
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

LIQUID LEVEL CONTROL BY PLC

Graduation Project
EE- 400

Student: Nader Samir (20032224)

Supervisor: Dr.Özgür Cemal Özerdem

Nicosia - 2006



ACKNOWLEDGEMENT 

The long day has end.

~ would like to express my deepest appreciation to God who stood beside me all the time,

vho supported me in all my achievements and who has given me the power and patience to

finish my college studies successfully.

I am very thankful to my Supervisor Dr. Özgür ÖZERDEM who was very generous with

his help at every stage in the preparation of this project, with his valuable advices and

omments.

Special thank goes to Near East University education staff, Especially to Electrical and

Electronic Engineering stuff, for their generosity and special concern to me.

I would like to thank my friend Shimaa ABURAS for her support me at times to make this

project possible.

I would like to thank my friends for their help during preparation of this project, especially

S. JARADAT, H. GHANNAM, S. HUSSEIN, and N. BATAL.

Finally, I would like to thank my parents for their supports, and encourage for every stage

of my education, and specially my Father and my Mother without their endless support and

love, I would have never archived my current position.



Abstracts 

In the first chapter in this project, an introduction to the PLC, and the history of the PLC,

and discuses the Cuts Inside, and the explanation of each part in the PLC as an output and

an input, an example INPUT RELAYS, INTERNAL UTILITY RELAYS, COUNTERS

and TIMERS.

The first chapter discuses the PLC operations, and the response time of it, and it does

manage how to make or how to build a program by managing many steps and how to make

these steps in a very clearly way, then discussed the DC Inputs and AC Inputs of the PLC.

The chapter one talks also about AC Motor - Basics of AC Motor Design Engineering and

about the Electro Mechanical Valve and the Actuator of the Elector Mechanical Valve.

In the second chapter of this project discusses the practical part of the project, the layout of

the project and the way of the experiment connect.

The second chapter discussed the equipment of the Experiment that used in the

experimental, the operation principles, and in the practical part there is a program that used

in the experiment in order to Control the experiment by using a pc which is connected to

The PLC' s part.

11



TABLE OF CONTECTS 

ACKNOWLEDGEMENT 

ABSTRACT 11

TABLE OF CONTENTS iii

INTRODUCTION V

CHAPTER 1: 

PLC STRUCTURE AND OPERATION 

1.1 PLC History 1
1.2 What is a PLC? 2
1.3 Internal Structure 3

1.3.1 The Parts Inside 4
1.4 PLC Operation 5

1.4.1 Response Time 6
1.5 Creating Programs 7

1.5.1 Relays 7
1.5.2 Replacing Relays 8
1.5.3 Basic Instruction 10

1.5.3.1 Load 10
1.5.3.2 LoadBar 11
1.5.3.3 Out 12
1.5.3.4 OutBar 12

1.6 PLC Registers 14
1.6.1 A Level Application 16
1.6.2 Counters 18
1.6.3 Timers 22

1.6.3.1 Timer Accuracy 25
1.6.4 Shift Registers 25
1.6.5 Math Instructions 28
1.6.6 DC Inputs 28
1.6.7 AC Inputs 31

1.6.7.1 Relays Outputs 33
1.6.7.2 Transistor Outputs 35

1.7 AC Motor-Basic of AC Motor Design Engineering 38
1.7.1 Introduction to AC Motor 38

ııı



1.7.1.1 Polyphase of AC Motor 39

1.7.1.2 AC Motors-Design A and B 39

1.7.2 Wound-rotor AC Motors 40

1.7.3 Multispeed AC Motors 40

1.7.3.1 AC Motors-Variable Torque 41

1.7.3.2 AC Motors-Constant Torque 41

1.7.3.3 AC Motors-Constant Horsepower 41

1.7.3.4 AC Motors-Single-Phase AC Motors 41

1.7.4 Universal AC Motors 42

1.7.5 Synchronous AC Motors 43

1.7.6 AC Servo Motors 43

1.8 The Electormechanical Valve 45

1.8.l The Electromechanical Valve Actuator 45

SUMMARY 47

CHAPTER 2: 

LIQUID LEVEL BY PLC 48

2.1 The Experimental Setup 48

2.2 Design and the Connection of the Experiment 49

2.3 The Operation of the System 50

2.4 Networks Explanation 51

2.5 Equipment of the Experiment 57

2.6 PLC Program of the Experimental 58

2.7 Program Title Comments 60

SUMMARY 63

CONCLUSION 64

REFERENCES 65

IV



INTRODUCTION 

A programmable controller was defined by Capiel (1982) as:

A digitally operating electronic system designed for use in an industrial environment,

which uses a programmable memory for the internal storage of instructions for

implementing specific functions such as logic, sequencing, timing, counting and arithmetic

to control through analog or digital input/output models, various types of machines or

processes.

The PLC (i.e. Programmable Logic Controller) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state, turning on/off its outputs. The user enters a program,

usually via software, that gives the desired results. technologies were sequencer state

machines and the bit-slice based CPU. The AMD 2901 and 2903 were quite popular in

Modicon and A-B PLCs. Conventional microprocessors lacked the power to quickly solve

PLC logic in all but the

PLCs are used in many "real world" applications. If there is industry present, chances are

good that there is a plc present. If you are involved in machining, packaging, material

handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time. Almost any application that needs

some type of electrical control has a need for a plc.

The History of The PLC, In the late 1960's PLCs were first introduced. The primary reason

for designing such a device was eliminating the large cost involved in replacing the

complicated relay based machine control systems.

V



CHAPTER 1 

PLC STRUCTURE AND OPERATION 

1.1 PLC History 

In the late 1960's PLCs were first introduced. The primary reason for designing such a

device was eliminating the large cost involved in replacing the complicated relay based

machine control systems. Bedford Associates (Bedford, MA) proposed something called a

Modular Digital Controller (MODICON) to a major US car manufacturer. Other companies

at the time proposed computer based schemes, one of which was based upon the PDP-8.

The MODICON 084 brought the world's first PLC into commercialproduction.

When production requirements changed so did the control system. This becomes very

expensive when the change is frequent. Since relays are mechanical devices they also have

a limited lifetime which required strict adhesion to maintenance schedules. Troubleshooting

was also quite tedious when so many relays are involved. Now picture a machine control

panel that included many, possibly hundreds or thousands, of individual relays. The size

could be mind boggling. How about the complicated initial wiring of so many individual

devices! These relays would be individually wired together in a manner that would yield

the desired outcome.

These "new controllers" also had to be easily programmed by maintenance and plant

engineers. The lifetime had to be long and programming changes easily performed. They

also had to survive the harsh industrial environment. That's a lot to ask! The answers were

to use a programming technique most people were already familiar with and replace

mechanical parts with solid-stateones.

In the mid70's the dominant PLC technologies were sequencer state-machines and the bit

slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and A-B PLCs.

Conventional microprocessors lacked the power to quickly solve PLC logic in all but the



smallest PLCs. As conventional microprocessors evolved, larger and larger PLCs were

eing based upon them. However, even today some are still based upon the 2903.(ref A-B's

PLC-3) Modicon has yet to build a faster PLC than their 984AIB/X which was based upon

the 2901.

Communications abilities began to appear in approximately 1973. The first such system

was Modicon's Modbus. The PLC could now talk to other PLCs and they could be far away

from the actual machine they were controlling. They could also now be used to send and

receive varying voltages to allow them to enter the analog world. Unfortunately, the lack of

standardization coupled with continually changing technology has made PLC

communications a nightmare of incompatible protocols and physical networks. Still, it was

a great decade for the PLC.

It was also a time for reducing the size of the PLC and making them software

programmable through symbolic programming on personal computers instead of dedicated

programming terminals or handheld programmers. Today the world's smallest PLC is about

the size of a single control relay.

The 90's have seen a gradual reduction in the introduction of new protocols, and the

modernization of the physical layers of some of the more popular protocols that survived

the 1980's. The latest standard (IEC 1131-3) has tried to merge plc programming languages

under one international standard. We now have PLCs that are programmable in function

block diagrams, instruction lists, C and structured text all at the same time! PC's are also

being used to replace PLCs in some applications. The original company who commissioned

the MODI CON 084 has actually switched to a PC based control system.

1.2 What is a PLC? 

A PLC (i.e. Programmable Logic Controller) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state, turning on/off its outputs. The user enters a program,

usually via software, that gives the desired results.

2



PLCs are used in many "real world" applications. If there is industry present, chances are

good that there is a pie present. If you are involved in machining, packagjng, materüJ 
handling, automated assembly or countless other industries you are probably already using

them. If you are not, you are wasting money and time. Almost any application that needs

some type of electrical control has a need for a plc.

For example, let's assume that when a switch turns on we want to tum a solenoid on for 5

seconds and then tum it off regardless of how long the switch is on for. We can do this with

a simple external timer. But what if the process included 10 switches and solenoids? We

would need 1 O external timers. What if the process also needed to count how many times

the switches individually turned on? We need a lot of external counters.

As you can see the bigger the process the more of a need we have for a PLC. We can

simply program the PLC to count its inputs and tum the solenoids on for the specified time.

Here's enough information to be able to write programs far more complicated than the

simple one above. We will take a look at what is considered to be the "top 20" plc

instructions. It can be safely estimated that with a firm understanding of these instructions

one can solve more than 80% of the applications in existence.

1.3 Internal Structure 

The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive

input/output data. We can actually consider the PLC to be a box full of hundreds or

thousands of separate relays, counters, timers and data storage locations. Do these counters,

timers, etc. really exist? No, they don't "physically" exist but rather they are simulated and can

be considered software counters, timers, etc. These internal relays are simulated through bit

locations in registers.

3



1.3.1 The Parts Inside 

• INPUT RELAYS-(contacts) these are connected to the outside world. They

physically exist and receive signals from switches, sensors, etc. Typically they are

not relays but rather they are transistors.

• INTERNAL UTILITY RELAYS-(contacts) these do not receive signals from the

outside world nor do they physically exist. They are simulated relays and are what

enables a PLC to eliminate external relays. There are also some special relays that

are dedicated to performing only one task. Some are always on while some are

always off. Some are on only once during power-on and are typically used for
initializing data that was stored.

• COUNTERS-Theseagain do not physically exist. They are simulated counters and

they can be programmed to count pulses. Typically these counters can count up,

down or both up and down. Since they are simulated they are limited in their

counting speed. Some manufacturers also include high-speed counters that are

hardware based. We can think of these as physically existing. Most times these

counters can count up, down or up and down.

• TIMERS-These also do not physically exist. They come in many varieties and

increments. The most common type is an on-delay type. Others include off-delay

and both retentive and non-retentivetypes. Incrementsvary from lms through ls.

• OUTPUT RELAYS-(coils) these are connected to the outside world. They

physically exist and send on/off signals to solenoids, lights, etc. They can be

transistors, and relays dependingupon the model chosen.

• DATA STORAGE-Typicallythere are registers assigned to simply store data. They

are usually used as temporary storage for math or data manipulation. They can also

typically be used to store data when power is removed from the PLC. Upon power

up they will still have the same contents as before power was removed. Very

convenient and necessary.

4



1.4 PLC Operation 

A PLC works by continually scanning a program. We can think of this scan cycle as

consisting of 3 important steps. There are typically more than 3 but we can focus on the

portant parts and not worry about the others. Typically the · others are checking the

., stem and updating the current internal counter and timer values.

CHECK INPUT STATUS

EXECUTE PROGRAM

UPDATE OUTPUT STATUS

.Figure 1.1 Scanning Steps of PLC Program

Step I-CHECK INPUT STATUS-Firstthe PLC takes a look at each input to determine if it

is on or off. In other words, is the sensor connected to the first input on? How about the

second input? How about the third... It records this data into its memory to be used during

the next step.

Step 2-EXECUTE PROGRAM-Next the PLC executes your program one instruction at a

time. Maybe your program said that if the first input was on then it should tum on the first

output. Since it already knows which inputs are on/off from the previous step it will be able

to decide whether the first output should be turned on based on the state of the first input. It

will store the executionresults for use later during the next step.

Step 3-UPDATE OUTPUT STATUS-Finallythe PLC updates the status of the outputs. It

updates the outputs based on which inputs were on during the first step and the results of

executing your program during the second step. Based on the example in step 2 it would

5



row tum on the first output because the first input was on and your program said to tum on

-= first output when this condition is true.

<ter the third step the PLC goes back to step one and repeats the steps continuously. One

scan time is defined as the time it takes to execute the 3 steps listed above.

A.1 Response Time 

e total response time of the PLC is a fact we have to consider when shopping for a PLC.

:t like our brains, the PLC takes a certain amount of time to react to changes. In many

zpplications speed is not a concern, in others though ...

T" you take a moment to look away from this text you might see a picture on the wall. Your

eyes actually see the picture before your brain says "Oh, there's a picture on the wall". In

this example your eyes can be considered the sensor. The eyes are connected to the input

circuit of your brain. The input circuit of your brain takes a certain amount of time to

realize that your eyes saw something. (If you have been drinking alcohol this input

response time would be longer!) Eventually your brain realizes that the eyes have seen

something and it processes the data. It then sends an output signal to your mouth. Your

mouth receives this data and begins to respond to it.

Notice in this example we had to respond to 3 things:

INPUT- It took a certain amount of time for the brain to notice the input signal from the

eyes.

EXECUTION- It took a certain amount of time to process the information received from

the eyes. Consider the program to be: If the eyes see an ugly picture then output appropriate

words to the mouth.

OUTPUT- The mouth receives a signal from the brain and eventually spits (no pun

intended) out the words "Gee, that's a really ugly picture!" as seen in the Figurel.2.

6



INPUT RESPONSETIME :-1
PROGRAM E~ECUTION TIMJ • TOTAL RESPONSE TIME

OUTPUT RESPONSE TIME 

Figure 1.2 Response of PLC to the Execution Steps and Overall

1.5 Creating Programs 

1.5.1 Relays 

- row that we understand how the PLC processes inputs, outputs, and the actual program we

are almost ready to start writing a program. But first let's see how a relay actually works.

After all, the main purpose of a plc is to replace "real-world" relays.

We can think of a relay as an electromagnetic switch. Apply a voltage to the coil and a

magnetic field is generated. This magnetic field sucks the contacts of the relay in, causing

them to make a connection. These contacts can be considered to be a switch. They allow

urrent to flow between 2 points thereby closing the circuit.

Let's consider the following example. Here we simply turn on a bell (Lunch time!)

whenever a switch is closed. We have 3 real-world parts

RELAY

~--efe 
SWITCH

Figure 1.3 Relays Layout

7



. ~o tice in the picture that we have 2 separate circuits. The bottom (blue) indicates the DC

. art. The top (red) indicates the AC part.

Here we are using a de relay to control an AC circuit. That's the fun of relays! When the

switch is open no current can flow through the coil of the relay. As soon as the switch is

..Josed, however, current runs through the coil causing a magnetic field to build up. This

magnetic field causes the contacts of the relay to close. Now AC current flows through the

11 and we hear it, as seen above in the Figure 1.3.

1.5.2 Replacing Relays 

.. ext, let's use a plc in place of the relay. (Note that this might not be very cost effective for

this applicationbut it does demonstrate the basics we need.) The first thing that's necessary

is to create what's called a ladder diagram. After seeing a few of these it will become

obvious why it's called a ladder diagram. We have to create one of these because,

unfortunately, a plc doesn't understand a schematic diagram. It only recognizes code.

Fortunately most PLCs have software which converts ladder diagrams into code. This

hields us from actually learning the plc's code.

First step- We have to translate all of the items we're using into symbols the plc

understands. The plc doesn't understand terms like switch, relay, bell, etc. It prefers input,

output, coil, contact, etc. It doesn't care what the actual input or output device actually is. It

only cares that it's an input or an output.

First we replace the battery with a symbol. This symbol is common to all ladder diagrams.

We draw what are called bus bars. These simply look like two vertical bars.One on each

side of the diagram. Think of the left one as being + voltage and the right one as being

ground. Further think of the current (logic) flow as being from left to right.

Next we give the inputs a symbol. In this basic example we have one real world input. (i.e.

the switch) We give the input that the switch will be connected to, to the symbol shown

below. This symbol can also be used as the contact of a relay.

8



~ ~ A contact symbol

. [ext we give the outputs a symbol. In this example we use one output (i.e. the bell). We

give the output that the bell will be physically connected to the symbol shown below. This

symbol is used as the coil of a relay.

-0- A coil symbol

The AC supply is an external supply so we don't put it in our ladder. The plc only cares

about which output it turns on and not what's physically connected to it.

Second step- We must tell the plc where everything is located. In other words we have to

give all the devices an address. Where is the switch going to be physically connected to the

plc? How about the bell? We start with a blank road map in the PLCs town and give each

item an address. Could you find your friends if you didn't know their address? You know

they live in the same town but which house? The pie town has a lot of houses (inputs and

outputs) but we have to figure out who lives where (what device is connected where). We'll

get further into the addressing scheme later. The plc manufacturers each do it a different

way! For now let's say that our input will be called "0000". The output will be called "500".

Final step- We have to convert the schematic into a logical sequence of events. This is

much easier than it sounds. The program we're going to write tells the plc what to do when

certain events take place. In our example we have to tell the pie what to do when the

operator turns on the switch. Obviously we want the bell to sound but the plc doesn't know

that. It's a pretty stupid device.

9



0000 0500 

Figure 1.4 Example for Replacing Relays

The picture above is the final converted diagram. Notice that we eliminated the real world

relay from needing a symbol. It's actually "inferred" from the diagram.

1.5.3 Basic Instructions 

• -ow let's examine some of the basic instructions is greater detail to see more about what

each one does.

1.5.3.1 Load 

The load (LD) instruction is a normally open contact. It is sometimes also called examine if

on.(XIO) (as in examine the input to see if its physically on) The symbol for a load

instruction is shown below.

~ ~ A Load (contact) symbol

This is used when an input signal is needed to be present for the symbol to tum on. When

the physical input is on we can say that the instruction is true. We examine the input for an

on signal. If the input is physically on then the symbol is on. An on condition is also

referred to as logic 1 state.

This symbol normally can be used for internal inputs, external inputs and external output

contacts. Remember that internal relays don't physically exist. They are simulated

(software) relays.

10



1.5.3.2 LoadBar 

The LoaDBar instruction is a normally closed contact. It is sometimes also called LoaDNot

r examine if closed. (XIC) (as in examine the input to see if its physically closed) The

symbol for a loadbar instruction is shown below.

-1/~ A LoaDNot (normally closed contact) symbol

This is used when an input signal does not need to be present for the symbol to turn on.

iVhen the physical input is off we can say that the instruction is True. We examine the

input for an off signal. If the input is physically off then the symbol is on. An off condition

· s also referred to as a logic O state.

This symbol normally can be used for internal inputs, external inputs and sometimes,

external output contacts. Remember again that internal relays don't physically exist. They

are simulated (software) relays. It is the exact opposite of the Load instruction.

*NOTE- With most PLCs this instruction (Load or Loadbar) MUST be the first symbol on

the left of the ladder.

Table 1 Difference between LoadBar and Load

Logic State Load LoadBar 

o False [Irue

1 [Irue [False

11



1.5.3.3 Out 

The Out instruction is sometimes also called an OutputEnergize instruction. The output

instruction is like a relay coil. Its symbol looks as shown below.

-0- An OUT (coil) symbol

When there is a path of True instructions preceding this on the ladder rung, it will also be

true. When the instruction is true it is physically On. We can think of this instruction as a

normally open output. This instruction can be used for internal coils and external outputs.

1.5.3.4 Outbar 

The Outbar instruction is sometimes also called an OutNot instruction. Some vendors don't

have this instruction. The outbar instruction is like a normally closed relay coil. Its symbol

looks like that shown below.

-0- An OUTBar (normally closed coil) symbol

When there is a path of False instructions preceding this on the ladder rung, it will be True.

When the instruction is True it is physically On. We can think of this instruction as a

normally closed output. This instruction can be used for internal coils and external outputs.

It is the exact opposite of the Out instruction.

Table 2 the Difference between OutBar and Out

!Logic State Out OutBar 

o IFalse [rue

1 [rue !False

12




