
NEAR EAST UNIVERSITY
Department Of Computer Engineering

Com 400 Graduation Project

LIBRARY AUTOMATION

Using Visual Basic

Submitted To : Mr. Ümit İLHAN
Submitted From: MEHMET DEGİRMENCİ - 980327

..

NICOSIA - 2004

•

~

-ç_~-.;,..,~

~ ~~~y"· ,< I. ,e.-,...• (f.';,1/

1", -:;,,v C,
~-),;-:,
\ /,~~' /·I'

\

'·\:~~.
Title of Contents

~ •• j·_~

Acknowledgement I
Abstract II
Introduction III

1. About Library I
2. History of Visual Basic 2

2.1 Visual Basic Description 4
2.2 What we can do with Visual Basic 8
2.3 Used Components 13
2.4 Data Access Interface 17

2.4.1 Why use ADO 17
2.4.2 OLE DB Providers 17

2.5 Creativity of a new ODBC data source 18
2.6 Menu Editor 19

3. Data Base Management System. 20
3.1 Information about DBMS 20
3.2 Data Models 21
3.3 Relation Model 24
3.4 SQL 24
3.5 The Basic Structure of SQL 26
3.6 Mapping Constrain 27
3.7 Normalization Using Functional dependences 29

3.7.1 Introduction of normalization 29
3.7.2 First Normal Form 31
3.7.3 Second Normal Form 34
3.7.4 Third Normal Form 34
3.7.5 Boyce-Code Normal Form 35

4. Implementation of circulation system of Library 36
4.1 Password menu form 36
4.2 Main Menu Form 37
4.3 Member Information Menu Form 38
4.4 Search Menu Form 40
4.5 Data Base Structure 41

5. Software Design Issues " 42
5.1 Password Menu Form 42
5.2 Main Menu Form

t, 43
5.3 Member Information Menu Form •• • 44
5.4 Search Book Menu Form 48
5.5 Member Search Menu Form 51

6.Conclusion 52
7 .References 53
8.Appendices 54

ACKNOWLEDGEMENT

Firstly I would like to thank my dear parents who helped me until this

moment.
Secondly I would like to thank all my instructor and all my friends.

Thirdly I want to thank all my friends who helped for this project

Expecially I want to thank my supervisor who is Mr.Ümit İLHAN for her

infinite helpness while I was prepearing this project and her kinds.

•

- I -

ABSTRACT

As the information age has effected every aspect of our life, the need for

computerizing many information systems has raised.

Once of the important branches that are effected by information revolution is the

computer programming languages.

Project is written using Visual Basic 6.0 programming language and used

Microsoft Access Database language for databases. Visual Basic is one of the best and

easy programming languages.

Aim of this project is to control library records deal with member.That is,This

project is pursuing an aim of library program, that covers services needed in most library.

Before coming to this point, this project has gone through some important steps;

• First one was that I had to have some knowleges about how library

records to make and learn library record working systems for the

requirement definitions. So, I examined some library programs and met

people I know who working in library .

• Second step was to design and to put in order informations about the

program.

• The later steps were steps of the implementation of the designed

information on computer by using Visual Basic Language .

•..

- II -

Introduction

This project is about writing software on circulation of books in libraries by using database

(Microsoft Access for preparations and SQL Server) and Visual Basic 6.0 as an interface.

A discussion is done with university's library employees to learn system of circulation of

books how it is managed. Also a new discussion is done with university's computer center

to get idea of designing the database. After collection the necessary information about the

system, designation my own database is done with the help of my supervisor and my

database teacher. There are different types of book in library, which have either ISBN or

ISSN number. But all of the books have a unique dept number as a primary key. Members

also have unique member number as primary key.

With using this project library employer can make registration of books and new members

of library, and circulation of books between registered members. The stuff of library or

member of library can learn that the book is inside or outside. If the book is inside the

library, members can find the book in an easy way without wasting time. If the book is

borrowed to a member, the stuff can learn that who borrowed the book, when the book was

Borrowed and when will the book be returned. TO provide the circulation of book in a

good way, library needs a punishment method for late returned books.

The library can add new books, remove the unused books and can update the information

about the book. Also library can add .new members or remove.

In the second part of graduation project, a brief information is given about visual basic 6.0

and it's history. An explain is done about usage ~f visual basic 6.0.and it's used

components in this project. Creation of ODBC (open database connectivity) is focused on

data source with the ActiveX Dtat Objects.

In the third part, a general overview of the nature and purpose of database systems is

provided. An explained is occurred how the concept of database system has developed,

what the common features of database systems are, what a database does for the user. Data

- III -

model is presented, which provides a high level view of the issues in database design with

the entity relationship and also concentration on the relational data model, covering the

relational algebra and relational calculus. SQL (structured Query Language), with focuses

on the database query and programming language, with describe data manipulation:

queries, updates, insertions and deletions. Different types of normalization form using

functional dependencies are explained in detail.

In the forth part, a detailed information is given about each for how of user can run this

program in details.

In the fifth part, user can understand E-R diagram of the system and the main event

procedures used in the project.

•

- IV -

updates, insertions and deletions. Different types of normalization form using functional

dependencies are explained in detail.

In the forth part, a detailed information is given about each for how of user can run this

program in details.

In the fifth part, user can understand E-R diagram of the system and the main event

procedures used in the project.

2. History of Visual Basic

VB was introduced in 1991 as Version 1.0

• Very simple controls (controls nuts and bolts of your project, we use controls to get

user input and to display output)

• Text box controls

• List box controls

• Combo box controls and a few

• No DBMS features

• Only sequential and random files

VB Version 2.0

• Increased controls

• Feature of DBMS

• Paradox (only level of module)

•
VB Version 3.0

• More powerful DBMS features

• No need standard module of DBMS

• Data controls are used

• OLE l.O(Object linking and embedding) feature

2

VB Version 4.0

• Ability to generate 32-bit applications for both windows95 & Windows NT

• Use OLE technology of Microsoft

• Use some of the techniques of OOP and class modules are introduced

• The ability to extend the VB programming environment. Create or use third party

tools into the VB environment

• Conditional compilation to allow you to do multi platform development more easily

VB Version 5.0

• Compilation of native code, p-code

Create it's own Active-X controls

• Multiple projects
• Design and application for Internet and Intranet environment with Active-X document

• New function of code editor

• Downloadable Internet controls

• Visual Models

• Object base data storage- repository

• Has dynamic Linked Library (DDL), to combine VB with another programming

languages such as C

• You could also create your own OLE controls in C and use them in VB

VB Version 6.0

• Native Code Compiler
Create applications, and both client and server-side components tlıat are

optimized for throughput by the world-class Visual C++ 6.0 optimized native-

code compiler

• ADO (ActiveX Data Objects)
Visual Basic 6.0 introduces ADO as the powerful new standard for data access,

Included OLE DB drivers include SQL server 6.5+, Oracle 7.3.3+, Microsoft

Access, ODBC, and SNA server

• Integrated Professional Visual Database Tools

Visual Basic- 6.0 provides a complete set of tools for integrating databases with any
3

application.

• Automatic data binding

• Data environment designer

• Data Report designer

• Visual Basic Web Class Designer

• Dynamic HTML Page Designer

2.1. Visual Basic Discription

Today's most popular operating system for PC's is Widows 98, and also it's an environment

that most of the software in the world needs an environment of Windows 98 in order to

operate or run. Nearly it became an international standard to make the programs, software to

be able to run on Windows 98. So from these points we did a software package that should

run on Windows 98. In order to make the programs to run in Windows 98 needs an interface

program, which is MS Visual Basic 6.0, which is the most popular Visual Programming

language in world for making programs for Windows 98 environment.

Visual Basic is Windows development language, that's why you must be familiar with the

Windows environment. The "Visual" part of the "Visual Basic" refers to the method used to

create the graphical user interface (GUI). Rather than writing numerous lines of code to

describe the appearance and location of interface elements, you simply drag and drop rebuilt

objects into place on screen. If you've ever used a drawing program such as Paint, you

already have most of the skills necessary to create an effective user interface.

The "Basic" part refers to the BASIC (Beginners Ail-Purpose Symbolic Instruction Code)
ı, •

language, a language used by more programmers than any other language in the history of

computing. Visual Basic has evolved from the original BASIC language and now contains

several hundred statements, functions, and keywords, many of which relate directly to the

Windows GUI. Beginners can create useful applications by learning just a few of the

keywords, yet the power of the language allows professionals to accomplish anything that can

be accomplished using any other Windows programming language.

Windows involves three key concepts as below;
)

• Window
4

• Events

• Messages

Window:

A window is a simply rectangular region with its own boundaries.

Examples of windows are:

• An Explorer window in windows 95

• A document window in word processor

• Dialog box that pop up window and reminds you of an appointment

• A command button

• Icons

• Textboxes

• Option boxes

• Menu bars

Microsoft Windows Operating system manages all of these many windows by assigning

each one unique id number. The system continually monitors each of these windows for

signs of activity or events.

Events and messages:

An event is an action recognized by a form or control. Events can occur through user action~
(response) such as a mouse click or a key press using objects of window (through

programmatic control), or even as a result of another windows action.
ı, •

Event-Driven applications execute Basic code in response to an event. Each form and control

in VB has a predefined set of events. If one of these events occurs and there is a user code in

the associated event procedure, VB invokes that code. For example most object recognize a

Click event. If user clicks a form (object), code in the form's Click event procedure is

executed. Each time an event occurs, it causes a message to be sent to the operating system.

The system processes the message and broadcast it to the other windows. Each window can

take the appropriate, action based on its own instructions from dealing with that particular

message.

5

Fortunately, Visual Basic insulates you from having to deal with all of the low-level message

handling. Many of the messages are handled automatically by VB. This allows you to quickly

create powerful application without having to deal with necessary details.

Programs in conventional programming languages run from the top down. For older

programming languages, execution starts from the first line and moves with the flow of the

program to different parts as needed.

Visual Basic program usually works completely different. The code doesn't follow a

predefined path. It executes different code section in response to events. The core of a Visual

Basic programs is a set of independent pieces of code that are activated by, and so respond to,

only the event they have been told to recognize.

The programming code in VB that tells your program how to respond to events (event

procedure) .An event procedure is a body of code that is only executed in response to an

external event.

Your code can also trigger events during execution. It is for this reason that is important to

understand the event-driven model and keep it mind when designing VB applications.

The fastest and easiest way to create applications for Microsoft Windows Whether you are

an experienced professional or brand new to Windows programming, Visual Basic provides

you with a complete set of tools to simplify rapid application development.

The Visual Basic programming language is not unique to Visual Basic. The Visual Basic
@ı

programming system .Applications Edition included in Microsoft Excel, Microsoft Access,

and many other Windows applications uses the same language. Whether your goal is to create~ ..
a small utility for yourself or your work group, a large enterprise-wide system, or even

distributed applications spanning the globe via the Internet, Visual Basic has the tools you

need.

• Data access features allow you to create databases and front-end applications for most

popular database formats, including Microsoft SQL Server and other enterprise-level

databases.

• ActiveX technologies allow you to use the functionality provided by other

6

applications, such as Microsoft Word, which is a word processor, Microsoft Excel

spreadsheet, and other Windows applications. You can even automate applications and

objects created using the Professional or Enterprise editions of Visual Basic.

• Internet capabilities make it easy to provide access to documents and applications

across the Internet from within your application.

• Your finished application is a true .exe file that uses a run-time dynamic-link library

(DLL) that you can freely distribute.

System Requirements for Visual Basic:

Following hardware and software is required for Visual Basic applications:

• Microsoft Windows NT 3.51 or later, or Microsoft Windows 95 or later.

• 80486 or higher microprocessor.

• VGA or higher-resolution screen supported by Microsoft Windows.

• 8 MB of RAM for applications. (This will vary, depending on the specific type libraries

or DLLs you include with your applications.)

• 16 MB of RAM for the Visual Basic development environment.

Project limitations: ..
•

A single project can contain up to 32,000 identifiers, which include, but are not limited to,

forms, controls, modules, variables, constants, procedures, functions, and objects. Variable

names in Visual Basic can be no longer than 255 characters, and the names of forms,

controls, modules, and classes cannot be longer than 40 characters. Visual Basic imposes no

limit on the actual number of distinct objects in a project

Form Structure:

)

While many of the files in a typical Visual Basic project are in a binary format and are

7

readable only by specific processes and functions of Visual Basic or your application, the

form (.Frm) and project (.vbp) files are saved as ASCII text. These are readable in a text

viewer (Notepad for instance).

Visual Basic form (.frın) files are created and saved in ASCII format. The structure of a form

consists of:

• The version number of the file format.

• A block of text containing the form description.

• A set of form attributes.

• The Basic code for the form.

The form description contains the property settings of the form. Blocks of text that define the

properties of controls on the form are nested within the form. Controls contained within other

controls have their properties nested within the text of the container.

2.2. What we can do with Visual

Basic.

Creating User Interface:

The user interface is perhaps the most important part of an application; it's certainly

the most visible. To users, the interface is the application; they probably aren't aware

of the code that is executing behind the scenes. No matter how much time and effort

you put into writing and optimizing your code, the usability of your application

depends on the interface.
•

When you design an application, a number of decisions need to be made regarding the..
interface. Should you use the single-document or multiple-document style? How

many different forms will you need? What commands will your menus include, and

will you use toolbars to duplicate menu functions? What about dialog boxes to interact

with the user? How much assistance do you need to provide?

8

Figure 2.2.1

Before you begin designing the user interface, you need to think about the purpose of

the application. The design for a primary application that will be in constant use should

be different from one that is only used occasionally for short periods of time. An

application with the primary purpose of displaying information has different~
requirementsthan one used to gatherinformation.

"'

•Thç intended audience should also influence your design. An application aimed at a

beginning user demands simplicity in its design, while one for experienced users

may be more complex. Other applications used by your target audience may

influence their expectations for an application's behavior. If you plan on

distributing internationally.ı language and culture must be considered part of your

design.

9

Using Visual Basic Standard Controls:

You use controls to get user input and to displayoutput. Some of the controlsyou can use in

your applicationsincludetext boxes, commandbuttons, and list boxes. Other controls let you

access other applications and process data as if the remote application was part of your

code. Each control has its own set of properties, methods, and events. Ex: Control arrays,

text box controls,etc.

Programming With Objects:

Objects are central to Visual Basic programming. Forms and controls are objects. Databases

are objects.There are objectseverywhereyou look. If you'veused VisualBasic for a while, or

if you've worked through the examples in the first five chapters of this book, then you've

already programmed with objects but there's a lot more to objects than what you've seen so

far.

Programming With Components:

Do you sometimes need to provide the same analysis and calculation capabilities as

Microsoft Excel in your Visual Basic application? Or, perhaps you'd like to format a

document using Microsoft Word formatting tools, or store and manage data using the

Microsoft Jet database engine. Even better, would you like to be able to create or buy

standard components, and then use them in multiple applicationswithout having to modify

them? All this and more can be accomplished by building your applications using

ActiveX components.An ActiveX component is a reusable piece of programmingcode and

data made up of one or more objects created using ActiveX technology. Your applications

can use existing . components, such as those included in Microsoft Office applications,
•code components, ActiveX documents, or Active'X" controls (formerly called OLE

controls) provided by a variety of vendors. Or, if you have the Visual Basic, Professionalor

Enterprise Edition, you can create your own ActiveX controls. For components that

support object linking and embedding,you can insert objects into your applicationwithout

writing any code by using the component'svisual interface.You can insert an OLE-enabled

object into your applicationby using the OLE containercontrol or by adding the object'sclass

to the Toolbox. To fully understandActiveX components,you should first be familiar with

how to work with classes, objects, properties, and methods, which are explained in

"Programming with Objects."

10

Responding to mouse and keyboard Event:

Your Visual Basic applications can respond to a variety of mouse events and keyboard

events. For example, forms, picture boxes, and image controls can detect the position of

the mouse pointer, can determine whether a left or right mouse button is being pressed, and

can respond to different combinations of mouse buttons and SHIFT, CTRL, or ALT keys.

Using the key events, you can program controls and forms to respond to various key actions

or interpret and process ASCII characters.

In addition, Visual Basic applications can support both event-driven drag-and-drop and OLE

drag-and-drop features. You can use the Drag method with certain properties and events to

enable operations such as dragging and dropping controls. OLE drag and drop gives your

applications all the power you need to exchange data throughout the Windows

environment and much of this technology is available to your application without writing

code.

You can also use the mouse or keyboard to manage the processing of long background

tasks, which allows your users to switch to other applications or interrupt background

processıng.

Working with Texts and Graphics

Visual Basic includes sophisticated text and graphics capabilities for use in your applications.

If you think of text as a visual element, you can see that; size, shape and color can be used to

enhance the information presented. Just as a newspaper uses headlines, columns and

bullets to break the words into bite-sized chunks, text properties can help you emphasize

important concepts and interesting details.

Visual Basic also provides graphics capabilities allowing you great flexibjlity in design,
ı,

including the addition of animation by displaying a sequence of images.

11

Debugging your code and handling Errors:

No matter how carefully crafted your code, errors can (and probably will) occur. Ideally,

Visual Basic procedures wouldn't need error-handling code at all. Unfortunately, sometimes

files are mistakenly deleted, disk drives run out of space, or network drives disconnect

unexpectedly. Such possibilities can cause run-time errors in your code. To handle these

errors, you need to add error-handling code to your procedures.

Sometimes errors can also occur within your code; this type of error is commonly referred to

as a bug Minor bugs: for example, a cursor that doesn't behave as expected can be frustrating

or inconvenient. More severe bugs can cause an application to stop responding to commands,

possibly requiring the user to restart the application, losing whatever work hasn't been saved.

The process of locating and fixing bugs in your application is known as debugging

Visual Basic provides several tools to help analyze how your application operates. These

debugging tools are particularly useful in locating the source of bugs, but you can also use the

tools to experiment with changes to your application or to learn how other applications work.

Accessing Data:

Almost all applications require some form of data storage and manipulation, and Visual

Basic provides a number of tools to meet these needs, including the data control and data­

bound controls, data access objects, remote data objects, and the remote data control.

Designing for Performance and Compatibility:

In an ideal world, every user of yous, applications would have a computer with the fastest

possible processor, plenty of memory, unlimited drive space, and a blazingly fast network

connection. Reality dictates that for most users, the actual performance of an application

will be constrained by one or more of the above factors. As you create larger and more

sophisticated applications, the amount of memory the applications consume and the speed

with which they execute become more significant. You may decide you need to optimize

your application by making it smaller and by speeding calculations and displays.

As you design and code your application, there are various techniques that can be used to

optimize the performance. Some techniques can help to make your application faster; others

can help to make it smaller. In this chapter I will explain some of the more common

optimization tricks that you can us"e in your own applications.

12

Visual Basic shares most of its language features with Visual Basic for Applications, which is

included in Microsoft Office and many other applications. Visual Basic, Scripting Edition

(VBScript), a language for Internet scripting, is also a subset of the Visual Basic language.

If you're also developing in Visual Basic for Applications or VBScript, you'll probably

want to share some of your code between these languages.

International Issues:

If you are planning to distribute your Visual Basic application to an international market,

you can reduce the amount of time and code necessary to make your application as

functional in its foreign market as it is in its domestic market. This chapter introduces key

concepts and definitions for developing international applications with Visual Basic, presents

a localization model, and emphasizes the advantages of designing software for an

international market.

Distributing Your Application:

Once you have created a Visual Basic application, you may want to distribute it to others.

You can freely distribute any application you create with Visual Basic to anyone who uses

Microsoft Windows. If you are going to distribute your application, you will need to write

or use a setup program that installs your application onto a user's machine.

2.3. Used Components

I am going to explain some components, which are used for this project. All this components

contains its own .OCX files, so user can register this files to use new components.

Following components are commonly used for projects .jllld also they used <for "Periodics

Control System" and "Book Control System" programs that which were written by me.

13

Command Button:

Most Visual Basic applicationshave command buttons that allow the user to simply click

them to perform actions. When the user chooses the button, it not only carries out the

appropriate action, it also looks as if it's being pushed in and released. Whenever the user

clicks a button, the Click event procedure is invoked. You place code in the Click event

procedureto performanyactionyou choose.

Label:

A label control displays text that the user cannot directly change. You can use labels

Ito identify controls, such as text boxes and scroll bars that do not have their own caption

property.The actual text displayedin a label is controlledby the Captionproperty,which can

be set at design time in the Properties window or at run time by assigning it in code. By

default, the caption is the only visible part of the label control. However, if you set the

BorderStyle property to one (which you can do at design time), the label appears with a

bordergivingit a look similarto a text box. You can also changethe appearanceof the label

by settingthe BackColor,BackStyle,ForeColor,and Fontproperties.

Text Box:

Text boxes are versatile controls that ı;.an be used to get input from the user or to display

text. Text boxes should not be used to display text that you don't want the user to change,

unless you've set the Locked property to true. The actual text displayed in .a text box is•
controlled by the Text property. It can be set in three different ways: at design time in the

Propertywindow, at run time by setting it in code or by input from the user at run time. The

currentcontentsof a text box can be retrievedat run time by readingthe Text property.

14

Option Button:

Option buttons present a set of two or more choices to the user. Unlike check boxes, however,

option buttons should always work as part of a group; selecting one option button

immediately clears all the other buttons in the group. Defining an option button group tells

the user, "Here is a set of choices from which you can choose one and only one."

List Box:

List boxes and combo boxes present a list of choices to the user. By default, the choices are

displayed vertically in a single column, although you can set up multiple columns as well. If

the number of items exceeds what can be displayed in the combo box or list box, scroll bars

automatically appear on the control. The user can then scroll up and down or left to right

through the list.

Timer.·

••
•

Timer is used to make some operation in a specific time interval. Time interval can be adjusted

from the properties of the timer.

15

Microsoft DataGrid 6.0:

The DataGrid Displays and enables data manipulation of a series of rows and columns

representing records and fields from a Recordset object. The DataGrid control's Columns

collection'sCount propertyand the Recordsetobject'sRecordCountpropertyto determine the

number of columns and rows in the control. A DataGrid control can have as many rows as

the systemresourcescan supportand up to 32767columns.

Microsoft Ado data control 6. O:

In Visual Basic, three data access interfaces are available to you: ActiveX Data Objects

(ADO), Remote Data Objects (RDO), and Data Access Objects (DAO). A data access

interface is an object model that represents various facets of accessing data. Using Visual

Basic, you can programmatically control the connection, statement builders, and returned

data for use in anyapplication.

Frame:

A Frame control provides an identifiablegrouping for controls. You can also use a Frame to
•

subdividea form functionally-for example,to separategroupsof OptionButtoncontrols.

16

2.4. Data Access Interfaces

2.4.1. ADO.

The ADO Data control uses Microsoft ActiveX Data Objects (ADO) to quickly create

connections between data-bound controls and data providers. Data-bound controls are any

controls that feature a DataSource property. Data providers can be any source written to the

OLE DB specification. You can also easily create your own data provider using Visual

Basie's class module.

Although you can use the ActiveX Data Objects directly in your applications, the ADO

Data control has the advantage of being a graphic control (with Back and Forward buttons)

and an easy-to-use interface that allows you to create database applications with a minimum

of code.

Several of the controls found in Visual Basie's Toolbox can be data-bound, including the

CheckBox, ComboBox, Image, Label, ListBox, PictureBox, and TextBox controls.

Additionally, Visual Basic includes several data-bound ActiveX controls such as the

DataGrid, DataCombo, Chart, and DataList controls. You can also create your own data­

bound ActiveX controls, or purchase controls from other vendors.

2.4.2. OLE DB Providers

OLE DB is a new low-level interface that introduces a "universal" data access paradigm.

That is, OLE DB is not restricted to ISAM, Jet, or even relational data sources, but is capable

of dealing with any type of data regardless of its format or storage method. In practice, this

versatility means you can access data that resides in an Excel spreadsheet, text files, or even

on a mail server such as Microsoft Exchange.

In Visual Basic 6.0, you leverage the flexibility of OLE DB through ADO, the programmer

interface to OLE DB. You can even create your own OLE DB Providers in Visual Basic.

OLE DB is not designed to be accessed directly from Visual Basic due to its complex

interfaces. Instead ActiveX Data Objects (ADO) encapsulates and exposes virtually all of

OLE DB's functionality.

17

2.5. Creativity of a new ODBC data source

In the control panel you must first enter Administrative tools. In Administrative rule you

must double click the Data sources (ODBC). After this you will see the below figure. You

must select your data source if created before. If you can not see your data source then you

must add new data source by clicking Add command button.

SQL$eıver
Microısolt Access D riveır l",rrıdt:ı)
SQLSeıver
Driver do Micıo$ı:ıft Accett [•,ırıdh)
SQL Server

Figure 2.5.1

When you clicked add command button, you will see Create New Data Source window. In

this window you select your driver, which you want to set up a data source. Then you must

press Final command to finish creation of data source.

18

Figure 2.5.2

When you clicked finish command button, you will see ODBC Microsoft Access Setup

window. In this window you write your data source name then you assign the directory of your

data source by clicking select command button. After this step you finished your ODBC

connection.

2.6. Menu Editor

Firstly, to display the menu editor, from the tools menu choose Menu Editor then you will

face with the Menu editor window shown blown.

Figure 2.6.1

-While most menu control properties can be set using the Menu Editor; all menu properties

are also available in the properties window. You should normally create a menu in the menu
•

editor; however, to quickly change a single property, you could use the properties window.

If you want your application to provide a set of commands to users, menus offer a convenient

and consistent way to group commands and an easy way for users to access them. The menu

bar appears immediately below the title bar on the form and contains one or more menu titles.

When you click a menu title, a menu containing a list of menu items drop down. Menu items
'

can include commands, separator bars and sub menu titles. Each menu items, the user sees

corresponds to a menu control you define in the menu editor. To make your application

easier to use, you should group menu items according to their function.

19

Some menu items perform an action directly; for example, the exit menu item in the file

menu closes application. Other menu items display a dialog box - a window that requires

the user to supply information need by the application to perform action. These menu items

should be followed by an ellipses(..). For example, when you choose Save As., from the file

menu, the save file appears in the dialog box.

3. Database Management System

3.1. Information about DBMS

Databases Management System (DBMS) consists of a collection of interrelated data and

collection of programs to access that data. The data contains information about one

particular enterprise. The primary goal of a DBMS is to provide an environment, which is

both convenientand efficientto use in retrievingand storinginformation.

Database systems are designed to manage large bodies of information. The management

of data involves both the definition of structures for the manipulating of information.In

addition the database system crashes or attempts at authorized access. If data is to be shared

among severalusers, the systemmust avoidpossibleanomalousresults.

A major purpose of a database system is to provide users with an abstract view of the data.

That is the system hides certain details of how the data is stored and maintained. This is

accomplishedby definingthree levelsof abstraction.

> The PhysicalLevel

> The ConceptualLevel

> LevelThe view Level
••

Underlying the structure of a database is the data model, collection of conceptual tools for

describing data, data relationships, data semantics, and data constraints. The various data

models that have beenproposed,is dividedinto three differentgroups:

1 - Object-Based LogicalModel

2- RecordBasedLogicalModel

3- PhysicalData Models

20

Database change over time as information is inserted and deleted. The Collection of

information stored in the database at a particular moment in time is called an instance of the

database. The overall design of the database is called the database scheme. The ability to

modify scheme definition in one level without affecting scheme definition in the next-higher

level is called data independence. There are two levels of data dependencies,

1- Physical Data independencies

2- Logical Data independencies

A database scheme is specified by a set of definitions, which are expressed by a data

definition language (DDL). DDL statements are compiled into a set of tables, which are

stored in special file called the data dictionary, which contains metadata. A data manipulating

language (DML) is a language that enables users to access or manipulate data. There are

basically two types: procedural DML's which require a user to specify what data is needed

and how to get it and nonprocedural DML's which require a user to specify what data is

needed without specifying how to get it

3.2. Data Models

Underlying the structure of a database is the concept of data model, a collection of conceptual

tools for describing data, data relationships, data semantics, and consistency constraints. The

various data models that have been proposed fall into three different groups: object-based

logical models, record-based logical models, and physical data models.

"
Object-Based Logical Models:

•
Object-based logical models are used in describing data at the conceptual and view levels.

They are characterized by the fact that they provide fairly flexible structuring capabilities and

allow data constraints to be specified explicitly. There are many different models, and more

likely to come. Some of the more widely known ones are:

• The entity-relationship model.

• The object-oriented model.

• The binary model.

• The semantic data model.

• The functional data model.
L. ı

The Entity-Relationship Model:

The entity-relationship (E-R) data model is based on a perception of a real world, which

consists of a collection of basic objects called entities, and relationships among these objects.

An entity is an object that is distinguishable from other objects by a specific set of attributes.

For example, the attributes number and balance describe one particular account in a bank. A

relationship is an association among several entities. For example, a CustAcct relationship

associates a customer with each account that she or he has. The set of all entities of the same

type and relationships of the same type are termed an entity set and relationship set,

respectively.

In addition to entities and relationships, the E-R model represents certain constraints to which

the contents of a database must conform. One important constraint is mapping cardinalities,

which express the number of entities to which another entity can be associated via a

relationship set.

The overall logical structure of a database can be expressed graphically by an E-R diagram,

which consists of the following components:

• Rectangles, which represent entity sets.

• Ellipses, which represent attributes

• Diamonds, which represent relationship among entity sets.

• Lines, which link attributes to entity sets and entity sets to relationships.

Each component is labeled with the entity or relationship it represents.

To illustrate, consider part of a database banking system consisting of customers and the

accounts that they have.
•

From a historical Perspective, the relational data model is relatively new. The first

database systems are based on either the network model or the hierarchical model. Those

two older models are tied more closely to the underlying implementation of the database

than is the relational model. The relational model has established itself as the primary data

model of the commercial data processing in systems for computer-aided design and other

environments.

Relational Algebra:

22

The relational algebra is a procedural query language. It consists of a set of operations

that take one or two relations as input and produce a new relation as their result. The

fundamental operations in the relational algebra are select, project, Cartesian product,

rename, union, and set difference. In addition to fundamental operations, there are

several other operations, namely, set intersection, natural join, division and assignment.

•

23

3.3 RELATION MODEL

The Cartesian Product Operation :

In order to combine information from several relations. One operation that allows us to do

that is the Cartesian product operation, denoted by a cross (x). This operation is a binary

operation, we shall use infix notation for binary operations and, thus, write the Cartesian

product of relations rl and r2 as rl x r2.

The Rename Operation:

In some queries we introduced the convention of naming attributes by

relation_name. attribute_name in order to eliminate possible ambiguity. Another form of

potentialambiguityariseswhen the samerelationappearsmore than once in a query.

The Union Operation:

If you consider a query that night be posed by a bank's advertising department: "Find all

customers if the Lefkosa branch." That is, find everyonewho has a loan, an account, or both,

then we use the union operator.

Set Difference Operation:

The set difference operation, denoted by-, allows us to find topless that are in one relation

but not in another.The expressionr-s results in a relationcontainingthose topless in r but not~
ın s.

•
3.4. SQL

SQL means "StructuredQuery Language".There are numerousversion of SQL. The original

version was developed at IBM's San Jose Research Laboratory. This language originally

called Sequel was implemented as part of the system R Project in early 1970's, the Sequel

languagehas evolved since then, and its name change to SQL. Although the product version

of SQL differs in several language details, the differences are for the most part, minor. The

SQLlanguagehas severala parts.

24

Data Definition Language (DDL):

The SQL DDL provides commands for defining relations schemes, deleting relations, creating

indices and modifying relations.

A database scheme is specified by a set of definitions, which are expressed by a special

language called a data definition language (DDL). The result of compilation ofDDL

statements is a set of tables, which are stored in a special file called data dictionary (or

directory).

A data directory is a file that contains metadata; that is, "data about data." This file is consulted

before actual data is read or modified in the database system.

The storage structure and access methods used by the database system are specified by a set of

definitions in a special type ofDDL called a data storage and definition language. The result

of compilation of these definitions is a set of instructions to specify the implementation details

of the database schemes that are usually hidden from the users.

Interactive data manipulating language (DML):

The SQL DML includes a query language based on both the relational algebra and the tuple

relational calculus. It includes also commands to insert, delete, and modify tuples in the

database.

By data manipulation we mean:

• The retrieval of information stored in the database.

• The insertion of new information into the database.

• The deletion of information from the database.

• The modification of data stored in the database.

•

At the physical level, we must define algorithm that allow for efficient access to data. At

higher levels of abstraction, an example is placed on ease of use. The goal is to provide for

efficient human interaction with the system.

A data manipulation language (DML) is language that enables users to access or manipulate

data as organized by the appropriate data model. There are basically two types:

25

> Procedural DMLs require a user to specify what data is needed and how to get it.

> Nonprocedural DMLs require a user to specify what data is needed without specifying

how to get it.

Nonprocedural DMLs are usually easier to learn and use than procedural DMLs. However,

since a user does not have to specify how to get the data, these languages may generate

code which is not as efficient as that produced by procedural languages.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval called a query language. Although technically incorrect, it is

common practice to use the terms query language and data manipulation language

synonymously.

3.5. The Basic Structure of SQL

The basic structure of SQL Expression consists of3 clauses: Select, From and Where.

** The SELECT clause corresponds to the projection operation of the relational algebra. It

used to list the attributes desired in the result of a query.

** The FROM clause corresponds to the Cartesian product operation of the relation

algebra. It lists the relation to be scanned in the evaluation of the expression.

* * The WHERE clause corresponds to the selection predicate of the relational algebra. It

consists of a predicate involving attributes of the relations that appear in the From clause.

The different meaning of the "SELECT" in SQL and in the relational algebra is an unfortunate

historical fact. We emphasize the different interpretation here to mınımıze potential

confusion. A typical SQL query has the form:
•

SELECT Al, A2, ...An FROM rl,r2, m

WHEREP

NOTE: Ai represents attribute and each rl a relation.Pis a predicate.

26

3.6. Mapping Constraints

Mapping cardinalities are most useful in describing binary relationship sets, although

occasionally they contribute to the description of relationship sets that involve more than two

entity sets.

For a binary relationship set R between entity sets A and B, the mapping cardinality must be

one of the following:

One-to-one: An entity in A associated with at most one entity in B, and an entity in B is

associated at most one entity in A.

(a) One-to-one relatltırıshl.p, (b)

Figure 3.6.1

One-to-many: An entity is associated with any number of entities in B. An entity is Bl

can be associated with at most one entity in

a2

(b)

Figure 3.6.2

27

> Many-to-one: An entity in A is associated with at most one entity in B. An entity in B,

however, can be associated with any number of entities in A.

(a)

Figure 3.6.3

>Many-to-many: An entity in A is associated with any number of entities in B, and an

entity in B is associated with any number of entities in A.

Figure 3.6.4

28

3.7. Normalization using functional dependencies

e assume that a set of functional dependencies is given for each relation, and that each

relation has a designated primary key; this information combined with the tests

conditions) for normal forms drives the normalization process. We will focus on the

first three normal forms for relation schemas and the intuition behind them, and discuss

how they were developed historically. I define Boyce-Codd normal form (BCNF), and

further normal forms that are based on other types of data dependencies.

We discuss first normal form (INF), and present the definitions of second normal form

(2NF) and third normal form (3NF) that are based on primary keys.

3.7.1. Introduction to Normalization:

The normalization process, as first proposed by Codd (1972a), takes a relation schema

through a series of tests to "certify" whether it satisfies a certain normal form. The process,

which proceeds in a top-down fashion by evaluating each relation against the criteria for

normal forms and decomposing relations as necessary, can thus be considered as relational

design by analysis. Initially, Codd proposed three normal forms, which he called first,

second, and third normal form. A stronger definition of 3NF-called Boyce-Codd

normal form (BCNF)-was proposed later by Boyce and Codd. All these normal forms are

based on the functional dependencies among the attributes of a relation. Later, a fourth

normal form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of

multivalued dependencies and join dependencies, respectively.

At the beginning of we also discuss how 3NF relations may be synthesized from a given

set of FDs. This approach is called relational design by synthesis.
•

Normalization of data can hence be looked upon as a process of analyzing the given relation

schemas based on their FDs and primary keys to achieve the desirable properties of (1)

minimizing redundancy and (2) minimizing the insertion, deletion, and update anomalies.

Unsatisfactoryrelation schemas that do not meet certain conditionsthe normal form tests are

decomposed into smaller relation schemas that meet the tests and hence possess the desirable

properties.Thus, the normalizationprocedureprovidesdatabasedesignerswith:

29

• A formal framework for analyzing relation schemas based on their keys and on the

functional dependencies among their attributes.

• A series of normal form tests that can be carried out on individual relation schema so

that the relational database can be normalized to any desired degree.

The normal form of a relation refers to the highest normal form condition that it meets,

and hence indicates the degree to which it has been normalized. Normal forms, when

considered in isolation from other factors, do not guarantee a good database design. It is

generally not sufficient to check separately that each relation schema in the database is, say,

in BCNF or 3NF. Rather, the process of normalization through decomposition must also

confirm the existence of additional properties that the relational schemas, taken together,

should possess. These would include two properties:

• The lossless join or nonadditive join property, which guarantees that the spurious

topple generation problem does not occur with respect to the relation schemas created

after decomposition.

• The dependency preservation property, which ensures that each functional depend

deny is represented in some individual relations resulting after decomposition.

The nonadditive join property is extremely critical and must be achieved at any cost, whereas

the dependency preservation property, although desirable, is sometimes sacrificed.

Additional normal forms may be defined to meet other desirable criteria, based on additional

types of constraints. However, the practical utility of normal forms becomes questionable

when the constraints on which they are based are hard to understand or to detect by the

database designers and users who must discover these constraints. Thus database design as
~

practiced in industry today pays particular attention to normalization up to BCNF or 4NF.

Another point worth noting is that the database designers need not normalize to the highest

possible normal form. Relations may be left in a lower normalization status for performance

reasons. The process of storing the join of higher normal form relations as a base relation

which is in a lower normal form is known as demoralization. Before proceeding further, let us

look again at the definitions of keys of a relation schema. A superkey of a relation schema J?

= {Ai, A2, ... , An} is a set of attributes Sc J?with the property that no two topples ti and ti in

any legal relation stater ofR will have ti[S] = t2[S]. A key K is a superkey with the additional

30

property that removal of any attribute from Kwill cause Knot to be a superkey any more. The

difference between a key and a superkey is that a key has to be minimal.' that is, if we have a

key K- {AI, AI,.... , AK} of R, then K - {A;} is not a key of R for any i, / < i <k.

If a relation schema has more than one key, each is called a candidate key. One of the

candidate keys is arbitrarily designated to be the primary key, and the others are called

secondary keys. Each relation schema must have a primary key.

An attribute of relation schema R is called a prime attribute of R if it is a member of some

candidate key ofR. An attribute is called nonprime if it is not a prime attribute that is, if it is

not a member of any candidate key.

We now present the first three normal forms: INF, 2NF, and 3NF. These were proposed by

Codd (1972a) as a sequence to achieve the desirable state of 3NF relations by progressing

through the intermediate states of INF and 2NF if needed.

3.7.2. First Normal Form:

First normal form (INF) is now considered to be part of the formal definition of a relation in

the basic (flat) relational model; historically, it was defined to disallow multivalued attributes,

composite attributes, and their combinations. It states that the domain of an attribute must

include only atomic (simple, indivisible) values and that the value of any attribute in a

tuples must be a single value from the domain of that attribute. Hence, INF disallows having

a set of values, a tuples of values, or a combination of both as an attribute value for a single

topple. In other words, INF disallows "relations within relations" or "relations as attributes of

tuples." The only attribute values permitted by INF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema, whose primary key is DNUMBER, and suppose

thit we extend it by including the DLOCATIONS attribute as shown in Figure l(a). We assume

that each department can have a number of locations. The DEPARTMENT schema and an

example extension are shown in Figure 1. As we can see, this is not in INF because

DLOCA TIONS is not an atomic attribute, as illustrated by the first tuple in Figure l(b).

There are two ways we can look at the DLOCATIONS attribute:

** The domain of DLOCATIONS contains atomic values, but some tuples can have a set of

these values. In this case, DLOCATIONS is not fıınctionally dependenton DNUMBER.

31

> The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,

DNUMBER-> DLOCATIONS, because each set is considered a single member of the attribute

domain.

Department

DNAME DNUMBER I DMGRSSN DLOCATIQNS

Ik 4 A

DEPARTMENT r
,)

DNAME I ON UMBER I DMGRSSN I DIOCATIQNS

Research 333445S (Beteire, Sugarisnd,

5 Administrator* S5

98765432

Houston} { Stafford)

{Houston}4 Headquarters
1 ------ 1

J DNAME J QNUrvlBER, J DMGRSSN Dj-OCATION

Research 5 3334- Bella! re

Research

Research

Sugartar5

5

55555

33344555 o

FIGURE 1: Normalization into INF. (a) Relation schema that is not in INF, (b) Example

relation instance, (c) INF relation with redundancy.

In either case, the DEPARTMENT relation of Figure 1 is not in INF; in fact, it does not
••

even qualify as a relation. There are three main techniques to achieve first normal form for

such a relation: •

1. Remove the attribute DLOCATIONS that violates INF and place it in a separate

relation

DEPT_LOCATIONS alongwith the primarykey DNUMBER ofDEP ARTMENT. The

primarykey

of this relation is the combination {DNUMBER, DLOCATION}, as shown in Figure

14.2. A

distinct tuple in DEPT_ LOCA TIO NS exists for each location of a department.

This decomposes the non-INF relation into two INF relations.

32

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT, as shown in Figure l(c). In this case,

the primary key becomes the combination {DNUMBER, DLOCATION}. This

solution has the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute-for example, if it is

known that at most three locations can exist for a department-replace the

DLOCA TIO NS attribute by three atomic attributes: DLOCA TIO NI, DLOCATION, and

DLOCA TI ONS. This solution has the disadvantage of introducing null values if most

departments have fewer than three locations.

Of the three solutions above, the first is superior because it does not suffer from redundancy

and it is completely general, having no limit placed on a maximum number of values. In fact,

if we choose the second solution, it will be decomposed further during subsequent

normalization steps into the first solution.

The first normal form also disallows multivalued attributes that are themselves composite.

These are called nested relations because each tuple can have a relation within it. Figure 2

shows how the EMP _PROJ relation could appear if nesting is allowed. Each tuple represents an

employee entity, and a relation PROJs(PNUMBER, HOURS) within each tuple represents the

employee's projects and the hours per week that employee works on each project. The

schema of this EMP _PROJ relation can be represented as follows:

EMPJPROJ (SSN, ENAME, {PROJS(PNUMBER, HOURS)})

The set braces {} identify the attribute PROJS as multivalued, and we list the component
4

attributes that form PROJS between parentheses (). Interestingly, recent research into the

relational model is attempting to allow and formalize nested relations, which were

disallowed early on by INF.

Notice that SSN is the primary key of the EMP _pROJ relation in Figures 2(a) and (b), while

PNUMBER is the partial primary key of the nested relation; that is, within each tuple, the nested

relation must have unique values of PNUMBER. To normalize this into INF, we remove the

nested relation attributes into a new relation and propagate the primary hy into it; the

33

primary key of the new relation will combine the partial key with the primary key of the

original relation. Decomposition and primary key propagation yield the schemas

EMP _PROJI and EMP _PROJ2 shown in Figure 2(c).

This procedure can be applied recursively to a relation with multiple-level nesting to unnest

the relation into a set of INF relations. This is useful in converting an unnormalized relation

schema with many levels of nesting into INF relations.

3. 7.3. Second Normal Form:

Second normal form (2NF) is based on the concept of full functional dependency. A

functional dependency X -> Y is a full functional dependency if removal of any attribute A

from X means that the dependency does not hold any more; that is, for any attribute A e X,

(X- {A}) does not functionally determine Y. A functional dependency X-> Y is a partial

dependency if some attribute A e X can be removed from X and the dependency still holds;

that is, for some A e X, (X - {A})-> Y.

The test for 2NF involves testing for functional dependencies whose left-hand side attributes

are part of the primary key. If the primary key contains a single attribute, the test need not be

applied at all. A relation schema R is in 2NF if every nonprime attribute A in .R is fully

functionally dependent on the primary key of R.

If a relation schema is not in 2NF, it can be "second normalized" or "2NF normalized" into a

number of 2NF relations in which nonprime attributes are associated only with the part of the

primary key on which they are fully functionally dependent.

3.7.4. Third Normal Form: •

Third normal form (3NF) is based on the concept of transitive dependency. A functional

dependency X -> Y in a relation schema R is a transitive dependency if there is a set of

attributes Z that is neither a candidate key nor a subset of any key of R, and both X -> Z and Z

->Yhold.

Normal Form Test Remedy (Normalization) First (INF) Relation should have no

nonatomic Form new relations for each attributes or nested relations.

Nonatomic attribute or nested relation Second (2NF) For relations where primary key

Decompose and set up a contains multiple attributes, no new relation for each partial

34

nonkey attribute should be key with its dependent functionally dependent on a part of

attribute(s). Make sure to the primary key. Keep a relation with the original primary­

key and any attributes that are fully functionally dependent on it. Third (3NF) Relation

should not have a nonkey Decompose and set up a attribute functionally determined by

relation that includes the nonkey attribute(s) that another nonkey attribute (or by a set of

fictionally determine(s)

nonkey attributes.) That is, there other nonkey attribute(s).Should be no transitive

dependency of a nonkey attribute on the primary key.

According to Codd's original definition, a relation schema R is in 3NF if it satisfies 2NF and

no nonprime attribute ofR is transitively dependent on the primary key.

Table 1 informally summarizes the three normal forms based on primary keys, the tests used

in each case and the corresponding "remedy" or normalization to achieve the normal form.

3.7.5. Boyce-Codd Normal Form:

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to

be stricter than 3NF, because every relation in BCNF is also in 3NF; however, a relation in

3NF is not necessarily in BCNF.

The formal definition of BCNF differs slightly from the definition of 3NF. A relation schema

R is in BCNF if whenever a nontrivial functional dependency X -> A holds in /(then X is a

superkey of R. The only difference between the definitions of BCNF and 3NF is that

condition (b) of3NF, which allows A to be prime, is absent from BCNF.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X-»A holds in a

relation schema /(with X not being a superkey and A,being a prime attribute will R be in
"3NF but not in BCNF. Ideally, relational database design should strive to achieve BCNF or

3NF for every relation schema. Achieving the normalization status of just INF or 2NF is not

considered adequate, as they were developed historically as stepping-stones to 3NF and

BCNF. Figure 3 shows a relation TEACH with the following dependencies:

FDl: {STUDENT, COURSE}>> INSTRUCTOR

FD2: INSTRUCTOR>> COURSE

Note that (STUDENT, COURSE} is a candidate key for this relation. Hence this relation is in

35

J' but not BCNF. Decomposition of this relation schema into two schemas is not

ightforward because it may be decomposed in one of the three possible pairs:

three decompositions "lose" the functional dependency FD 1. The desirable decomposition

of the above three is the third one, because it will not generate spurious tuples after a join.

test to determine whether a decomposition is nonadditive (lossless). In general, a relation

,t in BCNF should be decomposed so as to meet this property, while possibly forgoing the

servation of all functional dependencies in the decomposed relations, as is the case in

· example.

Implementation of circulation system of library

I am going to explain the user interfaces part of my program to a user who does not know

anything about the program.

4.1. Password Menu Form:

In the password menu, every user must have a password to use. If a user does not have a

password s/he cannot use. Firstly s/he must enter user name then must enter the correct

password. After clicking the 'OK' buttons/he can use program. If the user enters click the

'Cancel', the textboxes are cleaned and waiting for user to enter the usemame and

password.

Figure 4.1. 1

The usemame is very important because every user have different rights while using the

program.

36

4.2. Main Menu Form:

Figure 4.2.1

•• •

37

4.3. Member Information Menu Form:

If the user wants to insert a new member, user must first click on the 'New Record'

button to clear the text boxes and enable the 'Insert' button. After the user enters the

necessary information to the text boxes, the user must click 'Insert' button to add the

information to the database. While inserting a new member, user must pay attention to

member number, if member number is entered then the program warns the user to change the

member number.

------- _ ~raci /SARıYER __
i kunduraci i SARıYER
!karlioglu
lkoc

selale lkoc

goulnaz ıus~OGLU _1~~4013 SOK

ADDRESS

" •

Figure 4.3.1

If user clicks any command button which is on the top of the form then the members

whose names are started with the selected characters are shown in the list box. when the

user double clicks on any member name from the listbox, the command fields are filled.

User has following rights:

Update: When the user clicks the 'Update' button, user can replace the old

38

information with the new information. While replacing the new information, user must

pay attention to member number. If member number is entered before, the program

forces the user to change the member number. When an update is done in any

information, this updating occurs in all tables not to lose information.

Delete: When the user clicks the 'Delete' button, user can delete the

member if the member does not have book. When a deletion occurs, deletion occurs all

my tables.

Member page: When the user clicks the 'member page' button, the member

page will come up to the screen.

Search: When the user click the 'search' button directly, all members will

be sort in the table, but if user enters some information to the textboxes about any

member then clicks to the 'search' button, then just selected member information will

come to the table.

Print: When the user click the 'print' button then user can take a print

out all over the selected member informations.

Add Book: When user click the 'Add Book' button then user can add selected

book to selected member statistics.

All Information: When user click the 'All Information' button then it shows all over the

infprmation on the member table, for example if member is green that user took a book

or books from the library and he/she have a time to bring it back. If member is yellow

that user did't take any book from the library yet. If member is red that member took a

book or books from the library and his or her limited time over which depends on the

library.

39

4.4. Search Menu Form

The user can come to the search menu only from the book menu. While passing from

book menu to search menu, in the menu we can search any book from library, then we can

add it to member's record or we can update book information.

If the user wants to insert a book to member member's record then click on the 'Add Book

into Member's Record' button then that book is added to member's record. For updating,

user should click 'update' button, before that user should choose book from the table and

then book information will come to the textboxes. After that, user can change book

information. After that if user clicks 'update' button that information is updated. If not,

nothing changes.

PUBLISHER
KLASiKLER YA YıNEVI
SOL YA YıN EVLERi
Y APıKREDI YA YıNLARı
I\UL TUR BAl•,ANLıı::.ı
ADAM
BiLiNMiYOR

•

Figure 4.3.2

When the ISSN or ISBN number of book is read by the bar code or entered from the

keyboard then the user has following rights:

40

Update: When the user clicks the "Update' button, user can replace the old

information with the new information. While replacing the new information, user must

pay attention to debt number. If debt number is entered before, the program forces the

user to change the debt number. When an update is done in any information, this

updating occurs in all tables not to lose information.

Search: When the user click the 'search' button directly, all book will be

sort in the table, but if user enters some information to the textboxes about any book then

clicks to the 'search' button, then just selected book information comes to the table.

Add Book into Member's Record: This button just for adding book to

member's record. Before click this button user should select book then click this button

for add that book to member's record.

4.5. Data base Structure

Member table stores general information about registered members. There is no primary

key in this table. Table just including members information.

'AboutDateTable' table stores taken books from the library. This table does not contain any

key but contain punishment attribute. If the book was returned late, a punishment is applied

to the member. Program that takes time from the server automatically, and according to the

program limitation, Program is applied to punishment to the members.

•
Book table stores the general information about books. There is no primary key for this

table. The book must have either ISSN or ISBN. But ISSN or ISBN attribute cannot be a

key because it is possible to have more than one book. So there is no reason to use

primary key in this table.

41

5.Software Design Issues

5.1. Password Menu Form:

FormJLoadO:

I Access from my application to the data source using ActiveConnection command,

this is necessary for exchanging data. Then I opened my database to access without facing

any problem. If opened before, we do not need to open so many times.

cypher! KeyPressQ:

This is for my textbox to check that the pressed key is Enter key or not if enter the program

enables the other text box for writing.

visiblesQ:

In this function I only enabled or disabled my textboxes, command or other Graphical

user interfaces according to the type of user. Unauthorized user can not use this program.

Because he/she can not enter the program without correct password.

Command 1 Click (index As Integer):

According to the value of index defined in my function, my program executes different
"

parts of program.

If the value of index is "O" then it executes the OK button to check whether the usemame

and its password is same or not. In here I open the password table that is related with

usemames and passwords of people. Then I use while loop to check the text that is written

in the text box is in my database or not. If the Usemame is in my database I check the

password that is written correctly according to that user. If the username and

42

password is true, then I execute the program according to the user's right.

If the value of index is 11111 then it executes the cancel button to clear the fields of textboxes

that was written before by the user.

If the value of index is 11211 then I execute the Exit Program button to end the program.

5.2. Main menu Form:

Form LoadQ:

In this function I check that is an error occurs or not while the form was loading. I find

the general values that are always needed by the program like a punishment value for each

day or last day of the semester. Private Sub

Command Click (index As Integer):

According to the value of index defined in my function, my program executes different

parts of program by using the case statement.

If the value of index is "O" then my program executes the 'Member Information' button to

load the member information menu.

If the value of index is 11111 then my program executes the 'Punishments' button to load the

Punishment menu.

If the value of index is 11211 then my program executes the 'Change User' button to load the

password menu. • ••

If the value of index is "3" then my program executes the 'Exit' button to finish the

execution of the program.

43

5.3. Member Information Menu Form:

Form loadQ:

I Access from my application to the data source using ActiveConnection command,

this is necessary for exchanging data. Then I opened my database to access without facing

any problem. I enabled my command buttons that can be seen upper side of the form if my

database involves a name that is started with same name of my command button. In

here I opened my database again because if the user changed his password, he can not

access the tables because the database closed before.

Commandl Click (index As Integer):

According to the value of index defined in my function, my program executes different

parts of program by using the case statement.

If the value of index is "O" then my program executes the 'New Record' button to register a

new user to the database as a first step. In this part I clean all the textboxes, listbox,

datagrid and also I enabled or disabled some of these.

If the value of index is "1" then my program executes the 'Insert' button to add new

information about the user to the 'users' table. First of all I opened my 'memberrecor­

dtable' table for adding new infoanation. While adding a new member, automatically

member id is count up one by one. By this way every members have different member id .

• .
If the value of index is "2" then my program executes the 'Update' button to edit the old

information with the new information. I found the person that would be updated by the

filter command with using 'usemum', which. Then I change the values of the attributes

with the new information by using the update command. While updating the

information, my database automatically checks the member id of the person is repeated

or not. When I updated the person's information, I also need to update my other tables

according to my new information.

44

If the value of index is 113 11 then my program executes the 'Delete' button to delete

information about the person by using the delete command. First I found the person's

usernum in my 'Users' table by using the filter command then I checked the usernum

with my 'Transaction' table's usernum to see that person has a book or not. I count the

rows of the datagrid. If the number of rows is greater or equal to O then this means that

the user has a book. If the user has a book I can not delete the person until the book will

have been returned. If I did not check this criterion, when I delete a person who has book on

his/herself, the book would be lost.

If the value of index is 11411 then my program executes the 'Return' button to return the

book from the user. In here I first get the values from my datagrid. In for loop I first find the

index my selected element. When I found the index of that element I got the kod number,

which is a primary key. Then I opened my transition table to delete the book from user. If

book is deleted, the book must be inserted in the returned table. Before inserting the book,

I calculate the punishment if the book is returned lately and I wrote a message to the screen.

If the value of index is 115 11 then my program executes the ' Borrow Menu' button to load

the borrow menu. While I am loading the borrow menu, I must first close my adodc

connection because I will reopen this connection in the borrow menu again.

If the value of index is 11611 then my program executes the ' Past' button to enable the

combo box. After I enabled my combo box, I change the name of my command button

name to' Now'. Then I opened my 'GNRL' table to get the date of beginning of semester

and date of ending of the semester. ""According to the values of these dates, I execute my

SQL statement to find the user's history.

•
If the value of index is 11711 then my program executes the ' Return Main Menu' button to

load the main menu. Before I load the main menu, I must first close my connection and

reopen my connection in the main menu.

45

CMDLETTER click (index As lnteeer):

If one of the command buttons pressed that is defined at the top, my list box started to

fill with the names whose first alphabet start with the command button's caption. I get

the first character of the names from ' Users ' table in a while. I compare first character

of names with the command button's caption. If they are same I insert them to the list

box, otherwise I do not insert to the database and I move a head.

ListBoxForNames dblClickQ:

When I double clicked the listbox, the information of that selected person is brought

from database to the textboxes and to the datagrid. This listbox does not only fill with the

alphabets also fill with the numbers. If it is filled with number, also the same information

will be brought to the screen. For these operations, I must first find that the selected value

is name or number. If selected value is number then I execute my SQL satatement, which

is related with the numbers. Else I execute another SQL statement, which is related with

the string expression. After the execution of the SQL statement I find the related person

usemum (primary key). Then I can easily show the information easily about the selected

person in my list box. To show the information I use the TextBoxDoldurma function,

which is described in detail above.

TextBox Filline:0:

I fill the text boxes with the necessary information by using the information that is given by
••

the user or administrator. In this function I must access my database again also I must create

a new connection query according to the SQL statement. In my database I don't hide statue
•

attribute, which is a derived attribute because I understood the statue by using the user's

registered id. If the register is start with number we can easily say that the user is student.

If the register-id starts with the "A" alphabet we can understand that this user is teacher

else the user is a personal who is working in the library or in the university. I put the

department of users by using the case statement. If the user write 25 in Department text

box. The compiler automatically understands that this is the computer-engineering

department. If the user want to write the correct and long name of the department, then this

46

is also possible by writing the long name of department.

ComboPast ClickO:

We can think this function like reminder of the past information. This is also very important

because the user want to learn past information. Which book he borrowed in the first part

of the related year. At that time s/he also want to learn then they returned the book. If they

returned the book lately the punishment method automatically is executed.

Regid ChangeQ:

When I pressed any character, my listbox started to fill with that character plus the

characters pressed before. For each pressed character I must clear my listbox then I must

add the new information according to the string written in the textbox.

TextBox DeletingQ:

In this function I only clear the contents of my textboxes. This is necessary when I inserted a

new person in my database or when I come from another form.

TextBox EnableQ:

In this function I enable the text boxes if I double click the list box or other special

operations. This is very important while updating the information about the related

subject or person.

TextBox DisableO:

•~ this function I disabled the text boxes if I deleted or· update the file. This is also very

important because this process provide user not to make mistake.

TextBookNo dblClickO:

If the user double click the ISBN text box. Then the content of the text is cleared and also

the database view of the screen also changed by the value of this text book.

47

5.4. Search book Menu Form:

Form loadQ:

I reopened my database to access without facing any problem because the database

closed before. I write the name, author, title, publisher and book id of the book to my

textboxes, which are taken from the book information menu. Then I execute my SQL

statement, which brings the information about the book to the datagrid.

Private Sub Cmdsearch Clickindex As Integer):

According to the value of index defined in my function, my program executes different

parts of program by using the case statement.

If the value of index is "O" then my program executes the 'New Record' button to register

a new book to the database as a first step. In this part I clean all the textboxes, listbox,

datagrid and also I enabled or disabled some of these.

If the value of index is "1" then my program executes the 'Insert' button to add new

information about to the book to the 'books' table. First of all I opened my 'books' table for

adding new information. In my 'books' table 'Debt_Number' is assigned as a primary key

so while adding a new user the system automatically controls that if same 'Debt_Number'

is given to the two different books or not. While controlling if I found usernum as

repeated, I force user to change the usernum. At a last step I insert the information, I

enabled and disabled my objects in my form, which had been enabled or disabled when

the 'New Record' button is pressed.

If the value of index is "2" then my program executes the 'Update' button to edit the old•
information with the new information. I found the book that would be updated with

'Debt_ Number' by using the filter command. Then I change the values of the attributes

with the new information by using the update command. While updating the information,

my database automatically checks book id of the book is repeated or not. When I updated

the book's information, I also need to update my other tables according to my new

information.

48

If the value of index is "3" then my program executes the 'Delete' button to delete

information about the book by using the delete command. First I must find the book in

my 'Books' table by using the filter command then I checked the 'Debt Number' of the

book with my 'Transaction' table's 'Debt_Number' to see that person has a book or not. I

count the rows of the datagrid. If the number of rows is greater or equal to O then I check

each book's 'Debt Number' with the attributes of 'Transaction' table. If the

'Debt Number' is found that this means that the book is outside can not be deleted until

the book is returned. Ifl did not check this criterion, the book would be lost.

If the value of index is "4" then my program executes the 'Return' button to return the

book from the user. In here I first get the values from my datagrid. In for loop I first find the

.index my selected element. Then I opened my transition table to delete the book from user.

If book is deleted, the book must be inserted in the returned table. Before inserting the

book, I calculate the punishment if the book is returned lately and I wrote a message to the

screen.

If the value of index is "5" then my program executes the 'Borrow' button to borrow the

book to the user. I found the books with using the ISBN or ISSN number, then I got the

'Debt_Number' of each book in a loop. Then I control this 'Debt_Number' is in

'Transaction' table or not. If 'Debt Number' is seen in the 'transition' table this meant

that the book is outside. Then control the next book to see that the book is inside or not. This

continues until the available book is found. While borrowing book to the user, the users

have different rights. I separate these differences in and if statement. If the user type is

teacher the return date of book is greater than student type. I also control that the return

date is Saturday or Sunday. If the day is Saturday I increments two days to the return

sate a final date. In a case statement I limit the rights of-the users. An example if the user
"

type is student the user can not borrow more than 3.

If the value of index is "6" then my program executes the 'Go to Member Menu' button to

load the member menu. While I am loading the member menu, I must first close my adodc

connection because I will reopen this connection in the member menu again.

If the value of index is "7" then my program executes the 'Back' button. This button

49

works like a reset operation. I execute an SQL statement to show the current member's

information to the datagrid. I also enabled and disabled my textboxes and command

buttons by using the my functions.

Listbox DblClickO:

When I double clicked the list box, the book, which has the selected ISBN or ISSN

number is brought from database to the textboxes and to the datagrid. To bring the

information to the screen I first find which one is selected in the list box in a for loop.

Then I execute my SQL statement according to the selected value. In my SQL statement, I

also check that the book is inside or not. If the book is not inside, an error message is

brought to the screen. This error message showed that when will the book be returned and

who borrowed the book? To show the information I first find the related entities of each

table. After this I bring the information to the screen using the visual basic standards

commands.

ListboxQ:

When the bar code reads the ISSN or ISBN number, this function is always executed

and controls that the datagrid is empty or not. If the datagrid is empty I find the debt

number of book and information about book is written to the text boxes and I enabled

the borrow button. In my second if statement, I check that my ISBN text box is empty or

not. If not empty then I control that the book is in datagrid or not. If the book's debt

number is in the datagrid, I enabled.the return button and disabled the borrow button.

TextBoxDoldurmaO:
•

This is used to write information of book to the textboxes. I find that book id in which

this function is called. According to the value of book id, I execute my SQL statement to

fill the text boxes. While writing to the text boxes, if the attribute of book is empty then

some errors may occur. To hinder this situation, I use 'On Error Resume Next'.

TextboxsilmeQ:

50

This is used to clear the textboxes by equaling textboxes's text function to an empty

state.

TextboxenableQ:

This is used to enable the textboxes by equaling textboxes's enabled function to true.

TextboxdisableQ:

This is used to enable the textboxes by equaling textboxes's enabled function to false.

5.5. Member Search Menu Form:

loadO:

I Access from my application to the data source using ActiveConnection command,

this is necessary for exchanging data. Then I opened my database to access without facing

any problem. If opened before, we do not need to open so many times.

Cmdl Click(Index As Integer):

According to the value of index defined in my function, my program executes different

parts of program by using the case statement.

If the value of index is "O" then my program executes the 'All Information' button to

bring the information about punished members to the datagrid. For this operation I wrote a

SQL statement and I equalize this to.adodc's record source and I refreshed the adodc.

•

51

6. Conclusion

Nowadays, windows oriented programs became more popular and flexible. Visual Basic 6.0

is one of the best well-known programming language based on window's environment.

That's why I prefer this project. Now I can understand why these programming

languages are very popular. Even I do not have experience with Visual Basic, this project

did not become difficult to me. Visual Basic 6.0 has lots of help than other programming

languages.

In my project, I have used important components of Visual Basic 6.0. Therefore I learned

these components very well. Now I can use these components of Visual Basic 6.0 in an

efficient manner. Also I have learned how to use new data access logic, which is ActiveX

Data Objects (ADO). Additionally, I have used a database in my project. So I have gained

many practices, experiences and knowledge of database. As known, database is very

important topic for software programmers.

Finally, most important thing is for me that I have learned how to prepare an individual

software project by using Visual Basic 6.0 to real life problems. After I have started my

projects, I saw that you could face with unexpected real life problems. These real life

problems are very different from the courses problem. This project became a good

exercise to me for the real life and I used the things in my project that I learned from

courses as theoretically.

I have learned Visual Programming language from my supervisor Mr. Umit iLHAN and I••
want to thank to him for his great helps to me while I was doing my graduation project.

.. •

52

7. References

> Visual Basic 6.0 How To Program

H. M. Deitel, P. J. Deitel, T. R. Nieto

1999-Prentice-Hall, Inc

Visual Basic Lecture Note: Ümit İlhan 2002-2003

> Introduction to Oracle: SQL and PL/SQL

Neena Kochhar, Ellen Gravina, Priya Nathan

July 1999-Jerry Brosnan

> Database System

Peter Roob

1993-Wads Worth Publishing

•

53

8. APPENDICES

•

54

8.1 Source Codes

8.1.1 MDI FORM

Private Sub MDIForm_Load()
Veriac
MDIForml .Top= O
MDIForml .Left= O
MDIForml. Width = Screen. Width
MDIForml.Height = Screen.Height
Form6.Show
mnBOOK.Enabled = False
mnMEMBER.Enabled = False
mnP ASSWORD.Enabled = False
rnnREPORT.Enabled = False
Form6.KDCButton6.Visible = True
Form6.KDCButton3.Visible = True
9 Form7.Label10.Visible = False
Form7.Label9.Visible = False
Form7.Text8.Visible = False
Form7.Text9.Visible = False
Form7.Labell I.Visible= False
Form7.Label12.Visible = False
Form7.Label13.Visible = False
Form7.Labe114.Visible = False
Form7.Visible = False
End Sub

Private Sub MDIForm_Unload(Cancel As Integer)
VeriKapat
End Sub

Private Sub mnBOOKCOMING_Click()
Form8.Show
Forml .Visible= False
Form3.Visible = False
Form4.Visible = False
Form5.Visible = False
Form6.Visible = False
Form7.Visible = False
Form9.Visible = False
FormlO.Visible = False
'Forml 1.Visible = False

End Sub

Private Sub mnBOOKSEARCH _Click()
Form5.Show
Forml.Visible = False
Form3.Visible = False
Förm4.Visible = False
Form8.Visible = False
Form6.Visible = False
Form7.Visible = False,
Form9.Visible = False
FormlO.Visible = False

•

1~"9

55

'Forml 1.Visible = False
End Sub

Private Sub mnMEMBERSEARCH _Click()
Form7.Show
Forml .Visible= False
Form3.Visible = False
Form4.Visible = False
Form5.Visible = False
Form6.Visible = False
Form8.Visible = False
Form9.Visible = False
FormlO.Visible = False
'Forml 1.Visible = False
End Sub

Private Sub rnnNEWBOOK_Click()
Forml.Show
Form8.Visible = False
Form3.Visible = False
Form4.Visible = False
Form5.Visible = False
Form6.Visible = False
Form7.Visible = False
Form9.Visible = False
Form IO.Visible= False
'Forml l .Visible= False
End Sub

Private Sub rnnNEWMEMBER_Click()
Form4.Show
Forml.Visible = False
Form3.Visible = False
Form8.Visible = False
Form5.Visible = False
Form6.Visible = False
Form7.Visible = False
Form9.Visible = False
FormlO.Visible = False
Forml 1.Visible = False
End Sub ,.

Private Sub rnnNEWP AS
Form6.Show
Form6.Frame3.Visible = True
Forml.Visible = False
Form3.Visible = False
Form4.Visible = False
Form5.Visible = False
Form8.Visible = False
Form7.Visible = False
Form9.Visible = False
FormlO.Visible = False
Forml 1.Visible = False
End Sub

Private Sub mnPASSWORDG--..::

•

56

Fonn6.Show
Fonn6.Frame2.Visible = True
Fonn6.Framel .Visible= False
Fonn6.Frame3.Visible = False
'Form6.Command6.Visible = False
Fonn6.KDCButton3.Visible = False
Fonnl.Visible = False
Fonn3.Visible = False
Fonn4.Visible = False
Fonn5.Visible = False
Fonn8.Visible = False
Fonn7.Visible = False
Fonn9.Visible = False
FonnlO.Visible = False
Forml I .Visible= False
End Sub

Private Sub nınREPORT _Click()
FonnlO.Show
Fonnl .Visible= False
Fonn3.Visible = False
Fonn4.Visible = False
Fonn5.Visible = False
Fonn6.Visible = False
Fonn7.Visible = False
Fonn9.Visible = False
Fonn8.Visible = False
Forml I .Visible= False
End Sub

8.1.2 Main Member Menu

Private Sub KDCButtonl _Click()
Form9.Visible = False
Fonn4.Visible = True
End Sub

Private Sub KDCButton2_Click()
Form7.Show
Fonn9.Visible = False
End Sub

Private Sub KDCB utton3 _Click()
Fonn9.Visible = False
End Sub

•

57

8.1.3 Book Comming form

Private Sub Form_Load()
Textl = ""
Text2 = ""
Text3 = ""
Text4 = ""
TextlO = ""
Text9 = ""
LabellO = ""
Labell 1 = ""
End Sub

Private Sub KDCButtonl_Click()
Form3.Show
Form8.Visible = False
End Sub

Private Sub KDCButton2_Click()
Form8.Visible = False
End Sub

Private Sub KDCButton3 _Click()
bookgeldiAc "select* from BOOKRECORDTABLE WHERE BOOKID=" & Val(Textl) & "and
BOOKNAME="' + UCase(Trim(Text2)) +"' and AUTHOR="' + UCase(Trim(Text3)) + "' and
PUBLISHER="' + UCase(Trim(Text4)) +'"and DURUM='"+ "disarda" + ""'

If bookgeldi.RecordCount > O Then
bookgeldi.MoveFirst
Labell 1 = bookgeldi("ROW")
Label IO= bookgeldi("COLOMN")
bookgeldi("DURUM") = "icerde"
bookgeldi.Update

bookgeldiAc "select* from ABOUTDATETABLE where MEMBERID=" & Val(TextlO) & "and
MEMBERNAME='" + UCase(Trim(Text9)) +'"and OUTBOOK="' + UCase(Trim(Text2)) + ""'
Ifbookgeldi.RecordCount > O Then
bookgeldi.MoveFirst
bookgeldi("COMINGDATE") = Date
bookgeldi("BOOK") = "geldi"
bookgeldi.Update
End If
End If
End Sub •

58

8.1.4 Registered Member Form

Private Sub Form_Load()

Frame2.Visible = False
KDCButton2.Visible = False
Textl.Text = ""
Text2.Text = ""
Text3.Text = '"'
Text4.Text = ""
Text5.Text = ""
Text6.Text = ""
Text8.Text = ""
Text9.Text = ""
Text7 = Date
List 1. Clear
End Sub

Private Sub KDCButtonl_Click()
Frame2.Visible = False
Comrnand6.Visible = False
On Local Error Resume Next
IfDataGridl.Columns(O) =""Then
MsgBox ("You have not selected any member."+ Chr(lO) + Chr(l3) + "Please, select from MEMBER
SEARCH FORM")
Exit Sub
ElselfTextl <>""And Text2 <>""And Text3 <>""And Text4 <>""And Text5 <>""And Text6 <> ""
Then

memberkayitAc "select* from MEMBERRECORDTABLE where MEMBERlD=" & Val(Textl)

If memberkayit.RecordCount > O Then
MsgBox ("There is just record has such a MEMBERlD'" + memberkayit("NAME") +" "+
memberkayit("SURNAME") +" "' + Chr(lO) + Chr(l3) + "IDs of members cannot be changed.")
Else
memberkayitAc "select * from MEMBERRECORDT ABLE where MEMBERlD=" &
Val(DataGridl.Columns(O))
outbookaramaAc "select* from ABOUTDATETABLE where MEMBERID=" &
Val(DataGridl .Columns(O)) & "order by OUTDATE"
memberkayit("MEMBERID") = Val(Text1)
memberkayit("NAME") = UCase(Trim(Text2))
memberkayit("SURNAME") = UCase(Trim(Text3))
memberkayit("ADDRESS") = UCase(Trim(Text6))
.memberkayit("E_MAIL") = Trim(Text4)
memberkayit("TELEPHONE") = Trim(Text5)
memberkayit.U pdate

•

If outbookarama.RecordCount > O Then
outbookarama.MoveFirst
Do Until outbookarama.EOF
outbookarama("MEMBERlD") = Val(Textl)
outbookarama("MEMBERNAME") = UCase(Trim(Text2))
outbookarama.Update
outbookarama.MoveN ext
Loop
End If

59

End If
End If
memberkayitAc "select* from MEMBERRECORDTABLE order by MEMBERID"
Set Data Grid l .DataSource = memberkayit
End Sub

Private Sub KDCButton2_Click()
Frame2.Visible = False
Command6.Visible = False
End Sub

Private Sub KDCButton3 _Click()
LabellO.Visible = False
Label9.Visible = False
Text8.Visible = False
Text9.Visible = False
Labell I.Visible= False
Labell2.Visible = False
Labell3.Visible = False
Labell4.Visible = False
Frame2.Visible = False
'Command6.Visible = False
memberaramaAc "select* fromMEMBERRECORDTABLE"
If memberarama.RecordCount > O Then
Dim SORGU As String
IfTextl =""And Text2 =""And Text3 =""Then
memberaramaAc "SELECT MEMBERID,NAME,SURNAME,ADDRESS FROM
MEMBERRECORDT ABLE order by MEMBERID"
Else

SORGU= "SELECT MEMBERID,NAME,SURNAME,ADDRESS from MEMBERRECORDT ABLE
WHERE"

IfNot Trim(Textl) =""Then
SORGU= SORGU+" MEMBERID LIKE'" & Val(Textl) & "%'"

End If

If Not Trim(Text2) =""Then
IfNot Trim(Textl) ='"'Then
SORGU = SORGU+ " AND NAME LIKE "' + Trim(Text2) + "%' "
Else
SORGU = SORGU + " NAME LIKE "' + Trim(Text2) + "%' "
End If

End If •
If Not Text3 = "" Then
IfTrim(Textl) =""And Trim(Text2) ='"'Then
SORGU = SORGU + " SURNAME LIKE "' + Trim(Text3) + "%' "
Else
SORGU= SORGU+ " AND SURNAME LIKE'" + Trim(Text3) + "%' "
End If

End If

memberaramaAc SORGU + " order by MEMBERID"

End If

60

Set DataGridl .DataSource = memberarama

End If
End Sub

Private Sub KDCButton4 _Click()
Form7.Label10.Visible = False
Form7.Label9.Visible = False
Form7.Text8.Visible = False
Form7.Text9.Visible = False
Label I I .Visible = False
Label12.Visible = False
Label13.Visible = False
Label14.Visible = False
Frame2.Visible = False
Command6.Visible = False
Form9.Show
Form7.Visible = False
End Sub

Private Sub KDCButton5 _Click()
Form7.Labe110.Visible = False
Form7.Label9.Visible = False
Form7.Text8. Visible = False
Form7.Text9.Visible = False
Labell 1.Visible = False
Label12.Visible = False
Label13.Visible = False
Labell4.Visible = False
Frame2.Visible = False
Command6.Visible = False
Form7.Visible = False
End Sub

'Private Sub Command4_Click()
'Form7.Label10.Visible = False
'Form7.Label9.Visible = False
'Form7.Text8.Visible = False
'Form7.Text9.Visible = False
'Label I I .Visible= False
'Label12.Visible = False
'Label13.Visible = False
'Label14.Visible = False
'Frame2.Visible = False
1Command6.Visible = False
'Form9.Show
'Form7.Visible = False
'End Sub

•

Private Sub KDCButton6_Click()
FormlO.RichTextBoxl.Text = "MEMBER ID" - Chr(13) + Textl + Chr(lO) + Chr(lO) + Chr(13) +
"NAME"+ Chr(13) + Text2 + Chr(lO) _.. Chr(lO)- Chr(13) +"SURNAME"+ Chr(13) + Text3 + Chr(lO)
+ Chr(lO) + Chr(13) + "E_MAIL" + Chr(l3)-Te:ı.,4 -r Chr(lO) + Chr(lO) + Chr(13) +
"PHONENUMBER" + Chr(13) _.. Text5 - Chr(lO)- Chr(lO) + Chr(13) +"ADDRESS"+ Chr(l3) + Text6
+ Chr(lO) + Chr(lO) + Chr(13) - "BORRED BOOKS"
IfListl .ListCount > O Then

61

For i = O To Listl .ListCount

kitap = Listl .List(i)
kitapicinraporac "select* from ABOUTDATETABLE where MEMBERID=" & Val(Textl) & "and
MEMBERNAME='" + UCase(Trim(Text2)) +"' and OUTBOOK="' +kitap+"' and BOOK='"+
"gelmedi" + ""'
Ifkitapicinrapor.RecordCount > O Then
cikistarihi = kitapicinrapor("OUTDATE")
gelmesigerekentarih = kitapicinrapor("INDATE")
kitap= kitap+" OUTDATE:" + Str(cikistarihi) +" INDATE:" + Str(gelmesigerekentarih)
End If
FormlO.RichTextBoxl.Text = FormlO.RichTextBoxl.Text + Chr(13) + kitap
Next
End If
End Sub

Private Sub KDCButton7 _Click()
On Local Error Resume Next
Frame2.Visible = False
Command6.Visible = False
If Not kitapekle = 1 Then
MsgBox ("firstly, You must select ANY BOoK from BOoK SEARCH FORM")
Exit Sub
End If
IfDataGridl.Columns(O) =""Then
MsgBox ("You have not selected any member."+ Chr(lO) + Chr(13) + "Please, select from MEMBER
SEARCH FORM")
Exit Sub
Else
bookvermeAc "select* from BOOKRECORDTABLE where BOOKID=" & kitapid & "and
BOOKNAME="' + datagriddenisim + "' and DURUM='" + "icerde" + ""'
If bookverme.RecordCount > O Then
bookverme.MoveFirst
Labell I.Visible= True
Label12.Visible = True
Label13.Visible = True
Label14.Visible = True
Labell 1 = bookverme("COLOMN")
Label12 = bookverme("ROW")
bookverme("DURUM") = "disarda"
bookverme.Update

IfText9 = "" Then
Text9 = Str(7)
End If
If Not Text9 = "" Then
datekayitAc "select* from ABOUTDATETABLE"

_ datekayit.AddNew
datekayit("MEMBERID") = Val(Textl)
datekayit("MEMBERNAME") = UCase(Triın(Text2))
datekayit("OUTDATE") = Date
newdate = Val(Text9) + Date
datekayit("INDATE") = newdate
datekayit("DA YPERIOT") = Val(Text9)
datekayit("OUTBOOK") = UCase(Trim(datagriddenisim))
datekayit("BOOK") = "gelmedi"

•

62

63

datekayit.Update
Text8 = newdate

outbookaramaAc "select." from ABOUTDATETABLE where MEMBERID=" & Val(Textl) & "and
BOOK="'+ "gelmedi"+"' order by OUTDATE"
If outbookarama.RecordCount > O Then
outbookarama.MoveFirst
Listi.Clear
Do Until outbookarama.EOF
Listl .Addltem outbookarama("OUTB00K")
outbookarama.MoveNext
Loop

End If
Else
MsgBox ("Please write DAY PERI OT.")
End If

Else
MsgBox ("All of these books are out")
End If

End If
End Sub

Private Sub KDCButton8 _Click()
MSFlexGridl .Clear
gridler
Frame2.Visible = True
'Command6.Visible = True
MSFlexGridl.Rows = 1
i= 1

memberaramaAc "select* from MEMBERRECORDTABLE"
If memberarama.RecordCount > O Then
MSFlexGridl .Rows = memberarama.RecordCount + 1

memberaramaAc "SELECT MEMBERID,NAME,SURNAME,ADDRESS FROM
MEMBERRECORDT ABLE order by MEMBERID"

memberarama.MoveFirst

Do Until memberarama.EOF
datekayitAc "select* from ABOUTDATETABLE where MEMBERID=" &

memberarama("MEMBERID") & "and BOOK='"+ "gelrfledi" + "'"

If datekayit.RecordCount >= 1 Then
•

datekayit.MoveFirst
Do Until datekayit.EOF

If Date> datekayit("INDATE") Then

MSFlexGridl.TextMatrix(i, O)= memberarama("MEMBERID")
MSFlexGridl .Row= i
MSFlexGridl.Col = O
MSFlexGridl.Cel!BackColor = &HFF&
MSFlexGridl.TextMatrix(i, 1) = memberarama("NAME")
MSFlexGrid I .Row = i
MSFlexGridl.Col = 1

MSFlexGridI .Cel!BackColor = &HFF&
MSFlexGridl.TextMatrix(i, 2) = memberarama("SURNAME")
MSFlexGridI.Row = i
MSFlexGridI .Col= 2
MSFlexGridl.CellBackColor = &HFF&
MSFlexGridl.TextMatrix(i, 3) = memberarama("ADDRESS")
MSFlexGridI .Row= i
MSFlexGridI .Col= 3
MSFlexGridI .CellBackColor = &HFF&
MSFlexGridl.TextMatrix(i, 4) = datekayit("OUTBOOK")
MSFlexGridI .Row= i
MSF!exGridI .Col= 4
MSF!exGridl.CellBackColor = &HFF&
MSFlexGridl.TextMatrix(i, 5) = datekayit("INDATE")
MSFlexGrid I .Row = i
MSFlexGridI .Col= 5
MSFlexGridl.CellBackColor = &HFF&
MSFlexGridl.TextMatrix(i, 6) = datekayit("OUTDATE")
MSFlexGridI .Row= i
MSFlexGridl.Col = 6
MSFlexGridI .CellBackColor = &HFF&
MSFlexGrid I .TextMatrix(i, 7) = datekayit("DA YPERlOT")
MSFlexGridI.Row = i
MSFlexGridl.Col = 7
MSFlexGridl.CellBackColor = &HFF&
IflsNull(datekayit("COMINGDATE")) Then
MSFlexGridl.TextMatrix(i, 8) = ""
MSFlexGrid I .Row = i
MSFlexGridl.Col = 8
MSFlexGridI.Cel!BackColor = &HFF&
Else
MSFlexGridI .TextMatrix(i, 8) = datekayit("COMINGDATE")
MSFlexGridI .Row= i
MSFlexGridI.Col = 8
MSFlexGridI.CellBackColor = &HFF&
End If
i = i+ I

End If

If Date< datekayit("INDATE") Then

MSFlexGridl.TextMatrix(i, O)= memberarama("MEMBERlD")
MSFlexGrid I .Row= i
MSFlexGridl.Col = O
MSFlexGridI.CellBackColor = &H80FFFF
MSFlexGridI.TextMatrix(i, I) = memberarama("NAME")
MSFlexGrid I .Row= i
MSFlexGrid I .Col = I
MSFlexGrid I .CellBackColor = &H80FFFF
MSFlexGrid I .TextMatrix(i. 2) = memberarama("SURNAME")
MSFlexGridl .Row= i
MSFlexGrid I .Col =
MSFlexGrid I .CellBaı
MSFlexGrid I .Textvl
MSFlexGrid I .Row = i
MSFlexGridI .Col = 3
MSFlexGrid I.CellBackColor = &H80FFFF

lor = &H80FFFF
i, 3) = memberaraına("ADDRESS")

•

64

MSFlexGridl.TextMatrix(i, 4) = datekayit(110UTBOOK11)

MSFlexGrid I.Row = i
MSFlexGridl.Col = 4
MSFlexGridl.CellBackColor = &H80FFFF
MSFlexGridl.TextMatrix(i, 5) = datekayit(11INDATE11)

MSFlexGrid I.Row = i
MSFlexGridl .Col= 5
MSFlexGridl.CellBackColor = &H80FFFF
MSFlexGridl.TextMatrix(i, 6) = datekayit("OUTDATE11)

MSFlexGrid I.Row = i
MSFlexGridl.Col = 6
MSFlexGridl.CellBackColor = &H80FFFF
MSFlexGridl .TextMatrix(i, 7) = datekayit(11DA YPERlOT")
MSFlexGridl.Row = i
MSFlexGridl.Col = 7
MSFlexGridl.CellBackColor = &H80FFFF
IflsNull(datekayit(11COMINGDATE11)) Then
MSFlexGridl.TextMatrix(i, 8) = 1111

MSFlexGridl.Row = i
MSFlexGridl.Col = 8
MSFlexGridl.CellBackColor = &HFF&
Else
MSFlexGridl.TextMatrix(i, 8) = datekayit(11COMINGDATE11)

MSF!exGrid I.Row = i
MSFlexGridl.Col = 8
MSFlexGridl.CellBackColor = &HFF&
End If
i = i+ 1

End If

datekayit.MoveNext
Loop

Else

MSFlexGridl.TextMatrix(i, O)= memberarama(11MEMBERID11)

MSFlexGrid I .Row= i
MSFlexGridl.Col = O
MSFlexGridl.CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 1) = memberaramaı=Na'Mf;")
MSFlexGrid I .Row = i
MSFlexGridl.Col = 1
MSFlexGridl.CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 2) = mernberararnaf'Bl.RNe.Mli'')
MSFlexGrid I .Row = i
MSFlexGridl.Col = 2
MSFlexGridl.CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 3) = memberaraına(11ADDRESS11)

MSFlexGrid I .Row = i
MSFlexGridl.Col = 3
MSFlexGridl.CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 4) = ""
MSFlexGrid I .Row= i
MSFlexGridl.Col = 4
MSFlexGrid 1.Cel!BackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 5) = ""

••

65

MSFlexGrid 1 .Row = i
MSFlexGridl .Col= 5
MSFlexGrid 1.CellBackColor = &H80FF80
MSFlexGridl .TextMatrix(i, 6) = ""
MSFlexGrid I .Row = i
MSFlexGridl .Col= 6
MSFlexGridl .CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 7) = ""
MSFlexGridl.Row = i
MSFlexGridl .Col= 7
MSFlexGrid l .CellBackColor = &H80FF80
MSFlexGridl.TextMatrix(i, 8) = ""
MSFlexGridl.Row = i
MSFlexGridl.Col = 8
MSFlexGridl.CellBackColor = &H80FF80
i= i+ 1

End If

memberarama.MoveNext
Loop

End If
End Sub

Private Sub KDCButton9 _Click()
On Local Error Resume Next
If Not DataGridl .Columns(O) =""Then
memberaramaAc "select * from MEMBERRECORDT ABLE where MEMBERID=" &
Val(DataGridl.Columns(O)) & "and NAME="'+ DataGridl.Columns(l) +'"and SURNAME="'+
DataGridl.Columns(2) + ""'
outbookaramaAc "select* from ABOUTDATETABLE where MEMBERID=" &
Val(DataGridl.Columns(O)) & "and BOOK="'+ "gelmedi"+"' order by OUTDATE"
cevap= MsgBox("Do you want to delete record'"+ DataGridl.Columns(l) +" '?.", vbYesNo +
vbCritical, "DELETING")
If cevap = vbYes Then
If outbookarama.RecordCount > O Then
If outbookarama.RecordCount > 1 Then
MsgBox ("Member has books not returned")
End If
If outbookarama.RecordCount = 1 Then
MsgBox ("Member has book not returned")
End If
outbookarama.MoveFirst
'Listl .Clear
Do Until outbookarama.EOF
Listl .Addltem outbookarama("OUTBOOK")
outbookarama.MoveNext

Loop
GoTo skip

End If
memberarama.Delete
outbookaramaAc "select* from ABOUTDATETABLE where MEMBERID=" &

Val(DataGridl.Columns(O)) & "order by OUTDATE"
outbookarama.MoveFirst
If outbookarama.RecordCount > O Then

•

66

outbookarama.Delete
outbookarama.MoveN ext

End If
End If

skip:
End If
End Sub

Private Sub Listl _dblClick()
If Not Listl .Text= '"' Then
DataGridl.BackColor = &HFFFFFF
outbookaramaAc "select* from ABOUTDATETABLE WHERE OUTBOOK="' +
Listl.List(Listl.Listlndex) + ""'
outbookarama.MoveFirst
Do Until outbookarama.EOF
'IfNot IsNull(outbookarama("COMINGDATE")) Then
If Date> outbookarama("INDATE") Then
DataGridl.BackColor = &HFF&
End If
'End If
outbookarama.MoveNext
Loop
Set DataGrid 1 .DataSource = outbookarama
End If
End Sub

'Private Sub MSFlexGridl_SelChange()
'MSFlexGridl .FocusRect = flexFocusNone
'End Sub

Private Sub Text9 _Change()
IfVal(Text9) > O Then
Texts= Val(Text9) + Date
End If
End Sub

Public Function gridler()
MSFlexGridl .Cols = 9
MSFlexGridl.FixedCols = O
MSFlexGridl .Row= O
MSFlexGridl.Col = O
MSFlexGridl.Text = "M.ID"
MSFlexGridl.Col = 1
MSFlexGridl.Text = "MEMBER NAME"
MSFlexGridl.Col = 2
MSFlexGridl.Text = "MEMBER SURNAME"
MSFlexGridl.Col = 3
MSFlexGridl.Text = "PUBLISHER"
MSFlexGridl .Col= 4
MSFlexGridl.Text = "BOOK"
MSFlexGridl.Col = 5
MSFlexGridl.Text = "INDATE"
MSFlexGridl.Col = 6

•

67

MSFlexGridl .Text= "OUTDATE"
MSFlexGridl.Col = 7
MSF!exGridl.Text = "PERIOT"
MSFlexGridl .Col= 8
MSFlexGridl.Text = "COMINGDATE"
MSF!exGridl.ColWidth(O) = 500
MSFlexGrid l .ColWidth(1) = 2000
MSFlexGridl .Co1Width(2) = 2000
MSFlexGridl.ColWidth(3) = 2000
MSF!exGridl .ColWidth(4) = 2000
MSF!exGridl.ColWidth(5) = 900
MSFlexGridl.ColWidth(6) = 900
MSFlexGridl.ColWidth(7) = 700
MSFlexGrid l .Co1Width(8) = 1300
End Function

8.1.5 Administer form

Private Sub Form_Load()
Frame2.Visible = False
Frame3.Visible = False
Text4 = ""
Text5 = ""
Text6 = ""
Text7 = '"'
Text8 = ""
Textl.Text = ""
Textl .ToolTipText = "Enter The Administer Name"
Text2.Text = '"'
Text2.ToolTipText = "Enter The Administer Password"

End Sub

Private Sub KDCButtonl_Click()
IfText9 <>""And TextlO <>""Then
If Textl O = Textl 1 Then
passwordkayitAc "select * from passwordtable"
passwordkayit.AddNew
passwordkayit("username") = Text9
passwordkayit("userpassword") = Textl O
passwordkayit.Update
Else
MsgBox ("wrong confirm password")
End If

••

Frame3.Visible = False
Text9 = ""
TextlO = ""
Textl 1 = ""
End If
End Sub

Private Sub KDCButton2 _Click()
passwordkayitAc "select * from passwordtable where username="' + Text4 + '" and userpassword="' +

68

Texts+""'
If passwordkayit.RecordCount > O Then
IfText7 <>""And Text8 <>""Then
IfText7 = Text8 Then
passwordkayit("username") = Text6
passwordkayit("userpassword") = Text7
passwordkayit. Update
Frame2.Visible = False
Text4 = 1111

TextS = ""
Text6 = ""
Text7 = ""
Text8 = 1111

KDCButton6.Visible = True
Else
MsgBox ("wrong confirm password")
End If
End If
Else
MsgBox ("wrong password or username")
End If
End Sub

Private Sub KDCButton3 _Click()
Frame2.Visible = False
KDCButton6.Visible = True
KDCButton4.Visible = True
KDCButtonS.Visible = True
End Sub

Private Sub KDCButton4_Click()
Frame2.Visible = True
KDCButton6.Visible = False
KDCButton4.Visible = False
KDCButtonS.Visible = False
End Sub

Private Sub KDCButtonS _Click()
End
End Sub

Private Sub KDCButton6_Click()
Static i As Integer
passwordkayitAc "select * from passwordtable where username='" + Textl + '" and userpassword='" +
Text2 + ""' •
Ifpasswordkayit.RecordCount > O Or "programciyaizinver" = Textl Then
MDIForml .mnBOOK.Enabled = True
MDIForml .mnMEMBER.Enabled = True
MDIForml .mnPASSWORD.Enabled = True
MDIForml .mnREPORT.Enabled = True
Form6.Visible = False

passwordkayitAc "select * from passwordtable "
passwordkayit.MoveFirst
Ifpasswordkayit("userpassword") = Text2 Then
passwordkayitAc "select * from passwordtable"
Set Forml 1.DataGridl .DataSource = passwordkayit
Forml 1.Show

69

End If
Textl = ""
Text2 = ""

Else
i= i + 1
Ifi = 3 Then
MsgBox ("Program will be shut down")
End
End If
End If

End Sub

8.1.6 Book Search form

Private Sub DataGrid l _Db!ClickQ
On Local Error GoTo git
If Not DataGridl.Columns(l) =""Then
datagriddenisim = DataGridl.Columns(l)
bookaramaAc "select * from BOOKRECORDTABLE where BOOKNAME='" + datagriddenisim + ""'
Y = bookarama.RecordCount
bookarama.MoveFirst
kitapno = bookarama("BOOKID")
Texts = bookaramaô'Tl'Tl.E'')
Text6.Enabled = True
Text7.Enabled = True
Text6 = bookarama("COLOMN"")
Text7 = bookaramaf'R'O'W")
Label8 = bookarama(11COLOMN'')
Column = bookarama("COLO~")
Label9 = bookaramafRfrW")
Row= bookaramaı=Röw")
Textl = bookarama("BOOKID")
Text2 = bookarama(11BOOKNAME11)

Text3 = bookaramaıvAtrt'Hok'')
Text4 = bookarama(11PUBLISHER")
Labell2 = bookaramat'Dükütd")
booknumberAc "select* from BOOIC\"1..,~W
tane = booknumber("NUMBER")
Labell O = tane
bookarama.MoveFirst
Fndlf
git:
End Sub

Private Sub Form_Load()
Textl.Text = 1111

Text2.Text = 1111

Text3.Text = "11

Text4.Text = "11

TextS.Text = "11

End Sub

0t°AME="' + DataGridl .Columns(O) + "'"

•

70

Private Sub KDCButtonl _Click()
bookvermeAc "select * from BOOKRECORDT ABLE where BOO KNAME="' + datagriddenisim + "' and
DURUM="' + "icerde" + ""'
Ifbookverme.RecordCount > O Then
If datagriddenisim <> "" And bookarama("DURUM") = "icerde" Then
bookvermeAc "select* from BOOKRECORDTABLE where BOOKID=" & kitapid & "and
BOOKNAME="' + datagriddenisim + "' and DURUM='" + ''icerde" + ""'
If bookverme.RecordCount > O Then
Form7.Labell I.Visible= True
Form7.Label12.Visible = True
Form7.Labell 1 = kitapcolumn
Form7.Label12 = kitaprow
Form7.Label13.Visible = True
Form7.Show
Form5.Visible = False
kitapekle = 1
Form7.Label14.Visible = True
Form7.Labe110.Visible = True
Form7.Label9.Visible = True
Form7.Text8.Visible = True
Form7.Text9.Visible = True
Else
MsgBox ("book are out")
End If
End If
Else
MsgBox ("all these books are out")
End If
End Sub

Private Sub KDCButton2_Click()
On Local Error GoTo git
If Not DataGridl.Columns(O) =""Then
bookkayitAc "select* from BOOKRECORDTABLE where BOOKlD=" & Val(DataGridl.Columns(O)) &
"and BOOKNAME="' + DataGridl.Columns(l) + "'"
booknumberAc "select* from BOOKNUMBER where BOOKNAME='" + bookkayit("BOOKNAME") +

If bookkayit.RecordCount > O Then
cevap= MsgBox("There is just record has such a BOOKID.Do you want to change the record.", vbYesNo
+ vbCritical, "WARNING")
If cevap = vbYes Then
Ifbookkayit("BOOKNAME") <> UCase(Trim(Text2)) Then
Ifbooknumber("NUMBER") > 1 Then
booknumber("NUMBER") = booknumber("NUMBER") - 1
booknumber.Update
Elselfbooknumber("NUMBER") = 1 Then
booknumber.Delete
End If

•

', booknumberAc "select * from BOOKNUMBER where BOOKNAME="' + UCase(Trim(Text2)) + '""
Ifbooknumber.RecordCount > O Then
booknumber("NUMBER") = booknumber("NUMBER") + 1
booknumber.Update
Else
booknumber("BOOKNAME") = UCase(Trim(Text2))
booknumber("AUTHOR") = UCase(Trim(Text3))

71

booknumber("PUBLISHER") = UCase(Trim(Text4))
booknumber("NUMBER") = 1
booknumber.Update
End If
End If
bookkayit("BOOKNAME") = UCase(Trim(Text2))
bookkayit("BOOKID") = UCase(Trim(Textl))
bookkayit("AUTHOR") = UCase(Trim(Text3))
bookkayit("PUBLISHER") = UCase(Trim(Text4))
bookkayit("TITLE") = UCase(Trim(Text5))
bookkayit("COLOMN") = UCase(Trim(Text6))
bookkayit("ROW") = UCase(Trim(Text7))
bookkayit("DURUM") = "icerde"
bookkayit.Update
Text6.Enabled = False
Text7.Enabled = False
End If
End If
End If
git:
End Sub

Private Sub KDCButton3 _Click()
bookaramaAc "select* from BOOKRECORDTABLE"
Ifbookarama.RecordCount > O Then
Dim SORGU As String
IfTextl = "" And Text2 = "" And Text3 = "" And Text4 = "" Then
bookaramaAc "SELECT BOOKID,BOOKNAME,AUTHOR,PUBLISHER FROM
BOOKRECORDT ABLE order by BOOKID"
booknumberAc "SELECT BOOKNAME,AUTHOR,PUBLISHER FROM BOOKNUMBER order by
BOO KNAME"

Else

SORGU= "SELECT BOOKID,BOOKNAME,AUTHOR,PUBLISHER from BOOKRECORDTABLE
WHERE''

If Not Trim(Textl) = "" Then
SORGU= SORGU+" BOOK.ID=" & Val(Textl)

End If

IfNot Trim(Text2) = "" Then
If Not Trim(Textl) =""Then
SORGU = SORGU + " AND BOOK.NAME LIKE "' + Trim(Text2) + "%' "
Else
SORGU = SORGU + " BOOK.NAME LIKE '" + Trim(Text2) + "%' "
End If

End If

•

IfNot Text3 =""Then
IfTrim(Textl) =""And Trim(Text2) =""Then
SORGU= SORGU+ " AUTHOR LIKE'" + Trim(Text3) + "%' "
Else
SORGU= SORGU+ " AND AUTHOR LIKE"' + Trim(Text3) + "%' "
End If

End If

72

If Not Text4 = "" Then
IfTrim(Textl) ="''And Trim(Text2) =""And Trim(Text3) =""Then
SORGU= SORGU+ "PUBLISHER like"'+ Trim(Text4) + "%"'
Else
SORGU= SORGU+ "and PUBLISHER like"' + Trim(Text4) + "%"'

End If
End If
bookaramaAc SORGU + " order by BOOK.ID"
Set Data Grid l .DataSource = bookarama
GoTo skip
End If
Y = booknumber.RecordCount
Set Data Grid l .DataSource = booknumber

End If
'IfNot Trim(Textl) =""Then
'SORGU= SORGU+" BOOK.ID LIKE'" -'c-Trim(Textl).,. "%'"
'End If
'If Not Trim(Text2) = "" Then
'If Not Trim(Textl) =""Then
'SORGU= SORGU+ " AND BOO~ ..\..\iELIKE- 7 Trim(Text2) + "%' "
'Else
'SORGU= SORGU+ " BOOK.','"~IE L~ -a- T:.
'End If
'End If
'If Not Trim(Text3) =""Then
'IfTrinı(Textl) =""And Trim(Iexı2) ="
' SORGU= SORGU+ " AUTHOR LIKE
'Else
I SORGU= SORGU+ II AND ALTHOR
'End If
'End If
' If Not Text4 = "" Then
'IfTrinı(Textl) =""Or Trim(Text2) =""Or ı
' SORGU = SORGU + "BOOK.ID like." - T -
'Else
'SORGU = SORGU + "and BOOK.ID like
'End If
'End If
' bulAç SORGU + " ORDER BY BOO~­
' Set DataGridl .DataSource = bul
'End If
'End If
skip:
End Sub

ext2) + "o/o' "

-, - "%' ''

e)."t.3) + "%' "

Then

•

Private Sub SEARCH_ClickQ
bookaramaAc "select * from BOOKR.En
Ifbookarama.RecordCount > O Tu
Dim SORGU As String
IfTextl = "" And Text2 = "" And T
bookaramaAc "SELECT BOOK.ID.BOC'~, ~-­
BOOKRECORDTABLE order by BOO~
booknumberAc "SELECT BOO
BOOKNAME"

73

Else

SORGU= "SELECT BOOKID,BOOKNAME,AUTHOR,PUBLISHER from BOOKRECORDTABLE
WHERE"

IfNot Trim(Textl) ='"'Then
SORGU= SORGU+" BOO.KID=" & Val(Textl)

End If

If Not Trim(Text2) = "" Then
IfNot Trim(Textl) =""Then
SORGU= SORGU+ "AND BOOKNAME LIKE'" + Trim(Text2) + "%' "
Else
SORGU = SORGU + " BOOKNAME LIKE "' + Trim(Text2) + "%' "
End If

End If

If Not Text3 = "" Then
IfTrim(Textl) =""And Trim(Text2) =""Then
SORGU = SORGU+ " AUTHOR LIKE "' + Trim(Text3) + "%' "
Else
SORGU= SORGU+ " AND AUTHOR LIKE"' + Trim(Text3) + "%' "
End If

End If

If Not Text4 = "" Then
IfTrim(Textl) =""And Trim(Text2) =""And Trim(Text3) =""Then
SORGU= SORGU+ "PUBLISHER like'"+ Trim(Text4) + "%'"
Else
SORGU = SORGU+ "and PUBLISHER like "' + Trim(Text4) + "%'"

End If
End If
bookaramaAc SORGU + " order by BOOKID"
Set DataGridl .DataSource = bookarama
GoTo skip
End If
Y = booknumber.RecordCount
Set Data Grid 1.DataSource = boo knumber

End If
'IfNot Trim(Textl) =""Then
'SORGU= SORGU+" BOOKID LIKE'"+ Trim(Textl) + "%'"
'End If
'If Not Trim(Text2) =""Then
"If Not Trim(Textl) =""Then
' SORGU = SORGU + " AND BOOKNAME LIKE"' + Trim(Text2) + "%' "
'Else
' SORGU = SORGU + " BOOKNAME LIKE"' + Trim(Text2) + "%' "
'End If
'End If
'If Not Trim(Text3) = "" Then
'IfTrim(Textl) = 1111 And Trim(Text2) = 1111 Then
' SORGU= SORGU+" AUTHOR LIKE'" + Trim(Text3) + "%' "
'Else
' SORGU = SORGU + " AND AUTHOR LIKE"' - Trim(Text3) + "%' "
'End If

•

74

'End If
'If Not Text4 = "" Then
'IfTrim(Textl) = 1111 Or Trim(Text2) =""Or Trim(Text3) = 1111 Then
' SORGU= SORGU+ "BOOKID like"'+ Trim(Text4) + "%"'
'Else
'SORGU= SORGU+ "and BOOKID like"'+ Trim(Text4) + "%'"
'End If
'End If
'bulAç SORGU+ " ORDER BY BOOKNAME"
'Set DataGridl.DataSource = bul
'End If
'End If
skip:
End Sub

8.1.7 New Membwe Form

Private Sub Form_Load()
Textl .Text= "ID will be entered "
Text2.Text = "enter name"
Text3.Text = "enter surname"
Text4.Text = "enter address"
Text5.Text = "enter e mail"
Text6.Text = "enter phonenumber"
Text7.Text = "enter age"

End Sub

Private Sub KDCButtonl_Click()
Textl = ""
Text2 = ""
Text3 = ""
Text4 = ""
Text5 = ""
Text6 = ""
Text7 = ""
Text2 GotFocus
End Sub ••
Private Sub KDCButton2 _Click()
IfTextl <> "MEMBERID will be entered".
<> "" And Text5 <> "" And Text6 <> "" Thea
ınemberkayitAc "select * from MEMBERREC

<> - And Text2 <> "" And Text3 <> "" And Text4

If memberkayit.RecordCount > O Then
memberkayitAc "select * from MEMBERREC
If memberkayit.RecordCount > O Then

, cevap= MsgBox("There is just record
vbYesNo + vbDefaultButtonl, "WAR._'\T',."G
If cevap = vbYes Then
memberkayit("MEMBERID") = \'all le
memberkayit("NAME") = UCase{Trimfı:­
memberkayit("SURNAME") = UCaseIT:·
memberkayit("ADDRESS") = UCase<T:·
memberkayit("E_MAIL") = Trimf'Fexzf

.-IE~IBERID=" & Val(Textl)

75

memberkayit("TELEPHONE") = Trim(Text6)
memberkayit("AGE") = Trim(Text7)
memberkayit("GENDER") = UCase(Trim(Combo I .Text))
memberkayit. Update
End If
Else
memberkayit.AddNew
memberkayit("MEMBERlD") = Val(Textl)
memberkayit("NAME") = UCase(Trim(Text2))
memberkayit("SURNAME") = UCase(Trim(Text3))
memberkayit("ADDRESS") = UCase(Trim(Text4))
memberkayit("E_MAIL") = Trim(Text5)
memberkayit("TELEPHONE") = Trim(Text6)
memberkayit("AGE") = Trim(Text7)
memberkayit("GENDER") = UCase(Trim(Combol .Text))
memberkayit. Update
End If
Else
memberkayit.AddN ew
memberkayit("MEMBERlD") = UCase(Trim(Te>-11))
memberkayit("NAME") = UCase(Trim(Text2))
memberkayit("SURNAME") = UCase(Trim(Text3))
memberkayit("ADDRESS") = UCase(Trim(Text4))
memberkayit("E_MAIL") = Trim(Text5)
memberkayit("TELEPHONE") = Trim(Text6)
memberkayit("AGE") = Trim(Text7)
memberkayit("GENDER") = UCase(Trim(Combol .Text))
memberkayit. Update
End If
Textl.Text = "ID will be entered"
Text2.Text = "enter name"
Text3.Text = "enter surname"
Text4.Text = "enter address"
Text5.Text = "enter e mail"
Text6.Text = "enter phonenumber"
Text7.Text = "enter age"
Else
MsgBox ("You hve to fill into all information deoamnem"
End If
End Sub

Private Sub KDCB utton3 _Click()
Form9.Show
Form4.Visible = False
End Sub

Private Sub KDCButton4_Click()
Form4.Visible = False
End Sub

Private Sub Text2_ GotFocus()
memberkayitAc "select * from MEMBERRECO

If memberkayit.RecordCount > O Then
memberkayit.MoveFirst
For i = 1 To memberkayit.RecordCount
If i = memberkayit("MEMBERlD") Then

•

76

GoTo git
Elself i < memberkayit("MEMBERID") Then
Exit For
End If
git: memberkayit.MoveNext
Next
Textl = i
Else
Textl = Str(l)
End If
End Sub

8.1.8 Main Book Form

Private Sub KDCButtonl _Click()
Form I.Visible= True
Form3.Visible = False
End Sub

Private Sub KDCButton2 _Click()
Form5.Show
Form3.Visible = False
End Sub

Private Sub KDCButton3 _Click()
Form8.Visible = True
Form3.Visible = False
End Sub

Private Sub KDCButton4_Click()
Form3.Visible = False
End Sub

8.1.9 Sifrelerformu form

Private Sub Commandl_Click()
Forml I.Visible= False
End Sub

8.1.10 Raporformu Form

Private Sub Combo2_Click()
RichTextBoxl.Se!FontSize = Val(Combo2.Text)
End Sub

Private Sub Combo3 _Click()
Textl = Combo3.Text
raporac "select* from REPORTABLOSU"
Ifrapor.RecordCount > O Then
rapor.MoveFirst

•

77

Do Until rapor.EOF
IfTrim(Combo3.Text) = Trim(rapor("RAPORADI")) Then
If Not IsNull(rapor("RAPORADI")) Then
RichTextBoxl .TextRTF = rapor("RAPORICERIGI")
RichTextBoxl .BackColor = rapor("RAPORBACKROUND")
Else
RichTextBoxl.TextRTF = ""
End If
End If
rapor.MoveNext
Loop
End If
End Sub

Private Sub Combo l_Click()
IfRichTextBoxl.SelStart = O Then
IfRichTextBoxl.SelLength = Len(RichTextBoxl.Text) Then
RichTextBoxl.Font = Combo I.Text
Else
RichTextBoxl.SelFontName = Combo I.Text
End If
End If
IfRichTextBoxl.SelStart <> O Then RichTextBoxl.SelFontName = Combo I.Text
End Sub

Private Sub Combo3_DropDown()
Combo3.Clear
raporac "select* from REPORTABLOSU"
Ifrapor.RecordCount > O Then
rapor.MoveFirst
Do Until rapor.EOF
Combo3 .Additem rapor("RAPORADI")
rapor.MoveNext
Loop

End If

End Sub

Private Sub Form_Load()
Veriac
'empireofsky _
For i = O To Screen.FontCount - 1
Combol.Additem Screen.Fonts(i)
Nexti
For i = 1 To 100
Combo2.Additem i
Next i
Form Resize
Combo2.Text = RichTextBoxl.SelFontSize,,
Combo I.Text= RichTextBoxl.SelFontName
raporac "select* from REPORTABLOSU"
If rapor.RecordCount > O Then
rapor .MoveFirst
Do Until rapor.EOF
Combo3 .Additem rapor("RAPORADI")
rapor.MoveNext

•

78

Loop
End If
Form IO.Top= O
FormlO.Left = (Screen.Width - (FormlO.Width + 350))
FormlO.Width = 10700
FormlO.Height = 8880
Textl .Enabled = False
End Sub

Private Sub Form_Unload(Cancel As Integer)
Close
End Sub

Private Sub RichTextBoxl _SelChange()

IflsNull(RichTextBoxl.SelBullet) Then
FormlO.ToolBarl .Buttons("Kopyala").Enabled = False
Else
FormlO.ToolBarl .Buttons("Kopyala").Value = Abs(RichTextBoxl .SelBullet)
Forml O.ToolBarl .Buttons("Kopyala").Enabled = True
End If

IflsNull(RichTextBoxl .SelBold) Then
Forml O.ToolBarl .Buttons("Kalın").MixedState = True
Else
FormlO.TooIBarl .Buttons("Kalın").Value = Abs(RichTextBoxl .SelBold)
Forml O.ToolBarl .Buttons("Kalın").MixedState = False
End If

IflsNull(RichTextBoxl .Selltalic) Then
FormlO.ToolBarl .Buttons("Eğik").MixedState = True
Else
FormlO.ToolBarl.Buttons("Eğik11).Value = Abs(RichTextBoxl.Selltalic)
Forml O.ToolBarl .Buttonsf'Eğikvj.Mixedôtate = False
End If

IflsNull(RichTextBoxl .Se!Underline) Then
Forml O.ToolBarl .Buttons("AltÇ11).MixedState = True
Else ,.,
FormlO.TooIBarl .Buttons(11AltÇ11).Value = Abs(RichTextBoxl .Se!Underline)
FormlO.ToolBarl .Buttons(11AltÇ11).MixedState = False
End If

If IsNull(RichTextBoxl .Se!FontSize) Then
Combo2.Text = ""
Else
Combo2.Text = RichTextBoxl .SelFontSize
End If
ff IsNull(RichTextBoxl .SelFontName) Then
Combol.Text = 1111

Else
Combol.Text = RichTextBoxl.SelFonU\ame
End If

End Sub

•

79

Private Sub ToolBarl_ButtonClick(ByVal Button As MSComct!Lib.Button)
Dim bul As Integer

raporac "select* from REPORTABLOSU"
On Error Resume Next
Select Case Button.Key

Case "Yeni":
Combo3 .Listlndex = -1
RichTextBoxl.TextRTF = ""

Case "Kaydet":
rapadı = lnputBox("Enter report name that will be recorded", "REPORT NAME")

If Not rapadı = "" Then
raporac "select* from REPORTABLOSU where raporadı=" + UCase(Trim(rapadı)) +

11111

Text! .Enabled= False
Textl = rapadı
If rapor.RecordCount > O Then
cevap= MsgBox("just there is a report which name is""+ UCase(Trim(rapadı)) +" "" + Chr(lO) +
Chr(13) +" Do you want to change content of this Report", vbYesNo + vbApplicationModal,
"CHANGING CONTENT OF REPORT")
If cevap = vbYes Then
rapor("RAPORADI") = UCase(Trim(Textl))
IfRichTextBoxl.TextRTF = 1111 Then
MsgBox ("You have not entered any content about report that will be recorded")
'Timerl .Enabled = True
'Timerl .Interval = 4000
Textl = ""
1Framel .Visible= True
1Label3 = "You have not entered any content about report that will be recorded"
GoTo skip
Else
rapor("RAPORICERIGI") = RichTextBoxl .TextRTF
End If
rapor("RAPORBACKROUND") = RichTextBoxl .BackColor
rapor.Update
MsgBox "Content of Report has been changed .. ", vblnformation, "CHANGING CONTENT OF REPORT"
Else ••
Textl = ""
End If
Else
rapor.AddNew
rnpor("RAPORADI") = UCase(Trim(Textl))
IfRichTextBoxl.Text =""Then
MsgBox ("You have not entered any content about report that will be recorded")
'Timerl .Enabled = True
'Timerl .Interval = 4000
Textl = ""
1Framel.Visible = True
1Label3 = "You have not entered any content about report that will be recorded"
GoTo skip
Else
rapor("RAPORICERIGI") = RichTextBox l .TextRTF
End If

•

80

rapor("RAPORBACKROUND") = RichTextBoxl .BackColor
rapor.Update
MsgBox "Report has been saved .. ", vblnformation, "RECORDING"
skip: End If

Else
MsgBox ("You have to enter reportname ... ")
'Frame I.Visible= True
'Label3 = "You have to enter reportname ... "
'Timer I .Interval = 4000
'Timerl .Enabled = True
End If
Case "Aç":

sec= InputBox("select report name that will be indicated", "REPORT NAME")
raporac "select* from REPORTABLOSU"
If rapor.RecordCount > O Then
i = 1
rapor.MoveFirst
Do Until rapor.EOF
IfTrim(sec) = Trim(rapor("RAPORADI'')) Then
bul= i
End If
i = i + 1
Loop

If bul> O Then Combo3.Listlndex = bul - 1
End If

Case "yRenk":
dlgCommonDialog.Flags = cdlCFEffect.s Or cdlCFBoth
dlgCommonDialog.ShowFont

RichTextBoxl.SelFontName = dlgCoınmonDialog.FontName
Combo 1. Text = RichTextBox 1. SelFontName

RichTextBox 1. SelFontSize = dlgCoınmonDialog.F ontSize
Combo2.Text = RichTextBoxl .SelFontSize

RichTextBoxl.SelBold = dlgCommonDialog.FomBold
RichTextBoxl .Selltalic = dlgCommonDialog.Fomlt:alic
RichTextBoxl .SelUnderline = dlgCommonDialog.FontL'nderline
RichTextBoxl .SelColor= dlgCommonDialog.Color

Case "Renk":
dlgCommonDialog.ShowColor
RichTextBoxl.BackColor = dlgCommonDialog.Co

Case "Yazdır":
On Error Resume Next

dlgCommonDialog.DialogTitle = "Print
dlgCommonDialog.Cance!Error = True
dlgCommonDialog.Flags = cdlPDReturnOC -
IfR.ichTextBoxl.Se!Length = O Then

dlgCommonDialog.Flags = dlgCommo

'D~oPageN urns

gs - cdlPDAIIPages

•

81

Else
dlgComınonDialog.Flags = dlgComınonDialog.Flags + cdlPDSelection

End If
dlgComınonDialog.ShowPrinter
If Err<> MSCornDlg.cdlCancel Then

RichTextBoxl .SelPrint dlgComınonDialog.hDC
End If

Case "Kes":
On Error Resume Next

Clipboard.SetText RichTextBox l .SelRTF
RichTextBoxl .SelText= vbNullString

Case "Kopyala":
On Error Resume Next

Clipboard.SetText RichTextBox l .Se!RTF

Case "Yapıştır":
On Error Resume Next

RichTextBoxl .SelRTF = Clipboard.GetText

Case "Kalın": RichTextBoxl.Se!Bold = Not RichTextBoxl.Se!Bold

Case "Eğik": RichTextBoxl.Se!Italic = Not RichTextBoxl.Selltalic

Case "AltÇ": RichTextBoxl.Se!Underline = Not RichTextBoxl.Se!Underline

Case "Sol":
RichTextBoxl .SelAlignment = rtfLeft

Case "Ortaya":
RichTextBoxl .SelAlignment = rtfCenter

Case "Sağ":
RichTextBoxl .SelAlignment = rtfR.ight

Case "Sil":
If Combo3 .Listlndex < O Then
MsgBox "Select report that will be deleted !", vbCritical, "WARNING"
End If
If Combo3 .Listlndex > -1 Then
raporac "select* from REPORTABLOSU where RAPORADI="' + UCase(Trim(Combo3.Text)) +

Ifrapor.RecordCount > O Then
rapor.MoveFirst

\ıradaki: cevap= MsgBox("Now, Report which name is
vbYesNoCancel + vbCritical, "DELETING")

•
"" + rapor("RAPORADI") + "" will be delete",

Select Case cevap

Case vbYes: rapor.Delete
Do Until rapor.EOF
rapor.MoveNext
GoTo sıradaki
Loop

Case vbNo:

82

rapor.MoveNext
Do Until rapor.EOF
GoTo sıradaki
Loop

Case vbCancel:
GoTo iptal

End Select

End If

Reset
RichTextBoxl.TextRTF = ""
Combo3. Clear

End If

End Select

iptal: raporac "select* from REPORTABLOSU"

Ifrapor.RecordCount > O Then
rapor.MoveFirst
Do Until rapor.EOF
Combo3 .Addltem rapor("RAPORADI")
rapor.MoveN ext
Loop
End If

End Sub

Private Sub Form_Resize()
On Error Resume Next
RichTextBoxl.RightMargin = RichTextBoxl.Width - 400
RichTextBoxl .Sellndent = 300

End Sub

8.1.11 New Book RegisterationForm

Private Sub Form_Load()
Textl .Text= "ID will be entered "

,,Text2.Text = "enter Bookname"
Text3.Text = "enter Author"
Text4.Text = "enter Publisher"
Text5.Text = "enter Title"
Text6.Text = "enter Column no"
Text7.Text = "enter Row no"

Textl.ToolTipText = "Enter Book ID"
Text2.ToolTipText = "Enter Book Name"
Text3.Too1TipText = "Enter Author Name"
Text4.ToolTipText = "Enter Publisher Name"
Text5.ToolTipText = "Enter Content Of Book"
Text6.ToolTipText = "Enter Colomn"

•

83

Text7.ToolTipText = "Enter Row"

End Sub

Private Sub KDCButtonl_ ClickQ
Textl.Text = ""
Text2.Text = ""
Text3.Text = ""
Text4.Text = ""
Text5.Text = ""
Text6.Text = 1111

Text7.Text = ""
bookkayitAc "select* from BOOKRECORDTABLE"
Ifbookkayit.RecordCount > O Th
bookkayit.MoveLast
Label9 = bookkayit("COLO~ü,'
Label! I= bookkayit("ROV.'j
End If
Text2 GotFocus
End Sub

Private Sub KDCButton2 Cli- -
IfTextl <> "BOOKID will be em..~"_ <> 1111 And Text2 <> 1111 And Text3 <> "" And Text4 <>
"" And Text5 <> 1111 And Text6 <> - And.Tee-<> •.• Then
bookkayitAc "select * from BOOKRECORDTABLE
If bookkayit.RecordCount > O
bookkayitAc "select." from BOOKRECORD~ABLE where BOOKID=" & Val(Textl)
booknurnberAc "select* from BOOI0.l...~IBB'
Ifbookkayit.RecordCount > O Then
booknumberAc "select* from BOOIC\1.,;.IBE:3. '"-'7'ere BOOKNAME='" + bookkayit("BOOKNAME") +
'""
cevap= MsgBox("There is just record has S'.!'""..li::. 300KID.Do you want to change the record.", vbYesNo
+ vbCritical, "WARNING")
If cevap = vbYes Then
Ifbookkayit("BOOKNAME") <> UCase(Trira:.ı~)} Then
Ifbooknumber("NUMBER") > I Then •
booknurnber("NUMBER") = booknumber(;ı.t.T~IBERj- 1
booknumber.Update
Elself booknumber("NUMBER") = 1 Thı
booknumber .Delete

•End If
booknumberAc "select* from BOOJ0.l'_
Ifbooknumber.RecordCount > O Then
booknumber("NUMBER") = bookn
booknumber.Update

'Else

•. BOOK.NAME='" + UCase(Trim(Text2)) + 11111

booknumber.AddNew
booknurnber("BOOKNAME") = t;CaseıT:i
booknumber("AUTHOR") = UCase<T.c·­
booknumber("PUBLISHER") = GCase -
booknumber("NUMBER") = I
booknumber.Update

84

End If
End If
book:kayit("BOOKID") = CCzse
bookkayit("BOOKNAı\ıfE") = ~--....~
bookkayit("AUTHOR") = CC2S.··C
bookkayit("PUBLISHER") = L'"""""
bookkayit("TITLE") = UCas,
bookkayit("COLOMN") = UCasa~:
bookkayit("ROW") = UCase(Tri:-.-~= -
bookkayit("DURUM") = "icerde
bookkayit.Update
End If

Else
Ifbooknumber.RecordCount >OT;;
booknumber("NUMBER") = bookr.~ı-;-.-e;-J
booknumber.Update
Else
booknumber.AddNew
booknumber("BOOKNAME") = CC.cs..=·
booknumber("AUTHOR") = UCasefT
booknumber("PUBLISHER") = UO!s -
booknumber("NUMBER") = 1
booknumber.Update
End If
bookkayit.AddNew
bookkayit("BOOKID") = UCase(Trim
bookkayit("BOOKNAME") = UCasefI -
bookkayit("AUTHOR") = UCase(Tri
bookkayit("PUBLISHER") = UCase(Tri
bookkayit("TITLE") = UCase(Trim(Texc
bookkayit("COLOMN") = UCase(T .
bookkayit("ROW") = UCase(Trim(Texr,
bookkayit("DURUM") = "icerde"
bookkayit.Update
End If
Else
Ifbooknumber.RecordCount > O Then
booknumber("NUMBER") = bookn
booknumber.Update
Else "
booknumber.AddNew
booknumber("BOOKNAME") = cease
booknumber("AUTHOR") = UC
booknumber("PUBLISHER") = uüı.seı-

•• booknumber("NUMBER") = 1
booknumber. Update
End If
bookkayit.AddNew
bookkayit("BOOKID") = UCas

, bookkayit("BOOKNAME") = Cuısec·.: .·­
book:kayit("AUTHOR") = ucaserr.:_ -
bookkayit("PUBLISHER") = cease,-;­
bookkayit("TITLE") = UCase(Tri:::)~
bookkayit("COLOMN") = UCasefL .•
book:kayit("ROW") = UCase(Triı:aıTex:-·
bookkayit("DURUM") = "icerde

•

85

bookkayit.Update
End If
Textl .Text= "ID will be entered"
Text2.Text = "enter Bookname"
Text3.Text = "enter Author"
Text4.Text = "enter Publisher"
Text5.Text = "enter Title"
Text6.Text = "enter Column no"
Text7.Text = "enter Row no"
Else
MsgBox ("You hve to fill into all information department")
End If

End Sub

Private Sub KDCButton3 _Click()
Form3.Visible = True
Forml.Visible = False
End Sub

Private Sub KDCButton4_Click()
Forml.Visible = False
End Sub

Private Sub Text2 _GotFocus()

bookkayitAc "select* from BOOKRECORDTABLE"
If bookkayit.RecordCount > O Then
bookkayit.MoveFirst
For i = I To bookkayit.RecordCount
If i = bookkayit("BOOKID") Then
GoTo git
Elself i < bookkayit("BOOKID") Then
Exit For
End If
git: bookkayit.MoveNext
Next
Textl = i
Else
Textl = Str(l)
End If
End Sub

8.1.12 VeriTabanıAcModule

Option Explicit

Public Dosyayeri As String
Public Baglan As Connection
Public bookkayit As Recordset
Public memberkayit As Recordset
Public bookarama As Recordset
Public booknumber As Recordset
Public bookverme As Recordset
Public memberarama As Recordset
Public outbookarama As Recordset
Public datekayit As Recordset

•• •

86

Public bookgeldi As Recordset
Public passwordkayit As Recordset
Public kitapicinrapor As Recordset
Public rapor As Recordset
Public counter As Recordset

Public Function Veriac() As Boolean
Dosya yeri = "C:\Documents and Settings\HakkineN\Desktop\CARLOS2\LIBRAR Y.MDB"
Set Baglan = New Connection
Baglan.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & Dosyayeri & ";Persist Security

Info=False"

End Function

Public Function VeriKapat() As Boolean
'raporac.Close
'datekayit.Close
'bookkayit.Close
'memberkayit.Close
'bookarama.Close
'bookverme.Close
'bookgeldi.Close
'outbookarama.Close
'memberarama.Close
'passwordkayit.Close
'kitapicinrapor.Close
Baglan.Close
Set Baglan = Nothing
Set bookkayit = Nothing
Set kitapicinrapor = Nothing
Set passwordkayit = Nothing
Set memberkayit = Nothing
Set bookarama = Nothing
Set booknumber = Nothing
Set bookverme = Nothing
Set bookgeldi = Nothing
Set memberarama = Nothing
Set rapor = Nothing
Set outbookarama = Nothing
Set counter = Nothing
Set datekayit = Nothing
End Function

Public Sub bookkayitAc(sql As String)
Set bookkayit = New Recordset
bookkayit.CursorLocation = adUseClient
bookkayit.Open sq!, Baglan, adüpenKeyset, adLockOptimistic

End Sub
Public Sub memberkayitAc(sql As String)

Set memberkayit = New Recordset
memberkayit.CursorLocation = adUseClient
memberkayit.Open sql, Baglan, adüpenKeyset, adLockOptimistic

End Sub

•

Public Sub bookaramaAc(sql As String)
Set bookarama = New Recordset
bookarama.CursorLocation = adUseClient

87

bookarama.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic
End Sub
Public Sub memberaramaAc(sql As String)

Set memberarama = New Recordset
memberarama.CursorLocation = adUseClient
memberarama.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub outbookaramaAc(sql As String)

Set outbookarama = New Recordset
outbookarama.CursorLocation = adUseClient
outbookarama.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub datekayitAc(sql As String)

Set datekayit = New Recordset
datekayit.CursorLocation = adUseClient
datekayit.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub bookvermeAc(sql As String)

Set bookverme = New Recordset
bookverme.CursorLocation = adUseClient
bookverme.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub bookgeldiAc(sql As String)

Set bookgeldi = New Recordset
bookgeldi.CursorLocation = adUseC!ient
bookgeldi.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub passwordkayitAc(sql As String)

Set passwordkayit = New Recordset
passwordkayit.CursorLocation = adUseClient
passwordkayit.Open sql, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub kitapicinraporac(sql As String)

Set kitapicinrapor = New Recordset
kitapicinrapor.CursorLocation = adUseClient
kitapicinrapor.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub raporac(sql As String)

Set rapor = New Recordset
rapor.CursorLocation = adUseClient
rapor.Open sq!, Baglan, adOpenKeyset, "'adLockOptimistic

End Sub
Public Sub counterac(sql As String)

Set counter = New Recordset
counter.CursorLocation = adUseClient
counter.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub
Public Sub booknumberAc(sql As String)

Set booknumber = New Recordset
booknumber.CursorLocation = adUseClient
booknumber.Open sq!, Baglan, adOpen.Keyset, adLockOptimistic

End Sub

•

88

8.1.13 Globaller Module

Global datagridden As Integer
Global data2gridden As Integer
Global kitapekle As Integer
Global datagriddenisirn AB String
Global kitaprow As Integer
Global kitapcoluınn As Integer
Global kitapid As Integer

..

89

