
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

PRIVATE TEACHING INSTITUTION SYSTEM

USING JAVAx'

GRADUATION PROJECT

COM-400

Student= Burak Mahir CiNKARATA~ (20031230)

Supervisor = Asst. Prof. Dr. Adil AMiRJANOV

Lefkosa - 2007

l~.l!IIJ~Jl~I
NEU

ACKNOWLEDGMENT

First of all, I want to to thank Dr. Adil Amirjanov. The semester before I

graduate from NEU, He made me to shape my future on this sector by teaching the

Object Oriented logic. He never tired of answering my questions. Whenever I knocked

his door, he greeted me friendly and helped me to solve the points where I stucked. I

succesfully overcome many problems under his guidance.

Thanks to all Engineering Department Academics to help me to get many

experiences and knowledges about my future life also in Computer Science.

All in my life there is a person which I can not tell her helps on me by using

the words in dictionaries. I wish from god to give her a long and peaceful life.

Furthermore, I hope she will be proud of her son in her life evermore. Thanks Mum, for

being and grown me up while facing many difficulties.

ABSTRACT

In order to respond to technological needs of the companies, we have a huge

duty as Computer Engineers. This software program maybe very useful if it will be

developed.

While this system is being designed this system, the point I was thinking is to

improve easily. So a few UML diagrams had been designed to help the other developers

who are going to come after me.

This software will help to students how they have are experienced with the last

exams. Also help the guide teachers how their students are levelling up or down till they

have started to the institution.

This software may be improved with some funny and useful things . For

example the exam results can be send to students e-mail or the their achivements can be

shown by using curves.

11

----- -

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT ii

CONTENTS iii

INTRODUCTION 1

CHAPTER ONE : JAVA PROGRAMMING LANGUAGE

1.1 About Java Technology 2

1.1.1 What is Java 2

1.1.2 Primary Goals of Java Technology 3 2

1.1.3 Where Java Can Be Run 3

1.1.4 A Difference - Garbage Collection 3

1.2 Java Language Basics 4

1.2.1 Java Variables 4

1.2.2 Exception Handling 5

1.2.3 Try - Catch and Finally Statement 5

1.3 Object Oriented Programming 5
1.3.1 What is an Object 6

1.3.2 What is a Class 6

1.3.3 What is Inheritance 6

1.3.4 What is Interface 7

1.4 GUI Elements of Java 7

1.4.1 Jbutton 7

1.4.2 JtextField 7

1.4.3 Jmenu 8

111

~---~--- ---· -----.

1.4.4 Jtable

1.4.5 Jframe

9

9

CHAPTER TWO : UML

2.1 Overview 10

2.2 UML Diagrams 10

2.2.1 Use Case Diagrams 10

2.2.2 Class Diagrams 12

2.2.3 Object Diagrams 14

2.2.4 Sequence Diagrams 16

2.2.5 Collaboration Diagrams 18

2.2.6 Activity Diagrams 18

CHAPTER THREE: ORACLE DATABASE

3.1 What is RDBMS 21

3.2 Overview 21

3.3 Background 22

3.4 What is SQL* Plus 22

3.5DDL & DML 23

3.5.1 Data Definition Language 23

3.5.2 Data Manipulation Language 25

3.6 An Introduction to PL/SQL 27

3.6.1 Advantages of PL/SQL 27

3.6.2 Structure and An Example 28

CHAPTER FOUR : PRIVATE TEACHING INSTITUTION SYSTEM

4.1 Database Design of System

4.2 UML Design of System

4.2.1 Use Case Diagram

30

34

34

JV

4.2.2 Class Diagrams 35

4.2.3 Activity Diagram (Add Student) 37

4.3 Java Part Of System 38

4.3.1 Main Menu 39

4.3.2 Add Student 39

4.3.3 Add Exam Results 40

4.3.4 Show Exam Result 41

4.3.5 Add Teacher 42

4.3.6 Add Exam 43

CONCLUSION 47

REFERENCES 48

APPENDIX 49

V

INTRODUCTION

In every developing countries technology has become the main part of the

ompanies nowadays. As being a computer engineer, all we have to do is to answer this

demand accordingly.

Every high school in Turkiye, has to enter an examination in order to study at a

university. Of course it is a bad idea to test all the students' knowledge in 3 hours, but

this is the way it is. In case the schools can not help students to gain advantage at this

exam. Therefore, PRIVATE TEACHING INSTITUTIONS' has appeared everywhere in

my country. Just like the other companies those institutions need some automation

system.

All it is done in my project is to help the company to collect data about the

students' examination results. And show these when needed, while that project is going

to be improved by me. The first aim has to be transmitting these results simultaneously

to the student via e-mail.

This book has been formed by 4 chapters.

The first chapter makes a clean and short explanation about the language used

in the project which has great object oriented skills JAVA. The fundamentals and object

consept is introduced to the reader.

The second Chapter talks about Relational Database Systems where gives some

information about SQL *Plus and PL/SQL.

At the third Chapter Unified Modeling language has briefly introduced to the

reader. The diagrams and Object consept is dealed with a few pages.

The last Chapter talks about the Software Project about Private Teaching

Institution System. At sub chapters it is deeply described how the database, domain and

data access classes has been designed.

CHAPTER ONE

JAVA PROGRAMMING LANGUAGE

1.1 About Java Technology

Java Technology has become a complete software ecosystem that represents

different values to different types of consumer and business users. It offers developers a

choice of three Java platform editions depending on the need:

• Java technology in small and mobile devices

• Java technolo~y in PC desktops

· Java technology in medium to large businesses

1.1.1 What is Java

The Java platform is a fundamentally new way of computing, based on the

power of networks and the idea that the same software should run on many different

kinds of computers, consumer gadgets, and other devices. With Java technology, you

can use the same application from any kind of machine -- a PC, a Macintosh computer,

a network computer, or even new technologies like Internet screen phones. [1]

1.1.2 Primary Goals Of Java Technology

There were five primary goals in the creation of the Java language:

I. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple

operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what were considered the good

parts of other object-oriented languages.

To achieve the goals of networking support and remote code execution, Java

programmers sometimes find it necessary to use extensions such as CORBA, Internet

Communications Engine, or OSGi.

2

1.1.3 Where Java Can Be Run

One characteristic, platform independence, means that programs written in the

Java language must run similarly on any supported hardware/operating-system

platform. One should be able to write a program once, compile it once, and run it

anywhere.

This is achieved by most Java compilers by compiling the Java language code

"halfway" to bytecode (specifically Java bytecode)-simplified machine instructions

specific to the Java platform. The code is then run on a virtual machine (VM), a

program written in native code on the host hardware that interprets and executes generic

Java bytecode. (In some NM versions, bytecode can also be compiled to native code,

resulting in faster execution.) Further, standardized libraries are provided to allow

access to features of the host machines (such as graphics, threading and networking) in

unified ways. Note that, although there is an explicit compiling stage, at some point, the

Java bytecode is interpreted or converted to native machine instructions by the JIT

compiler.] l]

1.1.4 A Difference - Garbage Collection

One of the ideas behind Java's automatic memory management model is that

programmers be spared the burden of having to perform manual memory management.

In some languages the programmer allocates memory for the creation of objects stored

on the heap and the responsibility of later deallocating that memory thus resides with

the programmer. If the programmer forgets to deallocate memory or writes code that

fails to do so, a memory leak occurs and the program can consume an arbitrarily large

amount of memory. Additionally, if the program attempts to deallocate the region of

memory more than once, the result is undefined and the program may become unstable

and may crash. Finally, in non garbage collected environments, there is a certain degree

of overhead and complexity of user-code to track and finalize allocations. Often

developers may box themselves into certain designs to provide reasonable assurances

that memory leaks will not occur.

3

In Java, this potential problem is avoided by automatic garbage collection. The

~mmer determines when objects are created, and the Java runtime is responsible

aging the object's lifecycle. The program or other objects can reference an

by holding a reference to it (which, from a low-level point of view, is its address

e heap). When no references to an object remain, the Java garbage collector

mnmatically deletes the unreachable object, freeing memory and preventing a memory

- Memory leaks may still occur if a programmer's code holds a reference to an

t that is no longer needed-in other words, they can still occur but at higher

eptual levels.[3]

1.2 Java Language Basics

Here are some Java syntax which is commonly used in Java.

1.2.1 Java Variables

The Java programming language defines the following kinds of variables:

a. Instance Variables (Non-Static Fields)

Technically speaking, objects store their individual states in "non-static fields",

at rs. fields declared without the static keyword. Non-static fields are also known as

stance variables because their values are unique to each instance of a class (to each

ooject, in other words); the currentSpeed of one bicycle is independent from the

urrentSpeed of another.

b. Class Variables (Static Fields)

A class variable is any field declared with the static modifier; this tells the

ompiler that there is exactly one copy of this variable in existence, regardless of how

anv times the class has been instantiated. A field defining the number of gears for a

articular kind of bicycle could be marked as static since conceptually the same number

or gears will apply to all instances. The code static int numGears = 6; would create such

a static field. Additionally, the keyword final could be added to indicate that the number

or gears will never change.

c. Local Variables

Similar to how an object stores its state in fields, a method will often store its

emporary state in local variables. The syntax for declaring a local variable is similar to

4

laring a field (for example, int count= O;). There is no special keyword

esignating a variable as local; that determination comes entirely from the location in

vhich the variable is declared - which is between the opening and closing braces of a

method. As such, local variables are only visible to the methods in which they are

declared; they are not accessible from the rest of the class.

1.2.2 Exception Handling

An exception is a class that descends from either java.lang.Exception or

java.lang.Runtimelixception that defines mild error conditions your program might

encounter. Rather than letting the program terminate, you can write code to handle

exceptions and continue program execution.

1.2.3 Try - Catch and Finally Statement

Java has a robust, but complicated, exception handling framework. By using a

try block, a developer can wrap a suspect block of code. If the code throws an

exception, the accompanying catch block allows the developer to process, or handle, the

exception. Handling the exception often involves logging it and then determining if the

application can continue or if the application should exit.

An optional finally block can follow the catch block. This block of code gives

the developer a chance to always run a bit of code regardless of whether an exception

was thrown in the try block. finally blocks are often used for cleanup of database

onnections and other resources. [4]

1.3 Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that uses

"objects" to design applications and computer programs. It utilizes several techniques

om previously established paradigms, including inheritance, modularity,

polymorphism, and encapsulation. Even though it originated in the 1960s, OOP was not

ommonly used in mainstream software application development until the 1990s.

Today, many popular programming languages support OOP. [5]

5

1.3.1 What is an Object

An object is a software bundle ofrelated state and behavior. Software objects

are often used to model the real-world objects that you find in everyday life. This lesson

explains how state and behavior are represented within an object, introduces the concept

of data encapsulation, and explains the benefits of designing your software in this

manner. Here is two objects of Bicycle Class instanciates bicycles.

Bicycle bikel = new Bicycle();
Bicycle bike2 = new Bicycle();

1.3.2 What is a Class

A class is a blueprint or prototype from which objects are created. This section

defines a class that models the state and behavior of a real-world object. It intentionally

focuses on the basics, showing how even a simple class can cleanly model state and

behavior. Here is a Bicycle Class with variables and methods shown with.

class Bicycle {
int cadence= O;
int speed= O;
int gear= 1;
void changeCadence(int newValue) {
cadence= newValue;
}
void changeGear(int newValue) {
gear= new Value;
}
void speedUp(int increment) {
speed = speed + increment;
}
void applyBrakes(int decrement) {
speed = speed - decrement;
}
void printStates() {
System.out.println("cadence:"+cadence+" speed:"+speed+"
gear: "+gear);
}
}

1.3.3 What is Inheritance

Inheritance provides a powerful and natural mechanism for organizing and

structuring your software. This section explains how classes inherit state and behavior

from their superclasses, and explains how to derive one class from another using the

6

simple syntax provided by the Java programming language. Here a Mountain Bike

inherits from Bicycle class.

class MountainBike extends Bicycle {
II new fields and methods defining a mountain bike would go here
}

1.3.4 What is Interface

An interface is a contract between a class and the outside world. When a class

implements an interface, it promises to provide the behavior published by that interface.

This section defines a simple interface and explains the necessary changes for any class

that implements it. [6]

1.4 GUI Elements of Java

A graphical user interface (GUI, often pronounced gooey or goo-ee) is a type

of user interface which allows people to interact with a computer and

computercontrolled devices which employ graphical icons, visual indicators or special

graphical elements called "widgets", along with text labels or text navigation to

represent the information and actions available to a user. The actions are usually

performed through direct manipulation of the graphical elements.

1.4.1 JButton

Simple uses of JButton are very similar to Button. You create a]Button with a

String as a label, and then drop it in a window. Events are normally handled just as with

a Button: you attach an ActionListener via the addActionListener method.

Usage: JButton button] = new Jbutton("Java");

1.4.2 JtextField

JTextField is a lightweight component that allows the editing of a single line of

text.

Usage for Input: Declare a JTextField as an instance variable. Reason: If it's an

instance variable, it can be seen in all methods in the class.

1. Assign an initial value to this variable by calling the JTextField constructor.

Specify the approximate field width in the constructor.

7

Example: JTextField yourlnpuliieldt = new JTextField(16);

2. Add the text field to a container.

content.add(yourlnputField); or to add it to a JPanel p

p.add(yourlnputField);

3. Input is done by calling the getText().

4. Get the string in the text field by calling yourTextField.getText() method

whenever you need it. This is probably the most common way.

String x = yourlnputField.getText();
5. Attach an action listener to the text field. It is called whenever the user types

Enter in that field. The listener can then get the text and process it.

Usage For Output : Using a JTextField for output is almost the same as for

input, but ...

1. Set the text field with yourTextField.setText(someString)

2. If it's only for output, call .setEditable(false) so the user can't change the

field.

Here is the sequence.

1. Declare and initialize a JTextField as a field variable (instance variable).

Example:

JTextField myOutput = new JTextField(16);

You can also set the initial value in the field

JTextField myOutput = new JTextField("somelnitialValue", 20);

2. Add the text field to a container. For example, to add it to JPanel p.

p.add(myOutput);

3. Setting the value of the text field. Whenever you want put a string value in

the text field, call myOutput.setText("Some text").

myOutput.setText("some text");

1.4.3 JMenu

An implementation of a menu -- a popup window containing JMenultems that

is displayed when the user selects an item on the JMenuBar. In addition to JMenultems,

a JMenu can also contain }Separators.

In essence, a menu is a button with an associated JPopupMenu. When the

"button" is pressed, the JPopupMenu appears. If the "button" is on the JMenuBar, the

8

menu is a top-level window. If the "button" is another menu item, then the JPopupMenu

is "pullright"

menu.

1.4.4 JTable

The JTable is used to display and edit regular two-dimensional tables of cells.

The JTable has many facilities that make it possible to customize its rendering and

editing but provides defaults for these features so that simple tables can be set up easily.

For example, to set up a table with 10 rows and 10 columns of numbers:

TableModel dataModel = new AbstractTableModel() {

public int getColumnCount() { return IO; }
public int getRowCount() { return IO;}
public Object getValueAt(int row, int col) { return new lnteger(row*col); }
};
JTable table= new JTable(dataModel);
JScrollPane scrollpane = new JScrollPane(table);

1.4.5 JFrame

The JFrame class is slightly incompatible with Frame. Like all other

JFC/Swing top-level containers, a JFrame contains a JRootPane as its only child. The

content pane provided by the root pane should, as a rule, contain all the non-menu

components displayed by the Jframe. An example with a Jframe and 3 Jbuttons. [7]

import java.awt. *;
import javax.swing. *;
public class JFrameExample {
public static void main(String[] args) {
Window Utilities.setN ativeLookAndF eel();
JFrame f = new JFrame("This is a test");
f.setSize(400, 150);
Container content = f.getContentPane();
content.setBackground(Color. white);
content.setLayout(new FlowLayout());
content.add(new JButton("Button 1 "));
content.add(new JButton("Button 2"));
content.add(new JButton("Button 3"));
f.addWindowListener(new ExitListener());
f.setVisible(true);
}
}

9

CHAPTER TWO

UML

2.1 Overview
Large enterprise applications - the ones that execute core business applications,

and keep a company going - must be more than just a bunch of code modules. They

must be structured in a way that enables scalability, security, and robust execution under

stressful conditions, and their structure - frequently referred to as their architecture -

must be defined clearly enough that maintenance programmers can (quicklyl) find and

fix a bug that shows up long after the original authors have moved on to other projects.

That is, these programs must be designed to work perfectly in many areas, and business

functionality is not the only one (although it certainly is the essential core). Of course a

well-designed architecture benefits any program, and not just the largest ones as we've

singled out here. We mentioned large applications first because structure is a way of

dealing with complexity, so the benefits of structure (and of modeling and design, as

we'll demonstrate) compound as application size grows large. Another benefit of

structure is that it enables code reuse: Design time is the easiest time to structure an

application as a collection of self-contained modules or components. Eventually,

enterprises build up a library of models of components, each one representing an

implementation stored in a library of code modules. When another application needs the

same functionality, the designer can quickly import its module from the library. At

coding time, the developer can just as quickly import the code module into the

application.

2.2.1 Use Case Diagrams

Use case diagrams describe what a system does from the standpoint of an

external observer. The emphasis is on what a system does rather than how.

Use case diagrams are closely connected to scenarios. A scenario is an example

of what happens when someone interacts with the system. Here is a scenario for a

medical clinic(see figure 2.1).

10

"A patient calls the clinic to make an appointment for a yearly checkup. The receptionist

finds the nearest empty time slot in the appointment book and schedules the

appointment for that time slot. "

actor·--._+
·~

Patient

1
.. communication

~

~--- use case

(fig 2.1 A Use Case Diagram)

Actors are stick figures. Use cases are ovals. Communications are lines that

link actors to use cases.

A use case diagram is a collection of actors, use cases, and their

communications. We've put Make Appointment as part of a diagram with four actors

and four use cases. Notice that a single use case can have multiple actors.

system name
linic

system boundary

--- _________,------
Make Appointment

Scheduler
<<include>:,

Patient .,.. include use case
~-·

'·'--.:::~-------------·. /'
--~-~ <<include>~· I' -------- --...

Check Patient Record

Doctor ·,·~ ... , .•.•. ,~
....

..••...•......•••....•..•.

"-,_-.....
..•••.. - ..

<<extend>> . ,..--~Pay .• _J,.....,. extend use case
/~

Pav Bill
Clerk \ Extension points

extension point +----~!v1ore Treatment
----------=-

·- <, ~"J....-- _...__
....•.• ,:r,·-~~- /' clutd use ca.se

generalization -/ ··------ ~
~

(fig 2.2 A Use Case Diagram with system boundary)

11

A system boundary rectangle separates the clinic system from the external

actors(see figure 2.2).

A use case generalization shows that one use case is simply a special kind of another.

Pay Bill is a parent use case and Bill Insurance is the child. A child can be substituted

for its parent whenever necessary. Generalization appears as a line with a triangular

arrow head toward the parent use case.

Include relationships factor use cases into additional ones. Includes are

especially helpful when the same use case can be factored out of two different use

cases. Both Make Appointment and Request Medication include Check Patient Record

as a subtask. In the diagram, include notation is a dotted line beginning at base use case

ending with an arrows pointing to the include use case. The dotted line is labeled

<<include>>.

An extend relationship indicates that one use case is a variation of another.

Extend notation is a dotted line, labeled «extend», and with an arrow toward the base

case. The extension point, which determines when the extended case is appropriate, is

written inside the base case.

2.2.2 Class Diagrams

A Class diagram gives an overview of a system by showing its classes and the

relationships among them. Class diagrams are static -- they display what interacts but

not what happens when they do interact.

The class diagram below(see figure 2.3) models a customer order from a retail

catalog. The central class is the Order. Associated with it are the Customer making the

purchase and the Payment. A Payment is one of three kinds: Cash, Check, or Credit.

The order contains OrderDetails (line items), each with its associated Item.

12

Customer Order

name 1 0 .• date

address + status

\, .. association .. -, calcTax
\

.,,. Payment J 1
calcTotal

oostrcct class - ! . ca\cTotalWeight ...__

amount 1,1

,\ roll! name-.__,
generalization ... ···>Y ~•• ,multiplicity line item 1 .. • -<1'·-··

I I I OrderDetail /'\ Item ,.

Credit Cash Check
quantity

"' shippingWeight

number cashTendered taxStatus 0 • 1-.._ description "*·· name
type banklD ,f
e11pl)a\e calcSutiTotal getP ticef mQuantlt-J

authorized calcWeight I get\11/eight .(·-
authorized \

class name

attritiute«

operations

(fig 2.3 A Class Diagram)

UML class notation is a rectangle divided into three parts: class name,

attributes, and operations. Names of abstract classes, such as Payment, are in italics.

Relationships between classes are the connecting links.

Our class diagram has three kinds of relationships.

• association -- a relationship between instances of the two classes. There is an

association between two classes if an instance of one class must know about the

other in order to perform its work. In a diagram, an association is a link

connecting two classes.

• aggregation -- an association in which one class belongs to a collection. An

aggregation has a diamond end pointing to the part containing the whole. In our

diagram, Order has a collection of Order Details.

• generalization -- an inheritance link indicating one class is a superclass of the

other. A generalization has a triangle pointing to the superclass. Payment is a

superclass of Cash, Check, and Credit.

An association has two ends. An end may have a role name to clarify the

nature of the association. For example, an Order Detail is a line item of each Order.

13

