
~"

NEAR EAST UNIVERSITY

Faculty of Computer Engineering

Department of Computer Engineering

STUDENT REGISTRATION USING VB.NET
PROGRAMMING LANGUAGE

Graduating Project
COM-400

Student: Serhat EROGLU

Supervisor: •• • • •Mr. UMIT iLHAN

Nicosia - 2006

ACKNOWLEDGEMENTS

"First, I would like to thank my supervisor Mr. Ümit iLHAN for

his invaluable advice and belief in my work and myself over

the course of this Graduating Project ..

Second, I would like to express my gratitude to Near East

University for giving lots of opportunity that made the work possible,

Third, I thank my family fir-st of all my father Rasim EROGLU

for their constant encouragement

And support during the preparation of this project.

Finally, I wouid also like to thank all my friends Bilal ŞİŞMAN, Ünal KURT, Gökan

Kaçmaz and Ali Serdar Terlemez

for their advice and support."

•

ABSTRACT

The aim of my project is to using database applications by using vb.net

programming language.
The project processes student details which are registered to a database. The

work includes the following basic operations; add, delete, modify, student records.

I prepared this project in vb.net 2003 which Vb.net has a number of unique

features that make it a great choice for building .NET applications. VB.NET is still the

only language in VS.NET that includes background compilation, which means that it

can flag errors immediately, while you type.
Great deal of gains were collected during the study of the technologies that I

have used in this project.

"'

•

11

TABLE OF CONTENTS

AKNOWLEDGEMENT i
ABSTRACT ü
TABLEOF CONTENTS üi
LIST OF ABBREVIATION v

INTRODUCTION l

CHATERONE: LEARNİNGVB.NET 2
1.1 What is .NET 2
1.2 Why Vb.NET 2
1 .3 InstallationRequirements for Vb.NET 2
1 .2 Getting Startedwith Vb.NET 3

1.2.1 Windows Applications 3

CHAPTERTWO: DATABASEAPLICATIONS 12

CHAPTERTHREE: WHATİS MİCROSOFTACCESS? 70
4.1 Getting Startedwith Access 70

4.1. 1 Databases: What they are and how they work? 70
4.1.1. I Access Database File 70
4.1.1.2 Tables and Relationships 71
4.1.1.3 Queries 71
4.1.1.4 Forms 71
4. 1.1.5 Reports 71
4.1.1.6 Data Access Pages 71

4.1.2 Table Design View 72
4.1.2?1 How Relate Two Tables 72
4.1.2.2 Table Datasheet View 72
4. 1 .2.3 Using the Datasheet and Query Datasheet Toolbars 72
4.1 .2.4 Working with columns, rows and su6datasheet 72
4.1.2.5 Moving Through Records 73

4.1.3 Queries 73
4.1.3.1 Select Queries 73
4.1.3.2 Parameter Queries 73
4.1.3.3 Crosstap Queries 73
4.1.3.4 Action Queries 73
4.1.3.5 SQL Queries 74

4. I .4 Relationship in a Database 74
4.1.4.1 How the Relationships Work 74

Ill

4.1.4.2 A many-to-many Relationship 75
4.1.4.3 A one-to-one Relationship 15
4.1 .4.4 Defining Relationship 75
4.1.4.5 Referential Integrity 76
4.1 .4.6 Cascading Updates and Deletes 76

CHAPTER FOUR: STUDENT REGİSTRATİON PROGRAM vi.O 78
3.1 Forml (Main Form) 78
3.2 Form2 (Add New Student) 79
3.3 Form3 (Student List) 82
3.4 Form4(Student Registration) 83
3.5 Form5 (Course Registration) 86
3.6 Form6 (Grade Registration) 88
3.7 Data Adapter Configuration 92
3 .8 Generate Dataset 96
3.9 How Make Relations between Datagrid and Dataset .96

CONCLUSION 98
REFERENCE 99

•

iv

LIST OF ABBREVIATION

VB.NET: Visual Basic.NET
VS.NET: Visual Studio.NET
00: Object Oriented
MHz: mega hers
MB: mega bayt
GB: giga byte
GUI: Graphical User Interface
ASP: Active Server Pages
DBMS: Database Management System

-~

•

V

INTRODUCTION

This Project is for the dilettante, and aimed at anyone who is interested in
learning VB.NET. The approach that has been followed here is that applications are
built first, and then, the code is deciphered to unveil the internal workings of the
product.

However, in order to thoroughly appreciate the internal execution of the
programs, there are certain significant concepts of the language that need to be
discerned first. I have ferreted out the relevant concepts and presented them in the most
elementary manner. ·

This Project converges predominantly around the language aspect, to provide
enhanced insights to the programmer into the innovative and improved features of
VB.Net. We are of the opinion that on learning the language, large applications can be
designed with effortless ease. '

I have ensured that your interest does not evaporate, by making the project as
entertaining and informative as possible. I have done my best.

The Thesis consists of the introduction, four chapter and conclusion.
ChapterI presents information about how to use vb.NET.
Chapter2 presents information about basic database applications in vb.NET
Chapter3 presents descriptions and codes. I explain every component about

program.
Chapter4 presents information about Microsoft Access which I used for

database.

."
••

1

CHAPTER!:

ı. Learning Visual Basic .NET

1.1 What is .NET?

Microsoft® .NET (released 2001) is Microsoft's new generation "software platform."
It's a language-neutral environment for writing programs. Program in any language, run
on one operating system. Includes comprehensive class libraries that provide rich
features.

.NET represents an advanced new generation of software that will drive the Next
Generation Internet. Its purpose is to make information available any time, any place,
and on any device. Quick definition of .NET is an initiative to integrate all Microsoft
products.with the "Next Generation".

1.2 Why VB.NET
The world of applications is changing. They move to Web. It need for reusability,
centralization and scalability. MTS, COM+, and Component Services cannot be fully
taken advantage ofby VS-. Features can be implemented more completely with .NET.' .

To get the benefit of .NET framework and its core execution engine:
• Garbage collection
• 00 mechanism
• Standard security services
• Integrated debugging tools

"
1.3 Installation Requirements for VB.NET

• Operating System
Windows 2000 Service Pack 4
Windows XP Service Pack 2
Windows Server 2003 Service Pack 1
Windows x64 editions
Windows Vista

• Processor
Computer with a 600 MHz or faster processor

- (1 GHz or higher recommended)
• RAM

Minimum: 192 MB

2

Recommended: 256 MB (512 MB or more with SQL Express)

• Hard Drive
- Minimum: 500 MB
- Includes Visual Basic Express and the .NET Framework 210
- Full Installation: 1.3 GB
- Also includes MSDN Express Library 2005 and Microsoft SQL Server

2005 Express Edition

1.4. Getting Started with VB.NET

You can use VB.NET to create three different types of programs:

• Web applications
• Windows applications
• Console applications

The .NET platform is web-centric. The VB.NET language was developed to
allow .NET programmers to create very large, powerful, high-quality web applications
quickly and easily. The .NET technology for creating web applications is called
ASP.NET.

ASP.NET, the next generation from ASP (Active Server Pages}, is composed of
two Microsoft development technologies: Web Forms and Web Services. While the
development of fully realized web applications using these technologies is beyond the
scope of this book, learning the basics of the VB.NET language will certainly get you
started in the right direction. VB.NET is generally acknowledged to be one of the
languages of choice for ASP.NET development.

Typically, you'll create an ASP.NET application when you Want yow program
to be available to end users on any platform (e.g., Windows, Mac, Unix). By serving
your application over the Web, end users can access yom program with any browser.
When you want the richness and power of a native application running directly on the
Windows platform, alternatively you might create a desktop-bound Windows
application. The .NET tools for building Windows applications are called Windows
Forms; a detailed analysis of this technology is also beyond the scope of this book.
However, if you don't need a Graphical User Interface (GUI) and just want to write a
simple application that talks to a console window (i.e., what we used to call a DOS
box), you might consider creating a console application. This book makes extensive use
of console applications to illustrate the basics of the VB.NET language. Web, Windows,
and console applications are described and illustrated in the following pages.

1.1.1. Windows applications

I use windows application in my project so, I am going to explain this
application for you;

3

A Windows application runs on a PC's desktop. You are already familiar with
Windows applications such as Microsoft Word or Excel. Windows applications are
much more complex than console applications and can take advantage of the full suite
of menus, controls, and other widgets you've come to expect in a modem desktop
application. Figure 2-2 shows the output of a simple windows application.

We assume that you have a copy of Visual Studio.Net installed on your machine.

To launch Visual Studio, click on the ubiquitous Start Button in Windows. (In
our case, we have installed Windows 2000). Then, click on Programs, followed by
Microsoft Visual Studio .Net. Finally, select the option ofMicrosoft Visual Studio .Net.
This is shown in the Screen l . l.

Screen 1.1

Shortly thereafter, a window pops up, showing Visual Studio.Net in all its glory,
as shown in screen 1.2. ~

•

4

Screen 1.2

One of the salient features of present day software is that it can be customized to
a large extent. This is why the final appearance of a product could be drastically
different from what it.originally looked like, when freshly taken out of the box. Thus,
the screen 1.2 will never look identical on all the machines. We shall explicate these
differences in due course, but for the moment, we are exceedingly inclined towards
embarking upon the development of a small application or project. But before venturing
any further, close all the child windows by clicking on the x sign,

Then, click on the menu option File, followed by New, and finally Project. This
becomes evident in screen 1.3.

•

Screen 1.3

The above actions will result in the display of the Dialog box titled "New
Project". This is shown in screen 1.4.

5

The advantage of using Visual Studio .Net is that diverse applications, each
using a different programming language, can be developed simultaneous, under a single
streamer,

This explains why three language options are present in the first pane of the
dialog box, viz. Visual Basic, Visual C# and Visual C++.

Screen 1.4

The option of Visual Basic project is listed first. Hence, it is highlighted by
default. This signifies the priorities of Microsoft, and is the very raison de etre of this
book!

A perfect analogy for Visual Studio .Net is that of a glass, which can be used to
drink either water or juice or wine. In a similar fashion, under the single roof of Visual
Studio .Net, various programs developed 'in different languages, can be written. Tho
language used is simply not an issue.

" The second pane titled 'Templates' determines the type of application that would
eventually be created. This could be an executable file running under Windows, or a
Web Application running a web server,

•• •
Since we are naive about this product, we select the option of Windows

Application. This option is selected by default.

The next task is to specify a name for the project. We have chosen the name
'vvv', since we sincerely believe that it will bring us good tidings on our very first.
application. We have used our newly created folder called 'vl ' as the location fot
creating the application. You are at liberty to choose any folder that you fancy.

6

Screen 1.5

After specifying all the details as shown in screen 1.5, click on the OK button.

This brings us to Screen 1.6, where we encounter an empty form •

•• •
Screen 1.6

Now, in order to view the output of our handiwork, click on the menu option
Debug, and then on Start. This is shown in screen 1.7.

7

Screen 1.7

This ignites the excitement of Visual Studio .Net, and it starts processing the
request. Finally, as the outcome of the operation, it displays an empty form. as seen in
screen 1.8. This is no mean achievement for people like us, considering the fact that we
have not written even a single line of code yet!

•

Screen 1.8

Close this form window by clicking on the x sign on the right hand side. This
will revert us back to the form in Visual Studio .Net. The next task that we venture upon
is, to display a button on the form. To accomplish this, click on the menu option View,
and then, on the option ofToolllox, as shown in screen 1.9.

8

Screen 1.9
This option brings up a toolbox containing a list of objects or controls. The

toolbox window is visible on the left hand side of the screen, as revealed in screen 1.10.

Screen 1.10 •
Now, simply click on the control labeled as Button to select it, and then, drag

and drop it into the form. Screen 1 .11 displays the position where we have dropped our

button.

9

Screen 1.11

Then, run the application in the customary manner by clicking on the menu
Debug, and then, click on Start. Screen I .12 confirms that the form now contains.the
button in it. Pat on the back! Having covered just a couple of pages, we have already
placed a button on the form.

••

Screen 1.12

The shortcoming of our present endeavour is that, we are clueless about what is
going on behind the scenes. Clicking on the OK button in the New Project dialog box,
results in the generation of considerable amount of code by the Visual Studio .Net
framework. Apparently, we have merely clicked on the ToolBox, which is a User
Interface tool; and then, we have dragged and dropped a button in the form. However,
in reality, ample code has been generated in the background to accomplish this
seemingly simple task.

10

We are convinced that prior to forging ahead with the task of building complex
applications using Visual Studio .Net, there is a need for discerning the code that it
generates. Also, along the way, we shall keep reverting back to the Visual Studio .Net
framework, to demonstrate as to how it has made a programmer's life more easygoing.
However, you have to learn a programming language that is to be used with it, since it iş
a fundamental fact that Visual Studio .Net cannot build customized applications by
itself. It is the task of the programmer to program it to satisfy the specific requirements.

•\.

•

11

CAPTER2:

2. Database Applications

You should arrive at screen 2.1, having a mammoth Form and a ToolBox to the
left. If for some reason, you are unable to see the toolbox on the left, click on the menu
View, and select ToolBox. But, if you have toolbox that hides automatically, unselect
the option ofAutoHide from the Windows menu option.

Screen 2.1

The toolbox has millions of controls. Hence, they are located under separate
categories or tabs. The category of Data encompasses all the controls that work with
data. Since this chapter deals with databases, select the Data subhead, and examine the
controls stipulated below it. The screen-that we arrive at, is shown in screen 2.2.

lı.

•

12

Screen 2.2

Choose the control called OleDbDataAdapter and place it on the Form. It should
be done in a manner akin to the one employed iri the previous chapter, to place a button
on the Form.

The procedure remains the same, i.e. click on the control to select it, and then,
keeping the left mouse button pressed, drag and drop it onto the Form. Surprisingly,
unlike a button, the control iş not positioned on the Form. Instead, a dialog box pops up,
as shown in screen 2.3.

•

.\=

Screen 2.3

Here, we are informed in no uncertain terms, that we are in the august presence
of Merlin's Wizard! The job of a wizard is to make our lives easier by using black
magic. Thus, a Microsoft wizard throws a volley of questions at us. Based on the
answers furnished by us, it toils towards ameliorating our lives by writing tons of code
to achieve the desired outcome.

13

Here, we are asked to confirm which database we prefer to connect to. Since we
have not created any connection in the past, we click on the 'New connection' button to
arrive screen 2.5.

Screen 2.4

··=

Screen 2.5

By
convention, the first
screen of a wizard
provides infomıation
about the type of the
wizard. Presently, we
are not very keen on
reading it. So, we
click on the Next
button. This
transports us to the
next step in the
wizard, as shown in
screen 2.4.

••

The Data Link Properties Dialog Box requires considerable amount of
information, before it can create a new connection. However, all the boxes do not
require to be filled up. The server name is left blank, since the database server runs on
the same machine as the application.

14

A connection is made to the server, employing the user name 'sa'. Therefore, 'sa'
is entered in the textbox labeled 'User Name'. Since the password is set to blank, the
Check box for Blank password is selected. Then, we click on the down arrow of the
drop down listbox for displaying the option of select database on server. The screen 2.6
depicts the outcome of our action.

The list provided is that of the databases, which have been created on the server.
After having selected the Northwind database, the dialog box looks similar to what is
shown in screen 2.7.

I
tI •
!
I
l

Screen 2.7

15

The program that we had written earlier had incorporated data from the
'Northwind' database, which is visible in the list. Although we are at liberty to select the
database, we will stick to Northwind for the time being.

An added advantage of a drop down listbox is that, it averts the possibility of a
wrong database name being entered by the user, since a name has to be selected front
the list that is provided.

Now, click on the button labeled Test Connection. This finally ascertains
whether all the values entered are valid from the standpoint of the database server.

Screen2.8

The Screen 2.8
returns with a
message of success.

Some
processıng had taken
place when the Test
connection button was
clicked.

This involved connecting to SQL Server using the user name 'sa' and using a
blank password, and thereafter, accessingjhe Northwind database,

When you click on OK, you will be reverted back to one Ôfthe previous screens)
with the name ofVMUKHI.Northwind.dbo in the listbox, as shown in screen 2.9.

16

Screen 2.9

Vmukhi is the name assigned to our computer. It is followed by the name of the
database Northwind, with an extension of dbo.

Now, click on the Next button to arrive at the screen 2.1 O. A 'stored procedure' iş
a program that resides and executes on the server .. We feel quite contented to use the
trusted SQL Select statements to fetch data. So, we simply click on the Next button,
without making any amendments to screen 2.1O.

I
I

Iı •

Screen2.10

In screen 2.11, we see a cursor blinking in the text area, which is an indication
that an SQL Select statement has to be entered.

17

Screen 2.11

In case you are not conversant with the options, you can click on Query Builder,
as we have done, to arrive at screen 2.12.

Screen 2.12 ••

The listbox displays the tables that constitute the Northwind database. Click on
Customers, and then on the Add button. The background area in screen 2.12 changes, to
display a box containing the word 'customers', with a list of fields within it. Since there
are no more tables to select from, we click on the Close button,

18

Screen 2.13

In screen 2.14, the first three fields are selected. This has been achieved by
clicking on the check box, due to which, the selected field names.get added to the Select
statement.

•
Screen 2.14

Since we are satisfied with what we have achieved, we click on the OK button.

This takes us to screen 2.15, which displays the· Select statement that is
generated. The Select statement shows the three selected fields of Customerll),
Company Name and ContactName for which data is to be retrieved from the Customers
table.

19

Screen 2.15

This is where a wizard really flaunts its mettle, since it is easier to select from a
list, rather than to write things out manually. The beauty of SQL is revealed in all its
glory, when we have to work with multiple tables.

When we click on the Next button, the screen 2. I 6 reveals that the wizard has
internally performed a number of tasks for us. Finally, click on Finish to end the wizard.

Screen 2.16

As shown in screen 2.17, the screen does not show the object on the Form;
instead, it has two objects, i.e. OleDbDataAdapterl and OleDbConnectionl, which are
located at the bottom of the screen.

20

Screen Z.17

This highlights the fact that there are two types of controls.
• The first type is similar to a button, which gets displayed in the Form.
• The second type is that of OleDbConnection, which does not have an User
Interface, and which gets placed at the bottom of the Form.

The next object required is a DataSet object, which simply relates to a collection of
tables. The Visual Studio.Net interface has a menu option Data. So, click on Datil and
select the option of 'Generate Dataset', as shown in Screen 2.18 •

•

Screen 2.18

21

This generates a screen, as shown in screen 2.19.

Screen 2.19

We are contented with the default options assigned to our dataset, where the
name indicated is DataSetl. The framework is extremely astute, and hence, it adds the
Customers table to the Dataset, as shown in the screen. Finally, since the check box at
the bottom is selected; the dataset gets added to the Designer.

When the OK button is clicked, the dataset DataSetl will be displayed at the
bottom of the non User Interface controls. This is shown in Screen 2.20

Screen 2.20

22

Next, a DataGrid has to be added to the Form. So, we click on the Windows
Form Tab in the toolbox, select DataGrid and drag it onto the Form window. This is
shown in Screen 2.21 and Screen 2.22.

Screen 5.21

•

Screen 2.22

23

The DataGrid and Form are disconcertingly cramped. So, we click on their
edges and drag them diagonally to enlarge their sizes, as in evident in screen 223.

Screen 2.23

Our program had initialized various properties such as ClientSize, Background
color etc. To modify these properties, click on the menu option of View-Properties
Window.

••

Screen 2.24

This brings up the Properties window on the right hand side of the screen. Since
the DataGrid control is selected, the properties related to the Grid are displayed. When
you select the Form, its properties get displayed in the Properties Window.

24

Click on the drop down listbox for the DataSource property. It displays a list
containing two items, as seen in screen 2.25. Select the option of DataSetl, as shown in
screen 2.26.

Screen 2.25

•

Screen 2.26

The DataMember property that is positioned immediately above the DataSource,
is also required to be Set. So, click on the down arrow, and from the list, select the table.
named Customers.

25

Screen 2.27

In screen 2.28, we have selected the Customers table. On doing so, the DataGrid
automatically gets transformed to display three fields in the table. '

Screen 2.28

Now, incorporate another button control into the Form, as is shown in screen
2.28. The Properties window exhibits the properties for the button, since it is the
selected object.

26

=

Screen 2.29

In the Properties window, enter the word 'Load' in the Text property of the
button. Then, press Enter, and you will instantly witness the text on the button change to
'Load', as shown in screen 2.30.

•

Now, double click on the button, and enter the following line at the cursor position:

OleDbDataAdapterl .Fill(DataSet1 1)

27

·a;;&;;.J
l.ı:; Cl•.a.a trc-a:ıl
tWt1t:ıı itı'.im, i'tad.cn, F12EM, roaı

vw.dtı~ t't>t'.l'I rı;ıuQP.tJ.:HP:,Ot:::tı.tcıJ a,d.-~ ı
P~t~e Bıih !hı,;:r..aaJ._CHCk:(811/t.1 ~t:U!t ,\

OL•IIbDRLUlafl::.rt. U 11(O•.t•!S:•t U.)

Ez:ııt aıJlı

ı

Screen 2.31

In order to verify whether everything has been entered accurately or not, click on
the menu option Debug, and then, click on Start. The screen that emerges is shown in
screen 2.32.

•
Screen 2.32

An empty DataGrid and a button labeled 'Load' are displayed. Now, click on the
button. Lo & behold! The screen transforms, displaying the Data Grid containing the
data retrieved from the Customer table, as is evident in screen 2.33.

2S

Screen 2.33

Let us now snoop behind the scenes to check on the activities that have taken
place. We would be explaining each new step incorporated above, by interpreting the
code that has been generated. You will never be able to grasp the applications without
learning the language. Therefore, we insist that you learn the language before diving
straight into the depths of the applications. We have copied the generated code and
presented it below

We have converged our attention around the code that has been introduced
recently, so that our explanation is confined to the newly added code only, in order to
avoid repetition. Furthermore, once the code has been explicated, it will not be
exhibited again.

Since the process of code generation has been automated, a lot of code has been
included to handle situations that may possibly occur only once in a million years!
Thus, a lot of redundant code is generated. We have displaced all comments, since they
impede our understanding of the code. We have also done away with all the blank lines;
since they occupy too mu"h space.

Public Class Forml
Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code " •
Public Sub New() ~
MyBase.New()
InitializeComponentO
End Sub
Protected Overloads Overrides Sub Dispose{ByValdisposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub

29

Friend WithEvents OleDbDataAdapterl As
System.Data.OleDb.OleDbDataAdapter
Friend WithEvents OleDbSelectCommandl As
System.Data.OleDb.OleDbCommand
Friend WithEvents OleDblnsertCommandl As
System.Data.OleDb.OleDbCommand
Friend WithEvents OleDbUpdateCoınmandl As
System.Data.OleDb.OleDbCommand
Friend WithEvents OleDbDeleteCommandl As
System.Data.OleDb.OleDbCommand
Friend WithEvents OleDbConnectionl As
System.Data.OleDb.OleDbConnection
Private components As System.ComponentModel.IContainer
<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeCompon<;mt()
Me.OleDbDataAdapterl ""'New System.Data.OleDb.OleDbDataAdapter()
Me.OleDbSelectCommandl = New Systeın.Data.OleDb.OleDbCommand()
Me.OleDblnsertCommandl ::; New System.Data.OleDb.OleDbCommand()
Me.OleDbUpdateCommandl = New System.Data.OleDb.OleDbCommand{)
Me.OleDbDeleteCommandl ::; New System.Data.OleDb.OleDbCommand()
Me.OleDbConnectionl = New System.Data.OteDb.OleDbConnection()
Me.OleDbDataAdapter 1.DeleteCommand = Me.OleDbDeleteCommandl
Me.OleDbDataAdapter l .lnsertCommand = M~.OleDblnsertCommand 1
Me.OleDbDataAdapterl .SelectCommand = Me.OleDbSelectCommandl
Me.OleDbDataAdapter 1.TableMappings.AddRange(New
System.Data.Common~DataTableMapping() {New
System.Data.Common.DataTableMapping("Table", "Customers", New
System.Data.Common.DataColumnMapping() {New

· Systenı.Data.Common,DataColumnMapping(11CustomerID11,
11CustomerID"),

New System.Data.Common.DataColumnMapping("CompanyName".
11CompanyName'1), New
System.Data.Common.DataColumnMapping("ContactName" ı
11ContactName11)})})

Me.OleDbDataAdapterl.UpdateCommand = Me.OleDbUpdateCommandl
M~..Ol~DbS~leçtCQmmçı,nd1 ,CQmmçı,ndText = "SET,ECT C1JStQmerTD,
CompanyName, ContactName FROM Customers"
Me.OleDbSelectCommandl .Connection= Me.OleDbConnectioni
Me.OleDblnsertCommandl .Commandfext = 11INSERT INTO
Customers(CustomerID, CompanyNamp, ContactName) V~UES (?, ?, ?);
SEL11& -"ECT CustomerlD, CompanyName, ContactName FROM Customers WHERE
(CustomerID = ?)"
Me.OleDblnsertCommandl .Connection= Me.OleDbConnectionl
Me.OleDbinsertCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("CustomerID",
System.Data.OleDb.OleDbT~.VarWChar, 5, "CustomerlD"))
Me.OleDblnsertCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("CömpanyName11,

System.Data.OleDb.OleDbType.VarWChar, 40, "CompanyName11))

30

Me.OleDblnsertCoınınand l .Parameters.Add(New
System.Data.OleDb.OleDbParameter("ContactName",
System.Data.OleDb.OleDbType.V arWChar, 30, "Corıtaotblarne'Tl
Me.OleDblnsertCommandl .Parameters.Add(New
System.Data. OleDb.OleDbParameter("Select_ CustomerlD",
System.Data.OleDb.OleDbType.VarWChar, 5, "CustomerID"))
Me.OleDbUpdateCommandl .CommandText =

11UPDA TE Customers SET
CustomerID = ?, CompanyName = ?, ContactName =? WHERE (Cust" & _
"omerID = ?) AND (CompanyName = ?) AND (ContactName = ? OR ? IS
NULL AND ContactN" & _
"ame IS NULL); SELECT CustomerID, CompanyName, ContactName FROM
Customers WHERE (" & _
"CustomerID = ?)"
Me.OleDbUpdateCommandl .Connection= Me.OleDbConnectionl
Me.OleDbUpdateComınandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("CustomerID",
System.Data.OleDb.OleI;>bType.VarWChar, 5, ncustomerID"))
Me.OleDbUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter(11CompanyName'',
System.Data.OleDb.OleDbType.VarWChar, 40, "CompanyName"))
Me.OleDbUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("ContactName'',
System.Data.OleDb.OleDbType.VarWChar, 30, 11ContactName"))

Me.Olel)bUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter(110riginal _Customerlf)",
System.Data.OleDb.OleDbType.VarWChar, 5,
System.Data.ParameterDirection.Input, False, CType(O, Byte), CType(O, Byte),
"CustomerID", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("Original _CompanyName'',
System.Data.OleDb.OleDbType.V arWChar, 40,
S'ystem.Data.ParameterDirection.Input, False, CType(O, Byte), CType(O, Byte),
"Companyblame", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("Original _ContactName",
System.Data.OleD1H)leDbType.VarWChar, 30,
System.Data.ParaıneterDirection.Input, False, CType(O, Byte), CType(O, Byte),
"ContactName", System.Data.Da~owVersion.Original, Nothing))
Me.OleDbUpdateCommandl .Parameters.Add(New •
System.Data.OleDb.OleDbParameter("Original_ContactNamel '',
System.Data.OleDb.OleDbType. VarWChar, 30,
System.Data.ParameterDirection.Input, False, CType(O, Byte), CType(O, Byte),
"Contactblame", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbUpdateCommandl.Parameters.Add(New
System.Data.OleDb.OleDbParameter(11Select_ CustomerID" ~
System.Data.OleDb.OleDbType.VarWChar, 5, "CustomerID"))
Me.OleDbDeleteCommandl .CommandText = 11DELETE FROM Customers
WHERE (Customerlfr= ?) AND (CompanyName =?)AND (ContactNa" & _
"me=? OR? IS NULL AND ContactName IS NULL?
Me.OleDbDeleteCommand I .Connection = Me.OleDbConnectionl

31

Me.OleDbDeleteCommandl .Paraıneters.Add(New
System.Data.OleDb.OleDbParameter("Original _CustomerID",
System.Data.OleDb.OleDbType.VarWChar, 5,
System.Data.ParameterDirection.lnput, False, CType(O, Byte), CType(O, Byte),
"CustomerIDn, System.Data.DataRowVersion.Original, Nothing))
Me. OleDbDeleteCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameteı'(''Original _Company Name",
System.Data.OleDb.OleDbType.VarWChar, 40,
System.Data.ParameterDirectiorı.lnput, False, CType(O, Byte), CType(O, Byte),
"Company Name", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbDeleteCommandl .Parameters.Add(New
System.Dat&.OleDb.OleDbParameter("Original_ContactName",
System.Data.OleDb.OleDbType.VarWChar, 30,
System.Data.ParameterDirection.lnput, False, CType(O, Byte), CType(O, Byte),
"ContactName", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbDeleteCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("Original _ContactName l ".
System.Data.OleDb.OleDbType. VarWChar, 30,
System.Data.ParameterDirection.Input, False, CType(O, Byte), CType(O, Byte),
"ContactName", System.Data.DataRowVersion.Original, Nothing))
Me.OleDbConnectionl .ConnectionString = "Provider=SQLOLEDB. l ;Persist
Security Info=False;User JD:;::sa;Initial Catalo_g=Northw" & _
"ind;Use Procedure for Prepare=l ;Auto Translate:;;;True;Packet
Size=4096;Workstation" & _
11 IO=VMUKHI;Use Encryption for Data=False;Tag with column collation when

poss" & _
"ible=False"
Me.AutoScaleBaseSize = New System.Orawing.Size(5, 13)
Me.ClientSize = New System.Drawing.Size(292, 273)
Me.Name= "Forıni"
Me.Text= "Forınl"
End Sub
#End Region
End Class

In the Form, we first introduced an OleDbDataAdapter object. This resulted in
the creation of the DataAdapter and DataConnection objects, which carried the
information essential to connect to the database server. Resultantly, the above code was
generated, •

Other than calling the InitializeComponent function, the constructor has no other
role to play. All the valuable code is placed in the InitializeComponent function. The
Dispose function remains unchanged, and can be ignored completely. Normally, all the
instance variables are positioned after these housekeeping functions.

We had earlier learnt that two objects of type SqlConnection and
SqlDataAdapter were required to connect to any database in SQL Server. Since these
objects are restricted to SQL Server, they cannot be used in the context of other

database servers.

32

Thus, the code is not generic in nature. Therefore, the Wizard creates objects of
type OleDbConnection and OleDbDataAdapter, since they can then be implemented on
multiple database servers, including SQL Server. Barring this difference, both the

objects work in a similar manner.
Every corresponding object has a number appended to the name of the class.

This number gets incremented when another object of the same kind is added to the
Form. This helps in assigning unique names to each object.

The wizard generates SQL statements for adding, updating and deleting records
from the database. The OleDbComınand object is created for this purpose, since it is

conversant in dealing with SQL.
In the JnitializeComponent function, all the instance variables arı: initialized

using the new keyword with the constructor that does not take any parameters.

The DeleteCoınınand is a propertYof type OleDbCommand, which represents an
SQL statement or a stored procedure employed for deleting records. Similarly, the
object also contains properties to represent Insert, Select and Update commands.

The property of TableMappings is of type DataTableMappingCollection. It is a
collection objects that provides the master mapping between the source table and a
DataTable. The AdıjRange function accepts an array ofDataTableMapping objects,

Me.OleDbDataAdapter l .TableMappings.AddRange(New
System.Data.Common.DataTableMapping() {New
Systeın.Data.Coınınon.DataTableMapping("Table•, "Customers", New
System.Data.Common.DataColumnMapping() {New
System.Data.Coınınon.DataColumnMaPping("CustomerID","CustomerID"),
New System.Data.Coınınon.DataColumnMapping("CompanyName",

"CompanyName"), NewSystem.Data.Coınmon.DataColumnMapping(•ConıactName",

"ContactName")})})
The fust parameter to the constructor of a DataTable Mapping is a string that

represents a table. The secoııd parameter is the name of the table selected in the Select
statement, i.e. Customers. Following this array, there is another array named Columns,

which is a DataColumnMapping collection.,,

The DatacoıumnMapping object takes two strings: •
• The first is the column name from the data source.
• The second is the column name from the DataSet that it must map to.

While building the query, we had ~hosen three coJınnns.Therefore, there arı: three
members in the array. The parameter names and the column names have been kept

identical.
Me.OleDbSelectCommandl .eoınınandText ~ "SELECT CustomerID,
CompanyName, ContactName FROM Customers"

33

Do bear in mind that most of the above code is superfluous, and hence,
dispensable. The OleDbCommand has a property called CommandText, using which,
the OleDBSelectCommand is initialized to the SQL statement associated with the
Command object. The SQL statement that is. generated with the Query Builder, is
assigned to this property.

Me.OleDbSelectCommand 1.Connection = Me.OleDbConnectionl

Every Adapter object needs a Connection handle. Therefore, the Connection
property is set to the OleDbConnection object.

The CommandText property in the Insert Object is set to a SQL Insert statement.
We can very easily add records while the DataGrid is displaying its set of records.

Me.OleDblnsertCommandl .CommandText = "INSERT INTO
Customers(CustomerID, CompanyName, ContactName) VALUES{?,?,?);
SEL"& -"ECT CustomerID, CompanyName, ContactName FROM Customers WHERE
(CustomerID = ?)''

Note, that the syntax for the Insert statement starts with the reserved words
'Insert into', followed by the name of the table, i.e. Customers, followed by the list of
field names in round brackets. This is followed by the reserved word 'values', which is
followed by the actual values that need to be inserted, placed within round brackets.
These values are not known at this stage, Herice, they are represented by a ? symbol,
which represents a parameter or a place holder. It will be substituted by a value in due
course of time. ·

The SELECT statement with the Insert command identifies a unique customer
record. Since the line is broken on two lines, the word 'SELECT' has the continuation
character of&_ in double quotes.
One line below the insert command is the Parameters Collection object, which keeps
track of all the parameters.

Me.OleDblnsertCommandl .Parameters.Add(New
System.Data.!)leDmüleDbParameter("CustomerID'',
System.Data.OleDb.OleDbType.VarWChar, 5, "CustomerID"))

"
To this collection, we add an instance of an OleDbParameter object, whose

constructor takes the following parameters: First is a parameter name, followed by the
data type, followed by the width of the column, and finally, followed by the name of the
source column. The parameters have been assigned the same names as those of the
fields.

Me.OleDblnsertCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("Select_CustomerID",
System.Data.OleDb.OleDbType.VarWChar, 5, "CustomerID"))

The parameter that identifies the CustomerID in the where clause is given the
name of Select CustonerID as shown above.

34

Me.OleDbUpdateComrnandl.CommandText = "UPDATE Customers SET
CustomerID == ?, CompanyName = ?, ContactName =? WHERE (C" & _
"ustomerID = ?) AND (CompanyName = ?) AND (ContactName = ? OR? IS
NULL AND ContactN" &
"ame IS NULL); SELECT CustomerID, CompanyName, ContaetName FROM
Customers WHERE (" &
"CustomerID = ?)"

The Update command follows next, which contains the word Update, followed
by the table name Customers, and finally, followed by the fields that are to be changed.

Only three of the fields have been chosen. Therefore, the SET command has
exactly three field names as three parameters. By default, the Update statement acts on
all records. Therefore, to modify only specific records, the 'where' clause has to be used,
thereby restricting access to the number of records it can act upon.

The CustomerID is the primary key, which has a unique value for each record.
Therefore, if the Primary key is used in the 'where' clause, it will affect only one record.

Me.OleDbUpdateCommandl .Parameters.Add(New
System.Data.OleDb.OleDbParameter("Original_CustomerID'',
System.Data.OleDb.OleDbType.VarWChar, 5,
System.Data.ParameterDirection.Input, False, CType(O,Byte), CType(O,Byte),
"CustomerID''', System.Data.DataRowVersion.Original,Nothing))

If you notice the parameter statement, the name of the field has been prefixed
with the word Original_. The fourth parameter is an enum of ParameterDirection, which
refers to the type of parameter. The enum consists of the four values of Input, Input
Output, Output and Return Value.

The value of Input signifies that the value has not been received, but would be
furnished in due course. The next value of False is a Boolean, which indicates whether
the column will accept null values or not; a value of True signifies it that it will.

The next value is for precısıon, which determines the number of digits
permissible to the left and right of the decimal point. This is followed by the Scale
parameter, which determines the total number of decimal places that the field can be
resolved to. Initially the above two parameters would appear absurd•

•
Next, we encounter the real column name, followed by a DataRowVersioıı

enum, which takes four values: Current, Default, Original and Proposed. Original
represents original values, as against the current values. Finally, we come to an object,
which currently has no value.

Me.OleDbDeleteCommandl .ComınandText = "DELETE FROM Customers
WHERE (CustomerID =?)AND (CompanyName =?)AND (ContactName =?
OR? IS NULL AND ContactName IS NULL)''

After the Update command, we shall tackle the Delete command. This command
starts with the words 'delete from', followed by the table name Customers, and then,

35

followed by the 'where' clause that identifies the records that can be deleted. The
parameters are identical to the Update command.

Me.OleDbConnectionl .ConnectionString = "Provider-SQLOLEDB. l .Persist
Security Info=False;User ID=sa;Initial Catalog=Northw" & _
"ind;Use Procedure for Prepate=l ;Auto Translate=True;Packet
Size=4096~Workstation" & _
"ID=VMUKHI;Use Encryption for Data=False;Tag with column collation when

poss" & _
"ible=False"

Now, the focus once again shifts to the OleDbConnection object. Earlier, we had
passed the connection string to the constructor. However, as an alternative approach, we
could use the ConenctionString property instead. This is what the Constructor
eventually does with the string that is passed to it.

We shall restrict ourselves to only a few of the connection string properties for
the moment. When the property Provider refers to the database, a connection gets
established. The User ID property is the usemame, and the Initial Catalog is Northwind.
The rest of the code is conventional and mundane.

Before concluding its tasks, the wizard takes all the information that has been
entered in the textboxes, and it generates the above code. After the wizard generated the
SQL statements, 'we clicked on the menu-option Generate Dataset under Data.

Friend WithEvents DataSet 11 As t l .DataSet 1

The dataset name DataSetl, which is the default name, is used to identify the
dataset. This results in the generation of an instance variable called DataSetl l of type
tl. Its name is formed by joining the name of our project with the name of the dataset,

i.e. DataSetl .

Before proceeding any further, click on the menu option View, and then, on the
Solution Explorer. This brings us to screen 2.34, which has a window that lists the files

constituting our project,

••

36

Screen 2.34

A Solution or a project for the moment will be used interchangeably.

The file Forml.vb contains the code for the Form Design. Double click on the
DataSetl .xsd file, which is generated on creation of the DataSet object. This brings us
to the screen 2.35, where the relationship has been depicted in a visual form,

•

Screen 2.35

In the Solution Explorer, right click on Forml .vb item. The popup menu that
emerges is shown in screen 2.36. It reveals the options that are available on this item.

37

Screen 2.36
On selectinil View Code, we arrive at the Code Generator. Th• other route to

reach the Code Generator is by clicking on the filename Fonnl.vb on the panel, just

below the toolbars.
In the code that is generated within Fonni.vb, we place the cursor on the line

DataSetil at t!.DataSetl, and then. right click on it. Select the option of 'Go to

definitions', as shown in screen 2.17.

•

~---
Screen 2.37

This option would ıransport you to screen 2.38, where the class of DataSetl is
defined. It divulges the fact that DataSetl is defined in a sep,arate class of DataSetl.vb,

and it is derived from the class DataSet.

38

~ı::t:ı :S-'J'•t.u:ı

t.t1,ar:r.1 37'!~91 DM.oil
t&:ı,uu:t:• s~._t-...eı.:tuııei.-ı:ıa. ~ırcuıJ. h~!l.t!ıce.
J:,;fllt~, ,,.,~ı!fi, :ı::aı.

_ .(Sııı:..usJ.1.:ıalıl.•O .• _ .~,
l S:ı,ıte:ıo,-<:ill!il'••• "-'iltıd.<1 'Ooş1;ıuetC,ı.t•fl'l't'Ti.ttdl:*1

I. :,orat:hl.,0ta.gtı.ıf•tiı:• •. Dwb.u.qpı:::lt.•.P~tJ.ı.ıgt:ı.0~ ~.:.
llY:!t'.i:lıı (~iHit:~!ad.el.. f.O'albmı.tı:.~(r;.t:1u,) :r t;J

J i\ubltc: .t:-l••• D,ı.t;:a!iat.l I - '-~.f

ı b.h.ttita ~at.St,;. ?·!'-}.1,
;;.-

' ?,.t-vıı.t-e ı;.o,.ıecw:cıuettJ ~- Cı.~ı;atteı,O-eı;ıı~'

-~-

Screen 2.38

In the beginning of the file DataSetl.vb, we come across the word
Autogenerated, which merely informs us that a program has generated this file.
Someday we intend to lift the veil off the name of the program that generates this code,
and also the code that it generates. However, at this moment, we are not interested in the
code that is written for the DataSet, since we shall not be using any of it.

The Visual Basic.Net language assimilates various types of code, which we shall
abstain from analyzing right now. However, we shall explicate the various types of
code, as we stumble upon them in due course.

In addition to the instance variable that gets created, the following lines get
added to the Form.vb code, when the Generate DataSet menu-option is selected.

Me.DataSetl 1 = New t1.DataSet1()
CType(Me.DataSetl I, System.ComponentModel.ISupportinitialize). BeginlnitO
Me.DataSetl l .DataSetName = "DataSetl 11

Me.DataSetl I .Locale= New System.Globalization.Culturelnfo("en-US")
Me.DataSetl l .Namespace = "http://www.tempuri.org/DataSetI .xsd"
CType(Me.DataSet11, System.Co:qıponentModel.ISupportlnitialize).EndlnitO

The first line simply creates an instance of a DataSetl ôbject and stores it in
DataSetl 1. The next line begins with a function called Ctype.

The sole task of the Ctype function is to convert the data type of the first
parameter, to the data type specified by the second parameter. Thus, the first parameter,
i.e. DataSetl 1 object of type DataSet is converted into the ISupportlnitialize type, which
belongs to the System.ComponentModel namespace,

The resultant object is an ISupportlnitialize type, from which the Beginlnit
function is called. The above line could have been alternately worded as:
DataSetl l .Beginlnit(). This is so because the DataSet class is derived from
ISupportlnitialize.

39

The Beginlnit function signals to the framework that the DataSet initialization
process has commenced, and hence, it should stop all activities related to the DataSet,
until the Endlnit function gets called. Therefore, the DataSet object is not authorized to
carry out any internal initializations, since these functions optimize changes to multiple
sets of properties.

However, at design time, we can co-initialize properties that are contingent upon
each other. For example,, the DataSetName specifies a name for the DataSet, and the
locale always deals with the language issues. The namespace property handles the
reading and writing of XML Schemas. A point to be noted here is that, the above code
is spread out in the sub InitializeComponent.

After the DataSet generation is completed, we had selected the DataGrid control
from the Forms Toolbox. This results in the creation of an instance variable called

DataGridl.

Friend WithEvents DataGridl As System.Windows,Forms.DataGrid
Me.DataGridl = New System.Windows.Forms.DataGrid()

CType(Me.DataGridI ,System.ComponentModel.ISupportlnitialize). Beginlnit()

Me.DataGridl .DataMember == ""
Me.DataGridl .HeaderForeColor = System.Drawing.SystemColors.CöntrolText
Me.DataGridl.Location == New System.Drawing.Point(32, 64)
Me.DataGridI .Name = "DataGridl"
Me.DataGridl.Tablndex = O

Me.Controls.AddRange(New System.Windows.Forms.ControlO
{Me.DataGridl})
CType(Me.DataGridl, System.ComponentModel.ISupportlnitialize).Endlnit()

In general, ushering in of any control leads to the generation of additional code
in the above format. An instance variable is created with the name of the class, followed
by a number beginning with 1, and not O.

It is assumed that every control would be dealing with events. Therefore, it has
BeginEvent and EndEvent methods, which jıllow the control to be initialized without
any interference. In principle, they serve the purpose of a "Do Not Disturb" sign. The
control is at liberty to act in any way that it likes, until the EndEvent method is called. It
even enjoys the license not to do anything at all !

The abovementioned two methods are actually precautionary measures, which
may or may not be implemented.

The DataMember property is initialized to Null, the HeaderForeColor property is
initialized to a predefined color, the tab index is initialized to O and the name is
initialized to DataGridl. The only important property is Location, since its co-ordinate$
determine the position on the Form.

40

You may woı;ıder as to why Visual Studio.Net provides distinct properties for
each control. The logic behind this is that Visual Studio.Net is oblivious to what is
being written, since it is the job of the control to usher in the code that it yearns for. The
Add.Range function is used to add the control to the Controls collection.

When the DataSource property of the DataGrid is set to DataSet, the line given
below gets inserted. It also affects the design time look of the DataGrid by displaying a
plus sign.

Me.DataGrid1.DataSource == Me..DataSe-t11

Each time a property is altered, an additional line of code gets added to the Code
Painter. Thus, the DataSource property gets set to DataSetl 1.

Our view-point is that, every software developer should use Visual Studio.Net.
since it is sure to make each one of them more efficient programmers.

The different user interfaces of the Properties editor also ensure that, on most
occasions, the user does not have to enter a value. This is achieved by providing drop
down listboxes encompassing the· various possible values, thereby eliminating tho
slightest probability of the user committing a blunder.

Yet another advantage is that, very often, programming tends to become very
tedious and irksome. Therefore, it is a dream come true when the :frameworkgenerates
the code for us, even if it does so only once in a while.

Next, the DataMember property is set to Customers. This does not add any fresh
line of code, but merely changes the previously written line to the following:

Me.DataGrid1.DataMember = "Customers"

We would definitely want you to attempt a small experiment. In the Design
Mode, Set the DataSource property to None. On doing so, the OataMember property too
gets reset to None, thus echoing the above action.

Visual Studio.Net tranşmutes itself into a feature of convenience, whereby, the
dynamic behaviour gets reflected by the code in the control itself, such as a DataGrid
control. Next, we insert the button control. This leads to the addition of the following

code in the file:

Friend WithEvents Buttonl As System.Windows.Forms.Button.
Me.Buttonl = New System.Windows.Forms.Button()
Me.ButtonI.Location= New System.Drawing.Point(96, 184)
Me.Button1.N~e == "ButtonI"
Me.Buttonl.Tabindex = 1
Me.Buttonl.Text = "Buttonl"

As can be seen above, the outcome is very predictable when the code is
I

generated by a computer program. An instance variable Buttonl is created, which can

also handle events.

41

In the InitializeComponent function, the instance variable is actually
instantiated, and the properties of Location, Name, Tabindex and Text properties are
set. The Tablndex property is set to l , since it is the second control that is being added.

Me.Controls.AddRange(New System. Windows.Fornıs.Control() {Me.Button!,

Me.DataGridl})

The utility of the AddRange function is demonstrated beyond doubt, when
controls get added to the Form. Note, that by using an array, the Button and the

DataGrid are added concurrently.

When the Text property of the button is changed to 'Load', the following line

gets added!

Me.Button}.Text= "Load"

We have decided to refrain from explaining the same code repetitively. The
above can be achieved by double clicking on the button and writing the code that is
shown above. We are nearing a state of considerable ease while working with Visual
Studio.Net, since we are now in a position to unravel as to what is happening internally.

The next application that we have chosen to build is that of a Master-Detail, or a
Parent-Child, or a One-To-Many relationship, using Visual Studio.Net. Firstly, we
intend to display a list of Customers in our data grid, and then, we wish to display the
orders placed by each customer.

So, watch out! Here we gol

Click on the menu-option, File-New-Project. Now, you shall arrive at the New
Project dialog box. As usual, in the first pane, select the option of Visual Basic projects,
and in the second pane, select'the option of Windows Applications. The name assigned
to this project is t3, and the project shall dwell in the directory vl. Then, click on the

OK button.
The New Projects dialog box retains information about the projects that were

last worked upon. Hence, on many occasions, the previous values remain selected.

Thereafter, we select the DataAdapter control after clicking on the Data Tab in
the· ToolBox. The wizard begins in the same way -as before, i.e. by- asking for
information that it requires to generate the code.

The screen 2.39 depicts the previous connection that we had made to the Northwind

database.

42

Screen2.39

And if it does not do so, click on the drop down listbox, which will display a list
of connections that have been created previously. So far, we have created only a single
connection, thereby rendering this list inconsequential as of now.

Ensure that the Northwind connection is selected, and then, click on the Next
button. In the screen for data retrieval, the default option of 'SQL statement' is left
selected, since we are not yet well versed in working with 'stored procedures'. Now, we
click on the 'Next' button to arrive at the screen where we have to enter the SQL
statements. We could have used the Query Builder again, but this time around, we
would rather enter the following SQL statement manually:

SELECT Customerlfr, CompanyName, ContactName, ContactTitle, Address,
City FROM Customers

Click on Finish to create the Connection and Adapter objects, which represent
the connection to the Customers table.

Now, we have to ferret data from the Orders tables. The same process is
repeated, using which, one more OleDbDataAdapter object is dragged onto the Form.
The connection is once again established with the Northwind database, as it contains•
both the tables of Customers and Orders. •

In the next screen, the data access method option of 'SQL Statement' is left
selected. When we click on the Next button, we are asked for the SQL statement. Here,
we manually enter the following SQL statement:

SELECT OrderID, CustomerID, EmployeeID, OrderDate, ShipCountry,
ShipRegion, ShipCity FROM Orders

To proceed further, click on the Finish button.

43

From the Orders table, we have randomly chosen some fields, keeping in mind
that the CustomerID field is of primary importance, since it is the only link between the
two tables of Customers and Orders. It is not mandatory for the Primary key and
Foreign key to possess the same name. However, both of them must be specified in the
list of fields of the Select statement. The outcome of this activity is the creation of a
single control named OleDbDataAdapter2. This is shown in screen 2.40.

Screen 2.40

The framework is extremely smart. It realizes that an attempt is being made to
re-establish a connection to the Northwind database. Therefore, it reuses the. existing
connection, instead of creating a new one.

The Data is to be displayed in a control. So, at this juncture, instead of using the
DataGrid, a listbox from the Windows Form tab in the toolbox is used.

Bring in the listbox control, and then, click on Generate DataSet in the Data
menu. The dialog box that gets displayed, has a dataset name that we are quite content
with, but the Customers tabJe is not shown as selected.

..,.

•

44

Screen 2.41

Select Customers, as shown in screen 2.41, and then, click on OK. This results in
the addition of one more control named DataSetl 1, to the list of three invisible controls.

Next, we click on View, followed by Solution Explorer, to activate the window.
Then, double click on the file named dataset I .xsd. This activates the XML Designer, as
shown in screen 2.42.

•

Screen 2.42

Here, we come across two tables that constitute our dataset, viz. Customers and
Orders. Each table must necessarily have a Primary key, which is normally a single
field. Thus, we see two keys listed in front of the fields, which are the primary keys.
The second column indicates the data types of the fields.

45

The toolbox has only one tab named XML Schemas, from where the last control
named Relation is introduced into the Form. The control is dropped onto the Orders
tables, since it is the Child table. This brings up the Edit Relation dialog box.

Screen 2.43
The first textbox discloses the name of the relation i.e. CustomersOrders, which

would be displayed in the DataGrid. Then, there exist two listboxes, which when
clicked upon, exhibit a list of tables in the dataset of Customers and Orders,

respectively.
The Parent table is the Customers table, since it contains unique values for the

CustomerID, and the child table is Orders, which has the Foreign key, encompassing
multiple values for the CustomerID. When we drop the relation object on the child, it
picks up most of these values and sets them as defaults. Hence, we do not have to enter

them ourselves.

The dialog box is .smart enough to- select CustomerID as the Parent key, but it
expects us to select the Foreign key ourselves.

Therefore, we click on the down arrow, as in screen 2.44, and select the
CustomerID column as the Foreign key, and then, we click on OK.

•

46

Screen 2.44

The visual representation of this relationship is depicted in screen 2.45. The
Customer table has one unique id; and hence, it has a single arrow, whereas the Orders
table has many occurrences of the ids. Hence, CustomerID has multiple arrows leading
to it.

•

Screen 2.45

Once the relation is set, click on the tab Forml.vb. Then, Drag and Drop a
listbox control from the ToolBox on the form, and move on to the property of
DataSource, as shown in screen 2.46. Set the value of the DataSource property to
DataSetl 1.

47

Screen 2.46

The next property of DataMember shows a drop-down listbox, which when
clicked on, displays the two tables of Customers and Orders. This is shown in screen
2.47.

•
Screen 2.47

This occurs because the DataSource property is initialized to the dataset named
DataSet11. The two tables named Customers and Orders, which comprise the dataset
object, are visible,

48

Screen 2.48

As we want to select the field of customer name, we click on the plus sign of the
Customers table. This leads to a display of all the fields specified in the Select
statement.

The company name is a lot more intuitive than the customer id. So, the value of
the property is initialized to Customers.CompanyName, i.e. the name of the table,
followed by a dot, followed by the name of the field,

In order to authenticate the list, press the F5 key. This compiles and runs tlw
project. The output is extremely disappointing, since all that we see is an empty listbox,
as shown in screen 2.49.

•

Screen 2.49

49

Close both, the form window and the window labeled as Output. In the designer
mode, drag and drop a button from the ToolBox, and change its label to 'Load', as
shown in screen 2.50.

Screen 2.50

Double click on the button, and enter the following code in the event handling

function:

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl .Click
OleDbDataAdapterI .Fill(DataSet11)
End Sub

Here, as before, we call the Fill function of the OleDbDataAdapter object from
the Customers table, since presently, we are not interested in the data contained in the
Orders table.

Press F5 to run the ~plication, and then, click on the button labeled 'Load'. This
results in the listbox getting filled with data, as shown in the screen 2.51.

•

Screen 2.51

The Fill function is responsible for filling up the empty dataset, which is
eventually displayed by the control. This is because, the property in the control is set to

50

this dataset. At this point in time, the data from the Customers table is on display, but
there is no sign of data from the Orders table.

Now, to retrieve data from the Orders table, close the windows that have popped
up while running the program, and drag and drop a DataGrid onto the Form. Change the
layout of the control, as shown in screen 2.52.

Screen 2.52

The DataSource property in the DataGrid İS- set to DataSetl l. For the
DataMernber field, the property is set to the name of the Relation object and the table
name Customers.CustomersOrders.

•

Screen 2.53

Moreover, one line of code is inserted in the event handling code of the button.

51

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl .Click
OleDbDataAdapter l .Fill(DataSet 11)
OleDbDataAdapter2.Fill(DataSetl 1)
End Sub

Now, run the above program by pressing the F5 key. When the Form loads on,
click on Load. The screen that appears, looks like the screen 2.54, wherein a list of
customer names is displayed in the listbox, followed by the list of orders in the Orders
tables.

Screen 2.54

Now, each time that .a new customer is selected, the list of orders of that
customer is displayed in the Dataôrid, This results from the two changes that we have
effected: Firstly, we had filled up the Orders table using the Fill function. Secondly, we
had used the name of the relation as a DataMember name.

The DataGrid, on learning that the .ııame specified is not a table name, uses the
relation object to determine the records that need to be displayed.

•
Also, while clicking on a new customer name in the listbox, the DataGrid is

apprised about the new Customer that has been selected. Hence, it alters the records
displayed in the DataGrid, depending upon the CustomerID in the Orders table.

Me.DataGridl .Datalvlember= "customers.customersorders"

When the DataMember in the datagrid is set to the relation object, the control
field merely adds one line, to initialize the property to the value. No other code gets
inserted. Furthermore, no DataRelation object gets created in the Form code. It is found
in the file DataSet 1.vb.

52

The above example appears to be too simplistic. So let us spice things up by
adding a little more complexity. The Orders table summarizes the orders as per the
customer id. Moreover, there exists a table named Order Details, which consists of the
list of orders per order id.

What we wish to accomplish at this juncture is, to prepare a list of orders as per the
order id, when a certain order is clicked on. So, to begin with, we need an SQL
statement to fetch records from the Order Details table.

So, from the Data category in the toolbox, the control named OleDbDataAdapter is
again inducted into the Form. Then, we click on the Next button thrice:

• Firstly, on the opening screen.
• Secondly, on the Connection screen, since the Northwind connection is chosen
by default.
• Thirdly, on the screen in which the default of SQL Statement has been chosen.

In the text block, we now have to write the SQL Select statement, which fetches the
records for the specified fields from the Order Details table. A point to be noted is that,
whenever the name of a table contains a space, the table name must be placed within
square brackets.

SELECT OrderID, ProductID, UnitPrice, Quantity, Discount FROM [Order
Details]

When we click on Finish, one more OleDbDataAdapter object gets added at the
bottom of the Form.
The DataSet must be regenerated, for which the Generate option is selected from the
Data menu option.

The dialog box that appears contains only the newly added table as selected. But,
we need to select all the three tables, as seen in screen 2.55.

•

Screen 2.55

53

Finally, click on OK. In case a message box pops up, click on 'Yes to All'. Now,
make sure that the Solution explorer is visible.

If it is not, then click on the menu View-Solution Explorer, and then, double
click on the DataSetl .xsd file. As we invariably fall short of screen space, we
recommend that you scroll to the right to arrive at screen 2.56,

Screen 2.56

Here, we come across the third table named Order Details. After the table comes
into· sight, drop the Relation object onto the Order Details table. Remember that a single
order id in the Orders table will have multiple records of the order id in the Order

Details table.
\

In the Edit Relation dialog box, the name of the relation is shown as
Customers0rder_x0020~__Details. We will not amend it, since the :framework
automatically changes it when the names of the Parent table and the Child table change.
If you change the name of the parent table from Customers to Orders, the name of the
relation will change to OrdersOrder x0020 Details. If this does not happen, we request~ - -
you to amend it manually to OrderssOrder_x0020_Details.

•.
For each order record found in the Orders table, there exists a list of order details

in the Order Details table. Therefore, the child element is assigned to Order Details.
However, when you click on the down arrow of the dropdown listbox, three tables will
be displayed. This is because the DataSet now comprises of three tables. Ensure that the
child element contains the table Order Details. In the Fields block, the Parent key field
is OrderID. Therefore, the child key field that is currently empty, is also changed to
OrderID.

Make sure that your screen appears similar to what is seen in screen 2.57, and
then, click on OK.

54

Screen 2.57

The screen 2.58, which comes up next, displays a 'one to many relation' between
the tables Orders and Order Details. It is always advisable to periodically refresh
everything. as well as to save all the work. So, click on the menu option File-Save All.

Screen 2.58

In order to verify the fact that the relation object has been inserted, click on the
property called DataMember. The drop down listbox displays a plus sign next to the

Orders.
Click on the plus sign to see the relation object as shown in screen 2.59.Thus,

the DataMember exhibits a total of two relations.

55

Screen2.59

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl .Click
OleDbDataAdapter l .Fill(DataSet l 1)
OleDbDataAdapter2.Fill(DataSetl 1)
OleDbDataAdapter3.Fill(DataSet1 1)
End Sub

Finally, before the project is executed, the Fill function of the
OleDbDataAdapter3 is placed in the Load button.

Run the application and click on the button. The screen that comes up is shown
in screen 5.68. Here, we witness a list of Orders in the DataGrid, with each of them
having a plus sign placed next to it.

••

~n-..n~9tıOıo ıf.1204PQIC!lid!lf9Mthıı·pltt~~igni'.hll'#~Sl::MRflctı whhı::Yl!I nv.ttG arr.ha vıJ.mo.n.~!awı:lh:krıı
d1a,~i•dtmnunıı. 111:. bingı._ up'Uuı:.u-ııi'.n ~ 111 s;t'iillılnci..l:Yıt11ı1t.ı ı;tıaun.lıiı:raı;uuııı l'ut"

Screen2.60

56

If you click on the plus sign, the screen 2.61 containing the name öf the relation
is seen. Now, click on the relation name. This brings up the screen shown in screen
2.62, where the order details for a specific order id are displayed.

Screen 2.61

Screen2.62

Now, we present one more database application. In this example, we wish to
display one record at a time.

Click on the menu File-New-Project, and in the New Project dialog box, select
the option of Visual Basic projects in the first pane, and the option of Windows
Application in the second pane. Name the project as t4, and then, click on OK.

Usher in the OleDbDataAdapter object from the Data tab in the toolbox. This
object is brought in to enable us to insert an SQL select statement, which would retrieve
data from the database. Click o:ı\ the Next button on the first three screens, and in the
SQL statement textbox, enter the following Select statement:

SELECT CompanyName, ContactName, ContactTitle FROM ~ustomers

Since we are running short of time and space, we shall display only three fields
from the Customers table. On clicking the Finish button, the two objects of Adapter and
Connection object get created. Then, we generate the Databet object, by selecting the
menu option of Generate DataSet from the Data menu. All the default settings are
acceptable to us. Therefore, we click on OK, resulting in the creation of a DataSet
called DataSetl.

In this application, we want to display the data that has been retrieved from the
database in textboxes. So, three textboxes from the toolbox are dragged onto the Form.

57

This is shown in screen 2.63. These three textboxes are named as TextBoxl, TextBox2

and TextBox3.

Screen 2.63

Now, make sure that the first textbox is selected. Scroll down the Properties
window, until the Data section property come into sight.

Then, click on the plus sign of DataBindings, as shown in screen 2.64. The main
purpose of this action is to set the Text property to a field in the database. The Text
property of the textbox has a drop-down listbox, which when clicked on, shows
DataSetl 1, which is the lone dataset created in the project.

••

Screen 2.64

A point to be considered here is that, we have not added a Dataset to out
textbox. In spite of this, the TextBox is astute enough to display all the DataSet objects

that have been created in the project.

58

Clicking on the plus sign of the DataSet object, will bring up a list of tables that
comprise the DataSet. Our listing reveals only one table named Customers. Then, we
click on the phıs sign in front of eustoıners, to arrive at a list of fields that make up the

table, as shown in screen 2.65.

Screen 2.65
Not all the fields from the table are visible. because the SQL Select statement

shows the three selected fields along with the Primary key.

••

Screen 2.66
Select the field of CompanYname. Doing so will change the vahıe of the Text

Property to DataSetll - eusıomers.CompanyName. The syntax for the value is as
follows: The name of the DataSet, followed by table name, and finally, followed by the
field name. Thus, a field from the table present in a DataSet is now bound to a textbox.

59

A similar approach is followed for the second textbox named TextBox2.

Here, we click on the textbox TextBox:2 and scroll down to DataBindings. From
the Drop down list, which is obtained after clicking on the plus sign of DataSet 1 1 and
the Customers table, we select the third field named ContactTitle.

For the third textbox, the above procedure is repeated, and the field named
CustomerlD is selected.

Press F5 to run the program. The result of our actions is shown in screen 2.67,
where some default text has already been entered in the textboxes.

Screen2.67

Since this is evidently distinct from what we had anticipated, we close the
running application and effect the requisite amendments.

Select the first TextBox and scroll down to the Text property. Then, delete the
value assigned to the Text property, as shown in screen 2.68.ı,.

60

Screen2.68
Now, press Enter, and as an outcome of this, the textbox in the Form does not

show any text at all. The same process is reiterated for the other two textboxes.

If you have been sufficiently attentive and assiduous, you would have realized
that earlier, the Text property did not contain a database icon, but the moment the Data
Binding Text property is set to a field, the Text property obtains an icon, indicating the
fact that the data property will overwrite this Text property.

The designers of the TextBôx control should have added one more feature in
that, they should have ensured that the Text property blanks out as soon as the field is
set to a Data Text property. The main reason that the textbo){es do not display any data
from the table is that, the Customers table in the DataSetl 1 is empty. The Fill function
has not been introduced so far, and hence, it has not been executed.

Now, we introduce a Button by selecting it in the toolbox, and changing the Text
to 'Fetch'. Then, after double clicking on the button, the following code is introduced in

the mouse event handler, using the code painter.
~

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As
- 'System.EventArgs) Handles Buttonl .Click

OleDbDataAdapterl.Fill(DataSetl l) •
End Sub

•

Now, when the above program is executed by pressing the FS key, the screen

does not display any text in the textboxes.

When the button is clicked, the window shows the first record, as seen in screen

2.69.

61

Screen2.69
It glaıldens the heart to see the record values in the textboxes. However, this is

not enough, since we intend to view the subsequent records also. So, close the windows
of the running application and add one more button, which shall facilitate scrolling to
the succeeding records. Change its label to 'Next', as shown in screen 2.70•

••

Screen2.70
Double click on this button to add the following code to the event-handling sub

ofButton2_ Click.
Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
Dim b As BindingContext
b == BindingContext
Dim bb As BindingManagerBase
bb == b(DataSetl 1, "customers")

62

bb.Position += 1
End Sub

The class Form has a property called BindingContext, which returns a
BindingContext object. This object is stored in b. The task of a BindingContext object is
to attend to all the BindingManagerBase objects. So, by using b, which is a
BindingContext containing the default property or indexer of the DataSet, and using the
table, the Bindinglvlanagerlsaseobject can easily be retrieved.

Every DataSet and table in the DataSet combination has its own
BindingManagerBase object. This BindingManagerBase object takes care of all the
Binding objects. The BindingManagerBase object has a property called Position, which
is of type read-write. It reveals the current active record in the Data Table. A new value
can be assigned to it, in order to make the record active.

Now, Run the project by pressing the FS key. Then, click on the Fetch button.
The first record will get displayed. On clicking the Next button, the second record will
get displayed, as shown in screen 2.71. Thus, it is the Position property that establishes
the active record.

Screen2.71

Next, we intend to move backwards amidst the records. So, we repeat the same
procedure, wherein a button is brought into the Form from the toolbox and its label is
changed to 'Prev'. Then, the following lines of code are entered in the event handler
function:

Private Sub Button3"_Click(ByValsender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click
Dim b As BindingContext
b = BindingContext
Dim bb As BindingManagerBase
bb = b(DataSetl 1, "customers")
bb.Position = bb.Position - I
End Sub

••

After pressing the F5 key, we first click on Fetch, followed by the Next button,
which takes us to the next record. Tben, we click on the Prev button, and we are
transported back to the previous record. This is shown in screen 2.72. Thus, we have
been able to scroll through a series of records.

63

Screen2.72

We would now like to implement the following:
• Move to the first or last record, depending on the button that is clicked.
• Display the current record number and the total number of records in the table.

To achieve this, we do the following: One more button is introduced in the Form,
and its label is changed to 'First'. This button is internally assigned the name of
'button4', and the following code is inserted in it:

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button4.Click
Dim b As BindingContext
b= BindingContext
Dim bb As BindingManagerBase
bb = b(DataSetl 1, "customers")
bb.Position = O
End Sub

The only statement that has been modified in the code above is that of the
Position property, Which is set to O, and not to 1, since the counting starts from O.

Press F5 to run the application. First, click on the 'Fetch' button. Then, click on
the 'Next' button twice, to move to the third record. Now, click on the button labeled
'First'. This brings us back to the first record.

Close the Form and revert back to Visual StudioNet. Now, we shall display the
current active record number and the total number of records present in the customer
table.

Select the TextBox control and drag and drop it onto the Form. This TextBox is
named textBox4, as shown in screen 2.73.

64

Screen2.73

Delete the default value assigned to the Text property of the TextBox. Then,
select the tab Forml.vb, and at the very bottom, just prior to 'end class', enter the
following lines of code in Sub abc. The moment we press the Enter key for the Sub abe,
the words End Sub automatically get added. This is evident from screen 2.74.

Pc.t.VU:• !lııb tıuctau3· .c.ı.ıı:~oı,u..ı. 2.aıuıac:.
tıU\ ll :.u DtmUUQı:a,tv.:ewç
)f•·lli!2Jlt~tt~-

Dtı. 1Bı .1!ı 81aı11ııi,!raaqc,:hıı•
li: •. 'b(tıatd•i:iı,. "-ı:o.ist.mı:w:':» ••)
lifi, P<iıı1t1.Gll • lilı, Paıı.i<iiııı. • t

~5.alı

§d:..ta !tuh !hl::.tıı-a..ı t'.Uclf:(.ff,;Va.J. •• ı.uı:ı ,~_:.;
0-U) 11 .iı! fttWUti;~ıJtıGl'!)lt:ı :~,
·ts • ıU.ıuti.~•ıd:...t.
uı.,,,·:ı,ı, fa 9tııı:ll1laıtaruı'11!r!laae
idi "'·-1l(lhıw;dırciı..ı:u:.ı;.amc•..-,
Ü,Pa.ai.figa"" It

.h.dı. ~uh
S'ilı tıbıt()

Screen·2.74

Sub abet)
Dim c As Integer
Dim p As Integer
c = BindingContext(DataSetl 1, "custoıners").Count
p = BindingContext(DataSetl 1, "Customers").Position + I
TextBox4.Text = "Record No" & p.ToString & 11 of" & c.ToString
End Sub

65

We start by creating two variables named c and p, both of type integer. The
variable c will store the number of records in the table, and p will store the current
record position.

The BindingManagerBase object possesses a Position property for the current
record number, and a Count property for the total number of records that the table
contains. The variables c and p are initialized to the values returned by these properties,

respectively.

An alternative approach would be to split up the above statement.

Firstly, the BindingContext property, which returns a BindingContext object,
can be stored in a variable. Then, an indexer that takes two strings, can be used to return
a BindingManagerBase object. Finally, the Count property of this object is furnished to
determine the total number of records in the table. We leave it to you to determine as to
which of these two approaches is simpler to comprehend.

We finally initialize the Text property to the string that results from displaying
the variables c and p. To write it all on a single line, the & sign is used, which acts like a
delimiter while concatenating strings. Before we can see the output, there is one more
task to be performed. The last objective is to introduce a button and label it as 'Last'.
When this button is clicked on, the last record should become visible. So, double click
on it and enter the following code:

Private Sub Button5 _Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button5.Click
BindingContext(DataSet11, "Customersıı).Position= l 0000
abc()
End Sub

In this sub, the Position property is assigned a value of l 0000. We allocated such
a mammoth value, despite being cognizant of the fact that such a large number of
records do not exist. This is because, whenever a very large number is specified, which
goes beyond the record count, the active record becomes the last record.

The sub abc must be called in each of the four button events, in the manner
shown above, otherwise, the textbox will not be updated.

"
Another course of action to achieve the above would=be to use the Count

property, to ascertain the total number of records, and then, to initialize the Position
property to this value. In effect, the accurate value is the count value minus l, because
the value of record position for the first record is O.

Now, when we click on Fetch, followed by the button labeled as Last, the last
record becomes visible, as shown in screen 2.75.

66

Screen 2.75

The textbox gets updated, informing us about the record that is currently active.
Again, since the Position property starts from O and not from 1, the value to be
displayed first needs to be incremented by l.

This is the last application in the chapter, before we call it a day. What we intend
to achieve through this application is to display those records of customers in the
datagrid, which meet a certain criteria.

Create a new project by choosing the menu option File-New-Project. Then, in
the New Project dialog box, as usual, select Visual Basic projects in the first pane and
Windows Application in the second pane. The name assigned to this project is t5.

Since the application revolves around fetching data from the Customers table in
the database, the OleDbDataAdapter control is brought in from the toolbox. By this
time, you must have committed all the steps to memory, since this process has been
harped upon throughout this chapter. Everything remains the same, as has been
explained earlier, except for the SQL Select statement, which is as follows:

SELECT CustomerID, CompanyName, ContactName, ContactTitle FROM
Customers where (Country= ?) "'

••
The above SQL Select statement will retrieve records from the Customers table,

where the field Country matches a specified value. At this instant, the value is not
known, hence the ? symbol is used. The control ignores the new amendment in the
syntax, and in its usual manner, it generates the OleDbDataAdapter object and the
OleDbConnection Object,

Now, click on the menu Data, followed by the Generate DataSet. All the values
are acceptable to us. Therefore, we leave everything untouched, and click on OK..

67

Subsequent to this, initiate a DataGrid control from the Windows Fonns
category in the ToolBox into the Form. The DataSource property of this Form is set to
DataSet 11 and the DataMember is set to Customers.

Then, bring in a button on the Form, and change its label to 'Fetch', Then usher
in a textbox named TextBoxl. Blank out the value assigned to the text property. The
Form should look like what is shown in screen 2.76.

Screen 2.76

Double click on the button, and enter the following code:

Private Sub Buttonl_Click(ByVal sender As System.Object. ByVal e As
System.EventArgs) Handles Buttonl .Click
Dim C' As System.Data.OleDb.OleDbComınand
c = OleDbDataAdapterl.SelectCommand
Dim p As System.Data.OleDb.OleDbParameterCollection
p = c.Parameters
Dim o As System.Data.OleDb.OleDbParameter
o =p("Country") "'
o.Value= TextBoxl.Text
DataSetl 1 .Clear()
OleDbDataAdapterl.Fill(DataSetl 1) End Sub •

In the above code, the property SelectCommand of the OleDbDataAdaptetl
object is used to retrieve an OleDbCommand object.

This OleDbCommand object, which is present in the System.Data.OleDb
namespace, represents the Select statement entered in the OleDbDataAdapter wizard. It
has a property called 'parameters', which stores all the parameters in the SQL Select

statement.

A parameter is a field in the 'where' clause, which is assigned a value of a ?. The
parameters property returns an OleDbParameterCollection object. Then, using an

68

indexer, the individual parameters can then be accessed. Since it is a collection object,
multiple parameters can be added to it.

The indexer takes the name of the field as a string parameter, in order to access
the parameters. It returns an OleDbParameter object, which has a member of Value.
This member is set to a value that relates to the field Country. This is what the user
enters in the Textbox. Thus, the value of the field country can be set to whatever the
user enters in the textbox.

At times, the DataGrid may contain certain values from a previous query. Hence,
it is a good idea to Clear the contents of the table Customers. If the Clear function is not
used, at times, the residual data from some earlier query may linger on, thereby
cluttering the existing data.

As usual, the Fill function fills up the dataset with records that match the value
of the Country that the user enters in the text box.

Press F5 to run the program, and enter the name of the country as "UK". When
the Fetch button is clicked, the output displayed will be the records of customers who
reside in UK, thereby filtering the required records from amongst all the records in the
table. This is shown in screen 2.77.

Screen2.77 ••

This is an example of a dynamic query, wherein the user decides the criteria,
based on which, the data is dynamically retrieved and displayed.

69

Chapter three

I have used Microsoft Access 2002 database aplication in my project. So, I am
going to give you basic information about Microsoft Access.

3. What is Microsoft Access?

Microsoft access is a database program.It is not complex. It is genaraly used by
small and middle enterprices. It is one of the Microsoft Ofice program. So, it is easy to
find and setup it.

3.1 Get Started with Access 2002

There are different ways you can get started with Access 2002, depending on
your experience level.

Working with databases and database objects can be a daunting task when you
fırst get started. The following information should help you become more familiar
with the components that make up a Microsoft Access database.

3.1.1 Databases: What they are and how they work?

A database is a collection of information that's related to a particular subject or
purpose, such as tracking customer orders or maintaining a music collection. If your
database isn't stored on a computer, or only parts of it are, you may be tracking
information from a variety of sources that you're having to coordinate and organize
yourself

For example, suppose the phone numbers of your suppliers are stored in various
locations: in a card file containing supplier phone numbers, in product information files
in a file cabinet, and in a spreadsheet containing order information. If a supplier's phone
number changes, you might have to update that information in all three places. In a
database, however, you on'ly have to update that information in one place the supplier's
phone number is automatically updated wherever you use it in the database.

3.1.1.1 Access Database Files
ııı

Using Microsoft Access, you can manage all your information from a single
database file. Within the file, you can use:

• Tables to store your data.
• Queries to find and retrieve just the data you want.
• Forms to view, add, and update data in tables.
• Reports to analyze or print data in a specific layout.
• Data access pages to view, update, or analyze the database's data from the

Internet or an intranet.

70

Store data once in one table, but view İt from multiple locations. When you
update the data, it's automatically updated everywhere it appears.

3.1.1.2 Tables and Relationships

To store your data, create one table for each type of information that you track.
To bring the data from multiple tables together in a query, form, report, or data access
page, define relationships between the tables.

A unique ID, such as a Customer ID, distinguishes one record from another
within a table. By adding one table's unique ID field to another table and defining a
relationship, Microsoft Access can match related records from both tables so that you
can bring them together in a form, report, or query.

3.1.1.3 Queries

To find and retrieve just the data that meets conditions that you specify,
including data from multiple tables, create a query.. A query can also update or delete
multiple records at the same time, and perform predefined or custom calculations on
your data.

3.1.1.4 Forms

To easily view, enter, and change data directly in a table, create a form. When
you open a form, Microsoft Access retrieves the data from one or more tables, and
displays it on the screen with the layout you choose in the Form Wizard or with the
layout that you created on your own in Design view.

A table displays many records at the same time, but you might have to scroll to
see all of the data in a single record. Also, when viewing a table, you can't update data
from more than one table at the same time.

A form focuses on one record at a time, and it can display fields from more than
one table. It can also display pictures and other objects.

"'
A form can contain a button that prints, opens other objects; or otherwise

automates tasks. •
3.1.1.5 Reports

To analyze your data or present it a certain way in print, create a report. For
example, you might print one report that groups data and calculates totals, and another
report with different data formatted for printing mailing labels.

3.1.1.6 Data Access Pages

To make data available on the Internet or an intranet for interactive reporting,
data entry, or data analysis, use a data access page. Microsoft Access retrieves the data

71

from one or more tables and displays it on the screen with the layout that you created on
your own in Design view, or with the layout you chose in the Page Wizard.

3.1.2 Table Design View

In table Design view, you can create an entire table from scratch, or add, delete,
or customize the fields in an existing table.

If you want to track additional data in a table, add more fields. If an existing
field name isn't descriptive enough, you can rename the field.

Setting a field's data type defines what kind of values you can enter in a field.
For example, if you want a field to store numerical values that you can use in
calculations, set its data type to Number or Currency.

You use a unique tag, called a primary key, to identify each record in your
table. A table's primary key is used to refer to related records in other tables.

Field properties are a set of characteristics that provide additional control over
how the data in a field is stored, entered, or displayed. Which properties are available
depends on a field's data type.

3.1.2.1 How to Relate, Two Tables

A common field relates two tables so that Microsoft Access can bring together
the data from the two tables for viewing, editing, or printing. In one table, the field is a
primary key that you set in table Design view. That same field also exists in the related
table as a foreign key.

In the Suppliers table, you enter a supplier ID, company name, and so on, for
each supplier. SupplierID is the primary key that you set in table Design view.

In the Products table, you include the SupplierID field, so that when you enter a
new product, you can identify its supplier by entering that supplier's unique ID number.
SupplierID is the foreign key in the Products table•

••
3.1.2.2 Table Datasheet View

In a table or query, Datasheet view provides the tools you need to work with• •
data

3.1.2.3 Using the Table Datasheet and Query Datasheet Toolban

The Table Datasheet and Query Datasheet toolbars provide many of the tools
you need to find, edit, and print records.

3.1.2.4 Working with columns, rows, and subdatasheets

You can find tools for working with columns, rows, and subdatasheets in the
datasheet itself, or by right-clicking a column selector.

72

3.1.2.5 Moving Through Records

You can use the navigation toolbar to move through the records in a datasheet.

3.1.3 Queries

You use queries to view, change, and analyze data in different ways. You can
also use them as a source of records for forms, reports, and data access pages. There are
several types of queries in Microsoft Access.

3.1.3.1 Select Queries

A select query is the most common type of query. It retrieves data from one or
more tables and displays the results in a datasheet where you can update the records
(with some restrictions). You can also use a select query to group records and calculate
sums, counts, averages, and other types of totals.

3.1.3.2 Parameter Queries

A parameter query is a query that when run displays its own dialog box
prompting you for information, such as criteria for retrieving records or a value you
want to insert in a field. You can design the query to prompt you for more than one
piece of information; for example, you can design it to prompt you for two dates.
Access can then retrieve all records that fall between those two dates.

Parameter queries are also handy when used as the basis for forms, reports, and
data access pages. For example, you can create a monthly earnings report based on a
parameter query. When you print the report, Access displays a dialog.box asking fur the
month that you want the report to covet. You enter a month and Access prints the
appropriate report.

3.1.3.3 Crosstab Queries

You use crosstab queries to calculate and restructure data for easier analysis of
your data. Crosstab queries calculate a sum, average, count, or other type of total for
data that is grouped by twô types of information one down the left side of the datasheet
and another across the top. .,

3.1.3.4 Action Queries ••

An action query is a query that makes changes to or moves many records in just
one operation. There are four types of action queries:

• Delete Queries A delete query deletes a group of records from one or more
tables. For example, you could use a delete query to remove products that are
discontinued or for which there are no orders. With delete queries, you always
delete entire records, not just selected fields within records.

• Update Queries An update query makes global changes to a group of records
in one or more tables. For example, you can raise prices by 10 percent for all
dairy products, or you can raise salaries by 5 percent for the people within a

73

certain job category. With an update query, you can change data in existing
tables.

• Append Queries An append query adds a group of records from one or more
tables to the end of one or more tables. For example, suppose that you acquire
some new customers and a database containing a table of information on those
customers. To avoid typing all this information into your own database, you'd
like to append it to your Customers table.

• Make-Table Queries A make-table query creates a new table from all or part
of the data in one or more tables. Make-table queries are helpful for creating a
table to export to other Microsoft Access databases_or a history table that
contains old records.

3.1.3.5 SQL Queries

An SQL query is a query you create by using an SQL statement. You can use
Structured Query Language (SQL) to query, update, and manage relational databases
such as Access. ·

When you create a query in query Design view, Access constructs the equivalent
SQL statements behind the scenes for you. In fact, most query properties in the property
sheet in query Design view have equivalent clauses and options available in SQL view.
If you want, you can view or edit the SQL statement in SQL view. However, after you
make changes to a query in SQL view, the query might not be displayed the way it was
previously in Design view.

Some SQL queries, called SQL-speci:ficqueries, can't be created in the design
grid. For pass-through, data-definition, and union queries, you must create the SQL
statements directly in SQL view, For subqueries, you enter the SQL in the Field row or
the Criteria row of the query design grid.

3.1.4 Relationships in a Database

After you've set up different tables for each subject in your Microsoft Access
database, you need a way of telling Microsoft Access how to bring that information
back together again. The first step in this process is to define relationships between your
tables. After you've done that, you can create queries, forms, and reports to display
information from several tables at once

3.1.4.1 How Relationships Work

In the previous example, the fields in four tables must be coordinated so that
they show information about the same order. This coordination is accomplished with
relationships between tables. A relationship works by matching data in key fields
usually a field with the same name in both tables. In most cases, these matching fields
are the primary key from one table, which provides a unique identifier for each record,
and a foreign key in the other table. For example, employees can be associated with
orders they're responsible for by creating a relationship between the EmployeeID fields.

74

A one-to-many relationship is the most common type of relationship. In a one­
to-many relationship,,a record in Table A can have many matching records in Table B,
but a record in Table B has only one matching record in Table A.

3.1.4.2 A many-to-many Relationship

In a many-to-many relationship, a record in Table A can have many matching
records in Table B, and a record in Table B can have many matching records in Table
A. This type of relationship is only possible by defining a third table (called a junction
table) whose primary key consists of two fields- the foreign keys from both Tables A
and B. A many-to-many relationship is really two one-to-many relationships with a
third table. For example, the Orders table and the Products table have a many-to-many
relationship that's defined by creating two one-to-many relationships to the Order
Details table. One order can have many products, and each product can appear on many

orders.

3.1.4.3 A one-to-one Relationship

In a one-to-one relationship, each record in Table A can have only one matching
record in Table B, and each record in Table B can have only one matching record in
Table A. This type of relationship is not common, because most information related in
this way would be in one table. You might use a one-to-one relationship to divide a
table with many fields, to isolate part of a table for security reasons, or to store
information that applies only to a subset of the main table. For example, you might want
to create a table to track employees participating in a fundraising soccer game. Each
soccer player in the Soccer Players table has one matching record in the Employees

table.

3.1.4.4 Defining Relationships

The kind of relationship that Microsoft Access creates depends on how the

related fields are defined:

• A one-to-many relationship is created if only one of the related fields is a
primary key or has a unique index.

• A one-to-one relatienship is created if both of the related fields are primary keys
or have unique indexes.

• A many-to-many relationship is ~really two one-to-many relationships with a
third table whose primary key consists of two fields - the foreign keys from the

two other tables.

You can also create a relationship between a table and itself This is useful in
situations where you need to perform a Lookup within the same table. In the Employees
table, for example, you can define a relationship between the EmployeelD and
ReportsTo fields, so that the ReportsTo field can display employee data from a

matching EmployeeID.

Note If you drag a field that isn't a primary key and doesn't have a unique index
to another field that isn't a primary key and doesn't have a unique index, an
indeterminate relationship is created. In queries containing tables with an indeterminate

15

relationship> Microsoft -Access displays a.default.join line between the tables, but
referential integrity won't be enforced: and there's no guarantee that records are unique '
in either table. ·

3'.l.4.5 Referential Integrity, ·

Refureıifut integrity is a system ofrules that, Microsoft .Access uses to ensure:
that relationships·. between- records. in'~ related . tables are- valide" and that you· don't>.
accilieptalljr:d~lete"'oi:change relateddata, You can set referential integrity when all of,.,
the follôwing·conditionsaremet:" .. ' .

'(.;-; .:

• The matching field from the primary table is a primary key or bas a unique
. index. . . .

• The related fi~Ids· have. the, same data type. There are two exceptions, An­
AutoNlllilber field:can be related to a Number field' with a Fieldôize property .

· settintIQf Long.Integer; .. andan AutôNuınbeı:.field with a FieldSiz.e property)
·• setting' of Replication ·10.can l3e related to-: a Number: field with a FieldSfz.e.

. •>ı>r~periy-settingôfReplicationıo~A·· , .•. ; -~ .{!: :.:· · ... · ·.·,,· ... ···
-~. ·. Both tables belong· to. the- same Microsoft:'.Access database. If the. tables are",
< linked:tables, .tliey:nnist. be tables u{ Microsoft' Access format, and you miist ·.

open the database in whicli they·are stored to set referential integrity. Referential
·..integrjty can't be enforced für linked tables :from databases lll other formats.

. The fo.µo~g 'mies applywhen you use referentıaİ integrity.

•- You can't ente{a vabıt!.in the foreign key field-of the. related table that doesn't, ·
exist in. the:primary lcey: of the primary table. However, you can enter a l'ıltılV ,

.· value iı:UheJorJigu~k~y;specifying that the records are unrelated, .For example; ·
,Y you can't have an·,9rd~rtbı!t)s ~igııed to a customer that doesn't exist; but you

C@ have: an order that is assigned: to mf one:by> entering, a Null value, in the .
CustomerID fiefd~ : · , . · . . . ·

., · You can't' delete a. record from a primary table if matching records. exist in' a;
related table. .For' example, you can't delete an employee record . from · the •
Employees table ifthere are orders assigned to the employee in the Orders table: . ·

. • ydu can't.change a primary kçy:, value in the primary table, if that record has .
related records. F<>r. example, · you can't change an· employee's ID in the
Employees table if there are. orders assigned to that employee in the· Orders

. table.

3~1.4.6.Cascading Updates and Deletes

For relationships in which referential integrity is enforced, you can specify
whether you want Microsoft Access to automatically cascade:update and cascade delete
related records, If you set these options, delete: and update ' operations that would
normally be prevented by. referential. integrity rules. are allowed; When you delete
records or change primary key values. in a primary table, Microsoft Access: makes ·
necessary changes to related tables to preserve referential integrity,

If you select the Cascade Update Related Fields check box when defining a
relationship, any time you change the primary key of a record in the primary table,

76

Microsoft Access automatically updates the primary key to the new value in all related
records. For example, if you change a customer's ID in the Customers table, the
CustomerID field in the Orders table is automatically updated fur every one of that
customer's orders so that the relationship isn't broken. Microsoft Access cascades
updates without displaying any, message.

Note If the primary key in the primary table is an AutoNumber field, setting the
Cascade Update Related Fields check box will have no effect, because you can't
change the value in an AutoNumber field.

If you select the Cascade Delete Related Records check box when defining a
relationship, any time you delete records in the primary table, Microsoft Access
automatically deletes related records in the related table. For example, if you delete a
customer record from the Customers table, all the customer's orders are automatically
deleted from the Orders table (this includes records in the Order Details table related to
the Orders records). When you delete records from a form or datasheet with the
Cascade Delete Related Records check box selected, Microsoft Access warns you that
related records may also be deleted. However, when you delete records using a delete
query, Microsoft Access automatically deletes the records in related tables without
displaying a warning.

•

77

Chapter four

4.1 Forml (Main Menu);

This form (screen 4.1) is the main form of my program. There are five buttons.
When you press 'add new student' button, you will access 'add new student' form.

SCREEN 4.1

Source code for student stock program forml giving below;

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim a As New Form3

Me.Hide ()
a. ShowDialog ~

End Sub
~

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e- .As System.EventArgs) Handles Buttonb.Click
Dim a As New Form2
Me.Hide ()
a. ShowDialog ()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button3.Click

Application.Exit()

End Sub

78

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e
As Systern.EventArgs) Handles Button4.Click

Dim a As New Forms
Me.Hide ()
a. ShowDialog ()

End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ButtonS.Click

Dim a As New Form4
Me.Hide ()
a. ShowDialog ()

End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button6.Click

Dim a As New Forrn6
a. Show (}
Me.Hide ()

End Sub

End Class

4.2 Form2 (Add New Student);

Suppose that you use this program in collage, small university or one department
of university and you have new students. You can store datas of new student in this
form. His name, number, e_mail, payment and registration date.

..,•..•
o •....•.•.
~~o,..., --
~ıi-aı,
:.ı'­
BI~
~~"i.~"fi~~T~~
.:)T-,
]!""9-,
iii;J-··--ıv::-'
+-~a· 1•r·,8 """~ fı;:ıı -'L-.-a.-----'---------~----------....J

~~

SCREEN 4.2

79

When you click 'add new student' button in forml (screen4.2), you will
access form2. Form2's code has given below;

Private Sub Form2_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Me.OleDbDataAdapterl.Fill(Me.DataSetll, "TABLE")

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonl.Cliok

Me.BindingContext(Me.DataSetll, "TABLE").EndCurrentEdit()
Me.BindingContext(Me.DataSetll, "TABLE").AddNew()
Me.OleDbDataAdapterl.Update(Me.DataSetll, "TABLE")

End Sub

Private Sub Button2_Cliok(ByVal sender As System.Object, ByVal e
As Systern.EventArgs)Handles Button2.Click

Me.BindingContext(Me.DataSetll, "TABLE").EndCurrentEdit()
Me.OleDbDataAdapterl.Update(Me.DataSetll, "TABLE")

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button3.Click

Dim sil As DataSetl.TABLERow
sil= Me.DataSetll.TABLE.FindBySTUDENTNUMBER(TextBox2.Text)
sil.Delete ()
Me.OleDbDataAdapterl.Update(Me.DataSetll, "TABLE")

End Sub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button4.Click

Me.BindingContext(Me.DataSetll, "TABLE").Position=
Me.BindingContext(Me.DataSetll, "TABLE").Position.MinValue

End Sub

Private Sub ButtonS_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button5.Cliok

Me.BindingContext(Me.DataSetll, "TABLE").Position
Me.BindingContext(Me.DataSetll, "TABLE").Position - 1

End Sub

Private Sub Button7 Click(ByVal sender As System.Object, ByVal e- .
As System.EventArgs) Handles Button7Xlick

Me.BindingContext(Me.DataSetll, "TABLE").Position
Me.BindingContext(Me.DataSetll, "TABLE").Position+ 1

End Sub

Private Sub Button6 Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button6.Click

Me.BindingContext(Me.DataSetll, "TABLE").Position=
Me.BindingContext(Me.DataSetll, "TABLE").Position.MaxValue

End Sub

Private Sub Button9_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button9.Click

Dim row As DataSetl.TABLERow

80

row= Me.DataSetll.TABLE.FindBySTUDENTNUMBER(TextBox7.Text)

Try
TextBoxl.Text = row.STUDENTNUMBER

Catch ex As Exception

End Try

Try
TextBox2.Text

Catch
End Try
Try

TextBox3.Text
Catch
End Try
Try

TextBox4.Text
Catch
End Try

Try
TextBox5.Text

Catch
End Try

Try

row.S'I'UDEN'I'NAME

row.DEPARTMENT

row.ADDRESS

row.EMAIL

row.REGISTERDATEMe.Date'I'imePickerl.Text
Catch
End Try

Try
TextBox6.Text

Catch
End Try

End Sub

row.PAYMENT

Private Sub Button8_Click{ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ButtonB.Click

Dim a As New Forml
a. Show (i
Me.Hide ()

End Sub
End Class ••

81

4.3 Form3 (Student List);

In this form (screen 4.3), you can see studens that you registered in forın2
(screen 4.2) and you can list student by their name, number, registrationdate or
department.

e-fljl-.'!:~,·=... ..
•

{--r~:.ı~
;,~

,~!"'~r-~::
!.-.@I~•'
i- al~~
:- ~Ffınd·

ii:lfıııtııi...tı.

SCREEN 4.3

If you click 'student list' in main form, you will see the form3. Form3's code
has given below;

Public cm As CurrencyManager
Private Sub Form3_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load
cm= CType(Me.BindingContext(DataViewl), CurrencyManager)
OleDbDataAdapterl.Fill(DataSetll.TABLE)

End Sub

As
Private Sub Button8_Click(ByVal sender

Systern.EventArgs)~HandlesButtonB.Click
Dim a As New Forml
a.Show()
Me.Hide ()

As System.Object, ByVal e

•
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button2.Click

DataViewl.RowFilter = "STUDENTNUMBER='" & TextBoxl.Text & "'"
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonl.Click

DataViewl.RowFilter = "STUDENTNAME='" & TextBoxl.Text & "'"
End Sub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) ~andles Button4.Click

82

DataViewl.RowFilter
End Sub

"REGISTARDATE='" & TextBoxl.Text & "'"

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button3.Click

DataViewl.RowFilter = "DEPARTMENT='" & TextBoxl.Text & "'"
End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button5.Click

DataViewl.RowFilter - ""

End Sub

End Class

4.4 Form4 (Student Registration);

Registration form makes registration to course. Process is 'who is taking which
course?'

SCREEN 4.4

Source code for student stock program form4 giving below;

Public fin, mid, att, tot As Integer
Public cm As Curr@ncyManag@r

Private Sub Form4_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

cm= CType(Me.BindingContext(DataViewl), CurrencyManager)
OleDbDataAdapterl.Fill(DataSet23.registration)

End Sub

83

Private Sub Button9_Click(ByVal sender As,System.Object, ByVal

e As System.EventArgs) Handles Button9.Click
Dim a As New Forml

a. Show ()
Me. Hide ()

End Sub

Private Sub Button8_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ButtonS.Click
Me.BindingContext(Me.DataSet23,

ttregistration").EndCurrentEdit()
Me.BindingContext(Me,DataSet23, "registration") .AddNew()
Me.OleDbDataAdapterl.Update(Me.DataSet23, "registration")

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button2.Click
Me.BindingContext(Me.DataSet23,

"registration") .EndCurrentEdit()
Me. OleDbDataAdapterL Update (Me. DataSet23, "registration")

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button3.Click
Dim sil As DataSet2.registrationRow

sil== DataSet23.registration.FindBylist_no(TextBox3.Text)

sil.Delete()Me.OleDbDataAdapterl.Update(Me.DataSet23, "registration")

End Sub

Private Sub ButtonlO_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ButtonlO.Click
DataViewl.RowFilter = "courseid='" & TextBox2.Text & "'"

End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button5.Click
Me.BindingContext(Me.DataSet22, "registration") .Position==

Me.BindingContext(Me.DataSet23, "registration") .Position - 1

End Sub

Private Sub Button7_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button7.Click
Me.BindingContext(Me.DataSet22, "registration") .Position

Me.BindingContext(Me.DataSet23, ~"registration") .Position+ 1

~dSub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button4.Click
Me.BindingContext(Me.DataSet22, "registration") .Position

Me.BindingContext(Me.DataSet23, "registration") .Position.MinValue

End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles Button6.Click
Me.BindingContext(Me.DataSet22, "registration") .Position

Me.BindingContext(Me.DataSet23, "registration") .Position.MaxValue

End Sub

84

Private Sub Button14_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Button14.Click

DataViewl.RowFilter - ""
~dSub

Private Sub Button12_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs} Handles Button12.Click
DataViewl.RowFilter == "studentnurnber='"& TextBox2.Text & "'"

End Sub

Private Sub Buttonll_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonll.Click

DataViewl.RowFilter = "studentname='" & TextBox2.Text & "'"
End Sub

Private Sub Button13_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button13.Click

DataViewl.RowFilter = "grade='" & TextBox2.Text & "'"
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonl.Click

Dim row As DataSet2.registrationRow
row= Me.DataSet23.registration.FindBylist_no(TextBox3.Text)

Try
TextBox5.Text = row.list no

Catch ex As Exception

End Try

Try
row.courseldTextBox6.Text

Catch
End Try
Try

TextBox7.'l'ext row.coursename

Catch
End Try
Try

row.studentnurnber'I'extBoxl .i!II'ext
Catch
End Try

•
Try

row.studentnameTextBox4.Text
Catch
End Try

Try
row. dateMe.Date'I'imePickerl.'I'ext

Catch
End Try

End Sub

End Class

85

4.S Form5 (Couse Registration);
It makes course registration. You should add how many courses are there.

SCREEN 4.5
Source code for student stock prognm form5 giving below;

Private Sub Button8_Click(ByVal sender As System.Object; ByVal e As
System.EventArgs) Handles Button8.Click

Dim a As N'ew Forml
a. Show()
Me .Hide()

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click

Me.BindingContext(Me.DataSet31, "course"}'.EndCurrentEdit()
Me.BindingContext(Me.DataSet31, "course") .AddNew()
Me.OleDbDataAqapterl.Update(Me.DataSet31, "course")

..
End Sub

• •
Private, Sub Button2_Click (ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button2.Click
Me.BindingContext(Me.DataSet31, "course") .EndCurrentEdit()
Me.OleDbDataAdapterl.Update(Me.DataSet31, "course")

End Sub

Private Sub Form5_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Me.OleDbDataAdapterl.Fill(Me.DataSet31, "course")

End Sub

86

Private Sub Button9_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button9.Click
Dim row As DataSet3.courseRow
row= Me.DataSet31.course.FindByCourseld(TextBoxl.Text)

Try
TextBox5.Text = row.Courseld

Catch ex As Exception

End Try

Try
row.CreditsTextBox4.Text

Catch
End Try
Try

row.PreRequestTextBox3.Text

Catch
End Try

End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button6.Click
Me.BindingContext(Me.DataSet31, "course") .Position=

Me.BindingContext(Me.DataSet31, "course") .Position.MaxValue

End Sub

Private Sub Button7_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button7.Click
Me.BindingContext(Me.DataSet31, "course") .Position

Me.BindingContext(Me.DataSet31, "course") .Position+ 1

End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button5.Click
Me.BindingContext(Me.DataSet31, "course") .Position

Me.BindingContext(Me.DataSet31, "course") .Position+ 1

End Sub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button4.Click
Me.BindingCont~xt(Me.DataSet31, "course") .Position=

Me. BindingContext (Me. DataSet31, "course;•) . Position. Min'Lalue

End Sub
End Class

87

4.6 Form6 (Grade Registration);

In this form stores exam result and calculate final grade of student for the course

that is registeredbefore.

SCREEN 4.6

Source code for student stock program form6 giving below;

Public fin, mid, att, tot As Integer
Public cm As CurrencyManager

Private Sub Form4_Load(ByVal sender As System.Object, ByVal e As

system.EventArgs) Handles MyBase.Loadcm~ CType(Me.BindingContext(DataViewl), CurrencyManager)
OleDbDataAdapterl.Fill(DataSet41.registration)

End Sub As system.Object, ByVal e

As

Private Sub Button9_Click(ByVal,sender
System.EventArgs) Handles Button9.Click

Dim a As New Forml
a.Show ()
Me.Hide ()

End Sub

•

Private Sub Button8_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button8.Click
Me.BindingContext(Me.DataSet41,

"registration").EndCurrentEdit()Me.BindingContext(Me.DataSet41, "registration").AddNew()
Me,OleDbDataAdapterl.Update(Me.DataSet41, "registration")

End Sub

88

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button2.Click

MessageBox.Show(TextBoxl.Text & "added your database
successfully", "Added successfully", MessageBoxButtons.OK)

Me.BindingContext(Me.DataSet41,

"registration") .EndCurrentEdit()
Me.OleDbDataAdapterl.Update(Me.DataSet41, "registration")

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs} Handles Button3.Click
Dim sil As DataSet4.registrationRow
sil= DataSet41.registration.FindBylist_no(TextBox9.Text)

sil. Delete ()
Me.OleDbDataAdapterl.Update(Me.DataSet41, "registration")

End Sub

Private Sub Buttonlü_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Buttonlü.Click
DataViewl.RowFilter = "courseld='" & TextBox2.Text & "'"

End sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button5.Click
Me.BindingContext(Me.DataSet41, "registration") .Position

Me.BindingContext(Me.DataSet41, "registration") .Position - 1

End Sub

Private Sub Button7_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Hapdles Button7.Click
Me.BindingContext(Me.DataSet41, "registration"} .Position

Me.BindingContext(Me.DataSet41, "registration") .Position+ 1

~d~b

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e

As Systern.EventArgs). Handles Button4.Click
Me.BindingContext(Me.DataSet41, "registration") .Position=

Me.BindingContext(Me.D;i!taSet41, "registration") .Position.MinValue

End Sub

Private Sub Button6_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button6.Çlick •
Me.BindingContext(Me.DataSet41, "registration") .Position=

Me.BindingContext(Me.DataSet41, "registration") .Position.MaxValue

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Buttonl.Click
mid= TextBoxlS.Text
mid= mid* 0.4
fin= TextBoxl6.Text
fin = fin * O. 5
att = TextBox5.Text
att = att * o.ı
tot= fin+ mid+ att

89

Elseif tot>= 85 And tot<= 90 Then
TextBox3.Text = "BA"

Elself tot>= 80 And tot< 85 Then
TextBox3.Text = "BB"

Elself tot>= 75 And tot< 80 Then
TextBox3.Text = "CB"

Elseif tot>= 70 And tot< 75 Then
TextBox3.Text = "CC"

Elself tot>= 65 And tot< 70 Then
TextBox3.Text = "DC"

Elseif tot>= 60 And tot< 65 Thert
TextBox3.Text = "DD"

Elseif tot>= 55 And tot< 60 Then
TextBox3.Text = "FD"

Elseif tot< 55 Then
TextBox3.Text = "FF"

End If

End Sub

Private Sub Buttonl4_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonl4.Click

DataViewl.RowFilter - ""

End Sub

Private Sub Buttonl2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonl2.Click

DataViewl.RowFilter = "studentnumber='" & TextBox2.Text & "'"

End Sub

Private Sub Buttonll_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonll.Click

DataViewl.RowFilter = "studentname='" & TextBox2.Text & "'"

End Sub

Private Sub ButtoıU3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonl3.Click

DataViewl.RowFilter = "grade='" & TextBox2.Text & "'"

End Sub

Private Sub Buttonl5_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs} Handles Buttonl5.Click

Dim row As DataSet4.registrationRow

row= Me.DataSet41.registration.FindBylist_no(TextBox9.Text}

Try
TextBoxlO.Text = row.list no

Catch ex As Exception

90

End Try

Try
TextBox6.Text

Catch
End Try
Try

TextBox7.Text

Catch
End Try
Try

TextBoxl.Text
Catch
End Try

Try
TextBox4.Text

Catch
End Try

Try

row.courseid

row.coursenarne

row.studentnumber

row.studentname

Me.DateTimePickerl.Text row. date

Catch
End Try

Try
Me.TextBoxlS.Text

Catch
End Try
Try

Me.TextBox16.Text

Catch
End Try
Try

Me.TextBoxS.Text
Catch
End Try
Try

Me.TextBox3.Text
Catch
End Try

End Sub
End Class

row.midterm

row.final

row.others

row.grade

91

-
4.7 Data Adapter Configuration

Take one data adapterfrom toolbax in data components and put it into form. You
will access data adapter configuration wizart. Follow settings which are shown in

bottom.

SCREEN 4.7

Press next botton

••

SCREEN 4.8
If you made you database connection before by using server explorer bar, you

can see you connection in that combobox.Click it and press next.

92

•I_J

f -- --1--~n SCREEN 4.12
i""-;;;.=n,_--- - --.~· --,ryı~*tV.e+ H §!#""'~il Add your table to query

:'Uıt11ııııı,s-­
..::ır---.~­s­
!JI .• ,..,...~­·­~
~-..!L-...~-----

~!':------."" _s; - - -~ll

fll,(ıılt-~ •• --------ro/ltı-~.ıı:ı •

!!I.••••~·,.•.
ı­
Pı~·-o.•.•.. ~n..._
,::ı-
=.ı,~~
a­,ı­~·-~
§:"r....,;
..:Jfmoriıııl..,_
"1~..~

-

93

SCREEN 4.9

Press next button.

SCREEN 4.11

Press query builder.

SCREEN 4.13

Click which colomn you
want to add in you table.

SCREEN4.14

Press ok.

·#""' &9:ııı- ••.•••••• 0--,... .•....•...•.....••.
ül·,.\!J•llıi,1" :ı.ıııı• r.• ~--r. ·-
i\;{ıii.-~'~',:.•. :.. - --~'$~_:_,- .. ~-·- _,.._ ----~' -

o.p:.,..-"--..,.~-·~·,~-- ,.[·, ~---=-=--
.,~ıa-· -·------· -·..•-
~r ••••
a-·
g~·­,":. "9dıs~­oıı-ı'.,)-

.....

•...••..• -- -
..-~­.ı­
~ı.-ıı
J(".:f•••••_.'.JT~
':;'!-~-j •••••••,~·-0,0-0!!'1--~-. -

_;~,
~.

~
I

-,--J
~~ -~_____-ı ·ı

~~~~/ ~____,.~

See what did you add in
your dataset

SCREEN 4.15-

94



scREEN4.17

OleDbconnectionl is added outomaticly

95

SCREEN 4.16

Click finish, and then it
is configurated

••



-------
4.8 Generate DatasetPress data button on main menu and press generate dataset. Apply comming

proccesses.

"~;,1
(:
ı.i(."

..f.'.'',t.;'
Of,..

l

!,,.,·.·.

~
9

i·

il
!
i
\

SCREEN 4.18

SCREEN 4.19

When you press ok on screen3.19, you will generate dataset-•

4.9 How to Make Relations between Datagrid and Dataset

After adding datagrid, enter proporties of datagrid and find datasource setting.
When you click front space ofdatasource. you will see dataset and table name together.
Click it. You will see selected table in datagrid

96



97

scREEN4.21

SCREEN 4.22

SCREEN 4.23



CONCLUSION

This project obtains me to increase my knowledg,eabout Visual Basic.NET and
Object Orientçd Database and also finding solutions to some specific problems. Before
we learned programming in traditional languages. This kind of programming language
obligates the programmer to write lots of codes send procedures to develop similar
program that includes, data functions, class, librarys, and declarations.

Nowadays programming languages are going to easier then before for
programmer. Programmer needs intelligent opinions, creative idea. They don't need to
memorize understand lots of codes, functions, procedures.

In Vb.NET these is allowed by program maintenance and improvement of
program is very easy to rearrangement. Vb.NET programming language gives me
optimum about to make best situation fur designing program in very sufficient

conditions.

•

98



REFERENCE

1. Pelme Zirvedeki Beyinler 1: Visual lJasic.NET
YÜKSEL iLHAN AND NIHA T OEMIRLI

2. Programming VB.NET:
A Guide for Eıperi~mced
Programmers
GARY CORNELL AND JONAT1:IAN MORRISON

3. A Programmer's Guide to Visual Basic.NET
Copyright© 2001 by Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

4. Leaning Visual Basic .NET
Jesse LibertyBeijing• Cambridge • Farnham • Köln • Paris • Sebastopol• Taipei • Tokyo

S. www.codepower.com

6. www.programlama.com

7. Microsoft Office User Guide

99


