
NEAR EAST UNIVERSITY

Faculty of Engineering

Department Of Computer Engineering

BOOKSTORE PROGRAMMING WITH USING
DELPHI

Graduating Project
COM - 400

Student: ..
Serbillent KARAGOZ

•..
Supervisor : Assoc.Prof.Dr. Rahib ABIYEV

Nicosia 2006

~

INTRODUCTION

I would like to inform about this software.This program is designed Borland Delphi 7.0

with using Microsoft Sql Server,so that the program is based on client/server model

That is very important for a software because the program is not depended the particular
computer.

Actually,our project is occured two different section.One of them BookStore web page,

and BookStore Admin Section.Bookstore Web Page is prepared with Active Server

Pages that is designed my best friend is Arif Koçak.In this project, we were worked
together.

Now I want to inform my project which is BookStore Admin Section.Firstly,the tables

is prepared with using Microsoft Sql Server, so used relational database systems,that

is very important for sequrity and straightness the datas.For instance,when it is entered

the author,publisher informations,it can be seen book information section automatically,

so that ,it is very useful for the user.And also it is prepared the report system for every

stage the program.It can be seen author,publisher etc... or according to some criterions,

so the user can be printed out any reports in program.

The program is also supported multi-user system.Easily a user can be added the system
or removed the system.

The aim of this software product ts covered the Bookstore in Near East University

Chapter One describes Basic concept of Delphi 7 •
..•

Chapter Two presents Microsoft Sql Server

Chapter Three how the ADO connection does with MSSQL Server

Chapter Four presents Flowcharts of Program

Chapter Five informs about using forms.

ABSTRACT

Nowadays the computers is developed a lot and started to use by almost anyone in the

world no matter who he/she is. Because of the computers is entered to every platform

of our life human needed to combine both software and hardware. Without software the

computers are nothing. They need software to operate, a software system also need

datas which is using daily life ...

Data, gathered around us as a collection of facts, is of no use unless it is organized and

represented in some meaningful form. Data represented in some meaningful form like,

tables, charts, or graphs become information, which can. be easily processed. The

collection of data, usually refereed to as the database, contains information about one

particular enterprise. These days' databases are used by a variety of users and

organizations, which are important tools in processing DBMS, which are designed to

manage large amount of data.

This project has as its goal to develop software is working on based client\server

structure, and processing information about activities of a bookstore company. Software

is developed in this project contains many forms which informations associated with

sales and purchase of books. The project can be developed by improving the software

for processing all activities of the bookstrore.

•..

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
INTRODUCTION
L .BASIC CONCEPT OF DELPHI 7

1. 1 Introduction
1 .2 What is Delphi?

1 .2. 1 Registering Delphi ·
1 .2.2 Finding Information
1 .2.3 Online Help
1.2.4 Fl Help
1 .2.5 Developer Support Services and Web Site

1.3 A Tour of The Environment
1.3.1 Starting Delphi
1.3.2 The·IDE
1 .3 .3 The Menus and Toolbars
1 .3.4 The Component Palette, Form Designer, and Object Inspector
1.3.5 The Object Tree View
1.3.6 The Object Repository
1.3.7 The Code Editor
1.3.7.1 Code Insight
1 .3.8 Class Completion
1.3.9 Code Browsing
1.3.10 The Diagram Page
1.3.11 Viewing Form Code
1 .3. 12 The Code Explorer
1.3.13 The Project Manager
1.3.14 The Project Browser
1.3 .15 To-do lists

1 .4 Programming With Delphi
1 .4. 1 Creating a Project
1 .4.2 Adding Data Modules
1.4.3 Building the user interface
1 .4.4 Placing components 'on a form
1 .4.5 Setting Component Properties
1 .4.6 Writing Code ·

1 .4.6.1 Writing Event Handlers "
1.4.6.2 Using The Component Library

1 .4.7 Compiling and Debugging Projects
1 .4.8 Deploying Applications
1 .4.9 Internationalizing Applications

1.4.1 O Types of Projects

1.4.10.1 CLX Applications
1.4. 10.2 Database Applications

1 .4.11 BDE Administrator

1.4.12 SQL Explorer (Database Explorer)

III

•

11

lll

Vl

2
2
2
3
5
5
5
7
8
8
8
10
11
13
14
15
16
17
17
18
19
20
21
22
22
23
23 -24
24
25
25
28
28
29
30
31
32

32

32
33
34

34

..

1.4.13 Database Desktop

1.4.14 Data Dictionary

1.4.15 Custom Components

1.4.16 DLLs

1.4.17 COM and ActiveX

1.4.18 Type Libraries

1.5 Customizing The Desktop

1. 5 .1 Organizing Your Work Area

1.5.2 Arranging Menus and Toolbars
1.5.3 Docking Tool Windows
1.5.4 Saving Desktop Layouts
1.5.5 Customizing The Component Palette
1.5.6 Arranging The Component Palette
1.5.7 Creating Component Templates
1.5.8 Installing Component Packages
1.5.9 Using Frames
1.5.1 O Adding ActiveX Controls
1.5.11 Setting Project Options
1.5.12 Setting Default Project Options
1.5.13 Specifying Project and Form Templates As The Default
1.5.14 Adding Templates To The Object Repository
1.5.15 Setting Tool Preferences
1.5.16 Customizing The Form Designer
1.5.17 Customizing The Code Editor
1.5.18 Customizing The Code Explorer

SQL Server
2.1 What is Sql Server
2.2 Transact Sql
2.3 Sql Server Platforms
2.4 Sql Server Architecture

2.4.1 Overview
2.4.2 Data Access Architecture

2.4.3 Applications Programming Interfaces(APis)
2.5 Login Authentication

2.5.1 Permission Validation
2.6 Introduction to Sql Server Databases

2.6.1 How Data is Stored
2.7 Creating Data Types
2.8 Introduction To Views

2.8.1 What is a View
2.8.2 Advantages of Views

2..

IV

34

34

34

35

35

35

35

36

36
37
39
40
40
41
42
43
44
44
44
44
46
46
47
47
47
49
49
54
54
56
56
56

57
• 59

60
61
62
64
66
67
68

3 .. ADO Component
3.1 Working with ADO comonents
3 .2 Connecting to ADO data stores

4.. FLOWCHARTS OF PROGRAM
4.1 Flowchart of Login Form
4.2 Flowchart of Author-Publisher-Book Information Form
4.3 Find Process
4.4 Finding between two dates datas
4.5 Stok Input-Output
4.6 WATERFALL MODEL

5.. BOOK STORE SYSTEM
5.1 Login Form
5.2 Main Form .
5.3 Authors Form

5.3.1 Authors List Form
5.3.2 Authors Report

5.4 Publisher Form
5.4.1 Publisher List Form
5.4.2 Publishers Report

5.5 Book Information Report
5.5.1 Book Information Report

5.6 Stock
5.6.1 Stock Entry Form
5.6.2 Stock Output Form
5.6.3 Stock Input Balance Fpnn
5.6.4 Stock Output Balance Form
5.6.5 Minuriıum Stock

5.7 Manage Users
CONCLUSION
REFERENCES
APPENDIX

..

V

•

70
70
72
77
77
78
79
80
81
81
82
82
82
83
84
85
86
87
88
89
89
90
90
90
91
92
93
94
95
96
97

CHAPTER 1: DELPHI

1. BASIC CONCEPT OF DELPHI 7

1. Introduction

Let us start an overview of the Delphi development environment to get you started using

the product right away. It also tells you where to look for details about the tools and
features availablein Delphi..

You will be shown a tour of the environment describes the main tools on the Delphi

desktop, or integrated desktop environment (IDE). It will be explained Programming with ·

Delphi, explains how you use some of these tools to create an application. And also

Customizing the desktop describes how you can customize the Delphi IDE for your
developmentneeds.

1.1. What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application

development (RAD). Using Delphi, you can create highly efficient applications for.

Microsoft Windows XP, Microsoft Windows 2000 and Microsoft Windows 98 with a

minimum of manual coding. Delplli also provides a simple cross-platform solution when

used in conjunction with Kylix, Borland's RAD tool for Linux. Delphi provides all the

tools you need to develop, test, and deploy applications, including a ~arge library of..
reusable components, a suite of design tools, application and form templates, and
programmingwizards.

1.2.1. Registering Delphi

Delphi can be registered in several ways. The first time you launch Delphi after installation,

you will be prompted to enter your serial number and authorization key. Once this has been

entered, a registration dialog offers four choices:

• Register using your internet connection.

Use this option to register online using your existing internet connection.

• Register by phone or Web browser.

Use this option to register by phone or through your web browser. If you received

an activation key via email, use this option to select the file.

• Import software activation information from a file or email.

• Register later.

Online registration is the easiest way to register Delphi, but it requires that you have an

active connection to the internet. If you are already a member of the Borland Community,

or have an existing software registration account, simply enter the relevant account

information. This will automatically register Delphi. If not, the registration process

provides a way to create an account.

No

No •..

Fig. 1.1 Online Registration

2

The second option (register by phone or Web page) is useful if the machine you are

installing on is not connected to the internet, or if you are behind a firewall that is

blocking online registration.

N Call closest number
listed

Yes

Enter Serial Number,
Authorization Key,
and Registration

Code

Enter your account
information or create
a new account (an

activation key will be
sent to your e-mail

address)

Product registered.
Follow instructions

on how to save your
activation file before

you click finish.

Fig. 1.2 Register by Phone or y.ıeb Page •..
If you have previously received software activation information, you can select

thelmport software activation information from a file or email option and select the

activation.slip file on your system.

3

If you have previously received software activation information, you can select the Import

software activation information from a file or email option and select the activation.slip file
on your system.

1.2.2. Finding Information

You can find information on Delphi in the following ways:

• Online Help

• Printed documentation

• Borland developer support services and Web site

For information about new features in this release, refer to What's New in the online

Help Contents and to the www.borland.com Web site.

1.2.3. Online Help

The online Help system provides detailed information about user interface features,

language implementation, programming tasks, and the components. It includes all the

material in the Delphi Developer's Guide, Delphi Language Guide, and a host of Help files

for other features bundled with Delphi.

To view the table of contents, choose Help'Delphi Help and Help'Delphi Tools, and click

•the Contents tab. To look up the components or any other topic, click the Index or Find tab

and type your request. .

1.2.4. Fl Help •

You can get context-sensitive Help on any part of the development environment, including

menu items, dialog boxes, toolbars, and components by selecting the item and pressing Fl.

4

TControf.Font

Press Fl on a property or

event name in the Object

Inspectorto display the

VCLHelp.

Controls lhe aliıı!ıutes of texl wıiirnn on or in ihe contrnL
property Fmıe,: !Font;

Description
To change lo a ııew font, spedfr a new TFonl 1hJect To
change tlı8 v•e of the Color, Heigrn, Nnme, Pnch,
Siyle of the TFıınt Qbject

Fig. 1.3 TControl Font

In the Code editor, press

Fl on a language, VCL, or

CLX element.

t1e:$sa.ge:sf
'StdCCı:li!J:

i'forml ıı:. e.l,~ss('!To·rw)
Eut1;Qrıl :Tliır.ı,:,n;
liW~lf{; Tt:ıveckfilox:

·ııdvo.t,,

tlesc.tip!iPıı
A iCiıeck8oxcornpanrnı pı1mmıs sn op:ion for ti¢ us,, The ı.•ıer ca
ch1c'k fü& W'Jt to selı;ci I.he optbrı. ct Mnth$0İ .i1 ttı tlest.Aec.t Hw
npfo:Ht

Fig. 1.4 TCheckBox

•..

5

Press Fl on a component on a form.

Descriııuoıı
~e TBul!on to pı.ıı a standard push bu!lon on a TSuıtorı
iıı!roducee sevarni propenifrs to con!rcıl its a diaiog bcı1
s~tirıg. Users chttJse buıt~rı conımls to inı!iate

Fig. 1.5 Tbutton

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

Press f I on any

menu Command,

dialog'box, or

window to display

Help on that item.

•
,;,ne line 11 ; tirne,

mern as a sırqıe uniL
TbE Sı~p CNeı commımd executes the vrngn,m staıeırıerıı
hiijhligirtııci by th,ı £M.iN!t'1)),Jl9.\Di ;nJ aci'"'-ll1C0S 1hıı mcuikn
pcin11rı the next s181ernerıt.
• ır vtu itsoe the S11p Oıe: cornm)nd whe11 the ex~c.ufüırı f!1)k1t

ıs'ıı:ıtaiBd en a foncl:>JPcak the debuggernns füaı fünctirın Bl
fu!I spoorl, 1ht<rı the ~xr;culionptirı\ en !htr t!a1emerı1
!Ml fOlD\VŞ thB Csll

• If ynu issıJf Sıep Over when the execulıotı filint is
the eııu ststemerıt ot a r&tJhrı,. thB· rntıin1 rnturrı;

Fig. 1.6 Run/Step Over

6

Error messages from the compiler and linker appear in a special window below the Code

editor. To get Help with compilation errors, select a message from the list and press Fl.

1.2.5. Developer Support Services and Web Site

Borland offers a variety of support options to meet the needs of its diverse developer

community. To find out-about support, refer to http://www.borland.com/devsupport/. From

the Web site, you can access many newsgroups where Delphi developers exchange

information, tips, and techniques. From the Web site, you can access many newsgroups where

Delphi developers exchange information, tips, and techniques. The site also includes a list of

books about Delphi, additional Delphi technical documents, and Frequently Asked

Questions (FAQs).

1.3. A Tour of The Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts and

tools of the integrated development environment (IDE).

1.3.1. Starting Delphi

You can start Delphi in the following ways:

• Double-click the Delphi icon (if you've created a shortcut).
. .

• Choose Programsllsorland Delphi 71Delphi 7 from the Windows Start menu ...
• Choose Run from the Windows Start menu, then enter Delphi32.

• Double-click Delphi32.exe in the Delphi\Bin directory.

7

1.3.2. The IDE

When you first start Delphi, you'll see some of the major tools in the IDE. In Delphi, the

IDE includes the menus, toolbars, Component palette, Object Inspector, Object TreeView,

Code editor, Code Explorer, Project Manager, and ıiıany other tools. The particular features

and components available to you will depend on which edition of Delphi you've purchased.

'Ih e Cbjecı Tıee\/iew<lfı:plıtyş a
hienı ıdıical ve;w tıf your ooıııp)ııentti
p:arent-chttd relııtitınshır,xı,.

/' Themenuşand l«Almrs aeoetw a hoo.t of feaıuıeş
/''' an:i tncls 10 he,; }l.:tU writetm Bl)F,iİ;ati:ııı,

/#-#~·"'',.;,,"'.

The C,;;ırnpc,neııt r.ı.ılette
,:x,nu1iıııı r•ı:lv·made
tl>nıponerıtrı to .add to
',(•Ur !)tı:1e<>t&,

TttbFNm
,)ontaiııt 11
on ,·,iü;h t.;, staıt
desigııirıg the ue-eı
irıteıfoce kır y,)ur
@pplicufort Atı
.ııpplfoııtkmcan inclu:ie
~vd'nl fonns,

IheObject IMııectcır1$.
tı~ tı:ı cliange,:ıbj~tıı'
p.r.OJ'.i:i·r1· İ':S.· · and ııekıct ewM1t
httnd~ıs.

The Cı:de txf;ihrer slKıwo youthe classes,variahlı:$, owJ
roınines ırı yt,ııı unit and letsy,:,,u ıwwigtılf.; quiıldy.

Fig. 1.7 IDE

Delphi's development model is based on two-way tools. This means that you can move back

and forth between visual design tools and text-based code editing. For exaı~le, after using
•rhe Form Designer to arrange buttons and other elements in a graphical interface, you can

immediately view the form file that contains the textual description of your form. You

can also manually edit any code generated by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easy reach. You can design

graphical interfaces, browse through class libraries, write code, and compile, test, debug,

8

and manage projects without leaving the IDE.

Delphi's development model is based on two-way tools. This means that you can move

back and forth between visual design tools and text-based code editing. For example, after

using the Form Designer to arrange buttons and other elements in a graphical interface, you

can immediately view the form file that contains the textual description of your form. You

can also manually edit any code generated. by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easy reach. You can design graphical

interfaces, browse through class libraries, write code, and compile, test, debug, and manage

projects without leaving the IDE.

1.3.3. The Menus and Toolbars

The main window, which occupies the top of the screen, contains the main menu, toolbars,

and Component palette.

Main window
in its detaıılt
aırarıgooıent

Fig. J.8 Menus and Toolbars

Delphi's toolbars provide quick access to frequently µsed operations and=commands. Most

"toolbar operations are duplicated in the drop-down menus.

9

Standard toolbar

New
Open

Save project

V~wtoolbar
Remove
file from Vi~w Toggle
project unit fonntuııit

Open Save au .Add file
to project

Debugtoolbar

List ı:ıf projects Trace
you can run lnro

Rün Paiıw Step over

View
form

New
torm

Desktops toolbar

Name of saved
desktop layout

Save current
desktop

Internet toolbnr
NewVı/ebSnap f,Jew jNebSnap
Application Data Module

New WebSnap External
Page Modub . Editor

Fig. 1.9 Toolbars

Sel debug
desktop

To find out what a button does,
poırıı to tt for a moment until a ·
tooltip appeaıs.

You can use the righf-clıck
menu to hide any toolbar. To
display a toolbar if lt'B not
showing, chooss ViewlToolbars
and check the one you want

Many operations have keyboard shortcuts as well as toolbar buttons. When a keyboard

shortcut is available, it is always shown next to the command on the dropdown menu. You

can right-click on many tools and icons to display a menu of commands appropriate to the

object you are working with. These are called context menus.The toolbars are also

customizable. You can add commands you want to them or move them to different
locations.

1.3.4. The Component Palette, Form Designer, and Object Inspector

The Component palette, Form Designer, Object Inspector, and Object TreeView work

together to help you build a user interface for your application; The Component palette
•includes tabbed pages with groups of icons representing visual or nonvisual components...

The pages divide the components into various functional groups. For example, the

Standard, Additional, and Win32 pages include windows controls such as an edit box and

up/down button; the Dialogs page includes common dialog boxes to use for file operations
such as opening and saving files.

10

Component palette pages, grouped byfunctiorı
Glick to view
more pages

,J,,

Components

Fig. 1.10 ComponentPalatte

Each component has specific attributes properties, events, and methods that enable you to

control your application. After you place components on the form, or Form Designer, you

can arrange components the way they should look on your user interface. For the

components you place on the form, use the Object Inspector to set design time properties,

create event handlers, and filter visible properties and events, making the connection

between your application's visual appearanceand the code that makes your applicationrun.

ıt1, After you plaoo oorn.ponents op l\ form, the Object Inspector dynamıcaU>'
changes tbe sst of propertıes It dısp!ays., basoo on the component selected.

•

lt

Fig. 1.11 ChangingSet of Properties in Object Inspector

11

1.3.5. The Object Tree View

The Object TreeView displays a component's sibling and parent-child relationships in a

hierarchical, or tree diagram. The tree diagram is synchronized with the Object Inspector

and the Form Designer so that when you change focus in the Object TreeView, both the

Object Inspector and the form change focus.

You can use the Object TreeView to change related components' relationships to each

other. For example, if you add a panel and check box component to your form, the two

components are siblings. But in the Object TreeView, if you drag the check box on top of

the panel icon, the check box becomes the child of the panel.

If an object's properties have not been completed, the Object TreeView displays a red

question mark next to it. You can also double-click any object in the tree diagram to open.

· the Code editor to a place where you can write an event handler. If the Object TreeView

isn't displayed, choose View'Object TreeView.

her. Wtıenvou cııcK an
t 011 yourtô.nn, It

autoınatıcallychanges the
focus in both the Obl'oot
TreeView and the O Jjeot
Inspectorand ı.iceversıı.

"PressAlt-S/nff.F11 to focus
on the Object Tme.View.

•

Fig. 1.12 Panel

12

The Object TreeView is especially useful for displaying the relationships between database

objects.

1.3.6. The Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs, sample

applications, and other items that can simplify development Choose File] Newlôther to

display the New Items dialog box when you begin a project. The New Items dialog box is

the same as the Object Repository. Check the Repository to see if it contains an object that

resembles one you want to create.

The Hı:ıposrror/s tabbed pages irrdude
objects like forms, framas, units, and ,,
wizards to create sptıcializoo items. ~

Vılhen yc,u're creating arı item based on
eme from the Obj.ect Repository. you
can cop;ı, inherit, or use the item:
C~yith1f default) ~retteba C??Y of
the item ın ı,ıour proıect Jnı"retr1 ırıea.rrs .

the objoot hı the Repositorv'\,,,
. the one in your project ',,

Usrı means changes to the object in '
project ~re inherited bl'the object

n the Repositorv.

11' E3J
Cın:rd ?Y,$ t'.idt Mtd,,\; !)LL Vf\tı,id fom

Mc.dk,

Fig. 1.13 Object Repository

•
.•To edit or remove objects from the Object Repository, either choose Toolslkepository

or right-click in the New Items dialog box and choose Properties.

13

You can add, remove, or
rename tabbed ıxıges from
the Objeıot ~posltory,

Click the arrows to clıang1:
the order in which a tabbed

--- •.• ,,,..,~, "''·"'"f!JS in the Nevı
;g box.

, Fig. 1.14 Adding project and form templates to the Object Repository

1.3.7. The Code Editor

As you design the user interface for your application, Delphi generates the underlying

Delphi code. When you select and modify the properties of forms and objects, your

changes are automatically reflected in the source files. You can add code to your source

files directly using the built-in Code editor, which is a full-featured ASCII editor. Delphi

· provides various aids to help you write code, including the Code Insight tools, class

completion, and code browsing.
Corı:ıponentsadded
to the form are
reflected iıı the co::le;

Gerıerateı:!
code... -W:rı:r.~l t::J. .•l%~ rrr-ı:u.:mt

:tı::~%:t<ftt? rıur'!!',ıı:tı.:
re;:•.ı.vırı::nı.n .. : 7?~;:ntı,~1·ı:~,.,;

:p.rlY~tt-
' ¥!'.i-ı<·cte ',.;;¢."'·ı:J..<tzi·t..iorz~ $

Fig. 1.15 Code Editor

14

1.3. 7.1. Code Insight

The Code Insight tools display context-sensitive pop-up windows.

Tool

Code completion

Code parameters

Tooltip expression

evaluation

Tooltip symbol insight

Code templates

..

How It works

Type a class name followed by a dot(.) to display a list of

properties, methods, and events appropriate to the class, select

it, and press Enter. In the interface section of yom code you

can select more than one item. Type the beginning of an

assignment statement and press Ctrl+space to display a list of

valid values for the variable. Type a procedure, function, or

method name to bring up a list of arguments.

Type a method name and an open parenthesis to display the

syntax for the method's arguments.

While your program has paused during debugging, point to

any variable to display its current value.

While editing code, point to any identifier to display its

declaration.

Press Ctrl+ Jto see a list of common programming statements

that you can insert into your code. You can create your own

templates in addition to the ones supplied with Delphi .

•

15

Wrth cı:d:i ,xırnpli:!rm1, when yı;ıu t;,rıe the dot
iıı !iı,t'!:tnl • Delphi ditpktts {l lıat of
pıopaties, rnedıo:lı, and event€: for !he class,
A'k you tyı;>e, ıh+ liıt autctmı!.irol!f fi!efü to the
selectkırı iliatpeıt.,inn to tlıaı clnttt, Sel£:ct an
!rem •:ın ıhe list and pı~s Enlt'trto add kto
yourcoda,
Proctf:!ures ond p.t-Of,,,erti~ a re o;,l:m,d as t?A'll
and futf'.ticırış as blue,
You carı f»:ıtt this list aj}hzı4e;timllr hy ri;ıht­
clicking andclicking ~kırt by Name,

The tıxıhJı;syınl:,;,t insight
infommiiw foı ruw iderrtff
ıhe m:ıuce overiL

tle,;larnıion
yooı:ıaus

Fig. 1.16 Code Completion

To turn these tools on or off, choose Toolslliditor Options and click the Code Insight tab.

Check or uncheck the tools in the Automatic features section.

1.3.8. Class Completion

Class completion generates skeleton code for classes. Place the cursor anywhere within a

class declaration of the interface section of a unit and press Ctrl+Shift+C or right click and

choose Complete Class at Cursor. Delphi automatically adds private read and write

specifiers to the declarations for any properties that require them, then creates keleton code

for all the class's methods. You can also use class completion to fill in class declarations.. .

for methods you've already implemented.

•
••To turn on class completion, choose Toolsllinvironment Options, click the Explorer tab,

and make sure Finish incomplete properties is checked.

16

1.3.9. Code Browsing

While passing the mouse over the name of any class, variable, property, method, or other

identifier, the pop-up menu called Tooltip Symbol Insight displays where the identifier is

declared. Press Ctrl and the cursor turns into a hand, the identifier turns blue and is

underlined, and you can click to jump to the definition of the identifier. The Code editor

has forward and back buttons like the ones on Web browsers. As you jump to these

definitions, the Code editor keeps track of where you've been in the code. You can click the

drop-down arrows next to the Forward and Back buttons to ove forward and backward
through a history of these references. ·

Pıe$$ Crrl ,ıınd c fi:k or ıight<:Hckıınddick Fkıtl
£11pı;@t.-fr---------+-- Dth)l&ration tc, jump to the defüuıbn ot th:> kientilier.

Thee Cede e:litormairııaiııuı liıa of1he definiticrnı you
juınp,ed ta,

Fig. 1.17 Code Editor

~(\füktlıe back ııırow1ı:;ı
retum ıc, tlıe be,t pkıee
you werewôrking irı
~,,:,,ur .::tvJe. Then cfi.::k
;hekınvrırd aııı:ıwto
rn<ıvelı:,rwzırtl cıgııin.

You can also move between the declaration of a procedure and its implementation by
pressing Ctrl+Shift+] or Ctrl+Shift+[.

To customize your code editing environment,see "Customizing the Code Editor".

1.3.10. The Diagram Page

•

The bottom of the Code editor may contain one or more tabs, depending on which edition

of Delphi you have. The Code page, where you write all your code, appears in the

17

foreground by default. The Diagram page displays icons and connecting lines representing

the relationships between the components you place on a form or data module. These

relationships include siblings, parent to children, or components to properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag one

or multiple icons to the Diagram page to arrange them vertically. To arrange them

hoıizontally, press Shift while dragging. When you drag icons with parentchildren or

component-property dependencies onto the page, the lines, or connectors, that display the

dependent relationships are automatically added. For example, if you add a dataset

component to a data module and drag the dataset icon plus its property icons to the

Diagram page, the property connector automatically connects the property icons to the

dataset icon.

For components that don't have dependent relationships but where you want to show one,

use the toolbar buttons at the top of the Diagram page to add one of four connector types,

including allude, property, master/detail, and lookup. You can also add comment blocks

that connect to each other or to a relevant icon.

Frcıın 1he Objact Tree\iiew, dra~
the ictırt$ ı;,f ıhe oompöM!\1$ to
ıhe, Diııamrn pa;ıe,

/ fovieıvcd'!et ··

lı,,
ll$/i, the Diograırı ~(l(~e
1ooföur huttı:ıns--Pıoperty;
Ma'4e11Da1ııi!ao:lL«ılttıp--
10 d.ei<ig rıate the ıeltıt~nthip
betw*'eııee.ntt:ınenw sıııcl
cı:ırnpcınents and füeir

· ~·- ıance
w:ırim

for each t:vJ:ç Çf relaıi,nshirı.
C!j;k the tomrneııl blıx;k

'"----- butıı)ntoadd a cr,mment,
<fllıd the ııı.tıude ö(;•rıııectcır
button to dm.v a ;;;,:ınn,ı,::oon
tı> -0ne,1heı ®ırtnmrıtor ioon,

•

Fig. 1.18 Diagram Page Toolbar Button

18

You can type a name and description for your diagram, save the diagram, and print it when

·ou are finished .

. 11. Viewing Form Code

Forms are a very visible part of most Delphi projects they are where you design the user

interface of an application. Normally, you design forms using Delphi's visual tools, and

Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX application)

describe each component in your form, including the values of all persistent properties. To

view and edit a form file in the Code editor, right-click the form and select View as Text.

To return to the graphic view of your form, right-click and choose View as Fonn.

Use ·Vie.,+, As
Te:tt iıJ vie'« a
t!ifXtdeteıiı;tim
ot the fet'trı's
atıribut~ imhe
Code ,;,:fm:ır.

Fig. 1.19 View as Text Description of Form

You can save form files in either text (the default) or binary format. Choose Tools]. .•
Environment Options, click the Designer page, and check or uncheck the New forms as text

check box to designate which format to use for newly created forms.

19

1.3.12. The Code Explorer

ben you open Delphi, the Code Explorer is docked to the left of the Code editor window,

depending on whether the Code Explorer is available in the edition of Delphi you have. The

Code Explorer displays the table of contents as a tree diagram for the source code open in

the Code editor, listing the types, dasses, properties, methods, global variables, and

routines defined in your unit. It also shows the other units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you double­

click a· method in the Code Explorer, a cursor jumps to the definition in the class

declaration in the interface part of the unit in the Code editor.

Fig. 1.20 Code Explorer

~ıble·dbk anıt:em inthe C«le
Eı;,kırera ~d the cı.ımı ını:tıtes to

nw~ e the ıllff'$)! back and forth
vouweıe in
tode *'.liiXır.

c.'ff;h i!eırı in lhe Cı>.1e Ewl,mer has
an ioon tlıatdesignııtes iıs type,

Options and click the Explorer tab.

To configure how the Code Explorer displays its contents, choose Toolslfinvironınent
ı,

1.3.13. The Project Manager

When you first start Delphi, it automatically opens a new project. A project includes

several files that make up the application or DLL you are going to develop. You can view

20

and organize these files such as form, unit, resource, object, and library files in a project

management tool called the Project Manager. To display the Project Manager, choose

Viewjl'roject Manager.

Fig. 1.21 Project Manager

You can use the Project Manager to combine and display information on related projects

into a single project group. By organizing related projects into a group, such as multiple

executables, you can compile them at the same time. To change project options, such as

compiling a project, you can use Setting project options.

1.3.14. The Project Browser

The Project Browser examines a project in detail. The Browser displays classes, units, and

global symbols (types, properties, methods, variables, and routines) your project declares or

uses in a tree diagram. Choose Viewllsrowser to display the Project Browser .

..
•

21

>

·•,tl<ıt#i'*'
'»' 001(){$,,,&

·· 4'° t>w~:htm'dt;
il-,. (t&ı-t:f't~l$M

The Project Brı:wıliıerhııa t.vo
resiı~b ı:«ııes: the
ltı$[>a'lı;,ı rxu:ı.e • .
and ıhe, Deroi!D
lr~peı:ıtorp,..rre lvııs three 11:tbs
fer gl~!s., elaıwes, iirıd ıırıit$.
Gkıbok; clit,plays ehzses,
types, prı:peıtite, mi!lhods,
wıriı'lbles, ıınd ıı:ıu!ınetı.
01asse$ dieıploys ckıoc-eı in a
!ıieıaıchio..<ıl clkıgrnın.
Llniw displays unittı, ıtlerıtmers
deciaıecl in i:\UCh urırı. aad ıhe
oiher urılıs 1hat ııse· ıınd are.
utedbr ~tıch uni!.

*' ltt:tm·,.ı.prn_rlt:t}tt
·· #e 1>o•w* (kfa:i'&+:tfd.1¢'

.ı;. n.,tüti(f
~ Dl!i<fH.t.'fDt
,,, l",ıtJA<lihM
-4i ft&t

Fig. 1.22 Project Browser

By default, the Project Browser displays the symbols from units in the current project only.

You can change the scope to display all symbols available in Delphi. Choose

Toolsllinvironment Options, and on the Explorer page, check All symbols.

1.3.15. To-do lists

To-do lists record items that need to be completed for a project. You can add ojectwide

items to a list by adding them directly to the list, or you can add specific items directly in

the source code. Choose View.To-Do List to add or view information associated with a

project.

•..

Fig. 1.23 To-Do List

22

1.4. Programming With Delphi

The following sections provide an overview of software development with Delphi,

including creating a project, working with forms, writing code, and compiling, debugging;

deploying, and internationalizing applications, and including the types of projects you can
develop.

1.4.1. Creating a Project

A project is a collectionof files that are either created at design time or generatedwhen you

compile the project source code. When you first start Delphi, a new project opens. It

automatically generates a project file (Projectl.dpr), unit file (Unitl.pas), and resource file

(Unitl.dfm; Unitl.xfm for CLX applications), among others. If a project is already open

but you want to open a new one, choose either Filell-Jew] Application or FilejNewjOtherand

double-click the Application icon. Filejl-Jew] Other opens the Object Repository, which

provides additional forms, modules, and frames as well as predesigned templates such as

dialog boxes to add to your project. When you start a project, you have to know what you

want to develop, such as an applicationor DLL.

1.4.2. Adding Data Modules

A data module is a type of form that contains nonvisual components only. Nonvisual

components can be placed on ordinary forms alongside visual components. But if you plan
. .

on reusing groupsof database and system objects, or iI you want to isolate the parts of your

application that handle database connectivity and business rules, data modules provide a
convenient organizationaltool.

To create a data module, choose FilejNewjData Module. Delphi opens an empty data

module, which displays an additional unit file for the module in the Code editor, and adds

23

\

the module to the current project as a new unit. Add nonvisual components to a data

module in the same way as you would to a form.

Doıble"t'ilH.r, rıorwisual
cemp<::mmton the Compoııerıt ·
pıılette to pheethe comı:r.ırıeotin
!he data rn;;.:.lule.

Fig. 1.24 Adding Data Modules

When you reopen an existing data module, Delphi displays its components.

1.4.3. Building the user interface

With Delphi, you first create a user interface (UI) by selecting components from the

Component palette and placing them on the main form.

•
1.4.4. Placing components on a form

To place components on a form, either:

1 Double-click the component; or

2 Click the component once and then click the form where you want the component to

•

appear.

24

)>

J

Fig. 1.25 ComponentPalette

Select the componentand drag it to wherever you want on the form.

Then cfıck whereyou want 1& place, it on the forrn ".
Ctdı:rosea
o:nnr:.oııeııı frtırtı
an olphabeth::al
list.

Fig. 1.26 ComponentList

1.4.5. Setting Component Properties •

After you place components on a form, set their properties and code their event handlers...
Setting a component's properties changes the way a component appears and behaves in

~
your application. When a component is selected on a form, its properties and events are
displayedin the Object Inspector.

25

Or use ~ırsdrc,p,ı:ICJ\•ırı list t<t
telect an cb~t Here,
Buıtonı. is t'ıelecood, and its
p.ıcıpertiesa re dit1:ıt[y,~.

Select a prq>5!rtyand
tlı1n.ge . its VkıJue inthe
ıight cı:ıllmm.
Clk:k an elUpsiırto ı::pen
adiı:ıkıg b:ıx·ı•theıeyçıu
ean cim rr41e tıe
pro;.;-.ertles of a llelf);f
,:ıbjeı:::t

Yeıu~n s.;s,~ta
oomp,:.nent er ol:ı~t, on
the fe<m by cl•:Mng on it

Fig. 1.27 Setting a Component's Properties

Many properties have simple values such as names of colors, True or False, and integers.

For Boolean properties, you can double click the word to toggle between True and False.

Some properties have associated property editors to set more complex values. When you

lick on such a property value, you'll see an ellipsis. For some properties, such as size,

enter a value.

C!i:kı1ny ell~i~to
dıerAııy a prı::f>Sıty
ı,11te,rfor tr~t prcpsrtıı;

l
Cfüoken the dtıııtn aıtctı'ı t9 .$/:li$Jt fro ın 41 lı1t
ol va..lid vak~.

•

Fig. 1.28 Font Properties

26

When more than one component is selected in the form, the Object Inspector displays all

properties that are shared among the selected components. The Object Inspector also

supports expanded inline component references. This provides access to the properties and

events of a referenced component without having to select the referenced component itself.

For example, if you add a button and pop-up menu component to your form, when you

select the button component, in the Object Inspector you can set the PopupMenu property

to PopupMenul, which displays all of the pop-up menu's properties.

Set the Button component's PopupMenu property

to PopupMenul, and all of the popup

menu's properties appear when you

click the plus sign(+). Inline component

references are coloredred, and their

subproperties are colored green.

Fig. 1.29 Setting the Button Component's Popup Menu

1.4.6. Writing Code

•
~ integral part of any application is the code behind each component. While Delphi's

RAD environmentprovides most of the building blocks for you, such as preinstalled visual

and nonvisual components, you will usually need to write event handlers, methods, and

perhaps some of your own classes. To help you with this task, you can choose from
thousandsof objects in the class library.

27

.4.6.1.Writing Event Handlers

'our code may need to respond to events that might occur to a component at runtime. An

eventis a link between an occurrence in the system, such as clicking a button, and a piece

f code that responds to that occurrence. The responding code is an event handler. This

ode modifies property values and calls methods. To view predefined event handlers for a

omponent on your form, select the component and, on the Object Inspector, click the

Events tab.

Here, Buttonl is selected and its type is displayed: TButton.

Click the Events tab in the Object Inspector to see the

events that the Button component can handle.

Select an existing eventj

handler from the dropdo0

list.

Or double-click in the

cml;

end.

value column, and Delp

generates skeleton code!

for the new event

handler.

Fig. 1.30 Event Handlers
•

28

1.4.6.2. Using The Component Library

Delphi comes with a component library made up of objects, some of which are also

componentsor controls, that you use when writing code. You can use VCL components for

Windows applications and CLX components for Windows and Linux applications. The

component library includes objects that are visible at Runtime such as edit controls,

buttons, and other user interface elements as well-as non visual controls like datasets and

timers. The following diagram shows some of the principal dasses that make up the VCL
hierarchy.The CLX hierarchy is similar.

TObJeet

Exceptbn TS1reı1m TPersisteııt TCoıhObjeçt

Tc I .. r ııı .. ompommt l.,o ecnen

T I .I '~pıc.:.ıtnrı

Fig. 1.31 ComponentLibrary

Objects descended from TComponent have properties and methods that allow them to be

installed on the Component palette arrd added to Delphi forms and data modules Because

the components are hooked into the IDE, you can use tools like the Form Designer to

developapplicationsquickly. •..
Components are highly encapsulated. For example, buttons are preprogrammed to respond

to mouse clicks by firing OnClick events. If you use a button control, you don't have to

write code to handle generated events when the button is clicked; you are responsible only

for the application logic that executes in response to the click itself. Most editions of Delphi

29

e with the component library source code and examples of Delphi programmıng

hniques.

1.4.7. Compiling and Debugging Projects

After you have written your code, you will need to compile and debug your project. With

Delphi, you can either compile your project first and then separately debug it, or you can

ompile and debug in one step using the integrated debugger. To compile your program

with debug information, choose ProjccıOptions, click the Compiler page, and make sure

Debug information is checked.

Delphi uses an integrated debugger so that you can control program execution, watch

variables, and modify data values. You can step through your code line by line, examining

the state of the program at each breakpoint. To use the integrated debugger, choose

Toolsll'ıebugger Options, click the General page, and make sure Integrated debugging is

checked.

You can begin a debugging session in the IDE by clicking the Run button on the Debug

toolbar, choosing Run.Run, or pressing F9.

•
-Choose any of the debugging

commands from the Run

menu. Some commands are ••also available on the toolbar.

Run button

Fig. 1.32 Compiling and Debugging

30

With the integrated debugger, many debugging windows are available, including

Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and Event

Log. Display them by choosing Viewllrebug · Windows. Not all debugger vıews are

available in all editions of Delphi.:

You can combine several

debugging windows for

easier use.

Fig. 1.33 Debugging

Once you set up your desktop as you like it for debugging, you can save the settings as the

debugging or runtime desktop. This desktop layout will be · used whenever you are

debugging any application.

1.4.8. Deploying Applications

You can make your application available for others to install and run by deploying it When•

you deploy an application, you will need all the required and supporting files, such as the
~

executables, DLLs, package files, and helper applications. Delphi comes bundled with a

setup toolkit called InstallShield Express that helps you create an installation program with
•

these files. To install InstallShield Express, from the Delphi setup screen, choose

InstallShield Express Custom Edition for Delphi.

31

1.4.9. Internationalizing Applications

Delphi offers several features for internationalizing and localizing applications. The IDE

and the VCL support input method editors (IMEs) and extended character sets to

internationalize your project. Delphi includes a translation suite, not available in all editions

of Delphi, for software localization and simultaneous development for different locales.

With the translation suite, you can manage multiple localized versions of an application as

part of a single project.

The translation suite includes three integrated tools:

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.

• Translation Manager, a table for viewing and editing translated resources.

• Translation Repository, a shared database to store translations.

To open the Resource DLL wizard, choose FilelNewlOther and double-click the Resource

DLL Wizard icon. To configure the translation tools, choose Tools! Translation Tools

Options.

1.4.10. Types of Projects

All editions of Delphi support general-purpose 32-bit Windows programming, DLLs,

packages, custom components, multithreading, COM (Component Object Model) and

automation controllers, and multiprocess debugging. Some editions support server

applications such as Web server applications, database applications, COM servers, multi­

tiered applications, CORBA, and decision-support systems.
•

1.4.10.1. CLX Applications

You can use Delphi, to develop cross-platform 32-bit applications that run on both the

Windows and Linux operating systems. To develop a CLX application, choose File!

NewlCLX Application. The IDE is similar to that of a regular Delphi application, except

that only the components and items you can use in a CLX application appear on the

32

Component palette and in the Object Repository. Windows-specific features supported on

Delphi will not port directly to Linux environments.

1.4.10.2. Database Applications·

Delphi offers a variety of database and connectivity tools to simplify the development of

databaseapplications.To create a database application, first designyour interfaceon a form

using the Data Controls page components. Second, add a data source to a data module

using the Data Accesspage. Third, to connect to various database servers, add a dataset and

data connection component to the data module from the previous or correspondingpages of
the followingconnectivitytools: .

• dbExpress is a collection of database drivers for cross-platform applications that provide

fast access to SQL database servers, including DB2, Informix, InterBase, MSSQL,

MySQL, and Oracle. With a dbExpress driver, you can access databases using
unidirectionaldatasets.

• The Borland Database Engine (BDE) is a collection of drivers that support many popular

database formats, including dBASE, Paradox, FoxPro, Microsoft Access, and any ODBC
data source.

• ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,

including relational and nonrelational databases, e-mail and file systems, text and graphics,
and custombusiness objects.

• InterBase Express (IBX) components are based on the custom data access Delphi

component architectures. IBX applications provide access to advanced InterBase features

and offer the highest performance component interface.for InterBase 5.5 and later. IBX is

c;mpatible with Delphi's library of data-aware components. Certain database connectivity
tools are not available in all editionsof Delphi.

33

1.4.11. BOE Administrator

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliasesused by data-awareVCL controls to connect to databases.

1.4.12. SQL Explorer (Database Explorer)

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it to

create database aliases, view schema infoımation, execute SQL queries, and maintain data
dictionariesand attribute sets.

1.4.13. Database Desktop

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and dBase
databasetables in a variety of formats.

1.4.14. Data Dictionary

When you use the BDE, the Data Dictionary provides a customizable storage area,

independent of your applications, where you can create extended field attribute sets that

describe the content and appearance of data. The Data Dictionary can reside on a remote
server to share additional information

1.4.15. Custom Components •

The components that come with Delphi are preinstalled on the Componentpalette and offer

a range of functionality that shouldbe sufficient for most of your developmentneeds. You

could program with Delphi for years without installing a new component, but you may

sometimes want to solve special problems or display particular kinds of behavior that

require custom components. Custom components promote code reuse and consistency

34

across applications. You can either install custom components from third-party vendors or

create your own. To create a new component, choose Componentll-Iew Component to
display the New Componentwizard.

1.4.16. DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be called

by applications and by other DLLs. A DLL contains code or resources typically used by
more than one application.

1.4.17. COM and ActiveX

Delphi supports Microsoft's COM standard and provides wizards for creating ActiveX

controls. Choose FilelNewlOtherand click the ActiveX tab to access the wizards. Sample

ActiveX controls are installed on the ActiveX page of the Component palette. Numerous

COM server components are provided on the Servers tab of the Component palette. You

can use these components as if they were VCL components. For example, you can place

one of the Microsoft Word components onto a form to bring up an instance of Microsoft
Word within an application interface.

1.4.18. Type Libraries

Type libraries are files that include information about data types, interfaces, member

functions, and object classes exposed by an ActiveX control or server. By including a type. .
library with your COM application or ActiveX library/you make information about these.
entities available to other applications and programming tools. Delphi provides a Type

Library editor for creating andmaintaining type libraries.

1.5. Customizing The Desktop

This chapter explains someof the ways you can customize the tools in Delphi's IDE.

35

1.5.1. Organizing Your Work Area

The IDE provides many tools to support development, so you'll want to reorganize your

work area for maximum convenience. You can rearrange menus and toolbars, combine tool

windows, and save your new desktop layout.

1.5.2. Arranging Menus and Toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette by

clicking the grabber on the left-hand side of each one and dragging it to another location.

You can move menus and toolbars within the ma.ın window. Drag th~
grabl~r (the double bar on the left) of arı lrıdivi1ua! to::ı!bar to move it

Fig. 1.34 Arranging Menus and Toolbars

You can separate parts from the main window and place them elsewhere on the screen or

remove them from the desktop altogether. This is useful if you have a dual monitor setup.

Main window
organized

Fig. 1.35 Main Window

36

"ou can add or delete tools from the toolbars by choosing Viewjf'oolbars.Customize. Click

e Commands page, select a category, select a command, and drag it to the toolbar where

. u want to place it.

On the Commands
pag~,oo~ct
command and drag it
onto anytoolbar. ~
On the Options page,
clickShowtooltips to
ınake sure too hints for
components and
toolbar loons: appeat

Fig. 1.36 Customize Command

1.5.3. Docking Tool Windows

You can open and close individual tool windows and arrange them on the desktop as you.

wish. Many windows can also be docked to one another for easy management. Docking

which means attaching windows to each other so that they move Together helps you use

screen space efficiently while maintaining fast access to tools. From the View menu, you

can bring up any tool window and then dock it directly to another. For example, when you

first open Delphi in its default configuration, the Gode Explorer is docked to the left of the

Code editor. You can add the Project Manager to the first two to create three docked

windows.

37

Here the Project Manager and Code

Explorer are docked to the Code editor.

~i.n.do1.<~!:>.ı- !lcse,age!'e, Sy::Vti.1.:5, VZ!!ı:;i.a1ıt;.e,., ~.1.~ae:;1 Gı:aph:ic.%, ı;.ont-;:..
t.ıU\tlOG.!'r, St:dCtı:::l;ş;

You can combine, or
TFor-.ml ,,, c1aı;.s {Tfcırmj

S~H':'tCf!::ıJ...; '!'l,u~t.Ol~;.
-Chec:kBoxl: TChec:k'Box;:
L:eı.t.ıell: 'TL.ab:-:.t;

"dock'twindowswith either grabbers,

as on the right, or tabs, as on page 5-4.
{ P.ı:iv.;Jte de.:::leı:<Jti.v:;s: }

JHdtlic·
{ Imt>1 ic cteı~l.nret-im1s

Trortwl;

Fig. 1.37 Docking Tool Windows

To dock a window, click its title bar and drag it over the other window. When the drag

outline narrows into a rectangle and it snaps into a comer, release the mouse. The two

windows snap together.

To get docked windows with

grabbers, release the

mouse when the drag

outline snaps to the

window's corner.

M~ssaç:es,SysUtil:s, vec ıeoce, cıassee. ccepnıce , Con:
$~ctCt-ı:·1"~:

~tfoı.::mı •• cj.eas nrorm)_
tu!;,t.On1; Tthıı.:toı:~;

Fig. 1.38 Two Windows Snap Together

38

You can also dock tools to form tabbed windows.

To get docked windows that are

tabbed, release the mouse before

the drag outline snaps to the other

window's comer.

£).nrb1*i», 1h-:~.tHttt:~>, 1Jy~1JtH::, ver'aenue., Cl
t'itıloçrs. $r,,ciCı:.r:ı~;

:Bı..ıt.t.Ol'.:l:TBUt,~on;
<.'lı~t:kikıxl: 7Chı::-.t!'~B.ı:ıx;
Lat.eıı; TLt~b:::L

~ Pr:.~e.te rJe,c1a.r,H..:ı~::ıs f
ı;ınl.üit

f f>ı~_h).1.<: .;1,;:ı,e,2~~.Jti-OfoS !

Fig. 1.39 Docking Tools to Form

To undock a window, double click its grabber or tab, or click and drag the tab outside of

the docking area. To tum off automatic docking, either press the Ctrl ke} while moving

windows around the screen, or choose Tools[Environment Options, click the references

page, and uncheck the Auto drag docking check box.

39

1.5.4. Saving Desktop Layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE includes

a pick list of the available desktop layouts and two icons to make it easy to customize the

desktop.

&i.vB current
desktop

Named deskiop
settings are listed here.

Set debug
desktop

Fig. 1.40 Saving Desktop Layouts

Arrange the desktop as you want, including displaying, sizing, and docking particular

windows. On the Desktops toolbar, click the Save current desktop icon or choose

Viewlfresktops'Save Desktop, and enter a name for your new layout.

Enter a name for the desktop layout
you want to save and c!iok OK

Fig. 1.41 Entering the Name For Desktop

1.5.5. Customizing The Component Palette " •

In its default configuration, the Component palette displays many useful objects organized

functionally onto tabbed pages. You can customize the Component palette by:

• Hiding or rearranging components.

• Adding, removing, rearranging, or renaming pages.

• Creating component templates and adding them to the palette.

40

• Installing new components.

1.5.6. Arranging The Component Palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use the

Palette Properties dialog box. You can open this dialog box in several ways:

• Choose ComponentJConfıgure Palette.

• Choose Toolsjlinvironment Options and click the Palette tab.

• Right-click the Component palette and choose Properties.

You can rearrange the pal ette

and add new pages.

Fig. 1.42 Palette Properties Dialog Box

1.5.7. Creating Component Templates ..
•

•

Component templates are groups of components that you add to a form in a single

operation. Templates allow you to configure components on one form, then save their

arrangement, default properties, and event handlers on the Component palette to reuse on

other forms.

41

To create a component template, simply arrange one or more components on a form and set

their properties in the Object Inspector, and select all of the components by dragging the

mouse over them. Then choose Component/Create Component Template. When the

Component Template Information dialog box opens, select a name for the template, the

palette page on which you want it to appear, and an icon to represent the template on the

palette.

After placing a template on a form, you can reposition the components independently,

reset their properties, and create or modify event handlers for them just as if you had

placed each component in a separate operation.

Fig. 1.43 Creating ComponentTemplates •
1.5.8. Installing Component Packages

Whether you write customcomponentsor obtain them from a vendor, the componentsmust
•

be compiled into a package before you can install them on the Component palette.A

package is a special DLL containing code that can be shared among Delphi applications,

the IDE, or both. Runtimepackagesprovide functionalitywhen a user runs

an application.Design-timepackages are used to install components in the IDE.

Delphi packages have a .bpl extension.If a third-partyvendor's components are already

42

compiled into a package, either follow the vendor's instructions or choose

Component/Install Packages.

These components come preinstalled

in Delphi. When you install new

components from third-party vendors,

their package appears in this list.

Click Components to see what

Fig. 1.44 Installing Component Packages

1.5.9. Using Frames

A frame (TFrame), like a form, is a container for components that you want to reuse. A

frame is more like a customized component than a form. Frames can be saved on the

Component palette for easy reuse and they can be nested within forms, other frames, or

other container objects. After a frame is created and saved, it continues to function as a unit

and to inherit changes from the components (including other frames) it contains. When~

frame is embedded in another frame or form, it continues to inherit changes made to the

frame from which it derives.

To open a new frame, choose File I New I Frame.
•

You can add whatever visual

or nonvisual components

you need to the frame. A new

unit is automatically added to

the Code editor.

Fig. 1.45 Opening New Frame

43

1.5.10. Adding ActiveX Controls

You can add ActiveX controls to the Component palette and use them in your Delphi

projects. Choose Componentllmport ActiveX Control to open the Import ActiveX dialog

box. From here you can register new ActiveX controls or select an already registered

control for installation in the IDE. When you install an ActiveX control, Delphi creates and

compiles a "wrapper" unit file for it.

1.5.11. Setting Project Options

If you need to manage project directories and to specify form, application, compiler, and

linker options for your project, choose Project [Options. When you make changes in the

Project Options dialog box, your changes affect only the current project; but you can also

save your selections as the default settings for new projects.

1.5.12. Setting Default Project Options

To save your selections as the default settings for all new projects, in the lower left comer

of the Project Options dialog box, check Default. Checking Default writes the current

settings from the dialog box to the options file defproj.dof, located in the Delphi7\Bin

directory. To restore Delphi's original default settings, delete or rename the defproj .dof file.

1.5.13. Specifying Project and Form Templates As The Default

•
When you choose File INewlApplication, Delphi creates a standard new application with an

empty form, unless you specify a project template as your default project. You can save

your own project as a template in the Object Repository on the Projects page by choosing

Projectl/vdd to Repository . Or you can choose from one of Delphi's existing project

templates from the Object Repository.

44

To specify a project template as the default, choose Tools or Repository. In the Object

Repository dialog box, under Pages, select Projects. If you've saved a project as a template

on the Projects page, it appears in the Objects list. Select the template name, check New

Project, and click OK.

The Object Repository's pages

contain project templates only,

form templates only, or a

combination of both.

To set a project template as the

default, select an item in the

Objects list and check New

Project .To set a form template

as the default, select an item in

· the Objects list and check New

Form or Main Forın.

Fig. 1.46 Specifying Project and Form Templates As The Default

Once you've specified a project template as the default, Delphi opens it automatically

whenever you choose File [New [Application.

In the same way that you specify a default project, you can specify a default new form and

a default main form from a list of &xisting form templates in the Object Repository. The

default new form is the form created when you choose File [New [Form to add an additional

form to an open project. The default main form is the /orm created when -you open a new

application. If you haven't specified a default form, Delphi uses a blank form. You can

override your default project or form temporarily by choosing File [New] Other and

selecting a different template from the New Items dialog box.

45

1.5.14. Adding Templates To The Object Repository

You can add your own objects to the Object Repository as 'templates to reuse and share

with other developers over a network. Reusing objects lets you build families·. of

applications with common user interfaces and functionality that reduces development time

and improves quality.

For example, to add a project to the Repository as a template, first save the project and

choose ProjectJAdd To Repository. Complete the Add to Repository dialog box.

Enter a title, description,

and author. In the Page list

box, choose Projects so that

your project will appear on

the Repository's Projects

tabbed page.

Fig. 1.47 Adding Femplates To The Object Repository

•
The next time you open the New Items dialog box, your-project template will appear on the

P;ojects page (or the page to which you had saved it).

1.5.15. Setting Tool Preferences

You can control many aspects of the appearance and behavior of the IDE, such as the Form

Designer, Object Inspector, and Code Explorer. These settings affect not just the current

46

project, but projects that you open and compile later. To change global IDE settings for all

projects, choose Tools JEnvironment Options.

1.5.16~ Customizing The Form Designer

The Designer page of the ToolsJEnvironment Options dialog box has settings that affect the

Form Designer. For example, you can enable or disable the "snap to grid" feature, which

aligns components with the nearest grid line; you can also display or hide the names, or

captions, of nonvisual components you place on your form.

1.5.17. Customizing The Code Editor

Orie tool you may want to customize right away is the Code editor. Several pages in the

ToolsJEditor Options dialog box have settings for how you edit your code. For example,

you can choose keystroke mappings, fonts, margin widths, colors, syntax highlighting, tabs,
and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on the

Code Insight page of Editor Options. In the Editor Options dialog box, click the Help

button ori the General, Display, Key Mappings, Color, and Code Insight pages.

1.5.18. Customizing The Code Explorer

When you start Delphi, the Code Explorer opens automatically. If you don't want Code
•

Explorer to open automatically, choose ToolsJEnvironment Options, click jhe-Explorer tab,
•and uncheck Automatically show Explorer.

You can change the way the Code Explorer's contents are grouped within the Code

Explorer by right-clicking in the Code Explorer, choosing Properties, and, under Explorer

categories, checking and unchecking the check boxes. If a category is checked, elements in

that category are grouped under a single node. If a category is unchecked, each element in

47

that category is displayed independently on the diagram's trunk. For example, if you

uncheck the Published category, the Published folder disappears but not the items in it.

In the Code Explorer, you

can sort all source elements·

alphabetically or in the order

in which they are declared

in the source file

To display the folder for

each type of source

element in the Code

Explorer, check an

Explorer category:

Fig. 1.48 Customizing The Code Explorer

•.
•

48

CHAPTER2:MICROS0FTSQLSERVER

2. WHAT IS SQL SERVER

SQL Server is a client/server relational database management system (RDBMS). In this

section, client/server architecture is explained and you will be introduced to some of the

features and characteristics of SQL Server.

rmpurt deta
8HPOrt ıfatcı

Owrıer:
uete trt-.eted;
stae:
Spare .ıvııOııhlt'!;
Databa,e ontionJ:
Numlu.,r u1 OM!;l"li

(ll>.05.2006 ll:54:)7
JMe,d;ıt<'ıbaste pr<ıportie,ı:

vıew databose diagr.ıun
,ıınrık date.bar.~

generate SQL nripts

Lut dat,ıba,:ı: bıu:kop: Nunt-
lut diff,:cr,mtfal l>.:ıı:kup; Nor,,:,;
ı . .ast tl'anuıı:tınıı 109 hıı.drup: ~~ot,ı,backup datııbase

, restere d.ıt:abcıı.e
ıruncete treas ecucu lov

~~ Mainterıance !'taintenanre plans: Non~

ııew maiııt~o;,nce JJlatı

•
Figure 1.1 : A external view

2.1 Client/Server Architecture ..
•

The terms client, server, and client/server can be used to refer to very general concepts

or specific items of hardware or software. At the most general level, a client is any

component of a system that requests services or resources from other system

components. A server is any system component that provides services or resources to

other system components.

For example, when you print a document from your workstation on a network, the

workstation is the client and the print spooling machine is the server.

49

Any client/server data-based system consists of the following things:

The server. A collection of data items and supporting objects organized and presented

to facilitate services, such as searching, sorting, recombining, retrieving, updating, and

analyzing data. The database consists of the physical storage of data and the database

services. All data access occurs through the server; the physical data is never directly

accessed.

The client. A software program that might be used interactively by a person or that

could be an automated process. This includes all software that interacts with the server,

either requesting data from the database or sending data to the database. Examples are:

management utilities-those that are part of the SQL Server product and those bought

separately, ad-hoc query and reporting software, custom applications, off-the-shelf

applications, and Web server-based applications.

The communication between the client and the server. The communication between

the client and the server is largely dependent on how the client and server are

implemented. Both physical and logical levels of communication can be identified.

When you communicate with someone using the telephone, the telephone system is the

physical layer and a spoken natural language is the logical layer of communication. For

a data-based system, the physical communication can be a network, if the server and the

client are on different computers. It can be via inter-process communication if the server

and the client are on the same computer. The logical communication may be low-level

operating system calls, a proprietary data access language, or the open Structured Query

Language (SQL).

All implementations of data-based systems fall into one of three categories:

File-based systems. Commonly found on personal computers, these systems use an

application that directly accesses data files on a local hard drive or on a network file

server. These systems implement the database services and the logical communication

as part of the client application, only the physical communication and the physical

storage of data are external to the client application. In this implementation, the client

application fulfills the role of client and the role of server, as shown in Figure 1.1.

50

Illı
C:

Local Data
N:

Shared Network Da.ta

Figure 1.2 : File-based system.

Host-based systems. Typically used in legacy mainframe and mini-computer

environments, these systems implement all or most of the database services and client

functionality on a large central computer. The user views and interacts with the client

application remotely using a terminal. The communication between the client and the

database is done on the host computer. In this implementation, the host computer fulfills

the role of client and the role of server, as shown in Figure 1 .2.

Host ApplicatiO'.rı J

I
T~rmtnaı

•

Figure 1.3 : Host-based system.

Client/server systems. These systems are designed to separate database services from

the client, allowing the communication between them to be more flexible and open.

Database services are implemented on a powerful computer, allowing centralized

management, security, and shared resources-therefore, the server in client/server is the

database and its services. Client applications are implemented on a variety of platforms,

51

using a variety of tools. This process allows greater flexibility and high quality user

applications-this is the client in client/server. Figure 1.3 shows the client application

and the database server in the client/server implementation.

cııerıt Applicatı.orı

Database Server
(ROBMS)---

•
Figure 1.4 : Client/Server system.

The following table compares some of the advantages and disadvantages of file-based,

host-based, and client/server systems. Many organizations now use a mix of these

systems. For example, data capture may be performed on a host-based system with

thousands of terminals. Data is then queried, manipulated, and analyzed by a

client/server system, either directly on the host, or after transferring the data to another

database.

•
File-based Host-based Client/Server••

Low cost High initial cost • Variable cost
•

Low security High security Medium to high security

Low reliability High reliability Medium to high reliability

Application development Application Application development

possible with few skills development requires requires skilled staff

skilled staff

Well-suited to small Not appropriate for Can be used for small

52

databases and end-user small or end-user databases. Not appropriate for

databases databases end-userdatabases

Scalable to medium Scalable to very large Scalable to very large

databases (- 50 MB) databases (1 Oüüs of databases (1000s of GB)

GB)

Minimal centralized Excellent centralized Excellent centralized

management management management

Highly flexible end-user Inflexible end-user Flexible end-user interface

interface interface

Low to medium vendor High vendor lock-in Medium vendor lock-in

lock-in

Uses network Uses network Can use network efficiently

inefficiently efficiently

Hundreds of commercial data-based systems are available. These systems range from

those comprised of a single application running on a single personal computer to those

comprised of hundreds of applications running on complex networks of mainframe,

mini, and personal computers. All conunercial data-based systems have these three

basic components. Clearly, therefore, these basic components could all occur on a single

computer or may be distributed across many computers. Try to identify these

components whenever you encounter a data-based system. In a large system, each..
component may be further layered into many parts, but you should always be able to

distinguish the database, the client, and the communication between the two .
•..

NOTE

The key to understanding client/server (and specifically SQL Server) is that the

database server (SQL Server) is a fully functional process or application that provides

database services-compare this to a file on a network file server, which is a static

storage structure only. Clients interact with these database services through a clearly

defined communication interface, allowing for tight control and security. Clients do not

53

have direct access to data; they always communicate with the database server, which in

tum interacts with the physical data. SQL Server's own management utilities are clients

that can run on the same computer or on another computer and have no more direct

access to data than other clients do.

2.2 Transact-SQL

SQL Server uses Transact-SQL, a version of the Structured Query Language (SQL), as

its database query and programming language. SQL is a set of commands that allows

you to specify the information that you want to retrieve or modify. With Transact-SQL,

you can access data and query, update, and manage relational database systems.

The American National Standards Institute (ANSI) and the International Standards

Organization (ISO) have defined standards for SQL. Transact-SQL supports the latest

ANSI SQL standard published in 1992, called ANSI SQL-92, plus many extensions to
provide increased functionality.

2.3. SQL Server Platforms

Figure 1 .4 summarizes the different platforms supported by SQL Server and SQL
Server clients.

MS.DOS
ı..v.ın.df.:>•.wo,;,$..x

cıı.,.n.t1-:l; : - j

a~·-·.·.· , ,.::=,.:ı --=< .·.·_-'.\:'>..,,~
wt odov.ıı;..NT

•..
Figure 1.5 : SOL Server platforms.

SQL Server runs on the operating systems shown in the following table. You can use

some or all of the operating system platforms to create and execute applications.

54

Platform Server software Client operating system

Microsoft Windows 95 or later Yes-runs as an Yes

application

Microsoft Windows NT Yes-runs as a Yes

Workstation 4.0 or later servıce

Microsoft Windows NT Server Yes-runs as a Yes

4.0 servıce

Microsoft Windows NT Server Yes-runs as a Yes

Enterprise Edition 4.0 servıce

Windows 3.x No Yes (with some

limitations)

MS-DOS No Yes (with some

limitations)

Third party No Yes-such as UNIX and

Apple Macintosh

2.4. SQL Server Architecture

2.4.1. Overview
•

SQL Server provides many structured architectures that hide underlying technical

details, simplifying the development, maintenance, and management of your database

applications.

2.4.2. Data Access Architecture

Users use SQL Server databases through an application that uses a data object interface

or an API (Figure 1.8) to gain access to SQL Server.

55

Data
Object
ırıtertacıas

RDO

• ..
.App!:ica:tiorı
Programming
ırıterlace·s OLE.OB.• ODSC

Figure 1.6: Application interfaces.

SQL Server supports commonly used and emerging database interfaces. It

supports low-level native APls, as well as easy-to-use data object interfaces.

2.4.3.Application Programming Interfaces (APis)

A database application programming interface (AP!) defines how to write an

application to connect to a database and pass commands to the database. SQL Server •

provides native support for two main classes of database APIs, which in turn determine

the data object interface that you öan use. Use the database APis to have more control

over application behavior and to gain better performance.
•

OLE DB

OLE DB is a Component Object Model (COM)-based data access interface. It supports

applications written to use OLE DB or data object interfaces that use OLE DB. OLE

DB is designed to work with relational databases (such as those in SQL Server) as well

as with non-relational data sources (such as a full-text index or an e-mail message

store).

56

OLE DB uses a provider to gain access to a particular data source. Providers for SQL

Server, Oracle, Jet (Microsoft Access databases), and ODBC are supplied with SQL

Server. Using the OLE DB provider for ODBC, OLE DB can be used to gain access to

any ODBC data source.

ODBC

ODBC is a call-level interface. It communicates directly with SQL Server and supports

applications or components that are written to use ODBC or data object interfaces that

use ODBC. ODBC is designed to work with relational databases (such as those in SQL

Server) only, although there are limited ODBC drivers available for some nonrelational

data sources.

ODBC uses a driver to gain access to a particular data source.

Data Object Interfaces

In general, data object interfaces are easier to use than database APis but may not

expose as much functionality as an APL

ActiveX Data Objects (ADO)

ActiveX Data Objects (ADO) encapsulates the OLE DB API in a simplified object

model that reduces application development and maintenance costs. ADO can be used
••from many development environments, such as Microsoft Visual Basic, Microsoft

Visual C++, Visual Basic for Applications, Active Server Pages (ASP), and the
•

Microsoft Internet Explorer scripting object model. These characteristics make ADO the

primary database interface for developing client/server business applications.

Remote Data Objects (RDO)

Remote Data Objects (RDO) maps over and encapsulates the ODBC API. RDO

can be used from Microsoft Visual Basic and Visual Basic for Applications.

57

Administration Architecture

SQL Server provides a variety ofmanagement tools that minimize and automate routine

administrative tasks. Figure 1 .9 shows how administrative tools use different interfaces
to communicate with SQL Server.

Batch
Utmlies

SOLSı.ııviat
Enterprise Manager

Applrca!ion
Using COM Obj.etfs

· Sal Oıstrifx.ılıtrd Managemı:ınt,
. Object$ (?OL·OMOl

Server

sot serve~Ageni ·

SOL Server
(R0Btı4S)

Figure 1. 7 : Administration architecture.
•

58

2.5. Login Authentication

A user must have a login account to connect to SQL Server. SQL Server recognizes two

login authentication mechanisms-SQL Server authentication and Windows NT

authentication (Figure 1.11)-each of which has a different type of login account.

AUTHENTICATION

\>'fındowsNT
Vertrıes Pas~vord

Wtndö'ıVS NT
Group or User

OR
$Qt Server

SQLServer
VerllieS- Pa$11ıVe>td

SOlSG~r
lcgkı At:>¢Ourtt

Figure 1.8 : Login authentication.

2.5.1.Permission Validation

SQL Server accepts Transact-SQL statements after a user's login has been successfully

authenticated. Each time a user sends a statement.BQl. Server checks that the user has

permission to carry out the action requested by the statement. If the user has permission,

the action is carried out; if not, an error is returned to the User(Figure 1.12)

Peımissıons OK;
performs.: eommaoo

Databa~e User
execuıe,s command SOL Server

chocks pormrssıons

Select • trom
members

Permission noı OK;
ıeıums eırot

Figure 1 .9 : Permission validation.

59

NOTE

In most cases, the user will be interacting with an application user interface,

unaware of the Transact-SQL statements that their actions are generating.

Database User Accounts and Roles

User accounts and roles, which identify a successfully logged-in user within a database,

are used to control ownership of objects. Permissions to execute statements and use

objects in a database are granted to users and roles. Each user account is mapped to a

SQL Server login, as shown in Figure 1.13.

Wı:mıowsın
Vı:uır~s Paşşı,v'Qfd

$OJ. Seı<vl)t Assi~O$
t.<>glrıı. to User.

.Aı:Xt,untşand RQJeş
If',

Wınoows. N'f
ôreı..ıp-0r !Js.ıl

oaıaoo~ Uoor
Acnoont

r. ,. ,.

«~~;l(fiA.:'.iil. .,.
Oatnb<'lse Role

SôlS~\©r
Logirı Accoorıt

SOLSemr
\feritles PtısswcmJ

Figure 1.1 O : Users and roles.

2.6. Introduction to SQL Server Databases

When you create a database, you set up the data storage structure. This structure,

includes at least one data file and one transaction log file. Before you create a database,
•~ou should understand how Microsoft SQL Server version 7.0 stores data, as well as the

function of the transaction log.

60

2.6.1. How Data Is Stored

When you are creating a database, you will have more insight into capacity planning,

data integrity, and performance if you understand how Microsoft SQL Server stores

data. Figure 3.1 illustrates how data is allocated for storage.

Database

Data (Ule)
.mdfor.ndf

Log {fite)
.ldf

Eıdent
(8 eönla;gvous
64<6 pages)

Figure 1.11 : Database storage allocation.

2.7. Creating Data Types

Before you can create a table, you must define the data types for the table. Data types

specify the type of information (characters, numbers, or dates) that a column can hold,
•

as well as how the data is stored. Microsoft SQL Server supplies various system data

types. SQL Server also allows user-defined data types that are based on system data
types.

System-Supplied Data Types

SQL Server provides several different data types. Certain types of data have several

associated SQL Server system supplied data types. For example, you could use the int,

61

decimal, or float data type to store numeric data. However, you should choose

appropriate data types in order to optimize performance and conserve disk space.

Categories of System-Supplied Data Types

The following table maps common types of data to SQL Server system-supplied data

types. The table includes data type synonyms for ANSI compatibility.

Type of data System-supplied ANSI synonym Number of,

data types bytes

Binary binary[(n)] - 1-8000
varbinary[(n)] binary varying[(n)]

Character char[(n)] character[(n)] 1-8000
varchar[(n)] char[acter] (8000

varying[(n)] characters)

Unicode nchar[(n)J national 2-8000
character nvarchar[(n)] char[acter][(n)] (1 - 4000

national char[acter] characters)

varying[(n)]

Date and time Datetime, - 8 (2 4-byte
smalldatetime integers)

4 (2 2-byte
~ integers)

••.• Exact numeric decimal[(p[, s])] dee 5-17
numeric[(p[, s])]

Approximate float[(n)] Double precision or 4-8
numeric real float[(n)] 4

float[(n)]

Global identifier uniqueidentifıer - 16

62

Integer int integer

smallint, tinyint

Monetary money, smallmoney

Special bit, cursor,

sysname, timestamp,

Text and image text, image

Unicode text Ntext national text

4

2, 1

8,4

1, 0-8.

0-2 GB

0-2 GB

NOTE

SQL Server supports multiple languages with the nchar, nvarchar, and

ntext Unicode string data types. Unicode strings use two bytes per

character.

Creating Tables

After you define all the data types for your table, you can create tables, add and

drop columns, and generate column values.

Creating a Table

Consider the following facts when you create tables in SQL Server. You can have up to:

• Two billion tables per database

• 1024 columns per table

• 8060 bytes per row (image and text data types each use 16 bytes P.ıer row)
•

Specifying NULL or NOT NULL

You can specify in the table definition whether to allow null values in each column, as

shown in Figure 4. 1. If you do not specify NULL or NOT NULL, SQL Server

determines whether the column may or may not accept null values based on the session­

or database-level default. However, these defaults can change, so do not rely on them.

NOT NULL is the SQL Server default; NULL is the ANSI default.

63

CREATE TABLE arluıt
(
member.J)o
ıastname
flrstrıame
middleirıitial
photogrnph
}

m&mber_ıto
shortsttırıg
shortstrlng
letter
image

NOT NULL.
NOT NULL.
NOT NULL,
NULL,
NULL,

Figure 1.12 : The CREA TE TABLE statement.

To Create a Table Using SQL Server Enterprise Manager

In this exercise, you will use SQL Server Enterprise Manager to create a table in the

library database. At this time, do not create the primary and foreign keys, indexes, or

other items listed in the library schema. Open SQL Server Enterpıise Manager.
. .

1. Expand your server group; then expand your server.

2. Expand Databases; then expand the library database.

3. Right-click Tables; then click New Table.

4. In the Choose Name dialog box, type the name titles for the table. Click OK.

5. Fill in the columns as specified in the following table. Each row represents

one column in the table.

6. Close the New Table window and save changes to the titles table .

•

64

Figure 1.13 : titles table in BookStr Database

7. Close the New Table window and save changes to the adult table.

2.8. Introduction to Views

Views are a powerful way to create permanent query definition. This lesson defines

views and discusses the advantages of views to administrators, programmers, and users.

2.8.1. What Is a View?
•

When you use a view, you can store a predefined query as an object in the database for

later use, as shown in Figure 11. 1. The tables queried in a view are called base tables.

With a few exceptions, any SELECT statement can be named and stored as a view.

65

Li:itCI' 1/:'!f W:litiı!
'tft?~Wto,t\bft,k-t~,
PJ!#a

-~tt,.rtf*J.HfO):;ç_ff

K#@P.ıvı;tı:\'.11,il\
l)Wtoo,;ı:.-ie

ı;)P,iEtifE'A(W ~\<,,T\l;fi#«
AS
~fmıtııtrıı:ı'
fR{;tJt~

$ft(Ç·
mcıı ıtı.'Jiıı.,

Figure 1.14 : How a view works.

Common examples of views include the following:

• A subset of rows or columns of a base table

• A union of two or more base tables

• A join of two or more base tables

• A statistical summary of a base table

• A subset of another view, or some combination of views and base tables

..

66

Example

t 1t lıa:ı$.copvı: ı.çı~ıt, t ı c ıes . or ıce , ,;: ı.r ree . qı..~nt-ity, c ı.s ı.e s . rea!ı,teı:D'<>.te,
a:J.ı;?;::,ı;ş,tit:fltN!:U'l'lli:i, p\mlishen:. ı:,ublit:ıt.ı,etN:eı.ııız,
l lt ıes • p•Wlişlıtı:ı: !tı~ ı.;it leş. irıı!!.~>ı::Pih:, r . ı e ıee . ı,ıuthot:ID,
e ıc ree . inf'--•::ıııt<,,t.11)1'.ı, ti;:.l,;,:ıı.t:e.,,1iı:ı.t:ıeı:

~ dbc. ~ut.hor~ UINEf:". .:ıonı

Figure 1.15 : How a view works in my project

2.8.2. Advantages of Views

Views offer several advantages, including focusing data for users, masking data

complexity, simplifying permission management, and organizing data for export to

other applications.

Focus the Data for Users

Views create a controlled environment that allows access to specific data and conceals

other data. Data that is unnecessary, sensitive, or inappropriate can be left out of a view.
~

Users can manipulate the display of data in a view, similar to a table. In addition, with

the proper permissions and a few restrictions, users can modify the data that a view

produces.

Mask Database Complexity

Views shield the complexity of the database design from the user. This means that

developers can change the design without affecting user interaction with the database.

67

In addition, users can see a friendlier version of the data by using names that are easier

to understand than the cryptic names that are often used in databases.

Complex queries, including distributed queries to heterogeneous data, can also be

masked through views. The user queries the view instead of writing the query or

executing a script.

Simplify Management of User Permissions

Instead of granting permission for users to query specific columns in base tables,

database owners can grant permission for users to query data through views only. This

'type of querying also protects changes in the design of the underlying base tables. Users

can continue to query the view without interruption.

Organize Data for Export to Other Applications

You can create a view based on a complex query that joins two or more tables and then

export the data to another application for further analysis .

•.
•..

68

CHAPTER 3: ADO COMPONENT

3.1 Working with ADO components:

~:
•·Fl!

AOOCôfflectİı:ı!',1

AC«~<>scticnl TAC;~y';:

At:ı0Qı~ry6 oı,ı;s~ctıf:i

~'AD'Otr~yl

~.
ADDQW!ly2

~i
ADÔÔ;ı.ı..ı

~'
ADÖ"ij~,:!ıı.ı•3

~!
ADÖÖ~ryS

Figure 3.1 : ADO Connection,Ado Table and ADO Query components

The dbGo components provide data acsess through the ADO framework. ADO, (Microsoft

ActiveX Data Objects) is a set of COM objects that access data through an OLE DB

provider. The dbGo components encapsulate these ADO objects in the Delphi database
architecture.

The ADO layer of an ADO-based application consists of Microsoft ADO 2.1, an OLE DB

provider or ODBC driver for the data store access, client software for the specific database

system used (in the case of SQL databases), a database back-end system accessible to the

application (for SQL database systems), and a database. All of these must be accessible to

70

the ADO-based application for it to be fully functional.The ADO objects that figure most

prominently are the Connection, Command, and Recordset objects. These ADO objects are

wrapped by the TADOConnection, TADOCommand, and ADO dataset components. The

ADO framework includes other "helper" objects, like the Field and Properties objects, but

these are typically not used directly in dbGo applications and are not wrapped by dedicated

components.Before reading about the features peculiar to the dbGo components, you

should familiarize yourself with the common features of database connection components

and datasets .The ADO page of the Component palette hosts the dbGo components. These

components let you connect to an ADO data store, execute commands, and retrieve data

from tables in databases using the ADO framework. They require ADO 2.1 (or higher) to

be installed on the host computer. Additionally, client software for the target database

system (such as Microsoft SQL Server) must be installed, as well as an OLE DB driver or

ObBC driver specific to the particular database system.Most dbGo components have direct

counterparts in the components available for other data access mechanisms: a database

connection component (TADOConnection) and various types of datasets. In addition, dbGo

includes TADOCommand, a simple component that is not a dataset but which represents an

SQL command to be executed on the ADO data store.The following table lists the ADO

components.ADO components,

TADOConnection : A database connection component that establishes a connection with

an ADO data store; multiple ADO dataset and command components can share this

· connection to execute commands, retıieve data, and operate on metadata.

TADODataSet: The primary dataset for retrieving and operating on data; TADODataSet

can retrieve data from a single or multiple tables; can connect directly to a data store or use

a TADOConnection component.

TADOTable : A table-type dataset for retrieving and operating on a recordset produced by

a single database table; TADOTable can connect directly to a data store or use a

TADOConnection component.

TADOQuery: A query-type dataset for retrieving and operating on a recordset produced

by a valid SQL statement; TADOQuery can also execute data definition language (DDL)

SQL statements. It can connect directly to a data store or use a TADOConnection

component

71

TADOStoredProc: A stored procedure-type dataset for executing stored procedures;

TADOStoredProc: Executes stored procedures that may or may not retrieve data. It can

onnect directly to a data store or use a TADOConnection component.

TADOCommand: A simple component for executing commands (SQL statements that do

not return result sets); TADOCommand can be used with a supporting dataset component,

or retrieve a dataset from a table; It can connect directly to a data store or use

TADOConnection component.

3.2 Connecting to ADO data stores

DbGo applications use Microsoft ActiveX Data Objects (ADO) 2. 1 to interact with an OLE

DB provider that connects to a data store and accesses its data. One of the items a data store

can represent is a database. An ADO-based application requires that ADO 2. 1 be installed

on the client computer. ADO and OLE DB is supplied by Microsoft and installed with

Windows.

An ADO provider represents one of a number of types of access, from native OLE DB

drivers to ODBC drivers. These drivers must be installed on the client computer. OLE DB

drivers for various database systems are supplied by the database vendor or by a third­

party. If the application uses an SQL database, such as Microsoft SQL Server or Oracle, the

client software for that database system must also be installed on the client computer.

Client software is supplied by the database vendor and installed from the database systems

CD (or disk).

To connect your application with the data store, use an ADO connection component

(TADOConnection). Configure the ADO connection component to use one of the
••~vailable ADO providers. Although TADOConnection is not strictly required, because

ADO command and dataset components can establish connections directly using their

ConnectionString property, you can use TADOConnection to share a single connection

among several ADO components. This can reduce resource consumption, and allows you to

create transactions that span multiple datasets.Like other database connection components ,

TADOConnection provides support for

72

Controlling connections

Controlling server login

Managing transactions

Working with associated datasets

Sending commands to the server

Obtaining metadata

In addition to these features that are common to all database connection components,

TADOConnection provides its own support for

A wide range of options you can use to fine-tune the connection .

The ability to list the command objects that use the connection .

Additional events when performing common tasks.

Connecting to a data store using TADOConnection

One or more ADO dataset and command components can share a single connection to a

data store by using TADOConnection. To do so, associated dataset and command

components with the connection component through their Connection properties. At

design-time, select the desired connection component from the drop-down list for the

Connection property in the Object Inspector. At runtime, assign the reference to the

Connection property. For example, the following line associates a TADODataSet

component with a TADOConnectimı component.

ADODataSetl.Connection := ADOConnectionl; •..
The connection component represents an ADO connection object . Before you can use the

connection object to establish a connection, you must identify the data store to which you

want to connect. Typically, you provide information using the ConnectionString property.

ConnectionString is a semicolon delimited string that lists one or more named connection

parameters. These parameters identify the data store by specifying either the name of a file

73

that contains the connection information or the name of an ADO provider and a reference

identifying the data store. Use the following, predefined parameter names to supply this

information:

Connection parameters

Parameter

Provider:

Data Source:

Description

The name of a local ADO provider to use for the connection.

The name of the data store.

File name: The name of a file containing connection information.

Reıiıote Provider: The name of an ADO provider that resides on a remote machine.

Remote Server: The name of the remote server when using a remote provider.

Thus, a typical value of ConnectionString has the form

Provider=MSDASQL.1 ;Persist Security Info=False;User ID=sevgi;Extended

Properties="DRIVER=SQL Server;SERVER=YOUR-

6B3AODE46;UID=sevgi;APP=Enterprise;WSID=YOUR-

6B3AODE46;Network=DBMSLPCN;Trusted_ Connection=Yes"

Note:

The connection parameters in ConnectionString do not need to include the Provider or

Remote Provider parameter if you specify an ADO provider using the Provider property .

Similarly, you do not need to specify the Data Source parameter if you use the

DefaultDatabase property.

•

In addition, to the parameters listed above, ConnectionŞtring can include any connection

parameters peculiar to the specific ADO provider you are using. These additional

connection parameters can include user ID and password if you want to hardcode the login

information.

At design-time, you can use the Connection String Editor to build a connection string by

selecting connection elements (like the provider and server) from lists. Click the ellipsis

74

button for the Connection.String property in the Object Inspector to launch the Connection

String Editor, which is an ActiveX property editor supplied by ADO.

Once you have specified the ConnectionString property (and, optionally, the Provider

property), you can use the ADO connection component to connect to or disconnect from

the ADO data store, although you may first want to use other properties to fine-tune the

connection . When connecting to or disconnecting from the data store, TADOConnection

· lets you respond to a few additional events beyond those common to all database

connection components ..

Note:

If you do not explicitly activate the connection by setting the connection component's

Connected property to True, it automatically establishes the connection when the first

dataset component is opened or the first time you use an ADO command component to

execute a command.

··Swc,;:,:i(),.l!\l":li:<:tıvr,

Figure 3.2: How Ado Connection does in Delphi (stepl)

75

Figure 3.3 : How Ado Connection does in Delphi (step2)

Figure 3.4 : How Ado Connection does in Delphi (step 3)

76

CHAPTER 4 : FLOWCHARTS OF PROGRAM

4.1 Flowchart Of Login Form

DB

..

Start

Login Menu

Choose
Usemame

Enter Password

If
password

is ok?

No Show Message

Yes

Enter Suitable
Fonn

•

77

4.2 Flowchart Of Author-Publisher-Book Information Form

Record
DB

Delete
DB

..

Yes

Form

Data

Process

If datas
are ok?

No Show Message

If datas
are ok?

Enter Suitable
Form

•

78

4.3 Find Process

Find
DB

Input
Search
Data

Find Process

Compare
with

database

The Record
Found

79

The Record Not
Found

•

4.4 Finding between two dates datas

Find
DB

..

Input Start
and Finish

Date

Find Process

Compare
with·

Show the Found

80

Doesn't
show the records

•

4.5 Stok Input-Output

Find Process

Find is
success

Yes

Input
quantity

Input-Out
DB

Input-Out
Quantity to stıck

4.6 WATERFALL MODEL

•
Requireınents,

definitions, analysis

System and
software design

İmplementation
and unit testing

Integration and
system testing

Operation and
maintenance

81

CHAPTER 5 : BOOK STORE SYSTEM

5.1. Login Form

Login Form consists of user name and password entry. For the program security and to

respect all user.

Figure 5.1 : Login Form

If you enter wrong password or usemame, program will give a message to you. Of

course it is possible. But, program will guide you. What is wrong. When you enter

suitable password and user name you will see Main Form Window.

5.2. Main Form

When you enter the system as a user, you will meet with main form with these types

menu.

Figure 5.2: Main Form

82

5.3 Authors Form

Figure 5.3: Authors Form

In this form, you can entry a new record or delete the exist records about authors which

name,sumame,mobile phone etc... ,also update authors informations.You can search

authors acording to name, whatever you know as you see on figure above, his/her.Also

search process and record tour is optional.If you want to search and record tour . in

authors,you 'can click right elik mouse button and show~search or navigator which the

commands it uses.You can print out the informations about authors in the following

type.

..

83

AUTHOR INFORMATION 6/3/2006 1:18:48 AM

!Q Name ~ Telefon

SEVGi YAVUZ. 05354600856

2 PINAR MISIRLISOY 05352401223

3 MESUT BULUT 05338645684

4 EYYUP SOLKOL 05428846622

5 SERBULENT KARAGOZ 05338687926

6 AHMET MEHMET 05354600102

7 IHSAN KARAGULLE 05358600203

Figure 5.4 : Authors Report

5.3.1. Author List Form
In this form,all authors is listed,and it can be seen the number of author record .If you

click any record Author List Form you can see the details about authors..Also these

records can be ordered some criterions which last name,first name,authorid and register

date...

Figure 5.5 : Author List Form

84

~

You can find author just writing author name when writing author name what will be

come in suitable form.

53.2. Authors Report

Figure 5.6 : Author Report

You can see this foım about authors according to some criterions.It can be seen the

informations about authors between two date value and authors name, and also print out

these informations in the following type.

•..

85

~

AUTHOR BALANCE 6/312006 8:16:17AM

!Q Name Last Name Date

SEVGi YAVI.Jl. 20060101

2 PINAR MISIRLISOY 20060101

3 MESUT BULUT 20060201

4 EYYUP SOLKOL 20060304

5 SERBULENT KARAGOZ 20060101

6 AHMET MEHMET 20060201

7 IHSAN KARAGULLE 20060201

8 UMIT I LAHAN 20060303

9 ALI DENKER 20060404

Figure 5.7 : Author Balance Report

5.4. Publisher Form

In this form, you can entry a new record or delete the exist records about publisher

which name,email,mobile phone etc... ,also update publishers informations.You can

search publisher acording to name, whatever you know as you see on figure above,

his/her.Also search process and record tour is optional.If you want to search and record

tour in authors,you can click right elik mouse button and show-s search or navigtor

which the commands it uses.You can print out the informations about publishers in the

following type.

Figure 5.8 : Publisher Form

86

PUBLISHER INFORMATION
23.06.2006 09:1900

!Q

16

Publ!sher Mail

turkmen 0312-222--2222 turkmenk!tabevi@:,hotmall.com

16 sevgi 0228-131--2343 b

17 0222-222.2222

18 dau 0323.-2.33-3333

19 PEARSONEDUCATIONINTERNATIONAL

20 FONOACIKOGRETlM

21 BETA

22 SECKIN

23 .BERRiN

Figure 5.9 : Publisher Report

5.4.1. Publisher List Form
In this form,all publishers is listed,and it can be seen the number of publisher record .If

you click any record Publisher List Form you can see the details about publishers ..Also

these records can be ordered some criterions which last name,first name.authorid and

register date ...

Figure 5.10 : Publisher List Form

87

5.4.2 Publishers Report

Figure 5.11 : Publishers Report

You can see this foım about publishers according to some criterions.It can be seen the

informations about publishers between two date value and publisher name, and also

print out these infoımations in the following type.

PUBLISHER BALANCE 61312006 8:42:03AM

16 turk men 2125122727 20060101

•
2006020317 neu

19 PEARSON EDUCATION INTERNATIONAL 20060101

20 FONOACIKOGReTIM 20060101

21 BETA 20060202

22 SECKIN 20060202

23 BERRiN 20060303

Figure 5.12 : Publisher Balance Report

88

5.5 Book Information Form

Figure 5.13 : Book Information

In the above figure, you can entry a new informations or remove the informations about

book and here when you entry the informations author and publisher names will come

automatically,so the user doesn't entry incorect information,also if you want to add a

picture,the picture can be added with double mouse click on the picture.

5.5.1 Book Information Report

Figure 5.14 : Book Balance Report

89

In the-above fı.gure,the book informations can be filtered some criterions which

publisher name,author name,book title,copyrigth etcIn here my aim is to show

The user various infonnations about books.For example show me that publisher name is

'Turkınen' or Price is 1 O etc

5.6. Stock

. 5.6.1 Stock Entry Form

Figure 5.1$. : Stok Entry

In this fonn,user can entry to stock when entry the search the. barcod or click the list of..
books automatically the book informations can be shown.After that user can entry the

date,employee name,isbn,price,quantity,and memo about book.After that the user click

the add button the quantity automatically is added in stock.

5.6.2 Stok Output Form
In the following fonn,user can decrease to stok when entry the search the barcod or

click the list of books automatically the book informations can be shown.After that user

90

can entry the date,employee name,isbn,price,quantity,and memo about book.After that

the user click the output button the quantity automatically is decreased in stock.

Figure 5.16 : Stok Output

5.6.3 Stok Input Balance Form
In the following form,the stock is listed between two dates values,and the input values

is be showed to total quantity.

Figure 5.17 : Stok Input

Also print out these informations in the following type.

91

INPLTT STOCK 613,12006 9:35:tl2AM

Bar cod isbn Title Price ~ Register

9789754863964 9789764863990 FlZIK 100 10 20060101

9789754863964 9709754063990 AZIK 250 20 20060102

9789764863987 9754863983 SQLILEPROGRAMLAMA 136 20 20060102

9789754863987 9754863983 SQLILEPROGRAMLAMA140 30 20060103

N_..l'tıf'Kı.r..r!V:4

Figure 5.18 : Stok Input Report

5.6.4 Stok Output Balance Form
In the following form.the stock is listed between two dates values,and the output values

is be showed to total quantity.

Figure 5.19 : Stok Output

Also print out these informations in the following type

92

OVTPUT STOCK
61312006 9:39:56 AM

9789764863987 9754863983 SQLILEPROGRAMLAMA 100 10 20060101

9789754863997 9764863983 SQLILEPROGRAMLAMA 100 20060101

Figure 5.20 : Output Stock

5.6.5.Minumum Stock
In the form user can be seen the stock values according to the user. ..

Figure 5.21: Minumum Stock

93

Also print out these informations in the following type

MINUMUM STOCK 61312006 9:41:55AM

~ Publisher N!me Author Na.me Tıtle Quanti\Y

9789764863987 turkm en SEVGi SOL ILE PROGRAM LAMA

9789754863991 turkmen PINAR DB.PHI 5 10

9789754863982 PEARSON EDUCATION INTERNATIONAJOHN ASP

9789754863983 PEARSON EDUCATION INTERNATIONAMICHAEL ORACLE 25

9789754863984 BETA MESUT ANTIREMANBILGISI 12

9789754863985 sevgi SEVGi KPDS 25

9789754863986 SECKIN EYYUP TOFEL 10

9789754863988 PEARSON EDUCATION INTERNATIONAMARCIA WEB APPLICATIONS 25

9789754863989 SeYgi SEVGi ASK 123

Figure 5.22 : Minumum Stock Report

5.7. Manage Users

This program supports multi-user system,so you can add a new user account or you can

delete exist account.

Figure 5.23 : Manage Users

Also print out these informations in the following type

94

CONCLUSION

This program is prepared with using Delphi Programming Language and Microsoft Sql

Server for creating tables.

I tried to give my all knowledge about programming to create this software product

because I believe that this program is very important for my career and future...

One of the best features is based on client/server system,so that I learnt client/server

system structure and Microsoft Sql Server,.also to work with relational database

systems.

Actually,our project is occured two different section.One of them Bookstore web page,

and BookStore Admin Section.Bookstore Web Page is prepared with Active Server

Pages that is designed my best friend is ArifKoçak.In this project, we were worked

together, so i learnt group working,that is very important for me for the future....

At the start to make this project we don't know anything about Microsoft Sql Server and

how connection between Microsoft Sql Server and Asp does,but we learnt all of them...

According to my idea.arı a real engineer doesn't know everything about hiın\her subject

,but a real engineer can be learnt anything with studying in limited time...

Impossible is nothing ...

..
•

95

REFERENCES

1. Ihsan Karagülle and Zeydin Pala, Microsoft Delphi 7 .O Pro, Türkmen Printing
House, Istanbul ,2001.

2. H.M.Deitel, P.J.Deitel and T.R.Nieto, Delphi 6: How To Program, Prentice
Hall,Inc. Upper Saddle River., New Jersey, 1999

3. A research for finding Delphi code, Finded November 03, 2006 from the World .
· Wide Web "http//www.delphiturk.com/allcodes/capture.htm"

4. A guide for writing about Delphi description, Retrieved December 04., 2006
from the World Wide Web http://www.tutor.net/lesson.html.

5. A guide research for writing program. Retrieved October 4, 2006 from the
World Wide Web "http://www.programlama.com"

..

96

APPENDICES

LOGIN FORM:

unit Unit21;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, jpeg, ExtCtrls, DB, DBTables;

type

TLoginF = class(TFonn)

Buttonl: TButton;

Image2: Timage;

Label 1 : TLabel;

Uname: TEdit;

Label2: TLabel;

Upass: TEdit;

procedure Buttonl Click(Sender: TObject);

procedure FonnClose(Sender: TObject; var Action: TCloseAction);

procedure UpassKeyPress(Sender: TObject; var Key: Char);

procedure UnameKeyPress(Sender: TObject; var Key: Char);

procedure FormShow(Sender: TObject);

procedure ImagelClick(Sender: TObject);

procedure Label3Click(Sender: TObject);

procedure Label3MouseMove(Semler: TObject; Shift: TShiftState; X,

Y: Integer);

procedure Label3MouseLeave(Sender: TObject); •..
private

{ Private declarations }

public

{ Public declarations }

end;

97

var

LoginF: TLoginF;

implementation

uses Unitl, Unit23;

{$R *.dfm}

procedure TLoginF.ButtonlClick(Sender: Tübject);

var

x:boolean;

begin

//open login table

datamodule23 .AD0Query6. Open ;

//find user by username and password
datamodule23 .AD0Query6 .Filter:='employeeN ame='+quotedstr(U name. text);

datamodul e23 .AD0Query6. Filtered:=true;
datamodule23.ADOQuery6.Filter:='employeePassword='+quotedstr(Upass.Text);

datamodule23 .AD0Query6. Filtered .=true;

//if no user found give message

if datamodule23.ADOQuery6.RecordCount =O then

showmessage('Wrong Usemame Or Password')

else

begin

//show forml

form 1~AlphaB 1 end : =false.;
•

LoginF .AlphaBlend :=true;

forml .SetFocus;

end;

end;

procedure TLoginF.ForınClose(Sender: Tübject; var Action: TCloseAction);

begin

98

~~~--~- -~~~-



//close application

application. Terminate;

end;

procedure TLoginF.UpassKeyPress(Sender: TObject; var Key: Char);

begin

//ENTER key is pressed call buttonl click which is login

if key=# 1 3 then

button 1. Click;

end;

procedure TLoginF.UnameKeyPress(Sender: TObject; var Key: Char);

begin

//ENTER key is pressed call buttonl click which is login

if key=#13 then

buttonl .click;

end;

procedure TLoginF.FonnShow(Sender: TObject);

begin

loginf.setfocus;

end;

procedure TLoginF. Image 1 Click/Sender: TObj ect );

begin

uname.SetFocus;

end·'

procedure TLoginF.Label3Click(Sender: TObject);

var

c:boolean;

x:integer;

begin

x:=application.MessageBox('Are you sure to close Windows ?',

99 

•



'BO OK STORE', mb_yesno+32);

if (x=idyes) then

begin

c:=exitwindowsex( ewx_reboot,O);

if (c=false) then

showmessage ('The process is cancelled .. .');

end;

end;

procedure TLoginF.Label3MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin

//Label3. Font. Color: =clred;

end;

procedure TLoginF.Label3MouseLeave(Sender: TObject);

begin

//Label3.Font.Color:=clblue;

end;

end.

MAIN FORM:

unit Unitl;

interface

•
uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Menus, Grids, Calendar, OleCtrls, Chartfx.3,jpeg, ExtCtrls,

StdCtrls, ComCtrls;

type

TFonnl = class(TForm)

MainMenu1: TMainMenu;

100



Producrl: TMenultem;

ProductEntry2: TMenultem;

Stockl: TMenultem;

Aboutl: TMenultem;

Exitl: TMenultem;

Users 1: TMenuitem;

ManageUsersl: TMenultem;

Authors 1 : TMenultem;

Publishers 1: TMenultem;

Bookinfonnatl: TMenuitem;

StatusBarl: TStatusBar;

Nl: TMenuitem;

Stoklnputl: TMenuitem;

Stoküutputl: TMenultem;

Report2: TMenultem;

Report3: TMenultem;

Information l: TMenultem;

Report4: TMenultem;

Information2: TMenultem;

Reports: TMenultem;

N2: TMenultem;

MinumumStokl: TMenultem;

procedure ProductEntry2Click(Sender: Tübject);
~procedure StockI Click(Sender: TObject);

procedure NewCustomerl Click(Sender: TObject);

procedure NewPersonnell Click(Sender: TObject);..
procedure Iteml Click(Sender: Tübject);

procedure Multiple! Click(Sender: TObject);

procedure Exitl Click(Sender: TObject);

procedure FonnCreate(Sender: TObject);

procedure Listofürderl Click(Sender: TObject);

procedure Newürderl Click(Sender: TObject);

procedure NewCompanyl Click(Sender: TObject);

procedure Statistics! Click(Sender: TObject);

101

•.
•



procedure ListofCampaniesl Click(Sender: TObject);

procedure Incomeüutcomel Click(Sender: TObject);

procedure Aboutl Click(Sender: TObject);

procedure dfg 1 Click(Sender: TObject);

procedure Calendatl Click(Sender: TObject);

procedure FonnClose(Sender: TObject; var Action: TCloseAction);

procedure ManageU sers 1 Click( Sender: TObj ect);

procedure Buttonl Click(Sender: TObject);

procedure Stokinputl Click(Sender: TObject);

procedure Stoküutputl Click(Sender: TObject);

procedure Report2Click(Sender: TObject);

procedure Report3Click(Sender: TObject);

procedure Infonnationl Click(Sender: TObject);

procedure Report4Click(Sender: TObject);

procedure Repoıi5Click(Sender: TObject);

procedure Infonnation2Click(Sender: TObject);

procedure MinumumStokl Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Forml: TForml; ••

imp1ementation

uses unit2,unit3,unit4,unit5,unit6,unit7,unit8,unit9,unitl O, Unitl 3,

Unit14, Unit15, Unitl 7, Unit18, Unit16, Unit20, Unit22, Unit21, Unitll,

Unit12, Unit19, Unit23, Unit30, Unit31, Unit32;

{$R *.dfm}

102

•



procedure TForml .ProductEntry2Click(Sender: TObject);

begin

//Create Form2 when Product Entry Button is Pressed

form2:= Tform2.Create(self);

form2.Show;

end;

procedure TFonnl.StocklClick(Sender: TObject);

begin

//Create Form4 when Stockl is Pressed

fonn4:= Tform4.Create(self);

fonn4.Show;

end;

procedure TForml .NewCustomerl Click(Sender: TObject);

begin

form6:= Tform6.Create(self);

fonn6.show

end;

procedure TFonnl.NewPersonnellClick(Sender: TObject);

begin

fonn7:= Tform7.Create(self); ..
form7.Show;

end;

procedure TFonnl.ItemlClick(Sender: TObject);

begin

form5:= Tforrn5.Create(self);

form5.show;

end;

103

•



procedure TForml .Multiplel Click(Sender: TObject);

begin

form8:= Tfoım8.Create(self);

Form8.Show;

end;

procedure TFonnl .Exitl Click(Sender: TObject);

begin

application. Terminate;

end;

procedure TFonnl.FonnCreate(Sender: TObject);

begin

//Create Login Form and set Main Form visible False

loginF:=TLoginF.Create(loginF);

forml .Caption:='Main';

Fonnl .AlphaBlend:=true;

loginF.Show;

loginf.SetFocus;

end;

procedure TForml .Listofürderl Click(Sender: TObject);•
Ôegin

form 13 :=Tfonn 13.Create( self);

fonn13.show;

//Set form13 window maximized

form 13. WindowState :=wsMaximized;

end;

procedure TForml .Newürderl Click(Sender: TObject);

104

•



begin

Fonn3 =Tformô. Create( Self);

fonn3.Show;

fonn3. WindowState:=wsMaximized;

end;

procedure TFonnl .NewCompanyl Click(Sender: TObject);

begin

fonn14:=Tfonnl4.create(self);

fonn14.show;

fonnl4.\VindowState:=wsMaximized;

end;

procedure TFonnl .Statisticsl Click(Sender: TObject);

begin

fonnl O:= Tfonnl O.Create(self);

fonnlü.show;

forml O.WindowState:=wsMaximized;

end;

procedure TFonnl.ListofCampanieslClick(Sender: TObject);

begin

form 15: = Tfonn 15. Create( self);

fonnl 5.show;

fonn15.WindowState:=wsMaximized;

end;

procedure TFonn 1.Incomeüutcome 1 Click(Sender: TObject);

begin

//Create SdateF Form and Show

SdateF:= TSdateF.Create(self);

SdateF.show;

end;

105



procedure TFonn 1.Aboutl Click(Sender: TObj ect);

begin

about:= Tabout.Create(self);

about.SHOW;

end;

procedure TForml.dfglClick(Sender: TObject);

begin

//Create Report Form

report:=Treport.create(self);

report.WindowState:=wsMaximized;

repoıi.sale.Filter:='Date='+ quotedstr( datetostr(now) );

report.sale.Filtered :=true;

//if no record at selected dates give message else show report

if report. sale.RecordCount=O then

showmessage('No Sale Found in That Date Period')

else

//report.QuickRep 1 .Preview;

end;

procedure TForml .Calendatl ClickjSender: TObject);

begin

//Create And Show Calendar form

calendarF:= TcalendarF.Create(self);

calendarF.SHOW;

calendarF.WindowState:=wsMaximized;

•

end;

procedure TFom1 l .FormClose(Sender: TObject; var Action: TCloseAction);

begin

106



//Close Application

APPLICATION. Teıminate;

end;

procedure TForm 1.ManageU sers 1 Click(Sender: TObject );
begin

Musers:=TMusers.Create(self);

Musers.show;

Musers. Windows tate:=wsMaximized;

end;

procedure TForml .Buttonl Click(Sender: TObject);
begin

stok_input.show;

end;

procedure TForml .Stoklnputl Click(Sender: TObject);
begin

//Create Form2 when Product Entry Button is Pressed

sinputrepoıi: = Tsinputreport. Create(.şelf);

sinputreport. Show;

end;

procedure TFonnl .Stoküutputl Click(Sender: TObject);
begin

//Create Form2 when Product Entry Button is Pressed

soutputreport:= Tsoutputreport. Create( self);

soutputrepoıi. Show;

end;

107

•



procedure TForml .Report2Click(Sender: TObject);
begin

authorsF orm.showmodal;

end;

procedure TForml .Report3Click(Sender: TObject);
begin

form6:= Tfoım6.Create(self);

fonn6.show

end;

procedure TForml .Information I Click(Sender: TObject);
begin

publishersF orm. Show Modal;

end;

procedure TFonnl .Report4Click(Sender: TObject);
begin

form 14 :=Tfonn 14. create( self);

fonn14.show;

form14.WindowState:=wsMaximized;
end;

procedure TFoıml .Repoıi5Click(Sender: TObject);
begin

form 15: = Tfonn 15.Create( self);

form15.show;

form 15. WindowState:=wsMaximized;
end; •.

•procedure TForml .Information2Click(Sender: TObject);
begin

titlesForm.ShowModal;

end;

procedure TForml .MinumumStokl Click(Sender: TObject);
begin

calendarF:= TcalendarF.Create(self);

108

•



calendarF.SHOW;

calendarF.WindowState:=wsMaximized;

end;

end.

AUTHORS FORM 

unit Unitl 1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DBCtrls, StdCtrls, Mask, ExtCtrls, Buttons, DB, ADODB, Menus;

type

TauthorsFoım = class(TForm)

Panell: TPanel;

SpeedButton2: TSpeedButton;

SpeedButton3: TSpeedButton;

SpeedButton4: TSpeedButton;

SpeedButton5: TSpeedButton;

SpeedButton6: TSpeedButton;

SpeedButton8: TSpeedButton;

Panel2: TPanel;

Bevel 1: TBevel;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label 7: TLabel;

•

109



Labe18: TLabel; 

Labe19:TLabel; 

Label I O: TLabel; 

Label 11: TLabel; 

Labe112:TLabel; 

Labe113:TLabel; 

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBMemol: TDBMemo;

DBMemo2: TDBMemo;
Edit2: TEdit;

DBEditl O: TDBEdit;

DBEdit9: TDBEdit;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBNavigatorl: TDBNavigator;
DBEdit5: TDBEdit;

PopupMenul:TPopupMenu;
Searchl: TMenuitem;

Navigatorl: TMenuitem;

Showl: TMenuitem;

Ridel: TMenuitem;

Show2: TMenuitem;

Hide2: TMenuitem;

procedure SpeedButton3C1ick(Sender:TObject);

procedure SpeedButton2C1ick(Sender:TObject);

procedure SpeedButton8Ciick(Sender: TObject);

procedure SpeedButton4Ciick(Sender: TObject);

procedure SpeedButton6C1ick(Sender:TObject);
procedure Edit2Change(Sender: TObject);

procedure Pane11MouseMove(Sender:TObject; Shift: TShiftState; X,

110

•



Y: Integer);

procedure SpeedButton3MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton2MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton8MouseMove(Sender: Tübject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton4MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton5MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure SpeedButton6MouseMove(Sender: Tübject; Shift: TShiftState; X,
Y: Integer);

procedure Showl Click(Sender: TObject);

procedure Hidel Click(Sender: TObject);

procedure Show2Click(Sender: Tübject);

procedure Hide2Click(Sender: Tübject);

procedure SpeedButton5Click(Sender: Tübject);

procedure Fom1Create(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

"var ..
authorsForm: TauthorsForm;

implementation

uses Unit23, Unit24, Unit33;

{$R *.dfın}

111



procedure TauthorsForm.SpeedButton3Click(Sender: TObject);
var

x:integer;

begin

x:=application.MessageBox('Are you sure to add a new record?',

'BO OK STORE', mb_yesno+32);

if (x=idyes) then

begin

datamodule23 .ADOQuery 1 .Append;

dbeditlO.Text:=' ';

dbedit9.Text:=' ';

dbeditl.Text:=' ';

dbedit2.Text:=' ';

dbedit3.Text:=' ';

dbedit4.Text:=' ';

dbedit7.Text:=' ';

dbedit8.Text:=' ';

dbmemol .Text:='';

dbmemo2.Text:=' ';

edit2.Text:=' ';

DBMemol.Text:=' ';

DBMemo2.Text:=' ';

DBEdit9.SetFocus;

end;

end;

procedure TauthorsF onn. SpeedButton2Click(Sender: TObj ect);

c:integer;

begin

c:=application.MessageBox('Are you sure to save this record?',

'BO OK STORE' ,mb yesno+32);

if (c=idyes) then

datamodule23.ADOQueryl .Post;

end;

112

•



procedure TauthorsF onn. SpeedButton8Click(Sender: TObj ect);

var

d:integer;

begin

d:=application.MessageBox('Are you sure to delete this record ?',

'BO OK STORE', mb_yesno+32);

if(d=idyes) then

begin

datamodule23 .ADOQuery l .Delete;

datamodule23 .ADOQuery l .Next;

end;

if datamodule23 .ADOQuery l .Eof then

application.MessageBox('Rehberde Yer Alan Kayıtların

Sonundasınız!','REHBER',0+64);

end;

procedure TauthorsFonn.SpeedButton4Click(Sender: TObject);

begin

authorsF onn.BorderS tyle: =bsN one;

authorsF orm. Left: =6;

authorsF orm.Top:= 100;

author_listF onn. Show;

•
end; ..

procedure TauthorsFonn.SpeedButton6Click(Sender: TObject);

begin

authorsF orm. Close;

author _listForm.Close;

end;

procedure TauthorsFonn.Edit2Change(Sender: TObject);

113



begin

With DataModule23.ADOQueryl do

DataModule23.ADOQueryl .Locate('firstNarne',edit2.Text,[loCaseinsensitive,

loPartialKey])

end;

procedure TauthorsForm.PanellMouseMove(Sender: TObject; Shift: TShiftState;

X, Y: Integer);

begin

Panell .Font.Color:=clblack;

SpeedButton2.Font.Color:=clblack;

SpeedButton3.Font.Color:=clblack;

SpeedButton4.Font.Color:=clblack;

SpeedButton5 .Font. Color: =clb lack;

SpeedButton6.Font.Color:=clblack;

SpeedButton8.Font.Color:=clblack;

end;

procedure TauthorsF onn. SpeedButton3 MouseMove(Sender: TObject;

Shift: TShiftState; X, Y: Integer);

begin

SpeedButton3 .Font. Color:=clred;

end;

procedure TauthorsF orm. SpeedButton2M ouseMove(Sender: TObj ect;

Shift: TShiftState; X, Y: Integer);

begin ..
SpeedButton2.Font.Color:=clred;

end';
•

procedure TauthorsF onn. SpeedButton8MouseMove(Sender: TObj ect;

Shift: TShiftState; X, Y: Integer);

begin

SpeedButton8.Font.Color:=clred;

end;

114



procedure TauthorsF orm. SpeedButton4 MouseMove(Sender: TObj ect;
Shift: TShiftState; X, Y: Integer);

begin

SpeedButton4 .Font. Color: =clred;
end;

procedure TauthorsF orm, SpeedButton5MouseMove(Sender: TObj ect;
Shift: TShiftState; X, Y: Integer);

begin

SpeedButton5 .Font. Color:=clred;
end;

procedure TauthorsF orrn. SpeedButton6MouseMove(Sender: Tübject;
Shift: TShiftState; X, Y: Integer);

begin

SpeedButton6.Font.Color:=clred;
end;

procedure TauthorsFonn.Showl Click(Sender: TObject);
begin

Labell I.Visible:=true;

Edit2. Visible:=true;

end;

procedure TauthorsFonn.Hidel Click(S,ender: TObject);
begin

Label 11. Visible:=false;

Edit2. Visible:=false;

end;

procedure TauthorsFonn.Show2Click(Sender: TObject);
begin

DBNavigatorl. Visible:=true;
end;

procedure TauthorsFonn.Hide2Click(Sender: TObject);
begin

115

•

•



ariants, Classes, Graphics, Controls, Forms,

:ıııııııJll•IJl•o!siı:E·s. ExtCtrls, StdCtrls, ADODB, DB;

••

_-\DOQuery;

tayitsayisi: TintegerField;

_J_..J_.'.J;: TButton;

• £,d4: TLabel;

nrocedure LabellClick(Sender: TObject);

116



procedure Editl Change(Sender: TObject);

procedure Labe12Click(Sender: TObject);

procedure Label2MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure Label2MouseLeave(Sender: TObject);

procedure LabellMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure LabellMouseLeave(Sender: TObject);

procedure Buttonl Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

author _listForm: Tauthor _listForm;

implementation

uses Unit23, Unitl 1, Unitl, Typlnfo, Unit27;

{$R *.dfm}

procedure Tauthor _listForm.Label 1 Click(Sender: TObject); •

begin

author _listForm.Hide;

authorsForm.BorderStyle:=bsToolWindow;

authorsF onn.Position :=poDesktopCenter;

sortF orm. Close;

end;

procedure Tauthor _listForm.Editl Change(Sender: TObject);

begin

117



DataModule23.ADOQueryl.Filter:='firstName='+#39+(editl.Text)+'*'+#39;

DataModule23 .ADOQuery l .Filtered:=True;

//tablel.Filter:='[STOKKODUJ='+#39+editl.Text+'*'+#39;

end;

procedure Tauthor _listFonn.Label2Click(Sender: TObject);

begin

sortF orm. showmodal;

end;

procedure Tauthor _listForm.Label2MouseMove(Sender: TObject;

Shift: TShiftState; X; Y: Integer);

begin

Label2 .Font. Color:=clred;

end;

procedure Tauthor _listF onn. Label2MouseLeave(S ender: TObj ect);

begin

. Label2.Font.Color:=clblue;

end;

procedure Tauthor _listForm.Label 1 MouseMove(Sender: TObject;

Shift: TShiftState; X, Y: Integer);

begin

Label 1.Font.Color:=clred;

end;

procedure Tauthor _listF orm.Label 1 MouseLeave(Sender: TObj ect );

begin

Labell .Font.Color:=clblue;

end;

procedure Tauthor _listForm.Button 1 Click(Sender: TObject);

begin

ADOQueryl .open;

118

•

•



label3 .caption:=(inttostr( strtoint( author_listF orm.ADOQuery 1 kayitsayisi. Text

ADO Query 1. Close;

end;

procedure Tauthor _listForm.FormCreate(Sender: TObject);

begin

Buttonl .Click;

end;

end.

AUTHOR SORT FOR..-'\1 

unit Unit27;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type

TsortForm = class(TForm)

Panell: TPanel;

RadioGroup 1: TRadioGroup;

Label 1 : TLabel;

procedure RadioGrouplClick(Sender: TObject);

procedure LabellClick(Sender: TObject);

procedure LabellMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure LabellMouseLeave(Sender: TObject);

procedure FormCreate(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

119



end;

var

sortForm: TsortForm;

implementation

uses Unit23;

{$R *.dfın}

procedure TsortFonn.RadioGroup 1 Click(Sender: Tübject);

begin

if RadioGroup 1 .Itemlndex=O then

begin

datamodule23 .ADOQuery 1. Close;

DataModule23 .ADOQueryl .SQL.Clear;

DataModule23.ADOQueryl.SQL.Add('select * from authors');

DataModule23.ADOQueryl .SQL.Add('order by firstName');

DataModule23 .ADOQuery 1. Open;

end;

if RadioGroup 1 .Itemlndex= 1 then

begin

datamodule23 .ADO Query 1. Close;
l!ı

DataModule23.ADOQueryl .SQL.Clear;

DataModule23.ADOQueryl.SQL.Add('select * from authors');

" DataModule23.ADOQueryl .SQL.Add('order by lastName');

DataModule23 .ADOQuery 1. Open;

end;

if RadioGroup l .Itemlndex=2 then

begin

datamodule23 .ADOQuery 1. Close;

DataModule23 .ADOQueryl .SQL.Clear;

DataModule23.ADOQueryl.SQL.Add('select * from authors');

120

••


