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ABSTRACT 

An adaptive filter having self organızıng structure based on recursıve

algorithm make it possible to perform satisfactory filtering in an environment where

complete knowlege of the relevant signal characteristics are not available.

In block processing (or block implementation), a block of samples of the filter

input and desired output are collected and then processed together to obtain a block of

output samples.

There are many other applications in which adaptive filters may be usefully

employed. At this time it can be confidently stated that these filters have matured to the

point where their signal processing capabilities are well understood and documented in

the technical literature.

The transversal adaptive filters form a large, diverse, and versatile family,

which can satisfy the requirements of applications in many technical fields. Their

complexity can be tailored to the resources of the users, and their performance assessed

accordingly.
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INTRODUCUTION 

The subject of adaptive filters has matured to the point where it new constitutes an

important part of statistical signal processing. Whenever there is a requiretnent to process

signals that result from operation in an environment of unknown statistics, the use of an

adaptive filter offersan attractive solution to the problem as it usually provides a significant

improvement in performance over the use of a fixed filter designed by cdnventional

methods. Furthermore, the use of adaptive filters provides new signal processiqg

capabilities that would not be possible otherwise. We thus find that adaptive filters are
successfully applied in such diverse fields as communications, control, radar, sonar,

seismology, and biomedical engineering.

In chapter one we discuss in general terms linear filter, adaptive filter and

structure of adaptive filter.And we represent also adaptation approaches and real and

complex form of adaptive filter.We end this chapter with some applications of adaptive

filter.

Chapter two is representing the block LMS algorithm and the mathematic

background of block implementation of adaptive filter. And we end this chapter with the
FBLMS algorithm.

Chapter three is about the other applications of adaptive filter like modeling,
spectral estimation, and adaptive arrayprocessing.

Chapter four represents the covariance algorithm, sliding window algorithm,

the case ofcomplex signals, multidimensional input signal,,M-Dalgorithm based on all

prediction errors and filters of nonuniform length.
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Overview Of Adaptive Filter

CHAPTER 1 

OVERVIEW OF ADAPTIVE FILTER 

1.1 Linear Filters 

The term 'filter' is commonly used to refer to any device or system that takes a mixture

of particles/elements from its input and process them according to some specific rules to

generate a corresponding set of particles/elements at its output. In the context of signals

and systems, particles/elements are the frequency components of the underlying signals

and, traditionally, filters are used to retain all the frequency components that belong to a

particular band of frequencies, while rejecting the rest of them, as much as possible. In a

more general sense, the term filter may be used to refer to a system that reshapes the

frequency components of the input to generate an output signal with some desirable

features, and this is how we view the concept of filtering throughout the chapters, which

follow.

Filters (or systems, in general) may be either linear or non-linear. In this book, we

consider only linear filters and our emphasis will also be on discrete-time signals and

systems. Thus, all the signalswill be represented by sequences, such as x (n). The most

Basic feature of linear systems is that their behaviour is governed by the principle of

superposition. This means that if the responses of a linear discrete-time system to input

sequences xı (n) and x2 (n) are Yi (n) andy- (n), respectively, then the response of the

same system to the input sequence x (n) = ax, (n) + bx, (n), where a and bare arbitrary

constants, will be y (n) = ayı (n) ± by, (n). This property leads to many interesting
"

results in 'linear system theory'. In particular, a linear system is completely

characterized by its impulse response or the Fourier transform of its impulse response,

known as the transfer function. The transfer function of a system at any frequency is

equal to its gain at that frequency. In other words, in the context of our discussion

above, we may say that the transfer function of a system determines how the various

frequency components of its input are reshaped by the system. In particular, the filter is

used to reshape certain input signals in such a way that its output is a good estimate of
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the given desired signal. The process of selecting the filter parameters (coefficients) so

as to achieve the best match between the desired signal and the filter output is often

done by optimizing an appropriately defined performance function. The performance

function can be defined in a statistical or deterministic framework. In the statistical

approach, the most commonly used performance function is the mean-square value of

the error signal, i.e. the difference between the desired signal and the filter output. For

stationary input and desired signals, minimizing the mean-square error results in the

well-known Wiener filter, which is said to be optimum in the mean-square sense. In the

deterministic approach, the usual choice of performance function is a weighted sum of

the squared error signal. Minimizing this function results in a filter, which is optimum

for the given set of data. However, under some assumptions on certain statistical

properties of the data, the deterministic solution will approach the statistical solution,

i.e. the Wiener filter, for large data lengths.

1.2 Adaptive Filters 

As mentioned in the previous section, the filter required for estimating the given desired

signal can be designed using either the stochastic or deterministic formulations. In the

deterministic formulation, the filter design requires the computation of certain average

quantities using the given set of data that the filter should process. On the other hand,

the design of Wiener filter (i.e. in the stochastic approach) requires a priori knowledge

of the statistics of the underlying signals. Strictly speaking, a large number of

realizations of the underlying signal sequences are required for reliably estimating these

statistics. This procedure is not feasible in practice since we usually have only one

realization for each of the signal sequences. To resolve this problem, it is assumed that

the underlying signal sequences are ergodic, which means that they are stationary and

their statistical and time averages are identical. Thus, by using time averages, Wiener

filters can be designed, even though there is only one realization for each of the signal

sequences.
Although direct measurement of the signal averages to obtain the necessary information

for the design of Wiener or other optimum filters is possible, in most of the applications

the signal averages (statistics) are used in an indirect manner. The reasons for solving

the problem of adaptive filtering in an iterative manner are:
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1. Direct computation of the necessary averages and their application for computing the

filter coefficients requires the accumulation of a large amount of signal\

samples. Iterative solutions, on the other hand, do not require accumulation of signal

samples, thereby resulting in a significantamount of saving in memory.

2. The accumulation of signal samples and their post processing to generate the filter

output, as required in non-iterative solutions, introduces a large delay in the filter

output. This is unacceptable in many applications. Iterative solutions on the contrary, do

not introduce any significantdelay in the filter output.

3. The use of iterations results in adaptive Solutions with some tracking capability. That

is, if the signal statistics are changing with time, then the solution provided by an

iterative adjustment of the filter coefficientswill be able to adapt to the new statistics.

4. Iterative Solutions, in general, are much simpler to code in software or to implement

in hardware than their non-iterative counterparts.

1.3 Adaptive Filter Structures 

The most commonly used structure in the implementation of adaptive filters is the

transversal structure, Here, the adaptive filter has a single input, x (n), and an output, y

(n). The sequence d (n) is the desired signal. The output, y (n), is, generated as a linear

combination of the delayed samples of the input sequence, x (n), according to the

equation

Where the wı (n) s is the filter tap weights (coefficients) and N is the filter length. We.
refer to the input samples, x (n - i), for i = O, 1... N- 1, as the filter tap inputs. The tap

weights, the wi (n) s, which may vary in time, are controlled by the adaptation

algorithm.

Through various adaptive algorithms. Because of these points, the non-recursive filters

are the sole candidates in most of the applications of adaptive filters.

The FIR and IIR structures shown in Figures 1.2 and 1 .4 are obtained by direct

realization of the respective difference equations (1. 1) and (1.3). These filters may

3
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alternatively be implemented using the lattice structures. The lattice structures, in

general, are more complicated than the direct implementations. However, in certain

applications they have some advantages, which make them better candidates than the

direct forms. For instance, in the application of linear prediction for speech processing

where we need to realize all pole (IIR) filters, the lattice structure can be more easily

controlled to prevent possible instabilityof the filter.

The FIR and IIR filters that were discussed above are classified as linear filters since

their outputs are obtained as linear combinations of the present and past samples of

input and, in the case of the hR filter, the past samples of the output also. Although most

applications are restricted to the use of linear filters, non-linear adaptive filters become

necessary in some applications where the underlying physical phenomena to be

modelled are far from being linear. A typical example is magnetic recording where the

recording channel becomes non-linear at high densities as a result of the interaction

between the magnetization transitions written on the medium. The Volterra series

representation of systems is usually used in such applications. The output, y(n), of a

Volterra system is related to its input, x(n). According to the equation

y (n ) = w o.o (n ) + L w ı.ı (n )r (n - I ) +
1

L w 2,;, 1 (n )x (n - i )x (n - j ) + (1.2)
i, j

L w 2, i.j.k ( n )x (n - i )r (n - j )x (n - k ) + ..... ,
~ j, k

Where wo.o (n), the wı ı(n)s, the w2,u (n)s, the wı ı.rx (n)s, ... are filter coefficients. .

However, we note that all the summations in (1.2) may be put together and the Volterra
"'filter may be thought of as a linear combiner whose inputs are determined by the

delayed samples of x (n) and their cross-multiplications. Noting this, we find that the
"

extension of most of the adaptive filtering algorithms to the Volterra filters is

straightforward.
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1.4 Adaptation Approaches 

As introduced in Sections 1.1 and 1.2, there are two distinct approaches that have been

widelyused in the development of various adaptive algorithms; namely, stochastic and

deterministic. Both approaches have many variations in their implementations leading

to a rich variety of algorithms, each of which offers desirable features of its own. In this

section we present a review of these two approaches and highlight the main features of

the related algorithms.

1.4.1 Approach Based On Wiener Filter Theory 

According to the Wiener filter theory, which comes from the stochastic framework, the

optimum coefficients of a linear filter are obtained by minimization of its mean-square

error (MSE). As already noted, strictly speaking, the minimization of MSE requires

certain statistics obtained through ensemble averaging, which may not be possible in

practical applications. The problem is resolved using ergodicity so as to use time

averages instead of ensemble averages. Furthermore, to come up with simple recursive

algorithms, very rough estimates of the required statistics are used. In fact, the

celebrated least-mean-square (LMS) algorithm, which is the most basic and widely used

algorithm in various adaptive filtering applications, uses the instantaneous value of the

square of the error signal as an estimate of the MSE. It turns out that this very rough

estimate of the MSE, when used with a small step-size parameter in searching for the

optimum coefficients of the Wiener filter, leads to a very simple and yet reliable

adaptive algorithm.

The main disadvantage of the LMS algorithm is that its convergence behaviouris highly

dependent on the power spectral density of the filter input. When the filter input is

white, i.e. its power spectrum is fiat across the whole range of frequencies, the LMS

algorithm converges very fast. However, when certain frequency bands are not well

excited (i.e. the signal energy in those bands is relatively low), some slow modes of

convergence appear, resulting in very slow convergence compared with the case of

white input. In other words, to converge fast, the LMS algorithm requires equal

excitation over the whole range of frequencies. Noting this, over the years researchers
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have developed many algorithms, which effectively divide the frequency band of the

input signal into a number of subbands and achieve some degree of signal whitening by

using some power normalizationmechanism,prior to applyingthe adaptive algorithm.

In some applications, we need to use adaptive filters whose length exceeds a few

hundreds or even a few thousands of taps. Clearly, such filters are computationally

expensive to implement. An effective way of implementing such filters at a much lower

computational complexity is to use the fast Fourier transform (FFT) algorithm to

implement time domain convolutions in the frequency domain, as is commonly done in

the implementationoflong digital filters.

1.4.2 Method Of Least Squares 

The adaptive filtering algorithms whose derivations are based on the Wiener filter

theory have their origin in a statistical formulation of the problem. In contrast to this,

the method of least squares approaches the problem of filter optimization from a

deterministic point of view. As already mentioned, in the Wiener filter theory the

desired filter is obtained by minimizing the mean-square error (MSE), i.e. a statistical

quantity. In the method of least

x(n)

wo(n) WN-ı(n)

ern d(n)

Figure 1.2 Adaptive transversal filter

6
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y (n ) = L w i (n )x i (n ) .
i = o

(1.3)
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In some applications, such as beam forming, the filter tap inputs are not the delayed

samples of a single input. In such cases the structure of the adaptive filter assumes the

form shown in Figure 1 .3. This is called a linear combiner, since its output is a linear

combinationof the different signals received at its tap inputs:

Xo(n) X1(n)

Adaptation
Algorithm

e (n) d(n)

Figure 1.3 Adaptive linear combiner

7
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n
y(n)

Figure 1.4 the structure of an IIR filter

y(n-1)

y(n-2)

y(n-M+l)

Note that the linear combiner structure is more general than the transversal. The latter,

as a special case of the former, can be obtained by choosing xı(n) = x(n - i).

The structures of Figures 1.2 and 1.3 are those of the non-recursive filters, i.e.

computation of filter output does not involve any feedback mechanism.We also refer to

Figure 1 .2 as a finite-impulseresponse (FIR) filter, since its impulse response is of finite

duration in time. An infinite-impulse response (IIR) filter is governed by recursive
l\

equations such as (see Figure 1 .4)

i= o i-l

N -1 M -1
y(n)= L a;(n)x (n -i)+ L b;(n)y (n -i), (1.4)

Where a, (n) and bi (n) are the forward and feedback tap weights, respectively. IIR filters

have been used in many applications. However, as we shall see in the later chapters,

because of the many difficulties involved in the adaptation of hR filters, their

application in the area of adaptive filters is rather limited. In particular, they can easily

8
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become unstable since their poles may get shifted out of the unit circle (i.e. I z I = 1, in

the z-plane (see next chapter)) by the adaptation process. Moreover, the performance

function (e.g. mean-square error as a function of filter coefficients) of an hR filter

usually has many local minima points. This may result in convergence of the filter to

one of the local minima and not to the desired global minimumpoint of the performance

function. On the contrary, the mean-square error functions of the FIR filter and linear

combiner are well-behaved quadratic functions with a single minimum point which can

easily be found squares, on the other hand, the performance index is the sum of

weighted error squares for the given data, i.e. a deterministic quantity. A consequence

of this deterministic approach is that the least-squares-based algorithms, in general,

converge much faster than the LMS-based algorithms. They are also insensitive to the

power spectral density of the input signal. The price that is paid for achieving this

improved convergence performance is higher computational complexity and poorer

numerical stability.
Direct formulation of the least-squares problem results in a matrix formulation of its

solution, which can be applied on a block-by-block basis to the incoming signals. This,

which is referred to as the block estimation of the least-squares method, has some useful

applications in areas such as linear predictive coding of speech signals. However, in the

context of adaptive filters, recursive formulations of the least-squares method that

update the filter coefficients after the arrival of every sample of input are preferred, for

reasons that were given in Section 1 .2. There are three major classes of recursive least­

squares (RLS) adaptive filteringalgorithms:

• The standard RLS algorithm

• The QR-decomposition-basedRLS (QRD-RLS) algorithm

• Fast RLS algorithms
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1.4.3 The Standard RLS Algorithm 

The derivation of this algorithm involves the use of a well-known result from linear

algebra known as the matrix inversion lemma. Consequently, the implementation of the

standard RLS algorithm involves matrix manipulations that result in a computational

complexityproportional to the square of the filter length.

1.4.4 The QR-Decomposition-Based RLS (QRD-RLS) Algorithm 

This formulation of RLS algorithm also involves matrix manipulations, which lead to a

computational complexity that grows with the square of the filter length. However, the

operations involved here are such that they can be put into some regular structures

known as systolic arrays. Another important feature of the QRD-RLS algorithm is its

robustness to numerical errors as compared with other types ofRLS algorithms.

1.4.5 Fast RLS Algorithms 

In the case of transversal filters, the tap inputs are successive samples of the input

signal, x(n) (see Figure 1.2). The fast RLS algorithms use this property of the filter input

and solve the problem of least squares with a computational complexity which is

proportional to the length of the filter, thus the name fast RLS. Two types of fast RLS

algorithms may be recognized:

1. RLS lattice algorithms. These lattice algorithms involve the use of order-update as

well as the time-update equations. A consequence of this feature is that it results in

modular structures which are suitable for hardware implementationsusing the

Pipelining technique. Another desirable feature of these algorithms is that certain

variants of them are very robust against numerical errors arising from the use of finite

word lengths in computations.

2. Fast transversal RLS algorithm: In terms of number of operations per iteration, the

fast transversal RLS algorithm is less complex than the lattice RLS algorithms.

However, it suffers from numerical instability problems, which require careful attention

to prevent undesirable behaviour in practice.
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1.5 Real And Complex Forms Of Adaptive Filters 

There are some practical applications in which the filter input and its desired signal are

complex-valued. A good example of this situation appears in digital data transmission,

where the most widely used signalling techniques are phase shift keying (P5K) and

quadrature amplitude modulation (QAM). In this application, the baseband signal

consists of two separate components, which are the real and imaginary parts of a

complex-valued signal.

1.6 Applications 

Adaptive filters, by their very nature, are self-designing systems, which can adjust

themselves to different environments. As a result, adaptive filters find applications in

such diverse fields as control, communications, radar and sonar signal processing,

interference cancellation, active noise control, biomedical engineering, etc. The

common feature of these applications that brings them under the same basic formulation

of adaptive filtering is that they all involve a process of filtering some input signal to

match a desired response. The filter parameters are updated by making a set of

measurements of the underlying signals and applying that set to the adaptive filtering

algorithm such that the difference between the filter output and the desired response is

minimized in either a statistical or a deterministic sense. In this context, four basic

classes of adaptive filtering applications are recognized. Namely, modelling, inverse

modelling, linear prediction, and interference cancellation. In the rest of this chapter, we

present an overview of these applications.
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X(n) G(z)

e(n)

Figure 1.5 Adaptive system modeling

1.6.1 Modeling 

Figure 1. 5 depicts the problem of modelling in the context of adaptive filters. The aim is

to estimate the parameters of the model. W (z), of a plant, G (z). On the basis of some a

priori knowledge of the plant, G (z), a transfer function, W (z), with certain number of

adjustable parameters is selected first. The parameters of W (z) are then chosen through

an adaptive filtering algorithm such that the difference between the plant output, d(n),

and the adaptive filter output, v(n), is minimized.

An application of modelling. Which may be readily thought of, is system identification.

In most modern control systems the plant under control is identified on-line and the

result is used in a self-tuning regulator (STR) loop, as depicted in Figure 1.6 .

Another application of modelling is echo, cancellation. In this application an adaptive

filter is used to identify the impulse response of the path between the source from which

the echo originates and the point where the echo appears. The output of the adaptive

filter, which is an estimate of the echo signal, can then be used to cancel the undesirable

echo. The subject of echo cancellation is discussed further below in Section 1.6.4.

12


