 Attacks on Encryption Schemes 
The objective of the following attacks is to systematically recover plaintext from 

ciphertext, or even more drastically, to deduce the decryption key. 

1. A ciphertext-only attack is one where the adversary tries to deduce the decryption 

key or plaintext by only observing ciphertext. 

2. A known-plaintext attack is one where the adversary has a quantity of plaintext 

and corresponding ciphertext. 
3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then 

given corresponding ciphertext. 

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the 

choice of plaintext may depend on the ciphertext received from previous requests. 

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is 

then given the corresponding plaintext. One way to mount such an attack is for the 

adversary to gain access to the equipment used for decryption 

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the 

choice of ciphertext may depend on the plaintext received from previous requests. 
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1.9.2 Attacks on Protocols 
The following is a partial list of attacks, which might be mounted on various 

protocols. Until a protocol is proven to provide the service intended, the list of possible 

attacks can never be said to be complete. 

1. Known-key attack. In this attack an adversary obtains some keys used previously 

and then uses this information to determine new keys. 

2. Replay. In this attack an adversary records a communication session and replays 

the entire session, or a portion thereof, at some later point in time. 

3. Impersonation. Here an adversary assumes the identity of one of the legitimate 

parties in a network. 

4. Dictionary. This is usually an attack against passwords. An adversary can take a 

list of probable passwords; hash all entries in this list, and then compare this to the 

list of true encrypted passwords with the hope of finding matches. 

5. Forward search. This attack is similar in spirit to the dictionary attack and is used 

to decrypt messages. 

6. Interleaving attack. This type of attack usually involves some form of 

impersonation in an authentication protocol. 
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CHAPTER TWO 

2. CRYPTOGRAPHY FUNCTIONS 

2.1 Overview 

In this chapter basic functions involved in cryptography are explained. Functions 

that are used in the encryptions and decryption of the text such ciphers mainly block 

cipher and stream ciphers. Hash functions are also one of the important encryption 

functions. It is also explained that how the attacks are being done on cryptography and 

what are the authentication methods are being used so for. 

2.2 Block Ciphers 

The most important symmetric algorithms are block ciphers. The general 

operation of all block ciphers is the same - a given number of bits of plaintext (a block) 

are encrypted into a block of ciphertext of the same size. Thus, all block ciphers have a 

natural block size - the number of bits they encrypt in a single operation. This stands in 

contrast to stream ciphers, which encrypt one bit at a time. Any block cipher can be 

operated in one of several modes. 

2.2.1 Iterated Block Cipher 

An iterated block cipher is one that encrypts a plaintext block by a process that 

has several rounds. In each round, the same transformation or round function is applied to 

the data using a subkey. The set of subkeys are usually derived from the user-provided 

secret key by a key schedule. The number of rounds in an iterated cipher depends on the 

desired security level and the consequent trade-off with performance. In most cases, an 

increased number of rounds will improve the security offered by a block cipher, but for 

some ciphers the number of rounds required to achieve adequate security will be too large 

for the cipher to be practical or desirable. 

17 
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2.2.2 Electronic Codebook (ECB) Mode 

ECB is the simplest mode of operation for a block cipher. The input data is 

padded out to a multiple of the block size, broken into an integer number of blocks, each 

of which is encrypted independently using the key. In addition to simplicity, ECB has the 

advantage of allowing any block to be decrypted independently of the others. Thus, lost 

data blocks do not affect the decryption of other blocks. The disadvantage of ECB is that 

it aids known-plaintext attacks. If the same block of plaintext is encrypted twice with 

ECB, the two resulting blocks of ciphertext will be the same. 

ECBENCRYPTION ECB DECRYPTION 

. ' ,·' . .., : 

... CHJHER:1:EXT; ,. ::·~·.:"·- ;:-:!>:<·\:~.,-,~<:_.-~f;\ .: ,;.,,.,,:? ·/. ': m:AlN'IEXT· ":'_,'-.-,· .. : .. ,· -. ·- -::: ..... ·.,,':'._. ;:_ .. _ 

lNl'ITT BLOCK. lNl?ITTBLOCK. 

ENCRYPT DECRYPT 

OITTl?ITTBLOCK. OITTl?ITTBLOCK. 

cimEi:itExm' 
·> .. :/. ·>·\>! 

Figure 2.1: Shows a ECB Encryption/Decryption Model 
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2.2.3 Cipher Block Chaining (CBC) Mode 

CBC is the most commonly used mode of operation for a block cipher. Prior to 

encryption, each block of plaintext is XOR-ed with the prior block of ciphertext. After 

decryption, the output of the cipher must then be XOR-ed with the previous ciphertext to 

recover the original plaintext. The first block of plaintext is XOR-ed with an initialization 

vector (IV), which is usually a block of random bits transmitted in the clear. CBC is more 

secure than ECB because it effectively scrambles the plaintext prior to each encryption 

step. Since the ciphertext is constantly changing, two identical blocks of plaintext will 

encrypt to two different blocks of ciphertext. The disadvantage of CBC is that the 

encryption of a data block becomes dependent on all the blocks prior to it. A lost block of 

data will also prevent decoding of the next block of data. CBC can be used to convert a 

block cipher into a hash algorithm. To do this, CBC is run repeatedly on the input data, 

and all the ciphertext is discarded except for the last block, which will depend on all the 

data blocks in the message. This last block becomes the output of the hash function. 

1\1 

'ENCRYPJ ,'ENCRYPf ,'ENCRYPf 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

DECRY Pf DECRYPJ' OECRYPJ' 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

Figure 2.2: Shows a CBC Encryption/Decryption Model 
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2.2.4 Feistel Ciphers 

The figure shows the general design of a Feistel cipher, a scheme used by almost 

all modern block ciphers. The input is broken into two equal size blocks, generally called 

left (L) and right (R), which are then repeatedly cycled through the algorithm. At each 

cycle, a hash function (f) is applied to the right block and the key, and the result of the 

hash is XOR-ed into the left block. The blocks are then swapped. The XOR-ed result 

becomes the new right block and the unaltered right block becomes the left block. The 

process is then repeated a number of times. 

The hash function is just a bit scrambler. The correct operation of the algorithm is 

not based on any property of the hash function, other than it is completely deterministic; 

i.e. if it's run again with the exact same inputs, identical output will be produced. To 

decrypt, the ciphertext is broken into L and R blocks, and the key and the R block are run 

through the hash function to get the same hash result used in the last cycle of encryption; 

notice that the R block was unchanged in the last encryption cycle. The hash is then 

XOR'ed into the L block to reverse the last encryption cycle, and the process is repeated 

until all the encryption cycles have been backed out. The security of a Feistel cipher 

depends primarily on the key size and the irreversibility of the hash function. Ideally, the 

output of the hash function should appear to be random bits from which nothing can be 

determined about the input(s). 

20 



CRYPTOGRAPHY FUNCTIONS 

Figure 2.3: Shows a Feistel Model 

2.2.5 Data Encryption Standard (DES) 

DES is a Feistel-type Substitution-Permutation Network (SPN) cipher. DES uses a 

56-bit key, which can be broken using brute-force methods, and is now considered 

obsolete. A 16-cycle Feistel system is used, with an overall 56-bit key permuted into 16 

48-bit subkeys, one for each cycle. To decrypt, the identical algorithm is used, but the 

order of subkeys is reversed. The L and R blocks are 32 bits each, yielding an overall 

block size of 64 bits. The hash function 1'.f1, specified by the standard using the so-called 

"Seboxes'', takes a 32-bit data block and one of the 48-bit subkeys as input and produces 
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32 bits of output. Sometimes DES is said to use a 64-bit key, but 8 of the 64 bits are used 

only for parity checking, so the effective key size is 56 bits. 

2.2.5.1 Triple DES 

Triple DES was developed to address the obvious flaws in DES without designing 

a whole new cryptosystem. Triple DES simply extends the key size of DES by applying 

the algorithm three times in succession with three different keys. The combined key size 

is thus 168 bits (3 times 56), beyond the reach of brute-force techniques such as those 

used by the EFF DES Cracker. Triple DES has always been regarded with some 

suspicion, since the original algorithm was never designed to be used in this way, but no 

serious flaws have been uncovered in its design, and it is today a viable cryptosystem 

used in a number of Internet protocols. 

2.3 Stream Ciphers 

A stream cipher is a symmetric encryption algorithm. Stream ciphers can be 

designed to be exceptionally fast, much faster in fact than any block cipher. While block 

ciphers operate on large blocks of data, stream ciphers typically operate on smaller units 

of plaintext, usually bits. The encryption of any particular plaintext with a block cipher 

will result in the same ciphertext when the same key is used. With a stream cipher, the 

transformation of these smaller plaintext units will vary, depending on when they are 

encountered during the encryption process. 

A stream cipher generates what is called a keystream and combining the 

keystream with the plaintext, usually with the bitwise XOR operation, provides 

encryption. The generation of the keystream can be independent of the plaintext and 

ciphertext or it can depend on the data and its encryption. 

Current stream ciphers are most commonly attributed to the appealing of 

theoretical properties of the one-time pad, but there have been no attempts to standardize 

on any particular stream cipher proposal, as has been the case with block ciphers. 

Interestingly, certain modes of operation of a block cipher effectively transform it into a 
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evstream generator and in this way; any block cipher can be used as a stream cipher. 

However, stream ciphers with a dedicated design are likely to be much faster. 

1.3.1 Linear Feedback Shift Register 

A Linear Feedback Shift Register (LFSR) is a mechanism for generating a 

sequence of binary bits. The register consists of a series of cells that are set by an 

initialization vector that is, most often, the secret key. The behavior of the register is 

regulated by a clock and at each clocking instant, the contents of the cells of the register 

are shifted right by one position, and the XOR of a subset of the cell contents is placed in 

the leftmost cell. One bit of output is usually derived during this update procedure. 

LFSRs are fast and easy to implement in both hardware and software. With a 

sensible choice of feedback taps the sequences that are generated can have a good 

statistical appearance. However, the sequences generated by single LFSRs are not secure 

because a powerful mathematical framework has been developed over the years, which 

allows for their straightforward analysis. However, LFSRs are useful as building blocks 

in more secure systems. 

Figure 2.1: Shows a Linear Feed Back Register Model 

2.3.1.1 Shift Register Cascades 

A shift register cascade is a set of LFSRs connected together in such a way that 

the behavior of one particular LFSR depends on the behavior of the previous LFSRs in 

the cascade. This dependent behavior is usually achieved by using one LFSR to control 

the clock of the following LFSR. For instance one register might be advanced by one step 
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··· the preceding register output is 1 and advanced by two steps otherwise. Many different 

configurations are possible and certain parameter choices appear to offer very good 

security. 

2.3.1.2 Shrinking and Self-Shrinking Generators 

It is a stream cipher based on the simple interaction between the outputs from two 

LFSRs. The bits of one output are used to determine whether the corresponding bits of the 

econd output will be used as part of the overall keystream. The shrinking generator is 

simple and scaleable, and has good security properties. One drawback of the shrinking 

generator is that the output rate of the keystream will not be constant unless precautions 

are taken. A variant of the shrinking generator is the self-shrinking generator, where 

instead of using one output from one LFSR to "shrink" the output of another, the output 

of a single LFSR is used to extract bits from the same output. 

2.3.2 Other Stream Ciphers 

There are a vast number of alternative stream ciphers that have been proposed in 

cryptographic literature as well as an equally vast number that appear in implementations 

and products world-wide. Many are based on the use of LFSRs since such ciphers tend to 

be more amenable to analysis and it is easier to assess the security that they offer. 

There are essentially four distinct approaches to stream cipher design. The first is 

termed the information-theoretic approach explained in one-time pad. The second 

approach is that of system-theoretic design. In essence, the cryptographer designs the 

cipher along established guidelines which ensure that the cipher is resistant to all known 

attacks. While there is, of course, no substantial guarantee that future cryptanalysis will 

be unsuccessful, it is this design approach that is perhaps the most common in cipher 

design. The third approach is to attempt to relate the difficulty of breaking the stream 

cipher to solving some difficult problem. This complexity-theoretic approach is very 

appealing, but in practice the ciphers that have been developed tend to be rather slow and 

impractical. The final approach is that of designing a randomized cipher. Here the aim is 
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to ensure that the cipher is resistant to any practical amount of cryptanalytic work rather 

than being secure against an unlimited amount of work. 

2.3.2.1 One-time Pad 

A one-time pad, sometimes called the Vernam cipher, uses a string of bits that is 

generated completely at random. The keystream is the same length as the plaintext 

message and the random string is combined using bitwise XOR with the plaintext to 

produce the ciphertext. Since the entire keystream is random, an opponent with infinite 

computational resources can only guess the plaintext if he sees the ciphertext. Such a 

cipher is said to offer perfect secrecy and the analysis of the one-time pad is seen as one 

of the cornerstones of modern cryptography. 

2.4 Hash Functions 

Hash Functions take a block of data as input, and produce a hash or message 

digest as output. The usual intent is that the hash can act as a signature for the original 

data, without revealing its contents. Therefore, it's important that the hash function be 

irreversible - not only should it be nearly impossible to retrieve the original data, it must 

also be unfeasible to construct a data block that matches some given hash value. 

Randomness, however, has no place in a hash function, which should completely 

deterministic. Given the exact same input twice, the hash function should always produce 

the same output. Even a single bit changed in the input, though, should produce a 

different hash value. The hash value should be small enough to be manageable in further 

manipulations, yet large enough to prevent an attacker from randomly finding a block of 

data that produces the same hash. 

MD5, documented in RFC 1321, is perhaps the most widely used hash function at 

this time. It takes an arbitrarily sized block of data as input and produces a 128-bit (16- 

byte) hash. It uses bitwise operations, addition, and a table of values based on the sine 

function to process the data in 64-byte blocks. RFC 1810 discusses the performance of 

MD5, and presents some speed measurements for various architectures. 
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Hash functions can't be used directly for encryption, but are very useful for 

authentication. One of the simplest uses of a hash function is to protect passwords. UNIX 

systems, in particular, will apply a hash function to a user's password and store the hash 

value, not the password itself. To authenticate the user, a password is requested, and the 

response runs through the hash function. If the resulting hash value is the same as the one 

stored, then the user must have supplied the correct password, and is authenticated. Since 

the hash function is irreversible, obtaining the hash values doesn't reveal the passwords to 

an attacker. In practice, though, people will often use guessable passwords, so obtaining 

the hashes might reveal passwords to an attacker who, for example, hashes all the words 

in the dictionary and compares the results to the password hashes. 

Another use of hash functions is for interactive authentication over the network. 

Transmitting a hash instead of an actual password has the advantage of not revealing the 

password to anyone sniffing on the network traffic. If the password is combined with 

some changing value, then the hashes will be different every time, preventing an attacker 

from using an old hash to authenticate again. The server sends a random challenge to the 

client, which combines the challenge with the password, computes the hash value, and 

sends it back to the server. The server, possessing both the stored secret password and the 

random challenge, performs the same hash computation, and checks its result against the 

reply from the client. If they match, then the client must know the password to have 

correctly computed the hash value. Since the next authentication would involve a 

different random challenge, the expected hash value would be different, preventing an 

attacker from using a replay attack. Thus, hash functions, though not encryption 

algorithms in their own right can be used to provide significant security services, mainly 

identity authentication. 

2.4.1 Hash functions for hash table lookup 

A hash function for hash table lookup should be fast, and it should cause as few 

collisions as possible. If you know the keys you will be hashing before you choose the 

hash function, it is possible to get zero collisions -- this is called perfect hashing. 

Otherwise, the best you can do is to map an equal number of keys to each possible hash 
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value and make sure that similar keys are not unusually likely to map to the same value. 

Unfortunately, that hash is only average. The problem is the per-character mixing: it only 

rotates bits, it doesn't really mix them. Every input bit affects only 1 bit of hash until the 

final %. If two input bits land on the same hash bit, they cancel each other out. Also, % 

can be extremely slow. 

2.5 Attacks on Ciphers 

Here the different kinds of possible attacks what have been observed so for and 

can be expected are explained in detail. 

2.5.1 Exhaustive Key Search 

Exhaustive key search, or brute-force search, is the basic technique of trying every 

possible key in turn until the correct key is identified. To identify the correct key it may 

be necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has 

some recognizable characteristic, ciphertext alone might suffice. Exhaustive key search 

can be mounted on any cipher and sometimes a weakness in the key schedule of the 

cipher can help improve the efficiency of an exhaustive key search attack. Advances in 

technology and computing performance will always make exhaustive key search an 

increasingly practical attack against keys of a fixed length. When DES was designed, it 

was generally considered secure against exhaustive key search without a vast financial 

investment in hardware. Over the years, this line of attack will become increasingly 

attractive to a potential adversary. 

While the 56-bit key in DES now only offers a few hours of protection against 

exhaustive search by a modern dedicated machine, the current rate of increase in 

computing power is such that 80-bit key can be expected to offer the same level of 

protection against exhaustive key search in 18 years time as DES does today. 
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.... 5.2 Differential Cryptanalysis 

Differential cryptanalysis is a type of attack that can be mounted on iterative block 

iphers. Differential cryptanalysis is basically a chosen plaintext attack and relies on an 

analysis of the evolution of the differences between two related plaintexts as they are 

encrypted under the same key. By careful analysis of the available data, probabilities can 

be assigned to each of the possible keys and eventually the most probable key is 

identified as the correct one. 

Differential cryptanalysis has been used against a great many ciphers with varying 

degrees of success. In attacks against DES, its effectiveness is limited by what was very 

careful design of the S-boxes during the design of DES. Differential cryptanalysis has 

also been useful in attacking other cryptographic algorithms such as hash functions. 

2.5.3 Linear Cryptanalysis 

Linear cryptanalysis is a known plaintext attack and uses a linear approximation to 

describe the behavior of the block cipher. Given sufficient pairs of plaintext and 

corresponding ciphertext, bits of information about the key can be obtained and increased 

amounts of data will usually give a higher probability of success. There have been a 

variety of enhancements and improvements to the basic attack. Differential-linear 

cryptanalysis is an attack, which combines elements of differential cryptanalysis with 

those of linear cryptanalysis. A linear cryptanalytic attack using multiple approximations 

might allow for a reduction in the amount of data required for a successful attack. 

2.5.4 Weak Key for a Block Cipher 

Weak keys are secret keys with a certain value for which the block cipher in 

question will exhibit certain regularities in encryption or, in other cases, a poor level of 

encryption. For instance, with DES there are four keys for which encryption is exactly the 

same as decryption. This means that if one were to encrypt twice with one of these weak 

keys, then the original plaintext would be recovered. For IDEA there is a class of keys for 

which cryptanalysis is greatly facilitated and the key can be recovered. However, in both 
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these cases, the number of weak keys is such a small fraction of all possible keys that the 

chance of picking one at random is exceptionally slight. In such cases, they pose no 

significant threat to the security of the block cipher when used for encryption. 

Of course for other block ciphers, there might well be a large set of weak keys 

(perhaps even with the weakness exhibiting itself in a different way) for which the chance 

of picking a weak key is too large for comfort. In such a case, the presence of weak keys 

would have an obvious impact on the security of the block cipher. 

2.5.5 Algebraic Attacks 

Algebraic attacks are a class of techniques, which rely for their success on some 

block cipher exhibiting a high degree of mathematical structure. For instance, it is 

conceivable that a block cipher might exhibit what is termed a group structure. If this 

were the case, then encrypting a plaintext under one key and then encrypting the result 

under another key would always be equivalent to single encryption under some other 

single key. If so, then the block cipher would be considerably weaker, and the use of 

multiple encryptions would offer no additional security over single encryption. For most 

block ciphers, the question of whether they form a group is still open. For DES, however, 

it is known that the cipher is not a group. There are a variety of other concerns with 

regards to algebraic attacks. 

2.5.6 Data Compression Used With Encryption 

Data compression removes redundant character strings in a file. This means that 

the compressed file has a more uniform distribution of characters. In addition to providing 

shorter plaintext and ciphertext, which reduces the amount of time needed to encrypt, 

decrypt and transmit a file, the reduced redundancy in the plaintext can potentially hinder 

certain cryptanalytic attacks. 

By contrast, compressing a file after encryption is inefficient. The ciphertext 

produced by a good encryption algorithm should have an almost statistically uniform 

distribution of characters. As a consequence, a compression algorithm should be unable to 
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find redundant patterns in such text and there will be little, if any, data compression. In 

fact, if a data compression algorithm is able to significantly compress encrypted text, then 

this indicates a high level of redundancy in the ciphertext, which, in turn, is evidence of 

poor encryption. 

2.6 When an Attack Become Practical 

There is no easy answer to this question since it depends on many distinct factors. 

Not only must the work and computational resources required by the cryptanalyst be 

reasonable, but the amount and type of data required for the attack to be successful must 

also be taken into account. One classification distinguishes among cryptanalytic attacks 

according to the data they require in the following way: chosen plaintext or chosen 

ciphertext, known plaintext, and ciphertext-only. This classification is not particular to 

secret-key ciphers and can be applied to cryptanalytic attacks on any cryptographic 

function. A chosen plaintext or chosen ciphertext attack gives the cryptanalyst the 

greatest freedom in analyzing a cipher. The cryptanalyst chooses the plaintext to be 

encrypted and analyzes the plaintext together with the resultant ciphertext to derive the 

secret key. Such attacks will, in many circumstances, be difficult to mount but they 

should not be discounted. A known plaintext attack is more useful to the cryptanalyst than 

a chosen plaintext attack (with the same amount of data) since the cryptanalyst now 

requires a certain numbers of plaintexts and their corresponding ciphertexts without 

specifying the values of the plaintexts. This type of information is presumably easier to 

collect. The most practical attack, but perhaps the most difficult to actually discover, is a 

ciphertext-only attack. In such an attack, the cryptanalyst merely intercepts a number of 

encrypted messages and subsequent analysis somehow reveals the key used for 

encryption. Note that some knowledge of the statistical distribution of the plaintext is 

required for a ciphertext-only attack to succeed. 

An added level of sophistication to the chosen text attacks is to make them 

adaptive. By this we mean that the cryptanalyst has the additional power to choose the 
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text that is to be encrypted or decrypted after seeing the results of previous requests. The 

computational effort and resources together with the amount and type of data required are 

all important features in assessing the practicality of some attack. 

2. 7 Strong Password-Only Authenticated Key Exchange 

A new simple password exponential key exchange method (SPEKE) is described. 

It belongs to an exclusive class of methods, which provide authentication and key 

establishment over an insecure channel using only a small password, without risk of off­ 

line dictionary attack. SPEKE and the closely-related Diffie-Hellman Encrypted Key 

Exchange (DH-EKE) are examined in light of both known and new attacks, along with 

sufficient preventive constraints. Although SPEKE and DH-EKE are similar, the 

constraints are different. The class of strong password-only methods is compared to other 

authentication schemes. Benefits, limitations, and tradeoffs between efficiency and 

security are discussed. These methods are important for several uses, including 

replacement of obsolete systems, and building hybrid two-factor systems where 

independent password-only and key-based methods can survive a single event of either 

key theft or password compromise. 

It seems paradoxical that small passwords are important for strong authentication. 

Clearly, cryptographically large passwords would be better, if only ordinary people could 

remember them. Password verification over an insecure network has been a particularly 

tough problem, in light of the ever-present threat of dictionary attack. Password problems 

have been around so long that many have assumed that strong remote authentication 

using only a small password is impossible. In fact, it can be done. In this paper we outline 

the problem, and describe a new simple password exponential key exchange, SPEKE, 

which performs strong authentication, over an insecure channel, using only a small 

password. That a small password can accomplish this alone goes against common 

wisdom. This is not your grandmother's network login. We compare SPEKE to the 

closely-related Diffie-Hellman Encrypted Key Exchange, and review the potential threats 
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and countermeasures in some detail. We show that previously-known and new attacks 

against both methods are dissatisfied when proper constraints are applied. These methods 

are broadly useful for authentication in many applications: bootstrapping new system 

installations, cellular phones or other keypad systems, diskless workstations, user-to-user 

applications, multi-factor password + key systems, and for upgrading obsolete password 

systems. More generally, they are needed anywhere that prolonged key storage is risky or 

impractical, and where the communication channel may be insecure. 

2.7.1 The Remote Password Problem 

Ordinary people seem to have a fundamental inability to remember anything 

larger than a small secret. Yet most methods of remote secret-based authentication 

presume the secret to be large. We really want to use an easily memorized small secret 

password, and not are susceptible to dictionary attack. We make a clear distinction 

between passwords and keys: Passwords must be memorized, and are thus small, while 

keys can be recorded, and can be much larger. The problem is that most methods need 

keys that are too large to be easily remembered. User-selected passwords are often 

confined to a very small, easily searchable space, and attempts to increase the size of the 

space just make them hard to remember. Bank-card PIN codes use only 4-digits to 

remove even the temptation to write them down. A ten-digit phone number has about 30 

bits, which compels many people to record them. Meanwhile, strong symmetric keys 

need 60 bits or more, and nobody talks about memorizing public-keys. It is also fair to 

assume that a memorizable password belongs to a brute-force searchable space. With 

ever-increasing computer power, there is a growing gap between the size of the smallest 

safe key and the size of the largest easily remembered password. 

The problem is compounded by the need to memorize multiple passwords for 

different purposes. One example of a small-password-space attack is the verifiable plain­ 

text dictionary attack against login. A general failure of many obsolete password methods 

is due to presuming passwords to be large. We assume that any password belongs to a 

cryptographically small space, which is also brute-force searchable with a modest effort. 

Large passwords are arguably weaker since they can't be memorized. 
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So why do we bother with passwords? A pragmatic reason is that they are less 

xpensive and more convenient than smart-cards and other alternatives. A stronger reason 

that, in a well-designed and managed system, passwords are more resistant to theft than 

rsistent stored keys or carry-around tokens. More generally, passwords represent 

mething you know, one of the "big three" categories of factors in authentication. 

2.7.2 Characteristics of Strong Password-only Methods 

We now define exactly what we mean by strong password-only remote 

authentication. We first list the desired characteristics for these methods, focusing on the 

case of user-to-host authentication. Both SPEKE and DH-EKE have these distinguishing 

characteristics. 

1. Prevent off-line dictionary attack on small passwords. 

2. Survive on-line dictionary attack. 

3. Provide mutual authentication. 

4. Integrated key exchange. 

5. User needs no persistent recorded 

(a) Secret data, or 

(b) Sensitive host-specific data. 

Since we assume that all passwords are vulnerable to dictionary attack, given the 

opportunity, we need to remove the opportunities. On-line dictionary attacks can be easily 

detected, and thwarted, by counting access failures. But off-line dictionary attack presents 

a more complex threat. These attacks can be made by someone posing as a legitimate 

party to gather information, or by one who monitors the messages between two parties 

during a legitimate valid exchange. Even tiny amounts of information "leaked" during an 

exchange can be exploited. The method must be immune to such off-line attack, even for 

tiny passwords. This is where SPEKE and DH-EKE excel. 
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-.7.2.1 SPEKE 

The simple password exponential key exchange (SPEKE) has two stages. The first 

tage uses a DH exchange to establish a shared key K, but instead of the commonly used 

fixed primitive base g, a function f converts the password S into a base for 

exponentiation. The rest of the first stage is pure Diffie-Hellman, where Alice and Bob 

tart out by choosing two random numbers RA and Rs: 

Table 2.1: Shows First Stages of SPEKE 

Sl. Alice computes: QA = f(Sl A mod p, 

S2. Bob computes: Qs = f(Sls mod p, 

S3. Alice computes: K = h( at A mod p ) 

S4. Bob computes: K = h( QA\ mod p ) 

A "'7 B: QA, 

87A: Os. 

In the second stage of SPEKE, both Alice and Bob confirm each other's knowledge of K 

before proceeding to use it as a session key. One way is: 

Table 2.2: Shows Second Stage of SPEKE 

SS. 

S6. 

S7. 

Alice chooses random CA, A7B: EK (CA), 

87 A: EK (Cs, CA), 

A7B: EK (Cs). 

Bob chooses random Cs, 

Alice verifies that CA is correct, 

SS. Bob verifies that Cs is correct. 

To prevent discrete log computations, which can result in the attacks the value of 

p-1 must have a large prime factor q. The function f is chosen in SPEKE to create a base 
of large prime order. This is different than the commonly used primitive base for DH. The 

use of a prime-order group may also be of theoretical importance. 
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Other variations of the verification stage are possible. This stage is identical to 

at of the verification stage of DH-EKE. More generally, verification of K can use any 

classical method, since K is cryptographically large. This example repeatedly uses a one- 

·ay hash function: 

Table 2.3: Shows Verification Stage of SPEKE 

ss. 
S6. 

Alice sends proof of K: A~B: h(h(K)) 

B~A: h(K) Bob verifies h(h(K)) is correct, 

S7. Alice verifies h (K)) is correct. 

This approach uses K in place of explicit random numbers, which is possible since 

K was built with random information from both sides. 

2.7.2.2 DH-EKE 

DH-EKE (Diffie-Hellman Encrypted Key Exchange) are the simplest of a number 

of methods. The method can also be divided into two stages. The first stage uses a DH 

exchange to establish a shared key K, where one or both parties encrypts the exponential 

using the password S. With knowledge of S, they can each decrypt the other's message 

using Es-1 and compute the same key K. 

Table 2.4: Shows First Stage of DH-EKE 
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Dl. Alice computes: QA= gRA mod p, A~B: Es (QA), 

D2. Bob computes: Qa = gRs mod p, B~ A: Es (Os). 

D3. Alice computes: K = h( Os RA mod p ) 

D4. Bob computes: K = h( Q/s mod p) 

It is widely suggested that at least one of the encryption steps can be omitted, but 

this may leave the method open to various types of attacks. The values of p and g, and the 

symmetric encryption function Es must be chosen carefully to preserve the security of 

DH-EKE. In the second stage of DH-EKE, both Alice and Bob confirm each other's 

knowledge of K before proceeding to use it as a session key. However, with DH-EKE the 

order of the verification messages can also be significant. 

2.8 Different kinds of Security Attacks 

Here different kinds of attacks on the security in authentication which have been 

observed so for and which are expected are explained in detail. 

2.8.1 Discrete Log Attack 

As the security of these schemes rests primarily on exponentiation being a one­ 

way function, there is a general threat of an attacker computing the discrete logarithms on 

the exponentials. Known methods of discrete log require a massive pre-computation for 

each specific modulus. Modulus size is a primary concern. No method is currently known 

that could ever compute the discrete log for a safe modulus greater than a couple 

thousand bits; however a concerted attack on a 512-bit modulus may be soon feasible 

with considerable expense. Somewhere in between is an ideal size balancing speed 

against the need for security, in a given application. 

It is noted that if we assume that a discrete log pre-computation has been made for 

the modulus, a password attack must also compute the specific log for each entry in the 

password dictionary (until a match is found). It is also noted that for any session 
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established with a modulus vulnerable to log attack, perfect forward secrecy is no longer 

guaranteed, providing another reason for keeping the discrete log computation out of 

reach. The feasibility of a pre-computed log table remains a primary concern, and the 

efficiency of the second phase of the attack is secondary. 

2.8.2 Leaking Information 

If one is not careful, the exchanged messages Ox may reveal discernible structure, 

and can "leak" information about S, enabling a partition attack. This section shows how to 

prevent these attacks. 

2.8.2.1 DH-EKE Partition Attack 

In DH-EKE, Alice and Bob use a Diffie-Hellman exponential key exchange in the 

group z/, with a huge prime p, where p-1 has a huge prime factor q. Then we use the 

traditional preference for g as a primitive root of p. In fact, g must be primitive to prevent 

a partition attack by an observer. A third party can do trial decryptions of Es (g\ mod p) 

using a dictionary of Si, If g is not primitive, a bad guess Si is confirmed by a primitive 

result. In general, the encrypted exponentials Ox must contain no predictable structure to 

prevent this attack against DH-EKE. Constraining g to be primitive insures a random 

distribution across Z/. 

2.8.2.2 SPEKE Partition Attack 

Using a primitive base is not required in SPEKE. If the base f(S) is an arbitrary 

member of Z, *, since the exponentials are not encrypted, an observer can test the result 

for membership in smaller subgroups. When the result is a primitive root of p, he knows 

that the base also is primitive. For a safe prime p, this case reveals 1 bit of information 

about S. When p varies, as has been recommended when using a reduced modulus size, 

new information from runs with different p allow a partition attack to reduce a dictionary 

of possible Si, When, for any S, the base f(S) is a generator of a particular large prime 

subgroup, and then no information is leaked through the exponential result. Suitable 
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functions for f(S) create a result of known large order. We assume the use of a large 

prime-order base in SPEKE for the rest of the discussion. Because SPEKE does not 

encrypt the exponentials, a formal analysis of security may be simpler to achieve for 

SPEKE than for DH-EKE. The prime-order subgroup is the same as that used in the DSA 

and Digital signature methods. 

- ' 
2.8.3 Stolen Session Key Attack 

In an analysis of several flavors of EKE, where a stolen session key K is used to 

mount a dictionary attack on the password. The attack on the public-key flavor of EKE is 
\__) 

also noted which correctly points out that DH-EKE resists this attack (as does SPEKE). 

Resistance to this attack is closely related to perfect forward secrecy, which also isolates 

one kind of sensitive data from threats to another. We note that, in DH-EKE, a stolen 

value of RA in addition to K permits a dictionary attack against the password S. For each 

trial password Si, the attacker computes: 

K' = (Esi-1(Es (g\))) RA 

When K' equals K, he knows that Si equals S. SPEKE is also vulnerable to an 

attack using RA to find S. These concerns highlight the need to promptly destroy 

ephemeral sensitive data, such as RA and R8. It also notes a threat when the long-term 

session key K is used in an extra stage of authentication of the extended A-EKE method; 

a dictionary attack is possible using the extra messages. To counter this threat, one can 

use K for the extra stage, set K' = h (K) using a strong one-way function, and promptly 

discard K. 

2.8.4 Verification Stage Attacks 

38 



CRYPTOGRAPHY FUNCTIONS 

The verification stage of either DH-EKE or SPEKE is where both parties prove to 

each other knowledge of the shared key K. Because K is cryptographically large, the 

second stage is presumed to be immune to brute-force attack, and thus verifying K can be 

done by traditional means. However, the order of verification may be important to resist 

the protocol attack against DH-EKE. 

2.8.5 The "password-in-exponent" Attack 

It is generally a good idea for f (S) to create a result of the same known order for 

all S, so that testing the order of the exponential doesn't reveal information about S. When 

considering suitable functions, it may be tempting to choose f(S) = g/CS) for some fixed 

prime-order gc and some well-known hash function h. Unfortunately, while this is a 

convenient way to convert an arbitrary number into a generator of a prime-order group, it 

creates an opening for attack. To show the attack, let's assume that gc = 2, and h(S) = S, 
so that f(S) = 2s. Alice's protocol can be rewritten as: 

1. Choose a random RA, 

2. Compute QA = 2cs R Al mod p. 

3. Send QA to Bob. 

4. Receive OB from Bob. 

5. Compute K = QB\ mod p. 

Bob should perform his part, sending OB to Alice. The problem is that an attacker 

Barry can perform a dictionary attack off-line after performing a single failed exchange. 

His initial steps are: 

1. Choose a random X. 
X 2. Compute Os = 2 . 

3. Receive QA from Alice 

4. Send QB to Alice. 

5. Receive verification data for K from Alice. 

Barry then goes off-line to perform the attack as follows: 
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For each candidate password S': 

Compute K' = (Ql) t/S' mod p. 

Compare Alice's verification· message for K to K', when they match he knows that S' = S. 

This attack works because: 

K' = QA (XIS') mod p 

= i(S RA) (X/S') mod p 

= i(XRA S/S') mod p 

= QB (RA S/S') mod p 

= K(S/S') mod p 

Thus, when S' = S, K' = K. More generally, the attack works because the 

dictionary of passwords {St, S2 ... Sn} is equivalent to a dictionary of exponents E = {et, 
e2 ••. en}, such that for a given fixed generator gc, the value off (Si) for each candidate can 

be computed as gc\ This allows the password to be effectively removed from the DH 

computation. 

In general, we must insure that no such dictionary E is available to an attacker. 

We should note that while it is true that for any function f there will always be some 

fixed gc and hypothetical dictionary E that corresponds to f (S), for most functions f, 
computing the value of each e, requires a discrete log computation. This makes the 

dictionary E generally unknowable to anyone. As a specific example, for the function 

f(S) = S, the attack is infeasible. The password-in-exponent attack is possible only when 

f(S) is equivalent to exponentiation (within the group) of some fixed gc to a power which 

is a known function of S. 

2.9 A Logic of Authentication 
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In computer networks the communicating parties share not only the media, but 

also the set of rules on how to communicate. These rules, or protocols, have become more 

and more important in communication networks and distributed computing. However, the 

increase of the knowledge of the communication protocols has also brought up the 

question of how to secure the communication against intruders. To solve this, a large 

number of cryptographic protocols have been produced. 

Cryptographic protocols were developed to combat against various attacks of 

intruders in computer networks. Nowadays, the comprehension is that the security of data 

should rely on the underlying cryptographic technology, and that the protocols should be 

open and available. However, many protocols have been found to be vulnerable to attacks 

that do not require breaking the encryption, but instead manipulate the messages in the 

protocol to gain some advantage. The advantages range from the compromise of 

confidentiality to the ability to impersonate another user. 

As there are different protocol designs decisions appropriate to different 

circumstances, there also exists a variety of authentication protocols. Protocols often 

differ in their final states, and sometimes they even depend on assumptions that one 

would not care to make. To understand what is really accomplished with such a protocol, 

a formal description method is needed. The goal of the logic of authentication is to 

formally describe the knowledge and the beliefs of the parties involved in authentication, 

the evolution of the knowledge and the beliefs while analyzing the protocol step by step. 

After the analysis, all the final states of the protocol are set out. 
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CHAPTER THREE 

3. ENCRYPTION & DECRYPTION USING RSAALGORITHM 

3.1 Overview 
RSA is a public-key cryptosystem developed by MIT professors: Ronald L. Rivest, 

Adi Shamir, and Leonard M. Adleman in 1977 in an effort to help ensure Internet 

security. As Steve Burnett of RSA Data Security, Inc. described it, a cryptosystem is 

simply an algorithm that can convert input data into something unrecognizable 

( encryption), and convert the unrecognizable data back to its original form ( decryption). 

The RSA scheme is a block cipher in which the plaintext and cipher text are integers 

between O and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. 

To encrypt data, enter the data ("plaintext") and an encryption key to the encryption 

portion of the algorithm. To decrypt the "cipher text," a proper decryption key is used at 

the decryption portion of the algorithm. Those keys, which contain simply a string of 

numbers, are called public key and private key, respectively. For example, suppose Alice 

intends to send e-mail to Bob. Through a public-key directory, she finds his public key. 

Then, she encrypts her message using the key and sends it to Bob. This public key, 

however, will not decrypt the cipher text. Knowledge of Bob's public key will not help an 

eavesdropper. In order for Bob to decrypt his cipher text, he must use his private key. If 

Bob wants to respond to Alice, he encrypts his message using her public key. 

The challenge of public-key cryptography is developing a system in which it is 

impossible to determine the private key. This is accomplished through the use of a one­ 

way function. With a one-way function, it is relatively easy to compute a result given 

some input values. In mathematical terms, given x, computing f(x) is easy, but given f(x), 

computing x is nearly impossible. The one-way function used in RSA is multiplication of 

prime numbers. It is easy to multiply two big prime numbers, but for most very large 
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rimes, it is extremely time-consuming to factor them. Public-key cryptography uses this 

·· nction by building a cryptosystem that uses two large primes to build the private key 

and the product of those primes to build the public key. 

3.2 How does cryptographic algorithm work? 
A cryptographic algorithm, or cipher, is a mathematical function used in the 

encryption and decryption process. A cryptographic algorithm works in combination with 

a key - a word, number, or phrase to encrypt the plaintext. The same plaintext encrypts 

to different cipher text with different keys. The security of encrypted data is entirely 

dependent on two things: the strength of the cryptographic algorithm and the secrecy of 

the key. A cryptographic algorithm, plus all possible keys and all the protocols that make 

it work comprise a cryptosystem. PGP is a cryptosystem. 

3.3 Different types of Cryptosystems/Encryptions: 
There are four ways of encryption that we mostly use in network system 

• Pretty Good Privacy, PGP 

• Rivest, Shamir, Adleman, RSA 

• Keyless Encryption, KE 

• One-Time Pads, OTP 

3.3.1 PGP (Pretty Good Privacy) 

Pretty Good Privacy. Up to this point we've talked about private-key cryptography 

(one key used y both parties). There was one problem with this kind of encryption: If the 

key was intercepted, a third party could decrypt the messages. So, the ideas of public-key 

cryptography were developed. Here's how it works ... 
Everyone has two keys: a public and a private key. When someone wants to send 

something to a recipient, they (the sender) encrypt it with the recipient's public key. Then 

the only way to decrypt it is with the recipient's private key. One of the other benefits to 

PGP is that it allows the sender to "sign" their messages. This proves that the message 

came from the sender and has not been altered in transport. Based on this theory, PGP 

43 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

allows everyone to publicize their public keys, while keeping their private keys secret. 

The result is that anyone can encrypt a message to someone else, as long as they have that 

person's public key. 

In actuality, PGP uses a series of private key, public key and one-way hash 

functions to encrypt a message. A one-way hash function takes some plaintext and 

translates it into a specific hash. The hash is unique to the message (like a fingerprint is to 

a person). The hash is also non-reversible, hence the name one-way. Let's run through an 

example of what PGP does to encrypt and decrypt an e-mail message. Our sender will be 

Chris and our receiver will be Brian. 

• Chris writes his message. 

• Chris uses a one-way hash function (such as MD5) to create a hash for the 

message. 

• Chris, via RSA or some other digital signature algorithm, signs the hash with his 

private key. 

• Chris merges the message and the signature, resulting in a new-signed message. 

• A random encryption key is generated, the session key. 

• Chris uses the session key to encrypt the message, using DES or some other 

private key method. 

• Chris gets Brian's public key. 

• Chris then encrypts the key with Brian's public key, via RSA or some other public 

key method. 

• Chris merges the encrypted message and the encrypted key and mails it to Brian. 

Once Brian receives the message he can have PGP decrypt it. Here's what it would 

do: 

• Brian separates the encrypted message and the encrypted session key. 

• Using RSA, Brian decrypts the session key. 

• Using DES, Brian decrypts the message with the decrypted session key. 

• Brian then separates the message and the signature. 
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• Using MD5, Brian calculates the hash value of the message. 

• Brian gets Chris' public key. 

• Via RSA, and Chris' public key, Brian decrypts the signature. 

• Brian then compares the hash value and the decrypted signature. If they are the 

same, Brian knows that the message is authentic and has not been altered since 

Chris signed it. 

• 

3.3.2 RSA (Rivest, Shamir, Adleman) 

RSA stands for the initials of the three men Ron Rivest, Adi Shamir, and Len 

Adleman. The security behind RSA lies in the difficulty of factoring large numbers into 

their primes. The process involves selecting two large (hundreds of digits) prime numbers 

(p and q), and multiplying them together to get the sum, n. These numbers are passed 

through a mathematical algorithm to determine the public key KU = { e, n] and the 
private key KR = { d, n}, which are mathematically related (the necessary equations are 

given at the bottom of the page). It is extremely difficult to determine e and/or d given n, 

thus the security of the algorithm. Once the keys have been created a message can be 

encrypted in blocks, and passed though the following equation: 

C = Me mod n 

Where C is the ciphertext, M is the plaintext, and e is the recipient's public key. 

Similarly, the above message could be decrypted by the following equation: 

M = Cd mod n 

Where dis the recipient's private key. For example: let's assume that our Mis 19 

(we will use smaller numbers for simplicity, normally theses numbers would be MUCH 

larger). We will use 7 asp and 17 as q. Thus, n = 7 * 17 = 119. Our e is then calculated to 
be 5 and dis calculated to be 77. Thus our KU is {5, 119} and our KR is {77, 119}. We 

can then pass the needed values through equation (1) to compute C. In this case C is 66. 

We could then decrypt C (66) to get back our original plain text. We pass the needed 

45 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

alues through equation (2) and get 19, our original plaintext! Try it yourself with other 

numbers. 

Note: To determine e and d, perform the following: 

Calculate f (n) = (p - 1) (q - 1) 

Choose e to be relatively prime to f (n) and less than f(n). 

Determined such that de= 1 mod f (n) and d < f (n). 

3.4 The RSA Algorithm 

Let's run the RSA algorithm through steps of how RSA algorithm procedure does 

work: 

3.4.1 Key Generation 

l.Generate two large prime numbers, p and q 

2. Let n = pq 

3. Let m = (p-l)(q-1) 

4. Choose a small number e, coprime to m 

5. Find d, such that de% m = 1 

Publish e and n as the public key, Keep d and n as the secret k 

Encryption 

C=Pe%n 

Decryption 

P=Cct%n 

x % y means the remainder of x divided by y 
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The reasons why this algorithm works are discussed in the mathematics section. Its 

security comes from the computational difficulty of factoring large numbers. To be 

secure, very large numbers must be used for p and q - 100 decimal digits at the very least. 

I'll now go through a simple worked example 1. 

a) Key Generation 

1) Generate two large prime numbers, p and q 

To make the example easy to follow I am going to use small numbers, but this is not 

secure. To find random primes, we start at a random number and go up ascending odd 

numbers until we find a prime. Lets have: 

p=7 

q = 19 

2) Let n = pq 
n = 7 * 19 
= 133 

3) Let m = (p - 1 )( q - 1) 

m = (7 - 1 )(19 - 1) 
= 6 * 18 
= 108 

4) Choose a small number, e coprime tom 
e coprime to m, means that the largest number that can exactly divide both e and m 

(their greatest common divisor, or gcd) is 1. Euclid's algorithm is used to find the gcd of 

two numbers, but the details are omitted here. 
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n = 133 

e=5 

n = 133 

d= 65 

ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

e = 2 => gcd(e, 108) = 2 (no) 

e = 3 => gcd(e, 108) = 3 (no) 

e = 4 => gcd(e, 108) = 4 (no) 

e = 5 => gcd(e, 108) = 1 (yes!) 

5) Find d, such that de % m = 1 
This is equivalent to finding d which satisfies de = 1 + nm where n is any integer. We 

can rewrite this as d = (1 + nm) I e. Now we work through values of n until an integer 

solution fore is found: 

n = 0 => d = 1 I 5 (no) 
n = 1 => d = 109 I 5 (no) 
n = 2 => d = 217 I 5 (no) 

n = 3 => d = 325 I 5 
= 65 (yes!) 

To do this with big numbers, a more sophisticated algorithm called extended Euclid 

must be used. 

Public Key Secret Key 

b) Encryption 

The message must be a number less than the smaller of p and q. However, at this 

point we don't know p or q, so in practice a lower bound on p and q must be published. 

This can be somewhat below their true value and so isn't a major security concern. For 

this example, lets use the message "6". 
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C =Pe% n 
= 65 % 133 
= 7776 % 133 
= 62 

c) Decryption 

This works very much like encryption, but involves a larger exponation, which is 

broken down into several steps. 

P =Cd% n 
= 6265 % 133 
= 62 * 6264 % 133 
= 62 * (622)32 % 133 
= 62 * 384432 % 133 
= 62 * (3844 % 133)32 % 133 
= 62 * 12032 % 133 

We now repeat the sequence of operations that reduced 6265 to 12032 to reduce the 

exponent down to 1. 

= 62 * 3616 % 133 
= 62 * 998 % 133 
= 62 * 924 % 133 
= 62 * 852 % 133 
= 62 * 43 % 133 
= 2666 % 133 
=6 

And that matches the plaintext we put in at the beginning, so the algorithm worked! 

3.5 From Applied Cryptography 

n = pq 
ed _ 1 mod (p _ l)(q _ 1) 

c = me mod n 

m = cd mod n 
n is the product of p and q, two prime numbers. 
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The product of e and d divided by (p _ 1 )( q _ 1) has a remainder of 1. C is the 

remainder of me divided by n; m is the remainder of cd divided by n. 

3.5.1 The Product of Two Primes 
n is the product of two prime numbers, p and q. n is made public as it is used in 

decryption as well as encryption. p and q should never be revealed. 

Example: 

p = 59, q = 67; n = 59 _ 67 = 3953 

3.5.2 e and d, The Keys 
e, the encryption key, is a random number relatively prime to (p _ l)(q _ 1). d can be 

calculated to be de = 1 + x(p _ 1 )( q _ 1 ), x is a throwaway value as it is \lost" in the 
modulus calculation. e is the public key and dis the private key. 

Example, continued: 

e = 7, (p _ l)(q _ 1) = 3828 
de= 1 + x(p _ l)(q _ 1) 

xd = 547, X = 1, d = 547 
e = 7, d = 547 

3.6 Key types 
Two key types are employed in the primitives and schemes defined: RSA public key 

and RSA private key. Together, an RSA public key and an RSA private key form an RSA 

key pair. 
This specification supports so-called "multi-prime" RSA where the modulus may 

have more than two prime factors. Better performance can be achieved on single 

processor platforms, but to a greater extent on multiprocessor platforms, where the 

modular exponentiations involved can be done in parallel. 
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ABSTRACT 

ABSTRACT 

Cryptography algorithms are applied to protect a message or file from being read by 

network hackers, eavesdroppers. The encryption programs encrypt the text and will 

change the letters into symbols and other weird characters, so when someone opens the 

file they cannot read it. The interconnection of networks is an increasing trend in 

government and private industry. There is the obvious danger that connections made in 

such an extended network may increase the risk of a security compromise, with the 

owners unaware of the risk. 

Network connections should therefore be protected, at a level based on the risk. The 

assumption must be that the connecting parties are to a certain degree hostile and have to 

be strictly constrained to the access for which the connection was agreed. 

Although cryptography is fascinating and glamorous, because of its association with such 

things as espionage, diplomacy, and the higher levels of the military, it has a limited but 

important role in the area of network security. 

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adleman, 

is the most widely used public-key cryptosystem. It may be used to provide both secrecy 

and digital signatures and its security is based on the intractability of the integer 

factorization. RSA encryption is most commonly used for the transport of symmetric-key 

encryption algorithm keys and for the encryption of small data items. The RSA 

cryptosystem has been patented in the U.S. and Canada. Several standards organizations 

have written, or are in the process of writing, standards that address the use of the RSA 

cryptosystem for encryption, digital signatures, and key establishment. For discussion of 

patent and standards issues related to RSA. The description of RSA algorithm is given in 

the thesis. 
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Introduction 

The origin of the word cryptology lies in ancient Greek. The word cryptology is made up 

of two components: "kryptos", which means hidden and "logos" which means word. 

Cryptology is as old as writing itself, and has been used for thousands of years to safeguard 

military and diplomatic communications. For example, the famous Roman emperor Julius 

Caesar used a cipher to protect the messages to his troops. Within the field of cryptology one 

can see two separate divisions: cryptography and cryptanalysis. The cryptographer seeks 

methods to ensure the safety and security of conversations while the cryptanalyst tries to 

undo the farmer's work by breaking his systems. 

The main goals of modem cryptography can be seen as: user authentication, data 

authentication (data integrity and data origin authentication), non-repudiation of origin, and 

data confidentiality. In the following section we will elaborate more on these services. 

Subsequently we will explain how these services can be realized using cryptographic 

primitives. 

A cryptographic system (or a cipher system) is a method of hiding data so that only 

certain people can view it. Cryptography is the practice of creating and using cryptographic 

systems. Cryptanalysis is the science of analyzing and reverse engineering cryptographic 

systems. The original data is called plaintext. The protected data is called cipher text. 

Encryption is a procedure to convert plaintext into cipher text. Decryption is a procedure to 

convert cipher text into plaintext. A cryptographic system typically consists of algorithms, 

keys, and key management facilities. There are two basic types of cryptographic systems: 

symmetric ("private key") and asymmetric ("public key"). 

Symmetric key systems require both the sender and the recipient to have the same key. 

This key is used by the sender to encrypt the data, and again by the recipient to decrypt the 

data. Key exchange is clearly a problem. How do you securely send a key that will enable 

you to send other data securely? If a private key is intercepted or stolen, the adversary can act 
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I 
as either party and view all data and communications. You can think of the symmetric crypto 

system as akin to the Chubb type of door locks. You must be in possession of a key to both 

open and lock the door. Asymmetric cryptographic systems are considered much more 

flexible. Each user has both a public key and a private key. 

Messages are encrypted with one key and can be decrypted only by the other key. The 

public key can be published widely while the private key is kept secret. If Alice wishes to 

send Bob a secret, she finds and verifies Bob's public key, encrypts her message with it, and 

mails it off to Bob. When Bob gets the message, he uses his private key to decrypt it. 

Verification of public keys is an important step. Failure to verify that the public key really 

does belong to Bob leaves open the possibility that Alice is using a key whose associated 

private key is in the hands of an enemy. Public Key Infrastructures or PKI's deal with this 

problem by providing certification authorities that sign keys by a supposedly trusted party 

and make them available for download or verification. Asymmetric ciphers are much slower 

than their symmetric counterparts and key sizes are generally much larger. You can think of a 

public key system as akin to a Yale type door lock. Anyone can push the door locked, but 

you must be in possession of the correct key to open the door. 

The project is devoted the description of cryptographic algorithms, particularly RSA 

algorithm over network. The Goal of RSA Algorithm is to implement a demonstrable 

application that will perform the encryption and decryption of a text file using RSA 

Algorithm. I will give input as plaintext and it will generate the corresponding ciphertext. 

Ciphertext is decrypted to get the original plain text. 

R.S.A. stands for Rivest, Shamir and Adleman - the three cryptographers who invented 

the first practical commercial public key cryptosystem. Today it is used in web browsers, 

email programs, mobile phones, virtual private networks, secure shells, and many other 

places. Exactly how much security it provides is debatable, but with sufficiently large keys 

you can be confident of foiling the vast majority of attackers. Until recently the use of RSA 

was very much restricted by patent and export laws. However, the patent has now expired 

and US export laws have been relaxed. 
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CHAPTER ONE 

1. OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

1.1 Introduction 

To introduce cryptography, an understanding of issues related to information 

security in general is necessary. Network security manifests itself in many ways 

according to the situation and requirement. Regardless of who is involved, to one degree 

or another, all parties to a transaction must have confidence that certain objectives 

associated with network security have been met. Some of these objectives are mentioned. 

Often the objectives of on security cannot solely be achieved through 

mathematical algorithms and protocols alone, but require procedural techniques and 

abidance of laws to achieve the desired result. One of the fundamental tools used in 

network security is the signature. It is a building block for many other services such as no 

repudiation, data origin authentication, identification, and witnessing, to mention a few. 

Achieving network security in an electronic society requires a vast array of fsecurity 

objectives deemed necessary can be adequately met. The technical means is provided 

through cryptography. Cryptography is not the only means of providing network security, 

but rather one set of techniques. 

1.2 What Does Cryptography mean 

Cryptography means the study of mathematical techniques related to aspects of 

network security such as confidentiality, data integrity, entity authentication, and data 

origin authentication. 

The following are the goals of the Cryptography 

1. Confidentiality is a service used to keep the content of information from all but 

those authorized to have it. There are numerous approaches to providing 

confidentiality, ranging from physical protection to mathematical algorithms. 
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Some information security objectives: 

o Privacy or confidentiality: Keeping information secret from all but those 

who are authorized to see it. 

o Data integrity ensuring: Information has not been altered by unauthorized 

or unknown means. 

o Entity authentication or identification: Corroboration of the identity of an 

entity ( e.g., a person, a computer terminal, a credit card, etc.). 

o Message authentication: Corroborating the source of information; also 

known as data origin authentication. 

o Signature: A means to bind information to an entity. 

o Authorization: Conveyance, to another entity, of official sanction to do or 

be something. 

o Validation: A means to provide timeliness of authorization to use or 

manipulate information or resources. 

o Access control: Restricting access to resources to privileged entities. 

o Certification: Endorsement of information by a trusted entity. 

o Time stamping: Recording the time of creation or existence of 

information. 

o Witnessing: Verifying the creation or existence of information by an entity 

other than the creator. 

o Receipt: Acknowledgement that information has been received. 

o Confirmation: Acknowledgement that services has been provided. 

o Ownership: A means to provide an entity with the legal right to use or 

transfer a resource to others. 

o Anonymity: Concealing the identity of an entity involved in some process. 

o Non-repudiation: Preventing the denial of previous commitments or 

actions. 

o Revocation: Retraction of certification or authorization. 
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2. Data integrity is a service, which addresses the unauthorized alteration of data. 

To assure data integrity, one must have the ability to detect data manipulation by 

unauthorized parties. 

3. Authentication is a service related to identification. This function applies to both 

entities and information itself. Aspect of cryptography is usually subdivided into 

two major classes: entity authentication and data origin authentication. 

4. Non-repudiation is a service, which prevents an entity from denying previous 

commitments or actions. 

A fundamental goal of cryptography is to adequately address these four areas in 

both theory and practice. Cryptography is about the prevention and detection of cheating 

and other malicious activities. A number of basic cryptographic tools (primitives) used to 

provide network security. Examples of primitives include encryption schemes hash 

functions, and digital signature schemes. Figure 1.1 provides a schematic listing of the 

primitives considered and how they relate. 

These primitives should be evaluated with respect to various criteria such as: 

1. Level of security. This is usually difficult to quantify. Often it is given in terms of 

the number of operations required to defeat the intended objective. 

2. Functionality. Primitives will need to be combined to meet various network 

security objectives. Which primitives are most effective for a given objective will 

be determined by the basic properties of the primitives. 
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Unkeyed 
Primitives 

Security 
Primitives 
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Public-key 
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hash functions 
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Figure 1.1 A taxonomy of cryptographic primitives. 

3. Methods of operation. Primitives, when applied in various ways and with various 

inputs, will typically exhibit different characteristics; thus, one primitive could 

provide very different functionality depending on its mode of operation or usage. 

4. Performance. This refers to the efficiency of a primitive in a particular mode of 

operation. 
5. Ease of implementation. This refers to the difficulty of realizing the primitive in a 

practical instantiation. This might include the complexity of implementing the 

primitive in either a software or hardware environment. 
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The relative importance of various criteria is very much dependent on the 

application and resources available. For example, in an environment where computing 

power is limited one may have to trade off a very high level of security for better 

performance of the system as a whole. 

1.3 Basic Functions and Concepts 
A familiarity with basic mathematical concepts used in cryptography will be 

useful. One concept which is absolutely fundamental to cryptography is that of a function 

in the mathematical sense. A function is alternately referred to as a mapping or a 

transformation. 

1.3.1 Function 
A set consists of distinct objects, which are called elements of the set. For 

example, a set X might consist of the elements a, b, c, and this is denoted X = { a; b; c]. If 
x is an element of X (usually written x EX) the image of x is the element in Y which the 

rule f associates with x; the image y of x is denoted by y = f(x). Standard notation for a 

function f from set X to set Y is f: X 7 Y. 

Figure 1.2 A function f from a set X to a set Y. 

• 1-1 Functions: A function is 1 - 1 (one-to-one) if each element in the co domain Y 

is the image of at most one element in the domain X. 

• Onto function: A function is onto if each element in the co domain Y is the image 

of at least one element in the domain. 

• Bijection: If a function f: X 7 Y is 1-1 and Im (f) = Y, then f is cal led a bijection. 
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• One-way functions: A function f from a set X to a set Y is called a one-way 

function if f (x) is easy to compute for all x EX but for essentially all elements 

YE Im (f) it is "computationally infeasible" to find any XE X such that J(x) = y. 

• Trapdoor one-way functions: A trapdoor one-way function is a one-way function 

f: X ~ Y with the additional property that given some extra 

• Permutations: Let S be a finite set of elements. A permutation p on S is a bijection 

from S to itself (i.e., p: S~S). 

• Involutions: Involutions have the property that they are their own inverses. 

(i.e., f: s~ S). 

1.3.2 Basic Terminology and Concepts 

The scientific study of any discipline must be built upon exact definitions arising 

from fundamental concepts. Where appropriate, strictness has been sacrificed for the sake 

of clarity. 

1.3.2.1. Encryption Domains and Co-domains 

• )1. denotes a finite set called the alphabet of definition. 

• 'Jvl denotes a set called the message space. 'Jvl consists of strings of symbols from 

an alphabet. An element of 'Jvl is called a plaintext message or simply a plaintext. 

• C denotes a set called the cypertext space. C consists of strings of symbols from an 

alphabet; differ from the alphabet of 'Jvl. An element of C is called a cypertext. 

1.3.2.2 Encryption and Decryption Transformations 

• '1( denotes a set called the key space. An element of '1( is called a key. 

• Each element eE '1( uniquely determines a bijection from 'Jvl to C, denoted by r.Ee. 

• (])a denotes a bijection from C to 'Jvl and (])a is called a decryption function. 

• The process of applying the transformation r.Ee to a message mE 'Jvl is usually 

referred to as encrypting m or the encryption of m. 

6 
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• The process of applying the transformation Vato a cypertext c is usually referred 

to as decrypting c or the decryption of c. 

• The keys e and dare referred to as a key pair and denoted by ( e; d). 

1.3.2.3 Achieving Confidentiality 

An encryption scheme may be used as follows for the purpose of achieving 

confidentiality. Two parties Alice and Bob first secretly choose or secretly exchange a 

key pair ( e; d). At a subsequent point in time, if Alice wishes to send a message m EM to 

Bob, she computes c = Ee (m) and transmits this to Bob. Upon receiving c, Bob computes 

D, ( c) = m and hence recovers the original message m. 

The question arises as to why keys are necessary. If some particular 

encryption/decryption transformation is exposed then one does not have to redesign the 

entire scheme but simply change the key. Figure 1.3 provides a simple model of a two­ 

party communication using encryption. 

Adversary 

encryption 
Ee(m) "~ c 

C t ------ ------t,.. 
UNSECURED CH-\NNEL 

decryption 
Date),, m 

plaintext 
source 

destination 

Alice Bob 

Figure 1.3 Schematic of a two-party communication. 
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1.3.2.4 Communication Participants 

Referring to Figure 1.3, the following terminology is defined. 

• An entity or party is someone or something, which sends, receives, or 

manipulates information. An entity may be a person, a computer terminal, etc. 

• A sender is an entity in a two-party communication, which is the legitimate 

transmitter of information. 

• A receiver is an entity in a two-party communication, which is the intended 

recipient of information. 

• An adversary is an entity in a two-party communication which is neither the 

sender nor receiver, and which tries to defeat the information security service 

being provided between the sender and receiver. 

1.3.2.5. Channels 

A channel is a means of conveying information from one entity to another. A 

physically secure channel is one, which is not physically accessible to the adversary. An 

unsecured channel is one from which parties other than those for which the information is 

intended can reorder, delete, insert, or read. A secured channel is one from which an 

adversary does not have the ability to reorder, delete, insert, or read. A secured channel 

may be secured by physical or cryptographic techniques. 

1.3.2.6 Security 

A fundamental principle in cryptography is that the sets :M; C; 7(; {P.e: e E 7(}, {<DJ: 

aE 7(} are public knowledge. When two parties wish to communicate securely using an 

encryption scheme, the only thing that they keep secret is the particular key pair ( e; a), 

which they must select. One can gain additional security by keeping the class of 

encryption and decryption transformations secret but one should not base the security of 

the entire scheme on this approach. An encryption scheme is said to be breakable if a 

third party, without prior knowledge of the key pair ( e; d) can systematically recover 

plaintext from corresponding cypertext within some appropriate time frame. 

Trying all possible keys to see which one the communicating parties are using 

can break an encryption scheme. This is called an exhaustive search of the key space. 

8 
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Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements 

for cipher systems. They are given here essentially as Kerckhoffs originally stated them: 

1. The system should be, if not theoretically unbreakable, unbreakable in practice. 

2. Compromise of the system details should not inconvenience the correspondents. 

3. The key should be remember able without notes and easily changed. 

4. The cryptogram should be transmissible by telegraph. 

5. The encryption apparatus should be portable and operable by a single person. 

6. The system should be easy, requiring neither the knowledge of a long list of rules 

nor mental strain. 

1.3.2.7 Network Security in General 
So far the terminology has been restricted to encryption and decryption with the 

goal of privacy in mind. Network security is much broader, encompassing such things as 

authentication and data integrity. 

• A network security service is a method to provide specific aspect of security. 

• Breaking a network security service implies defeating the objective of the 

intended service. 

• A passive adversary is an adversary who is capable only of reading information 

from an unsecured channel. 

• An active adversary is an adversary who may also transmit, alter, or delete 

information on an unsecured channel. 

1.4 Symmetric-key Encryption 
Consider an encryption scheme consisting of the sets of encryption and decryption 

transformations {f:e: eE'1(} and {<Da: d e '1(}, respectively, where '](is the key space. The 

encryption scheme is said to be symmetric-key if for each associated 

encryption/decryption key pair (e; cf), it is computationally easy to determine cf knowing 

only e, and to determine e from cf. Since e = a in most practical symmetric-key encryption 

schemes, the term symmetric key becomes appropriate. 
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The block diagram of Figure 1.4, with the addition of the secure channel, can describe a 

two-party communication using symmetric-key encryption. 

Adversary 

key SECURE CHANNEL 

source 

• 
encryption LJ_ c ---'------H decryption 
E, ( ni) ·'"" c r l UNSECURED CHANNEL o: ( c) cc, m 

1n 

plaintext 
source 

destination 

Alice Bob 

Figure 1.4 Two-party communication using encryption, with a secure channel 

One of the major issues with symmetric-key systems is to find an efficient method 

to agree upon and exchange keys securely. It is assumed that all parties know the set of 

encryption/decryption transformations there are two classes of symmetric-key encryption 

schemes, which are commonly distinguished, block ciphers and stream ciphers. 

1.4.1 Block Ciphers 
A block cipher is an encryption scheme which breaks up the plaintext messages to 

be transmitted into strings ( called blocks) of a fixed length t over an alphabet )l, and 

encrypts one block at a time. Most well-known symmetric-key encryption techniques are 

block ciphers. Two important classes of block ciphers are substitution ciphers and 

transposition ciphers 

10 
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1.4.2 Stream Ciphers 

Stream ciphers form an important class of symmetric-key encryption schemes. 

They are, in one sense, very simple block ciphers having block length equal to one. What 

makes them useful is the fact that the encryption transformation can change for each 

symbol of plaintext being encrypted. In situations where transmission errors are highly 

probable, stream ciphers are advantageous because they have no error propagation. They 

can also be used when the data must be processed one symbol at a time 

1.4.3 The Key Space 

The size of the key space is the number of encryption/decryption key pairs that are 

available in the cipher system. A key is typically a compact way to specify the encryption 

transformation to be used. For example, a transposition cipher of block length t has ti 

Encryption functions from which to select. Each can be simply described by a 

permutation, which is called the key. 

1.5 Digital Signatures 
A cryptographic primitive who is fundamental in authentication, authorization, 

and non-repudiation is the digital signature. The purpose of a digital signature is to 

provide a means for an entity to bind its identity to a piece of information. The process of 

signing entails transforming the message and some secret information held by the entity 

into a tag called a signature. 

1.5.1. Nomenclature and Set-up 

The transformations S)l and o/Jl provide a digital signature scheme for }I. 

• 5l1 is the set of messages, which can be signed. 

• Sis a set of elements called signatures, possibly binary strings of a fixed length. 

• S)l is a transformation from the message set 5l1 to the signature set S, and is called a 

signing transformation for entity JI. 

11 
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• '()Jl is a transformation from the set :M ~S to the set {true, false} o/Jl is called a 

verification transformation for )I. 's signatures, is publicly known, and is used by 

other entities to verify signatures created by )I.. 

1.6 Public-key Cryptography 
The concept of public-key encryption is simple and elegant, but has far-reaching 

consequences. Let { P.e: e E 1(} be a set of encryption transformations, and let { <Da: a E 1(} 
be the set of corresponding decryption transformations, where 1( is the key space. 

Consider any pair of associated encryption/decryption transformations (P.e; <Da) and 

suppose that each pair has the property that knowing P.e it is computationally infeasible, 

given a random ciphertext cEC, to find the message mE:M such that P.e(m) == c. This 

property implies that given e it is infeasible to determine the corresponding decryption 

key a. P.e is being viewed here as a trapdoor one-way function with abeing the trapdoor 
information necessary to compute the inverse function and hence allow decryption. This 

is unlike symmetric-key ciphers where e and a are essentially the same. 

The encryption method is said to be a public-key encryption scheme if for each 

associated encryption/decryption pair ( e; a), one key e (the public key) is made publicly 

available, while the other a(the private key) is kept secret. For the scheme to be secure, it 

must be computationally infeasible to compute £from e. To avoid ambiguity, a common 

convention is to use the term private key in association with public-key cryptosystems, 

and secret key in association with symmetric-key cryptosystems 
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Passive 
Adversary 

t' t . ----·· --------- ---- -- key 
source : UNSECURED CHANNEL 

encryption 
E~ (m) '" c 

C • ~~--~-------~--1,.1 
UNSECURED CHANNEL 

decryption 

D,1 (c) "" tn 

plaintext 
source 

destination 

Alice Bob 

Figure 1.5 Encryption using public-key techniques. 

1. 7 Hash Functions 
One of the fundamental primitives in modern cryptography is the cryptographic 

hash function, often informally called a one-way hash function. A simplified definition 

for the present discussion follows. A hash function is a computationally efficient function 

mapping binary strings of arbitrary length to binary strings of some fixed length, called 

hash-values. For a hash function, which outputs n-bit hash-values and has desirable 

properties, the probability that a randomly chosen string gets mapped to a particular n-bit 

hash-value (image) is 2-n. The basic idea is that a hash-value serves as a compact 

representative of an input string. To be of cryptographic use, a hash function Ii, is typically 

chosen such that it is computationally infeasible to find two distinct inputs which hash to 

a common value and that given a specific hash-value y, it is computationally infeasible to 

find an input x such that /i,(x) = y. The most common cryptographic uses of hash functions 

are with digital signatures and for data integrity Hash functions are typically publicly 

known and involve no secret keys. When used to detect whether the message input has 

been altered, they are called modification detection codes (MDCs). Related to these are 

13 
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hash functions, which involve a secret key, and provide data origin authentication as well 

as data integrity; these are called message authentication codes (MACs). 

1.8 Protocols, Mechanisms 
A cryptographic protocol is a distributed algorithm defined by a sequence of steps 

precisely specifying the actions required of two or more entities to achieve a specific 

security objective. As opposed to a protocol, a mechanism is a more general term 

encompassing protocols, algorithms and non-cryptographic techniques to achieve specific 

security objectives. Protocols play a major role in cryptography and are essential in 

meeting cryptographic goals. Encryption schemes, digital signatures, hash functions, and 

random number generation are among the primitives, which may be utilized to build a 

protocol. 

1.8.1 Protocol and Mechanism Failure 

A protocol failure or mechanism failure occurs when a mechanism fails to meet the 

goals for which it was intended. Protocols and mechanisms may fail for a number of 

reasons: 

1. Weaknesses in a particular cryptographic primitive, which may be amplified by 

the protocol or mechanism. 

2. Claimed or assumed security guarantees, which are overstated or not clearly 

understood. 

3. The oversight of some principle applicable to a broad class of primitives such as 

encryption. 

When designing cryptographic protocols and mechanisms, the following two steps are 

essential: 

1. Identify all assumptions in the protocol or mechanism design. 

2. For each assumption, determine the effect on the security objective if that 

assumption is violated. 

14 
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1.9 Classes of Attacks and Security Models 
Over the years, many different types of attacks on cryptographic primitives and 

protocols have been identified. The attacks these adversaries can mount may be classified 

as follows: 
1. A passive attack is one where the adversary only monitors the communication 

channel. A passive attacker only threatens confidentiality of data. 

2. An active attack is one where the adversary attempts to delete, add, or in some 

other way alter the transmission on the channel. 

A passive attack can be further subdivided into more specialized attacks for deducing 

plaintext from ciphertext. 

1.9.1 Attacks on Encryption Schemes 
The objective of the following attacks is to systematically recover plaintext from 

ciphertext, or even more drastically, to deduce the decryption key. 

1. A ciphertext-only attack is one where the adversary tries to deduce the decryption 

key or plaintext by only observing ciphertext. 

2. A known-plaintext attack is one where the adversary has a quantity of plaintext 

and corresponding ciphertext. 
3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then 

given corresponding ciphertext. 

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the 

choice of plaintext may depend on the ciphertext received from previous requests. 

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is 

then given the corresponding plaintext. One way to mount such an attack is for the 

adversary to gain access to the equipment used for decryption 

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the 

choice of ciphertext may depend on the plaintext received from previous requests. 
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1.9.2 Attacks on Protocols 
The following is a partial list of attacks, which might be mounted on various 

protocols. Until a protocol is proven to provide the service intended, the list of possible 

attacks can never be said to be complete. 

1. Known-key attack. In this attack an adversary obtains some keys used previously 

and then uses this information to determine new keys. 

2. Replay. In this attack an adversary records a communication session and replays 

the entire session, or a portion thereof, at some later point in time. 

3. Impersonation. Here an adversary assumes the identity of one of the legitimate 

parties in a network. 

4. Dictionary. This is usually an attack against passwords. An adversary can take a 

list of probable passwords; hash all entries in this list, and then compare this to the 

list of true encrypted passwords with the hope of finding matches. 

5. Forward search. This attack is similar in spirit to the dictionary attack and is used 

to decrypt messages. 

6. Interleaving attack. This type of attack usually involves some form of 

impersonation in an authentication protocol. 
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CHAPTER TWO 

2. CRYPTOGRAPHY FUNCTIONS 

2.1 Overview 

In this chapter basic functions involved in cryptography are explained. Functions 

that are used in the encryptions and decryption of the text such ciphers mainly block 

cipher and stream ciphers. Hash functions are also one of the important encryption 

functions. It is also explained that how the attacks are being done on cryptography and 

what are the authentication methods are being used so for. 

2.2 Block Ciphers 

The most important symmetric algorithms are block ciphers. The general 

operation of all block ciphers is the same - a given number of bits of plaintext (a block) 

are encrypted into a block of ciphertext of the same size. Thus, all block ciphers have a 

natural block size - the number of bits they encrypt in a single operation. This stands in 

contrast to stream ciphers, which encrypt one bit at a time. Any block cipher can be 

operated in one of several modes. 

2.2.1 Iterated Block Cipher 

An iterated block cipher is one that encrypts a plaintext block by a process that 

has several rounds. In each round, the same transformation or round function is applied to 

the data using a subkey. The set of subkeys are usually derived from the user-provided 

secret key by a key schedule. The number of rounds in an iterated cipher depends on the 

desired security level and the consequent trade-off with performance. In most cases, an 

increased number of rounds will improve the security offered by a block cipher, but for 

some ciphers the number of rounds required to achieve adequate security will be too large 

for the cipher to be practical or desirable. 

17 
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2.2.2 Electronic Codebook (ECB) Mode 

ECB is the simplest mode of operation for a block cipher. The input data is 

padded out to a multiple of the block size, broken into an integer number of blocks, each 

of which is encrypted independently using the key. In addition to simplicity, ECB has the 

advantage of allowing any block to be decrypted independently of the others. Thus, lost 

data blocks do not affect the decryption of other blocks. The disadvantage of ECB is that 

it aids known-plaintext attacks. If the same block of plaintext is encrypted twice with 

ECB, the two resulting blocks of ciphertext will be the same. 

ECBENCRYPTION ECB DECRYPTION 

. ' ,·' . .., : 

... CHJHER:1:EXT; ,. ::·~·.:"·- ;:-:!>:<·\:~.,-,~<:_.-~f;\ .: ,;.,,.,,:? ·/. ': m:AlN'IEXT· ":'_,'-.-,· .. : .. ,· -. ·- -::: ..... ·.,,':'._. ;:_ .. _ 

lNl'ITT BLOCK. lNl?ITTBLOCK. 

ENCRYPT DECRYPT 

OITTl?ITTBLOCK. OITTl?ITTBLOCK. 

cimEi:itExm' 
·> .. :/. ·>·\>! 

Figure 2.1: Shows a ECB Encryption/Decryption Model 
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2.2.3 Cipher Block Chaining (CBC) Mode 

CBC is the most commonly used mode of operation for a block cipher. Prior to 

encryption, each block of plaintext is XOR-ed with the prior block of ciphertext. After 

decryption, the output of the cipher must then be XOR-ed with the previous ciphertext to 

recover the original plaintext. The first block of plaintext is XOR-ed with an initialization 

vector (IV), which is usually a block of random bits transmitted in the clear. CBC is more 

secure than ECB because it effectively scrambles the plaintext prior to each encryption 

step. Since the ciphertext is constantly changing, two identical blocks of plaintext will 

encrypt to two different blocks of ciphertext. The disadvantage of CBC is that the 

encryption of a data block becomes dependent on all the blocks prior to it. A lost block of 

data will also prevent decoding of the next block of data. CBC can be used to convert a 

block cipher into a hash algorithm. To do this, CBC is run repeatedly on the input data, 

and all the ciphertext is discarded except for the last block, which will depend on all the 

data blocks in the message. This last block becomes the output of the hash function. 

1\1 

'ENCRYPJ ,'ENCRYPf ,'ENCRYPf 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

DECRY Pf DECRYPJ' OECRYPJ' 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

Figure 2.2: Shows a CBC Encryption/Decryption Model 
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2.2.4 Feistel Ciphers 

The figure shows the general design of a Feistel cipher, a scheme used by almost 

all modern block ciphers. The input is broken into two equal size blocks, generally called 

left (L) and right (R), which are then repeatedly cycled through the algorithm. At each 

cycle, a hash function (f) is applied to the right block and the key, and the result of the 

hash is XOR-ed into the left block. The blocks are then swapped. The XOR-ed result 

becomes the new right block and the unaltered right block becomes the left block. The 

process is then repeated a number of times. 

The hash function is just a bit scrambler. The correct operation of the algorithm is 

not based on any property of the hash function, other than it is completely deterministic; 

i.e. if it's run again with the exact same inputs, identical output will be produced. To 

decrypt, the ciphertext is broken into L and R blocks, and the key and the R block are run 

through the hash function to get the same hash result used in the last cycle of encryption; 

notice that the R block was unchanged in the last encryption cycle. The hash is then 

XOR'ed into the L block to reverse the last encryption cycle, and the process is repeated 

until all the encryption cycles have been backed out. The security of a Feistel cipher 

depends primarily on the key size and the irreversibility of the hash function. Ideally, the 

output of the hash function should appear to be random bits from which nothing can be 

determined about the input(s). 
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Figure 2.3: Shows a Feistel Model 

2.2.5 Data Encryption Standard (DES) 

DES is a Feistel-type Substitution-Permutation Network (SPN) cipher. DES uses a 

56-bit key, which can be broken using brute-force methods, and is now considered 

obsolete. A 16-cycle Feistel system is used, with an overall 56-bit key permuted into 16 

48-bit subkeys, one for each cycle. To decrypt, the identical algorithm is used, but the 

order of subkeys is reversed. The L and R blocks are 32 bits each, yielding an overall 

block size of 64 bits. The hash function 1'.f1, specified by the standard using the so-called 

"Seboxes'', takes a 32-bit data block and one of the 48-bit subkeys as input and produces 
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32 bits of output. Sometimes DES is said to use a 64-bit key, but 8 of the 64 bits are used 

only for parity checking, so the effective key size is 56 bits. 

2.2.5.1 Triple DES 

Triple DES was developed to address the obvious flaws in DES without designing 

a whole new cryptosystem. Triple DES simply extends the key size of DES by applying 

the algorithm three times in succession with three different keys. The combined key size 

is thus 168 bits (3 times 56), beyond the reach of brute-force techniques such as those 

used by the EFF DES Cracker. Triple DES has always been regarded with some 

suspicion, since the original algorithm was never designed to be used in this way, but no 

serious flaws have been uncovered in its design, and it is today a viable cryptosystem 

used in a number of Internet protocols. 

2.3 Stream Ciphers 

A stream cipher is a symmetric encryption algorithm. Stream ciphers can be 

designed to be exceptionally fast, much faster in fact than any block cipher. While block 

ciphers operate on large blocks of data, stream ciphers typically operate on smaller units 

of plaintext, usually bits. The encryption of any particular plaintext with a block cipher 

will result in the same ciphertext when the same key is used. With a stream cipher, the 

transformation of these smaller plaintext units will vary, depending on when they are 

encountered during the encryption process. 

A stream cipher generates what is called a keystream and combining the 

keystream with the plaintext, usually with the bitwise XOR operation, provides 

encryption. The generation of the keystream can be independent of the plaintext and 

ciphertext or it can depend on the data and its encryption. 

Current stream ciphers are most commonly attributed to the appealing of 

theoretical properties of the one-time pad, but there have been no attempts to standardize 

on any particular stream cipher proposal, as has been the case with block ciphers. 

Interestingly, certain modes of operation of a block cipher effectively transform it into a 
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evstream generator and in this way; any block cipher can be used as a stream cipher. 

However, stream ciphers with a dedicated design are likely to be much faster. 

1.3.1 Linear Feedback Shift Register 

A Linear Feedback Shift Register (LFSR) is a mechanism for generating a 

sequence of binary bits. The register consists of a series of cells that are set by an 

initialization vector that is, most often, the secret key. The behavior of the register is 

regulated by a clock and at each clocking instant, the contents of the cells of the register 

are shifted right by one position, and the XOR of a subset of the cell contents is placed in 

the leftmost cell. One bit of output is usually derived during this update procedure. 

LFSRs are fast and easy to implement in both hardware and software. With a 

sensible choice of feedback taps the sequences that are generated can have a good 

statistical appearance. However, the sequences generated by single LFSRs are not secure 

because a powerful mathematical framework has been developed over the years, which 

allows for their straightforward analysis. However, LFSRs are useful as building blocks 

in more secure systems. 

Figure 2.1: Shows a Linear Feed Back Register Model 

2.3.1.1 Shift Register Cascades 

A shift register cascade is a set of LFSRs connected together in such a way that 

the behavior of one particular LFSR depends on the behavior of the previous LFSRs in 

the cascade. This dependent behavior is usually achieved by using one LFSR to control 

the clock of the following LFSR. For instance one register might be advanced by one step 
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··· the preceding register output is 1 and advanced by two steps otherwise. Many different 

configurations are possible and certain parameter choices appear to offer very good 

security. 

2.3.1.2 Shrinking and Self-Shrinking Generators 

It is a stream cipher based on the simple interaction between the outputs from two 

LFSRs. The bits of one output are used to determine whether the corresponding bits of the 

econd output will be used as part of the overall keystream. The shrinking generator is 

simple and scaleable, and has good security properties. One drawback of the shrinking 

generator is that the output rate of the keystream will not be constant unless precautions 

are taken. A variant of the shrinking generator is the self-shrinking generator, where 

instead of using one output from one LFSR to "shrink" the output of another, the output 

of a single LFSR is used to extract bits from the same output. 

2.3.2 Other Stream Ciphers 

There are a vast number of alternative stream ciphers that have been proposed in 

cryptographic literature as well as an equally vast number that appear in implementations 

and products world-wide. Many are based on the use of LFSRs since such ciphers tend to 

be more amenable to analysis and it is easier to assess the security that they offer. 

There are essentially four distinct approaches to stream cipher design. The first is 

termed the information-theoretic approach explained in one-time pad. The second 

approach is that of system-theoretic design. In essence, the cryptographer designs the 

cipher along established guidelines which ensure that the cipher is resistant to all known 

attacks. While there is, of course, no substantial guarantee that future cryptanalysis will 

be unsuccessful, it is this design approach that is perhaps the most common in cipher 

design. The third approach is to attempt to relate the difficulty of breaking the stream 

cipher to solving some difficult problem. This complexity-theoretic approach is very 

appealing, but in practice the ciphers that have been developed tend to be rather slow and 

impractical. The final approach is that of designing a randomized cipher. Here the aim is 



CRYPTOGRAPHY FUNCTIONS 

to ensure that the cipher is resistant to any practical amount of cryptanalytic work rather 

than being secure against an unlimited amount of work. 

2.3.2.1 One-time Pad 

A one-time pad, sometimes called the Vernam cipher, uses a string of bits that is 

generated completely at random. The keystream is the same length as the plaintext 

message and the random string is combined using bitwise XOR with the plaintext to 

produce the ciphertext. Since the entire keystream is random, an opponent with infinite 

computational resources can only guess the plaintext if he sees the ciphertext. Such a 

cipher is said to offer perfect secrecy and the analysis of the one-time pad is seen as one 

of the cornerstones of modern cryptography. 

2.4 Hash Functions 

Hash Functions take a block of data as input, and produce a hash or message 

digest as output. The usual intent is that the hash can act as a signature for the original 

data, without revealing its contents. Therefore, it's important that the hash function be 

irreversible - not only should it be nearly impossible to retrieve the original data, it must 

also be unfeasible to construct a data block that matches some given hash value. 

Randomness, however, has no place in a hash function, which should completely 

deterministic. Given the exact same input twice, the hash function should always produce 

the same output. Even a single bit changed in the input, though, should produce a 

different hash value. The hash value should be small enough to be manageable in further 

manipulations, yet large enough to prevent an attacker from randomly finding a block of 

data that produces the same hash. 

MD5, documented in RFC 1321, is perhaps the most widely used hash function at 

this time. It takes an arbitrarily sized block of data as input and produces a 128-bit (16- 

byte) hash. It uses bitwise operations, addition, and a table of values based on the sine 

function to process the data in 64-byte blocks. RFC 1810 discusses the performance of 

MD5, and presents some speed measurements for various architectures. 
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Hash functions can't be used directly for encryption, but are very useful for 

authentication. One of the simplest uses of a hash function is to protect passwords. UNIX 

systems, in particular, will apply a hash function to a user's password and store the hash 

value, not the password itself. To authenticate the user, a password is requested, and the 

response runs through the hash function. If the resulting hash value is the same as the one 

stored, then the user must have supplied the correct password, and is authenticated. Since 

the hash function is irreversible, obtaining the hash values doesn't reveal the passwords to 

an attacker. In practice, though, people will often use guessable passwords, so obtaining 

the hashes might reveal passwords to an attacker who, for example, hashes all the words 

in the dictionary and compares the results to the password hashes. 

Another use of hash functions is for interactive authentication over the network. 

Transmitting a hash instead of an actual password has the advantage of not revealing the 

password to anyone sniffing on the network traffic. If the password is combined with 

some changing value, then the hashes will be different every time, preventing an attacker 

from using an old hash to authenticate again. The server sends a random challenge to the 

client, which combines the challenge with the password, computes the hash value, and 

sends it back to the server. The server, possessing both the stored secret password and the 

random challenge, performs the same hash computation, and checks its result against the 

reply from the client. If they match, then the client must know the password to have 

correctly computed the hash value. Since the next authentication would involve a 

different random challenge, the expected hash value would be different, preventing an 

attacker from using a replay attack. Thus, hash functions, though not encryption 

algorithms in their own right can be used to provide significant security services, mainly 

identity authentication. 

2.4.1 Hash functions for hash table lookup 

A hash function for hash table lookup should be fast, and it should cause as few 

collisions as possible. If you know the keys you will be hashing before you choose the 

hash function, it is possible to get zero collisions -- this is called perfect hashing. 

Otherwise, the best you can do is to map an equal number of keys to each possible hash 
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value and make sure that similar keys are not unusually likely to map to the same value. 

Unfortunately, that hash is only average. The problem is the per-character mixing: it only 

rotates bits, it doesn't really mix them. Every input bit affects only 1 bit of hash until the 

final %. If two input bits land on the same hash bit, they cancel each other out. Also, % 

can be extremely slow. 

2.5 Attacks on Ciphers 

Here the different kinds of possible attacks what have been observed so for and 

can be expected are explained in detail. 

2.5.1 Exhaustive Key Search 

Exhaustive key search, or brute-force search, is the basic technique of trying every 

possible key in turn until the correct key is identified. To identify the correct key it may 

be necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has 

some recognizable characteristic, ciphertext alone might suffice. Exhaustive key search 

can be mounted on any cipher and sometimes a weakness in the key schedule of the 

cipher can help improve the efficiency of an exhaustive key search attack. Advances in 

technology and computing performance will always make exhaustive key search an 

increasingly practical attack against keys of a fixed length. When DES was designed, it 

was generally considered secure against exhaustive key search without a vast financial 

investment in hardware. Over the years, this line of attack will become increasingly 

attractive to a potential adversary. 

While the 56-bit key in DES now only offers a few hours of protection against 

exhaustive search by a modern dedicated machine, the current rate of increase in 

computing power is such that 80-bit key can be expected to offer the same level of 

protection against exhaustive key search in 18 years time as DES does today. 
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.... 5.2 Differential Cryptanalysis 

Differential cryptanalysis is a type of attack that can be mounted on iterative block 

iphers. Differential cryptanalysis is basically a chosen plaintext attack and relies on an 

analysis of the evolution of the differences between two related plaintexts as they are 

encrypted under the same key. By careful analysis of the available data, probabilities can 

be assigned to each of the possible keys and eventually the most probable key is 

identified as the correct one. 

Differential cryptanalysis has been used against a great many ciphers with varying 

degrees of success. In attacks against DES, its effectiveness is limited by what was very 

careful design of the S-boxes during the design of DES. Differential cryptanalysis has 

also been useful in attacking other cryptographic algorithms such as hash functions. 

2.5.3 Linear Cryptanalysis 

Linear cryptanalysis is a known plaintext attack and uses a linear approximation to 

describe the behavior of the block cipher. Given sufficient pairs of plaintext and 

corresponding ciphertext, bits of information about the key can be obtained and increased 

amounts of data will usually give a higher probability of success. There have been a 

variety of enhancements and improvements to the basic attack. Differential-linear 

cryptanalysis is an attack, which combines elements of differential cryptanalysis with 

those of linear cryptanalysis. A linear cryptanalytic attack using multiple approximations 

might allow for a reduction in the amount of data required for a successful attack. 

2.5.4 Weak Key for a Block Cipher 

Weak keys are secret keys with a certain value for which the block cipher in 

question will exhibit certain regularities in encryption or, in other cases, a poor level of 

encryption. For instance, with DES there are four keys for which encryption is exactly the 

same as decryption. This means that if one were to encrypt twice with one of these weak 

keys, then the original plaintext would be recovered. For IDEA there is a class of keys for 

which cryptanalysis is greatly facilitated and the key can be recovered. However, in both 
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these cases, the number of weak keys is such a small fraction of all possible keys that the 

chance of picking one at random is exceptionally slight. In such cases, they pose no 

significant threat to the security of the block cipher when used for encryption. 

Of course for other block ciphers, there might well be a large set of weak keys 

(perhaps even with the weakness exhibiting itself in a different way) for which the chance 

of picking a weak key is too large for comfort. In such a case, the presence of weak keys 

would have an obvious impact on the security of the block cipher. 

2.5.5 Algebraic Attacks 

Algebraic attacks are a class of techniques, which rely for their success on some 

block cipher exhibiting a high degree of mathematical structure. For instance, it is 

conceivable that a block cipher might exhibit what is termed a group structure. If this 

were the case, then encrypting a plaintext under one key and then encrypting the result 

under another key would always be equivalent to single encryption under some other 

single key. If so, then the block cipher would be considerably weaker, and the use of 

multiple encryptions would offer no additional security over single encryption. For most 

block ciphers, the question of whether they form a group is still open. For DES, however, 

it is known that the cipher is not a group. There are a variety of other concerns with 

regards to algebraic attacks. 

2.5.6 Data Compression Used With Encryption 

Data compression removes redundant character strings in a file. This means that 

the compressed file has a more uniform distribution of characters. In addition to providing 

shorter plaintext and ciphertext, which reduces the amount of time needed to encrypt, 

decrypt and transmit a file, the reduced redundancy in the plaintext can potentially hinder 

certain cryptanalytic attacks. 

By contrast, compressing a file after encryption is inefficient. The ciphertext 

produced by a good encryption algorithm should have an almost statistically uniform 

distribution of characters. As a consequence, a compression algorithm should be unable to 
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find redundant patterns in such text and there will be little, if any, data compression. In 

fact, if a data compression algorithm is able to significantly compress encrypted text, then 

this indicates a high level of redundancy in the ciphertext, which, in turn, is evidence of 

poor encryption. 

2.6 When an Attack Become Practical 

There is no easy answer to this question since it depends on many distinct factors. 

Not only must the work and computational resources required by the cryptanalyst be 

reasonable, but the amount and type of data required for the attack to be successful must 

also be taken into account. One classification distinguishes among cryptanalytic attacks 

according to the data they require in the following way: chosen plaintext or chosen 

ciphertext, known plaintext, and ciphertext-only. This classification is not particular to 

secret-key ciphers and can be applied to cryptanalytic attacks on any cryptographic 

function. A chosen plaintext or chosen ciphertext attack gives the cryptanalyst the 

greatest freedom in analyzing a cipher. The cryptanalyst chooses the plaintext to be 

encrypted and analyzes the plaintext together with the resultant ciphertext to derive the 

secret key. Such attacks will, in many circumstances, be difficult to mount but they 

should not be discounted. A known plaintext attack is more useful to the cryptanalyst than 

a chosen plaintext attack (with the same amount of data) since the cryptanalyst now 

requires a certain numbers of plaintexts and their corresponding ciphertexts without 

specifying the values of the plaintexts. This type of information is presumably easier to 

collect. The most practical attack, but perhaps the most difficult to actually discover, is a 

ciphertext-only attack. In such an attack, the cryptanalyst merely intercepts a number of 

encrypted messages and subsequent analysis somehow reveals the key used for 

encryption. Note that some knowledge of the statistical distribution of the plaintext is 

required for a ciphertext-only attack to succeed. 

An added level of sophistication to the chosen text attacks is to make them 

adaptive. By this we mean that the cryptanalyst has the additional power to choose the 
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text that is to be encrypted or decrypted after seeing the results of previous requests. The 

computational effort and resources together with the amount and type of data required are 

all important features in assessing the practicality of some attack. 

2. 7 Strong Password-Only Authenticated Key Exchange 

A new simple password exponential key exchange method (SPEKE) is described. 

It belongs to an exclusive class of methods, which provide authentication and key 

establishment over an insecure channel using only a small password, without risk of off­ 

line dictionary attack. SPEKE and the closely-related Diffie-Hellman Encrypted Key 

Exchange (DH-EKE) are examined in light of both known and new attacks, along with 

sufficient preventive constraints. Although SPEKE and DH-EKE are similar, the 

constraints are different. The class of strong password-only methods is compared to other 

authentication schemes. Benefits, limitations, and tradeoffs between efficiency and 

security are discussed. These methods are important for several uses, including 

replacement of obsolete systems, and building hybrid two-factor systems where 

independent password-only and key-based methods can survive a single event of either 

key theft or password compromise. 

It seems paradoxical that small passwords are important for strong authentication. 

Clearly, cryptographically large passwords would be better, if only ordinary people could 

remember them. Password verification over an insecure network has been a particularly 

tough problem, in light of the ever-present threat of dictionary attack. Password problems 

have been around so long that many have assumed that strong remote authentication 

using only a small password is impossible. In fact, it can be done. In this paper we outline 

the problem, and describe a new simple password exponential key exchange, SPEKE, 

which performs strong authentication, over an insecure channel, using only a small 

password. That a small password can accomplish this alone goes against common 

wisdom. This is not your grandmother's network login. We compare SPEKE to the 

closely-related Diffie-Hellman Encrypted Key Exchange, and review the potential threats 

31 



CRYPTOGRAPHY FUNCTIONS 

and countermeasures in some detail. We show that previously-known and new attacks 

against both methods are dissatisfied when proper constraints are applied. These methods 

are broadly useful for authentication in many applications: bootstrapping new system 

installations, cellular phones or other keypad systems, diskless workstations, user-to-user 

applications, multi-factor password + key systems, and for upgrading obsolete password 

systems. More generally, they are needed anywhere that prolonged key storage is risky or 

impractical, and where the communication channel may be insecure. 

2.7.1 The Remote Password Problem 

Ordinary people seem to have a fundamental inability to remember anything 

larger than a small secret. Yet most methods of remote secret-based authentication 

presume the secret to be large. We really want to use an easily memorized small secret 

password, and not are susceptible to dictionary attack. We make a clear distinction 

between passwords and keys: Passwords must be memorized, and are thus small, while 

keys can be recorded, and can be much larger. The problem is that most methods need 

keys that are too large to be easily remembered. User-selected passwords are often 

confined to a very small, easily searchable space, and attempts to increase the size of the 

space just make them hard to remember. Bank-card PIN codes use only 4-digits to 

remove even the temptation to write them down. A ten-digit phone number has about 30 

bits, which compels many people to record them. Meanwhile, strong symmetric keys 

need 60 bits or more, and nobody talks about memorizing public-keys. It is also fair to 

assume that a memorizable password belongs to a brute-force searchable space. With 

ever-increasing computer power, there is a growing gap between the size of the smallest 

safe key and the size of the largest easily remembered password. 

The problem is compounded by the need to memorize multiple passwords for 

different purposes. One example of a small-password-space attack is the verifiable plain­ 

text dictionary attack against login. A general failure of many obsolete password methods 

is due to presuming passwords to be large. We assume that any password belongs to a 

cryptographically small space, which is also brute-force searchable with a modest effort. 

Large passwords are arguably weaker since they can't be memorized. 
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So why do we bother with passwords? A pragmatic reason is that they are less 

xpensive and more convenient than smart-cards and other alternatives. A stronger reason 

that, in a well-designed and managed system, passwords are more resistant to theft than 

rsistent stored keys or carry-around tokens. More generally, passwords represent 

mething you know, one of the "big three" categories of factors in authentication. 

2.7.2 Characteristics of Strong Password-only Methods 

We now define exactly what we mean by strong password-only remote 

authentication. We first list the desired characteristics for these methods, focusing on the 

case of user-to-host authentication. Both SPEKE and DH-EKE have these distinguishing 

characteristics. 

1. Prevent off-line dictionary attack on small passwords. 

2. Survive on-line dictionary attack. 

3. Provide mutual authentication. 

4. Integrated key exchange. 

5. User needs no persistent recorded 

(a) Secret data, or 

(b) Sensitive host-specific data. 

Since we assume that all passwords are vulnerable to dictionary attack, given the 

opportunity, we need to remove the opportunities. On-line dictionary attacks can be easily 

detected, and thwarted, by counting access failures. But off-line dictionary attack presents 

a more complex threat. These attacks can be made by someone posing as a legitimate 

party to gather information, or by one who monitors the messages between two parties 

during a legitimate valid exchange. Even tiny amounts of information "leaked" during an 

exchange can be exploited. The method must be immune to such off-line attack, even for 

tiny passwords. This is where SPEKE and DH-EKE excel. 
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-.7.2.1 SPEKE 

The simple password exponential key exchange (SPEKE) has two stages. The first 

tage uses a DH exchange to establish a shared key K, but instead of the commonly used 

fixed primitive base g, a function f converts the password S into a base for 

exponentiation. The rest of the first stage is pure Diffie-Hellman, where Alice and Bob 

tart out by choosing two random numbers RA and Rs: 

Table 2.1: Shows First Stages of SPEKE 

Sl. Alice computes: QA = f(Sl A mod p, 

S2. Bob computes: Qs = f(Sls mod p, 

S3. Alice computes: K = h( at A mod p ) 

S4. Bob computes: K = h( QA\ mod p ) 

A "'7 B: QA, 

87A: Os. 

In the second stage of SPEKE, both Alice and Bob confirm each other's knowledge of K 

before proceeding to use it as a session key. One way is: 

Table 2.2: Shows Second Stage of SPEKE 

SS. 

S6. 

S7. 

Alice chooses random CA, A7B: EK (CA), 

87 A: EK (Cs, CA), 

A7B: EK (Cs). 

Bob chooses random Cs, 

Alice verifies that CA is correct, 

SS. Bob verifies that Cs is correct. 

To prevent discrete log computations, which can result in the attacks the value of 

p-1 must have a large prime factor q. The function f is chosen in SPEKE to create a base 
of large prime order. This is different than the commonly used primitive base for DH. The 

use of a prime-order group may also be of theoretical importance. 
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Other variations of the verification stage are possible. This stage is identical to 

at of the verification stage of DH-EKE. More generally, verification of K can use any 

classical method, since K is cryptographically large. This example repeatedly uses a one- 

·ay hash function: 

Table 2.3: Shows Verification Stage of SPEKE 

ss. 
S6. 

Alice sends proof of K: A~B: h(h(K)) 

B~A: h(K) Bob verifies h(h(K)) is correct, 

S7. Alice verifies h (K)) is correct. 

This approach uses K in place of explicit random numbers, which is possible since 

K was built with random information from both sides. 

2.7.2.2 DH-EKE 

DH-EKE (Diffie-Hellman Encrypted Key Exchange) are the simplest of a number 

of methods. The method can also be divided into two stages. The first stage uses a DH 

exchange to establish a shared key K, where one or both parties encrypts the exponential 

using the password S. With knowledge of S, they can each decrypt the other's message 

using Es-1 and compute the same key K. 

Table 2.4: Shows First Stage of DH-EKE 
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Dl. Alice computes: QA= gRA mod p, A~B: Es (QA), 

D2. Bob computes: Qa = gRs mod p, B~ A: Es (Os). 

D3. Alice computes: K = h( Os RA mod p ) 

D4. Bob computes: K = h( Q/s mod p) 

It is widely suggested that at least one of the encryption steps can be omitted, but 

this may leave the method open to various types of attacks. The values of p and g, and the 

symmetric encryption function Es must be chosen carefully to preserve the security of 

DH-EKE. In the second stage of DH-EKE, both Alice and Bob confirm each other's 

knowledge of K before proceeding to use it as a session key. However, with DH-EKE the 

order of the verification messages can also be significant. 

2.8 Different kinds of Security Attacks 

Here different kinds of attacks on the security in authentication which have been 

observed so for and which are expected are explained in detail. 

2.8.1 Discrete Log Attack 

As the security of these schemes rests primarily on exponentiation being a one­ 

way function, there is a general threat of an attacker computing the discrete logarithms on 

the exponentials. Known methods of discrete log require a massive pre-computation for 

each specific modulus. Modulus size is a primary concern. No method is currently known 

that could ever compute the discrete log for a safe modulus greater than a couple 

thousand bits; however a concerted attack on a 512-bit modulus may be soon feasible 

with considerable expense. Somewhere in between is an ideal size balancing speed 

against the need for security, in a given application. 

It is noted that if we assume that a discrete log pre-computation has been made for 

the modulus, a password attack must also compute the specific log for each entry in the 

password dictionary (until a match is found). It is also noted that for any session 
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established with a modulus vulnerable to log attack, perfect forward secrecy is no longer 

guaranteed, providing another reason for keeping the discrete log computation out of 

reach. The feasibility of a pre-computed log table remains a primary concern, and the 

efficiency of the second phase of the attack is secondary. 

2.8.2 Leaking Information 

If one is not careful, the exchanged messages Ox may reveal discernible structure, 

and can "leak" information about S, enabling a partition attack. This section shows how to 

prevent these attacks. 

2.8.2.1 DH-EKE Partition Attack 

In DH-EKE, Alice and Bob use a Diffie-Hellman exponential key exchange in the 

group z/, with a huge prime p, where p-1 has a huge prime factor q. Then we use the 

traditional preference for g as a primitive root of p. In fact, g must be primitive to prevent 

a partition attack by an observer. A third party can do trial decryptions of Es (g\ mod p) 

using a dictionary of Si, If g is not primitive, a bad guess Si is confirmed by a primitive 

result. In general, the encrypted exponentials Ox must contain no predictable structure to 

prevent this attack against DH-EKE. Constraining g to be primitive insures a random 

distribution across Z/. 

2.8.2.2 SPEKE Partition Attack 

Using a primitive base is not required in SPEKE. If the base f(S) is an arbitrary 

member of Z, *, since the exponentials are not encrypted, an observer can test the result 

for membership in smaller subgroups. When the result is a primitive root of p, he knows 

that the base also is primitive. For a safe prime p, this case reveals 1 bit of information 

about S. When p varies, as has been recommended when using a reduced modulus size, 

new information from runs with different p allow a partition attack to reduce a dictionary 

of possible Si, When, for any S, the base f(S) is a generator of a particular large prime 

subgroup, and then no information is leaked through the exponential result. Suitable 
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functions for f(S) create a result of known large order. We assume the use of a large 

prime-order base in SPEKE for the rest of the discussion. Because SPEKE does not 

encrypt the exponentials, a formal analysis of security may be simpler to achieve for 

SPEKE than for DH-EKE. The prime-order subgroup is the same as that used in the DSA 

and Digital signature methods. 

- ' 
2.8.3 Stolen Session Key Attack 

In an analysis of several flavors of EKE, where a stolen session key K is used to 

mount a dictionary attack on the password. The attack on the public-key flavor of EKE is 
\__) 

also noted which correctly points out that DH-EKE resists this attack (as does SPEKE). 

Resistance to this attack is closely related to perfect forward secrecy, which also isolates 

one kind of sensitive data from threats to another. We note that, in DH-EKE, a stolen 

value of RA in addition to K permits a dictionary attack against the password S. For each 

trial password Si, the attacker computes: 

K' = (Esi-1(Es (g\))) RA 

When K' equals K, he knows that Si equals S. SPEKE is also vulnerable to an 

attack using RA to find S. These concerns highlight the need to promptly destroy 

ephemeral sensitive data, such as RA and R8. It also notes a threat when the long-term 

session key K is used in an extra stage of authentication of the extended A-EKE method; 

a dictionary attack is possible using the extra messages. To counter this threat, one can 

use K for the extra stage, set K' = h (K) using a strong one-way function, and promptly 

discard K. 

2.8.4 Verification Stage Attacks 
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The verification stage of either DH-EKE or SPEKE is where both parties prove to 

each other knowledge of the shared key K. Because K is cryptographically large, the 

second stage is presumed to be immune to brute-force attack, and thus verifying K can be 

done by traditional means. However, the order of verification may be important to resist 

the protocol attack against DH-EKE. 

2.8.5 The "password-in-exponent" Attack 

It is generally a good idea for f (S) to create a result of the same known order for 

all S, so that testing the order of the exponential doesn't reveal information about S. When 

considering suitable functions, it may be tempting to choose f(S) = g/CS) for some fixed 

prime-order gc and some well-known hash function h. Unfortunately, while this is a 

convenient way to convert an arbitrary number into a generator of a prime-order group, it 

creates an opening for attack. To show the attack, let's assume that gc = 2, and h(S) = S, 
so that f(S) = 2s. Alice's protocol can be rewritten as: 

1. Choose a random RA, 

2. Compute QA = 2cs R Al mod p. 

3. Send QA to Bob. 

4. Receive OB from Bob. 

5. Compute K = QB\ mod p. 

Bob should perform his part, sending OB to Alice. The problem is that an attacker 

Barry can perform a dictionary attack off-line after performing a single failed exchange. 

His initial steps are: 

1. Choose a random X. 
X 2. Compute Os = 2 . 

3. Receive QA from Alice 

4. Send QB to Alice. 

5. Receive verification data for K from Alice. 

Barry then goes off-line to perform the attack as follows: 
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For each candidate password S': 

Compute K' = (Ql) t/S' mod p. 

Compare Alice's verification· message for K to K', when they match he knows that S' = S. 

This attack works because: 

K' = QA (XIS') mod p 

= i(S RA) (X/S') mod p 

= i(XRA S/S') mod p 

= QB (RA S/S') mod p 

= K(S/S') mod p 

Thus, when S' = S, K' = K. More generally, the attack works because the 

dictionary of passwords {St, S2 ... Sn} is equivalent to a dictionary of exponents E = {et, 
e2 ••. en}, such that for a given fixed generator gc, the value off (Si) for each candidate can 

be computed as gc\ This allows the password to be effectively removed from the DH 

computation. 

In general, we must insure that no such dictionary E is available to an attacker. 

We should note that while it is true that for any function f there will always be some 

fixed gc and hypothetical dictionary E that corresponds to f (S), for most functions f, 
computing the value of each e, requires a discrete log computation. This makes the 

dictionary E generally unknowable to anyone. As a specific example, for the function 

f(S) = S, the attack is infeasible. The password-in-exponent attack is possible only when 

f(S) is equivalent to exponentiation (within the group) of some fixed gc to a power which 

is a known function of S. 

2.9 A Logic of Authentication 
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In computer networks the communicating parties share not only the media, but 

also the set of rules on how to communicate. These rules, or protocols, have become more 

and more important in communication networks and distributed computing. However, the 

increase of the knowledge of the communication protocols has also brought up the 

question of how to secure the communication against intruders. To solve this, a large 

number of cryptographic protocols have been produced. 

Cryptographic protocols were developed to combat against various attacks of 

intruders in computer networks. Nowadays, the comprehension is that the security of data 

should rely on the underlying cryptographic technology, and that the protocols should be 

open and available. However, many protocols have been found to be vulnerable to attacks 

that do not require breaking the encryption, but instead manipulate the messages in the 

protocol to gain some advantage. The advantages range from the compromise of 

confidentiality to the ability to impersonate another user. 

As there are different protocol designs decisions appropriate to different 

circumstances, there also exists a variety of authentication protocols. Protocols often 

differ in their final states, and sometimes they even depend on assumptions that one 

would not care to make. To understand what is really accomplished with such a protocol, 

a formal description method is needed. The goal of the logic of authentication is to 

formally describe the knowledge and the beliefs of the parties involved in authentication, 

the evolution of the knowledge and the beliefs while analyzing the protocol step by step. 

After the analysis, all the final states of the protocol are set out. 
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CHAPTER THREE 

3. ENCRYPTION & DECRYPTION USING RSAALGORITHM 

3.1 Overview 
RSA is a public-key cryptosystem developed by MIT professors: Ronald L. Rivest, 

Adi Shamir, and Leonard M. Adleman in 1977 in an effort to help ensure Internet 

security. As Steve Burnett of RSA Data Security, Inc. described it, a cryptosystem is 

simply an algorithm that can convert input data into something unrecognizable 

( encryption), and convert the unrecognizable data back to its original form ( decryption). 

The RSA scheme is a block cipher in which the plaintext and cipher text are integers 

between O and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. 

To encrypt data, enter the data ("plaintext") and an encryption key to the encryption 

portion of the algorithm. To decrypt the "cipher text," a proper decryption key is used at 

the decryption portion of the algorithm. Those keys, which contain simply a string of 

numbers, are called public key and private key, respectively. For example, suppose Alice 

intends to send e-mail to Bob. Through a public-key directory, she finds his public key. 

Then, she encrypts her message using the key and sends it to Bob. This public key, 

however, will not decrypt the cipher text. Knowledge of Bob's public key will not help an 

eavesdropper. In order for Bob to decrypt his cipher text, he must use his private key. If 

Bob wants to respond to Alice, he encrypts his message using her public key. 

The challenge of public-key cryptography is developing a system in which it is 

impossible to determine the private key. This is accomplished through the use of a one­ 

way function. With a one-way function, it is relatively easy to compute a result given 

some input values. In mathematical terms, given x, computing f(x) is easy, but given f(x), 

computing x is nearly impossible. The one-way function used in RSA is multiplication of 

prime numbers. It is easy to multiply two big prime numbers, but for most very large 
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rimes, it is extremely time-consuming to factor them. Public-key cryptography uses this 

·· nction by building a cryptosystem that uses two large primes to build the private key 

and the product of those primes to build the public key. 

3.2 How does cryptographic algorithm work? 
A cryptographic algorithm, or cipher, is a mathematical function used in the 

encryption and decryption process. A cryptographic algorithm works in combination with 

a key - a word, number, or phrase to encrypt the plaintext. The same plaintext encrypts 

to different cipher text with different keys. The security of encrypted data is entirely 

dependent on two things: the strength of the cryptographic algorithm and the secrecy of 

the key. A cryptographic algorithm, plus all possible keys and all the protocols that make 

it work comprise a cryptosystem. PGP is a cryptosystem. 

3.3 Different types of Cryptosystems/Encryptions: 
There are four ways of encryption that we mostly use in network system 

• Pretty Good Privacy, PGP 

• Rivest, Shamir, Adleman, RSA 

• Keyless Encryption, KE 

• One-Time Pads, OTP 

3.3.1 PGP (Pretty Good Privacy) 

Pretty Good Privacy. Up to this point we've talked about private-key cryptography 

(one key used y both parties). There was one problem with this kind of encryption: If the 

key was intercepted, a third party could decrypt the messages. So, the ideas of public-key 

cryptography were developed. Here's how it works ... 
Everyone has two keys: a public and a private key. When someone wants to send 

something to a recipient, they (the sender) encrypt it with the recipient's public key. Then 

the only way to decrypt it is with the recipient's private key. One of the other benefits to 

PGP is that it allows the sender to "sign" their messages. This proves that the message 

came from the sender and has not been altered in transport. Based on this theory, PGP 
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allows everyone to publicize their public keys, while keeping their private keys secret. 

The result is that anyone can encrypt a message to someone else, as long as they have that 

person's public key. 

In actuality, PGP uses a series of private key, public key and one-way hash 

functions to encrypt a message. A one-way hash function takes some plaintext and 

translates it into a specific hash. The hash is unique to the message (like a fingerprint is to 

a person). The hash is also non-reversible, hence the name one-way. Let's run through an 

example of what PGP does to encrypt and decrypt an e-mail message. Our sender will be 

Chris and our receiver will be Brian. 

• Chris writes his message. 

• Chris uses a one-way hash function (such as MD5) to create a hash for the 

message. 

• Chris, via RSA or some other digital signature algorithm, signs the hash with his 

private key. 

• Chris merges the message and the signature, resulting in a new-signed message. 

• A random encryption key is generated, the session key. 

• Chris uses the session key to encrypt the message, using DES or some other 

private key method. 

• Chris gets Brian's public key. 

• Chris then encrypts the key with Brian's public key, via RSA or some other public 

key method. 

• Chris merges the encrypted message and the encrypted key and mails it to Brian. 

Once Brian receives the message he can have PGP decrypt it. Here's what it would 

do: 

• Brian separates the encrypted message and the encrypted session key. 

• Using RSA, Brian decrypts the session key. 

• Using DES, Brian decrypts the message with the decrypted session key. 

• Brian then separates the message and the signature. 
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• Using MD5, Brian calculates the hash value of the message. 

• Brian gets Chris' public key. 

• Via RSA, and Chris' public key, Brian decrypts the signature. 

• Brian then compares the hash value and the decrypted signature. If they are the 

same, Brian knows that the message is authentic and has not been altered since 

Chris signed it. 

• 

3.3.2 RSA (Rivest, Shamir, Adleman) 

RSA stands for the initials of the three men Ron Rivest, Adi Shamir, and Len 

Adleman. The security behind RSA lies in the difficulty of factoring large numbers into 

their primes. The process involves selecting two large (hundreds of digits) prime numbers 

(p and q), and multiplying them together to get the sum, n. These numbers are passed 

through a mathematical algorithm to determine the public key KU = { e, n] and the 
private key KR = { d, n}, which are mathematically related (the necessary equations are 

given at the bottom of the page). It is extremely difficult to determine e and/or d given n, 

thus the security of the algorithm. Once the keys have been created a message can be 

encrypted in blocks, and passed though the following equation: 

C = Me mod n 

Where C is the ciphertext, M is the plaintext, and e is the recipient's public key. 

Similarly, the above message could be decrypted by the following equation: 

M = Cd mod n 

Where dis the recipient's private key. For example: let's assume that our Mis 19 

(we will use smaller numbers for simplicity, normally theses numbers would be MUCH 

larger). We will use 7 asp and 17 as q. Thus, n = 7 * 17 = 119. Our e is then calculated to 
be 5 and dis calculated to be 77. Thus our KU is {5, 119} and our KR is {77, 119}. We 

can then pass the needed values through equation (1) to compute C. In this case C is 66. 

We could then decrypt C (66) to get back our original plain text. We pass the needed 
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alues through equation (2) and get 19, our original plaintext! Try it yourself with other 

numbers. 

Note: To determine e and d, perform the following: 

Calculate f (n) = (p - 1) (q - 1) 

Choose e to be relatively prime to f (n) and less than f(n). 

Determined such that de= 1 mod f (n) and d < f (n). 

3.4 The RSA Algorithm 

Let's run the RSA algorithm through steps of how RSA algorithm procedure does 

work: 

3.4.1 Key Generation 

l.Generate two large prime numbers, p and q 

2. Let n = pq 

3. Let m = (p-l)(q-1) 

4. Choose a small number e, coprime to m 

5. Find d, such that de% m = 1 

Publish e and n as the public key, Keep d and n as the secret k 

Encryption 

C=Pe%n 

Decryption 

P=Cct%n 

x % y means the remainder of x divided by y 
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The reasons why this algorithm works are discussed in the mathematics section. Its 

security comes from the computational difficulty of factoring large numbers. To be 

secure, very large numbers must be used for p and q - 100 decimal digits at the very least. 

I'll now go through a simple worked example 1. 

a) Key Generation 

1) Generate two large prime numbers, p and q 

To make the example easy to follow I am going to use small numbers, but this is not 

secure. To find random primes, we start at a random number and go up ascending odd 

numbers until we find a prime. Lets have: 

p=7 

q = 19 

2) Let n = pq 
n = 7 * 19 
= 133 

3) Let m = (p - 1 )( q - 1) 

m = (7 - 1 )(19 - 1) 
= 6 * 18 
= 108 

4) Choose a small number, e coprime tom 
e coprime to m, means that the largest number that can exactly divide both e and m 

(their greatest common divisor, or gcd) is 1. Euclid's algorithm is used to find the gcd of 

two numbers, but the details are omitted here. 
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e = 2 => gcd(e, 108) = 2 (no) 

e = 3 => gcd(e, 108) = 3 (no) 

e = 4 => gcd(e, 108) = 4 (no) 

e = 5 => gcd(e, 108) = 1 (yes!) 

5) Find d, such that de % m = 1 
This is equivalent to finding d which satisfies de = 1 + nm where n is any integer. We 

can rewrite this as d = (1 + nm) I e. Now we work through values of n until an integer 

solution fore is found: 

n = 0 => d = 1 I 5 (no) 
n = 1 => d = 109 I 5 (no) 
n = 2 => d = 217 I 5 (no) 

n = 3 => d = 325 I 5 
= 65 (yes!) 

To do this with big numbers, a more sophisticated algorithm called extended Euclid 

must be used. 

Public Key Secret Key 

b) Encryption 

The message must be a number less than the smaller of p and q. However, at this 

point we don't know p or q, so in practice a lower bound on p and q must be published. 

This can be somewhat below their true value and so isn't a major security concern. For 

this example, lets use the message "6". 
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C =Pe% n 
= 65 % 133 
= 7776 % 133 
= 62 

c) Decryption 

This works very much like encryption, but involves a larger exponation, which is 

broken down into several steps. 

P =Cd% n 
= 6265 % 133 
= 62 * 6264 % 133 
= 62 * (622)32 % 133 
= 62 * 384432 % 133 
= 62 * (3844 % 133)32 % 133 
= 62 * 12032 % 133 

We now repeat the sequence of operations that reduced 6265 to 12032 to reduce the 

exponent down to 1. 

= 62 * 3616 % 133 
= 62 * 998 % 133 
= 62 * 924 % 133 
= 62 * 852 % 133 
= 62 * 43 % 133 
= 2666 % 133 
=6 

And that matches the plaintext we put in at the beginning, so the algorithm worked! 

3.5 From Applied Cryptography 

n = pq 
ed _ 1 mod (p _ l)(q _ 1) 

c = me mod n 

m = cd mod n 
n is the product of p and q, two prime numbers. 
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The product of e and d divided by (p _ 1 )( q _ 1) has a remainder of 1. C is the 

remainder of me divided by n; m is the remainder of cd divided by n. 

3.5.1 The Product of Two Primes 
n is the product of two prime numbers, p and q. n is made public as it is used in 

decryption as well as encryption. p and q should never be revealed. 

Example: 

p = 59, q = 67; n = 59 _ 67 = 3953 

3.5.2 e and d, The Keys 
e, the encryption key, is a random number relatively prime to (p _ l)(q _ 1). d can be 

calculated to be de = 1 + x(p _ 1 )( q _ 1 ), x is a throwaway value as it is \lost" in the 
modulus calculation. e is the public key and dis the private key. 

Example, continued: 

e = 7, (p _ l)(q _ 1) = 3828 
de= 1 + x(p _ l)(q _ 1) 

xd = 547, X = 1, d = 547 
e = 7, d = 547 

3.6 Key types 
Two key types are employed in the primitives and schemes defined: RSA public key 

and RSA private key. Together, an RSA public key and an RSA private key form an RSA 

key pair. 
This specification supports so-called "multi-prime" RSA where the modulus may 

have more than two prime factors. Better performance can be achieved on single 

processor platforms, but to a greater extent on multiprocessor platforms, where the 

modular exponentiations involved can be done in parallel. 

50 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

3.6.1 RSA public key 

RSA public key consists of two components: 

n the RSA modulus, a positive integer 

e the RSA public exponent, a positive integer 
In a valid RSA public key, the RSA modulus n is a product of u distinct odd primes r., 

i = 1, 2, ... , u, where u 2:: 2, and the RSA public exponent e is an integer between 3 and n 

-1 satisfying GCD (e, "A (n)) = 1, where "A (n) = LCM (r1 - 1, ... , r; - 1). By convention, 

the first two primes r1 and ri may also be denoted p and q respective! y. 

3.6.2 RSA private key 

An RSA private key may have either of two representations. 

1. The first representation consists of the pair (n, d), where the components have the 

following meanings: 

n the RSA modulus, a positive integer 

d the RSA private exponent, a positive integer 
2. The second representation consists of a quintuple (p, q, dP, dQ, qinv) and a 

(possibly empty) sequence of triplets (r;, di, t;), i = 3, ... , u, one for each prime not in the 

quintuple, where the components have the following meanings: 

p the first factor, a positive integer 

q the second factor, a positive integer 

dP the first factor's CRT exponent, a positive integer 

dQ the second factor's CRT exponent, a positive integer 

qinv the (first) CRT coefficient, a positive integer 

r, the ;th factor, a positive integer 

d, the ;th factor's CRT exponent, a positive integer 

t, the ;th factor's CRT coefficient, a positive integer 

In a valid RSA private key with the first representation, the RSA modulus n is the 

same as in the corresponding RSA public key and is the product of u distinct odd primes 
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ri, i = 1, 2, ... , u, where u ~ 2. The RSA private exponent dis a positive integer less than 

n satisfying 
e · d = 1 (mod '"A (n)), 

Where e is the corresponding RSA public exponent and '"A (n) is defined before. 

In a valid RSA private key with the second representation, the two factors p and q are 

the first two prime factors of the RSA modulus n (i.e., r1 and r2), the CRT exponents dP 

and dQ are positive integers less than p and q respectively satisfying 

e · dP = 1 (mod (p-1)) 
e · dQ= 1 (mod (q-1)), 

And the CRT coefficient qinv is a positive integer less than p satisfying 
q · qinv = 1 (modp). 

If u > 2, the representation will include one or more triplets (r;, di; t;), i = 3, ... , u. The 
factors r, are the additional prime factors of the RSA modulus n. Each CRT exponent d, (i 

= 3, ... , u) satisfies 
e · d, = 1 (mod tr, -1)) . 

Each CRT coefficient t, (i = 3, ... , u) is a positive integer less than r, satisfying 
R; · t, = 1 ( mod r;) , 

Where R; = r1 · r2 · ... · r.:». 

3. 7 How fast is the RSA algorithm 
An "RSA operation," whether encrypting, decrypting, signing, or verifying is 

essentially a modular exponentiation. This computation is performed by a series of 

modular multiplications. 
In practical applications, it is common to choose a small public exponent for the 

public key. In fact, entire groups of users can use the same public exponent, each with a 

different modulus. (There are some restrictions on the prime factors of the modulus when 

the public exponent is fixed.) This makes encryption faster than decryption and 

verification faster than signing. With the typical modular exponentiation algorithms used 

to implement the RSA algorithm, public key operations take 0(/<) steps, private key 
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operations take 0(72) steps, and key generation takes O(k4) steps, where k is the number 

of bits in the modulus. "Fast multiplication" techniques, such as methods based on the 

Fast Fourier Transform (FFT), require asymptotically fewer steps. In practice, however, 

they are not as common due to their greater software complexity and the fact that they 

may actually be slower for typical key sizes. 
The speed and efficiency of the many commercially available software and hardware 

imp\ementaticms of the RSA algorithm are increasing rapidly 

By comparison, DES and other block ciphers are much faster than the RSA 

algorithm. DES is generally at least 100 times as fast in software and between 1,000 and 

10,000 times as fast in hardware, depending on the implementation. Implementations of 

the RSA algorithm will probably narrow the gap a bit in coming years, due to high 

demand, but block ciphers will get faster as well. 

3.8 Encryption and Decryption 
The encryption and decryption math is more Straightforward, yet more demanding. 

I 

The remainder of the message, or message block, value multiplied by itself key times 

divided by the modulus n is the encrypted or decrypted value, depending on which key is 

used. The value of the message, or message block, must be less than the value of n. 

Example, continued: 

Message: 0920 2000 

09207 mod 3953 = 0307 
20007 mod 3953 = 2497 
0307547 mod 3953 = 0920 
2497547 mod 3953 = 2000 

3.8.1 The Mathematical Guts of RSA Encryption 

Here's the algorithm behind RSA public key encryption: 
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Find P and Q, two large (1024-bit) prime numbers. 
Choose E such that E is greater than 1, E is less than PQ, and E and (P-l)(Q-1) are 

relatively prime, which means they have no prime factors in common. E does not have to 

be prime, but it must be odd. (P-J)(Q-1) can't be prime because it's an even number. 

Compute D such that (DE - 1) is evenly divisible by (P-l)(Q-1). Mathematicians write 

this as DE= 1 (mod (P-l)(Q-1)), and they call D the multiplicative inverse of E. This is 

easy to do -- simply find an integer X which causes D = (X(P-J)(Q-1) + 1)/E to be an 

integer, then use that value of D. 

The encryption function is C = (T'E) mod PQ, where C is the ciphertext (a positive 
integer), T is the plaintext (a positive integer), and " indicates exponentiation. The 

message being encrypted, T must be less than the modulus, PQ. 
The decryption function is T = (C"D) mod PQ, where C is the ciphertext (a positive 

integer), Tis the plaintext (a positive integer), and "indicates exponentiation. 

The public key is the pair (PQ, E). The private key is the number D (reveal it to no 

one). The product PQ is the modulus ( often called N in the literature). E is the public 

exponent. D is the secret exponent. 

The public key can be published freely, because there are no known easy methods 

of calculating D, P, or Q given only (PQ, E) (your public key). If P and Q were each 

1024 bits long, it would be millions of years before the most powerful computers 

presently in existence can factor your modulus into P and Q. 

3.8.2 RSA public-key encryption 
The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. 

Adleman, is the most widely used public-key cryptosystem. It may be used to provide 

both secrecy and digital signatures and its security is based on the intractability of the 

integer factorization. 

3.8.2.1 Algorithm Key generations for RSA public-key encryption 

Each entity creates an RSA public key and a corresponding private key. 
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Each entity A should do the following: \" 7r,, G-r:.+.0 '-,, "'08 - \),"- 

1. Generate two large random (and distinct) primes p and q, each roughly the sarrre-· .. ::::;:;-. 

size. 
2. Compute n = pq and_= (p - l)(q - 1). 

3. Select a random integer e, 1 < e <_,such that gcd(e; _) = 1. 

4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < _, 

such that ed _ 1 (mod_). 
5. A's public key is (n; e); A's private key is d. 

Definition 
The integers e and d in RSA key generation are called the encryption exponent and 

the decryption exponent, respectively, while n is called the modulus. 

3.8.2.2 Algorithm RSA public-key encryption 

B encrypts a message m for A, which A decrypts. 

1. Encryption. B should do the following: 

(a) Obtain A's authentic public key (n; e). 

(b) Represent the message as an integer min the interval [O; n - 1 ]. 

(c) Compute c = me mod n 

( d) Send the cipher text c to A. 

2. Decryption. To recover plaintext m from c, A should do the following: 

(a) Use the private key d to recover m = cd mod n 

Proof that decryption works. Since ed _ 1 (mod_), there exists an integer k such that 

ed= l+k_.Now,ifgcd(m;p)= 1 thenbyFermat'stheorem mp+ l _1 (modp): 

Raising both sides of this congruence to the power k( q-1) and then multiplying both 

sides by m yields ml+ k(p-1 )( q-1) _ m (mod p ): 
On the other hand, if gcd(m; p) = p, then this last congruence is again valid since each 

side is congruent to O modulo p. Hence, in all cases med _ m ( mod p ): 
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By the same argument, med_ m (mod q): 

Finally, since p and q are distinct primes, it follows that 

med_ m (mod n) and, hence, 

cd _ (me)d _ m (mod n): 

3.8.2.3 RSA encryption with artificially small parameter's example 

Key generation. Entity A chooses the primes p = 2357, q = 2551, and computes n = 

pq = 6012707 and_= (p-l)(q-1) == 6007800. A chooses e == 3674911 and, using the 

extended Euclidean algorithm, finds d == 422191 such that ed _ 1 (mod_). A's public key 

is the pair (n == 6012707; e == 3674911), while A's private key is d == 422191. Encryption. 

To encrypt a message m = 5234673, B uses an algorithm for modular exponentiation to 

compute: 
c = me mod n = 52346733674911 mod 6012707 = 3650502; and sends this to A. 

Decryption. To decrypt c, A computes 

cd mod n = 3650502422191 mod 6012707 = 5234673. 

3.8.2.4 Universal exponent 
The number _ = lcm(p-1; q -1 ), sometimes cal led the universal exponent of n, may 

be used instead of_ = (p - 1 )(q - 1) in RSA key generation Observe that_ is a proper 

divisor of_. Using_ can result in a smaller decryption exponent d, which may result in 

faster decryption However, if p and q are chosen at random, then gcd(p-1; q-1) is 

expected to be small, and consequently_ and_ will be roughly of the same size 

3.9 Encryption Program 

This program encrypted the plain text file of "text.txt" (Appendix) into the 

cyphertext file of "out.txt" (Appendix), which consisted of integer stream. At the same 

time, the public key pair and private key were generated and saved in the file of "key.txt" 

(Appendix). Finally, the decryption algorithm decrypted the cyphertext file of "out.txt" 
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into the file of "out_ d.txt" (Appendix) with the aid of the private key pair and the private 

key. 

In the main() function of "project_rsa.c", plaintext file was translated into ASCII 

code first as a stream of integers, and saved in the temporary file of "out". In order to 

hide the occurrence frequency of letters in English text, the letter was not encrypted 

respectively using RSA Encryption method. Instead, we extracted number with the fixed 

digits from the integer stream. 

For example, using the key values in "project_rsa.c", the plaintext of "A3D4" can be 

translated as decimal integers stream of "65516852" according to the ASCII code. If we 

chose the 3 fixed digits, then this decimal integer stream can be separated as 655, 168, 52. 

It is noted that the last number should not be a 3 digits number. As such, we add 'O' at 

the end of the number to expend as 520. Finally, the decimal integer stream can be 

separated as 655, 168, and 520. These three numbers were used for the encryption using 

RSA method. Accordingly, the cyphertext would be generated as: 28900 23450 20606 

with the public key pair of(49447, 3513) and the private key of"l 1577". 

Finally, the program read the cyphertext from the file of "out.txt". The original 

decimal integer stream can be decrypted using theses public and private keys, and save in 

the temporary file of "out_d". According to the ASCII code, all the English letters have 

ASCII code larger than 31 (We included the SPACE key) and less than 125. Then the 

plaintext can be easily translated from the original decimal integer stream. The decrypted 

plaintext was save in the file of "out_ d.txt". 

In order to access the program, the access process was inserted in the Encryption 

process in the main () function in "project_rsa.c". 

Unlike other algorithm, the RSA test vector is so hard to find. To test this algorithm, 

and the implementation is in "rsa_test.c" (replace the main function of project_rsa.c), in 

which the key values are as following, public key = (3233, 17), private key = 2753. The 
p\aintext value of 123 can be encrypted as 855. 

3.9.1 Program List 

Source Files: 
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gcd.c 

main program 

carry out the calculation of exponentiation 

generate the public and private keys 

find the primes use in the key generation 

find the GCD of a and b 

project_rsa.c 

exponentiation.c 

keys.c 

pnme.c 

inverse.c 

algorithm 

An implementation of the extended Euclidean 

rsa test.c This is used for the test of the algorithm. 

Header Files: 

exponentiation.h 

keys.h 

gcd.h 

inverse.h 

3.10 RSA and related signature schemes 
This section describes the RSA signature scheme and other closely related methods. 

The security of the schemes presented here relies to a large degree on the intractability of 

the integer factorization problem; the schemes presented include both digital signatures 

with message recovery and appendix. 

3.10.1 The RSA signature scheme 
The message space and ciphertext space for the RSA public-key encryption scheme 

are both Zn = fO; 1; 2; : : : ; n - 1 g where n = pq is the product of two randomly chosen 

distinct prime numbers. Since the encryption transformation is a bijection, digital 

signatures can be created by reversing the roles of encryption and decryption. The RSA 

signature scheme is a deterministic digital signature scheme, which provides message 
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recovery .The signing spaceMS and signature space S, are both Zn. A redundancy 

function R: M-!Zn is chosen and is public knowledge. 

3.10.1.1 Algorithm Key generation for the RSA signature scheme 

Each entity creates an RSA public key and a corresponding private key. 

Each entity A should do the following: 

1. Generate two large distinct random primes p and q, each roughly the same size 

2. Compute n = pq and_= (p - l)(q - 1). 

3. Select a random integer e, 1 < e <_,such that gcd(e; _) = 1. 

4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < _, 

such that ed _ 1 (mod_). 

5. A's public key is (n; e); A's private key is d. 

3.10.1.2 Algorithm RSA signature generation and verification 

Entity A signs a messagem2M. Any entity B can verify A's signature and recover the 

message m from the signature. 

1. Signature generation. Entity A should do the following: 

(a) Compute em= R(m), an integer in the range [O; n - 1]. 

(b) Compute s = emd mod n. 

(c) A's signature form is s. 

2. Verification. To verify A's signatures and recover the message m, B should: 

(a) Obtain A's authentic public key (n; e). 

(b) Compute em = se mod n. 

(c) Verify that em2MR; if not, reject the signature. 

(d) Recover m == R-1(1n). 
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Proof that signature verification ·works. Ifs is a signature for a message m, then s = 
ind mod n where in. = R(rn,). Since ed. = 1 (mod ¢,), Be = iiied = m (mod n). Fi- 
nally, R-1 (1ii) = R-1 (R(rn)) = ·m. 

3.10.2 Possible attacks on RSA signatures 

(i) Integer factorization 
If an adversary is able to factor the public modulus n of some entity A, then the 

adversary can compute _ and then, using the extended Euclidean algorithm, dedu the 

private key d from _ and the public exponent e by solving ed _ 1 (mod _). This 

constitutes a total break of the system. To guard against this, A must select p and q so that 

factoring n is a computationally infeasible task. For further information. 

(ii) Multiplicative property of RSA 

The RSA signature scheme (as well as the encryption method, cf has the following 

multiplicative property, sometimes referred to as the homomorphic property. If sl = mdl 

mod n and s2 = md2 mod n are signatures on messages ml and m2, respectively (or more 

properly on messages with redundancy added), thens = sls2 mod n has the property that 

s = (mlm2)d mod n. Ifm = mlm2 has the proper redundancy (i.e.,m2MR), then s will be 

a valid signature for it. 

Hence, it is important that the redundancy function R is not multiplicative, i.e., for 

essentially all pairs a; b 2 M, R( a _ b) 6= R( a )R(b ). As 

3.11 Security of RSA 
This subsection discusses various security issues related to RSA encryption. Various 

attacks, which have been studied in the literature, are presented, as well as appropriate 

measures to counteract these threats. 
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(i) Relation to factoring 
The task faced by a passive adversary is that of recovering plaintext from the 

corresponding ciphertext c, given the public information (n; e) of the intended receiver A. 

This is called the RSA problem (RSAP), which was introduced in x3.3. There is no 

efficient algorithm known for this problem. 
One possible approach, which an adversary could employ to solving the RSA 

problem is to first factor n, and then compute e _ and d just as A did in Algorithm. Once 

d is obtained, the adversary can decrypt any ciphertext intended for A. 

On the other hand, if an adversary could somehow compute d, then it could 

subsequently factor n efficiently as follows. First note that since ed _ 1 (mod_), there is 

an integer k such that ed - 1 == k_. Hence, by Fact 2.126(i), aed-1 _ 1 (mod n) for all a 2 

z_ n. Let ed - 1 == 2s t, where t is an odd integer. Then it can be shown that there exists 

an i 2 [1; s] such that a2i-1t 6 __ 1 (mod n) and a2it _ 1 (mod n) for at least half of all a 2 

Z_n; if a and i are such integers then gcd(a2i-1t - 1; n) is a non-trivial factor of n. Thus 

the adversary simply needs to repeatedly select random a 2 Z_ n and check if an i 2 [1; s] 

satisfying the above property exists; the expected number of trials before a non-trivial 

factor of n is obtained is 2. This discussion establishes the following. 

Fact The problem of computing the RSA decryption exponent d from the public key 

(n; e), and the problem of factoring n, are computationally equivalent. 

When generating RSA keys, it is imperative that the primes p and q be selected in 

such a way that factoring n = pq is computationally infeasible. 

(ii) Small encryption exponent e. 
In order to improve the efficiency of encryption, it is desirable to select a small 

encryption exponent e such as e = 3. A group of entities may all have the same encryption 

exponent e, however, each entity in the group must have its own distinct modulus ( cf. 

x8.2.2(vi)). If an entity A wishes to send the same message m to three entities whose 

public moduli are nl, n2, n3, and whose encryption exponents are e = 3, then A would 
send ci = m3 mod ni, for i = 1; 2; 3. Since these moduli are most likely pairwise relatively 

61 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

prime, an eavesdropper observing c I, c2, c3 can use Gauss's algorithm to find a solution 

x, O _ x < nln2n3, to the three congruences 8<: x _ cl (mod nl) x _ c2 (mod n2) x _ c3 

(mod n3): 
Since m3 < nln2n3, by the Chinese remainder theorem it must be the case that x = 

m3. Hence, by computing the integer cube root of x, the eavesdropper can recover the 

plaintext m. 

Thus a small encryption exponent such as e = 3 should not be used if the same 

message, or even the same message with known variations, is sent to many entities. 

Alternatively, to prevent against such an attack, a pseudorandomly generated bitstring of 

appropriate Length should be appended to the plaintext message prior to encryption; the 

pseudorandom bitstring should be independently generated for each encryption. This 

process is sometimes referred to as salting the message. Small encryption exponents are 

also a problem for small messages m, because ifm< n l=e, then m can be recovered from 

the ciphertext c = me mod n simply by computing the integer eth root of c; salting 

plaintext messages also circumvents this problem. 

(iii) Forward search attack 
If themessage space is small or predictable, an adversary can decrypt a ciphertext c by 

simply encrypting all possible plaintext messages until c is obtained. Salting the message 

as described above is one simple method of preventing such an attack. 

(iv) Small decryption exponent d 

As was the case with the encryption exponent e, it may seem desirable to select a 

small decryption exponent d in order to improve the efficiency of decryption.1 However, 

if gcd(p- 1; q - 1) is small, as is typically the case, and if d has up to approximately one­ 

quarter as many bits as the modulus n, then there is an efficient algorithm for computing 

d from the public information (n; e). This algorithm cannot be extended to the case where 

d is approximately the same size as n. hence, to avoid this attack; the decryption exponent 

d should be roughly the same size as n. 
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(v) Multiplicative properties 

Let ml and m2 be two plaintext messages, and let cl and c2 be their respective RSA 

encryptions. Observe that (mlm2)e _ me lme 2 _ clc2 (mod n): 

In other words, the ciphertext corresponding to the plaintext m = mlm2 mod n is c = 
clc2 mod n; this is sometimes referred to as the homomorphic property of RSA This 

observation leads to the following adaptive chosen-ciphertext attack on RSA encryption. 

Suppose that an active adversarywishes to decrypt a particular ciphertext c = me mod 

n intended for A Suppose also that A will decrypt arbitrary ciphertext for the adversary, 

other than c itself. The adversary can conceal c by selecting a random integer x 2 z_ n 
and computing c = cxe mod n. upon presentation of c, A will compute for the adversary 

m = (c)d mod n. Since 

m _ (c)d _ cd(xe)d _ mx (mod n); 

The adversary can then compute m = mx-1 mod n. 

This adaptive chosen-ciphertext attack should be circumvented in practice by 

imposing some structural constraints on plaintext messages. If a ciphertext c is decrypted 

to amessage not possessing this structure, then c is rejected by the decryptor as being 

fraudulent. Now, if a plaintext message m has this ( carefully chosen) structure, then with 

high probability mx mod n will not for x 2 Z_ n. Thus the adaptive chosen-ciphertext 

attack described in the previous paragraph will fail because A will not decrypt c for the 

adversary. Provides a powerful technique for guarding against adaptive chosen-ciphertext 

and other kinds of attacks. 

(vi) Common modulus attack 

The following discussion demonstrates why it is imperative for each entity to choose 

its own RSA modulus n. 

It is sometimes suggested that a central trusted authority should select a single RSA 

modulus n, and then distribute a distinct encryption/decryption exponent pair ( ei; di) to 

each entity in a network. However, as shown in (i) above, knowledge of any (ei; di) pair 

allows for the factorization of the modulus n, and hence any entity could subsequently 
C 

determine the decryption exponents of all other entities in the network. Also, if a 
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singlemessage were encrypted and sent to two or more entities in the network, then there 

is a technique by which an eavesdropper (any entity not in the network) could recover the 

message with high probability using only publicly available information. 

(vii) Cycling attacks 
Let c = me mod n be a ciphertext. Let k be a positive integer such that eek _ c ( mod 

n); since encryption is a permutation on the message space fO; 1; : : : ; n - I g such an 

integer 
k must exist. For the same reason it must be the case that eek- I _ m (mod n). This , 

observation leads to the following cycling attack on RSA encryption. An adversary 

computes ce mod n, ce2 mod n, ce3 mod n; : : : until c is obtained for the first time. If eek 

mod n = c, then the previous number in the cycle, namely eek- I mod n, is equal to the 

plaintext m. 

A generalized cycling attack is to find the smallest positive integer u such that f = 
gcd(ceu - c; n) > I. If ceu _ c (mod p) and ceu 6_ c (mod q) then f = p. Similarly, if ceu 

6_ c (mod p) and ceu _ c (mod q) (8.2) then f = q. In either case, n has been factored, and 

the adversary can recover d and then m. On the other hand, if both ceu _ c (mod p) and 

ceu _ c (mod q); then f = n and ceu _ c (mod n). In fact, u must be the smallest positive 

integer k for which eek_ c (mod n). In this case, the basic cycling attack has succeeded 

and so m = ceu-1 mod n can be computed efficiently. Since is expected to occur much 

less frequently than the generalized cycling attack usually terminates before the cycling 

attack does. For this reason, the generalized cycling attack can be viewed as being 

essentially an algorithm for factoring n. 

Since factoring n is assumed to be intractable, these cycling attacks do not pose a 

threat to the security of RSA encryption. 

(viii) Message concealing 
A plaintext message m, 0 _ m _ n+ l , in the RSA public-key encryption scheme is 

said to be unconcealed if it encrypts to itself; that is, me_ m (mod n). There are always 
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some messages, which are unconcealed (for example m = 0, m = 1, and m = n - I). In 

fact, the number of unconcealed messages is exactly 

[1 + gcd( e - 1; p - 1 )] _ [1 + gcd( e - 1; q - 1 )] : 

Since e-1, p-1 and q -1 are all even, the number of unconcealed messages is always 

at least 9. If p and q are random primes, and if e is chosen at random (or if e is chosen to 

be a small number such as e = 3 ore= 216 + 1 = 65537), then the proportion of messages 

which are unconcealed by RSA encryption will, in general, be negligibly small, and 

hence unconcealed messages do not pose a threat to the security of RSA encryption in 

practice. 

3.12 RSA encryption in practice 
There are numerous ways of speeding up RSA encryption and decryption in software 

and hardware implementations. Some of these techniques are covered, including fast 

modular multiplication (x14.3), fast modular exponentiation (x14.6), and the use of the 

Chinese remainder theorem for faster decryption, Even with these improvements, RSA 

encryption/decryption is substantially slower than the commonly used symmetric-key 

encryption algorithms such as DES 

In practice, RSA encryption is most commonly used for the transport of symmetric- 

key encryption algorithm keys and for the encryption of small data items. 

The RSA cryptosystem has been patented in the U.S. and Canada. Several standards 

organizations have written, or are in the process of writing, standards that address the use 

of the RSA cryptosystemfor encryption, digital signatures, and key establishment. For 

discussion of patent and standards issues related to RSA, 

3.12.1 Recommended size of modulus 

Given the latest progress in algorithms for factoring integers (x3.2), a 512-bit 

modulus n provides onlymarginal security from concerted attack. 
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As of 1996, in order to foil the powerful quadratic sieve (x3.2.6) and number field 

sieve 
(x3.2.7) Factoring algorithms, a modulus n of at least 768 bits is recommended. For 

long-term security, 1024-bit or larger moduli should be used. 

3.12.2 Selecting primes 
(i) As mentioned in x8.2.2(i), the primes p and q should be selected so that factoring n 

= pq is computationally infeasible. The major restriction on p and q in order to avoid the 

elliptic curve factoring algorithm (x3.2.4) is that p and q should be about the same 

bitlength, and sufficiently large. For example, if a 1024-bit modulus n is to be used, then 

each of p and q should be about 512 bits in length. 

(ii) Another restriction on the primes p and q is that the difference p - q should not be 

too small. If p - q is small, then p _ q and hence p _ p n. Thus, n could be factored 

efficiently simply by trial division by all odd integers close top n. If p and q are chosen at 

random, then p - q will be appropriately large with overwhelming probability. 

(iii) In addition to these restrictions, many authors have recommended that p and q be 

strong primes. A prime p is said to be a strong prime if the following three conditions are 

satisfied: 
(a) p - 1 has a large prime factor, denoted r; 

(b) p + 1 has a large prime factor; and 

(c) r- I has a large prime factor. 

An algorithm for generating strong primes is presented in x4.4.2. The reason for 

condition 
(a) is to foil Pollard's p+I factoring algorithm(x3.2.3) which is efficient only if n has 

a prime factor p such that p - 1 is smooth. Condition (b) foils the p + I factoring 

algorithm mentioned on page 125 in x3.12, which is efficient only if n has a prime factor 

p such that p + 1 is smooth. Finally, condition (c) ensures that the cycling attacks 

described in x8.2.2(vii) will fail. If the prime p is randomly chosen and is sufficiently 
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arge, then both p-1 and p+ 1 can be expected to have large prime factors. In any case, 

vhile strong primes protect against the p-1 and p+ 1 factoring algorithms, they do not 

protect against their generalization, the elliptic curve-factoring algorithm (x3.2.4). The 

latter is successful in factoring n if a randomly chosen number of the same size as p 

(more precisely, this number is the order of a randomly selected elliptic curve defined 

over Zp) has only small prime factors. Additionally, it has been shown that the chances of 

a cycling attack succeeding are negligible if p and q are randomly chosen (cf. x8.2.2 

(vii)). Thus, strong primes offer little protection beyond that offered by random primes. 

Given the current state of knowledge of factoring algorithms, there is no compelling 

reason for requiring the use of strong primes in RSA key generation. On the other hand, 

they are no less secure than random primes, and require only minimal additional running 

time to compute; thus there is little real additional cost in using them. 

3.12.3 Small encryption exponents 
(i) If the encryption exponent e is chosen at random, then RSA encryption using the 

repeated square-and-multiply algorithm takes k modular squaring and an expected k=2 

(less with optimizations) modular multiplications, where k is the bit length of the 

modulus n. Encryption can be sped up by selecting e to be small and/or by selecting e 

with a small number of l's in its binary representation. 

(ii) The encryption exponent e = 3 is commonly used in practice; in this case, it is 

necessary that neither p-1 nor q-1 be divisible by 3. This results in a very fast encryption 

operation since encryption only requires 1 modular multiplication and 1 modular 

squaring. Another encryption exponent used in practice is e = 216 + 1 = 65537. 

This number has only two 1 'sin its binary representation, and so encryption using the 

repeated square-and-multiply algorithm requires only 16 modular squaring and 1 modular 

multiplication. The encryption exponent e = 216 + 1 has the advantage over e = 3 in that 
it resists the kind of attack discussed in x8.2.2(ii), since it is unlikely the same message 

will be sent to 216+ 1 recipients. 



CHAPTER FOUR 

NETWORK SECURITY 

4. NETWORK SECURITY 

4.1 Overview 

A basic understanding of computer networks is requisite in order to understand the 

principles of network security. In this section, we'll cover some of the foundations of 

computer networking, also we'll cover some of the threats and the risks that managers and 

administrators of computer networks need to confront, and then some tools that can be 

used to reduce the exposure to the risks of network computing. Once we've covered this, 

we '11 go back and cover the process of protecting data and equipment from unauthorized 

access. And we'll include a brief description of network security concepts and 

technology. 

4.2 What is a Network? 

A set of interlinking lines resembling a net, a network of roads II an 

interconnected system, a network of alliances." This definition suits our purpose well: a 

computer network is simply a system of interconnected computers. How they're 

connected is irrelevant, and as we'll soon see, there are a number of ways to do this. 

4.3 The ISO/OSI Reference Model 

The International Standards Organization (ISO) Open Systems Interconnect (OSI) 

Reference Model defines seven layers of communications types, and the interfaces 

among them. See Figure 4.1. Each layer depends on the services provided by the layer 

below it, all the way down to the physical network hardware, such as the computer's 

network interface card, and the wires that connect the cards together. 
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An easy way to look at this is to compare this model with something we use daily: the 

telephone. In order for you and me to talk when we're out of earshot, we need a device 

like a telephone. (In the ISO/OSI model, this is at the application layer.) The telephones, 

of course, are useless unless they have the ability to translate the sound into electronic 

pulses that can be transferred over wire and back again. (These functions are provided in 

layers below the application layer.) Finally, we get down to the physical connection: both 

must be plugged into an outlet that is connected to a switch that's part of the telephone 

system's network of switches. 
If person A places a call to person B, person A picks up the receiver, and dials person 

B's number. This number specifies which central office to which to send my request, and 

then which phone from that central office to ring. Once person B answers the phone, they 

begin talking, and their session has begun. Conceptually, computer networks function 

exactly the same way. 
It isn't important to memorize the ISO/OSI Reference Model's layers; but it is useful 

to know that they exist, and that each layer cannot work without the services provided by 

the layer below it. 

LAYER7 Application 
~-- .... ~------··-· . 

LAYER6 Presentation 
~---~ 

LAYER5 I Session 
~~~ ... - .. ~ 

LAYER4 Transport 

LAYERJ Network 

LAYER2 Data Link 

LAYERl Physical 

Figure 4.1 the ISO/OSI Reference Model 
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4.4 Overview of TCP/IP 

TCP/IP (Transport Control Protocol/Internet Protocol) is the language of the Internet. 

Anything that can learn to speak TCP/IP can play on the Internet. This is functionality 

that occurs at the Network (IP) and Transport (TCP) layers in the ISO/OSI Reference 

Model. Consequently, a host that has TCP/IP functionality (such as Unix, OS/2, MacOS, 

or Windows NT) can easily support applications (such as Netscape's Navigator) that use 

the network. 
TCP/IP protocols are not used only on the Internet. They are also widely used to build 

private networks, called Internets that may or may not be connected to the global Internet. 

An Internet that is used exclusively by one organization is sometimes called an intranet 

4.4.1 Open Design 

One of the most important features of TCP/IP isn't a technological one: The protocol 

is an open protocol, and anyone who wishes to implement it may do so freely. Engineers 

and scientists from all over the world participate in the IETF (Internet Engineering Task 

Force) working groups that design the protocols that make the Internet work. Their time 

is typically donated by their companies, and the result is work that benefits everyone. 

4.4.2 IP 

IP is a "network layer" protocol. This is the layer that allows the hosts to actually talk 

to each other. Such things as carrying datagram's, mapping the Internet address to a 

physical network address, and routing, which takes care of making sure that all of the 

devices that have Internet connectivity can find the way to each other. 

4.4.3 IP Address 

IP addresses are analogous to telephone numbers - when you want to call someone on 

the telephone, you must first know their telephone number. Similarly, when a computer 

on the Internet needs to send data to another computer, it must first know its IP address. 
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lP addresses are typically shown as four numbers separated by decimal points, or "dots". 

For example, 10.24.254.3 and 192.168.62.231 are IP addresses. 

If you need to make a telephone call but you only know the person's name, you can 

look them up in the telephone directory ( or call directory services) to get their telephone 

number. On the Internet, that directory is called the Domain Name System or DNS for 

short. If you know the name of a server, say www.cert.org, and you type this into your 

web browser, your computer will then go ask its DNS server what the numeric IP address 

is that is associated with that name. 

4.4.3.1 Static And Dynamic Addressing 

Static IP addressing occurs when an ISP permanently assigns one or more IP 

addresses for each user. These addresses do not change over time. However, if a static 

address is assigned but not in use, it is effectively wasted. Since ISPs have a limited 

number of addresses allocated to them, they sometimes need to make more efficient use 

of their addresses. 

Dynamic IP addressing allows the ISP to efficiently utilize their address space. Using 

dynamic IP addressing, the IP addresses of individual user computers may change over 

time. If a dynamic address is not in use, it can be automatically reassigned to another 

computer as needed. 

4.4.3.2 Attacks Against IP 

A number of attacks against IP are possible. Typically, these exploits the fact that IP 

does not perform a robust mechanism for authentication, which is proving that a packet 

came from where it claims it did. A packet simply claims to originate from a given 

address, and there isn't a way to be sure that the host that sent the packet is telling the 

truth. This isn't necessarily a weakness, per se, but it is an important point, because it 

means that the facility of host authentication has to be provided at a higher layer on the 
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ISO/OSI Reference Model. Today, applications that require strong host authentication 

(such as cryptographic applications) do this at the application layer. 

4.4.3.3 IP Spoofing 

This is where one host claims to have the IP address of another. Since many 

systems (such as router access control lists) define which packets may and which packets 

may not pass based on the sender's IP address, this is a useful technique to an attacker: he 

can send packets to a host, perhaps causing it to take some sort of action. 

4.4.4 TCP and UDP Ports 

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both 

protocols that use IP. Whereas IP allows two computers to talk to each other across the 

Internet, TCP and UDP allow individual applications (also known as "services") on those 

computers to talk to each other. 

In the same way that a telephone number or physical mailbox might be associated 

with more than one person, a computer might have multiple applications ( e.g. email, file 

services, web services) running on the same IP address. Ports allow a computer to 

differentiate services such as email data from web data. A port is simply a number 

associated with each application that uniquely identifies that service on that computer. 

Both TCP and UDP use ports to identify services. Some common port numbers are 80 for 

web (HTTP), 25 for email (SMTP), and 53 for Dmain Name System (DNS). 

4.4.4.1 TCP 

TCP is a transport-layer protocol. It needs to sit on top of a network-layer protocol, 

and was designed to ride atop IP. (Just as IP was designed to carry, among other things, 

TCP packets.) Because TCP and IP were designed together and wherever you have one, 

you typically have the other, the entire suite of Internet protocols is known collectively as 

TCP/IP. 
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4.4.4.2 UDP 

UDP (User Datagram Protocol) is a simple transport-layer protocol. It does not 

provide the same features as TCP, and is thus considered "unreliable". Again, although 

this is unsuitable for some applications, it does have much more applicability in other 

applications than the more reliable and robust TCP. 

4.5 Risk Management 

It's very important to understand that in security, one simply cannot say "what's the 

best firewall?" There are two extremes: absolute security and absolute access. The closest 

we can get to an absolutely secure machine is one unplugged from the network, power 

supply, locked in a safe, and thrown at the bottom of the ocean. Unfortunately, it isn't 

terribly useful in this state. A machine with absolute access is extremely convenient to 

use: it's simply there, and will do whatever you tell it, without questions, authorization, 

passwords, or any other mechanism. Unfortunately, this isn't terribly practical, either: the 

Internet is a bad neighborhood now, and it isn't long before some bonehead will tell the 

computer to do something like self-destruct, after which, it isn't terribly useful to you. 

This is no different from our daily lives. We constantly make decisions about what 

risks we 're willing to accept. When we get in a car and drive to work, there's a certain risk 

that we're taking. It's possible that something completely out of control will cause us to 

become part of an accident on the highway. When we get on an airplane, we're accepting 

the level of risk involved as the price of convenience. However, most people have a 

mental picture of what an acceptable risk is, and won't go beyond that in most 

circumstances. If I happen to be upstairs at home, and want to leave for work, I'm not 

going to jump out the window. Yes, it would be more convenient, but the risk of injury 

outweighs the advantage of convenience. 
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Every organization needs to decide for itself where between the two extremes of total 

security and total access they need to be. A policy needs to articulate this, and then define 

how that will be enforced with practices and such. Everything that is done in the name of 

security, then, must enforce that policy uniformly. 

4.5.1 Security Risks 

The first step to understanding security is to know what the potential risks are, or 

more specifically, to determine the type and level of security risks for the company. 

Security risks are unique to each organization because they are dependent on the nature 

of the business and the environment in which the company operates. For example, the 

security risks for a high profile dot COM Company that solely operates on the Internet 

will be very different from a small manufacturing company that does little on the Web. 

Security risk is determined by identifying the assets that need to be protected. The 

assets could include customer credit card information, proprietary product formulas, 

employee data, the company's Web site, or other assets that are deemed to be important 

to the organization. Once the assets are identified, the next step is to determine the 

criticality of the assets to the company. For example, if the asset is considered to be very 

important to the company, then the level of security for that asset should be high. 

The next step is assessing the likelihood of a potential attack. While security 

measures must always be put in place to protect the assets of the company, the risks 

increase as the probability of an attack rises. For example, it is more likely for an outside 

intruder to attempt to break into a Web site selling consumer goods than a small 

manufacturing company making rubber bands. Therefore, while both companies must 

have security measures, the company with the Web site must deploy a higher level of 

security. Now that the process of determining security risk has been defined, some of the 

more common security risks are briefly discussed below. 
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4.5.2 Security Threats 

The first step in evaluating security risks is to determine the threats to system 

security. Although the term network security has been commonly categorized as 

protecting data and system resources from infiltration by third-party invaders, most 

security breeches are initiated by personnel inside the organization. Organizations will 

spend hundreds of thousands of dollars on securing sensitive data from outside attack 

while taking little or no action to prevent access to the same data from unauthorized 

personnel within the organization. 

The threat from hackers has been largely overstated. Individuals who fit into this 

group have more of a Robin Hood mentality than a destructive mentality. Most hackers, 

or crackers as they prefer to be called, are more interested in the thrill of breaking into the 

system than they are in causing damage once they succeed in gaining access. 

Unfortunately, there is an increasing trend for hackers to be employed by other entities as 

an instrument to gain access to systems. 

As the amount of critical data stored on networked systems has increased, the appeal 

of gaining access to competitors' systems has also increased. In highly competitive 

industry segments, an entire underground market exists in the buying and trading of 

product and sales data. By gaining access to research and development information from 

a competitor, millions of dollars and years of research can be eliminated. 

Another external threat is that of government intrusion, both from the domestic 

government and from foreign governments. Agencies such as the Federal Bureau of 

Investigation and the Internal Revenue Service can have vested interests in gaining access 

to critical tax and related information. Foreign governments are especially interested in 

information that could represent an economic or national defense advantage 
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ABSTRACT 

ABSTRACT 

Cryptography algorithms are applied to protect a message or file from being read by 

network hackers, eavesdroppers. The encryption programs encrypt the text and will 

change the letters into symbols and other weird characters, so when someone opens the 

file they cannot read it. The interconnection of networks is an increasing trend in 

government and private industry. There is the obvious danger that connections made in 

such an extended network may increase the risk of a security compromise, with the 

owners unaware of the risk. 

Network connections should therefore be protected, at a level based on the risk. The 

assumption must be that the connecting parties are to a certain degree hostile and have to 

be strictly constrained to the access for which the connection was agreed. 

Although cryptography is fascinating and glamorous, because of its association with such 

things as espionage, diplomacy, and the higher levels of the military, it has a limited but 

important role in the area of network security. 

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adleman, 

is the most widely used public-key cryptosystem. It may be used to provide both secrecy 

and digital signatures and its security is based on the intractability of the integer 

factorization. RSA encryption is most commonly used for the transport of symmetric-key 

encryption algorithm keys and for the encryption of small data items. The RSA 

cryptosystem has been patented in the U.S. and Canada. Several standards organizations 

have written, or are in the process of writing, standards that address the use of the RSA 

cryptosystem for encryption, digital signatures, and key establishment. For discussion of 

patent and standards issues related to RSA. The description of RSA algorithm is given in 

the thesis. 
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Introduction 

The origin of the word cryptology lies in ancient Greek. The word cryptology is made up 

of two components: "kryptos", which means hidden and "logos" which means word. 

Cryptology is as old as writing itself, and has been used for thousands of years to safeguard 

military and diplomatic communications. For example, the famous Roman emperor Julius 

Caesar used a cipher to protect the messages to his troops. Within the field of cryptology one 

can see two separate divisions: cryptography and cryptanalysis. The cryptographer seeks 

methods to ensure the safety and security of conversations while the cryptanalyst tries to 

undo the farmer's work by breaking his systems. 

The main goals of modem cryptography can be seen as: user authentication, data 

authentication (data integrity and data origin authentication), non-repudiation of origin, and 

data confidentiality. In the following section we will elaborate more on these services. 

Subsequently we will explain how these services can be realized using cryptographic 

primitives. 

A cryptographic system (or a cipher system) is a method of hiding data so that only 

certain people can view it. Cryptography is the practice of creating and using cryptographic 

systems. Cryptanalysis is the science of analyzing and reverse engineering cryptographic 

systems. The original data is called plaintext. The protected data is called cipher text. 

Encryption is a procedure to convert plaintext into cipher text. Decryption is a procedure to 

convert cipher text into plaintext. A cryptographic system typically consists of algorithms, 

keys, and key management facilities. There are two basic types of cryptographic systems: 

symmetric ("private key") and asymmetric ("public key"). 

Symmetric key systems require both the sender and the recipient to have the same key. 

This key is used by the sender to encrypt the data, and again by the recipient to decrypt the 

data. Key exchange is clearly a problem. How do you securely send a key that will enable 

you to send other data securely? If a private key is intercepted or stolen, the adversary can act 
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as either party and view all data and communications. You can think of the symmetric crypto 

system as akin to the Chubb type of door locks. You must be in possession of a key to both 

open and lock the door. Asymmetric cryptographic systems are considered much more 

flexible. Each user has both a public key and a private key. 

Messages are encrypted with one key and can be decrypted only by the other key. The 

public key can be published widely while the private key is kept secret. If Alice wishes to 

send Bob a secret, she finds and verifies Bob's public key, encrypts her message with it, and 

mails it off to Bob. When Bob gets the message, he uses his private key to decrypt it. 

Verification of public keys is an important step. Failure to verify that the public key really 

does belong to Bob leaves open the possibility that Alice is using a key whose associated 

private key is in the hands of an enemy. Public Key Infrastructures or PKI's deal with this 

problem by providing certification authorities that sign keys by a supposedly trusted party 

and make them available for download or verification. Asymmetric ciphers are much slower 

than their symmetric counterparts and key sizes are generally much larger. You can think of a 

public key system as akin to a Yale type door lock. Anyone can push the door locked, but 

you must be in possession of the correct key to open the door. 

The project is devoted the description of cryptographic algorithms, particularly RSA 

algorithm over network. The Goal of RSA Algorithm is to implement a demonstrable 

application that will perform the encryption and decryption of a text file using RSA 

Algorithm. I will give input as plaintext and it will generate the corresponding ciphertext. 

Ciphertext is decrypted to get the original plain text. 

R.S.A. stands for Rivest, Shamir and Adleman - the three cryptographers who invented 

the first practical commercial public key cryptosystem. Today it is used in web browsers, 

email programs, mobile phones, virtual private networks, secure shells, and many other 

places. Exactly how much security it provides is debatable, but with sufficiently large keys 

you can be confident of foiling the vast majority of attackers. Until recently the use of RSA 

was very much restricted by patent and export laws. However, the patent has now expired 

and US export laws have been relaxed. 
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CHAPTER ONE 

1. OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

1.1 Introduction 

To introduce cryptography, an understanding of issues related to information 

security in general is necessary. Network security manifests itself in many ways 

according to the situation and requirement. Regardless of who is involved, to one degree 

or another, all parties to a transaction must have confidence that certain objectives 

associated with network security have been met. Some of these objectives are mentioned. 

Often the objectives of on security cannot solely be achieved through 

mathematical algorithms and protocols alone, but require procedural techniques and 

abidance of laws to achieve the desired result. One of the fundamental tools used in 

network security is the signature. It is a building block for many other services such as no 

repudiation, data origin authentication, identification, and witnessing, to mention a few. 

Achieving network security in an electronic society requires a vast array of fsecurity 

objectives deemed necessary can be adequately met. The technical means is provided 

through cryptography. Cryptography is not the only means of providing network security, 

but rather one set of techniques. 

1.2 What Does Cryptography mean 

Cryptography means the study of mathematical techniques related to aspects of 

network security such as confidentiality, data integrity, entity authentication, and data 

origin authentication. 

The following are the goals of the Cryptography 

1. Confidentiality is a service used to keep the content of information from all but 

those authorized to have it. There are numerous approaches to providing 

confidentiality, ranging from physical protection to mathematical algorithms. 
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Some information security objectives: 

o Privacy or confidentiality: Keeping information secret from all but those 

who are authorized to see it. 

o Data integrity ensuring: Information has not been altered by unauthorized 

or unknown means. 

o Entity authentication or identification: Corroboration of the identity of an 

entity ( e.g., a person, a computer terminal, a credit card, etc.). 

o Message authentication: Corroborating the source of information; also 

known as data origin authentication. 

o Signature: A means to bind information to an entity. 

o Authorization: Conveyance, to another entity, of official sanction to do or 

be something. 

o Validation: A means to provide timeliness of authorization to use or 

manipulate information or resources. 

o Access control: Restricting access to resources to privileged entities. 

o Certification: Endorsement of information by a trusted entity. 

o Time stamping: Recording the time of creation or existence of 

information. 

o Witnessing: Verifying the creation or existence of information by an entity 

other than the creator. 

o Receipt: Acknowledgement that information has been received. 

o Confirmation: Acknowledgement that services has been provided. 

o Ownership: A means to provide an entity with the legal right to use or 

transfer a resource to others. 

o Anonymity: Concealing the identity of an entity involved in some process. 

o Non-repudiation: Preventing the denial of previous commitments or 

actions. 

o Revocation: Retraction of certification or authorization. 

2 
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2. Data integrity is a service, which addresses the unauthorized alteration of data. 

To assure data integrity, one must have the ability to detect data manipulation by 

unauthorized parties. 

3. Authentication is a service related to identification. This function applies to both 

entities and information itself. Aspect of cryptography is usually subdivided into 

two major classes: entity authentication and data origin authentication. 

4. Non-repudiation is a service, which prevents an entity from denying previous 

commitments or actions. 

A fundamental goal of cryptography is to adequately address these four areas in 

both theory and practice. Cryptography is about the prevention and detection of cheating 

and other malicious activities. A number of basic cryptographic tools (primitives) used to 

provide network security. Examples of primitives include encryption schemes hash 

functions, and digital signature schemes. Figure 1.1 provides a schematic listing of the 

primitives considered and how they relate. 

These primitives should be evaluated with respect to various criteria such as: 

1. Level of security. This is usually difficult to quantify. Often it is given in terms of 

the number of operations required to defeat the intended objective. 

2. Functionality. Primitives will need to be combined to meet various network 

security objectives. Which primitives are most effective for a given objective will 

be determined by the basic properties of the primitives. 
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Unkeyed 
Primitives 

Security 
Primitives 

Symmetric-key 
P ri mi lives 

Public-key 
Prlmltivos 

Arbitrary lengt11 
hash functions 

One-way parrnutatluns 

R.a ndo m sequences 

s~,mmetrlc-key 
ciphers 

Arb Itra rv length 
t1 ash functions (MAGs) 

Sign atu FElS 

Pse ud o random 
sequonces 

Identification primitives 

Public-ke>" 
clpners 

Signatures 

lclentiflcatlon primitives 

Bloc~. 
ciphers 

Stroarn 
ctpners 

Figure 1.1 A taxonomy of cryptographic primitives. 

3. Methods of operation. Primitives, when applied in various ways and with various 

inputs, will typically exhibit different characteristics; thus, one primitive could 

provide very different functionality depending on its mode of operation or usage. 

4. Performance. This refers to the efficiency of a primitive in a particular mode of 

operation. 
5. Ease of implementation. This refers to the difficulty of realizing the primitive in a 

practical instantiation. This might include the complexity of implementing the 

primitive in either a software or hardware environment. 
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OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

The relative importance of various criteria is very much dependent on the 

application and resources available. For example, in an environment where computing 

power is limited one may have to trade off a very high level of security for better 

performance of the system as a whole. 

1.3 Basic Functions and Concepts 
A familiarity with basic mathematical concepts used in cryptography will be 

useful. One concept which is absolutely fundamental to cryptography is that of a function 

in the mathematical sense. A function is alternately referred to as a mapping or a 

transformation. 

1.3.1 Function 
A set consists of distinct objects, which are called elements of the set. For 

example, a set X might consist of the elements a, b, c, and this is denoted X = { a; b; c]. If 
x is an element of X (usually written x EX) the image of x is the element in Y which the 

rule f associates with x; the image y of x is denoted by y = f(x). Standard notation for a 

function f from set X to set Y is f: X 7 Y. 

Figure 1.2 A function f from a set X to a set Y. 

• 1-1 Functions: A function is 1 - 1 (one-to-one) if each element in the co domain Y 

is the image of at most one element in the domain X. 

• Onto function: A function is onto if each element in the co domain Y is the image 

of at least one element in the domain. 

• Bijection: If a function f: X 7 Y is 1-1 and Im (f) = Y, then f is cal led a bijection. 
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• One-way functions: A function f from a set X to a set Y is called a one-way 

function if f (x) is easy to compute for all x EX but for essentially all elements 

YE Im (f) it is "computationally infeasible" to find any XE X such that J(x) = y. 

• Trapdoor one-way functions: A trapdoor one-way function is a one-way function 

f: X ~ Y with the additional property that given some extra 

• Permutations: Let S be a finite set of elements. A permutation p on S is a bijection 

from S to itself (i.e., p: S~S). 

• Involutions: Involutions have the property that they are their own inverses. 

(i.e., f: s~ S). 

1.3.2 Basic Terminology and Concepts 

The scientific study of any discipline must be built upon exact definitions arising 

from fundamental concepts. Where appropriate, strictness has been sacrificed for the sake 

of clarity. 

1.3.2.1. Encryption Domains and Co-domains 

• )1. denotes a finite set called the alphabet of definition. 

• 'Jvl denotes a set called the message space. 'Jvl consists of strings of symbols from 

an alphabet. An element of 'Jvl is called a plaintext message or simply a plaintext. 

• C denotes a set called the cypertext space. C consists of strings of symbols from an 

alphabet; differ from the alphabet of 'Jvl. An element of C is called a cypertext. 

1.3.2.2 Encryption and Decryption Transformations 

• '1( denotes a set called the key space. An element of '1( is called a key. 

• Each element eE '1( uniquely determines a bijection from 'Jvl to C, denoted by r.Ee. 

• (])a denotes a bijection from C to 'Jvl and (])a is called a decryption function. 

• The process of applying the transformation r.Ee to a message mE 'Jvl is usually 

referred to as encrypting m or the encryption of m. 

6 
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• The process of applying the transformation Vato a cypertext c is usually referred 

to as decrypting c or the decryption of c. 

• The keys e and dare referred to as a key pair and denoted by ( e; d). 

1.3.2.3 Achieving Confidentiality 

An encryption scheme may be used as follows for the purpose of achieving 

confidentiality. Two parties Alice and Bob first secretly choose or secretly exchange a 

key pair ( e; d). At a subsequent point in time, if Alice wishes to send a message m EM to 

Bob, she computes c = Ee (m) and transmits this to Bob. Upon receiving c, Bob computes 

D, ( c) = m and hence recovers the original message m. 

The question arises as to why keys are necessary. If some particular 

encryption/decryption transformation is exposed then one does not have to redesign the 

entire scheme but simply change the key. Figure 1.3 provides a simple model of a two­ 

party communication using encryption. 

Adversary 

encryption 
Ee(m) "~ c 

C t ------ ------t,.. 
UNSECURED CH-\NNEL 

decryption 
Date),, m 

plaintext 
source 

destination 

Alice Bob 

Figure 1.3 Schematic of a two-party communication. 
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1.3.2.4 Communication Participants 

Referring to Figure 1.3, the following terminology is defined. 

• An entity or party is someone or something, which sends, receives, or 

manipulates information. An entity may be a person, a computer terminal, etc. 

• A sender is an entity in a two-party communication, which is the legitimate 

transmitter of information. 

• A receiver is an entity in a two-party communication, which is the intended 

recipient of information. 

• An adversary is an entity in a two-party communication which is neither the 

sender nor receiver, and which tries to defeat the information security service 

being provided between the sender and receiver. 

1.3.2.5. Channels 

A channel is a means of conveying information from one entity to another. A 

physically secure channel is one, which is not physically accessible to the adversary. An 

unsecured channel is one from which parties other than those for which the information is 

intended can reorder, delete, insert, or read. A secured channel is one from which an 

adversary does not have the ability to reorder, delete, insert, or read. A secured channel 

may be secured by physical or cryptographic techniques. 

1.3.2.6 Security 

A fundamental principle in cryptography is that the sets :M; C; 7(; {P.e: e E 7(}, {<DJ: 

aE 7(} are public knowledge. When two parties wish to communicate securely using an 

encryption scheme, the only thing that they keep secret is the particular key pair ( e; a), 

which they must select. One can gain additional security by keeping the class of 

encryption and decryption transformations secret but one should not base the security of 

the entire scheme on this approach. An encryption scheme is said to be breakable if a 

third party, without prior knowledge of the key pair ( e; d) can systematically recover 

plaintext from corresponding cypertext within some appropriate time frame. 

Trying all possible keys to see which one the communicating parties are using 

can break an encryption scheme. This is called an exhaustive search of the key space. 

8 
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Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements 

for cipher systems. They are given here essentially as Kerckhoffs originally stated them: 

1. The system should be, if not theoretically unbreakable, unbreakable in practice. 

2. Compromise of the system details should not inconvenience the correspondents. 

3. The key should be remember able without notes and easily changed. 

4. The cryptogram should be transmissible by telegraph. 

5. The encryption apparatus should be portable and operable by a single person. 

6. The system should be easy, requiring neither the knowledge of a long list of rules 

nor mental strain. 

1.3.2.7 Network Security in General 
So far the terminology has been restricted to encryption and decryption with the 

goal of privacy in mind. Network security is much broader, encompassing such things as 

authentication and data integrity. 

• A network security service is a method to provide specific aspect of security. 

• Breaking a network security service implies defeating the objective of the 

intended service. 

• A passive adversary is an adversary who is capable only of reading information 

from an unsecured channel. 

• An active adversary is an adversary who may also transmit, alter, or delete 

information on an unsecured channel. 

1.4 Symmetric-key Encryption 
Consider an encryption scheme consisting of the sets of encryption and decryption 

transformations {f:e: eE'1(} and {<Da: d e '1(}, respectively, where '](is the key space. The 

encryption scheme is said to be symmetric-key if for each associated 

encryption/decryption key pair (e; cf), it is computationally easy to determine cf knowing 

only e, and to determine e from cf. Since e = a in most practical symmetric-key encryption 

schemes, the term symmetric key becomes appropriate. 
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The block diagram of Figure 1.4, with the addition of the secure channel, can describe a 

two-party communication using symmetric-key encryption. 

Adversary 

key SECURE CHANNEL 

source 

• 
encryption LJ_ c ---'------H decryption 
E, ( ni) ·'"" c r l UNSECURED CHANNEL o: ( c) cc, m 

1n 

plaintext 
source 

destination 

Alice Bob 

Figure 1.4 Two-party communication using encryption, with a secure channel 

One of the major issues with symmetric-key systems is to find an efficient method 

to agree upon and exchange keys securely. It is assumed that all parties know the set of 

encryption/decryption transformations there are two classes of symmetric-key encryption 

schemes, which are commonly distinguished, block ciphers and stream ciphers. 

1.4.1 Block Ciphers 
A block cipher is an encryption scheme which breaks up the plaintext messages to 

be transmitted into strings ( called blocks) of a fixed length t over an alphabet )l, and 

encrypts one block at a time. Most well-known symmetric-key encryption techniques are 

block ciphers. Two important classes of block ciphers are substitution ciphers and 

transposition ciphers 

10 
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1.4.2 Stream Ciphers 

Stream ciphers form an important class of symmetric-key encryption schemes. 

They are, in one sense, very simple block ciphers having block length equal to one. What 

makes them useful is the fact that the encryption transformation can change for each 

symbol of plaintext being encrypted. In situations where transmission errors are highly 

probable, stream ciphers are advantageous because they have no error propagation. They 

can also be used when the data must be processed one symbol at a time 

1.4.3 The Key Space 

The size of the key space is the number of encryption/decryption key pairs that are 

available in the cipher system. A key is typically a compact way to specify the encryption 

transformation to be used. For example, a transposition cipher of block length t has ti 

Encryption functions from which to select. Each can be simply described by a 

permutation, which is called the key. 

1.5 Digital Signatures 
A cryptographic primitive who is fundamental in authentication, authorization, 

and non-repudiation is the digital signature. The purpose of a digital signature is to 

provide a means for an entity to bind its identity to a piece of information. The process of 

signing entails transforming the message and some secret information held by the entity 

into a tag called a signature. 

1.5.1. Nomenclature and Set-up 

The transformations S)l and o/Jl provide a digital signature scheme for }I. 

• 5l1 is the set of messages, which can be signed. 

• Sis a set of elements called signatures, possibly binary strings of a fixed length. 

• S)l is a transformation from the message set 5l1 to the signature set S, and is called a 

signing transformation for entity JI. 

11 
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• '()Jl is a transformation from the set :M ~S to the set {true, false} o/Jl is called a 

verification transformation for )I. 's signatures, is publicly known, and is used by 

other entities to verify signatures created by )I.. 

1.6 Public-key Cryptography 
The concept of public-key encryption is simple and elegant, but has far-reaching 

consequences. Let { P.e: e E 1(} be a set of encryption transformations, and let { <Da: a E 1(} 
be the set of corresponding decryption transformations, where 1( is the key space. 

Consider any pair of associated encryption/decryption transformations (P.e; <Da) and 

suppose that each pair has the property that knowing P.e it is computationally infeasible, 

given a random ciphertext cEC, to find the message mE:M such that P.e(m) == c. This 

property implies that given e it is infeasible to determine the corresponding decryption 

key a. P.e is being viewed here as a trapdoor one-way function with abeing the trapdoor 
information necessary to compute the inverse function and hence allow decryption. This 

is unlike symmetric-key ciphers where e and a are essentially the same. 

The encryption method is said to be a public-key encryption scheme if for each 

associated encryption/decryption pair ( e; a), one key e (the public key) is made publicly 

available, while the other a(the private key) is kept secret. For the scheme to be secure, it 

must be computationally infeasible to compute £from e. To avoid ambiguity, a common 

convention is to use the term private key in association with public-key cryptosystems, 

and secret key in association with symmetric-key cryptosystems 



OVERVIEW OF CRYPTOGRAPHY SYSTEMS 

Passive 
Adversary 

t' t . ----·· --------- ---- -- key 
source : UNSECURED CHANNEL 

encryption 
E~ (m) '" c 

C • ~~--~-------~--1,.1 
UNSECURED CHANNEL 

decryption 

D,1 (c) "" tn 

plaintext 
source 

destination 

Alice Bob 

Figure 1.5 Encryption using public-key techniques. 

1. 7 Hash Functions 
One of the fundamental primitives in modern cryptography is the cryptographic 

hash function, often informally called a one-way hash function. A simplified definition 

for the present discussion follows. A hash function is a computationally efficient function 

mapping binary strings of arbitrary length to binary strings of some fixed length, called 

hash-values. For a hash function, which outputs n-bit hash-values and has desirable 

properties, the probability that a randomly chosen string gets mapped to a particular n-bit 

hash-value (image) is 2-n. The basic idea is that a hash-value serves as a compact 

representative of an input string. To be of cryptographic use, a hash function Ii, is typically 

chosen such that it is computationally infeasible to find two distinct inputs which hash to 

a common value and that given a specific hash-value y, it is computationally infeasible to 

find an input x such that /i,(x) = y. The most common cryptographic uses of hash functions 

are with digital signatures and for data integrity Hash functions are typically publicly 

known and involve no secret keys. When used to detect whether the message input has 

been altered, they are called modification detection codes (MDCs). Related to these are 

13 
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hash functions, which involve a secret key, and provide data origin authentication as well 

as data integrity; these are called message authentication codes (MACs). 

1.8 Protocols, Mechanisms 
A cryptographic protocol is a distributed algorithm defined by a sequence of steps 

precisely specifying the actions required of two or more entities to achieve a specific 

security objective. As opposed to a protocol, a mechanism is a more general term 

encompassing protocols, algorithms and non-cryptographic techniques to achieve specific 

security objectives. Protocols play a major role in cryptography and are essential in 

meeting cryptographic goals. Encryption schemes, digital signatures, hash functions, and 

random number generation are among the primitives, which may be utilized to build a 

protocol. 

1.8.1 Protocol and Mechanism Failure 

A protocol failure or mechanism failure occurs when a mechanism fails to meet the 

goals for which it was intended. Protocols and mechanisms may fail for a number of 

reasons: 

1. Weaknesses in a particular cryptographic primitive, which may be amplified by 

the protocol or mechanism. 

2. Claimed or assumed security guarantees, which are overstated or not clearly 

understood. 

3. The oversight of some principle applicable to a broad class of primitives such as 

encryption. 

When designing cryptographic protocols and mechanisms, the following two steps are 

essential: 

1. Identify all assumptions in the protocol or mechanism design. 

2. For each assumption, determine the effect on the security objective if that 

assumption is violated. 

14 
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1.9 Classes of Attacks and Security Models 
Over the years, many different types of attacks on cryptographic primitives and 

protocols have been identified. The attacks these adversaries can mount may be classified 

as follows: 
1. A passive attack is one where the adversary only monitors the communication 

channel. A passive attacker only threatens confidentiality of data. 

2. An active attack is one where the adversary attempts to delete, add, or in some 

other way alter the transmission on the channel. 

A passive attack can be further subdivided into more specialized attacks for deducing 

plaintext from ciphertext. 

1.9.1 Attacks on Encryption Schemes 
The objective of the following attacks is to systematically recover plaintext from 

ciphertext, or even more drastically, to deduce the decryption key. 

1. A ciphertext-only attack is one where the adversary tries to deduce the decryption 

key or plaintext by only observing ciphertext. 

2. A known-plaintext attack is one where the adversary has a quantity of plaintext 

and corresponding ciphertext. 
3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then 

given corresponding ciphertext. 

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the 

choice of plaintext may depend on the ciphertext received from previous requests. 

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is 

then given the corresponding plaintext. One way to mount such an attack is for the 

adversary to gain access to the equipment used for decryption 

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the 

choice of ciphertext may depend on the plaintext received from previous requests. 
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1.9.2 Attacks on Protocols 
The following is a partial list of attacks, which might be mounted on various 

protocols. Until a protocol is proven to provide the service intended, the list of possible 

attacks can never be said to be complete. 

1. Known-key attack. In this attack an adversary obtains some keys used previously 

and then uses this information to determine new keys. 

2. Replay. In this attack an adversary records a communication session and replays 

the entire session, or a portion thereof, at some later point in time. 

3. Impersonation. Here an adversary assumes the identity of one of the legitimate 

parties in a network. 

4. Dictionary. This is usually an attack against passwords. An adversary can take a 

list of probable passwords; hash all entries in this list, and then compare this to the 

list of true encrypted passwords with the hope of finding matches. 

5. Forward search. This attack is similar in spirit to the dictionary attack and is used 

to decrypt messages. 

6. Interleaving attack. This type of attack usually involves some form of 

impersonation in an authentication protocol. 
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CHAPTER TWO 

2. CRYPTOGRAPHY FUNCTIONS 

2.1 Overview 

In this chapter basic functions involved in cryptography are explained. Functions 

that are used in the encryptions and decryption of the text such ciphers mainly block 

cipher and stream ciphers. Hash functions are also one of the important encryption 

functions. It is also explained that how the attacks are being done on cryptography and 

what are the authentication methods are being used so for. 

2.2 Block Ciphers 

The most important symmetric algorithms are block ciphers. The general 

operation of all block ciphers is the same - a given number of bits of plaintext (a block) 

are encrypted into a block of ciphertext of the same size. Thus, all block ciphers have a 

natural block size - the number of bits they encrypt in a single operation. This stands in 

contrast to stream ciphers, which encrypt one bit at a time. Any block cipher can be 

operated in one of several modes. 

2.2.1 Iterated Block Cipher 

An iterated block cipher is one that encrypts a plaintext block by a process that 

has several rounds. In each round, the same transformation or round function is applied to 

the data using a subkey. The set of subkeys are usually derived from the user-provided 

secret key by a key schedule. The number of rounds in an iterated cipher depends on the 

desired security level and the consequent trade-off with performance. In most cases, an 

increased number of rounds will improve the security offered by a block cipher, but for 

some ciphers the number of rounds required to achieve adequate security will be too large 

for the cipher to be practical or desirable. 

17 
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2.2.2 Electronic Codebook (ECB) Mode 

ECB is the simplest mode of operation for a block cipher. The input data is 

padded out to a multiple of the block size, broken into an integer number of blocks, each 

of which is encrypted independently using the key. In addition to simplicity, ECB has the 

advantage of allowing any block to be decrypted independently of the others. Thus, lost 

data blocks do not affect the decryption of other blocks. The disadvantage of ECB is that 

it aids known-plaintext attacks. If the same block of plaintext is encrypted twice with 

ECB, the two resulting blocks of ciphertext will be the same. 

ECBENCRYPTION ECB DECRYPTION 

. ' ,·' . .., : 

... CHJHER:1:EXT; ,. ::·~·.:"·- ;:-:!>:<·\:~.,-,~<:_.-~f;\ .: ,;.,,.,,:? ·/. ': m:AlN'IEXT· ":'_,'-.-,· .. : .. ,· -. ·- -::: ..... ·.,,':'._. ;:_ .. _ 

lNl'ITT BLOCK. lNl?ITTBLOCK. 

ENCRYPT DECRYPT 

OITTl?ITTBLOCK. OITTl?ITTBLOCK. 

cimEi:itExm' 
·> .. :/. ·>·\>! 

Figure 2.1: Shows a ECB Encryption/Decryption Model 
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2.2.3 Cipher Block Chaining (CBC) Mode 

CBC is the most commonly used mode of operation for a block cipher. Prior to 

encryption, each block of plaintext is XOR-ed with the prior block of ciphertext. After 

decryption, the output of the cipher must then be XOR-ed with the previous ciphertext to 

recover the original plaintext. The first block of plaintext is XOR-ed with an initialization 

vector (IV), which is usually a block of random bits transmitted in the clear. CBC is more 

secure than ECB because it effectively scrambles the plaintext prior to each encryption 

step. Since the ciphertext is constantly changing, two identical blocks of plaintext will 

encrypt to two different blocks of ciphertext. The disadvantage of CBC is that the 

encryption of a data block becomes dependent on all the blocks prior to it. A lost block of 

data will also prevent decoding of the next block of data. CBC can be used to convert a 

block cipher into a hash algorithm. To do this, CBC is run repeatedly on the input data, 

and all the ciphertext is discarded except for the last block, which will depend on all the 

data blocks in the message. This last block becomes the output of the hash function. 

1\1 

'ENCRYPJ ,'ENCRYPf ,'ENCRYPf 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

DECRY Pf DECRYPJ' OECRYPJ' 

OUTPUT'Bi.O:"t:. OUTPUT'Bi.O:"t:. 

Figure 2.2: Shows a CBC Encryption/Decryption Model 
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2.2.4 Feistel Ciphers 

The figure shows the general design of a Feistel cipher, a scheme used by almost 

all modern block ciphers. The input is broken into two equal size blocks, generally called 

left (L) and right (R), which are then repeatedly cycled through the algorithm. At each 

cycle, a hash function (f) is applied to the right block and the key, and the result of the 

hash is XOR-ed into the left block. The blocks are then swapped. The XOR-ed result 

becomes the new right block and the unaltered right block becomes the left block. The 

process is then repeated a number of times. 

The hash function is just a bit scrambler. The correct operation of the algorithm is 

not based on any property of the hash function, other than it is completely deterministic; 

i.e. if it's run again with the exact same inputs, identical output will be produced. To 

decrypt, the ciphertext is broken into L and R blocks, and the key and the R block are run 

through the hash function to get the same hash result used in the last cycle of encryption; 

notice that the R block was unchanged in the last encryption cycle. The hash is then 

XOR'ed into the L block to reverse the last encryption cycle, and the process is repeated 

until all the encryption cycles have been backed out. The security of a Feistel cipher 

depends primarily on the key size and the irreversibility of the hash function. Ideally, the 

output of the hash function should appear to be random bits from which nothing can be 

determined about the input(s). 

20 
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Figure 2.3: Shows a Feistel Model 

2.2.5 Data Encryption Standard (DES) 

DES is a Feistel-type Substitution-Permutation Network (SPN) cipher. DES uses a 

56-bit key, which can be broken using brute-force methods, and is now considered 

obsolete. A 16-cycle Feistel system is used, with an overall 56-bit key permuted into 16 

48-bit subkeys, one for each cycle. To decrypt, the identical algorithm is used, but the 

order of subkeys is reversed. The L and R blocks are 32 bits each, yielding an overall 

block size of 64 bits. The hash function 1'.f1, specified by the standard using the so-called 

"Seboxes'', takes a 32-bit data block and one of the 48-bit subkeys as input and produces 
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32 bits of output. Sometimes DES is said to use a 64-bit key, but 8 of the 64 bits are used 

only for parity checking, so the effective key size is 56 bits. 

2.2.5.1 Triple DES 

Triple DES was developed to address the obvious flaws in DES without designing 

a whole new cryptosystem. Triple DES simply extends the key size of DES by applying 

the algorithm three times in succession with three different keys. The combined key size 

is thus 168 bits (3 times 56), beyond the reach of brute-force techniques such as those 

used by the EFF DES Cracker. Triple DES has always been regarded with some 

suspicion, since the original algorithm was never designed to be used in this way, but no 

serious flaws have been uncovered in its design, and it is today a viable cryptosystem 

used in a number of Internet protocols. 

2.3 Stream Ciphers 

A stream cipher is a symmetric encryption algorithm. Stream ciphers can be 

designed to be exceptionally fast, much faster in fact than any block cipher. While block 

ciphers operate on large blocks of data, stream ciphers typically operate on smaller units 

of plaintext, usually bits. The encryption of any particular plaintext with a block cipher 

will result in the same ciphertext when the same key is used. With a stream cipher, the 

transformation of these smaller plaintext units will vary, depending on when they are 

encountered during the encryption process. 

A stream cipher generates what is called a keystream and combining the 

keystream with the plaintext, usually with the bitwise XOR operation, provides 

encryption. The generation of the keystream can be independent of the plaintext and 

ciphertext or it can depend on the data and its encryption. 

Current stream ciphers are most commonly attributed to the appealing of 

theoretical properties of the one-time pad, but there have been no attempts to standardize 

on any particular stream cipher proposal, as has been the case with block ciphers. 

Interestingly, certain modes of operation of a block cipher effectively transform it into a 
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evstream generator and in this way; any block cipher can be used as a stream cipher. 

However, stream ciphers with a dedicated design are likely to be much faster. 

1.3.1 Linear Feedback Shift Register 

A Linear Feedback Shift Register (LFSR) is a mechanism for generating a 

sequence of binary bits. The register consists of a series of cells that are set by an 

initialization vector that is, most often, the secret key. The behavior of the register is 

regulated by a clock and at each clocking instant, the contents of the cells of the register 

are shifted right by one position, and the XOR of a subset of the cell contents is placed in 

the leftmost cell. One bit of output is usually derived during this update procedure. 

LFSRs are fast and easy to implement in both hardware and software. With a 

sensible choice of feedback taps the sequences that are generated can have a good 

statistical appearance. However, the sequences generated by single LFSRs are not secure 

because a powerful mathematical framework has been developed over the years, which 

allows for their straightforward analysis. However, LFSRs are useful as building blocks 

in more secure systems. 

Figure 2.1: Shows a Linear Feed Back Register Model 

2.3.1.1 Shift Register Cascades 

A shift register cascade is a set of LFSRs connected together in such a way that 

the behavior of one particular LFSR depends on the behavior of the previous LFSRs in 

the cascade. This dependent behavior is usually achieved by using one LFSR to control 

the clock of the following LFSR. For instance one register might be advanced by one step 
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··· the preceding register output is 1 and advanced by two steps otherwise. Many different 

configurations are possible and certain parameter choices appear to offer very good 

security. 

2.3.1.2 Shrinking and Self-Shrinking Generators 

It is a stream cipher based on the simple interaction between the outputs from two 

LFSRs. The bits of one output are used to determine whether the corresponding bits of the 

econd output will be used as part of the overall keystream. The shrinking generator is 

simple and scaleable, and has good security properties. One drawback of the shrinking 

generator is that the output rate of the keystream will not be constant unless precautions 

are taken. A variant of the shrinking generator is the self-shrinking generator, where 

instead of using one output from one LFSR to "shrink" the output of another, the output 

of a single LFSR is used to extract bits from the same output. 

2.3.2 Other Stream Ciphers 

There are a vast number of alternative stream ciphers that have been proposed in 

cryptographic literature as well as an equally vast number that appear in implementations 

and products world-wide. Many are based on the use of LFSRs since such ciphers tend to 

be more amenable to analysis and it is easier to assess the security that they offer. 

There are essentially four distinct approaches to stream cipher design. The first is 

termed the information-theoretic approach explained in one-time pad. The second 

approach is that of system-theoretic design. In essence, the cryptographer designs the 

cipher along established guidelines which ensure that the cipher is resistant to all known 

attacks. While there is, of course, no substantial guarantee that future cryptanalysis will 

be unsuccessful, it is this design approach that is perhaps the most common in cipher 

design. The third approach is to attempt to relate the difficulty of breaking the stream 

cipher to solving some difficult problem. This complexity-theoretic approach is very 

appealing, but in practice the ciphers that have been developed tend to be rather slow and 

impractical. The final approach is that of designing a randomized cipher. Here the aim is 
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to ensure that the cipher is resistant to any practical amount of cryptanalytic work rather 

than being secure against an unlimited amount of work. 

2.3.2.1 One-time Pad 

A one-time pad, sometimes called the Vernam cipher, uses a string of bits that is 

generated completely at random. The keystream is the same length as the plaintext 

message and the random string is combined using bitwise XOR with the plaintext to 

produce the ciphertext. Since the entire keystream is random, an opponent with infinite 

computational resources can only guess the plaintext if he sees the ciphertext. Such a 

cipher is said to offer perfect secrecy and the analysis of the one-time pad is seen as one 

of the cornerstones of modern cryptography. 

2.4 Hash Functions 

Hash Functions take a block of data as input, and produce a hash or message 

digest as output. The usual intent is that the hash can act as a signature for the original 

data, without revealing its contents. Therefore, it's important that the hash function be 

irreversible - not only should it be nearly impossible to retrieve the original data, it must 

also be unfeasible to construct a data block that matches some given hash value. 

Randomness, however, has no place in a hash function, which should completely 

deterministic. Given the exact same input twice, the hash function should always produce 

the same output. Even a single bit changed in the input, though, should produce a 

different hash value. The hash value should be small enough to be manageable in further 

manipulations, yet large enough to prevent an attacker from randomly finding a block of 

data that produces the same hash. 

MD5, documented in RFC 1321, is perhaps the most widely used hash function at 

this time. It takes an arbitrarily sized block of data as input and produces a 128-bit (16- 

byte) hash. It uses bitwise operations, addition, and a table of values based on the sine 

function to process the data in 64-byte blocks. RFC 1810 discusses the performance of 

MD5, and presents some speed measurements for various architectures. 

25 



CRYPTOGRAPHY FUNCTIONS 

Hash functions can't be used directly for encryption, but are very useful for 

authentication. One of the simplest uses of a hash function is to protect passwords. UNIX 

systems, in particular, will apply a hash function to a user's password and store the hash 

value, not the password itself. To authenticate the user, a password is requested, and the 

response runs through the hash function. If the resulting hash value is the same as the one 

stored, then the user must have supplied the correct password, and is authenticated. Since 

the hash function is irreversible, obtaining the hash values doesn't reveal the passwords to 

an attacker. In practice, though, people will often use guessable passwords, so obtaining 

the hashes might reveal passwords to an attacker who, for example, hashes all the words 

in the dictionary and compares the results to the password hashes. 

Another use of hash functions is for interactive authentication over the network. 

Transmitting a hash instead of an actual password has the advantage of not revealing the 

password to anyone sniffing on the network traffic. If the password is combined with 

some changing value, then the hashes will be different every time, preventing an attacker 

from using an old hash to authenticate again. The server sends a random challenge to the 

client, which combines the challenge with the password, computes the hash value, and 

sends it back to the server. The server, possessing both the stored secret password and the 

random challenge, performs the same hash computation, and checks its result against the 

reply from the client. If they match, then the client must know the password to have 

correctly computed the hash value. Since the next authentication would involve a 

different random challenge, the expected hash value would be different, preventing an 

attacker from using a replay attack. Thus, hash functions, though not encryption 

algorithms in their own right can be used to provide significant security services, mainly 

identity authentication. 

2.4.1 Hash functions for hash table lookup 

A hash function for hash table lookup should be fast, and it should cause as few 

collisions as possible. If you know the keys you will be hashing before you choose the 

hash function, it is possible to get zero collisions -- this is called perfect hashing. 

Otherwise, the best you can do is to map an equal number of keys to each possible hash 
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value and make sure that similar keys are not unusually likely to map to the same value. 

Unfortunately, that hash is only average. The problem is the per-character mixing: it only 

rotates bits, it doesn't really mix them. Every input bit affects only 1 bit of hash until the 

final %. If two input bits land on the same hash bit, they cancel each other out. Also, % 

can be extremely slow. 

2.5 Attacks on Ciphers 

Here the different kinds of possible attacks what have been observed so for and 

can be expected are explained in detail. 

2.5.1 Exhaustive Key Search 

Exhaustive key search, or brute-force search, is the basic technique of trying every 

possible key in turn until the correct key is identified. To identify the correct key it may 

be necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has 

some recognizable characteristic, ciphertext alone might suffice. Exhaustive key search 

can be mounted on any cipher and sometimes a weakness in the key schedule of the 

cipher can help improve the efficiency of an exhaustive key search attack. Advances in 

technology and computing performance will always make exhaustive key search an 

increasingly practical attack against keys of a fixed length. When DES was designed, it 

was generally considered secure against exhaustive key search without a vast financial 

investment in hardware. Over the years, this line of attack will become increasingly 

attractive to a potential adversary. 

While the 56-bit key in DES now only offers a few hours of protection against 

exhaustive search by a modern dedicated machine, the current rate of increase in 

computing power is such that 80-bit key can be expected to offer the same level of 

protection against exhaustive key search in 18 years time as DES does today. 
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.... 5.2 Differential Cryptanalysis 

Differential cryptanalysis is a type of attack that can be mounted on iterative block 

iphers. Differential cryptanalysis is basically a chosen plaintext attack and relies on an 

analysis of the evolution of the differences between two related plaintexts as they are 

encrypted under the same key. By careful analysis of the available data, probabilities can 

be assigned to each of the possible keys and eventually the most probable key is 

identified as the correct one. 

Differential cryptanalysis has been used against a great many ciphers with varying 

degrees of success. In attacks against DES, its effectiveness is limited by what was very 

careful design of the S-boxes during the design of DES. Differential cryptanalysis has 

also been useful in attacking other cryptographic algorithms such as hash functions. 

2.5.3 Linear Cryptanalysis 

Linear cryptanalysis is a known plaintext attack and uses a linear approximation to 

describe the behavior of the block cipher. Given sufficient pairs of plaintext and 

corresponding ciphertext, bits of information about the key can be obtained and increased 

amounts of data will usually give a higher probability of success. There have been a 

variety of enhancements and improvements to the basic attack. Differential-linear 

cryptanalysis is an attack, which combines elements of differential cryptanalysis with 

those of linear cryptanalysis. A linear cryptanalytic attack using multiple approximations 

might allow for a reduction in the amount of data required for a successful attack. 

2.5.4 Weak Key for a Block Cipher 

Weak keys are secret keys with a certain value for which the block cipher in 

question will exhibit certain regularities in encryption or, in other cases, a poor level of 

encryption. For instance, with DES there are four keys for which encryption is exactly the 

same as decryption. This means that if one were to encrypt twice with one of these weak 

keys, then the original plaintext would be recovered. For IDEA there is a class of keys for 

which cryptanalysis is greatly facilitated and the key can be recovered. However, in both 
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these cases, the number of weak keys is such a small fraction of all possible keys that the 

chance of picking one at random is exceptionally slight. In such cases, they pose no 

significant threat to the security of the block cipher when used for encryption. 

Of course for other block ciphers, there might well be a large set of weak keys 

(perhaps even with the weakness exhibiting itself in a different way) for which the chance 

of picking a weak key is too large for comfort. In such a case, the presence of weak keys 

would have an obvious impact on the security of the block cipher. 

2.5.5 Algebraic Attacks 

Algebraic attacks are a class of techniques, which rely for their success on some 

block cipher exhibiting a high degree of mathematical structure. For instance, it is 

conceivable that a block cipher might exhibit what is termed a group structure. If this 

were the case, then encrypting a plaintext under one key and then encrypting the result 

under another key would always be equivalent to single encryption under some other 

single key. If so, then the block cipher would be considerably weaker, and the use of 

multiple encryptions would offer no additional security over single encryption. For most 

block ciphers, the question of whether they form a group is still open. For DES, however, 

it is known that the cipher is not a group. There are a variety of other concerns with 

regards to algebraic attacks. 

2.5.6 Data Compression Used With Encryption 

Data compression removes redundant character strings in a file. This means that 

the compressed file has a more uniform distribution of characters. In addition to providing 

shorter plaintext and ciphertext, which reduces the amount of time needed to encrypt, 

decrypt and transmit a file, the reduced redundancy in the plaintext can potentially hinder 

certain cryptanalytic attacks. 

By contrast, compressing a file after encryption is inefficient. The ciphertext 

produced by a good encryption algorithm should have an almost statistically uniform 

distribution of characters. As a consequence, a compression algorithm should be unable to 
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find redundant patterns in such text and there will be little, if any, data compression. In 

fact, if a data compression algorithm is able to significantly compress encrypted text, then 

this indicates a high level of redundancy in the ciphertext, which, in turn, is evidence of 

poor encryption. 

2.6 When an Attack Become Practical 

There is no easy answer to this question since it depends on many distinct factors. 

Not only must the work and computational resources required by the cryptanalyst be 

reasonable, but the amount and type of data required for the attack to be successful must 

also be taken into account. One classification distinguishes among cryptanalytic attacks 

according to the data they require in the following way: chosen plaintext or chosen 

ciphertext, known plaintext, and ciphertext-only. This classification is not particular to 

secret-key ciphers and can be applied to cryptanalytic attacks on any cryptographic 

function. A chosen plaintext or chosen ciphertext attack gives the cryptanalyst the 

greatest freedom in analyzing a cipher. The cryptanalyst chooses the plaintext to be 

encrypted and analyzes the plaintext together with the resultant ciphertext to derive the 

secret key. Such attacks will, in many circumstances, be difficult to mount but they 

should not be discounted. A known plaintext attack is more useful to the cryptanalyst than 

a chosen plaintext attack (with the same amount of data) since the cryptanalyst now 

requires a certain numbers of plaintexts and their corresponding ciphertexts without 

specifying the values of the plaintexts. This type of information is presumably easier to 

collect. The most practical attack, but perhaps the most difficult to actually discover, is a 

ciphertext-only attack. In such an attack, the cryptanalyst merely intercepts a number of 

encrypted messages and subsequent analysis somehow reveals the key used for 

encryption. Note that some knowledge of the statistical distribution of the plaintext is 

required for a ciphertext-only attack to succeed. 

An added level of sophistication to the chosen text attacks is to make them 

adaptive. By this we mean that the cryptanalyst has the additional power to choose the 
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text that is to be encrypted or decrypted after seeing the results of previous requests. The 

computational effort and resources together with the amount and type of data required are 

all important features in assessing the practicality of some attack. 

2. 7 Strong Password-Only Authenticated Key Exchange 

A new simple password exponential key exchange method (SPEKE) is described. 

It belongs to an exclusive class of methods, which provide authentication and key 

establishment over an insecure channel using only a small password, without risk of off­ 

line dictionary attack. SPEKE and the closely-related Diffie-Hellman Encrypted Key 

Exchange (DH-EKE) are examined in light of both known and new attacks, along with 

sufficient preventive constraints. Although SPEKE and DH-EKE are similar, the 

constraints are different. The class of strong password-only methods is compared to other 

authentication schemes. Benefits, limitations, and tradeoffs between efficiency and 

security are discussed. These methods are important for several uses, including 

replacement of obsolete systems, and building hybrid two-factor systems where 

independent password-only and key-based methods can survive a single event of either 

key theft or password compromise. 

It seems paradoxical that small passwords are important for strong authentication. 

Clearly, cryptographically large passwords would be better, if only ordinary people could 

remember them. Password verification over an insecure network has been a particularly 

tough problem, in light of the ever-present threat of dictionary attack. Password problems 

have been around so long that many have assumed that strong remote authentication 

using only a small password is impossible. In fact, it can be done. In this paper we outline 

the problem, and describe a new simple password exponential key exchange, SPEKE, 

which performs strong authentication, over an insecure channel, using only a small 

password. That a small password can accomplish this alone goes against common 

wisdom. This is not your grandmother's network login. We compare SPEKE to the 

closely-related Diffie-Hellman Encrypted Key Exchange, and review the potential threats 
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and countermeasures in some detail. We show that previously-known and new attacks 

against both methods are dissatisfied when proper constraints are applied. These methods 

are broadly useful for authentication in many applications: bootstrapping new system 

installations, cellular phones or other keypad systems, diskless workstations, user-to-user 

applications, multi-factor password + key systems, and for upgrading obsolete password 

systems. More generally, they are needed anywhere that prolonged key storage is risky or 

impractical, and where the communication channel may be insecure. 

2.7.1 The Remote Password Problem 

Ordinary people seem to have a fundamental inability to remember anything 

larger than a small secret. Yet most methods of remote secret-based authentication 

presume the secret to be large. We really want to use an easily memorized small secret 

password, and not are susceptible to dictionary attack. We make a clear distinction 

between passwords and keys: Passwords must be memorized, and are thus small, while 

keys can be recorded, and can be much larger. The problem is that most methods need 

keys that are too large to be easily remembered. User-selected passwords are often 

confined to a very small, easily searchable space, and attempts to increase the size of the 

space just make them hard to remember. Bank-card PIN codes use only 4-digits to 

remove even the temptation to write them down. A ten-digit phone number has about 30 

bits, which compels many people to record them. Meanwhile, strong symmetric keys 

need 60 bits or more, and nobody talks about memorizing public-keys. It is also fair to 

assume that a memorizable password belongs to a brute-force searchable space. With 

ever-increasing computer power, there is a growing gap between the size of the smallest 

safe key and the size of the largest easily remembered password. 

The problem is compounded by the need to memorize multiple passwords for 

different purposes. One example of a small-password-space attack is the verifiable plain­ 

text dictionary attack against login. A general failure of many obsolete password methods 

is due to presuming passwords to be large. We assume that any password belongs to a 

cryptographically small space, which is also brute-force searchable with a modest effort. 

Large passwords are arguably weaker since they can't be memorized. 
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So why do we bother with passwords? A pragmatic reason is that they are less 

xpensive and more convenient than smart-cards and other alternatives. A stronger reason 

that, in a well-designed and managed system, passwords are more resistant to theft than 

rsistent stored keys or carry-around tokens. More generally, passwords represent 

mething you know, one of the "big three" categories of factors in authentication. 

2.7.2 Characteristics of Strong Password-only Methods 

We now define exactly what we mean by strong password-only remote 

authentication. We first list the desired characteristics for these methods, focusing on the 

case of user-to-host authentication. Both SPEKE and DH-EKE have these distinguishing 

characteristics. 

1. Prevent off-line dictionary attack on small passwords. 

2. Survive on-line dictionary attack. 

3. Provide mutual authentication. 

4. Integrated key exchange. 

5. User needs no persistent recorded 

(a) Secret data, or 

(b) Sensitive host-specific data. 

Since we assume that all passwords are vulnerable to dictionary attack, given the 

opportunity, we need to remove the opportunities. On-line dictionary attacks can be easily 

detected, and thwarted, by counting access failures. But off-line dictionary attack presents 

a more complex threat. These attacks can be made by someone posing as a legitimate 

party to gather information, or by one who monitors the messages between two parties 

during a legitimate valid exchange. Even tiny amounts of information "leaked" during an 

exchange can be exploited. The method must be immune to such off-line attack, even for 

tiny passwords. This is where SPEKE and DH-EKE excel. 
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-.7.2.1 SPEKE 

The simple password exponential key exchange (SPEKE) has two stages. The first 

tage uses a DH exchange to establish a shared key K, but instead of the commonly used 

fixed primitive base g, a function f converts the password S into a base for 

exponentiation. The rest of the first stage is pure Diffie-Hellman, where Alice and Bob 

tart out by choosing two random numbers RA and Rs: 

Table 2.1: Shows First Stages of SPEKE 

Sl. Alice computes: QA = f(Sl A mod p, 

S2. Bob computes: Qs = f(Sls mod p, 

S3. Alice computes: K = h( at A mod p ) 

S4. Bob computes: K = h( QA\ mod p ) 

A "'7 B: QA, 

87A: Os. 

In the second stage of SPEKE, both Alice and Bob confirm each other's knowledge of K 

before proceeding to use it as a session key. One way is: 

Table 2.2: Shows Second Stage of SPEKE 

SS. 

S6. 

S7. 

Alice chooses random CA, A7B: EK (CA), 

87 A: EK (Cs, CA), 

A7B: EK (Cs). 

Bob chooses random Cs, 

Alice verifies that CA is correct, 

SS. Bob verifies that Cs is correct. 

To prevent discrete log computations, which can result in the attacks the value of 

p-1 must have a large prime factor q. The function f is chosen in SPEKE to create a base 
of large prime order. This is different than the commonly used primitive base for DH. The 

use of a prime-order group may also be of theoretical importance. 
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Other variations of the verification stage are possible. This stage is identical to 

at of the verification stage of DH-EKE. More generally, verification of K can use any 

classical method, since K is cryptographically large. This example repeatedly uses a one- 

·ay hash function: 

Table 2.3: Shows Verification Stage of SPEKE 

ss. 
S6. 

Alice sends proof of K: A~B: h(h(K)) 

B~A: h(K) Bob verifies h(h(K)) is correct, 

S7. Alice verifies h (K)) is correct. 

This approach uses K in place of explicit random numbers, which is possible since 

K was built with random information from both sides. 

2.7.2.2 DH-EKE 

DH-EKE (Diffie-Hellman Encrypted Key Exchange) are the simplest of a number 

of methods. The method can also be divided into two stages. The first stage uses a DH 

exchange to establish a shared key K, where one or both parties encrypts the exponential 

using the password S. With knowledge of S, they can each decrypt the other's message 

using Es-1 and compute the same key K. 

Table 2.4: Shows First Stage of DH-EKE 
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Dl. Alice computes: QA= gRA mod p, A~B: Es (QA), 

D2. Bob computes: Qa = gRs mod p, B~ A: Es (Os). 

D3. Alice computes: K = h( Os RA mod p ) 

D4. Bob computes: K = h( Q/s mod p) 

It is widely suggested that at least one of the encryption steps can be omitted, but 

this may leave the method open to various types of attacks. The values of p and g, and the 

symmetric encryption function Es must be chosen carefully to preserve the security of 

DH-EKE. In the second stage of DH-EKE, both Alice and Bob confirm each other's 

knowledge of K before proceeding to use it as a session key. However, with DH-EKE the 

order of the verification messages can also be significant. 

2.8 Different kinds of Security Attacks 

Here different kinds of attacks on the security in authentication which have been 

observed so for and which are expected are explained in detail. 

2.8.1 Discrete Log Attack 

As the security of these schemes rests primarily on exponentiation being a one­ 

way function, there is a general threat of an attacker computing the discrete logarithms on 

the exponentials. Known methods of discrete log require a massive pre-computation for 

each specific modulus. Modulus size is a primary concern. No method is currently known 

that could ever compute the discrete log for a safe modulus greater than a couple 

thousand bits; however a concerted attack on a 512-bit modulus may be soon feasible 

with considerable expense. Somewhere in between is an ideal size balancing speed 

against the need for security, in a given application. 

It is noted that if we assume that a discrete log pre-computation has been made for 

the modulus, a password attack must also compute the specific log for each entry in the 

password dictionary (until a match is found). It is also noted that for any session 
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established with a modulus vulnerable to log attack, perfect forward secrecy is no longer 

guaranteed, providing another reason for keeping the discrete log computation out of 

reach. The feasibility of a pre-computed log table remains a primary concern, and the 

efficiency of the second phase of the attack is secondary. 

2.8.2 Leaking Information 

If one is not careful, the exchanged messages Ox may reveal discernible structure, 

and can "leak" information about S, enabling a partition attack. This section shows how to 

prevent these attacks. 

2.8.2.1 DH-EKE Partition Attack 

In DH-EKE, Alice and Bob use a Diffie-Hellman exponential key exchange in the 

group z/, with a huge prime p, where p-1 has a huge prime factor q. Then we use the 

traditional preference for g as a primitive root of p. In fact, g must be primitive to prevent 

a partition attack by an observer. A third party can do trial decryptions of Es (g\ mod p) 

using a dictionary of Si, If g is not primitive, a bad guess Si is confirmed by a primitive 

result. In general, the encrypted exponentials Ox must contain no predictable structure to 

prevent this attack against DH-EKE. Constraining g to be primitive insures a random 

distribution across Z/. 

2.8.2.2 SPEKE Partition Attack 

Using a primitive base is not required in SPEKE. If the base f(S) is an arbitrary 

member of Z, *, since the exponentials are not encrypted, an observer can test the result 

for membership in smaller subgroups. When the result is a primitive root of p, he knows 

that the base also is primitive. For a safe prime p, this case reveals 1 bit of information 

about S. When p varies, as has been recommended when using a reduced modulus size, 

new information from runs with different p allow a partition attack to reduce a dictionary 

of possible Si, When, for any S, the base f(S) is a generator of a particular large prime 

subgroup, and then no information is leaked through the exponential result. Suitable 
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functions for f(S) create a result of known large order. We assume the use of a large 

prime-order base in SPEKE for the rest of the discussion. Because SPEKE does not 

encrypt the exponentials, a formal analysis of security may be simpler to achieve for 

SPEKE than for DH-EKE. The prime-order subgroup is the same as that used in the DSA 

and Digital signature methods. 

- ' 
2.8.3 Stolen Session Key Attack 

In an analysis of several flavors of EKE, where a stolen session key K is used to 

mount a dictionary attack on the password. The attack on the public-key flavor of EKE is 
\__) 

also noted which correctly points out that DH-EKE resists this attack (as does SPEKE). 

Resistance to this attack is closely related to perfect forward secrecy, which also isolates 

one kind of sensitive data from threats to another. We note that, in DH-EKE, a stolen 

value of RA in addition to K permits a dictionary attack against the password S. For each 

trial password Si, the attacker computes: 

K' = (Esi-1(Es (g\))) RA 

When K' equals K, he knows that Si equals S. SPEKE is also vulnerable to an 

attack using RA to find S. These concerns highlight the need to promptly destroy 

ephemeral sensitive data, such as RA and R8. It also notes a threat when the long-term 

session key K is used in an extra stage of authentication of the extended A-EKE method; 

a dictionary attack is possible using the extra messages. To counter this threat, one can 

use K for the extra stage, set K' = h (K) using a strong one-way function, and promptly 

discard K. 

2.8.4 Verification Stage Attacks 
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The verification stage of either DH-EKE or SPEKE is where both parties prove to 

each other knowledge of the shared key K. Because K is cryptographically large, the 

second stage is presumed to be immune to brute-force attack, and thus verifying K can be 

done by traditional means. However, the order of verification may be important to resist 

the protocol attack against DH-EKE. 

2.8.5 The "password-in-exponent" Attack 

It is generally a good idea for f (S) to create a result of the same known order for 

all S, so that testing the order of the exponential doesn't reveal information about S. When 

considering suitable functions, it may be tempting to choose f(S) = g/CS) for some fixed 

prime-order gc and some well-known hash function h. Unfortunately, while this is a 

convenient way to convert an arbitrary number into a generator of a prime-order group, it 

creates an opening for attack. To show the attack, let's assume that gc = 2, and h(S) = S, 
so that f(S) = 2s. Alice's protocol can be rewritten as: 

1. Choose a random RA, 

2. Compute QA = 2cs R Al mod p. 

3. Send QA to Bob. 

4. Receive OB from Bob. 

5. Compute K = QB\ mod p. 

Bob should perform his part, sending OB to Alice. The problem is that an attacker 

Barry can perform a dictionary attack off-line after performing a single failed exchange. 

His initial steps are: 

1. Choose a random X. 
X 2. Compute Os = 2 . 

3. Receive QA from Alice 

4. Send QB to Alice. 

5. Receive verification data for K from Alice. 

Barry then goes off-line to perform the attack as follows: 
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For each candidate password S': 

Compute K' = (Ql) t/S' mod p. 

Compare Alice's verification· message for K to K', when they match he knows that S' = S. 

This attack works because: 

K' = QA (XIS') mod p 

= i(S RA) (X/S') mod p 

= i(XRA S/S') mod p 

= QB (RA S/S') mod p 

= K(S/S') mod p 

Thus, when S' = S, K' = K. More generally, the attack works because the 

dictionary of passwords {St, S2 ... Sn} is equivalent to a dictionary of exponents E = {et, 
e2 ••. en}, such that for a given fixed generator gc, the value off (Si) for each candidate can 

be computed as gc\ This allows the password to be effectively removed from the DH 

computation. 

In general, we must insure that no such dictionary E is available to an attacker. 

We should note that while it is true that for any function f there will always be some 

fixed gc and hypothetical dictionary E that corresponds to f (S), for most functions f, 
computing the value of each e, requires a discrete log computation. This makes the 

dictionary E generally unknowable to anyone. As a specific example, for the function 

f(S) = S, the attack is infeasible. The password-in-exponent attack is possible only when 

f(S) is equivalent to exponentiation (within the group) of some fixed gc to a power which 

is a known function of S. 

2.9 A Logic of Authentication 
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In computer networks the communicating parties share not only the media, but 

also the set of rules on how to communicate. These rules, or protocols, have become more 

and more important in communication networks and distributed computing. However, the 

increase of the knowledge of the communication protocols has also brought up the 

question of how to secure the communication against intruders. To solve this, a large 

number of cryptographic protocols have been produced. 

Cryptographic protocols were developed to combat against various attacks of 

intruders in computer networks. Nowadays, the comprehension is that the security of data 

should rely on the underlying cryptographic technology, and that the protocols should be 

open and available. However, many protocols have been found to be vulnerable to attacks 

that do not require breaking the encryption, but instead manipulate the messages in the 

protocol to gain some advantage. The advantages range from the compromise of 

confidentiality to the ability to impersonate another user. 

As there are different protocol designs decisions appropriate to different 

circumstances, there also exists a variety of authentication protocols. Protocols often 

differ in their final states, and sometimes they even depend on assumptions that one 

would not care to make. To understand what is really accomplished with such a protocol, 

a formal description method is needed. The goal of the logic of authentication is to 

formally describe the knowledge and the beliefs of the parties involved in authentication, 

the evolution of the knowledge and the beliefs while analyzing the protocol step by step. 

After the analysis, all the final states of the protocol are set out. 
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CHAPTER THREE 

3. ENCRYPTION & DECRYPTION USING RSAALGORITHM 

3.1 Overview 
RSA is a public-key cryptosystem developed by MIT professors: Ronald L. Rivest, 

Adi Shamir, and Leonard M. Adleman in 1977 in an effort to help ensure Internet 

security. As Steve Burnett of RSA Data Security, Inc. described it, a cryptosystem is 

simply an algorithm that can convert input data into something unrecognizable 

( encryption), and convert the unrecognizable data back to its original form ( decryption). 

The RSA scheme is a block cipher in which the plaintext and cipher text are integers 

between O and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. 

To encrypt data, enter the data ("plaintext") and an encryption key to the encryption 

portion of the algorithm. To decrypt the "cipher text," a proper decryption key is used at 

the decryption portion of the algorithm. Those keys, which contain simply a string of 

numbers, are called public key and private key, respectively. For example, suppose Alice 

intends to send e-mail to Bob. Through a public-key directory, she finds his public key. 

Then, she encrypts her message using the key and sends it to Bob. This public key, 

however, will not decrypt the cipher text. Knowledge of Bob's public key will not help an 

eavesdropper. In order for Bob to decrypt his cipher text, he must use his private key. If 

Bob wants to respond to Alice, he encrypts his message using her public key. 

The challenge of public-key cryptography is developing a system in which it is 

impossible to determine the private key. This is accomplished through the use of a one­ 

way function. With a one-way function, it is relatively easy to compute a result given 

some input values. In mathematical terms, given x, computing f(x) is easy, but given f(x), 

computing x is nearly impossible. The one-way function used in RSA is multiplication of 

prime numbers. It is easy to multiply two big prime numbers, but for most very large 
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rimes, it is extremely time-consuming to factor them. Public-key cryptography uses this 

·· nction by building a cryptosystem that uses two large primes to build the private key 

and the product of those primes to build the public key. 

3.2 How does cryptographic algorithm work? 
A cryptographic algorithm, or cipher, is a mathematical function used in the 

encryption and decryption process. A cryptographic algorithm works in combination with 

a key - a word, number, or phrase to encrypt the plaintext. The same plaintext encrypts 

to different cipher text with different keys. The security of encrypted data is entirely 

dependent on two things: the strength of the cryptographic algorithm and the secrecy of 

the key. A cryptographic algorithm, plus all possible keys and all the protocols that make 

it work comprise a cryptosystem. PGP is a cryptosystem. 

3.3 Different types of Cryptosystems/Encryptions: 
There are four ways of encryption that we mostly use in network system 

• Pretty Good Privacy, PGP 

• Rivest, Shamir, Adleman, RSA 

• Keyless Encryption, KE 

• One-Time Pads, OTP 

3.3.1 PGP (Pretty Good Privacy) 

Pretty Good Privacy. Up to this point we've talked about private-key cryptography 

(one key used y both parties). There was one problem with this kind of encryption: If the 

key was intercepted, a third party could decrypt the messages. So, the ideas of public-key 

cryptography were developed. Here's how it works ... 
Everyone has two keys: a public and a private key. When someone wants to send 

something to a recipient, they (the sender) encrypt it with the recipient's public key. Then 

the only way to decrypt it is with the recipient's private key. One of the other benefits to 

PGP is that it allows the sender to "sign" their messages. This proves that the message 

came from the sender and has not been altered in transport. Based on this theory, PGP 
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allows everyone to publicize their public keys, while keeping their private keys secret. 

The result is that anyone can encrypt a message to someone else, as long as they have that 

person's public key. 

In actuality, PGP uses a series of private key, public key and one-way hash 

functions to encrypt a message. A one-way hash function takes some plaintext and 

translates it into a specific hash. The hash is unique to the message (like a fingerprint is to 

a person). The hash is also non-reversible, hence the name one-way. Let's run through an 

example of what PGP does to encrypt and decrypt an e-mail message. Our sender will be 

Chris and our receiver will be Brian. 

• Chris writes his message. 

• Chris uses a one-way hash function (such as MD5) to create a hash for the 

message. 

• Chris, via RSA or some other digital signature algorithm, signs the hash with his 

private key. 

• Chris merges the message and the signature, resulting in a new-signed message. 

• A random encryption key is generated, the session key. 

• Chris uses the session key to encrypt the message, using DES or some other 

private key method. 

• Chris gets Brian's public key. 

• Chris then encrypts the key with Brian's public key, via RSA or some other public 

key method. 

• Chris merges the encrypted message and the encrypted key and mails it to Brian. 

Once Brian receives the message he can have PGP decrypt it. Here's what it would 

do: 

• Brian separates the encrypted message and the encrypted session key. 

• Using RSA, Brian decrypts the session key. 

• Using DES, Brian decrypts the message with the decrypted session key. 

• Brian then separates the message and the signature. 
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• Using MD5, Brian calculates the hash value of the message. 

• Brian gets Chris' public key. 

• Via RSA, and Chris' public key, Brian decrypts the signature. 

• Brian then compares the hash value and the decrypted signature. If they are the 

same, Brian knows that the message is authentic and has not been altered since 

Chris signed it. 

• 

3.3.2 RSA (Rivest, Shamir, Adleman) 

RSA stands for the initials of the three men Ron Rivest, Adi Shamir, and Len 

Adleman. The security behind RSA lies in the difficulty of factoring large numbers into 

their primes. The process involves selecting two large (hundreds of digits) prime numbers 

(p and q), and multiplying them together to get the sum, n. These numbers are passed 

through a mathematical algorithm to determine the public key KU = { e, n] and the 
private key KR = { d, n}, which are mathematically related (the necessary equations are 

given at the bottom of the page). It is extremely difficult to determine e and/or d given n, 

thus the security of the algorithm. Once the keys have been created a message can be 

encrypted in blocks, and passed though the following equation: 

C = Me mod n 

Where C is the ciphertext, M is the plaintext, and e is the recipient's public key. 

Similarly, the above message could be decrypted by the following equation: 

M = Cd mod n 

Where dis the recipient's private key. For example: let's assume that our Mis 19 

(we will use smaller numbers for simplicity, normally theses numbers would be MUCH 

larger). We will use 7 asp and 17 as q. Thus, n = 7 * 17 = 119. Our e is then calculated to 
be 5 and dis calculated to be 77. Thus our KU is {5, 119} and our KR is {77, 119}. We 

can then pass the needed values through equation (1) to compute C. In this case C is 66. 

We could then decrypt C (66) to get back our original plain text. We pass the needed 
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alues through equation (2) and get 19, our original plaintext! Try it yourself with other 

numbers. 

Note: To determine e and d, perform the following: 

Calculate f (n) = (p - 1) (q - 1) 

Choose e to be relatively prime to f (n) and less than f(n). 

Determined such that de= 1 mod f (n) and d < f (n). 

3.4 The RSA Algorithm 

Let's run the RSA algorithm through steps of how RSA algorithm procedure does 

work: 

3.4.1 Key Generation 

l.Generate two large prime numbers, p and q 

2. Let n = pq 

3. Let m = (p-l)(q-1) 

4. Choose a small number e, coprime to m 

5. Find d, such that de% m = 1 

Publish e and n as the public key, Keep d and n as the secret k 

Encryption 

C=Pe%n 

Decryption 

P=Cct%n 

x % y means the remainder of x divided by y 
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The reasons why this algorithm works are discussed in the mathematics section. Its 

security comes from the computational difficulty of factoring large numbers. To be 

secure, very large numbers must be used for p and q - 100 decimal digits at the very least. 

I'll now go through a simple worked example 1. 

a) Key Generation 

1) Generate two large prime numbers, p and q 

To make the example easy to follow I am going to use small numbers, but this is not 

secure. To find random primes, we start at a random number and go up ascending odd 

numbers until we find a prime. Lets have: 

p=7 

q = 19 

2) Let n = pq 
n = 7 * 19 
= 133 

3) Let m = (p - 1 )( q - 1) 

m = (7 - 1 )(19 - 1) 
= 6 * 18 
= 108 

4) Choose a small number, e coprime tom 
e coprime to m, means that the largest number that can exactly divide both e and m 

(their greatest common divisor, or gcd) is 1. Euclid's algorithm is used to find the gcd of 

two numbers, but the details are omitted here. 
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e = 2 => gcd(e, 108) = 2 (no) 

e = 3 => gcd(e, 108) = 3 (no) 

e = 4 => gcd(e, 108) = 4 (no) 

e = 5 => gcd(e, 108) = 1 (yes!) 

5) Find d, such that de % m = 1 
This is equivalent to finding d which satisfies de = 1 + nm where n is any integer. We 

can rewrite this as d = (1 + nm) I e. Now we work through values of n until an integer 

solution fore is found: 

n = 0 => d = 1 I 5 (no) 
n = 1 => d = 109 I 5 (no) 
n = 2 => d = 217 I 5 (no) 

n = 3 => d = 325 I 5 
= 65 (yes!) 

To do this with big numbers, a more sophisticated algorithm called extended Euclid 

must be used. 

Public Key Secret Key 

b) Encryption 

The message must be a number less than the smaller of p and q. However, at this 

point we don't know p or q, so in practice a lower bound on p and q must be published. 

This can be somewhat below their true value and so isn't a major security concern. For 

this example, lets use the message "6". 
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C =Pe% n 
= 65 % 133 
= 7776 % 133 
= 62 

c) Decryption 

This works very much like encryption, but involves a larger exponation, which is 

broken down into several steps. 

P =Cd% n 
= 6265 % 133 
= 62 * 6264 % 133 
= 62 * (622)32 % 133 
= 62 * 384432 % 133 
= 62 * (3844 % 133)32 % 133 
= 62 * 12032 % 133 

We now repeat the sequence of operations that reduced 6265 to 12032 to reduce the 

exponent down to 1. 

= 62 * 3616 % 133 
= 62 * 998 % 133 
= 62 * 924 % 133 
= 62 * 852 % 133 
= 62 * 43 % 133 
= 2666 % 133 
=6 

And that matches the plaintext we put in at the beginning, so the algorithm worked! 

3.5 From Applied Cryptography 

n = pq 
ed _ 1 mod (p _ l)(q _ 1) 

c = me mod n 

m = cd mod n 
n is the product of p and q, two prime numbers. 
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The product of e and d divided by (p _ 1 )( q _ 1) has a remainder of 1. C is the 

remainder of me divided by n; m is the remainder of cd divided by n. 

3.5.1 The Product of Two Primes 
n is the product of two prime numbers, p and q. n is made public as it is used in 

decryption as well as encryption. p and q should never be revealed. 

Example: 

p = 59, q = 67; n = 59 _ 67 = 3953 

3.5.2 e and d, The Keys 
e, the encryption key, is a random number relatively prime to (p _ l)(q _ 1). d can be 

calculated to be de = 1 + x(p _ 1 )( q _ 1 ), x is a throwaway value as it is \lost" in the 
modulus calculation. e is the public key and dis the private key. 

Example, continued: 

e = 7, (p _ l)(q _ 1) = 3828 
de= 1 + x(p _ l)(q _ 1) 

xd = 547, X = 1, d = 547 
e = 7, d = 547 

3.6 Key types 
Two key types are employed in the primitives and schemes defined: RSA public key 

and RSA private key. Together, an RSA public key and an RSA private key form an RSA 

key pair. 
This specification supports so-called "multi-prime" RSA where the modulus may 

have more than two prime factors. Better performance can be achieved on single 

processor platforms, but to a greater extent on multiprocessor platforms, where the 

modular exponentiations involved can be done in parallel. 
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3.6.1 RSA public key 

RSA public key consists of two components: 

n the RSA modulus, a positive integer 

e the RSA public exponent, a positive integer 
In a valid RSA public key, the RSA modulus n is a product of u distinct odd primes r., 

i = 1, 2, ... , u, where u 2:: 2, and the RSA public exponent e is an integer between 3 and n 

-1 satisfying GCD (e, "A (n)) = 1, where "A (n) = LCM (r1 - 1, ... , r; - 1). By convention, 

the first two primes r1 and ri may also be denoted p and q respective! y. 

3.6.2 RSA private key 

An RSA private key may have either of two representations. 

1. The first representation consists of the pair (n, d), where the components have the 

following meanings: 

n the RSA modulus, a positive integer 

d the RSA private exponent, a positive integer 
2. The second representation consists of a quintuple (p, q, dP, dQ, qinv) and a 

(possibly empty) sequence of triplets (r;, di, t;), i = 3, ... , u, one for each prime not in the 

quintuple, where the components have the following meanings: 

p the first factor, a positive integer 

q the second factor, a positive integer 

dP the first factor's CRT exponent, a positive integer 

dQ the second factor's CRT exponent, a positive integer 

qinv the (first) CRT coefficient, a positive integer 

r, the ;th factor, a positive integer 

d, the ;th factor's CRT exponent, a positive integer 

t, the ;th factor's CRT coefficient, a positive integer 

In a valid RSA private key with the first representation, the RSA modulus n is the 

same as in the corresponding RSA public key and is the product of u distinct odd primes 
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ri, i = 1, 2, ... , u, where u ~ 2. The RSA private exponent dis a positive integer less than 

n satisfying 
e · d = 1 (mod '"A (n)), 

Where e is the corresponding RSA public exponent and '"A (n) is defined before. 

In a valid RSA private key with the second representation, the two factors p and q are 

the first two prime factors of the RSA modulus n (i.e., r1 and r2), the CRT exponents dP 

and dQ are positive integers less than p and q respectively satisfying 

e · dP = 1 (mod (p-1)) 
e · dQ= 1 (mod (q-1)), 

And the CRT coefficient qinv is a positive integer less than p satisfying 
q · qinv = 1 (modp). 

If u > 2, the representation will include one or more triplets (r;, di; t;), i = 3, ... , u. The 
factors r, are the additional prime factors of the RSA modulus n. Each CRT exponent d, (i 

= 3, ... , u) satisfies 
e · d, = 1 (mod tr, -1)) . 

Each CRT coefficient t, (i = 3, ... , u) is a positive integer less than r, satisfying 
R; · t, = 1 ( mod r;) , 

Where R; = r1 · r2 · ... · r.:». 

3. 7 How fast is the RSA algorithm 
An "RSA operation," whether encrypting, decrypting, signing, or verifying is 

essentially a modular exponentiation. This computation is performed by a series of 

modular multiplications. 
In practical applications, it is common to choose a small public exponent for the 

public key. In fact, entire groups of users can use the same public exponent, each with a 

different modulus. (There are some restrictions on the prime factors of the modulus when 

the public exponent is fixed.) This makes encryption faster than decryption and 

verification faster than signing. With the typical modular exponentiation algorithms used 

to implement the RSA algorithm, public key operations take 0(/<) steps, private key 

52 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

operations take 0(72) steps, and key generation takes O(k4) steps, where k is the number 

of bits in the modulus. "Fast multiplication" techniques, such as methods based on the 

Fast Fourier Transform (FFT), require asymptotically fewer steps. In practice, however, 

they are not as common due to their greater software complexity and the fact that they 

may actually be slower for typical key sizes. 
The speed and efficiency of the many commercially available software and hardware 

imp\ementaticms of the RSA algorithm are increasing rapidly 

By comparison, DES and other block ciphers are much faster than the RSA 

algorithm. DES is generally at least 100 times as fast in software and between 1,000 and 

10,000 times as fast in hardware, depending on the implementation. Implementations of 

the RSA algorithm will probably narrow the gap a bit in coming years, due to high 

demand, but block ciphers will get faster as well. 

3.8 Encryption and Decryption 
The encryption and decryption math is more Straightforward, yet more demanding. 

I 

The remainder of the message, or message block, value multiplied by itself key times 

divided by the modulus n is the encrypted or decrypted value, depending on which key is 

used. The value of the message, or message block, must be less than the value of n. 

Example, continued: 

Message: 0920 2000 

09207 mod 3953 = 0307 
20007 mod 3953 = 2497 
0307547 mod 3953 = 0920 
2497547 mod 3953 = 2000 

3.8.1 The Mathematical Guts of RSA Encryption 

Here's the algorithm behind RSA public key encryption: 
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Find P and Q, two large (1024-bit) prime numbers. 
Choose E such that E is greater than 1, E is less than PQ, and E and (P-l)(Q-1) are 

relatively prime, which means they have no prime factors in common. E does not have to 

be prime, but it must be odd. (P-J)(Q-1) can't be prime because it's an even number. 

Compute D such that (DE - 1) is evenly divisible by (P-l)(Q-1). Mathematicians write 

this as DE= 1 (mod (P-l)(Q-1)), and they call D the multiplicative inverse of E. This is 

easy to do -- simply find an integer X which causes D = (X(P-J)(Q-1) + 1)/E to be an 

integer, then use that value of D. 

The encryption function is C = (T'E) mod PQ, where C is the ciphertext (a positive 
integer), T is the plaintext (a positive integer), and " indicates exponentiation. The 

message being encrypted, T must be less than the modulus, PQ. 
The decryption function is T = (C"D) mod PQ, where C is the ciphertext (a positive 

integer), Tis the plaintext (a positive integer), and "indicates exponentiation. 

The public key is the pair (PQ, E). The private key is the number D (reveal it to no 

one). The product PQ is the modulus ( often called N in the literature). E is the public 

exponent. D is the secret exponent. 

The public key can be published freely, because there are no known easy methods 

of calculating D, P, or Q given only (PQ, E) (your public key). If P and Q were each 

1024 bits long, it would be millions of years before the most powerful computers 

presently in existence can factor your modulus into P and Q. 

3.8.2 RSA public-key encryption 
The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. 

Adleman, is the most widely used public-key cryptosystem. It may be used to provide 

both secrecy and digital signatures and its security is based on the intractability of the 

integer factorization. 

3.8.2.1 Algorithm Key generations for RSA public-key encryption 

Each entity creates an RSA public key and a corresponding private key. 
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Each entity A should do the following: \" 7r,, G-r:.+.0 '-,, "'08 - \),"- 

1. Generate two large random (and distinct) primes p and q, each roughly the sarrre-· .. ::::;:;-. 

size. 
2. Compute n = pq and_= (p - l)(q - 1). 

3. Select a random integer e, 1 < e <_,such that gcd(e; _) = 1. 

4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < _, 

such that ed _ 1 (mod_). 
5. A's public key is (n; e); A's private key is d. 

Definition 
The integers e and d in RSA key generation are called the encryption exponent and 

the decryption exponent, respectively, while n is called the modulus. 

3.8.2.2 Algorithm RSA public-key encryption 

B encrypts a message m for A, which A decrypts. 

1. Encryption. B should do the following: 

(a) Obtain A's authentic public key (n; e). 

(b) Represent the message as an integer min the interval [O; n - 1 ]. 

(c) Compute c = me mod n 

( d) Send the cipher text c to A. 

2. Decryption. To recover plaintext m from c, A should do the following: 

(a) Use the private key d to recover m = cd mod n 

Proof that decryption works. Since ed _ 1 (mod_), there exists an integer k such that 

ed= l+k_.Now,ifgcd(m;p)= 1 thenbyFermat'stheorem mp+ l _1 (modp): 

Raising both sides of this congruence to the power k( q-1) and then multiplying both 

sides by m yields ml+ k(p-1 )( q-1) _ m (mod p ): 
On the other hand, if gcd(m; p) = p, then this last congruence is again valid since each 

side is congruent to O modulo p. Hence, in all cases med _ m ( mod p ): 
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By the same argument, med_ m (mod q): 

Finally, since p and q are distinct primes, it follows that 

med_ m (mod n) and, hence, 

cd _ (me)d _ m (mod n): 

3.8.2.3 RSA encryption with artificially small parameter's example 

Key generation. Entity A chooses the primes p = 2357, q = 2551, and computes n = 

pq = 6012707 and_= (p-l)(q-1) == 6007800. A chooses e == 3674911 and, using the 

extended Euclidean algorithm, finds d == 422191 such that ed _ 1 (mod_). A's public key 

is the pair (n == 6012707; e == 3674911), while A's private key is d == 422191. Encryption. 

To encrypt a message m = 5234673, B uses an algorithm for modular exponentiation to 

compute: 
c = me mod n = 52346733674911 mod 6012707 = 3650502; and sends this to A. 

Decryption. To decrypt c, A computes 

cd mod n = 3650502422191 mod 6012707 = 5234673. 

3.8.2.4 Universal exponent 
The number _ = lcm(p-1; q -1 ), sometimes cal led the universal exponent of n, may 

be used instead of_ = (p - 1 )(q - 1) in RSA key generation Observe that_ is a proper 

divisor of_. Using_ can result in a smaller decryption exponent d, which may result in 

faster decryption However, if p and q are chosen at random, then gcd(p-1; q-1) is 

expected to be small, and consequently_ and_ will be roughly of the same size 

3.9 Encryption Program 

This program encrypted the plain text file of "text.txt" (Appendix) into the 

cyphertext file of "out.txt" (Appendix), which consisted of integer stream. At the same 

time, the public key pair and private key were generated and saved in the file of "key.txt" 

(Appendix). Finally, the decryption algorithm decrypted the cyphertext file of "out.txt" 
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into the file of "out_ d.txt" (Appendix) with the aid of the private key pair and the private 

key. 

In the main() function of "project_rsa.c", plaintext file was translated into ASCII 

code first as a stream of integers, and saved in the temporary file of "out". In order to 

hide the occurrence frequency of letters in English text, the letter was not encrypted 

respectively using RSA Encryption method. Instead, we extracted number with the fixed 

digits from the integer stream. 

For example, using the key values in "project_rsa.c", the plaintext of "A3D4" can be 

translated as decimal integers stream of "65516852" according to the ASCII code. If we 

chose the 3 fixed digits, then this decimal integer stream can be separated as 655, 168, 52. 

It is noted that the last number should not be a 3 digits number. As such, we add 'O' at 

the end of the number to expend as 520. Finally, the decimal integer stream can be 

separated as 655, 168, and 520. These three numbers were used for the encryption using 

RSA method. Accordingly, the cyphertext would be generated as: 28900 23450 20606 

with the public key pair of(49447, 3513) and the private key of"l 1577". 

Finally, the program read the cyphertext from the file of "out.txt". The original 

decimal integer stream can be decrypted using theses public and private keys, and save in 

the temporary file of "out_d". According to the ASCII code, all the English letters have 

ASCII code larger than 31 (We included the SPACE key) and less than 125. Then the 

plaintext can be easily translated from the original decimal integer stream. The decrypted 

plaintext was save in the file of "out_ d.txt". 

In order to access the program, the access process was inserted in the Encryption 

process in the main () function in "project_rsa.c". 

Unlike other algorithm, the RSA test vector is so hard to find. To test this algorithm, 

and the implementation is in "rsa_test.c" (replace the main function of project_rsa.c), in 

which the key values are as following, public key = (3233, 17), private key = 2753. The 
p\aintext value of 123 can be encrypted as 855. 

3.9.1 Program List 

Source Files: 
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gcd.c 

main program 

carry out the calculation of exponentiation 

generate the public and private keys 

find the primes use in the key generation 

find the GCD of a and b 

project_rsa.c 

exponentiation.c 

keys.c 

pnme.c 

inverse.c 

algorithm 

An implementation of the extended Euclidean 

rsa test.c This is used for the test of the algorithm. 

Header Files: 

exponentiation.h 

keys.h 

gcd.h 

inverse.h 

3.10 RSA and related signature schemes 
This section describes the RSA signature scheme and other closely related methods. 

The security of the schemes presented here relies to a large degree on the intractability of 

the integer factorization problem; the schemes presented include both digital signatures 

with message recovery and appendix. 

3.10.1 The RSA signature scheme 
The message space and ciphertext space for the RSA public-key encryption scheme 

are both Zn = fO; 1; 2; : : : ; n - 1 g where n = pq is the product of two randomly chosen 

distinct prime numbers. Since the encryption transformation is a bijection, digital 

signatures can be created by reversing the roles of encryption and decryption. The RSA 

signature scheme is a deterministic digital signature scheme, which provides message 

58 



ENCRYPTION & DECRYPTION USING RSA ALGORITHM 

recovery .The signing spaceMS and signature space S, are both Zn. A redundancy 

function R: M-!Zn is chosen and is public knowledge. 

3.10.1.1 Algorithm Key generation for the RSA signature scheme 

Each entity creates an RSA public key and a corresponding private key. 

Each entity A should do the following: 

1. Generate two large distinct random primes p and q, each roughly the same size 

2. Compute n = pq and_= (p - l)(q - 1). 

3. Select a random integer e, 1 < e <_,such that gcd(e; _) = 1. 

4. Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < _, 

such that ed _ 1 (mod_). 

5. A's public key is (n; e); A's private key is d. 

3.10.1.2 Algorithm RSA signature generation and verification 

Entity A signs a messagem2M. Any entity B can verify A's signature and recover the 

message m from the signature. 

1. Signature generation. Entity A should do the following: 

(a) Compute em= R(m), an integer in the range [O; n - 1]. 

(b) Compute s = emd mod n. 

(c) A's signature form is s. 

2. Verification. To verify A's signatures and recover the message m, B should: 

(a) Obtain A's authentic public key (n; e). 

(b) Compute em = se mod n. 

(c) Verify that em2MR; if not, reject the signature. 

(d) Recover m == R-1(1n). 
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Proof that signature verification ·works. Ifs is a signature for a message m, then s = 
ind mod n where in. = R(rn,). Since ed. = 1 (mod ¢,), Be = iiied = m (mod n). Fi- 
nally, R-1 (1ii) = R-1 (R(rn)) = ·m. 

3.10.2 Possible attacks on RSA signatures 

(i) Integer factorization 
If an adversary is able to factor the public modulus n of some entity A, then the 

adversary can compute _ and then, using the extended Euclidean algorithm, dedu the 

private key d from _ and the public exponent e by solving ed _ 1 (mod _). This 

constitutes a total break of the system. To guard against this, A must select p and q so that 

factoring n is a computationally infeasible task. For further information. 

(ii) Multiplicative property of RSA 

The RSA signature scheme (as well as the encryption method, cf has the following 

multiplicative property, sometimes referred to as the homomorphic property. If sl = mdl 

mod n and s2 = md2 mod n are signatures on messages ml and m2, respectively (or more 

properly on messages with redundancy added), thens = sls2 mod n has the property that 

s = (mlm2)d mod n. Ifm = mlm2 has the proper redundancy (i.e.,m2MR), then s will be 

a valid signature for it. 

Hence, it is important that the redundancy function R is not multiplicative, i.e., for 

essentially all pairs a; b 2 M, R( a _ b) 6= R( a )R(b ). As 

3.11 Security of RSA 
This subsection discusses various security issues related to RSA encryption. Various 

attacks, which have been studied in the literature, are presented, as well as appropriate 

measures to counteract these threats. 
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(i) Relation to factoring 
The task faced by a passive adversary is that of recovering plaintext from the 

corresponding ciphertext c, given the public information (n; e) of the intended receiver A. 

This is called the RSA problem (RSAP), which was introduced in x3.3. There is no 

efficient algorithm known for this problem. 
One possible approach, which an adversary could employ to solving the RSA 

problem is to first factor n, and then compute e _ and d just as A did in Algorithm. Once 

d is obtained, the adversary can decrypt any ciphertext intended for A. 

On the other hand, if an adversary could somehow compute d, then it could 

subsequently factor n efficiently as follows. First note that since ed _ 1 (mod_), there is 

an integer k such that ed - 1 == k_. Hence, by Fact 2.126(i), aed-1 _ 1 (mod n) for all a 2 

z_ n. Let ed - 1 == 2s t, where t is an odd integer. Then it can be shown that there exists 

an i 2 [1; s] such that a2i-1t 6 __ 1 (mod n) and a2it _ 1 (mod n) for at least half of all a 2 

Z_n; if a and i are such integers then gcd(a2i-1t - 1; n) is a non-trivial factor of n. Thus 

the adversary simply needs to repeatedly select random a 2 Z_ n and check if an i 2 [1; s] 

satisfying the above property exists; the expected number of trials before a non-trivial 

factor of n is obtained is 2. This discussion establishes the following. 

Fact The problem of computing the RSA decryption exponent d from the public key 

(n; e), and the problem of factoring n, are computationally equivalent. 

When generating RSA keys, it is imperative that the primes p and q be selected in 

such a way that factoring n = pq is computationally infeasible. 

(ii) Small encryption exponent e. 
In order to improve the efficiency of encryption, it is desirable to select a small 

encryption exponent e such as e = 3. A group of entities may all have the same encryption 

exponent e, however, each entity in the group must have its own distinct modulus ( cf. 

x8.2.2(vi)). If an entity A wishes to send the same message m to three entities whose 

public moduli are nl, n2, n3, and whose encryption exponents are e = 3, then A would 
send ci = m3 mod ni, for i = 1; 2; 3. Since these moduli are most likely pairwise relatively 
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prime, an eavesdropper observing c I, c2, c3 can use Gauss's algorithm to find a solution 

x, O _ x < nln2n3, to the three congruences 8<: x _ cl (mod nl) x _ c2 (mod n2) x _ c3 

(mod n3): 
Since m3 < nln2n3, by the Chinese remainder theorem it must be the case that x = 

m3. Hence, by computing the integer cube root of x, the eavesdropper can recover the 

plaintext m. 

Thus a small encryption exponent such as e = 3 should not be used if the same 

message, or even the same message with known variations, is sent to many entities. 

Alternatively, to prevent against such an attack, a pseudorandomly generated bitstring of 

appropriate Length should be appended to the plaintext message prior to encryption; the 

pseudorandom bitstring should be independently generated for each encryption. This 

process is sometimes referred to as salting the message. Small encryption exponents are 

also a problem for small messages m, because ifm< n l=e, then m can be recovered from 

the ciphertext c = me mod n simply by computing the integer eth root of c; salting 

plaintext messages also circumvents this problem. 

(iii) Forward search attack 
If themessage space is small or predictable, an adversary can decrypt a ciphertext c by 

simply encrypting all possible plaintext messages until c is obtained. Salting the message 

as described above is one simple method of preventing such an attack. 

(iv) Small decryption exponent d 

As was the case with the encryption exponent e, it may seem desirable to select a 

small decryption exponent d in order to improve the efficiency of decryption.1 However, 

if gcd(p- 1; q - 1) is small, as is typically the case, and if d has up to approximately one­ 

quarter as many bits as the modulus n, then there is an efficient algorithm for computing 

d from the public information (n; e). This algorithm cannot be extended to the case where 

d is approximately the same size as n. hence, to avoid this attack; the decryption exponent 

d should be roughly the same size as n. 
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(v) Multiplicative properties 

Let ml and m2 be two plaintext messages, and let cl and c2 be their respective RSA 

encryptions. Observe that (mlm2)e _ me lme 2 _ clc2 (mod n): 

In other words, the ciphertext corresponding to the plaintext m = mlm2 mod n is c = 
clc2 mod n; this is sometimes referred to as the homomorphic property of RSA This 

observation leads to the following adaptive chosen-ciphertext attack on RSA encryption. 

Suppose that an active adversarywishes to decrypt a particular ciphertext c = me mod 

n intended for A Suppose also that A will decrypt arbitrary ciphertext for the adversary, 

other than c itself. The adversary can conceal c by selecting a random integer x 2 z_ n 
and computing c = cxe mod n. upon presentation of c, A will compute for the adversary 

m = (c)d mod n. Since 

m _ (c)d _ cd(xe)d _ mx (mod n); 

The adversary can then compute m = mx-1 mod n. 

This adaptive chosen-ciphertext attack should be circumvented in practice by 

imposing some structural constraints on plaintext messages. If a ciphertext c is decrypted 

to amessage not possessing this structure, then c is rejected by the decryptor as being 

fraudulent. Now, if a plaintext message m has this ( carefully chosen) structure, then with 

high probability mx mod n will not for x 2 Z_ n. Thus the adaptive chosen-ciphertext 

attack described in the previous paragraph will fail because A will not decrypt c for the 

adversary. Provides a powerful technique for guarding against adaptive chosen-ciphertext 

and other kinds of attacks. 

(vi) Common modulus attack 

The following discussion demonstrates why it is imperative for each entity to choose 

its own RSA modulus n. 

It is sometimes suggested that a central trusted authority should select a single RSA 

modulus n, and then distribute a distinct encryption/decryption exponent pair ( ei; di) to 

each entity in a network. However, as shown in (i) above, knowledge of any (ei; di) pair 

allows for the factorization of the modulus n, and hence any entity could subsequently 
C 

determine the decryption exponents of all other entities in the network. Also, if a 
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singlemessage were encrypted and sent to two or more entities in the network, then there 

is a technique by which an eavesdropper (any entity not in the network) could recover the 

message with high probability using only publicly available information. 

(vii) Cycling attacks 
Let c = me mod n be a ciphertext. Let k be a positive integer such that eek _ c ( mod 

n); since encryption is a permutation on the message space fO; 1; : : : ; n - I g such an 

integer 
k must exist. For the same reason it must be the case that eek- I _ m (mod n). This , 

observation leads to the following cycling attack on RSA encryption. An adversary 

computes ce mod n, ce2 mod n, ce3 mod n; : : : until c is obtained for the first time. If eek 

mod n = c, then the previous number in the cycle, namely eek- I mod n, is equal to the 

plaintext m. 

A generalized cycling attack is to find the smallest positive integer u such that f = 
gcd(ceu - c; n) > I. If ceu _ c (mod p) and ceu 6_ c (mod q) then f = p. Similarly, if ceu 

6_ c (mod p) and ceu _ c (mod q) (8.2) then f = q. In either case, n has been factored, and 

the adversary can recover d and then m. On the other hand, if both ceu _ c (mod p) and 

ceu _ c (mod q); then f = n and ceu _ c (mod n). In fact, u must be the smallest positive 

integer k for which eek_ c (mod n). In this case, the basic cycling attack has succeeded 

and so m = ceu-1 mod n can be computed efficiently. Since is expected to occur much 

less frequently than the generalized cycling attack usually terminates before the cycling 

attack does. For this reason, the generalized cycling attack can be viewed as being 

essentially an algorithm for factoring n. 

Since factoring n is assumed to be intractable, these cycling attacks do not pose a 

threat to the security of RSA encryption. 

(viii) Message concealing 
A plaintext message m, 0 _ m _ n+ l , in the RSA public-key encryption scheme is 

said to be unconcealed if it encrypts to itself; that is, me_ m (mod n). There are always 
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some messages, which are unconcealed (for example m = 0, m = 1, and m = n - I). In 

fact, the number of unconcealed messages is exactly 

[1 + gcd( e - 1; p - 1 )] _ [1 + gcd( e - 1; q - 1 )] : 

Since e-1, p-1 and q -1 are all even, the number of unconcealed messages is always 

at least 9. If p and q are random primes, and if e is chosen at random (or if e is chosen to 

be a small number such as e = 3 ore= 216 + 1 = 65537), then the proportion of messages 

which are unconcealed by RSA encryption will, in general, be negligibly small, and 

hence unconcealed messages do not pose a threat to the security of RSA encryption in 

practice. 

3.12 RSA encryption in practice 
There are numerous ways of speeding up RSA encryption and decryption in software 

and hardware implementations. Some of these techniques are covered, including fast 

modular multiplication (x14.3), fast modular exponentiation (x14.6), and the use of the 

Chinese remainder theorem for faster decryption, Even with these improvements, RSA 

encryption/decryption is substantially slower than the commonly used symmetric-key 

encryption algorithms such as DES 

In practice, RSA encryption is most commonly used for the transport of symmetric- 

key encryption algorithm keys and for the encryption of small data items. 

The RSA cryptosystem has been patented in the U.S. and Canada. Several standards 

organizations have written, or are in the process of writing, standards that address the use 

of the RSA cryptosystemfor encryption, digital signatures, and key establishment. For 

discussion of patent and standards issues related to RSA, 

3.12.1 Recommended size of modulus 

Given the latest progress in algorithms for factoring integers (x3.2), a 512-bit 

modulus n provides onlymarginal security from concerted attack. 
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As of 1996, in order to foil the powerful quadratic sieve (x3.2.6) and number field 

sieve 
(x3.2.7) Factoring algorithms, a modulus n of at least 768 bits is recommended. For 

long-term security, 1024-bit or larger moduli should be used. 

3.12.2 Selecting primes 
(i) As mentioned in x8.2.2(i), the primes p and q should be selected so that factoring n 

= pq is computationally infeasible. The major restriction on p and q in order to avoid the 

elliptic curve factoring algorithm (x3.2.4) is that p and q should be about the same 

bitlength, and sufficiently large. For example, if a 1024-bit modulus n is to be used, then 

each of p and q should be about 512 bits in length. 

(ii) Another restriction on the primes p and q is that the difference p - q should not be 

too small. If p - q is small, then p _ q and hence p _ p n. Thus, n could be factored 

efficiently simply by trial division by all odd integers close top n. If p and q are chosen at 

random, then p - q will be appropriately large with overwhelming probability. 

(iii) In addition to these restrictions, many authors have recommended that p and q be 

strong primes. A prime p is said to be a strong prime if the following three conditions are 

satisfied: 
(a) p - 1 has a large prime factor, denoted r; 

(b) p + 1 has a large prime factor; and 

(c) r- I has a large prime factor. 

An algorithm for generating strong primes is presented in x4.4.2. The reason for 

condition 
(a) is to foil Pollard's p+I factoring algorithm(x3.2.3) which is efficient only if n has 

a prime factor p such that p - 1 is smooth. Condition (b) foils the p + I factoring 

algorithm mentioned on page 125 in x3.12, which is efficient only if n has a prime factor 

p such that p + 1 is smooth. Finally, condition (c) ensures that the cycling attacks 

described in x8.2.2(vii) will fail. If the prime p is randomly chosen and is sufficiently 
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arge, then both p-1 and p+ 1 can be expected to have large prime factors. In any case, 

vhile strong primes protect against the p-1 and p+ 1 factoring algorithms, they do not 

protect against their generalization, the elliptic curve-factoring algorithm (x3.2.4). The 

latter is successful in factoring n if a randomly chosen number of the same size as p 

(more precisely, this number is the order of a randomly selected elliptic curve defined 

over Zp) has only small prime factors. Additionally, it has been shown that the chances of 

a cycling attack succeeding are negligible if p and q are randomly chosen (cf. x8.2.2 

(vii)). Thus, strong primes offer little protection beyond that offered by random primes. 

Given the current state of knowledge of factoring algorithms, there is no compelling 

reason for requiring the use of strong primes in RSA key generation. On the other hand, 

they are no less secure than random primes, and require only minimal additional running 

time to compute; thus there is little real additional cost in using them. 

3.12.3 Small encryption exponents 
(i) If the encryption exponent e is chosen at random, then RSA encryption using the 

repeated square-and-multiply algorithm takes k modular squaring and an expected k=2 

(less with optimizations) modular multiplications, where k is the bit length of the 

modulus n. Encryption can be sped up by selecting e to be small and/or by selecting e 

with a small number of l's in its binary representation. 

(ii) The encryption exponent e = 3 is commonly used in practice; in this case, it is 

necessary that neither p-1 nor q-1 be divisible by 3. This results in a very fast encryption 

operation since encryption only requires 1 modular multiplication and 1 modular 

squaring. Another encryption exponent used in practice is e = 216 + 1 = 65537. 

This number has only two 1 'sin its binary representation, and so encryption using the 

repeated square-and-multiply algorithm requires only 16 modular squaring and 1 modular 

multiplication. The encryption exponent e = 216 + 1 has the advantage over e = 3 in that 
it resists the kind of attack discussed in x8.2.2(ii), since it is unlikely the same message 

will be sent to 216+ 1 recipients. 



CHAPTER FOUR 

NETWORK SECURITY 

4. NETWORK SECURITY 

4.1 Overview 

A basic understanding of computer networks is requisite in order to understand the 

principles of network security. In this section, we'll cover some of the foundations of 

computer networking, also we'll cover some of the threats and the risks that managers and 

administrators of computer networks need to confront, and then some tools that can be 

used to reduce the exposure to the risks of network computing. Once we've covered this, 

we '11 go back and cover the process of protecting data and equipment from unauthorized 

access. And we'll include a brief description of network security concepts and 

technology. 

4.2 What is a Network? 

A set of interlinking lines resembling a net, a network of roads II an 

interconnected system, a network of alliances." This definition suits our purpose well: a 

computer network is simply a system of interconnected computers. How they're 

connected is irrelevant, and as we'll soon see, there are a number of ways to do this. 

4.3 The ISO/OSI Reference Model 

The International Standards Organization (ISO) Open Systems Interconnect (OSI) 

Reference Model defines seven layers of communications types, and the interfaces 

among them. See Figure 4.1. Each layer depends on the services provided by the layer 

below it, all the way down to the physical network hardware, such as the computer's 

network interface card, and the wires that connect the cards together. 
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An easy way to look at this is to compare this model with something we use daily: the 

telephone. In order for you and me to talk when we're out of earshot, we need a device 

like a telephone. (In the ISO/OSI model, this is at the application layer.) The telephones, 

of course, are useless unless they have the ability to translate the sound into electronic 

pulses that can be transferred over wire and back again. (These functions are provided in 

layers below the application layer.) Finally, we get down to the physical connection: both 

must be plugged into an outlet that is connected to a switch that's part of the telephone 

system's network of switches. 
If person A places a call to person B, person A picks up the receiver, and dials person 

B's number. This number specifies which central office to which to send my request, and 

then which phone from that central office to ring. Once person B answers the phone, they 

begin talking, and their session has begun. Conceptually, computer networks function 

exactly the same way. 
It isn't important to memorize the ISO/OSI Reference Model's layers; but it is useful 

to know that they exist, and that each layer cannot work without the services provided by 

the layer below it. 

LAYER7 Application 
~-- .... ~------··-· . 

LAYER6 Presentation 
~---~ 

LAYER5 I Session 
~~~ ... - .. ~ 

LAYER4 Transport 

LAYERJ Network 

LAYER2 Data Link 

LAYERl Physical 

Figure 4.1 the ISO/OSI Reference Model 
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4.4 Overview of TCP/IP 

TCP/IP (Transport Control Protocol/Internet Protocol) is the language of the Internet. 

Anything that can learn to speak TCP/IP can play on the Internet. This is functionality 

that occurs at the Network (IP) and Transport (TCP) layers in the ISO/OSI Reference 

Model. Consequently, a host that has TCP/IP functionality (such as Unix, OS/2, MacOS, 

or Windows NT) can easily support applications (such as Netscape's Navigator) that use 

the network. 
TCP/IP protocols are not used only on the Internet. They are also widely used to build 

private networks, called Internets that may or may not be connected to the global Internet. 

An Internet that is used exclusively by one organization is sometimes called an intranet 

4.4.1 Open Design 

One of the most important features of TCP/IP isn't a technological one: The protocol 

is an open protocol, and anyone who wishes to implement it may do so freely. Engineers 

and scientists from all over the world participate in the IETF (Internet Engineering Task 

Force) working groups that design the protocols that make the Internet work. Their time 

is typically donated by their companies, and the result is work that benefits everyone. 

4.4.2 IP 

IP is a "network layer" protocol. This is the layer that allows the hosts to actually talk 

to each other. Such things as carrying datagram's, mapping the Internet address to a 

physical network address, and routing, which takes care of making sure that all of the 

devices that have Internet connectivity can find the way to each other. 

4.4.3 IP Address 

IP addresses are analogous to telephone numbers - when you want to call someone on 

the telephone, you must first know their telephone number. Similarly, when a computer 

on the Internet needs to send data to another computer, it must first know its IP address. 
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lP addresses are typically shown as four numbers separated by decimal points, or "dots". 

For example, 10.24.254.3 and 192.168.62.231 are IP addresses. 

If you need to make a telephone call but you only know the person's name, you can 

look them up in the telephone directory ( or call directory services) to get their telephone 

number. On the Internet, that directory is called the Domain Name System or DNS for 

short. If you know the name of a server, say www.cert.org, and you type this into your 

web browser, your computer will then go ask its DNS server what the numeric IP address 

is that is associated with that name. 

4.4.3.1 Static And Dynamic Addressing 

Static IP addressing occurs when an ISP permanently assigns one or more IP 

addresses for each user. These addresses do not change over time. However, if a static 

address is assigned but not in use, it is effectively wasted. Since ISPs have a limited 

number of addresses allocated to them, they sometimes need to make more efficient use 

of their addresses. 

Dynamic IP addressing allows the ISP to efficiently utilize their address space. Using 

dynamic IP addressing, the IP addresses of individual user computers may change over 

time. If a dynamic address is not in use, it can be automatically reassigned to another 

computer as needed. 

4.4.3.2 Attacks Against IP 

A number of attacks against IP are possible. Typically, these exploits the fact that IP 

does not perform a robust mechanism for authentication, which is proving that a packet 

came from where it claims it did. A packet simply claims to originate from a given 

address, and there isn't a way to be sure that the host that sent the packet is telling the 

truth. This isn't necessarily a weakness, per se, but it is an important point, because it 

means that the facility of host authentication has to be provided at a higher layer on the 
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ISO/OSI Reference Model. Today, applications that require strong host authentication 

(such as cryptographic applications) do this at the application layer. 

4.4.3.3 IP Spoofing 

This is where one host claims to have the IP address of another. Since many 

systems (such as router access control lists) define which packets may and which packets 

may not pass based on the sender's IP address, this is a useful technique to an attacker: he 

can send packets to a host, perhaps causing it to take some sort of action. 

4.4.4 TCP and UDP Ports 

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both 

protocols that use IP. Whereas IP allows two computers to talk to each other across the 

Internet, TCP and UDP allow individual applications (also known as "services") on those 

computers to talk to each other. 

In the same way that a telephone number or physical mailbox might be associated 

with more than one person, a computer might have multiple applications ( e.g. email, file 

services, web services) running on the same IP address. Ports allow a computer to 

differentiate services such as email data from web data. A port is simply a number 

associated with each application that uniquely identifies that service on that computer. 

Both TCP and UDP use ports to identify services. Some common port numbers are 80 for 

web (HTTP), 25 for email (SMTP), and 53 for Dmain Name System (DNS). 

4.4.4.1 TCP 

TCP is a transport-layer protocol. It needs to sit on top of a network-layer protocol, 

and was designed to ride atop IP. (Just as IP was designed to carry, among other things, 

TCP packets.) Because TCP and IP were designed together and wherever you have one, 

you typically have the other, the entire suite of Internet protocols is known collectively as 

TCP/IP. 
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4.4.4.2 UDP 

UDP (User Datagram Protocol) is a simple transport-layer protocol. It does not 

provide the same features as TCP, and is thus considered "unreliable". Again, although 

this is unsuitable for some applications, it does have much more applicability in other 

applications than the more reliable and robust TCP. 

4.5 Risk Management 

It's very important to understand that in security, one simply cannot say "what's the 

best firewall?" There are two extremes: absolute security and absolute access. The closest 

we can get to an absolutely secure machine is one unplugged from the network, power 

supply, locked in a safe, and thrown at the bottom of the ocean. Unfortunately, it isn't 

terribly useful in this state. A machine with absolute access is extremely convenient to 

use: it's simply there, and will do whatever you tell it, without questions, authorization, 

passwords, or any other mechanism. Unfortunately, this isn't terribly practical, either: the 

Internet is a bad neighborhood now, and it isn't long before some bonehead will tell the 

computer to do something like self-destruct, after which, it isn't terribly useful to you. 

This is no different from our daily lives. We constantly make decisions about what 

risks we 're willing to accept. When we get in a car and drive to work, there's a certain risk 

that we're taking. It's possible that something completely out of control will cause us to 

become part of an accident on the highway. When we get on an airplane, we're accepting 

the level of risk involved as the price of convenience. However, most people have a 

mental picture of what an acceptable risk is, and won't go beyond that in most 

circumstances. If I happen to be upstairs at home, and want to leave for work, I'm not 

going to jump out the window. Yes, it would be more convenient, but the risk of injury 

outweighs the advantage of convenience. 
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Every organization needs to decide for itself where between the two extremes of total 

security and total access they need to be. A policy needs to articulate this, and then define 

how that will be enforced with practices and such. Everything that is done in the name of 

security, then, must enforce that policy uniformly. 

4.5.1 Security Risks 

The first step to understanding security is to know what the potential risks are, or 

more specifically, to determine the type and level of security risks for the company. 

Security risks are unique to each organization because they are dependent on the nature 

of the business and the environment in which the company operates. For example, the 

security risks for a high profile dot COM Company that solely operates on the Internet 

will be very different from a small manufacturing company that does little on the Web. 

Security risk is determined by identifying the assets that need to be protected. The 

assets could include customer credit card information, proprietary product formulas, 

employee data, the company's Web site, or other assets that are deemed to be important 

to the organization. Once the assets are identified, the next step is to determine the 

criticality of the assets to the company. For example, if the asset is considered to be very 

important to the company, then the level of security for that asset should be high. 

The next step is assessing the likelihood of a potential attack. While security 

measures must always be put in place to protect the assets of the company, the risks 

increase as the probability of an attack rises. For example, it is more likely for an outside 

intruder to attempt to break into a Web site selling consumer goods than a small 

manufacturing company making rubber bands. Therefore, while both companies must 

have security measures, the company with the Web site must deploy a higher level of 

security. Now that the process of determining security risk has been defined, some of the 

more common security risks are briefly discussed below. 
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4.5.2 Security Threats 

The first step in evaluating security risks is to determine the threats to system 

security. Although the term network security has been commonly categorized as 

protecting data and system resources from infiltration by third-party invaders, most 

security breeches are initiated by personnel inside the organization. Organizations will 

spend hundreds of thousands of dollars on securing sensitive data from outside attack 

while taking little or no action to prevent access to the same data from unauthorized 

personnel within the organization. 

The threat from hackers has been largely overstated. Individuals who fit into this 

group have more of a Robin Hood mentality than a destructive mentality. Most hackers, 

or crackers as they prefer to be called, are more interested in the thrill of breaking into the 

system than they are in causing damage once they succeed in gaining access. 

Unfortunately, there is an increasing trend for hackers to be employed by other entities as 

an instrument to gain access to systems. 

As the amount of critical data stored on networked systems has increased, the appeal 

of gaining access to competitors' systems has also increased. In highly competitive 

industry segments, an entire underground market exists in the buying and trading of 

product and sales data. By gaining access to research and development information from 

a competitor, millions of dollars and years of research can be eliminated. 

Another external threat is that of government intrusion, both from the domestic 

government and from foreign governments. Agencies such as the Federal Bureau of 

Investigation and the Internal Revenue Service can have vested interests in gaining access 

to critical tax and related information. Foreign governments are especially interested in 

information that could represent an economic or national defense advantage 
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.6 Types and Sources of Network Threats 

Now, we've covered enough background information on networking that we can 

ctually get into the security aspects of all of this. First of all, we'll get into the types of 

hreats there are against networked computers, and then some things that can be done to 

rrotect you against various threats. 

L6.l Denial-of-Service 

DoS (Denial-of-Service) attacks are probably the nastiest, and most difficult to 

iddress. These are the nastiest, because they're very easy to launch, difficult (sometimes 

rnpossible) to track, and it isn't easy to refuse the requests of the attacker, without also 

refusing legitimate requests for service. 

The premise of a DoS attack is simple: send more requests to the machine than it can 

handle. There are toolkits available in the underground community that make this a 

simple matter of running a program and telling it which host to blast with requests. The 

attacker's program simply makes a connection on some service port, perhaps forging the 

packet's header information that says where the packet came from, and then dropping the 

connection. If the host is able to answer 20 requests per second, and the attacker is 

sending 50 per second, obviously the host will be unable to service all of the attacker's 

requests, much less any legitimate requests (hits on the web site running there, for 

example). 

• Such attacks were fairly common in late 1996 and early 1997, but are now 

becoming less popular 

• Some things that can be done to reduce the risk of being stung by a denial of 

service attack include 
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• Not running your visible-to-the-world servers at a level too close to capacity using 

packet filtering to prevent obviously forged packets from entering into your 

network address space. 
• Obviously forged packets would include those that claim to come from your own 

hosts, addresses reserved for private networks as defined in RFC 1918 [4], and the 

loop back network (127 .0.0.0). 
• Keeping up-to-date on security-related patches for your hosts' operating systems. 

4.6.2 Unauthorized Access 

"Unauthorized access" is a very high-level term that can refer to a number of 

different sorts of attacks. The goal of these attacks is to access some resource that your 

machine should not provide the attacker. For example, a host might be a web server, and 

should provide anyone with requested web pages. However, that host should not provide 

command shell access without being sure that the person making such a request is 

someone who should get it, such as a local administrator. 

4.6.2.1 Executing Commands Illicitly 

It's obviously undesirable for an unknown and un-trusted person to be able to execute 

commands on your server machines. There are two main classifications of the severity of 

this problem: normal user access, and administrator access. A normal user can do a 

number of things on a system (such as read files, mail them to other people, etc.) that an 

attacker should not be able to do. This might, then, be all the access that an attacker 

needs. On the other hand, an attacker might wish to make configuration changes to a host 

(perhaps changing its IP address, putting a start-up script in place to cause the machine to 

shut down every time it's started or something similar). In this case, the attacker will need 

to gain administrator privileges on the host. 

4.6.2.2 Confidentiality Breaches 

We need to examine the threat model: what is it that you're trying to protect yourself 

against? There is certain information that could be quite damaging if it fell into the hands 
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of a competitor, an enemy, or the public. In these cases, it's possible that compromise of a 

normal user's account on the machine can be enough to cause damage (perhaps in the 

form of PR, or obtaining information that can be used against the company, etc.) 

While many of the perpetrators of these sorts of break-ins are merely thrill-seekers 

interested in nothing more than to see a shell prompt for your computer on their screen, 

there are those who are more malicious, as we'll consider next. (Additionally, keep in 

mind that it's possible that someone who is normally interested in nothing more than the 

thrill could be persuaded to do more: perhaps an unscrupulous competitor is willing to 

hire such a person to hurt you.) 

4.6.2.3 Destructive Behavior 

Among the destructive sorts of break-ins and attacks, there are two major categories. 

Data Diddling--The data diddler is likely the worst sort, since the fact of a break-in might 

not be immediately obvious. Perhaps he's toying with the numbers in your spreadsheets, 

or changing the dates in your projections and plans. Maybe he's changing the account 

numbers for the auto-deposit of certain paychecks. In any case, rare is the case when 

you'll come in to work one day, and simply know that something is wrong. An 

accounting procedure might turn up a discrepancy in the books three or four months after 

the fact. Trying to track the problem down will certainly be difficult, and once that 

problem is discovered, how can any of your numbers from that time period be trusted? 

How far back do you have to go before you think that your data is safe? 

Data Destruction--Some of those perpetrate attacks are simply twisted jerks who like 

to delete things. In these cases, the impact on your computing capability -- and 

consequently your business -- can be nothing less than if a fire or other disaster caused 

your computing equipment to be completely destroyed. 

4.6.3 Where Do They Come From? 
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How, though, does an attacker gain access to your equipment? Through any 

connection that you have to the outside world. This includes Internet connections, dial-up 

modems, and even physical access. (How do you know that one of the temps that you've 

brought in to help with the data entry isn't really a system cracker looking for passwords, 

data phone numbers, vulnerabilities and anything else that can get him access to your 

equipment?) 

In order to be able to adequate! y address security, all possible avenues of entry must 

be identified and evaluated. The security of that entry point must be consistent with your 

stated policy on acceptable risk levels. 

4. 7 Security Concepts and Technology 

This section includes a brief description of network security concepts and technology. 

This information can be used to understand some of the security methods that are 

deployed throughout the network. 

A comprehensive security approach requires that the company's different levels of 

management collectively create an enterprise-wide security approach by determining the 

appropriate security policies. The business side of the company typically uses policies to 

manage, so this concept is not unfamiliar to managers. A security policy defines the 

assets that need to be protected, who can have access to those assets, when they can have 

access, and how they are allowed to use the assets. 

More important is the fact that the managers who own certain corporate assets (for 

example, customer or company data) have excellent insight into what policies should be 

designed to control access to these assets. Therefore, input from these managers is 

invaluable for securing the assets of the company. Unfortunately, there are many 

companies today where the security management of the company is totally in the hands 

of IT staff. While they are very knowledgeable and competent, the IT staff must have 
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input from the owners of the data to truly provide a comprehensive and consistent 

security management strategy. Without this input, the security of the company's assets 

may be at risk. 

Once the high-level security policies have been determined, the security strategy can 

be developed from them. The security strategy should include a security plan that defines 

the tools and technologies to be used, and how they should be deployed. In addition, 

more specific access policies can be developed. 

The security plan should include strategies that secure the perimeter of the enterprise, 

as well as strategies to secure the internal network. While the perimeter defense is a 

necessary piece of a complete security approach, the security strategy should not end 

there. Once intruders have access to the internal network, there must be security measures 

to prevent them from causing irreparable damage. A combination of security tools and 

technologies must be deployed throughout the network to ensure a secure network. 

4.7.1 Firewalls 

The concept of the firewall is much like the walled cities of medieval times, where an 

external perimeter was constructed to keep intruders out and to protect the residents 

within. The gates are designed both to control the entry of outsiders and to allow 

residents to leave the walled city. In addition, the gates provide limited-access points that 

are more easily defended against intruders. 

Originally, many companies viewed firewalls as solid walls that would totally block 

outside entry to the enterprise. However, with the increased popularity of the Internet and 

the interactions of e-business, that approach is no longer acceptable. Administrators must 

now strike a balance between allowing required services through the firewall, while 

ensuring the security of the company's assets. As a result, the role of the firewall has 

evolved from being a solid perimeter wall to becoming the gates in the enterprise's 

perimeter wall. 
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A number of terms specific to firewalls and networking are going to be used 

)ughout this section, so let's introduce them all together. 

'.1.1 Bastion Host 

A general-purpose computer used to control access between the internal (private) 

twork (intranet) and the Internet ( or any other untrusted network). Typically, these are 

sts running a flavor of the Unix operating system that has been customized in order to 

duce its functionality to only what is necessary in order to support its functions. Many 

' the general-purpose features have been turned off, and in many cases, completely 

moved, in order to improve the security of the machine . 

. 7.1.2 Access Control List (ACL). 

Many routers now have the ability to selectively perform their duties, based on a 

umber of facts about a packet that comes to it. This includes things like origination 

ddress, destination address, destination service port, and so on. These can be employed 

) limit the sorts of packets that are allowed to come in and go out of a given network. 

(.7.1.3 Demilitarized Zone (DMZ) 

The DMZ is a critical part of a firewall: it is a network that is neither part of the 

mtrusted network, nor part of the trusted network. But, this is a network that connects the 

mtrusted to the trusted. The importance of a DMZ is tremendous: someone who breaks 

into your network from the Internet should have to get through several layers in order to 

successfully do so. Those layers are provided by various components within the DMZ. 

4.7.1.4 Proxy 

This is the process of having one host act in behalf of another. A host that has the 

ability to fetch documents from the Internet might be configured as a proxy server, and 

host on the intranet might be configured to be proxy clients. In this situation, when a host 
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on the intranet wishes to fetch the web page, for example, the browser will make a 

connection to the proxy server, and request the given URL. The proxy server will fetch 

the document, and return the result to the client. In this way, all hosts on the intranet are 

able to access resources on the Internet without having the ability to direct talk to the 

Internet. 

Now that the concept of firewalls has been described, it would be useful to have a 

basic understanding of how they work. The traffic coming into or going out of the 

corporate network originates from a location that is identified with an IP address ( a 

unique network address). In addition, the traffic is composed of services that may be 

required by the enterprise, such as e-mail, File Transfer Protocol (FTP), Telnet, and many 

others. When setting up a firewall, the security administrator must define what services 

are to be allowed (both inbound and outbound), and whether to filter incoming and 

outgoing traffic based on IP addresses. The techniques that most firewalls use to filter 

incoming and outgoing traffic to the corporate networks are IP filtering, a proxy, or a 

combination of both methods. 

4.7.1.5 IP Filtering 

Every device on a TCP/IP network (the Internet, for example) is identified by a 

unique IP address. IP filtering is an access-control mechanism that filters network traffic 

based on IP addresses and requested services. It does this by using access control lists 

( ACLs ), of which there are two types: 

Host-based access control lists, which describe the services that are allowed or denied 

for each host or network. Service-based access lists, which describe the hosts or networks 

that are allowed or denied to use each service. 

The firewall will reject any services or hosts that are denied access in the ACLs. 

Likewise, it will accept services from hosts that are allowed access in the ACLs. Network 

devices, such as firewalls and routers, can use ACLs to control access. In a recent 

Enterprise Management Associates study on security, 50% of the 100 respondents polled 
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ported that they use IP filtering. Of those respondents that use IP filtering, 86% of them 

;e IP filtering on their firewalls. 

ACL is almost like a guest list at an exclusive and high-security event. The list 

ontains the names of those "guests" who have been invited and are allowed to attend the 

vent. In addition, the guest list may also list services, such as the caterer, florist, or 

ntertainers, who should be allowed to enter. The guest list may even name specific 

.eople who were not invited, and request that the security staff be especially vigilant to 

irevent them from entering. It may also include instructions that certain services, such as 

he media, should not be allowed to enter. So the ACL acts like a guest list by naming 

vho can and cannot have access, in addition to describing services that can and cannot 

have access through the firewall or router. 

Pass 

Packet 
Filter 
(ACL) 

External 
network 

Drop 

Figure 4.2 IP Filtering 

To be effective, access control lists must be carefully and comprehensively 

constructed to ensure that unauthorized access and services are not allowed into the 

network. The ordering of the rules in the ACL is important because the first match that 

the firewall finds is executed. Creating and maintaining comprehensive ACLs can be a 

tedious task for security administrators of large and complex networks, especially if the 

definitions of ACLs are done manually. Because manually managing ACLs throughout 

the enterprise is difficult, in some cases only bare minimum ACLs are used, or they are 

not as widely deployed as they should be. To take full advantage of the benefits that IP 
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filtering can offer, security administrations need to use ACL management tools that 

facilitate easy deployment and administration of ACLs. 

IP filtering provides flexibility, allowing administrators to create both simple access 

rules and a sophisticated set of rules to define what traffic will be allowed to pass through 

the firewall. In addition, IP filtering is a relatively fast method for controlling access 

because it is typically processed in the system kernel. 

4. 7 .2 What Can A Firewall Protect Against? 

Some firewalls permit only email traffic through them, thereby protecting the 

network against any attacks other than attacks against the email service. Other firewalls 

provide less strict protections, and block services that are known to be problems. 

Generally, firewalls are configured to protect against unauthenticated 

Interactive logins from the "outside" world. This, more than anything, helps prevent 

vandals from logging into machines on your network. More elaborate firewalls block 

traffic from the outside to the inside, but permit users on the inside to communicate freely 

with the outside. The firewall can protect you against any type of network-borne attack if 

you unplug it. 

Firewalls are also important since they can provide a single "choke point" where 

security and audit can be imposed. Unlike in a situation where a computer system is 

being attacked by someone dialing in with a modem, the firewall can act as an effective 

"phone tap" and tracing tool. Firewalls provide an important logging and auditing 

function; often they provide summaries to the administrator about what kinds and amount 

of traffic passed through it, how many attempts there were to break into it, etc. 

This is an important point: providing this "choke point" can serve the same 

purpose on your network as a guarded gate can for your site's physical premises. That 
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means anytime you have a change in "zones" or levels of sensitivity, such a checkpoint is 

appropriate. A company rarely has only an outside gate and any receptionist or security 

staff to check badges on the way in. If there are layers of security on your site, it's 

reasonable to expect layers of security on your network. 

4.7.3 What Can't A Firewall Protect Against? 

Firewalls can't protect against attacks that don't go through the firewall. Many 

corporations that connect to the Internet are very concerned about proprietary data 

leaking out of the company through that route. Unfortunately for those concerned, a 

magnetic tape can just as effectively be used to export data. Many organizations that are 

terrified (at a management level) of Internet connections have no coherent policy about 

how dial-in access via modems should be protected. It's silly to build a 6-foot thick steel 

door when you live in a wooden house, but there are a lot of organizations out there 

buying expensive firewalls and neglecting the numerous other back-doors into their 

network. For a firewall to work, it must be a part of a consistent overall organizational 

security architecture. Firewall policies must be realistic and reflect the level of security in 

the entire network. For example, a site with top secret or classified data doesn't need a 

firewall at all: they shouldn't be hooking up to the Internet in the first place, or the 

systems with the really secret data should be isolated from the rest of the corporate 

network. 

Another thing a firewall can't really protect you against is traitors or idiots inside your 

network. While an industrial spy might export information through your firewall, he's just 

as likely to export it through a telephone, FAX machine, or floppy disk. Floppy disks are 

a far more likely means for information to leak from your organization than a firewall! 

Firewalls also cannot protect you against stupidity. Users who reveal sensitive 

information over the telephone are good targets for social engineering; an attacker may 

be able to break into your network by completely bypassing your firewall, if he can find a 

"helpful" employee inside who can be fooled into giving access to a modem pool. Before 

deciding this isn't a problem in your organization, ask yourself how much trouble a 
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.ontractor has getting logged into the network or how much difficulty a user who forgot 

iis password has getting it reset. If the people on the help desk believe that every call is 

internal, you have a problem. 

Lastly, firewalls can't protect against tunneling over most application protocols to 

poorly written clients. There are no magic bullets and a firewall is not an excuse to not 

implement software controls on internal networks or ignores host security on servers. 

Tunneling "bad" things over HTTP, SMTP, and other protocols is quite simple and 

trivially demonstrated. Security isn't "fire and forget". 

4.7.4 Application Level Firewall 

An application level firewall evaluates network packets for valid data at the 

application layer before allowing a connection. The firewall examines the data in all 

network packets at the application layer and maintains complete connection state and 

sequencing information. Other security items such as user password and service requests 

that appear in the application layer data can be validated by the firewall. Specialized 

application software and proxy services are included in most application layer firewalls. 

Proxy services manage traffic through a firewall for a specific service such as HTTP or 

FTP. Proxy services can provide increased access control, detailed checks for valid data, 

and generate audit records about the traffic they transfer because the proxy services are 

specific to the protocol that they are designed to forward. 

An application level firewall analyzes the complete command set for a single protocol 

in application space. When an incoming network packet is received it moves up the 

hardened network stack until it reaches the highest protocol layer found in the packet. 

After the network stack finishes processing the packet, its data is passed from kernel 

space to application space then to the proxy server that is listening on a specific TCP or 

UDP port. Next the proxy service processes the data it has received. The data is 

compared to the acceptable command set rules, as well as to host and user permission 

rules. The proxy determines whether to accept or deny the packet based on the results of 
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the rules comparison. Based on how it was configured, the proxy may also perform other 

functions such as URL filtering, data modification, authentication logging, and HTTP 

object caching. A proxy service consists of the proxy server, proxy client and protocol 

analysis modes of operation. 

A proxy server and a proxy client are two components that are typically implemented 

as a single executable for each application proxy. A proxy server acts as the end server 

for all connection requests originated on a trusted network by a real client. Rather than 

allowing users to communicate directly with the other servers on the Internet, all 

communication between the internal users on the trusted network and the Internet passes 

through the proxy server. When the internal user wants to connect to an external service 

such as Ff P or Telnet they send a request to the proxy server for the connection. The 

proxy server decides whether to permit or deny the request based on an evaluation of a 

set of rules that is managed for the individual network service. Proxy servers only allow 

those packets through that comply with the protocol definitions because the servers 

understand the protocol of the service they are evaluating. The proxy client is the 

component that talks to the server on the external network on behalf of the real client on 

the trusted network. The proxy server evaluates a real client's request for a service against 

the policy rules defined for that proxy and determines whether to approve the request. 

The proxy server forwards the request to the proxy client if the request is approved. The 

proxy client contacts the real server on the external network on behalf of the client. The 

proxy client relays requests from the proxy server to the real server and relays responses 

from the real server to the proxy server. Then the proxy server relays the requests and 

responses between the proxy client and the real client. 

Proxy services never allow direct connection between the real client on the trusted 

network and the real server on the external network. Proxy services force all network 

packets to be examined and filtered for suitability. All communication between the real 

user and the real service are handled by the proxy service. The proxy service is 
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transparent to the user on the trusted network and the real service on the external 

network. 

Proxy services are implemented on the top of the firewall host's network stack and 

operate only in the application space of the operating system. Proxy services are slower 

than packet filtering because each packet in a session is subjected to an examination 

process. Each network packet must pass through the low-level protocols in the kernel 

before being passed up the stack to application space. Once in the application space the 

proxies perform a thorough inspection of the packet headers and packet data. After 

inspection and acceptance the packet must travel back down to the kernel, and then back 

down the stack for distribution. Additional checks can be performed by application level 

firewalls to ensure that a network packet has not been spoofed. Application level 

firewalls can often perform network address translation. 

Application level firewall technology using proxy services has several advantages. 

Proxy services enforce high level protocols such as HTTP and FfP. Information about 

the communications passing through the firewall server is maintained by the proxy 

service. Proxy services can permit access to certain network services, while denying 

access to others. Packet data can be processed and manipulated by proxy services. 

Internal IP addresses are shielded from the external world because proxy services do not 

allow direct communications between external server and internal computers. 

Administrators are able to monitor attempts to violate the firewall's security policies 

using the audit records that proxy services can generate. 

Although application level firewalls provide increased security over a packet filtering 

firewall there are some disadvantages to using an application level firewall. Application 

level firewalls are slower since inbound data is processed by the application and by its 

proxy. A new proxy usually must be written for each protocol that is to pass through the 

firewall. This can cause the number of available network services and their scalability to 

be limited. Proxy services are vulnerable to operating system and application level bugs. 
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Most application level firewalls require extensive support from the operating system to 

run correctly. The firewalls need support from TCP/IP, Win32, Winsock, NDIS, and the 

standard C library. The security of the firewall server can be effected by problems in 

these operating system components. 

4.7.4.1 Proxy Servers 

What are proxy servers? Proxy servers are basically a buffer between you, the 

user, and the Internet resources that you are accessing. Proxies are the software agents 

that act on the behalf of a user. A typical proxy will accept a connection from a user, 

make a decision as to whether or not the user or client IP address is permitted to use the 

proxy, and then it completes a connection on behalf of the user to a remote destination. 

The data that is requested by the user first filters through the proxy and then it is 

delivered to the client. 

One of the main reasons for using a proxy server is to give access to the Internet from 

within a firewall. A proxy server operating at the application-level makes a firewall 

permeable for users in the organization. They allow the users inside an organization to 

have access to information outside of the firewall without creating a possible security 

breach for the company. A proxy will ensure that there is no security hole where some 

attacker could get into the subnet. Each user inside a company will have access to the 

proxy. Access to the proxy can be customized to best fit each user's security and 

computing needs, giving different degrees of access to each user. Proxying is a standard 

method for getting through Firewalls, rather than having each client gets customized to 

support a special firewall product or method. 

Proxy servers can be used for many other reasons. One of those reasons is that you 

can permit or restrict each user's access based on their IP address. Proxies contain a table, 

which dictates the security level allowed by each user. A sample security table is shown 

below as shown in Table 4.1. 
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Client IP Address Security Level 

3.3.3.55 Full Intranet, Full Internet 

3.3.3.56 3.3.3.XX Subnet Only 

3.3.3.57 Full Intranet, No Internet 

3.3.3.58 Full Intranet, Full Internet 

3.3.3.59 3.3.3.XX Subnet Only 

Table 4.1 Security Table of IP Addresses 

This demonstrates how only selected clients have full access to the Internet or 

Intranet, while other users access can be limited to a specific subnet of the Intranet. 

Another reason to use proxy servers is for the increased performance of the network. 

Proxies can cache documents that are frequently accessed by clients inside the firewall. 

Document caching is storing the most often requested file in memory where multiple 

users can access the document, rather than having to go get the document every time it is 

requested. This will cut down on the amount of disk space used, which will allow faster 

travel through the network. Caching will be discussed in further detail later in the report. 

Proxies are placed between a physical connection point to the Internet and the 

connection point to the local network. What this means is that all communication from 

the network to the Internet or other Intranets is routed through the proxy. The actual 

workstations do not have a direct physical connection to the Internet; and therefore it is 

not possible for them to communicate in a direct way. The proxy server delivers the 

requests from the local net to the Internet as if it were the original requester. The proxy is 

a special HTTP server that typically runs on a firewall machine. It waits for requests from 

inside the firewall, and then sends them to the remote server, gets the response and sends 

it back to the client. This process is illustrated in the Figure 4.3 below. 
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Proxy Server 

Your 
Computer 

Target 
Server 

Request Request 

Figure 4.3 Proxy Server making a request 

Proxy servers protect the network against hackers and those out to steal information 

from a company's internal network by disguising the client's IP address. The proxy does 

this by creating an address table where the client's true IP address is paired with a false IP 

address that is assigned to the proxy server. The philosophy behind the false IP address is 

that if an intruder were to capture the IP address during transmission of the message they 

would not actually gain access into the company's network. By using the fake address the 

intruder would only be able to access the proxy server. Below in table 4.2, is an example 

of an address table stored in the proxy server's memory. 

Client IP Address Proxv Assigned IP Address 
3.3.3.55 192.168.21.21 

3.3.3.57 192.168.21.22 

3.3.3.47 192.168.21.23 

Not Assiqned 192.168.21.24 

Not Assiqned 192.168.21.25 

Table 4.2 Address Table 

The use of this table protects the IP addresses that are internal to the network 

from being "stolen" by users outside of the network. If by chance someone outside of the 
; 

network were to gain access to these IP addresses the internal network would still be safe 
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cause none of the clients are physically connected to the Internet. The IP addresses the 

.acker would have would take them to some alternate site on the Internet. This is one of 

e main advantages to routing all Internet traffic through the proxy server. 

The actual process a typical request would go through is comprised of many 

fferent steps that are all transparent to the user. The first step would be the actual 

quest of an Internet site by the client. This client would travel through the subnet to the 

·oxy server assigned to that subnet. Once the proxy receives the request it will take the 

ient's IP address and store it into the address table. After storing the client's IP address 

le proxy will then substitute a fake IP address for the client's IP address and continue 

iuting the request until it reaches its final destination. After the external sight processes 

ie request the response is routed back to the proxy server. Now the proxy server will 

erform a series of data integrity checks to ensure that the information received from 

utside the network should be allowed into the internal network. After validating the data 

searches the address table for the correct IP address and routes the information to the 

lient. The entire process is transparent to the user and does not significantly slow down 

11e processing and transmission speeds of the request. 

1.7.4.2 Circuit-level Gateways 

One step above standard packet filtering firewalls, but still considered part of the 

ame architecture, are circuit level gateways, otherwise known as "stateful packet 

nspection" firewalls. In the circuit-level firewall, all connections are monitored and only 

hose connections that are found to be valid are allowed to pass through the firewall. 

This generally means that a client behind the firewall can initiate any type of session, 

Jut clients outside the firewall cannot see or connect to a machine protected by the 

firewall. Stateful inspections usually occur at the Network Layer, thus making it fast and 

preventing suspect packets from traveling up the protocol stack. Unlike static packet 

filtering, however, stateful inspection makes its decisions based on all the data in the 
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cket ( corresponding to all the levels of the OSI stack). Using this information, the 

ewall builds dynamic state tables. 

It uses these tables to keep track of the connections that go through the firewall rather 

m allowing all packets that meet the rule set's requirements to pass, it allows only those 

ckets, which are part of a valid, established connection. Packet filtering firewalls are 

.pular because they tend to be inexpensive, fast, and relatively easy to configure and 

aintain. 

7.4.3 Application-Level Gateway 

An application-level proxy server provides all the basic proxy features and also 

ovides extensive packet analysis. When packets from the outside arrive at the gateway, 

ey are examined and evaluated to determine if the security policy allows the packet to 

uer into the internal network. Not only does the server evaluate IP addresses, it also 

oks at the data in the packets to stop hackers from hiding information in the packets. 

A typical application-level gateway can provide proxy services for applications 

id protocols like Telnet, FTP (file transfers), HTTP (Web services), and SMTP (e-mail). 

ote that a separate proxy must be installed for each application-level service (some 

-ndors achieve security by simply not providing proxies for some services, so be careful 

your evaluation). With proxies, security policies can be much more powerful and 

exible because all of the information in packets can be used by administrators to write 

1e rules that determine how packets are handled by the gateway. It is easy to audit just 

iout everything that happens on the gateway. You can also strip computer names to hide 

iternal systems, and you can evaluate the contents of packets for appropriateness and 

.curity . 

. 7.4.4 Network Address Translation (NAT) 

Firewalls using NAT and/or Port Address Translation (PAT) completely hide the 

etwork protected by the firewall by using many-to-one address translation. In most NAT 

nplementations there is a single public IP address used for the entire network. All 
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packets going outside the network have their internal IP addresses hidden for security, so 

any incoming packets are delivered to the network's public IP address. To handle ensuing 

port conflicts, PAT needs to be added to NAT. 

NAT is the translation of an IP address used within one network to a different IP 

address known within another network. This is easier to understand by referring to the 

following diagram: 

19.25.1.5 19.25.1.6 19.25.1.7 19/25.1.8 

19/25.1.1 

(NAT) Process 

125.35.48.168 

Internet 

Figure 4.4 Network Address Translation 

The NAT enabled router has an IP address of 10.25.1.1 for the inside network and 

an address of 125.35.48.168 for the outside network. Anytime a host on the inside 

network (10.25.1.0) makes a request to the outside network (the Internet in this instance) 

NAT will translate the 10.25.1.0 address to 125.35.48.168. From the inside looking out, 

the machines can access any host on the external network directly, while from the outside 

looking in it appears that all in and outbound traffic is originating from the single IP 

address on the router. 
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A disadvantage of NAT is that it can't properly pass protocols containing IP address 

information in the data portion of the packet. 

4.8 Secure Network Devices 

It's important to remember that the firewall only one entry point to your network. 

Modems, if you allow them to answer incoming calls, can provide an easy means for an 

attacker to sneak around (rather than through) your front door ( or, firewall). Just as 

castles weren't built with moats only in the front, your network needs to be protected at 

all of its entry points. 

4.8.1 Secure Modems; Dial-Back Systems 

If modem access is to be provided, this should be guarded carefully. The terminal 

server, or network device that provides dial-up access to your network needs to be 

actively administered, and its logs need to be examined for strange behavior. Its password 

need to be strong -- not ones that can be guessed. Accounts that aren't actively used 

should be disabled. In short, it's the easiest way to get into your network from remote: 

guard it carefully. 

There are some remote access systems that have the feature of a two-part procedure to 

establish a connection. The first part is the remote user dialing into the system, and 

providing the correct userid and password. The system will then drop the connection, and 

call the authenticated user back at a known telephone number. Once the remote user's 

system answers that call, the connection is established, and the user is on the network. 

This works well for folks working at home, but can be problematic for users wishing to 

dial in from hotel rooms and such when on business trips. 

Other possibilities include one-time password schemes, where the user enters his 

userid, and is presented with a '' challenge, 11 a string of between six and eight numbers. 
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He types this challenge into a small device that he carries with him that looks like a 

calculator. He then presses enter, and a "response" is displayed on the LCD screen. The 

user types the response, and if all is correct, he login will proceed. These are useful 

devices for solving the problem of good passwords, without requiring dial-back access. 

However, these have their own problems, as they require the user to carry them, and they 

must be tracked, much like building and office keys. 

No doubt many other schemes exist. Take a look at your options, and find out how 

what the vendors have to offer will help you enforce your security policy effectively. 

4.8.2 Crypto-Capable Routers 

A feature that is being built into some routers is the ability to session encryption 

between specified routers. Because traffic traveling across the Internet can be seen by 

people in the middle who have the resources ( and time) to snoop around, these are 

advantageous for providing connectivity between two sites, such that there can be secure 

routes. 

4.8.3 Virtual Private Networks 

Given the ubiquity of the Internet, and the considerable expense in private leased 

lines, many organizations have been building VPNs (Virtual Private Networks). 

Traditionally, for an organization to provide connectivity between a main office and a 

satellite one, an expensive data line had to be leased in order to provide direct 

connectivity between the two offices. Now, a solution that is often more economical is to 

provide both offices connectivity to the Internet. Then, using the Internet as the medium, 

the two offices can communicate. 

The danger in doing this, of course, is that there is no privacy on this channel, and it's 

difficult to provide the other office access to "internal" resources without providing those 

resources to everyone on the Internet. 
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VPNs provide the ability for two offices to communicate with each other in such a 

way that it looks like they're directly connected over a private leased line. The session 

between them, although going over the Internet, is private (because the link is encrypted), 

and the link is convenient, because each can see each other's internal resources without 

showing them off to the entire world. 

A number of firewall vendors are including the ability to build VPNs in their 

offerings, either directly with their base product, or as an add-on. If you have needed to 

connect several offices together, this might very well be the best way to do it. 
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CONCLUSION 

vlany business executives see Internet services fueling the next major wave of e-business 

vth and process efficiencies. It groups expect Internet services to significantly reduce 

lication integration costs, and technology providers envision robust demand for a new 

eration of internet services-enabled offerings. 

Despite all this forward motion, concerns about security are major barrier to adoption. 

er all, many enterprises have not fully mastered security measures in their existing e­ 

.iness environment .now, internet services technology makes it even easier to expose 

tical data and business process to the outside word, potentially increasing security risk. 

There is strong momentum to bring Internet services technology into the mainstream of 

twork computing. Thus many companies tried to support authentication and authorization 

some things called cryptographic algorithms and digital signatures. 

The project has included four chapters followed by a RSA algorithm developed by the 

ithor to allow the server and client to authenticate each other and to negotiate an encryption 

gorithm and cryptographic keys before the application protocol transmit. 

Chapter one has presented an overview of cryptography systems and the main definitions 

ave been described. 

Chapter two has presented a cryptography functions and some of the mathematical 

unction for encryptions and decryption the data. 

Chapter tree has described the encryption & decryption using RSA algorithms, and the 

main keys types for RSA algorithms in details. 

Finally, Chapter four has described the network security and some general in formations 

and risks about the network and it's security details. 
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