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ABSTRACT 

An adaptive filter having self organızıng structure based on recursıve

algorithm make it possible to perform satisfactory filtering in an environment where

complete knowlege of the relevant signal characteristics are not available.

In block processing (or block implementation), a block of samples of the filter

input and desired output are collected and then processed together to obtain a block of

output samples.

There are many other applications in which adaptive filters may be usefully

employed. At this time it can be confidently stated that these filters have matured to the

point where their signal processing capabilities are well understood and documented in

the technical literature.

The transversal adaptive filters form a large, diverse, and versatile family,

which can satisfy the requirements of applications in many technical fields. Their

complexity can be tailored to the resources of the users, and their performance assessed

accordingly.
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INTRODUCUTION 

The subject of adaptive filters has matured to the point where it new constitutes an

important part of statistical signal processing. Whenever there is a requiretnent to process

signals that result from operation in an environment of unknown statistics, the use of an

adaptive filter offersan attractive solution to the problem as it usually provides a significant

improvement in performance over the use of a fixed filter designed by cdnventional

methods. Furthermore, the use of adaptive filters provides new signal processiqg

capabilities that would not be possible otherwise. We thus find that adaptive filters are
successfully applied in such diverse fields as communications, control, radar, sonar,

seismology, and biomedical engineering.

In chapter one we discuss in general terms linear filter, adaptive filter and

structure of adaptive filter.And we represent also adaptation approaches and real and

complex form of adaptive filter.We end this chapter with some applications of adaptive

filter.

Chapter two is representing the block LMS algorithm and the mathematic

background of block implementation of adaptive filter. And we end this chapter with the
FBLMS algorithm.

Chapter three is about the other applications of adaptive filter like modeling,
spectral estimation, and adaptive arrayprocessing.

Chapter four represents the covariance algorithm, sliding window algorithm,

the case ofcomplex signals, multidimensional input signal,,M-Dalgorithm based on all

prediction errors and filters of nonuniform length.
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Overview Of Adaptive Filter

CHAPTER 1 

OVERVIEW OF ADAPTIVE FILTER 

1.1 Linear Filters 

The term 'filter' is commonly used to refer to any device or system that takes a mixture

of particles/elements from its input and process them according to some specific rules to

generate a corresponding set of particles/elements at its output. In the context of signals

and systems, particles/elements are the frequency components of the underlying signals

and, traditionally, filters are used to retain all the frequency components that belong to a

particular band of frequencies, while rejecting the rest of them, as much as possible. In a

more general sense, the term filter may be used to refer to a system that reshapes the

frequency components of the input to generate an output signal with some desirable

features, and this is how we view the concept of filtering throughout the chapters, which

follow.

Filters (or systems, in general) may be either linear or non-linear. In this book, we

consider only linear filters and our emphasis will also be on discrete-time signals and

systems. Thus, all the signalswill be represented by sequences, such as x (n). The most

Basic feature of linear systems is that their behaviour is governed by the principle of

superposition. This means that if the responses of a linear discrete-time system to input

sequences xı (n) and x2 (n) are Yi (n) andy- (n), respectively, then the response of the

same system to the input sequence x (n) = ax, (n) + bx, (n), where a and bare arbitrary

constants, will be y (n) = ayı (n) ± by, (n). This property leads to many interesting
"

results in 'linear system theory'. In particular, a linear system is completely

characterized by its impulse response or the Fourier transform of its impulse response,

known as the transfer function. The transfer function of a system at any frequency is

equal to its gain at that frequency. In other words, in the context of our discussion

above, we may say that the transfer function of a system determines how the various

frequency components of its input are reshaped by the system. In particular, the filter is

used to reshape certain input signals in such a way that its output is a good estimate of
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the given desired signal. The process of selecting the filter parameters (coefficients) so

as to achieve the best match between the desired signal and the filter output is often

done by optimizing an appropriately defined performance function. The performance

function can be defined in a statistical or deterministic framework. In the statistical

approach, the most commonly used performance function is the mean-square value of

the error signal, i.e. the difference between the desired signal and the filter output. For

stationary input and desired signals, minimizing the mean-square error results in the

well-known Wiener filter, which is said to be optimum in the mean-square sense. In the

deterministic approach, the usual choice of performance function is a weighted sum of

the squared error signal. Minimizing this function results in a filter, which is optimum

for the given set of data. However, under some assumptions on certain statistical

properties of the data, the deterministic solution will approach the statistical solution,

i.e. the Wiener filter, for large data lengths.

1.2 Adaptive Filters 

As mentioned in the previous section, the filter required for estimating the given desired

signal can be designed using either the stochastic or deterministic formulations. In the

deterministic formulation, the filter design requires the computation of certain average

quantities using the given set of data that the filter should process. On the other hand,

the design of Wiener filter (i.e. in the stochastic approach) requires a priori knowledge

of the statistics of the underlying signals. Strictly speaking, a large number of

realizations of the underlying signal sequences are required for reliably estimating these

statistics. This procedure is not feasible in practice since we usually have only one

realization for each of the signal sequences. To resolve this problem, it is assumed that

the underlying signal sequences are ergodic, which means that they are stationary and

their statistical and time averages are identical. Thus, by using time averages, Wiener

filters can be designed, even though there is only one realization for each of the signal

sequences.
Although direct measurement of the signal averages to obtain the necessary information

for the design of Wiener or other optimum filters is possible, in most of the applications

the signal averages (statistics) are used in an indirect manner. The reasons for solving

the problem of adaptive filtering in an iterative manner are:
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Y (n ) = L w i (n )x (n - 1 ),
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(1. 1)
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1. Direct computation of the necessary averages and their application for computing the

filter coefficients requires the accumulation of a large amount of signal\

samples. Iterative solutions, on the other hand, do not require accumulation of signal

samples, thereby resulting in a significantamount of saving in memory.

2. The accumulation of signal samples and their post processing to generate the filter

output, as required in non-iterative solutions, introduces a large delay in the filter

output. This is unacceptable in many applications. Iterative solutions on the contrary, do

not introduce any significantdelay in the filter output.

3. The use of iterations results in adaptive Solutions with some tracking capability. That

is, if the signal statistics are changing with time, then the solution provided by an

iterative adjustment of the filter coefficientswill be able to adapt to the new statistics.

4. Iterative Solutions, in general, are much simpler to code in software or to implement

in hardware than their non-iterative counterparts.

1.3 Adaptive Filter Structures 

The most commonly used structure in the implementation of adaptive filters is the

transversal structure, Here, the adaptive filter has a single input, x (n), and an output, y

(n). The sequence d (n) is the desired signal. The output, y (n), is, generated as a linear

combination of the delayed samples of the input sequence, x (n), according to the

equation

Where the wı (n) s is the filter tap weights (coefficients) and N is the filter length. We.
refer to the input samples, x (n - i), for i = O, 1... N- 1, as the filter tap inputs. The tap

weights, the wi (n) s, which may vary in time, are controlled by the adaptation

algorithm.

Through various adaptive algorithms. Because of these points, the non-recursive filters

are the sole candidates in most of the applications of adaptive filters.

The FIR and IIR structures shown in Figures 1.2 and 1 .4 are obtained by direct

realization of the respective difference equations (1. 1) and (1.3). These filters may

3
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alternatively be implemented using the lattice structures. The lattice structures, in

general, are more complicated than the direct implementations. However, in certain

applications they have some advantages, which make them better candidates than the

direct forms. For instance, in the application of linear prediction for speech processing

where we need to realize all pole (IIR) filters, the lattice structure can be more easily

controlled to prevent possible instabilityof the filter.

The FIR and IIR filters that were discussed above are classified as linear filters since

their outputs are obtained as linear combinations of the present and past samples of

input and, in the case of the hR filter, the past samples of the output also. Although most

applications are restricted to the use of linear filters, non-linear adaptive filters become

necessary in some applications where the underlying physical phenomena to be

modelled are far from being linear. A typical example is magnetic recording where the

recording channel becomes non-linear at high densities as a result of the interaction

between the magnetization transitions written on the medium. The Volterra series

representation of systems is usually used in such applications. The output, y(n), of a

Volterra system is related to its input, x(n). According to the equation

y (n ) = w o.o (n ) + L w ı.ı (n )r (n - I ) +
1

L w 2,;, 1 (n )x (n - i )x (n - j ) + (1.2)
i, j

L w 2, i.j.k ( n )x (n - i )r (n - j )x (n - k ) + ..... ,
~ j, k

Where wo.o (n), the wı ı(n)s, the w2,u (n)s, the wı ı.rx (n)s, ... are filter coefficients. .

However, we note that all the summations in (1.2) may be put together and the Volterra
"'filter may be thought of as a linear combiner whose inputs are determined by the

delayed samples of x (n) and their cross-multiplications. Noting this, we find that the
"

extension of most of the adaptive filtering algorithms to the Volterra filters is

straightforward.
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1.4 Adaptation Approaches 

As introduced in Sections 1.1 and 1.2, there are two distinct approaches that have been

widelyused in the development of various adaptive algorithms; namely, stochastic and

deterministic. Both approaches have many variations in their implementations leading

to a rich variety of algorithms, each of which offers desirable features of its own. In this

section we present a review of these two approaches and highlight the main features of

the related algorithms.

1.4.1 Approach Based On Wiener Filter Theory 

According to the Wiener filter theory, which comes from the stochastic framework, the

optimum coefficients of a linear filter are obtained by minimization of its mean-square

error (MSE). As already noted, strictly speaking, the minimization of MSE requires

certain statistics obtained through ensemble averaging, which may not be possible in

practical applications. The problem is resolved using ergodicity so as to use time

averages instead of ensemble averages. Furthermore, to come up with simple recursive

algorithms, very rough estimates of the required statistics are used. In fact, the

celebrated least-mean-square (LMS) algorithm, which is the most basic and widely used

algorithm in various adaptive filtering applications, uses the instantaneous value of the

square of the error signal as an estimate of the MSE. It turns out that this very rough

estimate of the MSE, when used with a small step-size parameter in searching for the

optimum coefficients of the Wiener filter, leads to a very simple and yet reliable

adaptive algorithm.

The main disadvantage of the LMS algorithm is that its convergence behaviouris highly

dependent on the power spectral density of the filter input. When the filter input is

white, i.e. its power spectrum is fiat across the whole range of frequencies, the LMS

algorithm converges very fast. However, when certain frequency bands are not well

excited (i.e. the signal energy in those bands is relatively low), some slow modes of

convergence appear, resulting in very slow convergence compared with the case of

white input. In other words, to converge fast, the LMS algorithm requires equal

excitation over the whole range of frequencies. Noting this, over the years researchers
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have developed many algorithms, which effectively divide the frequency band of the

input signal into a number of subbands and achieve some degree of signal whitening by

using some power normalizationmechanism,prior to applyingthe adaptive algorithm.

In some applications, we need to use adaptive filters whose length exceeds a few

hundreds or even a few thousands of taps. Clearly, such filters are computationally

expensive to implement. An effective way of implementing such filters at a much lower

computational complexity is to use the fast Fourier transform (FFT) algorithm to

implement time domain convolutions in the frequency domain, as is commonly done in

the implementationoflong digital filters.

1.4.2 Method Of Least Squares 

The adaptive filtering algorithms whose derivations are based on the Wiener filter

theory have their origin in a statistical formulation of the problem. In contrast to this,

the method of least squares approaches the problem of filter optimization from a

deterministic point of view. As already mentioned, in the Wiener filter theory the

desired filter is obtained by minimizing the mean-square error (MSE), i.e. a statistical

quantity. In the method of least

x(n)

wo(n) WN-ı(n)

ern d(n)

Figure 1.2 Adaptive transversal filter

6
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y (n ) = L w i (n )x i (n ) .
i = o

(1.3)
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In some applications, such as beam forming, the filter tap inputs are not the delayed

samples of a single input. In such cases the structure of the adaptive filter assumes the

form shown in Figure 1 .3. This is called a linear combiner, since its output is a linear

combinationof the different signals received at its tap inputs:

Xo(n) X1(n)

Adaptation
Algorithm

e (n) d(n)

Figure 1.3 Adaptive linear combiner

7
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n
y(n)

Figure 1.4 the structure of an IIR filter

y(n-1)

y(n-2)

y(n-M+l)

Note that the linear combiner structure is more general than the transversal. The latter,

as a special case of the former, can be obtained by choosing xı(n) = x(n - i).

The structures of Figures 1.2 and 1.3 are those of the non-recursive filters, i.e.

computation of filter output does not involve any feedback mechanism.We also refer to

Figure 1 .2 as a finite-impulseresponse (FIR) filter, since its impulse response is of finite

duration in time. An infinite-impulse response (IIR) filter is governed by recursive
l\

equations such as (see Figure 1 .4)

i= o i-l

N -1 M -1
y(n)= L a;(n)x (n -i)+ L b;(n)y (n -i), (1.4)

Where a, (n) and bi (n) are the forward and feedback tap weights, respectively. IIR filters

have been used in many applications. However, as we shall see in the later chapters,

because of the many difficulties involved in the adaptation of hR filters, their

application in the area of adaptive filters is rather limited. In particular, they can easily

8
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become unstable since their poles may get shifted out of the unit circle (i.e. I z I = 1, in

the z-plane (see next chapter)) by the adaptation process. Moreover, the performance

function (e.g. mean-square error as a function of filter coefficients) of an hR filter

usually has many local minima points. This may result in convergence of the filter to

one of the local minima and not to the desired global minimumpoint of the performance

function. On the contrary, the mean-square error functions of the FIR filter and linear

combiner are well-behaved quadratic functions with a single minimum point which can

easily be found squares, on the other hand, the performance index is the sum of

weighted error squares for the given data, i.e. a deterministic quantity. A consequence

of this deterministic approach is that the least-squares-based algorithms, in general,

converge much faster than the LMS-based algorithms. They are also insensitive to the

power spectral density of the input signal. The price that is paid for achieving this

improved convergence performance is higher computational complexity and poorer

numerical stability.
Direct formulation of the least-squares problem results in a matrix formulation of its

solution, which can be applied on a block-by-block basis to the incoming signals. This,

which is referred to as the block estimation of the least-squares method, has some useful

applications in areas such as linear predictive coding of speech signals. However, in the

context of adaptive filters, recursive formulations of the least-squares method that

update the filter coefficients after the arrival of every sample of input are preferred, for

reasons that were given in Section 1 .2. There are three major classes of recursive least­

squares (RLS) adaptive filteringalgorithms:

• The standard RLS algorithm

• The QR-decomposition-basedRLS (QRD-RLS) algorithm

• Fast RLS algorithms
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1.4.3 The Standard RLS Algorithm 

The derivation of this algorithm involves the use of a well-known result from linear

algebra known as the matrix inversion lemma. Consequently, the implementation of the

standard RLS algorithm involves matrix manipulations that result in a computational

complexityproportional to the square of the filter length.

1.4.4 The QR-Decomposition-Based RLS (QRD-RLS) Algorithm 

This formulation of RLS algorithm also involves matrix manipulations, which lead to a

computational complexity that grows with the square of the filter length. However, the

operations involved here are such that they can be put into some regular structures

known as systolic arrays. Another important feature of the QRD-RLS algorithm is its

robustness to numerical errors as compared with other types ofRLS algorithms.

1.4.5 Fast RLS Algorithms 

In the case of transversal filters, the tap inputs are successive samples of the input

signal, x(n) (see Figure 1.2). The fast RLS algorithms use this property of the filter input

and solve the problem of least squares with a computational complexity which is

proportional to the length of the filter, thus the name fast RLS. Two types of fast RLS

algorithms may be recognized:

1. RLS lattice algorithms. These lattice algorithms involve the use of order-update as

well as the time-update equations. A consequence of this feature is that it results in

modular structures which are suitable for hardware implementationsusing the

Pipelining technique. Another desirable feature of these algorithms is that certain

variants of them are very robust against numerical errors arising from the use of finite

word lengths in computations.

2. Fast transversal RLS algorithm: In terms of number of operations per iteration, the

fast transversal RLS algorithm is less complex than the lattice RLS algorithms.

However, it suffers from numerical instability problems, which require careful attention

to prevent undesirable behaviour in practice.
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1.5 Real And Complex Forms Of Adaptive Filters 

There are some practical applications in which the filter input and its desired signal are

complex-valued. A good example of this situation appears in digital data transmission,

where the most widely used signalling techniques are phase shift keying (P5K) and

quadrature amplitude modulation (QAM). In this application, the baseband signal

consists of two separate components, which are the real and imaginary parts of a

complex-valued signal.

1.6 Applications 

Adaptive filters, by their very nature, are self-designing systems, which can adjust

themselves to different environments. As a result, adaptive filters find applications in

such diverse fields as control, communications, radar and sonar signal processing,

interference cancellation, active noise control, biomedical engineering, etc. The

common feature of these applications that brings them under the same basic formulation

of adaptive filtering is that they all involve a process of filtering some input signal to

match a desired response. The filter parameters are updated by making a set of

measurements of the underlying signals and applying that set to the adaptive filtering

algorithm such that the difference between the filter output and the desired response is

minimized in either a statistical or a deterministic sense. In this context, four basic

classes of adaptive filtering applications are recognized. Namely, modelling, inverse

modelling, linear prediction, and interference cancellation. In the rest of this chapter, we

present an overview of these applications.
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X(n) G(z)

e(n)

Figure 1.5 Adaptive system modeling

1.6.1 Modeling 

Figure 1. 5 depicts the problem of modelling in the context of adaptive filters. The aim is

to estimate the parameters of the model. W (z), of a plant, G (z). On the basis of some a

priori knowledge of the plant, G (z), a transfer function, W (z), with certain number of

adjustable parameters is selected first. The parameters of W (z) are then chosen through

an adaptive filtering algorithm such that the difference between the plant output, d(n),

and the adaptive filter output, v(n), is minimized.

An application of modelling. Which may be readily thought of, is system identification.

In most modern control systems the plant under control is identified on-line and the

result is used in a self-tuning regulator (STR) loop, as depicted in Figure 1.6 .

Another application of modelling is echo, cancellation. In this application an adaptive

filter is used to identify the impulse response of the path between the source from which

the echo originates and the point where the echo appears. The output of the adaptive

filter, which is an estimate of the echo signal, can then be used to cancel the undesirable

echo. The subject of echo cancellation is discussed further below in Section 1.6.4.

12
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.- --- ---

~ I
Design - Plant model .--•..

u(n) 
u 

-•.. Regulator x(n) - Plant y(n) ~

r ~ -

Model 

Figure 1.6 Block diagram of a self-tuningregulator

Channel 
parameters ı - I Decision 

directed 
Chnnel 
model 

~
training 

--ı I
Training 
sequence 

L--~

Figure 1. 7 An adaptive data receiver using channel identification

Non-ideal characteristics of communication channels often result in some distortion in

the received signals. To mitigate such distortion, channel equalizers are usually used.

This technique, which is equivalent to implementing the inverse of the channel

response, is discussed below in Section 1.6.2. Direct modelling of the channel, however,

has also been found useful in some implementationsof data receivers. For instance, data

receivers equipped with maximum likelihood detectors require an estimate of the

channel response. Furthermore, computation of equalizer coefficients from channel

13
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response has been proposed by some researchers since this technique has been found to

result in better tracking of time-varying channels. In such applications, a training pattern

is transmitted in the beginning of every connection. The received signal, which acts as

the desired signal to an adaptive filter, is used in a set-up to identify the channel, as

shown in Figure 1.7. Once the channel is identified and the normal mode of

transmission begins, the detected data symbols, (n), are used as input to the channel

model and the adaptation process continues for tracking possible variations of the

channel. This is known as the decision directed mode and is also shown in Figure 1. 7.

1.6.2 Inverse Modeling 

Inverse modelling, also known as disconsolation, is another application of adaptive

filters, which has found extensive use in various engineering disciplines. The most

widely used application of inverse modelling is in communications where an inverse

model (also called an equalizer) is used to mitigate the channel distortion. The concept

of inverse modelling has also been applied to adaptive control systems where a

controller is to be designed and cascaded with a plant so that the overall response of this

cascade matches a desired (target) response. The process of prediction, which will be

explained later, may also be viewed as an inverse modelling scheme (see Section 1.6.3).

In this section we concentrate on the application of inverse modeling in channel

equalization.

V(n)
Additive
noise

S(n) Ill
Dete,

~ t'

•.. Channel - ,,, \ - Equalizer =F···
symb•.. ...•.. H(z) •... \..l.J •..

ansmitted W(z)
.. •..

ted
ols

Tr
symbols

Threshold
detector

Figure 1.8 A baseband data transmission system channel equalizer

14
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1.6.3 Channel Equalization 

Depicts the block diagram of a base band transmission system equipped with a channel

equalizer. Here, the channel represents the combined response of the transmitter filter,

the actual channel, and the receiver front-end filter. The additive noise sequence, v(n),

arises from thermal noise in the electronic circuits and possible cross-talks from

neighboring channels. The transmitted data symbols, s (n), that appear in the form of

amplitude/phase-modulated pulses, are distorted by the channel. The most significant

among the different distortions is the pulse-spreading effect, which results because the

channel impulse response is not equal to an ideal impulse function, but rather a response

that is non-zero over many symbol periods. This distortion results in interference of the

neighbouring data symbols with one another, thereby making the detection process

through a simple threshold detector unreliable. The phenomenon of interference

between neighbouring data symbols is known as intersymbol interference (ISI). The

presence of the additive noise samples, v (n), further deteriorates the performance of

data receivers. The role of the equalizer, as a filter, is to resolve the distortion

introduced by the channel (i.e. rejection or minimization of ISI) while minimizing the

effect of additive noise at the threshold detector input (equalizer output) as much as

possible. If the additive noise could be ignored, then the task of equalizer would be

rather straightforward. For a channel H (z), an equalizer with transfer function W (z) =

1/H (z) could do the job perfectly, as this results in an overall channel-equalizer transfer

function H (z) W (z) = 1, which implies that the transmitted data sequence, s (n), will

appear at the detector input without any distortion. Unfortunately, this is an ideal

situation, which cannot be used, in most of'the practical applications.

We note that the inverse of the channel transfer function, i.e. 1 1H (z), may be non­

causal if H (z) happens to have a zero outside the unit circle, thus making it unrealizable

in practice. This problem is solved by selecting the equalizer so that H (z) W (z) z~,

where ~ is an appropriate integer delay. This is equivalent to saying that a delayed

replica of the transmitted symbols appears at the equalizer output.

We also note that the choice of W (z) = 1/H (z) (or W (z) v::, -~ 1H (z)) may lead to a

significant enhancement of the additive noise, v (n), in those frequency bands where the

magnitude ofH (z) is small (i.e. 1 1H (z) is large). Hence, in choosing an equalizer,
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We should keep a balance between residual hSh and noise enhancement at the equalizer

output.

V(n)

Training

S(n-fi)Y(n)S(n) X(n)Channel
H(z) =J= ....

D(n)

+
Training
sequence

Figure 1.9 Details of baseband data transmission system equipped with an

adaptive channel equalizer.

A Wiener filter is a solution with such a balance.

Figure 1. 9 presents the details of a base band transmission system, equipped with an

adaptive equalizer. The equalizer is usually implemented in the form of a transversal

filter. Initial training of the equalizer requires knowledge of the transmitted data

symbols (or, to be more accurate, a delayed replica of them) since they should be used

as the desired signal samples for adaptation of the equalizer tap weights. This follows

from the fact that the equalizer output should ideallybe the same as the transmitted data

symbols. We thus require an initialization period during which the transmitter sends a

sequence of training symbols that are known to the receiver. This is called the training

mode. Training symbols are usually specified as part of the standards and the

manufacturers of data modems should comply with these so that the modems of

different manufacturers can communicate ~ith one another. (The term modem, which is

an abbreviation for modulator and demodulator', is commonly used to refer to data

transceivers (transmitter and receiver).)

At the end of the training mode the tap weights of the equalizer would have converged

close to their optimal values. The detected symbols would then be similar to the trans­

mitted symbols with probability close to one. Hence, from then onwards, the detected

symbols can be treated as the desired signal for further adaptation of the equalizer so

that possible variations in the channel can be tracked. This mode of operation of the

equalizer is called the decision directed mode. The decision directed mode successfully

16
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works as long as the channel variation is slow enough so that the adaptation algorithm is

able to follow the channel variations satisfactorily. This is necessary for the purpose of

ensuring low symbol error rates in detection so that these symbols can still be used as

the desired signal.

The inverse modelling discussed above defines the equalizer as an approximation of z

1H (z), i.e. the target/desired response of the cascade of channel and equalizer is z -~, a

pure delay. This can be generalized by replacing the target response z -~ by a general

target response, say r(z). In fact, to achieve higher efficiency in the usage of the

available bandwidth, some special choices of T(z) * z-» are usually considered in

communication systems. Systems that incorporate such non-trivial target responses are

referred to as partial-response signalling systems. The detector in such systems is no

more the simple threshold detector, but one which can exploit the information that the

overall channel is

now T(z), instead of the trivial memoryless channel zt::... The Viterbi detector (Proakis,

1995) is an example of such a detector. The target response, F(z), is selected so that its

magnitude response approximatelymatches the channel response, i.e. re eiw)

over the range of frequencies of interest. The impact of this choice is that the equalizer,

which is now W (z) ~r(z)/H (z), has a magnitude response that is approximately equal

to one, thereby minimizing the noise enhancement. To clarify this further and also to

mention another application of inverse modeling.

1.6.4 Magnetic Recording 

I!'

The process of writing data bits on a magnetic medium (tape or disk) and reading them

back later is similar to sending data bits over a communication channel from one end of....
a transmission line and receiving them at the other end of the line. The data bits, which

are converted to signal pulses prior to recording, undergo some distortion due to the

non-perfect behaviour of the head and medium, as happens in communication channels

because of the non-ideal response of the channel. Additive thermal noise and

interference from neighbouring recording tracks Gust like neighbouring channels in

communications) are also present in the magnetic recording channels.
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Magnetic recording channels are usually characterized by their response to an isolated

pulse of width one bit interval, T. This is known as the dibit response, and in the case of

hard-disk channels it is usually modelled by the superposition of positive and negative

Lorentzian pulses, separated by one bit interval, T. In other words, the Lorentzian pulse

models the step response of the channel. The Lorentzian pulse is defined as

1
gJt)= (2tJ2

1+ -
{50

(1.5)

Where t50 is the pulse width measured at 50% of its maximum amplitude. The subscript

'a' in ga (t) and other functions that appear in the rest of this subsection is to emphasize

that they are analog (non-sampled) signals. The ratio D = t50/T is known as the

recording density. Typical values of D are in the range 1 to 3. A higher density means

that more bits are contained in one t50 interval, i.e. more 151. We may also note that t50

is a temporal measure of the recording density. When measured spatially, we obtain

another parameter, pit' 50 = tso/v, where v is the velocity of the medium with respect to

the head. Accordingly, for a given speed, v, the value of D specifies the actual number

of bits written on a length pw50 along the track on the magnetic medium.

Using (1.5), the dibit response of a hard-disk channel is obtained as the response of the

channel to a sequences (n) of data bits is then given by the convolution sum

Thus, the dibit response, ga (t), is nothing but the impulse response of the recording

channel.

Figures 1 . 1 O(a) and (b) show the dibit (time domain) and magnitude (frequency domain)

responses, respectively, of the magnetic channels (based on the Lorentzian model) for

densities D = 1, 2 and 3. From Figure 1. lO(b) we note that most of the energy in the

read-back signals is concentrated in a midband range between zero and an upper-limit

around 1 /2T. Clearly, the bandwidth increases with increase in density. In the light of

our previous discussions, we may thus choose the target response, T(z), of the equalizer

so that it resembles a bandpass filter whose bandwidth and magnitude response are

close to that of the Lorentzian dibit responses.

18
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In magnetic recording, the most commonlyused partial responses (i.e. target responses)

are given by the class IV response

Where ~' as before, is an integer delay and K is an integer greater than or equal to one.

As the recording density increases, higher values of K will be required to match the

channel characteristics. But, as K increases, the channel length also increases, implying

higher complexity in the detector.

1.6.5 Linear Prediction 

Prediction is a spectral estimation technique that is used for modelling correlated

random processes for the purpose of finding a parametric representation of these

processes. In general, different parametric representations could be used to model the

processes. In the context of linear prediction, the model used is shown in Figure 1. 1 1.

Here, the random process, X(n), is assumed to be generated by exciting the filter G (z)

with the input u (n). Since G (z) is an all-pole filter, this is known as autoregressive

(AR) modelling. The choice/type of the excitation signal, u (n),is application dependent

and may vary depending on the nature of the process being modelled. However, it is

usually chosen to be a white process.
"'Other models used for parametric representation are moving average (MA) models,

where G (z) is an all-zero (transversal) filter, and autoregressive moving average
"

(ARMA) models, where G (z) has both poles and zeros. However, the use of AR model

is more popular than the other two.

The rationale behind the use of AR modelling may be explained as follows. Since the

samples of any given non-white random signal, x (n), are correlated with one another,

these correlations could be used to make a prediction of the present sample of the

process, x (n), in terms of its past samples, x (n - 1), x (n -2) ... , x (n - N), as in

Figure 1. 12. Intuitively, such prediction improves as the predictor length increases.
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However, the improvement obtained may become negligible once the predictor length,

N. exceeds a certain value, which depends upon the extent of the correlation in the

given process. The prediction error, e (n), will then be approximately white. We now

note that the transfer function between the input process, x (n), and the prediction error,

e (n), is
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Figure 1.10 Time and frequency domain responses of magnetic recording channels for

i =1 densities D = 1, 2 and 3, modeled using the Lorentzian pulse. (a) Dibit response. (b)

Magnitude response of dibit response.
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1
u(n) 1 ~L:,a,z-'

x(n) --,,.

Figure 1.11 Autoregressive modeling of a random process

Where the aıs are the predictor coefficients. Now, if a white process, u(n), with similar

statistics as e(n) is passed through an all-pole filter with the transfer function,

As in Figure 1. 11, then the generated output. x (n), will clearly be a process with the

same statistics as x(n).

With the background developed above, we are now ready to discuss a few applications

of adaptive prediction.

1.6.6 Autoregressive Spectral Analysis 

In certain applications we need to estimate the power spectrum of a random process. A
ill

trivial way of obtaining such an estimate is to take the Fourier transform (discrete

Fourier transform (DFT) in the case of discrete-time processes) and use some averaging
"

(smoothing) technique to improve the estimate. This comes under the class of non-

parametric spectral estimation techniques. When the number of samples of the input is

limited, the estimates provided by non-parametric spectral estimation techniques will

become unreliable. In such cases the parametric spectral estimation, as explained above,

may give more reliable estimates.

As mentioned already, parametric spectral estimation could be done by using AR, MA

or ARMA models. In the case of AR modelling we proceed as follows. We first choose
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a proper order, N, for the model. The observed sequence, x (n), is then applied to a

predictor structure similar to Figure 1.12 whose coefficients, the aıs, are optimized by

minimizingthe prediction error, e (n). Once the predictor coefficientshave converged.

x(n)

Figure 1.12 Linear predictor

Where No is an estimate of the power of the prediction error, e (n). This follows from

the model of Figure 1. 11 and the fact that after convergence of the predictor, e (n) is

approximatelywhite.

1.6.7 Adaptive Line Enhancement 

Adaptive line enhancement refers to the situation where a narrow-band signal embedded

in a wide-band signal (usually white) needs to be extracted. Depending on the appli­

cation, the extracted signal may be the signal of interest, or an unwanted interference

that should be removed. Examples of the latter case are a spread spectrum signal that

has been corrupted by a narrow-band signal and biomedical measurement signals that

have been corrupted by the 50/60 Hz power-line interference.

The idea of using prediction to extract a narrow-band signal when mixed with a wide­

band signal follows from the following fundamental result of signal analysis: successive

samples of a narrow-band signal are highly correlated with one another, where;s there is

almost no correlation between successive samples of a wide-band process. Because of

this, if a process x (n) consisting of the sum of narrow-band and wide-band processes is

applied to a predictor, then the predictor output, .x (n), will be a good estimate of the

narrow-band portion of x (n). In other words, the predictor will act as a narrow-band

filter which rejects most of the wide-band portion of x (n) and keeps (enhances) the

narrow-band portion, thus the name line enhancer.
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We also note that in the applications where the narrow-band portion of x (n) has to be

rejected the difference between x (n) and 4n), i.e. the estimation error, e (n), is taken as

the system output. In this case the transfer function between the input, x (n), and the

output, e (n), will be that of a notch filter.

1.6.8 Speech Coding 

Since the advent of digital signal processing, speech processing has always been one of

the focused research areas. Among various processing techniques that have been applied

to speech signals, linear prediction has been found to be the most promising technique,

leading to many useful algorithms. In fact, most of the theory of prediction was

developed in the context of speech processing.

There are two major speech-coding techniques that involve linear prediction. Both

techniques aim at reducing the number of bits used for every second of speech to

achieve saving in storage and/or transmission bandwidth. The first technique, which is

categorized under the class of source coders, strives to produce digitized voice data at

low bit rates in the range 2-1O kb/s. The synthesized speech, however, is not of a high

quality. It sounds more synthetic, lacking naturalism. Hence, it becomes difficult to

recognize the speaker. The second technique, which comes under the class of waveform

coders, gives much better quality at the cost of a much higher bit rate (typically. 32

kb/s).
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Figure 1.13 Speech-production model

The main reason for linear prediction being widely used in speech coding is that speech

signals can be accurately modelled, as in Figure 1.13. Here, the all-pole filter is the

vocal tract model. The excitation to this model, u (n), is either a white noise in the case

of unvoiced sounds (fricatives such as /s/ and /fl), or an impulse train in the case of

voiced sounds (vowels such as /il). The period of the impulse train, known as the pitch

period, and the power of the white noise, known as the excitation level, are parameters

of the speech model, which are to be identified in the coding process.

1.6.9 Linear Predictive Coding (LPC)

!il

Speech signal is a highly non-stationary process. The vocal-tract shape undergoes

variations to generate different sounds in uttering each word. Accordingly, in LPC, to...
code a speech signal, it is first partitioned into segments' of 10-30 ms long. These

segments are short enough for the vocal-tract shape to be nearly stationary, so that the

parameters of the speech-production model of Figure 1.13 could be assumed fixed.

Then, the following steps are used to obtain the parameters of each segment:

1. Using the predictor structure shown in Figure 1.12, the predictor coefficients. the a,s.

are obtained by minimizingthe prediction error e (n) in the least-squares sense. for the

given segment.
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2.The energy of the prediction error e (n) is measured. This specifies the level of

excitation required for synthesizingthis segment.

3. The segment is classifiedas voiced or unvoiced.
4. In the case of voiced speech, the pitch period of the segment is measured.

The following parameters are then stored or transmitted for every segment, as the coded

speech: (i) the predictor coefficients, (ii) the energy of the excitation signal, (iii) voiced!

unvoiced classification, and (iv) the pitch period in the case of voiced speech. These

parameters can then (when necessary) be used in a model similar to Figure 1.13 to

synthesizethe speech signal.

1.6.10 Waveform Coding. 

The most direct way of waveform coding is the standard pulse code modulation (PCM)

technique, where the speech signal samples are directly digitized

a prescribed number of bits to generate the information bits associated with the coded

speech. Direct quantization of speech samples requires relatively a large number of bits

(usually 8 bits per sample) in order to be able to reconstruct the original speech with an

acceptable quality.
A modification of the standard PCM, known as differential pulse code modulation

(DPCM), employs a linear predictor such as Figure 1. 12 and uses the bits associated

with the quantized samples of the prediction error, e (n), as the coded speech. The

rationale here is that the prediction error, e (n), has a much smaller variance than the

input, x (n). Thus, for a given quantization level, e (n) may be quantized with fewer bits,

as compared with x (n). Moreover, sine~ the number of information bits per every

second of the coded speech is directly proportional to the number of bits used per

sample, the bit rate of the DPCM will be less compared with the standard PCM. ...

The prediction filter used in DPCM can be fixed or be made adaptive. A DPCM system

with an adaptive predictor is called an adaptive DPCM (ADPCM). In the case of speech

signals, use of the ADPCM results in superior performance as compared with the case

where a non-adaptive DPCM is used. In fact, the ADPCM has been standardized and

widely used in practice (International Telecommunication Unit OITU)

Recommendation G.726.
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Figure 1.14 depicts a simplified diagram of the ADPCM system, as proposed in ITU

Recommendation G. 726. Here, the predictor is a six-zero, two-pole adaptive IIR filter.

The coefficients of this filter are adjusted adaptively so that the quantized error, e (rı), is

minimized in the mean-square sense. The predictor input, x (n), is the same as the

original input, x (n), except for the quantization error in e (n). To understand the joint

operation of the encoder and decoder in Figure 1.14, note that the same signal, e (n), is

used as inputs to the predictor structures at the encoder and decoder. Hence, if the

stability of the loop consisting of the predictor and adaptation algorithm could be

guaranteed, then the steady state value of the reconstructed speech at the decoder, i.e.

x'(n), will be equal to that at the encoder. i.e. 4n), since non-equal initial conditions of

the encoder and decoder loops will die away after their transient phase.

~e'(n)
~

~

quantizer '(n)-~\l) ...
0,

x'(n)

predictor -...•

Adaptive -~
algorithm -~

I

x(n)

--- .... .............. , ..

~
, r

- 11'\
"'\l)

predictor _ x(n)
...•

Adaptive -~
algorithm -....•

Figure 1.14 ADPCM encoder-decoder~
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Figure 1.15 Interference cancellation

1.6.11 Interference Cancellation

Interference cancellation refers to situations where it is required to cancel an interfering

signal/noise from the given signal, which is a mixture of the desired signal and the

interference. The principle of interference cancellation is to obtain an estimate of the

interfering signal and subtract that from the corrupted signal. The feasibilityof this idea

relies on the availability of a reference source from which the interfering signal

originates.

Figure 1. 15 depicts the concept of interference cancellation, in its simplest form. There

are two inputs to the canceller: primary and reference. The primary input is the
J

corrupted signal, i.e. the desired signal plus interference. The reference input, on the

other hand, originates from the interference source only. The adaptive filter is adjusted

so that a replica of the interference signal that is present in the primary signal appears at

its output, y (n). Subtracting this from the primary input results in an output that is

cleared from interference, thus the name interference cancellation.

We note that the interference cancellation configuration of Figure 1. 15 is different from

the previous cases of adaptive filters, in the sense that the residual error (which was

discarded in other cases) is the cleaned-up signal here. The desired signal in the

previous cases has been replaced here by a noisy (corrupted) version of the actual

desired signal. Moreover, the use of the term 'reference' to refer to the adaptive filter

input is clearly related to the role of this input in the canceller.
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In the rest of this section we present some specific applications of interference

cancelling.

1.6.12 Echo Cancellation In Telephone Lines

Echoes in telephone lines mostly occur at points where hybrid circuits are used to

convert four-wire networks to two-wire networks. Figure 1.16 presents a simplified

diagram of a telephone connection network, highlightingthe points where echoes occur.

The two-wires at the ends are subscriber loops connecting customers' telephones to

central offices. It may also include portions of the local network. The four-wires, on the

Central switching offices and
inter-office trunk lines

Hybrid

Four-wire

Figure 1.16 Simplifieddiagram of a telephone network

Other hand, are carrier systems (trunk lines) for medium- to long-haul transmission. The

distinction is that the two-wire segments carry signals in both directions on the sameı..
lines, while in the four-wire segments signals in the two directions are transmitted on

two separate lines. Accordingly, the role of the hybrid circuit is to separate the şignals in

the two directions. Perfect operation of the hybrid circuit requires that the in-coming

signal from the trunk lines should be directed to the subscriber line and that there be no

leakage (echo) of that to the return line. In practice, however, such ideal behaviour

cannot be expected from hybrid circuits. There would always be some echo on the

return path. In the case of voice communications (i.e. ordinary conversation on

telephone lines), the effect of the echoes becomes more obvious (and annoying to the

speaker) in long-distance calls where the delay with which the echo returns to the

28



Two-wire 

Overview Of Adaptive Filter

speaker may be in the range of a few hundred milliseconds.In digital data transmission,

both short- and long-delay echoes are serious.

As noted earlier, and also can clearly be seen from Figure 1. 17, the problem of echo

cancellation may be viewed as one of system modelling. An adaptive filter is put

between the in-coming and out-going lines of the hybrid. By adapting the filter to

realize an approximation of the echo path, a replica of the echo is obtained at its output.

This is then subtracted from the out-going signalto clear that from the undesirable echo.

Echo cancellers are usually implemented in transversal form. The time spread of echoes

in a typical hybrid circuit is in the range 20-30 ms. If we assume a sampling rate of 8

kHz for the operation of the echo canceller, then an echo spread of 30ms requires an

Hybrid 
Echo 

Canceller 

Figure 1.17 Adaptive echo canceller
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Figure 1.18 Data echo canceller

Adaptive filter with at least 240 taps (30 ms x 8 kHz). This is a relatively long filter,

requiring a high-speed digital signal processor for its realization. Frequency domain

processing is often used to reduce the high computational complexityof long filters.

The echo cancellers described above are applicable to both voice and data transmission.

However, more stringent conditions need to be satisfied in the case of data transmission.

To maximize the usage of the available bandwidth, full-duplex data transmission is

often used. This requires the use of a hybrid circuit for connecting the data modem to

the two-wire subscriber loop, as shown in Figure 1.18. The leakage of the transmitted
Iii

data back to the receiver input is thus inevitable and an echo canceller has to be added,

as indicated in Figure 1.18. However, we note that the data echo cancellers are ...different

from the voice echo cancellers used in central switching offices in many ways. For

instance, since the input to the data echo canceller is data symbols, it can operate at the

data symbol rate, which is in the range of 2.4-3 kHz (about three times smaller than the

8 kHz sampling frequency used in voice echo cancellers). For a given echo spread, a

lower sampling frequency implies fewer taps for the echo canceller. Clearly, this greatly

simplifies the implementation of the echo canceller. On the other hand, the data echo

cancellers require a much higher level of echo cancellation to ensure the reliable
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transmission of data at higher bit rates. In addition, the echoes returned from the other

side of the trunk lines should also be taken care of.

1.6.13 Acoustic Echo Cancellation 

The problem of acoustic echo cancellation can be best explained by referring to Figure

1.19, which depicts the scenario that arises in teleconferencing applications. A

loudspeaker in a room broadcasts the speech signal from a far-end speaker, received

through a communication channel, and a microphone picks up its echo. This echo must

be cancelled to prevent its feedback to the far-end speaker. The microphone also picks

up the near-end speaker's speech and possible background noise, which may exist in the

room. An adaptive transversal filter with sufficientlength is used to model the

receive 

loudspeaker

AEC

+transmit

Figure 1.19 Acoustic echo cancellation.Reprinted from farhang- boroujent
lo

Acoustics of the room. A replica of the loudspeaker echo is then obtained and

subtracted from the microphone signal prior to transmission.

Clearly, the problem of acoustic echo cancellation can also be posed as one of system

modelling. The main challenge here is that the echo paths spread over a relatively long

length in time. For typical office rooms, echoes in the range 100-250 ms spread is

quite co:rnıpon. For a sampling rate of S kHz, this would mean 800-2000 taps! Thus,

the main problem of acoustic echo cancellation 15 that of realizing very long adaptive

filters. In addition. since speech is a low-pass signal, it becomes necessary to use special

algorithms to ensure fast adaptation of the echo canceller.
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1.6.14 Active Noise Control

Active noise control (ANC) refers to situations where acoustic antinoise waves are

generated from electronic circuits. The ANC can be best explained by the following

example.

Noise

Source A B C

ANC
FİLTER

Adaptive
algorithm

Figure 1.20 Active noise cancellation in a narrow duct

A well-exainlned application of ANC is cancellation of noise in narrow ducts, such as

exhaust pipes and ventilation systems, as illustrated in Figure 1.20. A microphone at

position a picks up the acoustic noise traveling along the duct. This is used as reference
Iii

Input to an ANC filter whose parameters are adapted so that its output, after conversion

to an acoustic wave (through the cancelling loudspeaker), is equal to the negativ~ value

of the duct noise at position B, thereby cancellingthat. The residual noise, picked up by

the error microphone at position C. is the error signal used for adaptation of the ANC

filter.
Comparing this ANC set-up with the interference cancellation set-up given in Figure

1.15, we may note the following. The source of interference here is the duct noise, the

reference input is the noise picked up by the reference microphone, the desired output

(i.e. what we wish to see after cancellingthe duct noise) is zero. and the primary input is
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the duct noise reaching position B. Accordingly, the role of the ANC filter is to model

the response of the duct from position A to B.

The above description of ANC assumes that the duct is narrow and the acoustic noise

waves are travelling along the duct, which is like a one-dimensional model. The

acoustic models of wider ducts and large enclosures, such as cars and aircraft, are

usually more complicated. Multiple microphones/loudspeakers are needed for

successful implementation of ANCS in such enclosures. The adaptive filtering problem

is then that of a multipl-input-multiple-output system. Nevertheless, the basic principle

remainsthe same, i.e. the generation of antinoise to cancel the actual noise.

1.6.15 Beamforming 

In the applications that have been discussed so far the filters/predictors are used to

combine samples of the input signal(s) at different time instants to generate the output.

Hence, these are classified as temporal filtering. Beamforming, however, is different

from these in the sense that the inputs to a beamformer are samples of incoming signals

at different positions in space. This is called spatial filtering. Beamforming finds

applications in communications, radar and sonar and also imaging in radar and medical

engıneenng.

In spatial filtering, a number of independent sensors are placed at different points in

space to pick up signals coming from various sources (see Figure 1.21). In radar and

(beamformerfilter) 

Figure 1.21 Spatial filtering (beam forming)

Communications, the signals are usually electromagnetic waves and the sensors are thus

antenna elements. Accordingly. The term antenna array is often used to refer to these
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plications of beamformers. In sonar applications, the sensors are hydrophones

esignedto respond to acoustic waves.
In a beamformer, the sample of signals picked up by the sensors at a particular instant of

time constitutes a snapshot. The samples of snapshot (spatial samples) play the same

role as the successive (temporal) samples of input in a transversal filter. The

beamformer filter linearly combines the sensors' signals so that signals arriving from

some particular directions are amplified, while signals from other directions are

attenuated. Thus, in analogy with the frequency response of temporal filters, spatial

filters have responses that vary according to the direction of arrival of the in-coming

signal(s). This is given in the form of a polar plot (gain vs. angle) and is referred to as

the beam pattern.
In many applications of beamforiners. The signals picked up by sensors are narrow­

band having the same carrier (centre) frequency. These signals differ in their directions­

of-arrival, which are related to the location of their sources. The operation of beamfor­

mers in such applications can be best explainedby the following example.

Consider an antenna array consisting of two omni-directional elements A and B, as

presented in Figure 1.22. The tone (as an approximation to narrow-band) signals s (n) =

a cos wen and v (n) = 13 cos won arriving at angles O and 0o (with respect to the line

perpendicular to the line connecting A and B), respectively, are the inputs to the array

(beamformer) filter which consists of a phase-shifter and a subtracter. The signal s (n)

Primary input

reference
innııt

Figure 1.22 A two-element beamformer

Arrives at elements A and B at the same time, whereas the arrival times of signal v (n)

at A and B are different.We may thus write
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Where the subscripts A and B are used to denote the signals picked up by elements A

and B, respectively, and p is the phase-shift arising from the time delay of arrival of v(n)

at element A with respect to its arrival at element B.

Now, if we assume that s (n) is the desired signal and v (n) is an interference, then, by

inspection, we can see that if the phase-shifter phase is chosen equal to p. then the

interference, v (n), will be completely cancelled by the bearnforiner. The desired signal,

on the other hand, reaches the bearnformer output as a (cos roon - cos (roon - cp)). Which

is non-zero (and still holding the information contained in its envelope, ü) when cp =ı=. O,

i.e. when the interference direction is different from the direction of the desired signal.

This shows that we can tune a bearnformer to allow the desired signal arriving from a

direction to pass through it, while rejecting the unwanted signals (interferences) arriving

from other directions.

The idea of using a phase-shifter to adjust the beam pattern of two sensors. is easily

extendible to the general case of more than two sensors. In general, by introducing

appropriate phase shifts and also gains at the output of the various sensors and summing

up these outputs, we can realize any arbitrary' beam pattern. This is similar to the

selection of tap weights for a transversal filter so that the filter frequency response

becomes a good approximation to the desired response. Clearly, by increasing the

number of elements in the array, better approximations to the desired beam pattern can

be achieved.

The final point that we wish to add here is that in cases where the input signals to the

bearnformer are not narrow-band, a combination of spatial and temporal filtering needs

to be used. In such cases, spatial information is obtained by having sensors at different

positions in space, as was discussed above. The temporal information is obtained by

using a transversal filter at the output of each sensor. The output of the broadband

beam-former is the summation of the outputs of these transversal filters.
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CHAPTER2 

BLOCK IMPLEMENTATION OFADAPTIVE FILTERS 

2.1 Introduction 

There are certain applications of signal processing that require adaptive filters the

lengths of which exceed a few hundred or even a few thousand taps. For instance, to

prevent the return of speaker echo to the far end of the telephone line, in the application

of hand-free telephony, the use of an acoustic echo canceller the length of which

exceeds a few thousand taps is not uncommon. Other applications, such as active noise

control and the equalization of some communication channels, may also require

adaptive filters with exceedingly long lengths. In such applications we find that even the

conventional LMS algorithm, which is known for its simplicity, is computationally

expensiveto implement.
In this chapter we show how bldck processing of the data samples can significantly

reduce the computational complexity of adaptive filters. In block processing (or block

implementation), a block of samples of the filter input and desired output are collected

and then processed together to obtain a block of output samples. Thus, the process

involves serial to parallel conversion of the input data, parallel processing of the

collected data, and parallel to serial conversion of the generated output data. This is

illustrated in Figure 2.1. The computational complexity of the adaptive ifıter can then be

reduced significantly through elegant parallel processing of the data samples. We note

that the parallel processing involved in Figure 2.1 is repeated only after the collection of

every block of data samples. Thus, a good measure of the computational complexity in

a block processing system is given by the number of operations required to process one

block of data divided by the block length. We may then note that the sharing of the

processing time among the samples in each block is the key to achieving high

computational efficiency.

In this chapter we discuss an efficient technique for block processing of data samples in

the adaptive filtering context. This involves a special implementationof the LMS
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algorithm which is called the block LMS (BLMS). We introduce a computationally

efficient implementation of the BLMS algorithm in the frequency domain. This is called

the fast BLMS (FBLMS) algorithm. The high computational efficiency of the FBLMS

algorithm is achieved by employing the following result from the theory of digital

signal processing. Linear convolution of time domain sequences can be efficiently

implemented using frequency domain processing. In particular, the linear convolution

of an indefinite

Figure 2.1 Schematic of a block processing System

length sequence, x(n), with a finite length sequence, h(n) (which may be that of the

impulse response of a FIR filter), is obtained by partitioning x(n) into a set of

overlapping finite duration blocks, finding the circular convolution of h(n) (appended

with some extra zeros) with these blocks, and then choosing the portions of the circular

convolutions that match the desired linear convolution samples. The circular convolu­

tions can be very efficientlyperformed in the frequency domain, using the properties of

the discrete Fourier transform (DFT).
Throughout this chapter we adopt the following notations. As in the previous chapters,

"bold lower-case letters represent vectors, bold upper-case letters denote matrices, and

non-bold lower-case letters represent scalars. As before, we use n as the time (sample)
..•

index. The letter k is reserved for block index. The subscript - is used to refer to

frequency domain signals, e.g. the DFT of the time domain vector xis denoted as x-. In

the derivations that follow we frequently need to extend the dimensions of vectors and

matrices to some certain dimensions by appending zeros. We use O (in bold) to refer to

zero vectors and zero matrices and the dimensions of these zero vectors and/or matrices

will be clear from the context,
Our discussion in this chapter is limited to the case where the filter input, x(n), and the

desired output, d(n), are real-valued processes. However, we note that the frequency
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domain equivalent of these processes is complex-valued and hence the LMS recursion

that is used is the complex LMS algorithm.

2.2 Block LMS Algorithm 

The conventional LMS algorithm that was introduced in Chapter 6 uses the following

recursion to adjust the tap weights of an adaptive filter:

W(n +1) = w(n) + 2µe(n)x(n) (2.1)

where x(n) = [x(n) x(n-1).. .x(n-N+l)f and w(n)=[w0(n) wı(n) ...Wn-ı(n)]T are the

columnvectors consisting of the filter tap inputs and tap weights
respectively, e(n) = d(n) - y(n) is the output error, d(n) and y(n) = wT(n)x(n) are the]

desired and actual output of the filter, respectively, andµ is the step-size parameter We

also recall that the conventional LMS algorithm is a stochastic implementation of the

steepest-descent method using the instantaneous gradient vector

Vwe\n) = -2e(n)x(n). (2.2)

The block LMS (BLMS) algonthm works on the basis of the following strategy. The

filter tap weights are updated once after the collection of every block of data samples.

The gradient vector used to update the filter tap weights is an average of the

instantaneous gradient vectors of the form (8.2) which are calculated during the current
"block. Using k to denote the block index, the BLMS recursion is obtained as

where L is the block length and µB is the algorithm step-size parameter. We also note

that for the computation of the output error samples e(kL + i) = d(kL + i) -y(kL+i);

for i = 0.1... L - 1, the output samples y(kL + i) = wT(k)x(kL+ i) are calculated using

the update of the filter tap-weight vector, w(k), from the previous block.
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The derivations presented in the following sections make use of, to a large extent, the

vector formulation of the BLMS algorithm. Hence, we now present this formulation.

Define the matrix

X(k) = [x(kL) x(kL+ 1) ... x(kL+L-l)]T, (2.4)

and the column vectors

T
d(k) = [d(kL) d(kL + 1) ... d(kL+L-1)] (2.5)

y(k) = [y(kL) y(kL +1) ... y(kL+L-l)]T (2.6)

e(k) = [e(kL) e(kL +1) ... e(kL+L-l)]T (2.7)

and note that

y(k) = X(k)w(k) (2.8)

and

We also note that

L-1L e(kL + i)x(kL + i) = x: (k)e(k).
i=O

(2. 10)

Substituting (2. 10) in (2.3) we obtain

w(k + 1) = w(k) + 2µB X\k)e(k).
L

(2. 11)
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Equations (2.8) (2.9) and (2.11), which correspond to filtering, error estimation and tap­

weight vector updating, respectively, define one iteration of the BLMS algorithm.

On the basis of our background from the method of steepest-descent and, also, the

conventionalLMS algorithm, the following comments may be made intuitively:

1. The convergence behaviour of the BLMS algorithm is governed by the eigenvalues

of the correlation matrix R = E[x(n)xT(n)].This follows from the fact that similarto the

conventional LMS algorithm, the BLMS algorithm is also a stochastic implementation

of the steepest-descent method.
2.The BLMS algorithm has N modes of convergence which are characterized by the

time constants

1 fi .TB,i=
4

.ıl, orı=0,1, .... ,N-1,
µB I

(2.12)

where the Aıs are the eigenvalues of the correlation matrix R. These time constants are

in the unit of iteration (block) interval.
3. Averaging the instantaneous (stochastic) gradient vectors as was done in the BLMS

algorithm results in gradient vectors with a lower variance, as compared with that in the

conventional LMS algorithm. This allows the use of a larger step-size parameter for the

BLMS algorithm compared to the conventional LMS algorithm. For block lengths. L,

comparable or less than the filter length. N, and small misadjustments, in the range of

10% or less, misad)ustment, MB, of the BLMS algorithm can be approximated by the

following expression:

"'µBMB~-tr[R]
L

(2.13)

This result is derived in Appendix 8A.

And

where µ is the step-size parameter of the conventional LMS algorithm. Substitutint

(2.14) in (2.12), we get
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1- --
TB,ı- 4µA; sample interval (2. 16)

We conclude that the convergence behaviour of BLMS and conventional LMS

algorithms are the same.

2.3 Mathematical Background 

The mathematical and signal processing tools required for the rest of this chapter are

briefly reviewed in this section. In particular, we discuss how time domain linear

convolutions can be efficiently performed using discrete Fourier transform. We also

introduce circular matrices and review some of their properties that are relevant to our

studv ofBLMS alttonthms.

2.3.1 Linear Convolution Using The Discrete Fourier Transtorm 

We consider the filtering of a sequence x(n) through a FIR filter with coefficients wo,

wı, ... WN-ı . This involves computation of the linear convolution

N-1

y(n) = Lw;x(n - i).
i=O

(2. 17)

This process requires N multiplications and N - 1 additions for computing every sarr of

the output, y(n). When N is large, the samples of y(n) can be obtained with a redu

number of multiplicationsand additions, as discussed below.
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Let us define the column vector x(k) of length N' = N + L - 1 as

x(k)=[x(kL-N+l) x(kL-N+2) ... x(kL+L-l)]T (2. 18)

and w(k) oflength N' as

where w(k) = [wo(k) w2(k) .... WN-ı(k)f is the filter tap-weight vector, and O rele a

column vector consisting of L - 1 zeros. In order to maintain uniformity in derivations

of the subsequent sections. the block index k has been added to the filtel weights.

indicating that the weights vary only from block to block, as happens ill implementation

of the ELMS algorithm.
From the properties of the DFT we know that the circular convolution ofw(k) and x(k)

can be obtained by transforming both vectors to their respective frequency dor

equivalents (using the DFT), performing an element-by-element multiplication or

transformed samples, and transforming the result back to the time domain (usint inverse

DFT (ID FT)). This process can be efficiently implemented by using the EFT inverse

FET (IFFT) algorithms..Examining the circular convolution of w(k) and reveals that

only the last L elements of the result coincide with the correspon elements of the linear

convolution (2. 17).
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*
x(kL - N + 1) x(kL + L - 1) x(kL + L - 2)

x(kL - N + 2) x(kL - N + 1) x(kL + L - 1)

x(kL-N +2)
x(kL-N +3)

* x(kL-1)
=I

x(kL)
x(kL+l)

x(kL-2)
x(kL-1)

x(kL)

x(kL-3)
x(kL-2)
x(kL- 1)

-
y(kL)

y(kL+ 1)
x(kL + 1) I I wN-ı (k)
x(kL +2) O

(2.20)

İn (2.20) the elements represented by asterisks correspond to circular convoll results

which do not coincide with linear convolution samples, as required by (2. 17)

Careful examination of the summations related to these elements reveals that the

samples experience some discontinuity in their order. The procedure explained by

(2.20) is commonly known as the overlap-save method. This name reflects the fact that

in each block of input, x(k) consists of L new samples and N - 1 overlapped samples

from the previous bock(s). Another equally efficient method for the computation of

linear convolutions using DFT is the overlap - add method. However, the overlap-add

method has been found to be computationally efficient than the overlap-save method

when applied to the implementation ofBLMS algorithm.
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2.3.2 Circular Matrices 

Circular matrices are used extensively in the derivation and analysis of the fast BLMS.

(FBLMS) algorithm. Hence, it is verv useful as well as necessary to have a go

understanding of the properties of these matrices before we start our discussion of the

FBLMS algorithm.

Consider the M x M circular matrix

ao aM-1 aM-2 ao

aı ao aM-1 aı

Ac= I I (2.21)

aM-2 aM-3 aM-4 aM-1

aM-1 aM-2 aM-3 ao

Clearly, the name circular' refers to the fact that each row (column) of A- is obtaine by

circularly shifting the previous row (column) by one element. A special propert of

circular matrices that is extensivelv used in the following sections is that sue matrices

are diagonalized by DFT matrices. That is, ifY is the M x M DFT matri defined as

1 1 1 1

1 e-j2ır1M e·j4n/M e-j2,r(M-1)/M

1 e -j4ırfM e-jsırfM e·j4n(M-l)IM

IF= I " (2.22)

1 e·j2n(M-1)1M e·j4n(M-ı)IM

then

(2.23)
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is a diagonal matrix. Furthermore, the diagonal elements of AF correspond to the DFT

of the first column of Ac. In matrix notation, this may be written as

AF = diag[ ap] (2.24)

where ap = Fa, a= [cl-O aı ... aM-ı]T is the first column of Ac, and diaglar] denotes the

diagonal matrix consisting of the elements of ap. This can be proved as follows.

Since F is a DFT matrix, recall that

(2.25)

where M is the length of DFT and an asterisk denotes complex conjugation. In other

words, the /th column of F1 can be given as

1
g.= M f (2.26)

where f1,is the ith column of the DFT matrix F given by

f1 = (1 e-J2ıd/M e-J4ıd/M ..... e-J2(M-l)ıd/M )T (2.27)

Next, by direct insertion.

Acgı = ap,ıgı , fQf 1 = 0,1, ... ,M - 1 (2.28)

Where ar.ı = L:~1 a;e-12'r1uM is the 1 element of as. Using (8.24). theM equations in

(8.29) may be put together to obtain

(2.29)

Premultiplying (8.29) on both sides by F gives (8.23).
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Another important result of the circular matrices which will be useful for our later

application is derived next. Applying Hermitian transposition on both sides of (8.23),

we obtain

AH =FH AH FH
F C

(8.30)

where F8 is the short-hand notation for (F1)8 Since AF is diagonal, A; =

Ap.Furthermore, from (2.22) and (2.25), p-H = (1/M) F and F8 = MF-1 since pT = F

Using these in (2.30) we get

When elements of Ac are real-valued, A~ = A~ and thus (2.30) may be written as

( 2.32)

2.3.3 Window Matrices And Matrix Formulation Of The Overlap-Save Method 

Let us define the N' x N' circular matrix, for N' = L + N - I, as

x(kL-N+l) x(kL+L-1) x(kL+L-2) x(kL-N + 2)

"
Xc(k) = I (2.33)

x(kL - N + 2) x(kL - N + 1) x(kL + L - 1) .. .. x(kL - N + 3)

x(kL + L - 1) x(kL + L - 2) x(kL + L - 3) . . . . x(kL - N + 1)

We note that this is nothing but the data matrix on the right-hand side of (2.20).
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We also define the length N' column vector

(2.34)

where y(k), as defined in (2.6) is the column vector consisting of the output samples the

kth block, and O is the length N - I zero vector. Let us denote by Yc(k) the colunt vector

that appears on the left-hand side of (2.20) and note that y(k) can be obtained from Yc(k)

by substituting all the elements in the latter with zeros.

This substitution ca be written in the form of a matrix-vector product as

y(k) = Po.LYc(k) (2.35)

where Po.ı.is the N' x N' windowing matrix defined as

(2.36)

with İL being the L x L identity matrix and the Os are zero matrices with appropriat

dimensions. Using (2.20), (2.19) and the above definitions, we obtain

y(k) = Po,LXc(k)w(k). (2.37)

Implementation of (2.37) in the frequency domain can now be obtained simply by

noting that (2.38) may be written as "'

y(k) = Po,L F1 FXc(K) F1 Fw(k), ' (2.38)

where Fis the N' x N' DFT matrix. Next, define

wp(k) = Fw(k) (2.39)
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and

Xp(k)= FXc(k)F1 (2.40)

and note that Xp(k) is the diagonal matrix consisting of the elements of the DFT of the

first column of Xc(k), since the latter is a circular matrix. We also note that the first

column of Xc(k) is the input vector x(k), as defined in (2.18). Using (2.38) and (2.39) in

(2.39) we obtain

y(k) = Po,LF1 Xp(k)wp(k) (2.41)

This equation has the following interpretation. Since Xp(k) is diagonal. Xp(k) wp(k)

is nothing but the element-by-element multiplication of the filter input and its

coefficients in the frequency domain. This gives the output samples of the filter in the

frequency domain. Premultiplication of this result by F1 converts the frequency domain

samples of the output to the time domain. Furthermore. premultiplyingthe result by the

windowing matrix Po.L results in selecting only those samples that coincide with the

required linear convolution samples.

2.4 The FBLMS Algorithm 

The FBLMS algorithm, as mentioned in the introduction. is nothing but a fast

(numerically efficient) implementation of the BLMS algorithm in the frequency

domain.
Equation (2.42) corresponds to the filtering part of the FBLMS algorithm. Element­

by-element multiplication of the frequency domain samples of the input and filter

coefficients is followed by an IDET and a proper windowing of the result to obtain the

output vector y(k), in extended form, as defined by (2.34). The vector of desired

outputs, in extended form. is defined as

(2.42)
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where d(k) is defined by (2.5) and O is the N - 1 element zero column vector. We also

define the extended error vector
..

e(k) = d(k) - y(k) (2.43)

To obtain the frequency domain equivalent of the recursion (2.11). we replace w(k)

and e(k) by their extended versions and note that (2.11) may also be written as

w(k + 1) = w(k) + 2µPN.o X~ (k) e(k) (2.44)

where Xc(k) is the circular matrix of samples of the filter input as defined by (2.33),

µ = µ:s/L, and

~] (2.45)

is an N' x N' windowing matrix which ensures that the last L - I elements of the updated

weight vector w(k + 1) remain equal to zero after each iteration of (2.44). The fact that

(2.11) and (2.44) are equivalent can easily be shown by substituting for the vectors and

matrices in (2.44) and expanding the result

Conversion of the recursion (2.44) to its frequency domain equivalent can be done by

premultiplying it on both sides by the DFT matrix F and using the identity F1 F = İ to

obtain

~
wr (k+ 1) = wp(k) + 2µFPN,o F1 FX~ (k) F1 Fe(k) (2.46)

Using (2.40)and the identity (2.33) (2.46)can be written as

wr (k + 1) = Wp(k) + 2µPN,O Xp(k)ep(k) (2.47)

where ep(k) = Fe (k) and

(2.48)

49



FFT

Block Implementation Of Adaptive Filter

Equations (2.41), (2.43) and (2.47) are the three steps required to complete each

iteration of the FBLMS algorithm: namely, Iiltenng, error estimation and tap-weight

adaptation respectively.Figure 2.3 depicts a block diagram of the FBLMS algorithm,

XF(k) y(k) y(n)) I SIP I - İnput FFT IFFT SIP
Last I terms

buffer __J Outputıut I I
WF(k)

-
delay

Jr.---l r-
SIP

I ıh ~~ L
SIP : serial-to-parallel

P/S :parallel-to-serial - - ıxı .•• 2µ

Gradiant
constraint

Make the
last L-1
p]pmpnt ()

Add N- 1 zeros
at the begining

Figure 2.3 Implementation of the FBLMS algorithm

which shows how these steps are realized efficiently.The input samples are collected in

an input buffer whose output is the vector x(k), consisting ofL new samples and N - 1

samples from the previous block(s). The vector x(k) is converted to the frequency

domain and multiplied by the associated tap-weight vector, WF(k), on an element-by­

element basis. This gives the samples of the filter output in the frequency domain which

are subsequently converted to the time domain using an IFFT. The last L samples of this
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result correspond to the output samples of the current block and are sent to the output

er as well as the error estimation section. The error vector, e(n), which consists ofL

ements is extended to the length ofN + L - 1 by appendingN - I zeros at its beginning

d converted to the frequency domain using an FFT algorithm. An element-by-element

ultiplication of the error and conjugate of the input samples is perforraed in the

~~~"'\>.~"""'1 ~~Th1>.\.\\. 'o.\\\ ~~ \~~~ · \~ 'u~~~ \\) 'uı)\~~~~ \ı\~t \ı't) ~e\gn.\~.
Premultiplication of the gradient vector Xy(k)ey(k)by PN,o is necessarv to ensure that

the last L - 1 elements of the time domain equivalent of the tap-weieht vector wy(k) are

constrained to zero. This constraining operation is implemented by converting the

gradient vector Xy(k)ey(k)to the time domain, making the last L - 1 elements zero, and
converting back to the frequency domain. as shown in Figure 2.3.

2.4.1 Constrained And Unconstrained FBLMS Algorithms 

Mansour and Gray (1982) have shown that under fairly mild conditions the FBLMS

algorithm can work well even when the tap-weight constraining matrix PN,o dropped

from (2.47). They have shown that when the filter length, N, is chosen sufficiently

large. and the input process, x(n). does not satisfy some specific (unlikely to happen in

practice) conditions, the update equation (2.47) and the recursion

converge to the same set of tap weights. Tö differentiate between the two cases. (2.49)

is called the unconstrained FBLMS recursion, while (2.47) is referred to as the

co,istrai'ied FBLMS recursion.

The block diagram given in Figure 2.3 is that of the constrained FBLMS algorithm.

However, it is easily converted to the unconstrained FBLMS algorithm if the gradient

constraining operation, enclosed by the dotted-line box, is dropped. We may thus note

that the unconstrained FBLMS algorithm is much simpler to implement. since two of

the five FFTs and IFFTs are deleted from Figure 2.3. As we show in the next section.

this simplificationis at the cost of a higher misadjustment.
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2.4.2 Convergence Behaviour Of The FBLMS Algorithm 

In this section we present a convergence analysis of the FBLMS algorithm. We start

with the unconstrained recursion (2.49). Substituting (2.41) in (2.43) we get

e(k) = d(k) - Po,L F"1 Xp(k) wp(k) (2.50)

The fact that the first N - 1 elements of d(k) are aU zero implies that d(k) = Po,L d(k).

Using this in (2.50) we obtain

ep(k) = Po,L (dp(k) - F"1 Xp(k) wp(k)

= Po,L F"1 (F d(k) - Xp(k) Wp(k) (2.51)

Premultiplying (2.51) on both sides by F, we get

ep(k) = Po,L(dF(k)- Xp(k) wp(k)) (2.52)

where dp(k) = Fd(k) and

(2.53)

Substituting (2.52) in (2.49), we obtain

Ill

wp(k + 1) = Wp(k) + 2µXp(k) [Po,L(dp(k) - Xp(k) wp(k))] (2.54)

Next. we define the tap-weight error vector

Vp(k) = Wp(k) - Wo.F (2.55)

where wor is the optimum value of the filter tap-weight vector in the frequency domain.

Using (2.55) in (2.54) we obtain, after some simple manipulation,

vp(k + 1) = (1 - 2µXp(k) Po,LXF(k)) vp(k) + 2µXp(k) Po,Leo.F(k) (2.56)
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where e0ik) is the optimum error vector obtained when WF(k) is replaced by e0.F

Now. if we use the indepeendence assumption and follow the same procedure, we will

find that the convergence of the unconstrained FBLMS algorithm is controlled by the

eigenvaluesof the matrix

(2.57)

The matrix R:X may be evaluated as follows. Substituting (2.40) and (2.53) in (2.57),

we obtain

Ru =F Ru p-1
.o: xx (2.58)

Where

R:X = E[X~ (k) Po,LXc(k)] (2.59)

A careful examination of Rxuy reveals that when L and N are large and the autocorrela

tion function of the input process, x(n).

2.4.3 Step-Normalization 

The convergence performance of the FBLMS algorithm can be greatly improved by

using individually normalized step-size parameters for each element of the tap-weight
"vector wF(k), rather than a common step-size parameter. It is implementedby replacing

the scalar step-size parameter µ by the diagonal matrix

µ(k) = diag[µo(k) , µı G) , .... , µN'-1 (k)] (2.60)

where µı(k) is the normalized step-size parameters for the ith tap.
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These are obtained according to the equations

µo for i = 0,1, .... ,N'- 1, (2.61)

where µo is a common unnormalized step-size parameter and the er; . (k)s are the powerr.ı

estimates of the samples of the filter input in the frequency domain, thex- ,i (k)s. These

estimates may be obtained using the following recursion: er; . (k) = ~er; . (k-1) + (1 -
r.ı F,ı

P)JxF,i (kf for i =0,1, ... , N' - 1, where B is a constant close to, but smaller than, one.

2.4.4 FBLMS Misadjustment Equations 

Derivation of the misadjustment equations for the various implementations of the

FBLMS algorithms is quite tedious and long. This is done in Appendix 8B. The

derivations presented in Appendix 8B result in the following misadjustment equations;

(2.62)

(2.63)

M UN -ıın
FBIMS - rv (2-,65)

In these equations the superscripts c and u refer to the constrained and unconstrained

versions of the FBLMS algonthm, respectively, and N indicates that the step-normal­

ization has been applied.
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It can be immediatelyconcluded that the constrained FBLMS algorithm outperforms its

unconstrained counterpart. in the sense that the former results in a lower misadjustment

for a given step-size parameter. Equivalently, for a given misadjustment the constrained

FBLMS algorithm converges faster than its unconstrained counterpart. The difference

between the two algorithms is determined by the ratio NIN'(= N/(N + L - 1)), which, in

turn, is determined by the ratio LIN. Clearly, when L<< N, NIN' ~ 1 and thus the

difference between the constrained FBLMS algorithm and its unconstrained counterpart

becomes insignificant.On the other hand, when L and N are comparable, the difference

between the two algorithmswill be significant.

2.4.5 Selection Of The Block Length 

Block processing of signals, in general, results in a certain time delay at the system

output. In many applications this processing delay may be intolerable and hence it has

to be minimized.It arises because a block of samples of input signal has to be collected

before the processing of the data can begin. Consequently, the processing delay

increases with block length. On the other hand, the per sample computational

complexity of a block processing system varies with the block length, L. For values ofL

smaller than the filter length, N, per sample computational complexity of the FBLMS

algorithm decreases as L increases. It reaches close to its minimumwhen L ~ N. Thus.

in applications where the processing delay is not an issue, L is usually chosen close to

N. The exact value ofL depends on N. For a given N, one should choose L so that N' =

N + L - 1 is an appropriate composite number so that efficientFFT and IFFT algorithms
"can be used in the realization of the FBLMS algorithm. On the other hand. in

applications where it is important to keep the processing delay small, one may need to..
strike a compromise between system complexity and processing delay. In such applica­

tions an alternative implementation of the FBLMS algorithm, which is introduced in the

next section, is found to be more efficient.
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CHAPTER3 

OTHER ADAPTIVE FIL TER APPLICATIONS 

3.1 Introduction 

Seismic survey data are normally held on magnetic tape and the information is

preprocessed to enhance the required information in a computer program that models

the desired adaptive processor before applying image reconstruction algorithms. Here

the preprocessor complexity influences the length of the program and hence the speed

of computation, but in general, speed is of less importance in off-line processing.

However the analysis of multisensor data often requires sophisticated distributed array

processors to achieve realistic processing rates for the sophisticated algorithms that are

adopted.

One of the key advances over recent years has occurred in real-time adaptive filter

applications, where rapid developments in technology are reducing the cost and

increasing the sophistication of adaptive filters. Several designs of analog adaptive

filters, digital adaptive transversal filters and adaptive lattice filters now exist, which

can process signals at sample rates exceeding 100 kHz.

In addition, general-purpose signal processing circuits, such as programmable signal

processors and fast, high-accuracy (32-bit) microprocessors also make it possible to

realize adaptive filters for the sample rates used in speech processing and data modems

for local area networks. These developments are forcing systems designers to consider

seriously increasing the use of adaptive processors to improve the performance of next-
ıı.

generation systems.

This chapter first covers other applications of adaptive filters in adaptive estimation,.
over and above those reported, then reviews their use in spectral estimation before

briefly concluding with other application areas such as spatial nulling and bearing

estimation in adaptive arrays.
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3.2 Adaptive Estimation 

Adaptive estimation covers the use of an adaptive processor or filter to measure and

identify the key parameters that define a signal or are present in an unknown system.

3.2.1 Inverse System Modeling 

The adaptive equalization examples for speech-band data modems and local network

digital transmission provide two examples of the use of inverse system modeling

adaptive estimation techniques. Similar processing techniques are also being applied to

multipath compensation in high-frequency (HF), troposcatter, and digital microwave

radio communication systems, in addition to spread-spectrum transmissions in urban

digital radio, where severe multi-path arises from reflections off buildings.

When analog radio systems are subject to multipath, the transmission bandwidth ıs

restricted to less than the reciprocal of the multipath delay by the dispersion in the

propagation medium. In a frequency modulation system the dispersion also introduces

degrading intermodulation products. Hence it was common to apply some signal, code,

or diversity reception to alleviate the problem. However, with digital transmission,

adaptive processing can be used to measure a multipath, which is slowly fading with

respect to the data rate and use it as a form of implicit diversity to improve the overall

system performance. Thus the capacity of digital troposcatter and other systems are not

restricted to the same extent by the multipath r~turns. In many systems two- or fourfold

path diversity reception techniques are incorporated and the receiver combines the

separate processed returns from each channel before making the decision as to the

polarity of the received data. Combining can be implemented at RF, IF, or baseband.

Typical values for multipath decorrelation spreading factors in time and frequency for

three systems are as follows. In the 2- to 30-:MHz long-range (>100-mile) HF radio

systems, the fading rate or Doppler spread is of the order of 0.1 Hz and the multipath

delay spread is approximately 1 ms. In the 0.4- to 5-GHz troposcatter links these factors

become 1 Hz and 100 ns, respectively, while in the shorter-range (<50-mile) microwave
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line-of-sight radio systems they are typically O.Ol Hz and 10 ns. The multipath delay

spreads of these three systems are related to the length of the propagation path.

One of the earliest processors proposed for overcoming multipath degradations in low­

intersymbol-interference systems was the RAKE filter, which bears a very strong

resemblance to the FIR adaptive filter. It operates by raking together all the separate

multipath components and adjusting their amplitude and phase in weighting multipliers

to achieve a coherent summation. An alternative structure is the correlation filter .
Which uses a single-stage hR filter (Figure 3. 1) where the previous information bits are

used as a coherent reference to implement a matched filter to each data bit. Maximum­

likelihood-sequence estimation techniques have also been proposed for this application,

but their complexity is much higher than that of simpler adaptive FIR filters such as the

RAKE.

In line-of-sight microwave radio links the fades are slow with respect to the transmitted

bit rates, with it taking from a few seconds to almost a minute for a multipath notch

(Figure 3.2) to move across the 30- to 75-MHz-wide bandwidth of these equipments.

The primary requirement in the new digital microwave radio systems is that they must

accommodate the same number of 3.3-kHz bandwidth telephone channels as the earlier

analog systems. This is providing the thrust behind the development of bandwidth­

efficientmodulation techniques such as 16-or 64-state quadrature amplitude modulation

(QAM) and other approaches as well as the use of dual (orthogonal) antenna

polarization techniques for frequency reuse, which all give rises to increased

intersymbol interference.
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When this is combined with the 20- to 3 O-dB deep fades experienced in these

equipments, effective equalization schemes are required before low-bit-error-rate
communications can be established.Figure 3 .2
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Figure 3.2 Shows the amplitude and group-delay responses for a 70-MHz-wide

multipath fade from a secondary ray of relative amplitude 0.8 and delays 2 ns. This

introduces a 14-dB deep notch at a frequency 20 MHz above the band center
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hows the typical frequency and group delay response for a three-qty multipath fade

with a notch at 160 MHz in a system with a 140-MHz intermediate frequency. Figure

3.3(a) shows a simulation of the degraded output eye diagrams for the 0.3 raised cosine

channelwhen subject to the multipath fade shown in Figure 3.2.

Current approaches for handling multipath interference in microwave radio have used

diversity reception techniques, but this only compensates for flat rather than frequency

selective fades. Equalization has been based on frequency-domain approaches where the

spectral response of the receiver is altered with adjustable filters to compensate for the

frequency-selective distortion by attempting to level the energy in the received

spectrum. This approach can be implementedwith a derivative of the simple correlation

filter, but the receiver must be manually preset in advance to handle either a minimum

or a nonminimum phase fad. There is thus thrust toward the FIR adaptive filter

techniques, which provide programmable phase compensation to accommodate both,

fade types and achieve superior performance. Figure 3.3(b) shows the improvement in

eye diagram that can be obtained by incorporating a five-tap adaptive FIR filter to

compensate for the multipath fade causing the distortion of Figure 3.2.
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Figure 3.3 Simulationsof receiver eye diagramswith and without equalization for the

multipath fade of Figure 3.2. Equalization was simulatedwith a five-tap complex

adaptive finite impulse response filter.
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Decision feedback adaptive equalizers are also being incorporated in reduced­

bandwidth quaternary-phase-shift-keyed 6- and 11-GHz digital system. These

equalizers, which operate at the European 140-megabit/s standard rate, have clearly

demonstrated that they can compensate for the intersymbol interference, which is

introduced by the narrow-bandwidth (60 MHz) transmitter filters. These are

incorporated to provide the reduced bandwidth capability of 0.8 times symbol rate and

to achieve the consequent high transmission rate of 4 to 5 bits/s per hertz.

The use of a pure decision feedback technique without the linear equalizer of Figure

8.10 greatly simplifiesthe overall design of the equalizer, as the feedback data comprise

a regenerated bit stream which requires only bipolar shift registers, compared to the

multilevel registers in the adaptive FIR filters. The tap-weight adjustment can be

obtained with a variable current source, which is summed with the incoming data in a

common load at the input of the quantizer. Such a design can be realized with 6-to 8-ns

settling delay, which permits operation at 74 megabaud, corresponding to the 140-

megabit/s transmission rate (Figure 3.4). These equalizers also permit the use of

orthogonal polarization in the antenna, which doubles the traffic to 280 megabits/s in

the same bandwidth allocation and provides equivalent number of subscribers to the

previous analog FDM/FM transmission systems.
The two-tap complex equalizers reported in Figure 3 .4 have also shown that they can

compensate for 15 dB of two-ray multipath fade with an echo delay of one tenth of the

symbol period, without the need for diversity reception. If combined with the normally

applied height diversity reception techniques, much more severe multipath is tolerable.

There are problems with pure DFB equalizers when a change of fade type occurs, as the

symbol timing circuitry must always track the strongest signal. This problem is not so

severe in adaptive FIR filters, where the change in fade type requires only a time

reversal of the adaptive filter weights. Five to nine-tap equalizers appear to adequately

compensate for expected fades.
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Figure 3.4 Eye diagrams show operation of practical decision feedback equalizer on

microwave digital communicationslink. (a) Without intersymbol interference; (b)

intersymbol interference introduced by the reduced bandwidth phase-shift keying; (c) as

in (b) but with adaptive equalization in the receiver; (d) system-performancewith

multipath interference as well as reduced bandwidth transmission, without equalization;

(e) as in (d) but with adaptive equalizer.

The problems of multipath cancellation become slightly more difficult in troposcatter

links as the data rate reduces to 2 megabits/s due to the increase in fading rate in these

longer-transmission-path systems. These problems become even more severe in HF

links. First, the lower 3- to 30-MHz carrier frequency reduces the available channel

bandwidth to the 3-k:Hz separation of analog radio systems. Thus although the fade rate

reduces in absolute terms compared to a troposcatter link, in this narrowband channel
\o

the relative fade rate, with respect to the channel baud rate, is increased by a factor of

approximately 100. As a result the received signal can no longer be considered as

stationary, and adaptive processor designs, other than the gradient search algorithms,

must be applied to provide the faster tracking rates.

Short-duration block processing is normally used to overcome these difficulties,and this

provides another thrust behind the development of fast-tracking adaptive filters such as

the Kalman and lattice. Alternatively, the adaptive filter weights can be calculated by

open-loop matrix inversion techniques, which are computationally demanding but will

be realizablewith developments in VLSI.

/
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3.2.2 Direct System Modeling 

The other application of adaptive estimation techniques is in direct system modeling.

Two areas where this technique has been widely applied are in noise cancellation and in

echo cancellation across the telephone line hybrid transformer. Other applications have

been reported in a number of diverse uses, such as for echo cancellation in Teletext

receivers where integrated adaptive filters now exist, in electrocardiography, and in
/

cancelingmains interference.
A further application for system modeling or identification techniques occurs in

adaptive control systems. These have very close similarities to the adaptive filters

described in this text. Adaptive control systems normally comprise an adjustable

feedback loop, which is employed to stabilize an overall system response in the

presence of external disturbances and changes in the system parameters. Adaptive

control systems are usually based on one of several algorithms, which include the model

reference approach and nonlinear and impulsive response techniques. Adaptive control

is applied extensively in chemical process and power systems modeling, in the control

of industrial machines and hydraulic drives, and in the prediction of flight paths of

spacecraft and in their altitude control. Widrow and Stearns provide a brief review of

the application of adaptive signalprocessing in control systems.

3.3 Spectral Estimation 

3.3.1 Introduction 

Spectral analysis or estimation is another potential application area for adaptive filters.

Spectral estimation can be divided into two categories: those approaches, which are

based on parametric modeling techniques and nonparametric approaches. Fourier

analysis, which is widely applied in the characterization of broadband signals, is an

example of the nonparametric approach.
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In parametric spectral estimation it is assumed that the response to be analyzed

comprised wideband noise which has been filtered in a system or passed through a

transmission path. An adaptive filter is then used in the spectral estimation processor to

model the inverse of the system or transmission response, and after convergence, further

processing of the poles or zeros of the modeling filter provides information on the

spectral properties of the input signal via the system model. These parametric modeling

techniques, which are similar to the Kalman filter modeling techniques covered in

Figure 2.3, further subdivide dependent on the different types of filter that are used to

perform the spectral estimation. FIR all-zero filters provide inverses for autoregressive

(AR) models, while fully recursive (all-pole) filters give inverses for moving-average

(MA) models. Autoregressive moving-average (ARMA) models are obtained from pole­

zero IIR filters. To minimize the computation and ensure stable convergence properties,

it is important to know in advance the type of system model so that the optimum filter

model can be employed. However, as a FIR filter can produce a similar response to a

recursive filter, provided that a sufficient number of stages are employed, AR models

may generally be used throughout, although this may result in less efficientuse of hard­

ware or computer processing time.
Figure 3.5 shows the effect of applying parametric spectral estimation to a signal

comprising five separate sinusoids. The estimation is performed with a set of cascaded

FIR prediction error filters. These progressively whiten the input signal and if, after

convergence, the filter coefficients are Fourier transformed, they yield a power spectral

density analyzer response. Figure 3. 5 shows the transformed output from prediction

error filters whose order increased progressively from 1 to 1 O. These simulations show

that each second-order stage can control the positions of a zero pair to model the

generating pole pair corresponding to one -sinusoid. Thus a filter of order 1 O is required

for this five-sinusoid-input signal. Extending the order beyond 10 does not provide

significant improvements. If the filter order is insufficiently large, it groups the

sinusoids as pairs and converges to pole values corresponding to the three discrete

frequencies that it can identify. As this test signal is a set of noise-free sinusoids, their

respective frequencies are accurately identified in Figure 3.5, but accurate amplitude

information is not provided.
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Figure 3.5 Application of prediction error filters to parametric spectral analysis.

Figure shows how the transformed filter coefficientsyield the power spectral density

response for an input signal comprising five separate sinusoids. Simulationsshow how

analysisaccuracy improves with increasing filter order or complexity.

The operation of the prediction error filter cascade is illustrated further in Figure 3.6,

which shows how the output spectrum is whitened as one moves progressively down the

cascade. In this example the filter is input with white noise convolved with the synthetic

channel impulse response 0.28z1 + z-2 + 0.28z3 to provide the filtered input power

spectral density shown at zero order in Figure 3.6.
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Figure 3.6 Shows how the output spectrum from a prediction error filter cascade

becomes progressivelywhiter as the filter order increases. Input test signal is white

noise convolved with the impulse response 0.28z-1 +z-2+ 0.28z3.

The prediction error filter now fits appropriate zeros to model the input. This results in a

progressive whitening of the spectrum as it emerges from each filter stage. Compared to

Fourier analysis techniques, the adaptive parametric spectral estimation approach
optimally identifies the locations of the input sinusoids, but it provides no detail in the

regions in between. For a low signal-to-noise ratio at the input, the noise components in

between the sinusoidal tones drive the filter from convergence, making this approach

not as useful as Fourier techniques for determining the input spectral response. Thus it

is generally accepted that nonparametric F~urier analysis techniques are superior for

broadband analysiswith low input signal-to-noise ratios (SNR). However, the resolution

of this technique, which is proportional to the length of the observation window, is

inferior. For time varying spectra or short time series, such as pulsed radar returns, the

observation window has to be restricted, reducing the resolution of the Fourier

approach. In addition, leakage in the discrete Fourier transform (DFT) results in

smearing of the spectral components. These deficiencies have spurred interest in the

newer parametric modeling techniques, which obtain increased resolution by
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· extrapolating values for the autocorrelation beyond known lags. In the DFT processor

these are assumed to be zero, introducing the spectral leakage.
The maximum-entropy method (MEM) of spectrum analysis, which is based on a FIR

autoregressive model, has been shown to be a more general approach rather than a

subset of AR spectral estimation techniques. The maximum-likelihoodmethod (MLM),

which is another AR technique, measures the power out of a set of narrowband filters.

Unlike the DFT these filters can each have a different band shape and center frequency

and they are adaptively set onto the frequencies of the signals that are present at the

input. It thus produces a resolution that is superior to the DFT, but it is not quite as good

as other AR methods. MLM is used extensively in frequency wave-number analysis in

seismic arrays. The key feature of these linear algorithm-based autoregressive

techniques is that they perform well when only a few sinusoids are present, as they

provide a data reduction capability, which is put to great use in applications such as

speech analysisand synthesisas well as seismicprocessing.

3.3.2 Spectral Line Enhancement 

One application of spectral estimation is in the identification of the presence of signals

using enhancement techniques. An example of this is the recovery of a narrowband

signal from wideband noise by adaptive line enhancement (ALE). The ALE is

implemented by connecting the received signal to a delay module before it enters the

signal input of the adaptive filter, while the desired or training input is connected

directly to the received signal. The delay is selected such that the narrowband signals,

which we wish to enhance, are correlated between the signal and desired inputs while

the wideband noise components are not correlated.
For ALE applications the adaptive filter can be either a FIR or an IIR design, depending

on whether an autoregressive or ARMA processor is preferred. The ALE is a

simplification of the MEM spectral analysis discussed previously, as MEM typically

uses sophisticated processing algorithms or fast Kalman techniques, which are

computationally demanding. However, they rapidly provide values for the prediction

error filter weights. In the simple ALE approach the prediction error filter is a

simplificationof this where the prediction error filter weights are derived from slower
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"adaptive" algorithms, such as the stochastic gradient search technique, which provide

computational efficiencyat the expense of a slower response.

Figure 3.7 shows simulated input and output waveforms for ALE, which is based on the

frequency-domain adaptive processing techniques.
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Figure: 3.7 operation of adaptive filter as a spectral line enhancer with an unknown

sinusoid and wideband noise at filter input. (a) input comprising 1-.MHzsinusoid and

wideband noise at O dB SNR; (b) output signal; (c) corresponding spectrum with an

adaptive filter convergence coefficientof O.001;(d) output signal; (e) corresponding

output spectrum with convergence coefficientof O.0001

••
This uses an input signal comprising a 1-.MHzsinusoid plus wideband noise at O dB

SNR [Figure 3.7(a)]. The outputs [Figure 3.7(b) and (d)] clearly illustrate how the.•
sinusoid is enhanced and show that the level of noise suppression [Figure 3.7(c) and (e)]

is also dependent on the selected convergence coefficient µ. Examples of the application

of IIR line enhancers based on optimal least-squares estimation techniques have also

been reported.
For signals contaminated by white noise the FIR-based ALE performance is broadly

equivalent in terms of resolution and SNR improvement to a DFT processor if the

number of transform points equals the order of the FIR filter. However, as the ALE
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processes signals continuously whereas the DFT is a block processor, the DFT output

must be averaged over several frames to integrate and obtain the same SNR

improvement. The performance of the ALE is superior to the DFT approach when the

input comprises either colored noise or a mix of strong and weak sinusoids.Under these

conditions the weak signals are enhanced and the colored noise is suppressed by the

ALE. A further possible advantage is the reduced computational load of the ALE.

3.3.3 Speech Processing 

Spectral estimation techniques are also used in speech processing, particularly in

vocoders, which exploit the redundancy in the speech waveform to achieve low-bit-rate

(<2.4 kilobaud) transmission rates. Two major designs exist at present, the channel

vocoder and the linear predictive coder (LPC). The channel vocoder transmits coarse

spectral plus pitch information that is normally obtained with conventional analog or

digital bandpass filtering or DFT techniques. Although the LPC design has been

implemented by the autocorrelation method, which uses adaptive transversal filters, a

cascade of linear prediction error filters is the preferred approach, as it is less sensitive

to coefficient inaccuracies. The prediction error filters remove from the signal the

components that can be predicted from the previous history by modeling the vocal tract

as an all-pole (AR) filter.

In the LPC vocoder the analyzer and encoder normally process the signal in 30-ms

frames and subsequently transmit the coarse spectral information via the filter

coefficients. The residual error (noise output from the prediction error whitening filter)

is not transmitted; instead, it is used to provide an estimate of the input power level

which is sent along with the pitch information, and an indication as to whether the input

is voiced or unvoiced (Figure 3 .8). The latter can be ascertained by examiningwhether

the first lag of the autocorrelation function of the signal lies above or below a certain

threshold. If above the threshold, the value of the autocorrelation term provides the

pitch information. The decoder and synthesizer apply the received filter coefficients to

an AR synthesizing filter, which is excited with impulses at the pitch frequency if

voiced, or white noise if unvoiced. The excitation amplitude is controlled by the input

power estimate information.

The adaptive lattice filter can be effectivelyapplied to implement
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Figure 3.8 Linear predictive coder for the vocoding of speech signal.

an all-pole filter representation of the physical lossless acoustic tube model of the vocal

tract . This approach, which outputs a continuous representation of the filter prediction

error coefficients, has received most emphasis to date because it is a regular structure

that is amenable to implementationwith digitalLSI circuits.

Further to the results shown in Figures 3. 9 and 3 .1 O compare the performance of a
~

conventional swept-frequency (nonparametric) spectrum analyzer with the

autoregressive (parametric) estimator on a sample of male human speech. T~e vowel
'

"ee" as in the word "feed" was sung into a tape recorder to maintain as far as possible a

constant fundamental frequency. This was then played back into a commercially

available spectrum analyzer. The parametric estimator simulation used to obtain the

results of Figure 3.5 was applied separately for comparison purposes. The outputs are

shown in Figures 3. 9 and 3 .1 O, respectively, where the individual parametric estimates,

for up to 16 orders, have been interpolated to provide a fullyfilled display.
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vert: 1 O dB/div
hertz: 1 kHz/div

Figure 3.9 Conventional swept-frequency spectrum analyzer display of male voice

saying"ee" as in the word "feed."

On a visual comparison one is impressed by the similarityof the results between the 12-

to 16-order parametric estimator and the conventional analyzer display. Both show a

similar overall shape exhibiting the 6-dB/octave reduction with frequency which is

caused by the vocal tract response. However, the parametric estimator does not possess

the fine detail of the swept-frequency response, due to the much shorter analysis time.

Further investigation shows close agreement between approaches when estimating the

overall spectral density, but
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Figure 3.10 Autoregressive spectral estimate for filter order up to 16 for the same
input signal as used in figure 3. 9

!

the parametric analyzer is less accurate in estimating the absolute frequencies of the

peaks, and the minor peak at 4.2 kHz has not been detected. Accurately placed zeros

close to the unit circle modeled the test signal of Figure 3.5, which had a well-defined

spectrum with sharp peaks. In contrast, the speech waveform used here had a less

sharply defined spectrum, which resulted in less accurately, placed zeros. Figures 3.9

and 3. 1 O give a broad comparison of the two approaches and show how the adaptive

zero fitting in the simpler autoregressiveııı estimator provides a sufficiently accurate

spectral representation for synthetic and possibly also communications-quality speech

transmission. Toll-quality transmission requires more accurate sampling techniques,.
such as pulse-code modulation.

Lattice adaptive prediction error filters offer a performance in terms of complexity and

speed of operation, which lies in between the sophisticated MEM and relatively simple

ALE spectral estimation techniques. Key attractions of the lattice approach are again

based on independent optimization of successive components plus the fact that there is a

trade-off between convergence factor and residual error with filter length. With delays

in the vocal tract of about 1 ms and typical speech sample rates of 8 to 1 O kHz the
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number of lattice stages is normally in the range 8 to 12, with 1 O being the number

adopted in the integrated LPC vocoder standard, which transmits at a 2.4-kilobaud rate.

Multichip microprocessor-based vocoders are also available. In addition to these

vocoder applications, digital lattice filters are used in several commercial speech
synthesis systems.

3.4 Adaptive Array Processing 

Adaptive antennas, which are applied to receiver designs to maximize a desired signal

in the presence of interference, use processing techniques that are very similar to those

of adaptive filters. They use the spatial separation between the antenna elements to

provide a parallel set of signal samples rather than using the time-delayed or partly

processed versions of a one-dimensional input signal. Early work on adaptive antennas

was concerned primarilywith self-phasing systems, which reradiated energy in the same

direction as a received signal. These systems are less widely applied at present and the

term "adaptive antenna" now refers almost exclusively to spatial nulling techniques,

which reduce the effect of unintentional cochannel interference or deliberatejamming.

These processors, which can automatically respond to an unknown interference

environment in real time, have thus found widespread use in military radar, sonar,

navigation, and communication equipment, where a high speed of adaption for fast

nulling is an important property. Civilian applications such as VHF/UHF and satellite

communications and broadcast systems are less demanding, as the convergence rate is

usually of secondary consideration and henôe less sophisticated adaptive algorithms can

be employed. The interference bearing is normally fixed and the achievement of
"'satisfactory cancellation at low cost is more important. Bearing estimation is another

function that can be performed with antennas, either by directly analyzing the received

signals or by transforming the weight values from a converged adaptive array to
determine the bearing of the source.

Adaptive antenna nulling uses a very similar processor configuration to the adaptive

filter. In its simplest form it has two inputs from the main and auxiliary antennas. If

these are microwave signals, they are 'usually down-converted to IF and the auxiliary

channel is multipliedin a complex weighting network before summationwith main
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channel (Figure 3.11). For interference cancellation the combined output is fed back and

cross-correlated with the signal in the auxiliary channel to derive the adaptive weights

to minimizethe signal,which is present in both channels.

This approach is commonly used with high-gain 5- and X-band microwave reflector­

based antennas to cancel out jamming which enters through the main antenna sidelobes.

In this coherent sidelobe canceller (CSLC) (Figure 3.8) the difference in gain between

the main beam of the directional antenna and the wider coverage or omnidirectional

auxiliary antenna result in desired signals (such as low-level radar return echos) being

received only in the main channel. In pulsed radar, where these echo returns are present

only for short periods in the overall scan interval, their average energy is low and hence

they do not need to be subtracted out, as they introduce only minor degradations in the

processor. Jamming through the main antenna sidelobes enters both channels at

approximately the same signal level and is automatically nulled out in this self-steering

processor. Additional auxiliary channels must be added to the scheme of Figure 3 .11 to

handle multiple jammer scenarios. Lubell and Rebhun provide an example of the

application of CSLC techniques in a satellite communicationsreceiver.

Alternative adaptive antennas, based on fully phased arrays with an adaptive control

loop on each of the individual elements, are employed in communications, radar, and

navigation applications, but these normally require a separate sample of the desired

signal to be subtracted from the combined output before it is fed back as the error

signal. In theory such an N-element adaptive array can handle up to N - 1 interfering

sources.

3.4.1 Bearing Estimation 

..
Antenna arrays, often with only two elements, can be used for bearing discrimination.

Bearing information is translated in the antenna into a difference in timing of the

received signals due to the path differences to the different elements. Thus processing of

the received signals to extract the time difference of arrival (TDOA) provides

information relating to the target bearing. This technique has been used for flow

measurement of dangerous liquids in pipes by sensing the disturbances due to flow with

75



Other Adaptive Filter Application

a pair of transducers attached to the pipes. Cross-correlation of the two signals [Beck]

yields the delay information,but this requires

Wide coverage I Low gain
auxiliary antenna

antenna

TF TF 

·······~···········
Complex amplitude

&ph~e control

OUTPUT 

Figure 3.11 Coherent sidelobe canceler configuration of adaptive antenna

Some knowledge of the statistics of the signals and the transducer separation must be

such that there is not a significantloss in correlation between the two received signals.
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Other applications of this correlation-based transit-time measurement systems are in gas

chromatography, biomedical engineering and in sonar.

Adaptive time-difference-of-arrival estimation techniques, which can be applied to

enhance the output of these passive-sensing systems, have the advantage that no prior

signal information is required. One approach is based on an extension of the earlier

correlation method where adaptive spectral whitening techniques are added prior to the

cross-correlation processor. Such preprocessing of narrowband input signals prior to

cross-correlation of the residuals reduces the incidence of multiple peaks at the output.

Most of the adaptive spectral whitening techniques reported in this text is applicable to

this processor.
These concepts have also been extended to multielement arrays for accurate bearing

estimation of received signals. Simple spatial Fourier analysis of the radiation field by

sampling the received signals from an array gives a bearing resolution capability, which

is inversely proportional to the aperture of the array. Johnston and De Graaf have shown

that superior resolution can be obtained (Figure 3.12) by applying the spectral

estimation techniques reported earlier to find a solution to this constrained optimization

problem. Adaptive spectral estimation techniques employing MLM, MEM, AR, and

ARMA parameter modeling as well as the eigenvector decomposition approach have all

been applied to the passive sonar problem. The outputs from the filter model provide the

time-delay information, which is converted into bearing estimates.

The inclusion of an adaptive processor into the array permits the beam-former to

utilize the null rather than the mainlobe information for bearing measurement. As the

nulls are generally much sharper, this provides a consequent resolution improvement or

super-resolution capability from the deployment of adaptive techniques. Widrow and

Stearns provide an analysis of the improvements gained from the use of maximum­

likelihood adaptive processors shows how the resolution of a nonadaptive Fourier

beamformer in (a) and (d) compares with the maximum-likelihood processor (b) and

(e), for both a single source on boresight and a pair of sources at ±50 angular separation

from boresight. For this IO-element array at a 10-dB signal-to-noise ratio, the resolution

improvement due to MLM processing is calculated as 18 times. Figure 3 .12 also shows

that if a linear predictive autoregressive adaptive processor is deployed, there is further

resolution improvement, as shown in (c) and (1).The resolution improvement from these

adaptive spectral estimation techniques is dependent on a satisfactory received signal­

to-noise ratio, and it typically requires positive values to achieve the required
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improvement. The future extension of this work to other application areas, such as radar

and communications, can now be anticipated to produce further potential applications

for adaptive spectral estimation techniques.
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Figure 3.12 Shows application of various spectral estimation algorithms to the

measurement of bearing from (a) through (c) a single source on boresight, and (d)

through (I) two equal-strength sources at ±5 ° relative to boresight. Measurements are

made with an array of 1 O sensors equally spaced at ')J 2apart with a received sensor

signal-to-noise ratio of 10 dB. (a) and (d) Fourier transform techniques; (b) and (e)

maximum-likelihoodmethod; (c) and (1) linear predictive estimates.
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CHAPTER4 

OTHER ADAPTIVE FIL TER ALGORITHMS 

4.1 Covariance Algorithms 

The essential link in the derivation of the fast algorithms is provided by the (N + 1) x (N

+ 1) matrix RN+ı(n + 1), which relates the adaptation gains G (n + 1) and G (n) at two

consecutive instants. Here, a slightly different definition of that matrix has to be taken,

Because the first (N + 1)-element data vector which is available is X, (2): [Xı(2)]1

[x (2), X:(l)]

Thus

R N+l (n)=L W n-p x, (p) x', (p) (4.1)

The LS procedure for the prediction filters, because of the definitions, can only start at

time n = 2, and the correlation vectors are

p=2

n

~(n)= LwPx(p-N)x(p)
p=2

(4.2)

The matrix RN+ 1(n + 1) can be partitioned in two ways:

n+lı: wn+l-px2 (p) [r~(n+ ı)J

RN+ı(n+ ı) = I v+z r;(n+ ı) RN(n)

(4.3)

RN(n+l)-wnx'(l) r;(n+ı)

[
l n+l

r~(n+l)J Lwn+ı-vx2(p-N)
p+2
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Several modifications have to be made because of the initial term W -x ( 1) Xt ( 1) in

(4.4).

The (N + 1)-element adaptation gain vector Gı (n + 1) can be calculated by , which

yields M (n + 1) and m (n + 1). Equation (4.4) leads to

[RN (n + 1) - W 'x (1) Xt (1)] M (n + 1) + m (n + 1) r b (n + 1)

=X(n+ 1) (4.5)

Similarly the backward prediction matrix equation combined with partitioning (4 .4)

leads to

[RN (n + 1)- W -x (1) Xt (1)] B (n + 1) =? (n + 1) (4.6)

Now the definition of G (n + 1) yields

G (n + 1) = RN-ı (n + 1) X (n + l)=[IN - W RN-ı (n + 1) X (1) Xt (1)]

x [M(n+ l)+m(n+ l)B (n+ 1)] (4.7)

Let us consider the vector

D(n+ l)=WRN-ı (n+ l)X(l) (4.8)

A recursion is readily obtained by

(4.9)

Which at time n corresponds to RN (n) D (n) = W "X (1).Taking into account

relationship between RN (n) and RN (n + 1), one gets

D (n + 1) = [IN - R N-ı (n + 1) X (n + 1) X t (n + 1)] D (n) (4.10)
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which with (4.7) and some algebraic manipulationsyields

D(n+l)=. , ,.,~, .1, , , ., ~, , [ıx -F(n+l)x1(n+l)]D(N) (4.11)

Where

F (n) = M (n) + m (n) B (n) (4. 12)

The adaptation gain is obtained by rewriting (4.7) as

G (n + 1) = [IN -D (n + 1) Xt (l)] F (n + 1) (4.13)

Finally, the covariance version of the fast algorithm is obtained by incorporating
equations (4.11) and (4.13) in the sequence of operations. The additional cost in

computational complexityamounts to 4N multiplicationsand one division.

Some care has to be exercised in the initialization.If the prediction coefficients are zero,

A (1) = B (1) = O, since the initial data vector is nonzero, an initially constrained LS

procedure has to be used, which, as mentioned corresponds to the following cost

function for the filter.

n 2

J/n)= Lwn·p~(p)-X1(p)H(n)] +E0H1(n)W(n)H(n)
p+l

(4.14)

Where

W (n)=diag (WU, W n-l · ········wn+ıN) (4.15)

And E0 is the initialprediction error energy.

In these conditions, the actual AC matrix estimate is

RN(n)= f wn·p[x(p)X1(p)]+EoW(n)
p+l

(4. 16)
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The value R -ıN(l) is needed because

D (1) = R -ıN(l) X (1) = G (1) (4.17)

It can be calculated with the help of the matrix inversion lemma. Finally,

D(l) = G(l) = 1 w-ı (l)X(l)
E0 +Xt(l)W-1(l)X(l)

(4.18)

And for the prediction error energy Eo (1) = WEo.
The weighting factor W introduces an exponential time observation window on

the signal. Instead, it can be advantageous in some applications- for example, when the

signal statistics can change abruptly-to use a constant time-limited window. The FLS

algorithms can cope with that situation.

4.2 Sliding Window Algorithm 

The sliding window algorithms are characterized by the fact that the cost function Jsw(n)

to be minimized bears on the No most recent output error samples:

n 2

Jsw(n)= L~(p)-Xt(p)H(n)]
p=n+I-N0

(4. 19)

Where No is a fixed number representing the length of the observation time window,

which slides on the time axis. In general, no weighting factor is used in that case,

W = 1. Clearly, the AC matrix and cross-correlation vector estimations are again the

matrix RN+ 1 (h + 1) can be partitioned as
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n+ı [x(p) ][ ]RN(n)= L x(p),X1(p-l)
p=n+2-No X(p- l)

[r~(n+l)f]

RN(n)

=[p=nt-N0 x2(n+l)

r~(n+l)

(4.20)

and

r~(n+ 1) 1
n+I 2L x (n+l)

p=n+2-No

(4.21)

I

However, the recurrence relations become more complicated. For the AC matrix

estimate, one has

RN (n + 1) = RN (n) + X (n + 1) Xt (n + 1)

-X (n + 1 - No) Xt (n + 1 - No) (4.22)

For the cross-correlation vector,

r xy (n + 1) = Txy (n) + y (n + l)X(n + 1)- y(n + 1 - No) X (n + 1 - No) (4.23)

The coefficient updating equation is obtained, as before, from

RN (n + 1) H (n + 1) = rxy (n + 1) (4.24)

By substituting (4.23) and then, replacing RN(n) by its equivalent given by (4.22):

H(n+ l)=H(n)+RN-1(n+ l)X(n+ l)[y(n+ 1)-:X:(n+ l)H(n)]
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- RN-ı (n + 1) X (n + 1-No)

x [y (n + I - No) - x' (n + I - No)H(n)] (4.25)

Backward variables are showing up: the backward innovation error is

e0 (n + I) = v (n + 1 - No) - X (n + 1 - No)H(n) (4.26)

And the backward adaptation gain is

Go(n+ l)=RN-1(n+ l)X(n+ 1-No) (4.27)

In concise form, equation (4.25) is rewritten as

H (n + 1) = H (n) + G (n + 1) e (n + 1)- Go (n + 1) eo (n + 1) (4.28)

These variables have to be computed and updated in the slidingwindow algorithms.

Partitioning (4.20) yields

[
O ] [x(n+l-N0)] [£0(n+l)]R (n+l) = -

N+ı G0(n) X(n-N0) O
(4.29)

with

toa(n + I) = x (n + 1 - No) - A1 (n + I) X (n - No)
"

(4.30)

where the forward prediction coefficientvector is

n+I

A(n+l)=R;1(n) LX(p)X(p-1)
p=n+2-N0

(4.31)
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Similarly,the second partitioning (4.22) yields

(4.32)

With

tob (n+ l)=x (n+ 1-No-N)-Bt(n+l) X (n+ 1-No) (4.33)

and

B (n + 1) = RN.ı (n + 1)? (n + 1) (4.34)

Now, combiningthe above equations with matrix prediction equations, leads to

[
O ı £0b(n+l)[l ı [M0(n+l)]G (n+l) = - =01 G(n) Eb(n+l) -A(n+l) m0(n+l)

(4.35)

And
s (n + 1)Go(n+l) = Mo(n+l)+ ob B(n+l)
Eb(n + 1)

(4.36)

Clearly, the updating technique is the same for both adaptation gains G (n) and Go (n).

The adequate prediction errors have to be employed.
The method used to derive the coefficient recursion (4.25) applies to linear prediction as

well; hence

A (n + 1) = A (n) + RN.ı (n) X (n)[x (n + 1)- X (n) A (n)]

-RN.ı (n) X (n- No)[x (n + 1 - No)- X (n- No) A (n)] (4.37)

or, in more concise form,

A (n + 1) = A (n) + G (n) ea (n + 1)- G o(n) e oa (n + 1) (4.38)
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Substituting (4.36) and the recursion for fi (n + 1) into the above expression, lead to

Eo (n + 1) = Eo (n) + ee (n + 1 )Eo (n + 1) - e oa (n + 1 )E oa(n + 1) (4.39)

The variables needed to perform the calculations in (4.34), and in the same equation for

Gı (n + 1), are availableand the results can be used to get the updated gains.

The backward prediction coefficientvector is updated by

B (n + 1) = B (n) + G (n + 1) eı, (n + 1) - Go (n + l)Eob (n + 1) (4.40)

Which leads to the set of equations:

G(n+ 1)[1-m(n+l)eb(n+ l)]
=M(n+ l)+m(n+ l)B(n)-G0(n+l)eob(n+ l)m(n+ l)Go(n+ l)[l +mo(n+l)

eob(n+l)]
=Mo(n + 1) + mo (n + 1) B (n) + G (n + 1) eı, (n + 1) mo (n + 1) (4.41)

Finally, letting k= m(n+l) , k= mo(n+l) we obtain the
1 + m0(n + l)e0b (n+ 1) 1-m(n+ l)eb(n+ 1)

adaptation gains

1G(n + 1) = [M(n+ l)+ke0b(n+ l)M0(n+ 1)]
1-keb(n+l)

1G0(n+ 1) = [M0(n + I)+k0B(n) +k0e0b(n + l)M(n+ 1)]
1 - k0e0b ( n + 1)

(4.42)

The algorithm is then completed by the backward coefficientupdating equation (4.41).

The initial conditions are those of the algorithm, the extra operations being carried out

only when the time index n exceeds the window length No.

Overall the sliding window algorithm based on a priori errors has a computational

organization, which closely follows that of the exponential window algorithm, but it

performs the operations twice to update and use its two adaptation gains.

More efficient sliding window algorithms, but with a less regular structure, can be

worked out by decomposing in two different steps the sequence of operations for each

new input signal sample.
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4.3 The Case Of Complex Signals 

Complex signals take the form of sequences of complex numbers and are encountered

in many applications, particularly in communications. Adaptive filtering techniques can

be applied to complex signals in a straightforward manner, the main peculiarity being

that the cost functions used in the optimization process must remain real and therefore

moduli are involved.
For reasons of compatibilitywith the subsequent study of the multidimensionalcase, the

cost function is taken as

J .x (n) = fı W n-p ly(p) - lfı&(n)X (p)l2 (4.43)

or
n

JeXCn) = Lwn-pe(n)e(n)
p=I

(4.44)

Where e(n) denotes the complex conjugate of e(n), and the weighting factor W is

assumed real.
Based on that cost function. FLS algorithms can be derived through the procedures

presented previously.

The minimizationof the cost function leads to

H (n) = R1N(n) rxy (n) (4.45)
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The connecting matrix RN+ ı(n + l) can be partitioned as

RN,,(n+ I)= tw""' p[x:~2 ,J X(p),X'(p-1) l

JtW""-'lx(p Ji' [r~ (n+ I)J]
l r~(n+l) RN(n)

(4.46)

and

RN+ı(n+l)=fwn+l-p[ x(p) ][x1(p),x(p-N)]
p~ı X(p - N)

f RN(n+l) r~(n+l) ı
=l [r;(n+l)} tw"''-'lx(p-N)I' j (4.47)

Following the definitions (4.45) and (4.46), the forward prediction coefficient vector is

updated by

A (n + 1) = RN-ı (n) rN (n + 1) = A (n) + RN-ı (n) X (n)[x (n + 1) - X (n) A (n)] (4.48)

Or

A (n + 1) = A (n) + G (n) ea (n+ 1) (4.49)

Where the adaptation gain has the conventienal definitionand ea (n + 1) = x (n + 1) - At

(n) X (n). Now, using the partitioning (4.46) as before, one gets

RN+ı(n+l)[ O ]=X(n+l)-[Ea(n+l)J
G(n) ı O (4.50)

Which, taking into account the prediction matrix equations,
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leads to the same equations as for real signals:

G( ) [Ol £(n+l)[ 1 ] [M(n+l)]
1 n+l = G(n) + E:(n+l) -A(n+l) = m(n+l) (4.51)

The prediction error energy Ea (n + 1) can be updated by the following recursion, for

RN (n) Hermitian:

Ea (n + 1) = W Ea (n) + ea (n + 1 )Ea (n + 1) (4.52)

The end of the procedure uses the partitioning of RN+ ı (n + 1) given in equation (4 .49) to

express the order N + 1 adaptation gain in terms of backward prediction variables. It can

be verified that the conjugate of the backward prediction error

~ (n + 1) = x (n + 1 - N) - B1 (n) X (n + 1) (4.53)

Appears in the updated gain

G(n + 1) = _ 1 [M(n+ 1)+ B(n)m(n+ 1)]
l-eb(n+ l)m(n + 1)

(4.54)

The backward prediction coefficients are updated by

B (n + 1) = B (n) +p (n + 1) eı,(n+ 1) (4.55)

Finallythe FLS algorithm for complex signalsbased on a priori errors is for real .data.

There is an identity between the complex signals and the two-dimensional signals,

which are considered in the next section. Algorithms for complex signals are directly

obtained from those given in Figure 4.2 and Figure 4.3 by adding complex conjugation

to transposition.
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The prediction error ratio

(4.56)

is a real number, due to the Hermitian property of the AC matrix estimation RN(n). It is

still limited to the interval [O, l] and can be used as a reliable checking variable.

4.4 Multidimensional Input Signals 

The input and reference signals in adaptive filters can be vectors. To begin with, The

case of an input signal consisting of K elements x1 (n)(l ::; i::; k) and a scalar reference is

considered. It is illustrated in Figure 4.1. The programmable filter, who's output V (n) is

a scalar like the reference y (n), consists

xı (n)I H ı (n)

Xl(n) I H 2(n)

Hk(N)

Figure 4.1 Adaptive filter with multidimensional input and scalar reference.
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Of a set of k different filters with coefficient vectors Hi (n) (ls is k). These coefficients

can be calculated to minimize a cost function in real time, through FLS algorithms.

Let x (n) denote the k-element input vector

xt=[xı(n),x2(n) ..... , xk(n)] (4.57)

Assuming that each filter coefficient vector Hı (n) has N elements, let X (n) denote the

following input vector with KN elements:

x ' (n) = [x' (n), x1(n - 1), ... , x'{n + 1 - N)] (4.58)

And let H (n) denote the KN element coefficient vector. If (n) = [hu (n) .. hKI (n),h12

(n), .... hK2 (n), ... , hIN(n) hkN (n)]. The output error signal e (n) is

e (n) = y (n) - lf(n)X(n) (4.59)

The minimization of the cost function J (n) associated with an exponential time window,

n
J(n) = ı:wn-pe2(p)

p=I

(4.60)

Leads to the set of equations

:(n) = 2f wn-p(;(p)-H1(n)X(p)~;(p- j) = O (4.61)
y(n) p=I

With 1 s I s K, O s j <N - 1. Hence the optimum coefficient vector at time n is

H (n) = Rı<n (n) rKN (n) (4.62)
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With
n

Rıav(n):::: Lwn-p X(p)X1(p)
p=I (4.63)
n

rKJv (n) = Lwn-py(p)X(p)
p=I

The matrix RKN (n) is cross-correlation matrix estimation. The updating recursion for

the coefficientvector takes the form

H(n+ l)=H(n)+RKN(n+ l)X(n+ l)e(n+ 1) (4.64)

and the adaptation gain

GK (n) = RKN (n) X (n) (4.65)

Is a KN-element vector,

The connecting matrix RKNı (n + 1) is defined by

Rıav1(n+l)= f wn+ı-p[ X(p) ][ X1(p)X1(p-I) ]
p=I X(p-1)

(4.66)

and can be partitioned as

[

n+l
wn+ı-p''

Rıavı(n+l)= ?; x(p)Xı(p)

r~(n+l)

[r~(n+ l)JJ
RKN(n)

(4.67)

Where fKN (n + 1) is the KN x K cross-correlation matrix

n+I

r~(n+l)= Lwn+l-px(p-I)X1(p)
p=I

(4.68)
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From the alternative definition

Rm1(n+l)= f wn+ı-p[ X(p) ][ X\p)Xt(p-N)]
p=I X(p-N)

(4.69)

A second partitioning is obtained:

r~(n+l) l
n+I
~ wn+ı-px(n + 1- N)Xı (n + 1- N)

(4.70)

Where rKN (n + 1) is the KN x K matrix

n+I
r~ (n+ 1) = Lwn+l-p X(p)Xt(p-N)

p=I
(4.71)

The fast algorithms use the prediction equations. The forward prediction error takes the

form of a K-element vector

eKa (n + 1) = x(n + 1) - AK, (n) X(n) (4.72)

Where the prediction coefficients form a KN x K matrix, which is computed to

minimize the prediction error energy, defined by

n

EJn) = Lwn-pe11ca(p)e1ca(P) = trece[Eka(n)]
p=I

(4.73)

with the quadratic error energy matrix defined by

n

EKa(n) = Lwn-peka(p)e11ca(p)
p=I

(4.74)
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The minimization process yields

AK (n + 1) = RKN (n) rKN (n + 1) (4.74)

the forward prediction coefficients, updated by

AK(n + 1) = AK(n) + Gs (n) ~a(n + 1) (4.75)

are used to derive the a posteriori prediction error tKa(n + 1), also a K-element vector,

by

tka (n + 1) = X (n + 1) - AK (n + 1) X (n) (4.76)

The quadratic error energy matrix can also be expressed by

n+I
EKa(n+ 1) = z:wn+ı-p X(p)X1(p)-A~(n+ l)r~ (n+ 1)

p=I

(4.77)

Which, by the same approach as, yields the updating recursion

EKa (n + 1) = WEKa (n) + eka (n + 1) tka (n + 1) (4.78)

The a priori adaptation gain Gx (n) call' be updated by reproducing the developments

given in and using the two partitioning equations (4.61) and (4.66) for RKNı (n + 1). The

fast algorithm based on a priori errors is given in Figure 4.2.,

If the predictor order N is sufficient, the prediction error elements, in the steady-state

phase, approach white noise signals and the matrix EKa (n) approaches a diagonal

matrix. Its initial value can be taken as a diagonal matrix

(4.79)
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Where F0 is a positive scalar; all other initialvalues can be zero.

A stabilizationconstant, as, can be introduced by modifyingrecursion (4.74) as follows:

(4.80a)

Where C is a positive scalar.
The matrix inversion in Figure 4.2 is carried out, by updating the inv~rsequadratic error

matrix:

E-1Ka (n + 1) = w-ı[E;),(n)- E;},(n)eka(n+ l)c!a(n + l)E;},(n)]
W +c!,,(n + l)E;},(n)eka(n+ 1)

(4.81)

The computational complexity of that expression amounts to 3K2 + 2K multiplications

and one divisionor inverse calculation.
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ALGORITHM F.L.S. 1-K

AVAILABLE AT TIME n

COEFFICIENTS OF ADAPTIVE FILTER: H (n)

FORWARD PREDICTION MATRIX: AK (fl)

BACKWARD PREDICTION MATRIX:

DATA VECTOR:

ADAPTATION GAIN:

QUADRATIC ERROR MATRIX:

WEIGHTING FACTOR:

NEW DATA AT TIME n:

Input signal: X (n+l) Reference: y (n+l)

ADAPTATION GAIN UPDATINO.

BK (fl)

X (n)

GK(n)

EKa (n)

w

eKa (n+l) = X(n+ 1) - AKt (n) X(n)

AK (n+ 1) = AK (n) + ÜK (n) eKa (n+l)

€Ka (n+l)=X (n+l) AK (n+l) X (n)

EKa (n+l) = W Ea (n) + eKa (n+l) E1ca (n+l)

[
Ü ] [IK ] [MK(N +l)]GK(n+ 1) = + E;;(n+ l)Eka(n+ 1) =

GK(n) -AK(n+l) mk (n+l)

eKB (n+l) = X(n+ 1 -N)- BK1 (n) X (n+ 1)

BK (n+l) = BK (n) + GK (n+l) eKb (n+l)

ADAPTIVE FIL TER

E (n+ 1) = y (H+l) - H1 (n) X (n+l)

H (n+l) = H (n) + ÜK (n+l) e (n+ 1)

Figure 4.2 FLS algorithm for multidimensional input signals.
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Note that if N = O, which means that there is no convolution on the input data, then Eka

(n) is just the inverse cross-correlation matrix ~a (n), and it is updated directly from the

input signal data as in conventional RLS techniques.

For the operations related to the filter order N, the algorithm presented in Figure 4.2

requires 7K2N + KN multiplications for the adaptation gain and 2KN multiplications for

the filter section. The FORTRAN program is given in Annex 4.1.

The ratio <p (n) of a posteriori to a priori prediction errors is still a scalar, because

taK (n + 1) = eak(n + l)[l - Gk (n) X (n)] (4.82)

Therefore it can still serve to check the correct operation of the multidimensional

algorithms. Moreover, it allows us to extend to multidimensional input signals the

algorithms based on all prediction errors.
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4.5 M-D Algorithm Based On All Prediction Errors 

An alternative adaptation gain vector, which leads to exploiting a priori and a posteriori

prediction errors, is definedby

Gk(n + 1) = Rı<n (n) X (n + 1) = Gx (n + 1) W/ cp (n+l) (4.83)

The updating procedure uses the ratio of a posteriori to a priori prediction errors, under

the form of the scalar cc (n) defined by

a (n) = W + X(n) RKN (n - 1) X (n) = W/cp (n) (4.84)

The computational organization of the corresponding algorithm is shown in Figure 4. 3.

Indeed, but vectors and matrices when appropriate have replaced scalars and vectors.

The operations related to the filter order N correspond to 6K2N multiplications for the

gain and 2KN multiplicationsfor the filter section.

In the above procedure, the backward a priori prediction error vector eKb (n + 1) can

also be calculated directly by

(4.85)

Again that provides means to control the roundoff error accumulation, through updating

the backward prediction coefficients, of
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ALGORITHM F.L.S.2-K

AVAILABLE AT TIME n

COEFFICIBNTS OF ADAPTIVE FIL TER: H (n)

FORWARD PREDICTION MATRIX: AK (fl)

BACKWARD PREDICTION MATRIX:

DATA VECTOR:

ADAPTATION GAIN:

QUADRATIC ERROR MATRICES:

PREDICTION ERROR RATIO:

BK (n)

X (n)

Gk(n)

EKa (n), EKb(n)

a (n)

eKb (n+l) = X(n+l-N) - BKt (n+ 1) X (n+l)

Gı (n+ 1) = MK (n+l)+ Bk (n) mK (n+l)

WEIGHTING FACTOR:

NEW DATA AT TIME fl:

Input signal: X (n+ 1) Reference: y (n+ 1)

ADAPTATION GAIN UPDATING

eKa (n+l)= X (n+ 1) - AKt (n) X (n)

AK (n+l) =AK (n) + ~ ((n) eKa1 (n+l) Ix (n)

EKa (n+l)= (EKa (n) +eKa (n+l) eKat (n+l) kx (n)) W

[
Ü ] [/K ] 1 [MK(N +1)]GKI(n + 1) = + E;;., (n+ l)eka(n+ 1) =

GK(n) -AK(N+l) mk (n+l)

w

Cx, (n+l) =cxı (rt+l ) - eKb (n+l) mK(n+l)

EKb (n+l) = (EKb (n) + eKb (n+l) eKb1(n+ 1 )/a (n+ 1)) W

BK (n+l) = BK (n+l) + Gı ((n) eKb (n+l)/ a (n+ 1)

ADAPTIVE FIL TER

e(n+l)=y(n+l) H(n)X(n+l)

H (n+ 1 )=H (n) +~ (n+ 1) e (n+l) /a (n+l)

Figure 4.3 Algorithm based on all prediction errors for M-D input signals.
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BK (n + 1) = BK (n) + Gı, (n + 1)
X [eKb (n + 1) + CKb (n + 1) - EKb (n) mk (n + l)]/a (n + I) (4.86)

Up to now, the reference signal has been assumed to be a scalar sequence. The

adaptation gain calculations, which have been carried out, only depend on the input

signals, and they are valid for multidimensional reference signals as well. The case of

K-dimensional (K-D) input and L-dimensional (L-D) reference signals is depicted in

Figure 4.4. The only modifications with respect to the previous algorithms concern the

filter section. The L-element reference vector YL (n) is used to derive the output error

vector eı, (n) from the input and the KN x L coefficientmatrix HL (n) as follows:

eL(n+ l)=YL(n+ 1)-HL(n)X(n+ 1) (4.87)

The coefficientmatrix is updated by

HL (n+l =HL(n) + Gıc (n + 1) eL(n + 1) kı (n+l) (4.88)

The associated complexity amounts to 2NKL + L multiplications.

Figure 4.4 Adaptive filter with M-D input and reference signals.

101



Other Adaptive Filter Algorithms

The developments and the preceding sections have illustrated the flexibility of the

procedures used to derive fast algorithms. Another example is provided by filters of

nonuniformlength.

4.6 Filters Of Nonuniform Length 

In practice it is desirable to tailor algorithms to meet the specific needs of applications.

The input sequences may be fed to filters with different lengths, and adjusting the fast

algorithms accordingly can provide substantial savings.

Assume that the K filters in Figure 4.1 have lengths N1 (1 ~I~ K). The data vector X

(n) can be rearranged as follows:

X 1 (n) = [Xi (n), Xi (n) Xk (n)] (4.91)

Where X(n) = [xi(n), Xi (n- l ), ... ,xi(n + 1-Ni)]. The number of elementsEN is

IN=~ Ni (4.92)

The connecting (IN+ K) (IN+ K) matrix RrNı (n + 1). Defined by

REN1(n +I)=

X1 (n + 1)

X1 (n) I[XK(n+l) xı(n+l),X;(n), .... , xK(n+l),X~(n)]

XK(n)

(4.93)

can agaın be partitioned in two different manners and provide the gain updating

operations. The algorithms obtained are those shown in Figures 4.2 and 4.3. The only

difference is that the prediction coefficient EN x K matrices are organized differently to

accommodate the rearrangement of the data vector X(n).

A typical case where filter dimensionscan be different is pole-zero modeling.
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4. 7 FLS Pole-Zero Modeling 

Pole-zero modeling techniques are used in control for parametric system identification .

An adaptive filter with zeros and poles can be viewed as a filter with 2-D

Input data and 1 -D reference signal. The filter defined by

Y (n + 1) = A1(n) X (n + 1) + B1(n) Y (n) (4.94)

is equivalent to a filter as in Figure 4.1 with input signal vector

x(n + 1) = [x<::! + 1)]
y(n)

(4.95)

For example, let us consider the pole-zero modeling of a system with output y (n) when

fed with x(n). An approach, which ensures stability, A 2-D FLS algorithm can be used

to compute the model coefficients with input signal vector

x(n + 1) = [x(n + 1)]
y(n)

(4.96)

However, as pointed out, that series-parallel type of approach is biased when noise is

added to the reference signal. It is preferable to use the parallel approach. But stability

can only be guaranteed if the smoothing-filter with: -transfer function C (z) satisfying

strictly positive real (SPR) is introduced-on the error signal.

An efficient approach to pole-zero modeling is obtained by incorporating the smoothing

filter in the LS process [6]. A 3-D FLS algorithm is employed, and the corresponding

diagram is shown in Figure 4.5. The output error signal f (n) used in the adaptation

process is

F (n) = y (n) - Iuı (n) + u2 (n) + U3 (n)] (4.97)

Where u1 (n), u2 (n), and u3 (n) are the outputs of the three filters fed by y (n), x (n), and

e (n) = y (n) - y' (n), respectively.
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The cost function is
n

J3(n) = L W n-p fı(p)
p=I

(4.98)

Let the unknown system output be

N N

y(n) = L a.xtn - i) + L b.ytn -i) (4.99)
i=O i=l

or

N N N

y(n)= La;x(n-i)+ Lbjı(n-i)+ Lb;e(n-i) (4. 100)
i=Ü i=l i=l

From (7.86), the error signalis zero in the steady state if

1 ~ i~N

Figure 4.5 adaptive pole-zero modelingwith a 3-D FLS algorithm.
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Now, assume that a white noise sequence x (n) with power a is added to the system

output. The cost function to be minimizedbecomes

n [ N ]2J3n(n) = ~wn-p f(p) + n(p)- ~n(p-i) (4.101)

Which, for sufficientlylarge n can be approximated by

(4.102)

The steady-state solution is

a· (co) = a· b· (co) = b· c· (oo) = O1 ı, 1 ı, 1 ,

Finally, the correct system identification is achieved, in the presence of noise or not.

The smoothing filter coefficients vanish on the long run when additive noise is present.

An illustration is provided by the following example.

Let the transfer function of the unknown system be

H(z)= 0.05+0.lz-1 +0.07z-2

l-0.96z-1 +0.94z-2
(4.103)

And let the input be the first-order AR signalx (n) = e0 (n) + 0.8x (n - 1) Where e0 (n) is
a white Gaussian sequence.
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Figure 4.6 Pole-zero modeling of an unknown system: (a) Systemgain in FLS

identification. (b) Smoothing filter coefficients.

The system gain Gs definedby

G s = 10 log (4.104)

is shown in Figure 4.6(a) versus time. The ratio of the system output signal to additive

noise power is 30 dB. For comparison the gain obtained with the series-parallel

approach is also given. In accordance with expression, it is bounded by the SNR. The
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smoothing filter coefficients are shown in Figure 4.6(b). They first reach the bı values (I

= 1, 2) and decay to zero after.
The 3-D parallel approach requires approximately twice the number of multiplications

of the 2-D series-parallelapproach.

4.8 Multirate Adaptive Filters 

The sampling frequencies of input and reference signals can be different. In the sample

rate reduction case, depicted in Figure 4.7, the input and reference sampling frequencies

are f s and f sik respectively. The input signal sequence is used to form K sequences

with sample rate f s/K which are fed to K filters with coefficientvectors Hı (n)(O::;; I ::;;K -

1 ). The cost function to be minimizedin the adaptive filter, JsRR (Kn), is

J,RR(Kn) = f wn-p~(kp)-H\Kp)X(Kp)J
p=I

(4.105)

The data vector X Kn) is the vector of the NK most recent input values. The input may

be considered as consisting of K different signals, and the algorithms presented in the

preceding sections can be applied. The corresponding calculations are carried out at the

frequency
The sample rate increase case is shown in Figure 4.8. It corresponds to 1-D input and

multidimensionalreference signals.

F sik
Hı (KN)

I ----- / '\.

X (n)
l

Y (kn)r ; '\ ••• ( )..ııı

F s I

HK(KN)

Figure 4. 7 Sample rate reduction adaptive filter.
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y (kn)F Jk

Figure 4.8 Sample rate increase adaptive filter.

It is much more economical in terms of computational complexity than the sample rate

reduction, because the adaptation gain is computed once for the K interpolating filters.

All the calculations are again carried out at frequency fs/N the reference sequence being

split into K sequences at that frequency. The system boils down to K different adaptive

filterswith the same input.
In signal processing, multirate aspects are often linked with DFT applications and filter

banks, which correspond to frequency domain conversions.

4.9 Frequency Domain Adaptive Filters 

The power conservation principle states that the power of a signal in the time domain

equals the sum of the powers of its frequency components. Thus, the LS techniques and

adaptive methods worked out for time data can be transposed in the frequency domain.

The principle of a frequency domain -adaptive filter (FDAF) is depicted in Figure 4.9.

The N-point DFTs of the input and reference signals are computed. The complex input

data obtained are multiplied by complex coefficients and subtracted from the reference

to produce the output error used to adjust the coefficients.
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At first glance, the approach may look complicated and farfetched. However, there are

two motivations.

NpointDFTı___
XT(n)

I \

N

Yıı(
~ l

point \ l :oint
Y(n)

DFT
XTN(n)

DFT

Figure 4.9 FDAF Structure.

View, the DFT computer is actually a filter bank which performs some

orthogonalization of the data thus, an order N adaptive filter becomes a set ofN separate

order 1 filters. Second, from a practical standpoint, the efficient FFT algorithms to

compute the DFT of blocks of N data, particularly for large N, can potentially produce

substantial savings in computation speed, because the DFT output sampling frequency

can be reduced by the factor N.
Assuming N separate complex filters and combining the results we obtain the LS

solution for the coefficients

n

LW~PyTi(p)xT;(P)
~(n)=~~~ı~~~~~­

Lwn-pxT;(p)xT;(p)
p=I

(4.106)

Where Xn (n) and YTi (n) are the transformed sequences.

For sufficiently large n, the denominator of that equation is an estimate of the input

power spectrum, and the numerator is an estimate of the cross-power spectrum between

input and reference signals. Overall the FDAF is an approximation of the optimal

Wiener filter, itself the frequency domain counterpart of the time domain filter
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associated with the normal equations. Note that the optimal method along these lines, in

case of stationary signals,would be to use.

The updating equations associated with (4.104) are

Hi (n + 1) = hi (n) + fi -ı (n + 1) XTı (n + 1) x [Yn (n + 1) - hi (n) xrı (n + 1)] (4.106)

Orthogonal
Transform

x (n+l-N)

Figure 4.10 FDAF with a singleorthogonal transform

and

fi (n + 1) = Wr,(n) + XTi (n + l) 8n (n+ 1) (4.107)

The FFT algorithms need about (N/2) log, (N/2) complex multiplications each, which

have to be added to the N order 1 adaptive filter operations. Altogether savings can be

significantfor large N, with respect to FLS algorithms.

The LMS algorithm can also be used Jo update the coefficients, and the results given in

can serve to assess complexityand performance.

It must be pointed out that the sample rate reduction by N at the DFT output can alter

the adaptive filter operation, due to the circular convolution effects [8]. A scheme

without sample rate reduction is shown in Figure 4.10, where a single orthogonal

transform is used. If the first row of the transform matrix consists ofl's only, the inverse

transformed data are obtained by just summingthe transformed data [10]. Note also that

complex operations are avoided if a real transform, such as the DCT is used.
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A general observation about the performance of frequency domain adaptive filters is

that they can yield poor results in the presence of nonstationary signals, because the sub

band decomposition they include can enhance the nonstationary character of the signals.
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CONCLOUSION 

Adaptive filtering has emerged as an important part of signal processing, rich in both

theory and application. We say that a filter, be it in hardware or software form, is adaptive

if it satisfies two requirements:

1. The filter has a built-in mechanism for the automatic adjustment of its coefficients

in response to statistical variations of the environment in which the filter operates.

2. The coefficient adjustments are made for the purpose of progressively moving the

filter (in an iteration-by-iteration or block-by-block manner) toward an optimum

performance; here, optimality is defined in some' statistical sense.

Adaptive filter theory applies to the processing of a time series as well as a space

series. In the temporal case, the filter input may consist of a "vector" of uniformly spaced

samples taken from a long data stream. In the spatial case, the filterlnput may be consist of

a "snapshot" of elemental outputs derived from an array of uniformly spaced sensors at a

particular instant of time. In some practical situaation, the umformity of data samples is not

adhered to.

Adaptive filters have heen successfully applied in diverse fields, inc adaptive

equalizers, echo can~ers, adaptive heamformers for sonar and speech encoders, time­

varying spectrum estimators, and system identification
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