
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

IMAGE CLASSIFICATION USING ARTIFICIAL

NEURAL NETWORK

Graduation Project

COM-400

Student: FiRAS SULAIMAN BHAR

•

Supervisor: Associated. Prof. DR. RAHİB ABİYEV

Nicosia - 2006

ACKNOWLEDGEMENTS

First of all I am thanking full to the most gracious "ALLAH" the almighty, who enable

me to complete this project

Secondly, Iwould like to award my supervisor Associated. Prof. DR. RAHİB ABİYEV

for being so operative averring supervises me in this work, and for his overwhelming and

limitless help he had done to me.

Thirdly, Iwill never over look the encourage I had resaved from all my family, specially

my parents, my "father" the best father in this world, and the best sweetest woman in the

word "mother", for there supporting me and caring for me, I am thankful for them.

Fourthly this will be the most important moment in my life that I will settlement my

project to my brothers" Rawad, Rami, Abd El Hakeem and to my sister Marwa" and

surly to the best uncle "DR. Amen Bhar", because of there encourage me and supporting

me in all my educations and specially in the last three and half years of study in Near East

University, I am so thankful for them, for all my relatives and for every one caring for

me.

Finally I like to thank the best friends Youssef Abu Khuruj, Mohamad Al Sharaf,

Mahamoud Ghuneim, Youssef Ghuneim, Mohammad Majzoob, Khaled Ghuneim,
/

Ahmad Hameid, Fadi Alia and Shadi El Haj Hussein.

My best friends I had met them in Cyprus Amir Sarayreh, Abdul Halim Abu kuwaik,

Esen Sultan Çil, Mohammad Aldarabie, Saied Almoheisin, •

Mahmoud Antar, Mohammad Sarhan, Rami Hasan Amar, Hicham Tirawi, Serein Hassan

and to all my friends wherever they are.

I will not forget my doctors and teachers in Near East University. From all my heart I am

saying thanks to all and to every one stood beside me to complete my education.

ABSTRACT

Since the beginning, humankind has sought to use elements in the surrounding environment

to make life easier and the tasks at hand more efficient. In keeping with this tradition,

people have toyed with and explored the concept of using machines to solve problems since

ancient times, Only in this 20th century have significant advances occurred, making the

possibility of an actual manifestation of artificial intelligence more and more a reality.

This project explores the theoretical and particular underpinning of Neural Networks and

its applications, the reader of this project will come away with an appreciation for the basic

concepts of Neural Network., and with an idea about Image classification using Artificial

Neural Networks field and the use of its applications.

This projects includes three kinds of network are using for image classification, also this

project is supplied with MATLAB code which help in implementing and training the neural

network for image classification and the reader of this project will learn about the wavelet

decomposition which help in compression or reducing the image size without losing the

image data.

•

11

Table of Contents

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

INTROUDUCTION

CHAPTER 1: ARTIFICIAL NEURAL NETWORKS

ii

ııı

1

1. 1 Overview 5

1.2 Introduction to Artificial Neural Network 5

1 .2. 1 Artificial Neural Networks 6

1.2.2 Analogy of the Brain 6

1 .2.3 Artificial Neurons and how they work 7

1.3 Components ofArtificial Neural Network. 9

1.3.1Neurons 9

1 .3.2 Layers 9

1.3.3 Connections (weights) 10

1.3.4 Transfer Function 10

1.4 Artificial Neural Network: Operation Mode and

Training Mode 11

1.4.1 Operation Mode 11

1.4.2 Training Mode 13

1 .4.2.1 Supervised Training. 13
"

1 .4.2.2 Unsupervised Training (Adaptive Training) 14

1.5 Artificial Neural Networks versus Traditional Computing 16
• •

1.6 The Artificial Neural Network Applications 16

1.6.1 Banking and Financial 17

1.6.2 Language Processing 17

1 .6.3 Character Recognition 17

1.6.4 Image (data) Compression 18

ııı

1.7

1 .6.5 Pattern Recognition

Neural networks structure

1.7.1 FeedForward-Back Propagation Neural Network

Summery

18

19

19

221.8

CHAPTER 2: CLASSIFICATION METHOD

2.1 Overview 23

2.2 Statistical Methods 23

2.2. 1 Maximum likelihood Classification 23

2.2.2 Minimum distance Classification 24

2.3 Classification using Artificial Neural Network 24

2.3.1 Competitive Neural Network 24

2.3.1.1 Basic Operation of Competitive Layer 25

2.3. 1 .2 Source of error in the competitive layer network 26

2.3.1.3 Bias Leaming Rule (learncon) 26

2.3 .2 Learning Vector Quantization(L VQ) 27

2.3.2.1 Architecture of Leaming Vector Quantization Network 27

2.3.2.2 Training ofLVQ Networks 29

2.3.2.3 Drawbacks of LVQ Networks 30

2.4 Summary 30

CHAPTER 3: INTRODUCJ;.ION TO WA VELET ANALYSIS

3.1 Overview

3 .2 The need of wavelet transformation

3.3 The Drawback of Fourier Transform

3.4 The solution of the limitation of the Fourier Transform

• 32

32

33

33

34

35

3.5 The appearance of Wavelet analysis

3.6 Wavelet Computing

3.6. 1 The Continuous Wavelet Transform and the wavelet series 36

ıv

3.7

3.8

3.6.2 The Discrete Wavelet Transform

3.6.3 DWT and Filter Banks

37

38

40

41

Wavelet Families

Summary

CHAPTER 4: DESIGN OBJECTIVE AND PREPROCESSING

4.1

4.2

4.3

4.4

4.5

Overview 42

43

47

48

48

49

55

Image characteristics

The MTLAB Wavelet Toolbox usage

4.3. 1 The decomposition process

4.3.2 The reconstruction Process

Images preprocessing; the use of WAVELET transformer

Summary

CHAPTER 5: FEEDFORWARD DESIGN

5.1 Overview 56

5.2 The FeedForward Construction 56

5.3 FeedForward ANN Design using the original size 59

5.4 The use of Wavelet transformation 64

5.5 The end results of FeedForward design 66

5.6 Summary 67~

CHAPTER 6: CLASSIFICATION USING COMPETITIVE LA)'ER ANN
••

6.1 Overview 68

6.2 Construction of Competitive Layer ANN 68

6.3 Network design for the original size images 69

6.4 Network design for reduced images size 71

6.4.1 Network design using third wavelet decomposition 72

V

CONCLUSION

LIST OF FIGURES

LIST OF TABLES

APPENDIX

REFERENCES

103

105

106

I

R

6.4.2 Network design using fourth level wavelet decomposition 77

6.4.3 Network design using fifth level wavelet decomposition 82

6.5 Summary 87

Chapter 7: CLASSIFICATION USING LEARNING VECTOR

QUANTIZATION

7.1 Overview 88

7.2 Construction of LVQ ANN 88

7.3 Network design for the original size images 89

7.4 LVQ Network design for reduced images size (one wavelet level) 91

7.5 LVQ Network design for reduced images size (two levels wavelet) 94

7.6 LVQ Network design for reduced images size (three levels wavelet) 94

7.7 Network design for reduced images size (four levels wavelet) 99

7.8 Network design for reduced images size (five levels wavelet) 101

7.9 Summary 102

•

Vl

Introduction

Image classification plays an important part in the fields of Remote sensıng,

Image analysis and Pattern recognition. Digital image classification is the process of

orting all the pixels in an image into a finite number of individual classes. The

conventional statistical approaches for image classification use only the gray values.

Digital image consists of discrete picture elements called pixels which are

associated with a digital number represented as DN that depicts the average radiance of

relatively small area within a scene. The range of DN values is normally O to 255. Digital

image processing is a collection of techniques for the manipulation of digital images by

computers. Classification generally comprises four steps:

1- Pre-processing: Atmospheric correction, noise suppression, and finding the

band ratio, principal component analysis, etc.

2- Training: Selection of the particular feature which best describes the pattern.

3- Decision: Choice of suitable method for comparing the image patterns with the

target patterns.

4- Assessing the accuracy of the classification.

Project description

In this project we are, discussing the image classification using artificial neural

network, since ANN according to Haykin is a massively parallel distributed processor

that has a natural propensity for storing experiential knowledge ana making it available

for use. ANNs can provide suitable solutions for problems, which are generally

characterized by non-linearities, high dimensionality noisy, complex, imprecise, and

imperfect or error prone sensor data, and lack of a clearly stated mathematical solution or

algorithm. A key benefit of neural networks is that a model of the system or subject can

be built just from the data.

1

This research consists of seven chapters, the goal of this research is to describe

ome neural network and how they are able to classify images, the description of each

hapter as follow.

First chapter is Artificial Neural Networks:

This chapter presents an introduction to artificial neural network, and it contains a

definition of artificial neural network, analogy of the brain, how artificial neurons work,

it also discuses the components of artificial neural network, which contains neuron,

layers, connections, and transfer function with description of each transfer function

supplied in appendix, this chapter will also present the operation mode and training mod

of artificial neural network, comparison between artificial neural network and traditional

computing, applications of artificial neural network, and finally neural network structure.

Chapter 2: Classification Methods:

This chapter introduces the classification method which is divided into two parts

first part was statistical method of classification which is divided into maximum

likelihood classification and minimum distance classification. The second part was about

classification using an artificial neural network which was also divided into competitive

neural network and learning vector quantization network. Also we will see in the

appendix a description of the dist function which had been used in the competitive layer

architecture and in the learning vector quantization network architecture.

Chapter3: Introduction to Wavelet Analysis:

•
This chapter discuses the wavelet analysis, its needed, the drawback of Fourier transform

and its solution with STFT then the problem with STFT, also it discussed the appearance

of wavelet analysis and its better resolution properties and its high compression

capabilities, then it discussed the wavelet computing which divided into three parts: the

continuous wavelet transform and the wavelet series, discrete wavelet transform (DWT)

2

and DWT and filter banks. And finally it shows some of basis functions that can be used

as the mother wavelet for wavelet transformation which related to wavelet family's part.

Chapter4: Design objective and Preprocessing:

This chapter discussed some MATLAB codes and it show how they work on the

elected images with some examples, it used the wavelet transformation which helped in

the data processing, but we involved with the two dimension discrete branch of the

wavelet transformation and it was applied on the decomposition and reconstruction

process. Also it discussed the cause of using the two dimension wavelet transformation

through an example using the MATHLAB code.

Chapters: FeedForward Design:

This chapter discussed on of the most popular and effective network which is the

Feedforward architecture, its construction, its training and the use of wavelet

transformation within the Feedforward in order to reduce the size of the image which will

reduce the number of neurons in the input layer, although the result of training was failed

even by trying the fifth and sixth level of decomposition.

Chapter6: Competitive Layer ANN Design:

This chapter discussed the competitive layer ANN design which is an

unsupervised training ANN, th'e architecture of this network contain only one layer which

is the competitive layer. This chapter shows the network design for the original size

image using the MATLAB code which was failed , the this chapter discussed the network

design for reduced image size which failed to classify the images in the first and second

order wavelet decomposition, but it was successful for the third , forth and fifth order

wavelet decomposition , but as the experiment shows that network design using fifth

level wavelet decomposition was better than the network design using the third and the

forth order wavelet decomposition.

3

rer?: Classification using Leaming Vector Quantization:

This chapter discussed the classification using learning vector quantization

use its architecture has the architecture of competitive layer plus the ability to have

ised training; this chapter show the construction of the LVQ ANN using MATLAB

. The LVQ ANN was applied on the original image but the training failed so the

velet decomposition was considered, and it was started from the first wavelet

omposition which got failed and the same result for the second wavelet decomposition

rder, so it considered the third, forth, and fifth order of wavelet which was successfully

trained and the fifth wavelet decomposition order proved that it's the best order in the

lassification.

Aim of project

The aims of this project are:

1- To give general information about ANN, Classification method, and Wavelet

Analysis.

2- To introduce some networks and how they are able to classify images.

3- Using the MATLAB code for implementing the networks and to train each

network

4- To show the differences between the used networks and to show that Leaming

vector quantization is better than other used network.
~

•• •

4

Chapter One

Artificial Neural Networks

1.1 Overview

This chapter presents an introduction to artificial neural network, and it contains

a definition of artificial neural network, analogy of the brain, how artificial neurons work,

it also discuses the components of artificial neural network, which contains neuron,

layers, connections, and transfer function with description of each transfer function

supplied in appendix, this chapter will also present the operation mode and training mod

of artificial neural network, comparison between artificial neural network and traditional

computing, applications of artificial neural network, and finally neural network structure.

1.2 Introduction to Artificial Neural Network

Artificial Neural Networks are being touted as the wave of the future in

computing. They are indeed self learning mechanisms which don't require the traditional

skills of a programmer. But unfortunately, misconceptions have arisen. Writers have

hyped that these neuron-inspired processors can do almost anything. These exaggerations

have created disappointments fur some potential users who have tried, and failed, to solve

their problems with neural networks. These application builders have often come to the

conclusion that neural nets are complicated and confusing. Unfortunately, that confusion

has come from the industry itself. Avalanches of articles have appeared touting a large

assortment of different neural networks, all with unique claims and specific examples.

Currently, only a few of these neuron-based structures, paradigms actually, are being

used commercially. One particular structure, the feedforward, back-propagation network,

is by far and away the most popular. Most of the other neural network structures

5

represent models for "thinking" that are still being evolved in the laboratories. Yet, all of

these networks are simply tools and as such the only real demand they make is that they

require the network architect to learn how to use them.

1.2.1 Artificial Neural Networks

The basic concept of the Artificial Neural Network is that they are electronic

models based on the neural structure of the brain. This familiarization with the brain

structure give the Artificial Neural Network the ability to do more complex operation that

computer can not do.

Advanced researches in biological structure of the brain, give us an initial

understanding of the Neural thinking mechanism. It appears that the brain store

information as patterns, some of these patterns are very complicated so it gives us the

ability to recognize individual faces from many different angles.

This process of storing information as patterns, utilizing those patterns, and then

solving problems, by establishing a new field in computing, does not utilize traditional

programming but involves the creation of massively parallel networks and then training

these networks to solve specific problems.

1.2.2 Analogy of the Brain

Although the exact exercises procedures of the human brain are still a mystery

yet, some aspects of this amazing processor are known. In particular, the most basic

element of the human brain is a specific type o(cell which, unlike-the rest of the body,

doesn't appear to regenerate. Because this type of cell is the only part of the body that

isn't slowly replaced, it is assumed that these cells are what provide us with our abilities

to remember, think, and apply previous experiences to our every action. These cells, all

100 billion of them, are known as Neurons. Each of these neurons can connect with up to

200,000 other neurons.

6

The power of the human mind comes from the huge number of the neurons and

multiple connections between them, it also comes from learning.

Together these neurons and their connections form a process which is not binary,

stable, and not synchronous. In short, it is nothing like the currently available

onic computers, or even artificial neural networks.

The Artificial Neural Networks or (ANN) tries to replicate only the most basic

ents of this complicated, versatile, and powerful organism.

1.1.3 Artificial Neurons and how they work

The basic processing element of the Neural Network is the Neuron, so it's

recommended to know how the biological neuron works.

A biological neuron receive inputs from other sources (maybe other neurons),

ombines them in some way, performs a nonlinear operation on the result, and then

outputs the final result. Figure (1) shows the main components of the biological neuron.

~ Dendrites: Accept inputs

sema: Process the inputs

Axon: Tum the processed inputs
into outputs •

Synap.ses: The electrochemical
Contact between neurons

Figure (1): The main 4 parts of the Nerve Cell (neuron)

7

These components are known by their biological names - dendrites, soma, axon,

synapses. Dendrites are hair-like extensions of the soma which act like input

els. These input channels receive their input through the synapses of other neurons.

soma then processes these incoming signals over time. The soma then turns that

ssed value into an output which is sent out to other neurons through the axon and

synapses.

It's recommended to mention that the biological neurons are structurally more

mplex than the simplistic explanation above, and they are significantly more complex

than the existing artificial neurons that are built into today's artificial neural networks.

The goal of the Artificial Neural Network is not to build an exact model of the

human brain, but to understand the natural capabilities behind the human brain structure.

To do this, the basic unit of neural networks, the artificial neuron, simulates the four

basic functions of natural neurons. Figure (2) shows the representation of the artificial

neuron.

Inputs Weights

XO

xı·~· w>wwoo
X2 ~-°"

W2 :~ output
Path

Processing
Eleı11ent

•
Figure (2): The Artificial Neuron

The synapses and dendrites of the artificial neuron are the inputs to the

processing element (soma). Each of the inputs (Xn) has an associated connection weight

(Wn) which simulates the strength of a particular synaptic connection. The processing

8

ent multiplies each input by its connection weight and usually sums these products

I = L Xn Wn), which is then passed to the transfer function f(I) to generate a result

dıich is transmitted via the output path. The transfer function dictates the firing of the

uron. This could be based on a certain threshold level, a linear function, or a sigmoid

ction where the threshold for output varies. Neurons can be classed as excitatory or

inhibitory depending on the effect their output has on the output of a target neuron

1.3 Components of Artificial Neural Network.

1.3.1 Neurons

A simple artificial neuron is shown in figure (3). In this architecture the input (I)

transmitted through a connection that multiplies its value by the weight (w), to form the

product (wl). Then the bias is added to the product (wl) which will apply to the transfer

function (!), to get the output. The bias is much like a weight, except that it has a

constant input of (1).

(w)
In put .__..l!=
(I) Bias! (b)

1

Ouput
(O)

O= f(wl+b)

" Figure (3): Simple neuron with bias

1.3.2 Layers •

The neurons are grouped in layers, which construct the neural network, The

layer may vary in size from one neuron to large numbers, and the sequence of layers are

connected through connections (weights).

9

The output of each neuron in one layer is connected to the input of each neuron in

layer, and the strength of this connection depends on the value of the weight (w).

l architecture of consecutive is shown in figure (4).

Input Layer 1
r=-; r \

Layer 2 Layer3----, ~ "\

\,_.) \ ./ \. .) \ .)

Figure (4): General architecture of multi layer neural network

J.3.3 Connections (weights)

The strength of the connections between the neuron and the next one in the next

yer is defined by the weight. The weights of such layer are grouped in one matrix called

the weights matrix.

1.3.4 Transfer Function

- The multiplication result of the input by the weight added to the bias is then

applied to the transfer function of the neuron. Each neuron can be defined separately with
" a single transfer function, while usually we define each layer with a transfer function,

such that all of the neurons in the same layer have the same transfer function.
•

10

There are various transfer functions can be used some of them are listed in table (1);

Command Description

Com pet Competitive transfer function.

Hardlim Hard limit transfer function.

Hardlims Symmetric hard limit transfer function

Logsig Log sigmoid transfer function. -

Poslin Positive linear transfer function

Purelin Linear transfer function.

Radbas Radial basis transfer function.

Satlin Saturating linear transfer function.

Satlins Symmetric saturating linear transfer function

Softmax Softmax transfer function.

Tansig Hyperbolic tangent sigmoid transfer function.

Tribas Triangular basis transfer function.

Table (1): Neurons Transfer functıons.

1.4 Artificial Neural Network: Operation Mode and Training Mode

1.4.1 Operation Mode

The question now is how we can use these basic elements (neurons) to

give the performance expected from it? From our knowledge in biological neural

network the grouping Öf these basic elements is recommended.

•This grouping occurs in the human mind in such way the information can

be processed in a dynamic, interactive, and self organizing way. The limited

power of the Artificial ,Neural Network with respect to the biological one come

from the type of construction they use, the biological networks are constructed in

a three dimensional way, and the integrated circuits used to implement the

11

artificial network are two dimensional devices. This physical reality restrains the

types, and scope, of artificial neural networks that can be implemented in silicon.

The grouping in Artificial Network occurs by creating Layers which are

then connected to each other. How each layer is connected to the other define the

action and the ability of the network. The most common structure contains an

Input Layer (non-processing neurons), Hidden Layer (processing neurons), and

Output Layer (processing neurons), where processing means that the neuron can

be ON or OFF while comparing with the threshold value. Figure (5) illustrates

layers of artificial neural network which are then connected to each other.

INPUT
LAYER

HIDDEN
LAYER
(there may be severa1

hiddenlayers)

Figure (5): Artificial neural network layers

~
The input layer contain a specific number of neurons to interface the real

world to receive its inputs, the received data may be either from input files or
••directly from electronic sensors, the opposite function is done by the neurons in

the output layer which provide the real world with the network's output. Many

hidden layers can be inserted between two layers. These hidden layers contain

many of the neurons in various interconnected structures. The inputs and outputs

of each of these hidden neurons simply go to other neurons.

12

Although there are useful networks which contain only one layer, or even

one element, most applications require networks that contain at least the three

normal types of layers - input, hidden, and output.

In the most networks each neuron receives the signals from all the neurons

in the previous layer (or from sensors or files in the case of the input layer); after

a neuron performs its function it passes its output to all the neurons in the next

layer.

1.4.2 Training Mode

As the biological network gain its information and the ability of solving

problems from learning, the power of the Artificial Neural Network comes from

training.

When the training process is started the network chose the weights of the

connection between neurons randomly, and as the training goes on the weights are

adjusted to provide the network with optimum connection to do the job expected

from it.

There are two approaches to training; supervised and unsupervised.

Supervised training involves a mechanism of providing the network with the

desired output either by manually "grading" the network's performance or by

providing the desired ô'utputswith the inputs. Unsupervised training is where the

network has to make sense of the inputs without outside help.
•

1.4.2.1 Supervised Training

In supervised training, both the inputs and the outputs are provided. The

network then processes the inputs and compares its resulting outputs against the

desired outputs. Errors are then propagated back through the system, causing the

13

system to adjust the weights which control the network. This process occurs over

and over as the weights are continually tweaked. The set of data which enables

the training is called the "training set." During the training of a network the same

set of data is processed many times as the connection weights are ever refined.

Figure (6) illustrates the idea of the supervised training.

Desired outputs

Neural Network
includingconnections I ')ıl
(called weıghts)
between neurons

output
Input

Adjust Weights

Figure (6): Supervised training process.

Some networks never learn. This could be because the input data does not

contain the specific information from which the desired output is derived or the

application is not supplied by the ANN architecture.

If a network simply can't solve the problem, the designer then has to

review the input and outputs, the number of layers, the number of elements per

layer, the connections between the layers, the summation, transfer, and training

functions, and even the initial weights themselves. Those changes required to

create a successful network constitute a process wherein the "art" of neural

networking occurs.
•

1.4.2.2 Unsupervised Training (Adaptive Training)

The other type of training is called unsupervised training. In unsupervised

training, the network is provided with inputs without desired outputs. The system

14

itself must then decide what features it will use to group the input data. This is

often referred to as self-organization or adaptation.

At the present time, unsupervised learning is not well understood. This

adaptation to the environment is the promise which would enable science fiction

types of robots to continually learn on their own as they encounter new situations

and new environments. Life is filled with situations where exact training sets do

not exist. Some of these situations involve military action where new combat

techniques and new weapons might be encountered. Because of this unexpected

aspect to life and the human desire to be prepared, there continues to be research

into, and hope for, this field. Yet, at the present time, the vast bulk of neural

network work is in systems with supervised learning. Supervised learning is

achieving results.

One of the leading researchers into unsupervised learning is Tuevo

Kohonen, an electrical engineer at the Helsinki University of Technology. He has

developed a self-organizing network, sometimes called an auto-associator that

learns without the benefit of knowing the right answer. It is an unusual looking

network in that it contains one single layer with many connections. The weights

for those connections have to be initialized and the inputs have to be normalized.

The neurons are set up to compete in a winner-take-all fashion.

Kohonen continues his research into networks that are structured

differently than standard, feedforward, back-propagation approaches. Kohonen's

work deals with the grouping of neurons into fields. Neurons within a field are

"topologically ordered." Topology is a branch of mathematicf that studies how to

map from one space to another without changing the geometric configuration. The

three-dimensional groupings often found in mammalian brains are an example of

topological ordering.

15

Kohonen has pointed out that the lack of topology in neural network

models make today's neural networks just simple abstractions of the real neural

networks within the brain. As this research continues, more powerful self learning

networks may become possible. But currently, this field remains one that is still in

the laboratory.

1.5 Artificial Neural Networks versus Traditional Computing

The characteristics that can be compared between the Artificial Neural

Networks and the traditional computers are shown in table (2).

TRADITIONAL COMPUTING ARTIFICIAL NEURAL
CHARACTERISTICS

(including Expert Systems) NETWORKS

-Parallel
-Sequential

Processing style -Logically (left brained)
-Gestalt (right brained)

-Via Images
Functions -Via Rules Concepts

-Pictures
-Calculations

-Controls

-By rules (didactically) -By example (Socratic ally)

Leaming Method
-Accounting -Sensor processing

-Word processing - Speech recognition
Applications

-Math inventory -Pattern recognition

-Digital communications -Text recognition•
Table (2): ANN vs. traditional computing

•
1.6 The Artificial Neural Network Applications

•

When a concept leaves the academic environment and is thrown into the

harsher world of users who simply want to get a job done, then the artificial

neural network is to do the job. Although many networks now being designed are

quite accurate, but still leave bad taste for those users who expect the computer to

16

give them absolute solutions. These networks might be 85% to 90% accurate.

Unfortunately, only few applications tolerate that level of error.

There are various possibilities where neural networks might offer

solutions, possibilities such as language processing, character recognition, image

compression, pattern recognition, and pattern classification.

1.6.1 Banking and Financial

Loan approval is one of those few applications. The financial institutions

gain more profits by making less bad loan decisions. And if we are talking about

90% accurate systems which can be achieved by artificial neural network, this

will be an excellent improvement for the traditional used systems as proven by

some banks and credit card companies.

1.6.2 Language Processing

Language processing has a wide variety of applications. These

applications include text-to-speech conversion, auditory input for machines,

automatic language translation, secure voice keyed locks.

Many companies, universities and research centers working these days on

artificial neural network could help in responding to voice commands. The

economic rewards of sueh approach will be just a gold mine. And if this approach

was built on a chip million of these chips could be sold.
•

1. 6.3 Character Recognition

Character recognition is another area in which neural networks are

providing solutions. Some of these solutions are beyond simply academic

curiosities. Many companies markets a neural network based product that can

17

recognize hand printed characters through a scanner. This product is 98% to 99%

accurate for numbers, a little less for alphabetical characters. Several vendors are

saying they are close to commercial products that can scan pages.

1.6.4 Image (data) Compression

A number of studies have been done proving that neural networks can do

real-time compression and decompression of data. These networks are auto

associative in that they can reduce eight bits of data to three and then reverse that

process upon restructuring to eight bits again. However, they are not lossless.

Because of this losing of bits they do not favorably compete with more traditional

methods.

1.6.5 Pattern Recognition

Recently, a number of pattern recognition applications have been done.

One application on how a physician had trained a neural network on data

collected in emergency rooms from people who felt that they were experiencing a

heart attack to provide a probability of a real heart attack versus a false alarm.

Another application involves the grading of rare coins. Digitized images

from a digital camera are fed into a neural network. These images include several

angles of the front and back. These images are then compared against known

patterns which represent the various grades for a coin. This system has enabled a

quick evaluation for about $ 15 as opposed to the standard three-person evaluation

which costs $200. •

A neural network is now being used in the scanning of smears. This

network is trying to do a better job at reading the smears than can the average lab

technician. A missed diagnosis is a too common problem throughout this industry.

In many cases, a professional must perceive patterns from noise, such as

18

identifying a fracture from an X-ray or cancer from a X-ray "shadow." Neural

networks promise, particularly when faster hardware becomes available, help in

many areas of the medical profession where data is hard to read.

Recognition neural networks are being used in a field known as quality

control. A number of automated quality applications are now in use. These

applications are designed to find that one in a hundred or one in a thousand part

that is defective. Human inspectors become fatigued or distracted. Systems now

evaluate solder joints, welds, cuttings, and glue applications. One car

manufacturer is now even prototyping a system which evaluates the color of

paints. This system digitizes pictures of new batches of paint to determine if they

are the right shades.

1.7 Neural networks structure

1. 7.1 Feedforward-Back Propagation Neural Network.

This is the most popular network that used more than all other types of

networks. It is used in many different types of applications, that because this

back-propagation architecture is the most effective, and easy to earn model for

complex, multi layered network.

The typical back-propagation network has an input layer, an output layer,

and at least one hidden layer. There is no theoretical limit on the number of

hidden layers but typically there is just one or two. Some work has been done

which indicates that a minimum of four layers (three hidden ıayers plus an output

layer) are required to solve problems of any complexity. Each layer is fully

connected to the succeeding layer, as shown in Figure (7).

19

Figure (7): The architecture offeedforward network.

The input and output layers indicate the flow of information during recall.

Recall is the process of putting input data into a trained network and receiving the

answer. Back-propagation is not used during recall, but only when the network is

learning a training set.

Since our research is concerned with the Neural Networks that are capable

of classifying patterns, the discussion of such Neural Architecture will be

discussed later.

The process of choosing a suitable architecture, for a specific application

depends on many parameters, but for simplicity table (3) may help the designers.

•

20

Network Type Networks Use for Network
-Back-propagation
-Delta Bar Delta Use input values to predict
-Extended Delta Bar Delta some output (e.g. pick the

Prediction
- Directed Random Search best stocks in the market,
-Higher Order Neural predict weather, identify
Networks people with cancer risks

- Self-organizing map into etc.)
Back-propagation

-Leaming Vector Use input values to
Quantization determine the classification

Classification
-Counter-propagation (e.g. is the input the letter A,
-Probabilistic Neural is the blob of video data a
Networks plane and what kind of plane

-Competitive Layer is it)

-Hopfield Like Classification but it
-Boltzmann Machine also recognizes data that
- Hamming Network contains errors (e.g. not only

Data Association -Bidirectional associative identify the characters that
Memory were scanned but identify

-Spation-temporal Pattern when the scanner isn't
Recognition working properly)

Analyze the inputs so that

-Adaptive Resonance
grouping relationships can

Data Network
be inferred (e.g. extract from

Conceptualization - Self Organizing Map
a database the names of
those most likely to buy a
particular product)

Smooth an input signal (e.g.
Data Filtering -Recirculation take the noise out of a

telephone signal)
~

Table (3): Network Selector Table

21

•

summary

This chapter shows some information about artificial neural network which

on the neural structure of the brain, the operation mode and training mode of

cial neural network, comparison between artificial neural network versus traditional

puting, its also provide the process of choosing the suitable architecture of artificial

network through the network selector table which may help the designer and it

ports some fields of artificial neural networks and where it can be used in the real

rld.

•

22

Chapter TWO

Classification Methods

2.1 Overview

Artificial neural networks are undergoing the change that occurs when a

oncept leaves the academic environment and is thrown into the world of users who

imply want to get a job done. Many of the networks now being designed are statistically

quite accurate. These networks might be 85% to 90% accurate. Unfortunately, few

applications tolerate that level of error. And the selected application of this research is

one of these applications.

Since the traditional methods of classification have the same level of

accuracy and even worse for some cases, the use of artificial neural networks is

applicable here.

In this chapter we will introduce methods of classification like statistical

method classification and classification using artificial neural networks

2.2 Statistical Methods:

When mention the classification processes the statistical approaches are
" "the basic methods in use, and these statistical methods are defined as follow;

2.2.1 Maximum likelihood Classification

Maximum likelihood Classification is a statistical decision criterion to

assist in the classification; images are assigned to the class of highest probability.

23

The maximum likelihood classifier uses mean, standard deviations and

covariance matrices in classification.

The maximum likelihood classifier is considered to be slow due to extra

computations. The accuracy of this method depends on the selection of the input

data if it had a Gaussian distribution and this is not always safe.

2.2.2 Minimum distance Classification

Minimum distance classifies images on a database file using a set of

classes. In this criterion only the mean vector in each image data is used. Other

data, such as standard deviations and covariance matrices, are ignored (though the

maximum likelihood classifier uses this).

The statistical methods needs a lot of computations which results in time

consuming, and makes these methods inapplicable for large scale classification.

So that another approach had to make this process faster; hence the artificial

neural network approaches appeared

2.3 Classification using Artificial Neural Network

One of the most important applications of the Neural Network is

classification. A network that can classify could be used in the medical industry to

process both lab results and doctor-recorded patient symptoms to determine the

most likely disease. •

2.3.1 Competitive Neural Network

The Competitive Neural Network uses the unsupervised training

algorithm, where the network is not supplied with the target output and this

24

property results a low level of accuracy and it makes the process of classification

uncontrollable .

. 1.1 Basic Operation of Competitive Layer

The architecture of a competitive network is shown in figure (8).

Input

"
Competitiv layer

(
SXR lwl

"\

Figure (8): Architecture of competitive network.

The [dist] (distance) box in this figure accepts the input vector (P) and the

input weight matrix (Wl,1), and produces a vector having (S) elements. The

elements in vector (S) are the negative of the distances between the input vector

and the vectors formed from the rows of the input weight matrix (W).

The net input ~) of a competitive layer is computed by finding the•
negative distance between input vector (P) and the weight vectors and adding the

biases (bias). If all biases are zero, the maximum net input a neuron can have is• •
(O). This occurs only when the input vector p equals that neuron's weight vector.

The competitive transfer function accepts a net input vector for a layer and

returns neuron outputs of (O) for all neurons except for the winner, the neuron

associated with the most positive element of net input (N). The winner's output is

(1).

25

If all biases are (O), then the neuron whose weight vector is closest to the

input vector has the least negative net input and, therefore, wins the competition

to output a (1) .

. 1.2 Source of error in the competitive layer network

Some neurons may not always get allocated. In other words, some neuron

weight vectors may start out far from any input vectors and never win the

competition, no matter how long the training is continued. The result is that their

weights do not get to learn and they never win. These unfortunate neurons,

referred to as dead neurons, never perform a useful function.

3.1.3 Bias Learning Rule (Learncon)

To stop the above problem in competitive layer network bias learning rule is

used, where biases are used to give neurons that only win the competition rarely

(if ever) an advantage over neurons that win often. A positive bias, added to the

negative distance, makes a distant neuron more likely to win.

To do this job a running average of neuron outputs is kept. It is equivalent to

the percentages of times each output is 1. This average is used to update the biases

with the learning function 'learncon' so that the biases of frequently active

neurons will get smaller, and biases of infrequently active neurons will get larger.

The result is that biases of neurons that haven't responded very frequently will

increase versus biases of neurons that have responded frequently.
•

As the biases of infrequently active neurons increase, the input space to

which that neuron responds increases. As that input space increases, the

infrequently active neuron responds and moves toward more input vectors.

Eventually the neuron will respond to an equal number of vectors as other

neurons.

26

Some advantages o(the Bias Learning Rule:

• If a neuron never wins a competition because its weights are far

from any of the input vectors, its bias will eventually get large

enough so that it will be able to win. When this happens, it will

move toward some group of input vectors. Once the neuron's

weights have moved into a group of input vectors and the neuron is

winning consistently, its bias will decrease to O. Thus, the problem

of dead neurons is resolved.

• The biases force each neuron to classify roughly the same

percentage of input vectors. Thus, if a region of the input space is

associated with a larger number of input vectors than another

region, the more densely filled region will attract more neurons

and be classified into smaller subsection.

2.3.2 Learning Vector Quantization (L VQ)

This network topology was originally suggested by Tuevo Kohonen in the

mid of 80's, after his original work in self-organizing maps. Both LVQ network

and self-organizing maps are based on the Kohonen layer, which is capable of

sorting items into appropriate categories of similar objects. Specifically, LVQ is

an artificial neural network model used both for classification and image

segmentation problems'

2.3.2.1 Architecture of Learning Vector Quantization Network •

The architecture of a competitive network is shown in figure (9).

27

Input

r=:
Competitiv Layer Linear Layer

(
SxR

,,
S1 X S2

bias-\ sxı s.)
\, 82)

Figure (9): Architecture of LVQ network.

Learning vector quantization (LVQ) network has a first competitive layer

and a second linear layer. LVQ is a method for training competitive layers in a

supervised manner. A competitive layer automatically learns to classify input

vectors. However, the classes that the competitive layer finds are dependent only

on the distance between input vectors. If two input vectors are very similar, the

competitive layer probably will put them in the same class. Where there is no

mechanism in a strictly competitive layer design to say whether or not any two

input vectors are in the same class or different classes.

The linear layer transforms the competitive layer's classes into target

classifications defined by the user. We refer to the classes learned by the

competitive layer as subclasses and the classes of the linear layer as target

classes. Both the competitive and linear layers have one neuron per (sub or target)

class. Thus, the competitive layer can learn up to S 1 subclasses. These, in tum,

are combined by the linear layer to form Ş2 target classes. (S1 is always larger

than S2.)

Topologically, the network contains an input layer, a single Kohonen layer

and an output layer. An example network is shown in Figure (10). The output

layer has as many processing elements as there are distinct categories, or classes.

The Kohonen layer has a number of processing elements grouped for each of

28

these classes. The number of processing elements per class depends upon the

complexity of the input-output relationship. Usually, each class will have the

same number of elements throughout the layer. It is the Kohonen layer that learns

and performs relational classifications with the aid of a training set. This network

uses supervised learning rules.

Output Layer

Input Layer

Figure (10): An Example Learning Vector Quantization Network.

2.3.2.2 Training of LVQ Networks

In the training mode, this supervised network uses the Kohonen layer such

that the distance of a training vector to each processing element is computed and

the nearest processing element is declared the winner. There is only one winner

for the whole layer. The winner will enable only one output processing element to

fire, announcing the cla;s or category the input vector belonged to. If the winning

element is in the expected class of the training vector, it is reinforced toward the

training vector. If the winning element is not in the class of the.training vector, the

connection weights entering the processing element are moved away from the

training vector. This later operation is referred to as repulsion. During this training

process, individual processing elements assigned to a particular class migrate to

the region associated with their specific class.

29

During the recall mode, the distance of an input vector to each processing

element is computed and again the nearest element is declared the winner. That in

turn generates one output, signifying a particular class found by the network.

2.3.2.3 Drawbacks of LVQ Networks

There are some shortcomings with the Leaming Vector Quantization

architecture. Obviously, for complex classification problems with similar objects

or input vectors, the network requires a large Kohonen layer with many

processing elements per class. This can be overcome with selectively better

choices for, or higher-order representation of, the input parameters.

The simple form of the Learning Vector Quantization network suffers

from the defect that some processing elements tend to win too often while others,

in effect, do nothing. This particularly happens when the processing elements

begin far from the training vectors. Here, some elements are drawn in close very

quickly and the others remain permanently far away. To alleviate this problem, a

conscience mechanism is added so that a processing element which wins too often

develops a "guilty conscience" and is penalized. The actual conscience

mechanism is a distance bias which is added to each processing element. This

distance bias is proportional to the difference between the win frequency of an

element and the average processing element win frequency. As the network

progresses along its learning curve, this bias proportionality factors needs to be

decreased.

•2.4 Summary

This chapter introduces the classification method which is divided into

two parts first part was statistical method of classification which is divided into

maximum likelihood classification and minimum distance classification. The

second part was about classification using an artificial neural network which was

30

also divided into competitive neural network and learning vector quantization

network. Also we will see in the appendix a description of the dist function which

had been used in the competitive layer architecture and in the learning vector

quantization network architecture.

•

31

Chapter 3

Introduction to Wavelet Analysis

3.1 Overview

In general, signals in their raw form are time-amplitude representations. These

time-domain signals are often needed to be transformed into other domains like

frequency domain, time-frequency domain, etc., for analysis and processing.

Transformation of signals helps in identifying distinct information which might otherwise

be hidden in the original signal. Depending on the application, the transformation

technique is chosen, and each technique has its advantages and disadvantages.

3.2 The need of wavelet transformation

The Digital Signal Processing (DSP) applications depend, in most cases,

on the frequency content of the signal; by using the Fourier Transform we can

obtain the frequency spectrum of any signal. But the Fourier Transform is only

suitable for stationary signal, signals whose frequency content does not change

with time. The Fourier Transform, while it tells how much of each frequency

exists in the signal, it does not tell at which time these frequency components

occur.

Signals such as image and speech have different characteristics at different
•

time or space, i.e., they are non-stationary. Most of the biological signals too,

such as, Electrocardiogram, Electromyography, etc., are non-stationary. To

analyze these signals, both frequency and time information are needed

simultaneously, i.e., a time-frequency representation of the signal is needed.

32

.3 The Drawback of Fourier Transform

Fourier analysis has a serious drawback. In transforming to the frequency

domain, time information is lost. When looking at a Fourier transform of a signal,

it is impossible to tell when a particular event took place. If the signal properties

do not change much over time -- that is, if it is what is called a stationary signal -

this drawback isn't very important. However, most interesting signals contain

numerous non-stationary or transitory characteristics: drift, trends, abrupt

changes, and beginnings and ends of events. These characteristics are often the

most important part of the signal, and Fourier analysis is not suited to detecting

them.

3.4 The solution of the limitation of the Fourier Transform

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the

Fourier transform to analyze only a small section of the signal at a time -- a

technique called windowing the signal --. Gabor's adaptation, called the Short

Time Fourier Transform (STFT), maps a signal into a two-dimensional function

of time and frequency. The STFT represents a sort of compromise between the

time and frequency-based views of a signal. It provides some information about

both when and at what frequencies a signal event occurs. However, you can only

obtain this information with limited precision, and that precision is determined by

the size of the window.
"

•
• The drawback of the (STFT):

While the STFT compromise between time and frequency information can

be useful, the drawback is that once you choose a particular size for the time

window, that window is the same for all frequencies. Many signals require a more

33

flexible approach, where we can vary the window size to determine more

accurately either time or frequency.

3.5 The appearance of Wavelet analysis

The Wavelet Transform solves the drawback of the STFT to a certain

extent, since the Wavelet Transform uses short windows at high frequencies and

long windows at low frequencies. This results in multi resolution analysis by

which the signal is analyzed with different resolutions at different frequencies,

i.e., both frequency resolution and time resolution vary in the time-frequency

plane.

In Wavelet Transform, as frequency increases, the time resolution

increases; likewise, as frequency decreases, the frequency resolution increases.

Thus, a certain high frequency component can be located more accurately in time

than a low frequency component and a low frequency component can be located

more accurately in frequency compared to a high frequency component.

The Wavelet Transform was developed independently in applied

mathematics and signal processing. It is gradually substituting other transforms in

some signal processing applications. For example, previously, the STFT was

extensively used in speech signal processing, and Discrete Cosine Transform

(DCT) was used for image compression. But now, the Wavelet Transform is
~

substituting these, due to its better resolution properties and high compression

capabilities.
•

The properties of Wavelet Transform allow it to be successfully applied to

non-stationary signals for analysis and processing, e.g., speech and image

processing, data compression, communications, etc.

34

A wave is an -oscillating function of time or space and is periodic. In

contrast, wavelets are localized waves as shown in figure (11). They have their

energy concentrated in time or space and are suited to analysis of transient

signals. While Fourier Transform and STFT use waves to analyze signals, the

Wavelet Transform uses wavelets of finite energy.

ij

'\ı.
(b)

Figure (11): Demonstration of(a) a Wave and (b) a Wavelet.

.6 Wavelet Computing

The wavelet analysis is done similar to the STFT analysis. The signal to be

analyzed is multiplied with a wavelet function just as it is multiplied with a

wind-owfunction in STFT, and then the transform is computed for each segment

generated.

However, unlike STFJ, in Wavelet Transform, the width of the wavelet

function changes with each spectral component. The Wavelet Transform, at high

frequencies, gives good'fime resolution and poor frequency resolution, while at

low frequencies; the Wavelet Transform gives good frequency resolution and

poor time resolution. •

35

The Continuous Wavelet Transform and the wavelet series

The Continuous Wavelet Transform (CWT) is provided by the following

equation:

Where x(t) is the signal to be analyzed. \jl(t) is the mother wavelet or the

basis function. All the wavelet functions used in the transformation are derived

from the mother wavelet through translation (shifting) and scaling (dilation or

compression).

The mother wavelet used to generate all the basis functions is designed

based on some desired characteristics associated with that function. The

translation parameter (r) relates to the location of the wavelet function as it is

shifted through the signal. Thus, it corresponds to the time information in the

Wavelet Transform. The scale parameter (s) is defined as il/frequency! and

corresponds to frequency information. Scaling either dilates (expands) or

-compressesa signal. Large scales (low frequencies) dilate the signal and provide

detailed information hidden in the signal, while small scales (high frequencies)

compress the signal and provide global information about the signal. Notice that

the Wavelet Transform merely performs the convolution operation of the signal
"'and the basis function. The above analysis becomes very useful as in most

practical applications, high frequencies (low scales) do not last for a long
• •

duration, but instead, appear as short bursts, while low frequencies (high scales)

usually last for entire duration of the signal.

The Wavelet Series is obtained by discretizing CWT. This aids in

computation of CWT using computers and is obtained by sampling the time-scale

plane. The sampling rate can be changed accordingly with scale change without

36

violating the Nyquist criterion. Nyquist criterion states that, the minimum

sampling rate that allows reconstruction of the original signal is (2ro) radians,

where (oı) is the highest frequency in the signal. Therefore, as the scale goes

higher (lower frequencies), the sampling rate can be decreased thus reducing the

number of computations.

3.6.2 The Discrete Wavelet Transform

The Wavelet Series is just a sampled version of CWT and its computation

may consume significant amount of time and resources, depending on the

resolution required.

The Discrete Wavelet Transform (DWT), which is based on sub-band

coding, is found to yield a fast computation of Wavelet Transform. It is easy to

implement and reduces the computation time and resources required.

The foundations of DWT go back to 1976 when techniques to decompose

discrete time signals were devised. Similar work was done in speech signal

coding which was named as sub-band coding. In 1983, a technique similar to sub

band coding was developed which was named pyramidal coding. Later many

improvements were made to these coding schemes which resulted in efficient

multi-resolution analysis schemes.

In CWT, the signals are analyzed using a set of basis functions which

relate to each other by simple scaling and translation. In the case of DWT, a time

scale representation of the digital signal is obtained using digital filtering

techniques. The signal to be analyzed is passed through filters with different

cutoff frequencies at different scales.

37

3.6.3 DWT and Filter Banks

Filters are one of the most widely used signal processing functions.

Wavelets can be realized by iteration of filters with rescaling. The resolution of

the signal, which is a measure of the amount of detail information in the signal, is

determined by the filtering operations, and the scale is determined by up-sampling

and down-sampling (sub-sampling) operations.

The DWT is computed by successive low-pass and high-pass filtering of

the discrete time-domain signal as shown in figure (12). This is called the Mallat

algorithm or Mallat-tree decomposition. Its significance is in the manner it

connects the continuous time multi-resolution to discrete-time filters. In the

figure, the signal is denoted by the sequence x[n], where (n) is an integer. The low

pass filter is denoted by Go while the high pass filter is denoted by Ho. At each

level, the high-pass filter produces detail information; d[n], while the low pass

filter associated with scaling function produces coarse approximations, a[n].

Figure (12): Three-level wavelet decomposition tree.

At -each decomposition level, the" half band filters· produce signals

spanning only half of the frequency band. This doubles the frequency resolution

as the uncertainty in frequency is reduced by half. In accordance with Nyquist's

rule if the original signal has a highest frequency of («ı), which requires a

sampling frequency of (2ro) radians, then it now has a highest frequency of (ro/2)

38

radians. It can now be sampled at a frequency of (co) radians thus discarding half

the samples with no loss of information.

This decimation by 2 halves the time resolution as the entire signal is now

represented by only half the number of samples. Thus, while the half band low

pass filtering removes half of the frequencies and thus halves the resolution, the

decimation by 2 doubles the scale.

With this approach, the time resolution becomes arbitrarily good at high

frequencies, while the frequency resolution becomes arbitrarily good at low

frequencies. The filtering and decimation process is continued until the desired

level is reached. The maximum number of levels depends on the length of the

signal. The DWT of the original signal is then obtained by concatenating all the

coefficients, a[n] and d[n], starting from the last level of decomposition.

Figure (13) shows the reconstruction of the original signal from the

wavelet coefficients. Basically, the reconstruction is the reverse process of

decomposition. The approximation and detail coefficients at every level are up

sampled by two, passed through the low-pass and high-pass synthesis filters and

then ad-ded. This process is continued through the same number of levels as in the

decomposition process to obtain the original signal. The Mallat algorithm works

equally well if the analysis filters, Go and Ho, are exchanged with the synthesis

filters, Gı and Hı.

X(tı!

Figure(l3): Three-level wavelet reconstruction tree.

39

3.7 Wavelet Families

There are a number of basis functions that can be used as the mother

wavelet for Wavelet Transformation. Since the mother wavelet produces all

wavelet functions used in the transformation through translation and scaling, it

determines the characteristics of the resulting Wavelet Transform. Therefore, the

details of the particular application should be taken into account and the

appropriate mother wavelet should be chosen in order to use the Wavelet

Transform effectively.

('ii)

0.$

O.®ı·
(Mi,

tM

oz
ol----.

,(,£:-IHi

-a-eM.ıı~ o. 2 .ıı u e -tı-&-4~'2 ı:) ıt 4 e tı
{l') (g)

Figure(14): Wavelet families (a) Haar (b) Daubechies4 (c) Coifletl (d) Symlet2

(~Meyer (t) Moriet (g) Mexican Hat.

Figure {14) illustrates some of the commonly used wavelet functions. Haar
•

wavelet is one of the oldest and simplest wavelet. Therefore, any discussion of

wavelets starts with the Haar wavelet. Daubechies wavelets are the most popular

wavelets. They represent the foundations of wavelet signal processing and are

used in numerous applications. These are also called Maxflat wavelets as their

frequency responses have maximum flatness at frequencies O and 1t. This is a very

desirable property in some applications.

40

The utilizing of DWT using the MATLAB will be discussed later when

we use it, in performance improvement of the research results.

3.8 summary

This chapter discuses the wavelet analysis, its needed, the drawback of

Fourier transform and its solution with STFT then the problem with STFT, also it

discussed the appearance of wavelet analysis and its better resolution properties and

its high compression capabilities, then it discussed the wavelet computing which

divided into three parts: the continuous wavelet transform and the wavelet series,

discrete wavelet transform (DWT) and DWT and filter banks. And finally it show

some of basis functions that can be used as the mother wavelet for wavelet

transformation which related to wavelet family's part.

•

41

Chapter 4

Design objective and Preprocessing

Overview

In order to show the efficiency of ANN in pattern classification field, an example

to be applied through this research. So that we used a set of images, to classify them

three different categories. Those images were three different types of leave those are

er in shape. As shown in the following figures (15), (16), (17).

The data set (training set) we have consists of 60 images of each class, we will

59 image of each class for training and the simulation (the test) will involve the

,le pictures

figure(l5): the first class example
figure(l6): the second class example

•

42

figure(l 7): the third class example

Image characteristics

The images we had were all from the same size (896 x 592) and they all

were colored (RGB images), so we had to apply some preprocessing on those

images in order to have an adequate input to the ANN, since the input layer of the

network to be designed has not an open range of inputs, we had to convert the

given images into a form that is applicable for this purpose.

So we had to convert the image into numerical coefficients, which is the

most applicable input of an ANN, and this can be done easily by the MATLAB

code using the following code statements;

imread Reads image from graphics file.

image RGB imread('FILENAME.FMT'); •

imag_RGB is the destination array (matrix).

'FILENAME.FMT' is a string that contains the graphic file name

including its extension.

43

This command reads the image in FILENAME into an array A. If the file

contains a grayscale intensity image, then A is a two-dimensional array. If the file

contains a true color (RGB) image, then A is a three-dimensional (M-by-N-by-3)

array.

The third dimension of the array is the color index, and making it unity

will convert the array from colored picture array (three dimensions array) into

grayscale picture array (two dimensions array), where the latter is easier to deal

with and since the color is not one of the characteristics that the image can be

distinguished by because it is a common characteristics of three classes. And this

can be done using the following command;

image_gray = image_RGB(:,:,1);

This command sets the color index of the array to unity for all pixels, thus

the array will be converted into two dimensions array which is simply a grayscale

picture array.

In order to illustrate the use of the previous commands, the use of another

command that restore the array to an image will be useful in this case, and this

command is IMSHOW.

.
•

imshow(A);

Displays an image with true color mode (RGB) if A was a three

dimensions array, and in grayscale mode if A was a two dimensions array. The

44

following simple example shows the effect of omitting the color index from the

three dimension array.

Example:

The previous process was applied on one of the given pictures. The image

shown in figure (18), is saved as 'LA_Ol.jpg' in the workspace of the MATLAB;

and it is an RGB (896 x 592) pixels image.

Figure(18): The original image displayed with 50% scale.

image_RGB = imread ('LA_Ol. jpg');

imshow(image_RGB)

The array (image_RGB) size is (592 x 896 x 3), and then the resultant

image is true color image as shown in figure (19);

45

Figure(l9): The reconstructed image displayed with 50% scale.

image_gray = image_RGB(:,:,1);

imshow(image_gray)

The array A size is (592 x 896), then the resultant image is grayscale

image as shown in figure (20);

•

Figure(20): The reconstructed grayscale image displayed with 50% scale.

46

The previous example shows that we can decompose the image into a

single two dimensions matrix, and any two dimension matrix could be converted

into a single column or single row vector, and both are applicable as an input for

an ANN.

Converting the (IMREAD) result matrix into a vector will yields a vector

of (530,432) elements, which is a very huge number. And such number is

impossible to be fed to an ANN as an input, in other words we can initiate an

ANN with this number of input neurons, but the training operation will be

impossible as will be shown later.

Reducing number of input neurons can be made utilizing many methods,

but the question is which one is better and which is applicable in our case.

The first, we can design several networks and each one can work on a

segment of the whole matrix, (i.e. divide the matrix into 4 segments), this

approach may be applied but it will be weak since our object (the leaf) may not be

located at the same location of the image in all images, and this may raise the

error rate in the classification process.

Reducing the number of numerical coefficient to a level that is adequate

for an ANN use, may be a second solution. But in this case we have to worry

about the way that will be used to reduce the number of elements, because it has

to be selective and sensitive. Also it has to be efficient. So we need a procedure to

reduce the number on the coefficients while keeping the images distinguishable,

and here we were directed to the wavelet transformer.

4.3 The MTLAB Wavelet Toolbox usage

The Wavelet toolbox is rich with functions and commands those are so

useful in data processing, as was mentioned before the wavelet transformation has

47

two branches continuous and discrete and in image processing we are involved

with the discrete one more precisely we use the two dimension discrete wavelet.

The decomposition process

The following MATLAB statement decompose a two dimensions array

(matrix) into four different arrays called (The approximate matrix, the horizontal

details matrix, the diagonal details matrix and the vertical details matrix)

[Al A2 A3 A4]=dwt2(MATRIX,'db4');

Al

A2

A3

A4

dwt2

MATRIX

'db4'

The approximation image matrix

Horizontal details

Diagonal details

Vertical details
Computes one level wavelet coefficients.

Matrix to be decompose (the gray scale matrix in this case)

The considered wavelet family.

.2 The reconstruction Process

An approximate reconstruction of the matrix (the image) can be held using

the approximate matrix as well as we can reconstruct the other cletails using their

matrices using. This can be done simply by using the IMSHOW command, and

their still another way to reconstruct the exact image using the four matrices and

the inverse discrete wavelet transformation.

48

imshow(Al, [min(min(Al)) max(max(Al))]);

Al

min(min(A1))

The approximation image matrix

Computes the minimum in each row of the matrix to set

the ranges.

Computes the maximum in each row of the matrix to

set the ranges.
max(max(Al))

Images preprocessing; the use of WA VELET transformer

Starting from the truth that the image consists of many frequencies, and

knowing that the general features and general shape of the image represent the

low frequency components of the image, while the fine details plus the deepest

details are represented by the high frequency components. And since we consider

the general shape of the leaf, we are interested in the lowest frequency

components, and keep in mind that the wavelet transform is nothing but location

frequency mapping. All of this leads us to the wavelet solution.

To understand the use of two dimension wavelet transformation, a real

example can be useful to show how it is helpful in our case; lets start with a
~

picture for a leaf of the first class; starting with one level decomposition;

••The following code decompose the contents of the matrix which we got

using IMREAD command;

49

image_RGB = imread('LA_Ol.jpg');

image_gray = image_RGB(:, :,1);

[Al A2 A3 A4]=dwt2(image_gray,'db4');

Figure(21): The original image 'LA_Ol.jpg' displayed with 50% scale.

The matrix (Al) contains the low frequency coefficients of the original

image; and its size is (299 x 451) which is (134,849) elements. We can

reconstruct the image that represented by the approximate matrix (Al) to compare

it to the original image shown in figure (21). And the statement that reconstructs

it; is shown below, and the result is shown in figure (22)

imshow(Al, [min(min(Al)) max(max(Al))]);
•

50

Figure (22): The first level wavelet decomposition result displayed with I 00% scale.

It is clear that we had a reduction of 25% at least in the number of

coefficients, and if we compared the figure of the reconstructed image to the

original we will figure out the reduction in size too. Unfortunately 25% is not

enough since the number still too big. So another level of decomposition is

recommended.

Now we will decompose the image that reconstructed from matrix (Al), or

simply we will apply an extra one level wavelet decomposition on matrix (Al), as

shown in the next code segment;

[Bl B2 B3 B4]=dwt2(Al~db4');

•
Bl

B2

B3

B4

The approximation image matrix of Al.

Horizontal details of A1.

Diagonal details of A1.

Vertical details of Al.

51

The matrix (B 1) contains the low frequency coefficients of the

reconstructed image of the first level decomposition; and its size is (153 x 229)

which is (35,037) elements. We can reconstruct the image that represented by the

matrix (B 1) to compare it to its original image. And the reconstruction process

can be made as before. And the result is shown in figure (23).

Figure (23): The second level wavelet decom

position result displayed with 100% scale.

The number of matrix Bl-shows about another 25% reduction in the image

coefficients, and its size shows that too. But (35,037) elements still large to train a

neural network with it as will be shown later. And another level of decomposition

have to be done again.

The following results show another three levels of decomposition; by the

same code used before the third, fourth and fifth levels can be computed and the

results were as shown below. These results show that the size of image is reduced

five times and still can be classified by human eye, so it may be classified by
@I

ANN too (that will be proved in the design).

52

80 X 118 9440

43 x62 2666

25 X 34 850

Table (4): The wavelet reduction procedure results

Table (5) shows the effective of wavelet transformation on the size of the

resultant matrix and on the reduction of its elements number.

134,849 35,037 74.18% 93.40%

9440 73.06% 98.22%

2666 71.76% 99.50%

850 68.12% 99.84%

Table (5): The reduction of matrix sizes due to multi level wavelet transformation

53

The whole process of the five levels decomposition can be summarized by

the following two figures (24) and (25);

Ll

L2

L3

L4

LS

Approximations Horizontal ·Details Diagonal Details

Figure (24): Tree arrangement of five levels wavelet decomposition.

•

54

Figure (25): The decomposition of five levels wavelet.

The previous two figures show an arrangement of five levels wavelet

decomposition, it is clear that the approximation image of the last level still

distinguishable.

Now since we had many input levels to the ANN, the possible designs

may be made now, and this is the next topic.

. 5 summary

This chapter discussed some MATLAB codes and it show how they work

on the selected images with some examples, it used the wavelet transformation which

helped in the data processing, but we involved with the two dimension discrete branch of.
the wavelet transformation and it was applied on the decomposition and reconstruction

process. Also it discussed the cause of using the two dimension wavelet transformation

through an example using the MATHLAB code.

55

Chapter 5

FeedForward Design

1 Overview

In order to develop the optimum Neural Network that is capable to do the

lassification with the minimum acceptable range of error, we try different Network

hitectures to reach that goal.

One of the most popular, and effective network is the Feedforward architecture

.hich is used in many different types of applications. This architecture has many

different topologies and training methods, which make it strong in the nonlinear field of

application.

To compare the feedforward performance with the Neural Network which are

.peciallydesigned for the classification purpose such as Competitive Layer, and Learning

ector Quantization (which will discussed later). The next section will discuss the design

of the Feedforward network for the classification purpose.

5.2 The FeedForward Construction

As mentioned in previous sections in this research; the basic structure in

the Feedforward Neural Network must have at least one input.layer, one hidden

layer, and one output layer. The connection between these layers will define the

ability and strength of the network.

56

,·..>; \.,;; . ' ·, \I ::. fŞ.ş;'::". ,,.•..
l;s:> "'',,r;~
('/ ..,_"{
ı! r,. .'Ç""

" ·"~ .-:.,<.:·}r -J\ ,f). \V -..,.
The design of the Network must satisfy the following condit~~n): v 1!!};/ \ ., ,r,'ır:'/·'., ~·<'>J'·-,~~19 8 3 • \.:_.':,...y

...:::::.,.~
• Accept the input image that to be classified, in the input layer as

numerical coefficients represent the image specifications.

• Do the required calculation in the hidden layer to recognize the image

and to know in which class it belongs to.

• Represent a number or index in the output layer which refer to the

image class.

The following MATLAB code will illustrate how we can design such

network to do the application:

net= network;

This command constructs a blank network, without any properties, the

number of input layers, hidden layers, output layers, and the number of

neurons in each layer is still undefined.

net.numinputs = 1;

This command will define an input layer in our blank network (net), yet the

number of the neurons cdntained in this layer is not defined.

net.numLayers = 2;

This command defines the layers in the network (hidden, output), one hidden

layer, and one output layer.

57

net.inputs{A}.size - n;

{A} is the index of the input layer, in our case there is only one input layer

so A=l; also this will define the number of neurons in the input layer (n).

Figure (26) illustrates how the network looks like at this point.

Input Layer HiddenLayer Output Layer

Figure (26): Simple representation ofFeedForward ANN.

The following code will construct a FeedForward ANN, this code

determined as shortcut in constructing the network, for this purpose;

net = new ff (PR, [S 1 S 2 . . . SNl] , { T F1 T F2 . . . T FNJ.} , BTF) ;•

PR Rx2 matrix of min and max values for R input elements.

Si Size of ith layer, for Nl layers.

TFi Transfer function of ith layer, default= 'tansig'

58

BTF Back propagation network training function, default

'trainlm'.

The number of the neurons in the input layer will specify the number of

the numerical coefficients taken from the picture. Although we could define a

large number of neurons for the input layer, but that doesn't mean that the design

is done, because the training process limits the design process. So a preprocessing

(Wavelet Decomposition) on the images may be useful in this case (as will be

shown).

5.3 FeedForward ANN Design using the original size

Using the original image, which have a size of (896 x 592), without

wavelet preprocessing, will lead us to build a neural network with (530432) input

neurons, we will build this network to prove the limitation.

The FeedForward ANN utilizes supervised training, so the training set and

the desired output (Targets) have to be set. The following code sets these

matrices;

irnage_RGB=irnread('filenarne');

%where 'filename' is the name of the image file.

~
image gray=irnage RGB(:, :,1);

%converts the RGB to Grayscale.
•

irnage_vector=irnage_gray(:);

%converts the matrix to vector.

59

training_set(:,l)=image_vector;

% converts matrix to column vector.

Evaluating the previous code for all images (using for loop function)" will

result a matrix that has a number of rows equal to the number of elements of the

grayscale image matrix, and number of columns equal to that of the total number

of images.

The resultant matrix has a large size (530432 x 177) that the MATLAB

doesn't support this large size and an error (OUT OF MEMORY) was reported,

so we reduced the number of images in the training set to 60 images 20 of each

class, and this was the maximum acceptable number by the MATLAB.

After the evaluating of this MATLAB code, the data matrix (training set)

will contain 60 columns, each column represent one image, the first 20 column

belongs to the first class, the second 20 columns belongs to the second class, and

the third class have the last 20 columns in the matrix.

The design requires a number or index to be represented in the output

layer to indicate the class of the iiıput image (desired output), and since we have

three different classes, the output layer will contain 3 neurons, each neuron

associated with one class, the output of the neuron will be (1) if the input image

belong to the class which the neuron is related to, other wise the output will be

zero. This will be denoted as the targets matrix. •

The target matrix must contain 60 columns, which will represent the

output combination for each input image, each column contain 3 rows, the first

element represent the first class, which mean that if the input image belongs to the

* The complete code is shown in appendix ()

60

first class, this element must be one, other wise it will be zero (in the first 20

columns).

The reference for constructing this matrix is the data matrix (training set),

these two matrices must be related with each other, meaning that the first 20

column in the target matrix must represent the output of the network while the

input is class one image, that's because the first 20 columns of the data matrix

represent the first class, for the second class, the second element (row number

two) in the next 20 columns of the target matrix must be one, other wise this

element must be zero, the third element must be one only in the last 20 columns

of the target matrix.

The following MATLAB code will construct the target matrix:

Class one outputs:

targets(l,1:20)=1;

targets(l,21:60)=0;

Class two outputs:

targets(2,1:20)=0;

targets(2,21:40)=1;

targets(2,41:60)=0;

Class three outputs:

targets(3,1:40)=0;

targets(3,41:60)=1; •

Now the network is ready to be constructed, since we have the training set

and the desired output, then the training will be held. And the input neurons

61

ranges must be defined, because the initial weights of the connection between the

input layer and the hidden layer depend on these values.

ranges=(minmax(training_set));

minmax will take the maximum value and the mınımum value of the

(training_set) matrix rows, and put these values in the (ranges) matrix.

All the requirements to construct the Neural Network are ready; we just

have to put it all in one statement with the proper transfer function between the

layers.

In the first trail we will make the number of neurons in the hidden layer

equal to the half of the number in the input layer (265216 hidden neurons), and

all the transfer function of the hidden layer will be 'tansig' where the transfer

function of the output layer will be 'pure linear'.

et=newff(ranges, [265216,3], { 'tansig', 'purelin' }, 'trainlm');

This command will create the neural network with all the specification mentioned above

in the network description.

•To train the network we must define some training parameters in order to

get the highest performance.

62

net.trainparam.epochs=lOOO;

Defines the maximum number of times the complete data set may be used for

training,

net.trainparam.show=lOO;

Defines the time between status reports of the training function.

net.trainparam.goal=le-2;

Defines the maximum error accepted in the training process.

Now the network is ready to be trained with the input (training set) and

output matrices.

The following MATLAB command will start the training of the network:

net=train(net,trainin set,targets);

This command will train the network with the data matrix as its input, and

the target matrix as its output.

• The training result
•

As expected the Network could not handle this large number of

neurons in the input layer either the hidden layer. So the network failed in

completing the training under these conditions, the error reported from the

MATLAB command window was (OUT OF MEMORY).

63

5.4 The use of Wavelet transformation

It is obvious that the number of inputs must be reduced, by reducing the

size of the images, one of the recommended solutions, as mentioned in previous

sections, was the Wavelet Analysis. Performing the wavelet analysis on the

images will reduce its size, by separating the high frequency component from the

low frequency component and put each group of frequencies in different matrix.

The question that appears now is what size the image should be reduced

to, without losing the most important details? Performing the wavelet processing

on the images will reduce the size to approximately one fourth, and the result

image (approximate image matrix) will still have the main shape and the main

details. And this is valid until the fifth level of decomposition as mentioned

before.

In this phase we will perform the wavelet analysis on the images once

(one level preprocessing), the result matrix after the performing will have the size

of (299 x 451) which mean that we reduce the number of the neurons in the input

layer to (134850) neuron.

Since the number of elements of each image will be reduced, we can go

back to the larger training set which contains the 177 images, and the code that

sets the matrix of this training set is attached in appendix().
~

The construction of this training set did not face the same problem as the
•••previous training set; the MATLAB did not report an (OUT OF MEMORY) error.

A construction of targets matrix (desired output), can be done using the

same previous code except it will be for 1 77 elements, and this code is attached in

Appendix().

64

The number of neurons in the input layer has to be changed, to meet the

new conditions; the following code will change the number of input neurons to

134850:

net.inputs{l}.size 135148;

To change the network to the new specification:

ranges=(minmax(data));

net=newff(ranges, [67800,3], { 'purelin', 'purelin' }, 'trainlm');

Now the network is ready to be trained with the input (training set) and

output matrices.

net=train(net,training set,targets);

• The result o(the training:

The network failed in completing the training, the error reported

from the MATLAB command window was (OUT OF MEMORY).

65

The end results of FeedForward design

Again the number of elements was reduced, to the second, third, fourth,

fifth and sixth. But the same error was appearing each time. Hence we concluded

that this architecture is not suitable for this application.

We found that the reduction in the number of neurons in the input layer

will not affect the network performance.

We where directed to change the number of the hidden layers to avoid the

abrupt change in the number of neurons between two consecutive layers, we

utilized many hidden layers, and we decrease the number of neurons gradually

from the input layer to the output layer. Also we tried to change the transfer

functions and used various transfer functions.

Also these changes in the architecture failed to make a possible training,

and the (OUT Of MEMORY) error came out again. So we started to look for a

new architecture which is the competitive layer. Tables 6 and 7 contain the results

of the training with different combination of the network parameters and wavelet

preprocessıng:

I Number of
Wavelet level Size of the Number of the Hidden Training

image matrix input Neurons Neurons Result.

Original Image 896 X 592 530432 265216 Failed
First 299 X 451 @I 134,850 67425 Failed
Second 153 X 229 35,037 .. 17519 Failed
Third 80 X 118 9440 4720 Failed
Fourth 43 X 62 2666 • 1333 - Failed
Fifth 27 X 36 850 425 Failed
Sixth 18 X 22 396 198 Failed

Table (6): Summary of the feedforward results for one hidden neuron

66

Wavelet level Number of input Number of hidden Training Result.
neurons layers

Original Image 530432 2 Failed
3

First 134037 2 Failed
3

, Second 35,037 2 Failed
i 3

: Third 9440 2 Failed
3'

l 2ı Fourth 2666 3
Failed

'

I Fifth 850 2 Failed
I 3

Sixth 396 2 Failed
3

Table (7): Summary of the feedforward results for multiple hidden neuron

5.6 Summary

This chapter discussed on of the most popular and effective network which is the

Feedforward architecture, its construction, its training and the use of wavelet

transformation within the Feedforward in order to reduce the size of the image which will

reduce the number of neurons in the input layer, although the result of training was failed

even by trying the fifth and sixth level of decomposition.

•

67

Chapter 6

Competitive Layer ANN Design

Overview

Since the feedforward architecture did not give the result expected from

, so another approach had to be used that why we started looking for a new

As mentioned before (section 1.4); when the network does not solve the

blem that it designed for, then the designer has to review the input and outputs, the

ber of layers, the number of elements per layer, and the connections between layers,

since we did all that in designing the feedforward Network and the result still the

failing of the network, we were forced to go to try different architecture which is the

Competitive Layer.

The Competitive Layer is unsupervised trained ANN that is widely used in

classification application, so that we used it.

6.2 Construction of Competitive Layer ANN

The architecture oj this network contains only one layer which is the

competitive layer, the number of neurons in this layer equals the number of the

different classes within the training data. •

This simple network is supported by the MATLAB through Neural

Network toolbox, there is simple MATLAB statements to construct this kind of

networks, the following code summaries that;

68

net= newc(PR,S,KLR,CLR);

PR R x 2 matrix of min and max values for R input elements. or

simply the ranges of the training set
S Number of hidden neurons. Or number of classes
KLR S2 element vector of typical class percentages or the

probability of occurrence.

The training process of this kind of networks can be held like that of the

Feedforward networks, using the same code, except that the training process is a

function of the number of iterations without making a goal control, the only way

to control the performance is by repeating the training many times with different

epochs number, as will be shown later.

6.3 Network design for the original size images

The original size image is very large as we show in the previous chapter,

so we started from training set that contains only the 60 images (20 of each class;

the following code summaries the process of making that training set.

•

69

image_RGB=imread('filename');

%where 'filename' is the name of the image file.

image_gray=image RGB(:, :,1);

%converts the RGB to Grayscale.

image_vector=image_gray(:);

%converts the matrix to vector.

training_set(:~l)=image_vector;

% converts matrix to column vector.

The previous code used within a for loop function", will result the

'training_set' matrix which contains coefficients of 60 images (60 columns) and

530432 element by column (the image coefficients).

-,
The simplicity in this network is not only in the process but it extends to

the design and training too. So we have to set only the training set and the ranges

of the input neurons. And then the network will be ready to be constructed.

ranges=(minmax(data));

minmax will take the maximum value and the minimum value of the data

matrix rows, and put these values in the (ranges) matrix

•

The construction of the Competitive Layer network then simply done by

the following MATLAB statement.

• The complete code supplied in appendix ().

70

net=newc(Ranges,3);

Since the number of classes in our design is three, so the number of neurons

in the competitive layer will always be (3) regardless the number of input

elements.

At this stage the network is ready to be trained and the training is simply

can be held as in the FeedForward networks; except that we don't set a goal.

net.trainpararn.epochs=lOOO;

net= train(net,data);

Since the competitive layer is unsupervised, the training command doesn't

contain the targets or the desired output.

The training process failed to start in this case, and this is due to the large

number of inputs, hence we started to reduce the number of inputs using the

wavelet decomposition.

6.4 Networkdesignfor reducedimagessize

@I

The 530432 elements of the original size image were reduced to 135148

elements using the first order wavelet decomposition, and to 35037 elements

using the second order wavelet decomposition, both network; were failed to be

trained too.

71

Network design using third wavelet decomposition

Since the 35037 elements was too large to be held by the training process

we decompose the images one extra level using the following code to build the

training set matrix. This time the elements are reduced to 9440 elements.

_RGB=imread('filename');

ıııı-tıere 'filename' is the name of the image file.

.e_gray=image_RGB(:,:,l);

nverts the RGB to Grayscale.

.e_vector=image_gray(:);

onverts the matrix to vector.

Al A2 A3 A41 = dwt2(image_gray,'db4');

aeomputesthe first level wavelet decomposition.

[Bl B2 B3 B4]=dwt2(Al,'db4');
%computes the second level wavelet decomposition

(Cl C2 C3 C4]=dwt2(Bl,'db4');
%computes the third level wavelet decomposition

"
.•

training_set(:,1)=image_vector;
% converts matrix to column vector.

•

The previous code was applied to (for loop) function to get the whole

matrix of training data 'training_set'*.

• The whole code is supplied in appendix().

72

net. trainparam.epochs= 10000;

net= train(net,data);

Since the competitive layer is unsupervised, the training command doesn't

contain the targets or the desired output.

The training process could be held this time, and the training was

completed successfully. But the simulation results didn't reach the accuracy level

that was expected from the ANN.

Table (8) shows the results of training the network for 10000 iterations

and this table shows how many images from the training set could be classified

correctly.

Number ofcorrect

im~ges \::% Errör

89.83 %

94.91 %

Table (8): Results of Competitive ANN (9440 elements)

~ for 10000 epochs

The percentage error is too large an.d this is due to the, large number of

inputs compared to the number of epochs so we raised the number of epochs in

order to reduce the percentage error. We used many values for the epochs and we

simulated the network each time we raised the epochs.

73

• 15000 epochs

Table (9) shows that a 5000 extra epochs decreased the average error a

very small value about 3%, then extra epochs were added until we got

acceptable result.

Nurtıber>of .cor.ı:~.ct.

Table (9): Results of Competitive ANN (9440 elements)

for 15000 epochs

• 30000 epochs

Table (10) shows the result of 30000 epochs which improved the

average error and decreased it about 8%.

Number» of correct

classified -images \ ·% Error

opt.of59

Class A 11 81.36 %

Class B 13 77.97 % •

:ClassC 9 84.75 %

Averağe Error 82.36 %

Table (10): Results of Competitive ANN (9440 elements)

for 30000 epochs

74

• 50000 epochs

Table (11) shows the result of 50000 epochs which improved the

average error and decreased it about 30%.

Number

57.63 %

49.15 %

52.54 %

53.11 %

Table (11): Results of Competitive ANN (9440 elements)

for 50000 epochs

• 100000 epochs

Since we have a good improvement by making more iteration we added

the epochs to 100000 epochs and table (12) shows its improvement.

ı 'Number»of correct:

·· I 'classified images ,\ % Error

out of 59

Class A 40 32.20 %

ClassB 41 30.51 %..
Class C 44 25.42 % ,

Average Error 29.38 %

Table (12):Results of Competitive ANN (9440 elements)

for 100000 epochs

The statistics graph shown in figure (27) and this shows the relation

between the epochs of training and the correctly classified images.

75

Statistics of Correctly Classified Images

II)a,
i 50
.E
"D

.!!! 40 -'iiiII)ns
Ü 30
>,
~e 20 ...o
()

ô 10
oz

o
10000

44

El Class A

• Class B
o Class C

15000 30000 50000

Epochs

Figure (27): Statistics graph shows the amount of correctly classified images

for Competitive ANN (9440 elements).

The accuracy was rose to 70.62% which is still unacceptable from

ANN since when we use ANN we expect 85-95% accuracy. Also if we kept

adding extra epochs the training process will not be efficient since the 100000

epochs training consumes 18 hours processing on 3.0GHz PENTIUM 4

processor with 1024MB RAM. So go back to reduce the number of the inputs

by applying another wavelet level of decomposition.

Table (13) shows the average error related to the number of training

epochs, and the graph shown in figure (28) shows the reverse proportional

relation between the average error and the number of iterations.

76

Average Error

10000 92.09

15000 90.96

30000 82.36

50000 53.11

100000 29.38
Table (13): Epochs vs. Average Error for

Competitive ANN (9440 elements)

Epochs vs. Average Error

100

.. 80
o.... 60 w
G>
C>

40 l!
Cl)
>
<(20

o
o 10000 20000 30000 40000 50000 60000 70000 80000 90000100000110000

Epochs

Figure (28): Epochs Vs. Average Error for Competitive ANN (9440 elements)

6.4.2 Network design using fourth level wavelet decomposition
"

The fourth level results 2666 elements for the input, and this number can
" .

be utilized easier by the training process. The code that extract the training set and

the code that initiates the network structure and the training process are

summarized below and the complete code is still available in appendix ().

Also for this number of inputs we made many trials on iterations we

started from lower values since the number of inputs is reduced in this case. The

77

start was with 5000 epochs which gave approximately the results of 10000 epochs

in the previous design. As shown in table (14).

Number of correct

classified ,images \ .&o.Error

ôut of 59

Class A 5 91.53 %

. 6 89.83 %
Class B

Class C 5 91.53 %
•

Average Error 90.96%

Table (14): Results of Competitive ANN (2666 elements)
for 5000 epochs

• 10000 epochs

A good improvement in the accuracy by making more iterations we

added the epochs to 10000 epochs and table (15) shows this improvement

which is 10%.

Number t>l·correct

classified. Jmag~s ·.·

out.of 59.,
77.97 %

Class A 13

Class B
81.36 %

Class C 10 83.05 %

Average Error
80.79 % •

Table (15): Results of Competitive ANN (2666 elements)

for 10000 epochs

• 15000 epochs

The accuracy improved again with 15000 epochs and this is shown in

table (16).

78

Numbers oft correct

classified ; images>

out.of 59;,

ClassA 20 66.10 %

ClassB 69.49 %

ClassC, 62.71 %

%

Table (16): Results of Competitive ANN (2666 elements)

for 15000 epochs

• 30000 epochs

The accuracy improved to 50 % with 30000 epochs and this is shown in

table (17).

Number of correct
% Error,

Class B 30 49.15 %

Class C 29 50.85 %

Table (17): Results of Competitive ANN (2666 elements)

48'.59'.%Average Error

for 30000 epochs

• 50000 epochs •

The accuracy improved to 85.3 % with 50000 epochs and this is shown

in table (18). These results have accepted accuracy since our acceptable range

is (85-95%). But to improve these results we have two choices the first one is

to increase the epochs or decrease the number of inputs which will decrease

the enough epochs.

79

Hence we will start simulating another size of networks that with the fifth

level wavelet decomposition. And this network may be able to be trained with

lower number of epochs.

images:\\11 o/lErrôr .

18.64 %

11.86 %

13.56 %

14.69%

Table (18): Results of Competitive ANN (2666 elements)

for 50000 epochs

The statistics graph shown in figure (29) and this shows the relation

between the epochs of training and the correctly classified images.

Statistics of Correctly Classified Images

1/1
Cl)
C)_§ 50

"C

Cl)5 40
1/1
1/1nı
Ü 30

~of 20•..o
(.)- 10o
oz o

~Ç)
~cs

52 51

mClassA
•Class B
o ClassC

Figure (29):Statistics graph shows the amount of correctly classified images

for Competitive ANN (2666 elements).

80

Table (19) shows the average error related to the number of training

epochs, and the graph shown in figure (30) shows the reverse proportional

relation between the averag~ error and the number of iterations.

'No;,ofltera!iOrıf(Epı::ıchs)y l+Average Error

5000 90.96

10000 80.79

15000 66.10

30000 48.59

50000 16.38
Table (19): Epochs vs. Average Error

for Competitive ANN (2666 elements)

Epochs vs. Average Error

100

80 ..o.... 60 w
Cl)en
l! 40 Cl)
>
<(20

o
o 10000 20000 30000

Epochs
40000 50000 60000

Figure (30): Epochs Vs. Average Error for Competitive ANN (2666 elements)• •

81

6.4.3 Network design using fifth level wavelet decomposition

The 850 elements which were results from the fifth wavelet decomposition

will be fed to the new size network. This will be easier to train. The complete

MATLAB code is attached in the appendix.
The training of the network now may be start from smaller number of

epochs (iterations). So we started from 1000 epochs. This gave approximately the

same accuracy of the 10000 epochs of the 9440 input network, and the accuracy

of the 5000 epochs of the 2666 inputs network.

The results of the 1000 epochs training of the 850 inputs network is shown

in table (20) which shows the improvement in the design.

Number of correct
··%Error

Table (20): Results of Competitive ANN (850 elements)

for 1000 epochs

• 3000 epochs

We used 3000 epochs in order to get more accuracy and this is clear in. ~
table (21) which shows 11 % improvement by adding only 2000 epochs in

contrast with the previous designs which took more than 10000 epochs to get

this improvement.

82

Number of correct

classified images. \:::.%Error ··•

outof591:·C' ··

76.27 %14

14 76.27 %

79.66 %

·77:40'%+
Table (21): Results of Competitive ANN (850 elements)

for 3000 epochs

• 5000 epochs

The accuracy improved by 24% again with 5000 epochs and this is better

than the previous designs shown in table (22).

55.93 %

50.85 %

54.24 %

Table (22): Results of Competitive ANN (850 elements)

for 5000 epochs

• 10000 epochs
•

The average error reduced again, which means improvement in the

accuracy as shown in table (23).

83

Number of+cortect

classified·" 'ittiage·s;,\· .% Error

.out.of.59 ..

39 33.90 %

41 30.51 %

43 27.12 %

30.5F%

Table (23): Results of Competitive ANN (850 elements)

for 10000 epochs

• 20000 epochs

The accuracy rose to 85.88% as shown in table (24) which is acceptable,

but still can be improved by more epochs. So we used the 40000 epochs.

Number of correct

classified·

outof59/
13.56 %

13.56 %

15.25 %

Table (24): Results of Competitive ANN (850 elements)

for 20000 epochs~
• 40000 epochs

• •
A 40000 epoch rose the accuracy to 93.22% as shown in table (25)

which is the best accuracy we could get from the Competitive Layer ANN.

Since we had approximately the same value for 100000 epochs with the same

network

84

<Number Of:tcorrect
irnağesil o/o]3rr()f

55 6.78%

Class.B. 8.47 %54

Class,,C 56 5.08%

· Averağefürror 6.78%

Table (25): Results of Competitive ANN (850 elements)

for 40000 epochs

The statistics graph shown in figure (31) shows the amount the correctly

classified images at different values of epochs.

Statistics of Correctly Classified Images

ın
C)_§ 50

"C
41
!i: 40

=o 30

~
Ü
~ 20
o
(.)- 10o
oz o

s:::ı(;:>
•...~

llü ClassA
•Class B
oClassC

Epochs

Figure (31): Statistics graph shows the amount.of correctly classified images

for Competitive ANN (850 elements).

Table (26) shows the average error related to the number of training

epochs, and the graph shown in figure (32) shows the reverse proportional

relation between the average error and the number of iterations.

85

:No. of""· IteratjonsJ~verageError,u

(EpOchs)·
.... '' + ... ,

1000 88.70

3000 77.40

5000 53.67

10000 30.51

20000 14.12

40000 6.78
Table (26): Epochs vs. Average Error for

Competitive ANN (850 element)

100

80 ..o.... 60 w
Cl)
C)
I! 40 Cl)
>
<(

20

o

Epochs vs. Average Error

"\ -.
O 5000 10000 15000 20000 25000 30000 35000 40000 45000

Epochs

Figure (32): Epochs Vs. Average Error for Competitive ANN (850 elements).

• The End result of Competitive Layer Networks
•

It is obvious that the last design, the design of the (850 inputs), is the best over all

design, since it has the best performance over all the previous designs. So we consider

this one as the best design because it is easier to train, build and train.

86

Because this design is not reserved only for this application, but we can train it for

any set of images so the training process which is the most time consuming process can

be held in shorter time than the other designs.

This design may be the best over the previous but there is another architecture that

may present a better design. And that is the Learning Vector Quantization which will be

discussed in the next chapter.

6.5 Summary

This chapter discussed the competitive layer ANN design which is an

unsupervised training ANN, the architecture of this network contain only one layer which

is the competitive layer. This chapter shows the network design for the original size

image using the MATLAB code which was failed , the this chapter discussed the network

design for reduced image size which failed to classify the images in the first and second

order wavelet decomposition, but it was successful for the third , forth and fifth order

wavelet decomposition , but as the experiment shows that network design using fifth

level wavelet decomposition was better than the network design using the third and the

forth order wavelet decomposition.

•

87

Chapter 7

Classification using Learning Vector Quantization

7.1 Overview

We were directed to the Learning Vector Quantization ANN, because it has the

architecture of the competitive layer plus the ability to have supervised training, also this

kind of networks gives the opportunity to control more characteristics of the network.

Hence in the competitive architecture we train the network for specific number of epochs

without having an idea about mathematical goal, but using this kind of training we have a

mathematical goal and we can trace the process epoch by epoch from the (goal vs.

epochs) graph as will be shown later.

7.2 Construction ofLVQ ANN

The following MATLAB statement defines the LVQ parameters;

net= newlvq(PR,S1,PC,LR,LF);

PR R x 2 matrix of min and max values for R input elements. or simply

the ranges of the training set
Sl Number of hidden neurons. or number of hidden classes

PC S2 element vector of typical class percentages or the probability of

occurrence.

LR Learning rate, default= O.Ol.
LF Learning function, default= 'leamlv2'. returns a new LVQ network.

The learning function LF can be leamlvl or leamlv2.

88

Due to the existence of the competitive layer in this architecture it has

some limitations of the competitive network, such that we are limited by the

number of the input neurons as will be shown later.

.3 Network design for the original size images

The following MATLAB code will result the matrix of the training set

images using their original size;

image_RGB=imread('filename');
%where 'filename' is the name of the image file.

image_gray=image_RGB(:,:,l);

%converts the RGB to Grayscale.

image_vector=image_gray(:);

%converts the matrix to vector.

training_set(:,1)=image_vector;

% converts matrix to column vector.

Evaluating the previous code for 20 images of each class (using for loop

functionj will yield a matrix that has a number of rows equal to the number of

-elements of the grayscale image matrix, and number of columns equal to that of

the total number of images. The training set was reduce because of the limitations
•

of MATLAB.

Now, to initiate the network we have to set the target vector and we used

the following code to do that keeping in mind that we had 20 images for each

class in the training set; and the target matrix in this case is different from that of

• The complete code supplied in appendix ().

89

the feedforward network, the target matrix of the LVQ network has a special

shape that will be provided by the following code;

targets_classes_indices(l,l :1 :20) = 1;

%sets the first 59 elements in the target row vector to one which means the first class.

targets_ classes _indices (1,21: 1 :40) = 2;

%sets the second 59 elements in the target row vector to two which means the second

class.

targets_classes_indices (1,41:1:60) = 3;

%sets the third 59 elements in the target row vector to three which means the third

class.

targets_ classes_ vector = ind2vec(targets_ classes _indices);

%converts the targets vector from indices form into vector form.

Now the network can be initiated, using the following code;

net= newlvq(minmax(training_set),6,[1/3 1/3 1/3],0.001,'learnlvl');

"

_..
Minmax(training_set) Equal to the ranges matrix of the input training

set.
Is the number of subclasses

The percentage of each class training set.

The training rate

The learning function

6

[1/3 1/3 1/3]

0.001

'learnlvl'

90

The training parameter of this network can be set by the following code;

net.trainparam.goal = O. 1;

% sets the goal of minimum difference.

net.trainparam.epochs = 1000;
% sets the number ofmaximum iterations to be held unless the goal is met.

The training command is; -

net= train(net, training_set, target_classes_vector);

Although the training set matrix area was reduced but the training process

was not able to be completed, and we faced an (OUT OF MEMORY) type error

again. And from this point we started to reduce the number of input elements

using the wavelet transformation.

7.4 LVQ Network design for reduced images size (one wavelet level)

In order to make the input vectors more suitable for the ANN use, we

started to use the wavelet transformation, which will reduce the image size•
keeping the most important details unchanged (as mentioned before).

The following MATLAB code will result the matrix of the training set

images using the first level wavelet output;

91

image_ RGB = imread('fılename');

%where 'filename' is the name of the image file.

image_gray = image_RGB(:,:,1);

%converts the RGB to Grayscale.

[Al A2 A3 A4] = dwt2(image_gray,'db4');

%computes the first level wavelet decomposition.

image_ vector = A 1 (:);

%converts the matrix to vector.

training_ set(:, 1) = image_ vector;

% to fill the training_ set matrix

Evaluating the previous code for all images (using for loop function)" will

yield a matrix that has a number of rows equal to the number of elements of the

approximate image matrix which is (134849), and number of columns equal to

that of the total number of images of the training set which is 1 77.

Now, to initiate the network we have to set the target vector (as in the

previous design) and we use~the same code of the targets of the previous section,

to do that keeping in mind that we have 59 images for each class in this case"; and

•this code is applicable for any design uses LVQ (Learning Vector Quantization)
algorithm in this research.

Now the network can be initiated, as the previous trial using the same code
of the previous section;

• The complete code supplied in appendix ().

92

net= newlvq(ıninmax(training_set), 6, [1/3 1/3 1/3], 0.001, 'learnlvl');

The training parameter of this network can be set by the following code;

net.trainparam.goal = 0.1;

% sets the goal ofminimum difference.

net.trainparam.epochs = 1000;
% sets the number of maximum iterations to be held unless the goal is met.

The training command is;

net= train(net, training_set, target_classes_vector);

Also the three previous segments of code are fixed in the LVQ algorithm•

unless any of the parameter is changed and we will mention any parameter change

when it happened.

The limitations tlus time stopped the process at the training stage, the

training we made were faced with an (OUT OF MEMORY) error too. This led us

to another level ofwavelet transformation. •

• The complete code supplied in appendix ()

93

7.5 LVQ Network design for reduced images size (two levels wavelet)

The number of input elements was reduced again to (35037) element",

with neglecting the less important features in the previous approximate image, by

applying another level of wavelet transformation.

Although of this reduction in the input neurons number the network was

unable to be trained this time too.

So we applied the wavelet transformer again to have three levels wavelet

as result. And it seems that it will work this time (as will be shown).

7.6 LVQ Network design for reduced images size (three levels wavelet)

The number of input elements was reduced again, in order to be adequate

for the network to have acceptable training process and accuracy.

The following MATLAB code will result the matrix of the training set

images using the third level wavelet transformation output;

•

• The complete codes for this design are available in appendix ().

94

image_RGB = imread('filename');

%where 'filename' is the name of the image file.

image_gray = image_RGB(:,:,l);

%converts the RGB to Grayscale.

[Al A2 A3 A4] = dwt2(image gray, 'db4');

%computes the first level wavelet decomposition.

[Bl B2 B3 B4] = dwt2(Al, 'db4');

%computes the second level wavelet decomposition

[Cl C2 C3 C4] = dwt2(Bl, 'db4');

%computes the third level wavelet decomposition

image_vector =Cl(:);

%converts the matrix to vector.

training_set(:,l) = image_vector;

% converts matrix to column vector.

Evaluating the previous code for all images (using for loop functionj will

yield the a matrix has a number of rows equal to the number of elements of the

approximate image matrix which is (9440), and number of columns equal to that

of the total number of images of the training set which is 177.

•
The target vector was as mentioned in the previous section still valid in

this section. The initiation of the network and the training still valid from the

previous section too, and we can do it simply by running the following code;

• The complete code supplied in appendix()

95

%Network initiation.
net = newlvq(minmax(training_set), 6, [l/3 1/3 1/3],

O. 001, 'learnlvl');

%Training Parameters.
net.trainparam.goal = 0.1;

net.trainparam.epochs = 1000;

%Training command
net= train(net, training_set, target_classes_vector);

Although the previous command lines sets the training goal to 0.1 and the

iterations epochs to 1000, the training process was failed to meet the goal and the

performance graph was as shown in figure (33), but this time the training started

at least.

•

96

·---• • • •--- ·t-·· • •••••-- ·°}" •••• •"'7.:,•· ·--:-·••--· ·- •••••!'--• .. ••••----t. •· •··----· --~·-••--··:··-~·-··'"'•v••• .-•·!"• ···•••••---··.~ •·••••-••r·· · .•••... ,.. .. t .. ·•.. ,,. 1····· ~•... · ······--f· .. · - •' t·····-- i ,. ······1· · ~· .•............ · +: .
---- ----. --· ---~-- -·-- . - ---- . ------ ------~-------- --- ..----·--------~----------··j ···-- ------.~- --------··

~ ' .• • ' ' • ,, 1. . . "·! . .· : . . . r . ; ' . r . : . ··"· .. : . -·'-t ~ . ' . '•' !
•••••.•..•. ~-- .••.•• - ~-"'· ••.•••••• -· •••••. + ·- - - •••.•. ...-~. - .' •••••••.•• ..: ••••••• - -~ .,.,.,. ••••••••.• "" •••••••••••• - •.•.••••.••••• - ••• » .•. •• - ••••.;:•••••••••••••.•••.• ~ "'" ••••••.••.•.•.••. :., •••.••••••.•..••• ~~

! ! : : : : ! !: !·--.--------- .. -- -·---- -- -~----,..,,.------1-· .»---·----:::-·-·--------~--··----- -- -·:---·- ... --·---~----···----- r·r·----.r--:---.---- -···-
. - -------r------·---r-- -------ı------ ----r----------r-- ---- --ı---- .. -- --r---- ---- r----------r· ---- ---
-------·)_.·-ı -----------f ·----------r·--·------r-------- --ı--- f - ------1---- --------r-----------r----------

• • • ı • '- • •
:_ '--~..ı....ı.-:'-- .•. ...ı _,. .:... --- •..•...•...,£.....-.. ~-·~- ..ı.... .ı.af:

.:.<·
~tn
"ii

~ "\ ' ' ' '"' 10 , , , , , , _ •. _ , '· ~
ffi :::: :. : :1::: .. :: \ : .. \ ~ ; i,. '" ••••••1 { \ _ ~

tJ:ı • • • •) • . • 1 •

! :::::::.t:··::: :J:: :::::t·: :=t:::: .(:L ::::: L: :: f :.:: : t::::.: :
------------i------------i---------·-·t--·------··r·---------'" r: ------(-------··1··---------- i------------r----- -----
-- _.. __ -- • V ~- - --- -0 -- -.o••i • ---- V,O -- O, - f' O•••••-----•-~ •'N -- - - - ---r O'-¥ - -- w ·---O'~---•·---··' W - ~- --- ---- - w •-••f NA - "' -- • ·- - -~- - - • .: •• O#N

1 . 1 l i ! :
I i l I I • f ' t

...... t . .. r- ·· i · ·· · · · [· + 4 · 1 · r· · · r· · .
·-1· ' ' '

1o· O 21:lO 400 6i'.lO BOO · 1000 1200 1400 1600 1800 .2000
200J af:poc-hs

Figure (33): Performance graph of LVQ network with three levels wavelet and O. I goal.

The previous graph illustrates the relation between the performance of the

network to the iterations number, as it is shown above the goal is not met, this

doesn't mean that this network can not be trained. It can be trained but with a

little bit higher goal. So that we trained it again with 0.135 goal.

•

97

0
Performance is 0.131B27, Goal is 0.135

10 - • • • • - • • • ·1 • • • • • • - • - 1· - - - - - - • • • - • • 1 • - • • • • • • • • • I • • • • • • • • I • • • • - I• •

- - - - - - - - - - - - - - -~ - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - ~- - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - ~ - - - - - - -

.:,,:.
u
"'ffi
m
C
0
aı 10·1
:l
ffi
6ı
C:·c
·~
ı-

- - - - - - - - - - - - - - -: - - - - - - - - - - - - - - -:- - - - - -- - - - - - - - - -:- - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - :- - - - - - -
I I I I I I- - - - - - - - - - - - - - .•.. - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - _,_ - - - - - - - - - - - - - - ..•. - - - - - - - - - - - - - - .. - - - - - - - - - - - - - - - .. - - - - - - -
I I I I I I
ı I I I I I--- - - - - - - - - - - - -,- - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - -,- - - - - - - - -- - - - - - ., - - - - - - - - - - - - - - - ., - - - - - - -
1 I I I I I

I I I I I

- - - - - - - - - -- - - - -~ - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - ~- - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - ~ - - - - - - -
I I I I I I
I I I I I I
I I I I I I

- - - - - - - - - - - - -r -- - - - - - - - - - - - - -,- - - - - - - - - - - -- - - -,- - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - , - - -- - - - - - - - - - - - , - - - - - - -
' ' '' '' '' '' ' '

- - - - - - - - - - - - - - _ ••• - - - - - - - - - - - - - - -1- ..,_ - - - - - - - - - - - - - - .ı - - - - - - - - - - - - - - - .ı - - - - - - -I I I ı I I

' '' '' '' '

' ' .--------------~---------------1----------------1---------------~---------------~---------------~------ I I I I I I
- - - - - - - - - - - - - - - r - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - ,- - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - , - - - - - - -

- - - - - - - -- - - - - - -: - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - -:- - -- - - - - - - - - - - - :- - - - - - - - - - - - - - - :-- - - - - - - - - - - - - - :- - - - - - -
1 I I I I I

- - - - - - - - - - - - - - - r - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - -ı • - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - ı - - - --- -
I I I I I I

- - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - _,_- - - - - - - - - - - - - - -ı- - - - - - - - - - - - - - - ~- - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - ~ - - - - - - -
I I I I I I
I 1 I I I I

- - - - - - - - - - - - - - ·r - - - - - - • - - - - - - - -,- - - - - - - - - - - -- - - -,- - • - - - - - - - - - - - - -,- - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - , - - - - - - -
I I I I I I
I I I I I I

- - - - - - - - - - - - - --~ - - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - -:- - - - -- - - - -- - - - - ~- - - - - - - - - -- - - - - ~ - - - - - - - - - - - - - - - ~ - - - - - - -
' ' '' 'I I I I t I

- - - - - - - - - - - - - - - r - - - - - - - - - - - - - - -,- - - - - - - - - - - - - - - •,- - - - - - - - - - - - - - - .,- - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - ., - - - - - - -
I I I I I I
I I I I I I
I I I I I

---------------1..--------------~----------------·----------------'---------------"'---------------"'------- I I I I I I
I I I I
I 1 I I
I I I I
I I I I
I o I I
I I t I

' ' '
10·2 ' ' '

o 50 100 150
298 Epochs

200 250 300

Figure (34): Performance graph ofLVQ network with three levels wavelet and 0.135 performance.

The goal was met this time and after simulation the results of accuracy

was as shown in table (27) which shows the accuracy of the trained network at

performance of 0.135.

Number ofc()rrectly
i'

classified images %.Accuracy
outof 59

Class A ~ 43 72.88 %
Class B 45 76.27 %
Class C 45 76.27 %

Average Accuracy ~ 75.14 o/J
Table (27): The accuracy table ofL VQ network with three wavelet levels

and performance of0.135.

The results in table (27), give a step forward for the whole research, since

the process is easier and controllable through the goal setting and through the

hidden neurons of the network (sub-classes)

98

So we completed the research on this architecture of networks to show its

efficiency and the ability to be considered as final result of the research.

7.7 Network design for reduced images size (four levels wavelet)

Although the previous design was trained successfully but we were

interested in higher accuracy level so we applied the fourth wavelet

decomposition level on the images.

The code that sets the training set, the desired output (targets), the

network, the training parameters and the training can be done using the code of

the previous design except that we need to modify the training set code to make
*the fourth level .

The training process was held on two goal values 0.1 and 0.125; the first

one didn't meet the goal where it was met by the second one at performance of

(0.124294), as shown in figure (35).

•

• For complete code see Appendix().

99

I
l

w1

,.
~

•••••. * .••. _ •.•. ,' .•. ,.,.., •• ? ••f•.,. •• _w,. .•••• ,., •••••• y .••. _ ""'*"' -~ ••. _., .•• ,.•.•• _ "'·*""". _.,••••••'t""***"+«"t** -: .,.,. ••••••. r,. _.,•...••...<"""•·
,..,.,.,.,.. .•••• ı,._.,...,..,...••...,..,._ •.•• ...,.~•• ,.,. ,,...••.# ..••.••••••..,., .••,,.. ,...,..,••._••.•.• ,•.-,,ı,·• .••} _,..,,.,.. .••. ııı,;·""""'"" ,ı,.••••.. """ .• ı,;.ı,.ı;ı.c+,·ı,,'+, i<'r<-:1!<,..,, ••. ı,. "'"*'""""'"''"'"""""••..••...,~•• ı,.-,ı,.}--""·"'"'- •..••. ı;o;;Cft-•,ı.ı,;,}..,,_.,..,.,,,.," ••.,'I<.: ·.~:-ı :::..·:.. : :::} ·.h ::.· ..: +: :l:":' .:::.::~·· ::~ ..: .:..:

~-<f'<f<llı:.-:ı;...,;..q>_:$:<0 .••• :¥<:ii:.C-".~:.ı.: ••-?,,.""",••..-ıı:,,.:,ı;Jo'.~fı' •.. '» ..'l< ••• ,l,"'"'·'"''*••f~--··"-'"'"'*"4·'#.it:..ıı:<l•••••. ~-ı.,ı,,.fı•ı*'*'"*'"'-"""'*'·*'-*''"~ .••. "' •• *'"'"'·*••.~f*'"''"""*'~"'·"'·'*·-ıı:- ••.. "''.««~:'.>l,'Iİ

,_ ·' :t -f
',! '*,~,,ıı: ,ı-$-ı., ~.,..,.,"'_,;ı; * "'*~+-'<- ..-1:<ır.~:I!,,. lel:-~·:ıi 4-.c..,- ,ı, *~ .f' ••• <,ı::~-~,;: &r. * ,,.,.,,. ,,, •...•• .,:ıı, 41; it ;ı; ,..'$:'it -l!.+.:1""' *"'";o; ıi,;$:~ .• "'"'"' ,.,..:ıı.:ıı;:!$.:«,Ii '*f "· "'';. ,;:,:ıı;:;fif·<',••. +it .•..•.••cl(,lŞ::i,'cl(

....;. '..'.:"'""""'"'....... i _.,_.,... ,.ü .••, .•• ,.. •• - •• "'T"'·•«*«- .,."'.,..,..·i·-,4,.,..,.,.,..,..,.,.••.•. ,., •• ,.<:;,- .• -"",...,.,. ••. "'"'"'..,,., ••. : ; ~
.l!'~.! •.<:"'"'"'"'"'-"'"'-'"'*~°",._ .•• ,,..,.,,ı.ıı.ı;.,.-..ı.-"4<.«ı-•ı<"':«-».•• ,.•.••. ,. •••

~
•• ¥ ~ t·
) ~ l! ı

:,;,.-"*:ıı:'*1''6-·:;..W1' <";·.,.:<ıc-io:ıı: ":,. ;.(.~-~. .;,,.,.:""' OA;-'<~ :il.<lt1'iı:,'t,,.-M·'4<·,.;,ı. "}"·'*'''*'*ıı,:.,.:,v "'-*'"'"'"'"'°'·"f>ıt='*',ı,ı~-"'-ait("*a,4'·a,>t!'ıfı:# fı>c~-N!< «-«ıı-·l>:ı.;4.<;:¥°<\)ii>·'*"-*' ¥-a,:o;.lf-~ ;.a,,~·>i:<-•-ıı--ıı~'*"
~- *""* i4:" ,,;, .••.•• ~-11-'.-İ'" .• '*'*"'" :$·~~·*!*-....:~ llıi>~ ;.-;ıı**~i> :O."*'cti" :jtfc»'«- it;$;*,. .,.;,~·:ii,:i:-:ı.,:ı,, :$-it,~, .••- j'·fri !~,I;·,. ::ti$,i:,i>, ""'*il' :il-:* ·*ic[o :'t "''"*'"' ""f :jt,,i: •••. , l$'·ciı: :ti:"'"'-*·~*•• ,. :,ı,,i:, :[o_

•. ,.~ ,ıı •<t"''l':~:tl:'~ ,,,.,..., ~.,, Jı!c'~' ., .,J.1'-.,:<!11"~>flt- .•.• '8' -~·il!: ':I< •Jı!c·>ıc ;j,,iı, :ıı, *"" :l!ci!f 'I' :!l'iı!:'t "'"""'"' ıt- ,..elle "I' ,J,:iı>:11: '$',,..~ •• ~:'11'<:0!'\t Jf:¥ 'i $' -"~ "<t-!'",., ot''$'.,..~-~., !I!-"'*'""""' l!, \t ""'t -,-ııe"!e.'$':l<·C,,"! >! ,,.,.. ~
• - ~ t;..ı,..-;.;.-,<ı:;.·;ı.*:$-ci, . ..;:ı;c.,t,:;t:;ıı.*'"'t'*'"'* jfı.iı>:l<:'i<:l;I< "'*'*ilı.J.•iO'-",t!,·~_,ı,ıılı i<:--*·"'*·*"'e ,ı\:\1,:11:·*,.'""'*'"'''"' ~-$e·il,:,;ıJ!*"""'"',j:.:ft.,O: &'*-:l-:*·.,..J<lfi>iliifiı-4,ı,i*_'iFf *'"'"'*""'~·<i<·ı+•:11!-(,ı, ııı·ı;;ct *·-$i_~,ı,

.•.•• ,.,.,,,,..,.,.,,!J';,ıı."t"'#."!e'l!1' ..•. ~.,,,"~~-ıf:"'!:,>f'$·*''"'··"""'"*' !!!«'I! .•. ,,._.,ıı:,. •"!' ı,.ıt.$'t 'f"1"!'!l!, •• ,,.*,,"""""'"'"i"" •ot·"$"ı,#ie~ ""''*""1"11'!.,..,. 'f.M,ti<f"'l- ..~ ""'"'"' ,,.,_.,..,.. "'''·*'"'"'·"·'"'""
:J I ¥ f'"'""""' •.•• '""""" ,.,. -"'-~"'"' •.•• "'."' ""·!'"' .•'"''"'"' .••.,..,,, ""'"' io,,..--ıo .•• 'f'"/!I ""''"' "":' "'""' "' ••. ,.,. ··~"'"' ••. ,,..:". ıı. ""'11""..,,..ı! !""''"'·"'"'"" ,.. ..••..•• ioı-,t.'ll ~"' **"'" ,.,.-~ """'f .. ~,.,."' •. ,..,,. "",. ,.._.,..,..-:ı,ı •.••. ,.."'"''

""'"",,._ ••.••••••••••••••.•• ~ •• ~ .••••• .,.,;,,,; •••. ,.. .••.•• J:t ••••• -~ ••••••. ;, •• ,.,. ••• ,, .•• ~ ••• .,.. ••••.••••. ., •• ,. .•••• "11-,...••••••.•• Jt. ••••••,"',...,. • .,,, .•• .., •• ,,_~ .•• ,. .••.• .,,, __,.,,_., ••~ •.•••• ,.,. ;,.,,.,.~. "'"'''" '",ı,-,. .•.«_ ••.•.

! ! ı !.. . ~ ~•• ,.,n ••••••••••••r T.,.....••...••...•••1 .,, .,. .•......r ,u.

~ * ~ $-' . r .. . T . --·-T·---- r.......
1·~1 I ··rı l ·····l.ı ·~·~ ~ m - = ~

724&cm

Figure (35): Performance graph of LVQ network with four levels wavelet and 0.125 performance.

The simulation result of this network was as shown in table (28). And

these results show that the accuracy improved to 84.75% by this reduction in the

input elements. And this may lead the research to another level of reduction that

may increase the accuracy more than that.

classi:tied iınag· es'
>·-.cccc,':,cc:?· ·· ··

outô(59···
83.05 %49

51 86.44 %

ClassC 50 84.75 %

. Av~ra'ğe Accuracy 84.75 %

Table (28): The accuracy table of LVQ network with four wavelet levels

with performance of0.124.

100

7.8 Network design for reduced images size (five levels wavelet)

The previous design results an accuracy level of about 85% which is still

low level compared to accepted levels of classification networks. Hence we

applied the fifth level of wavelet decomposition on the images.

The code that sets the training set, the desired output (targets), the

network, the training parameters and the training can be done using the code of

the previous design except that we need to modify the training set code to make

the fifth level*.

This network trained to meet the performance goal of 0.1, and this goal

was met by the training within only 63 epochs. And the result of the simulation of

this network is shown in table (29). While the performance graph is shown in

figure (36).

Number of correctly

classified

out of 59

images I· % Accuracy

88.14 %

86.44 %

88.14 %

Average AccurafY 87.57%
Table (29): The accuracy table ofLVQ network with five wavelet levels

with performance of O. I.
•

• For complete code see Appendix().

101

0
Performance is 0.094162, Goal is 0.1

10 I - - - - - I - - - - I - • -,- - - - - • - - - - • - - ,- - - - - - - - - - - - - -

--------------:--------------~--------------f-------------- --------------:--------------~--------------
- -- - - - - -- - - - - -:- - -- - -- - - - - - - - :- - - - - - - - - - - - - - : -- -:-- - - - - - - - - - - - - :- -- - - - - - - - - - - -

I I I I I
- - - - - - - - - - - - - -ı- - - - - - - - - - - - - - .••• - - - - - - - - - - - - - + -ı- - - - - -- - - - - - - •..•• - - - - - - - - - - - - -

' ' '' ' '• • • • • • • • • • • • • •ı• • • • • • • • • • • • • • -ı • • • • • • • • • • • • • • T •ı• • • • • • • • • • • • • • .,. • • • • • • • • • • • • •
I I I I I
\ I I I I

- - - - - -- - - - - - - -:- - - - - - - - - - - - - - ~- - -- - - - - - - - - - -f- -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - -
' ' '' ' 'I I I 1 I

-- - - --- - - -- - -ı- -- - -- - • - - - • - - .,. - -- - - - - • • • - - - T- - - - - - - - - • • - - - ,-- - - • • • - • •• • - - •ı- • • - • • • • - - • - - - ., •• - - - - - - - - • - • -
I I I I I

' ' '' ' '' ' '~),!________ _ ı. : ~--------------

n, I I I

iri : : :' '
...!. I I~ 'o '~ :

OJ 10·1 '~ - - - - - - - - - - - - - -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - -
a:ı - - -- - - - - - - - - - -:- - - - - - - - - - - - - - ,-- - - - - - - - - - - - -\- -- -- - - - - - - - - - ,- - - - - - - - - - - - - -:- - - - - - - - - - - - - - ,- - .. [- - - - - - - - - - - - - -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - - t- - - - - - - - - - - - - - ~ - - - - - - - - - - - - - -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - -
-~ --------------:--------------~--------------+---------:----~--------------~-------------~--------------
ca I I I Iı= - ·:· - . ~. - - : - - - : - - - ·:· - ~ .. - - - .

I I I I I I

- - - - - - - - - -- - - -:- - - - - - - - - - - - - - ~- - - - - - - - - - - - - - ~ - - - - - - - - - - - - - -~ - - - - - - - - - - - - - -:-- - - -- - - - - - - - - ~- - - - - - - - - - - - - -
I I I I I
I I I I I

I I I I I
-- - - - - - - - - - - - -,- - - - - - - - - - - - - - -ı- - - - - - - - - - - - - - ' - - - - - - - - - - - - - - ,. - - - - - - - - - - - - - -ı- - - - - - - - - - - - - - -,- - - - - - - - - - - - - -

I I I I I I
I I I I

' ' '' '' '- •• • - •• - •• - •• -1-. - ••• - ••••••• .J •••• • •••• •. - • - .&. •••• • ••• • - • - • • L - • • - ••• • - • - • - -1- • • • - • • • • • • • - • .J - - • • • • - • - • • - • •
I I I I I I
I t I I I
I I I I I
I I I I I
I I I I I
I I I I I I

I I I I I
I I I I I

10·2 ' ' ' '

o 10 20 30 40 50 60 70
63 Epochs

Figure (36): Performance graph ofLVQ network with five levels wavelet and 0.1 performance goal.

7.9 summary

This chapter discussed the classification using learning vector quantization

because its architecture has the architecture of competitive layer plus the ability to have

supervised training; this chapter show the construction of the LVQ ANN using MATLAB

code.

The LVQ ANN was applied on the original image but the training failed so the wavelet
•decomposition was considered, and it was started from the first wavelet decomposition

which got failed and the same result for the second wavelet decomposition order, so it

considered the third, forth, and fifth order of wavelet which was successfully trained and

the fifth wavelet decomposition order proved,that it's the best order in the classification.

102

Conclusion

This project discussed the image classification using artificial neural network, it

gives an explanation about the artificial neural network and the uses of artificial neural

network in many fields for example in medicine, image classification, pattern

recognition, banking and finance, language processing and character recognition.

This research discussed the methods of classification and show many methods but

it proves that the most better method is classification using artificial neural network and

the it also prove that classification using artificial neural network with wavelet levels

decomposition is more better, since wavelet decomposition reduce the image size without

losing the image data, in other words reducing the image size means reducing the

number of inputs to the neural network so it will gives more clear results

For image classification this project used three kinds of neural networks

FeedForward neural network, competitive layer neural network and learning vector

quantization neural network.

Image classification using FeedForward neural network which is a supervised

learning neural network, was failed for the original image classification which was with

size (896x592) and gives an error OUT OF MEMORY when the code was run in

MATLAB , so the wavelet decomposition was considered but the training result of the

network for the first, second, third, fourth, fifth and sixth level of wavelet decomposition~
was OUT OF MEMORY which mean that the image classification using this neural

network was failed, so the competitive neural network was considered.• •

Image classification using competitive neural network, which is unsupervised

neural network, was failed for the original image classification and this due to size of

image which gives a large input to the neural network, and also the classification was

failed for the first and the second level of wavelet decomposition, but the image

classification started for the third level decomposition so we start to use this level with

103

many epochs in order to get more clear result, and it was the same for the forth and fifth

level of wavelet decomposition , but the problem was that with each level every time it

need to increase or decrease the epochs size and this is taking a time, since training the

neural network with 100000 epochs took about 18 hours and half on a computer with 3 .O

GHz microprocessor and with 1024MB ram, so we considered the learning vector

quantization neural network.

This project directed to the Leaming Vector Quantization ANN, because it has the

architecture of the competitive layer plus the ability to have supervised training, also this

kind of networks gives the opportunity to control more characteristics of the network.

Hence in the competitive architecture we train the network for specific number of epochs

without having an idea about mathematical goal, but using this kind of training we have a

mathematical goal and we can trace the process epoch by epoch from the (goal vs.

epochs), training the network for the original image was failed and also for the first and

second level of wavelet decomposition. Using the third level of wavelet decomposition

with O. 1 goals and with iteration epochs 1000 was failed but the classification was started

then with same iteration epochs but with increasing the goal to 0.135 the performance

graph show the goal was met. Using the forth wavelet decomposition with 0.1 goal the

same problem the goal was not 100% met but a little increasing in the goal up to 0.125

will met the waned goal and this is shown in the performance graph, so we directed to the

fifth level wavelet decomposition where the goal was met just O. 1 and this was shown in

the performance graph.

According to this resealch we can conclude that the image classification using

learning vector quantization is the better than the competitive layer and the FeedForward

neural network, also wavelet analysis help in reducing the image siie which reduce the

inputs to the network. Also the as we more reduce the image we can reach the wanted

goal with less values as was proved in this research

104

List of Figures

Figure No. Figure Title
1 The main 4 parts of the Nerve Cell (neuron)
2 The Artificial Neuron
3 Simple neuron with bias
4 General architecture of multi layer neural network
5 Artificial neural network layers
6 Supervised training process.
7 The architecture of feedforward network.
8 Architecture of competitive network.
9 Architecture of LVQ network.
10 An Example Leaming Vector Quantization Network.
11 Demonstration of (a) a Wave and (b) a Wavelet.
12 Three-level wavelet decomposition tree.
13 Three-level wavelet reconstruction tree.

14 Wavelet families (a) Haar (b) Daubechies4 (c) Coiflet l (d) Symlet2 (e)
Meyer (f) Morlet (g) Mexican Hat.

15 the first class example
16 the second class example
17 the third class example
18 The original image displayed with 50% scale.
19 The reconstructed image displayed with 50% scale.
20 The reconstructed grayscale image displayed with 50% scale.
21 The original image 'LA O 1 .jpg' displayed with 50% scale.
22 The first level wavelet decomposition result displayed with 100% scale.

23 The second level wavelet decomposition result displayed with 100%
scale.

24 Tree arrangement of five levels wavelet decomposition.
25 The decomposition of five levels wavelet.
26 Simple representation of feedforward ANN.

27 Statistics graph shows the amount of correctly classified images for
Competitive ANN (9440 elements).

28 Epochs Vs. Average Error for Competitive ANN (9440 elements)

29 Statistics graph shows the amount of correctly classified images for
Competitive AJ\l'N (2666 elements).

30 Epochs Vs. Average Error for Competitive ANN (2666 elements)

31 Statistics graph shows the amount of correctly classified images for
Competitive ANN (850 elements). • •

32 Epochs Vs. Average Error for Competitive ANN (850 elements).

33
Performance graph of LVQ network with three levels wavelet and O. 1
goal.

34 Performance graph of LVQ network with three levels wavelet and
0.135 performance.

35 Performance graph of LVQ network with four levels wavelet and 0.125
performance.

36 Performance graph of LVQ network with five levels wavelet and O. 1
performance goal.

105

List of Tables

Fü.?:ure No. Table Title
1 Neurons Transfer functions
2 ANN vs. traditional computing

3 Network Selector Table
4 The wavelet reduction procedure results

5
The reduction of matrix sizes due to multi level wavelet transformation

6 Summary of the feedforward results for one hidden neuron

7 Summary of the feedforward results for multiple hidden neuron

8 Results of Competitive ANN for 10000 epochs (9440 elements)

9 Results of Competitive ANN for 15000 epochs (9440 elements)

10 Results of Competitive ANN (9440 elements) for 30000 epochs

11 Results of Competitive ANN (9440 elements) for 50000 epochs

12 Results of Competitive ANN (9440) for 100000 epochs

13 Epochs vs. Average EıTOr for Competitive ANN (9440 elements)

14 Results of Competitive ANN (2666 elements) for 5000 epochs

15 Results of Competitive ANN (2666 elements) for 10000 epochs

16 Results of Competitive ANN (2666 elements) for 15000 epochs

17 Results of Competitive ANN (2666 elements) for 30000 epochs

18 Results of Competitive ANN (2666 elements) for 50000 epochs

19 Epochs vs. Average Error for Competitive ANN (2666 elements)

20 Results of Competitive ANN (850 elements) for 1000 epochs

21 Results of Competitive ANN (850 elements) for 3000 epochs

22 Results of Competitive ANN (850 elements) for 5000 epochs

23 Results of Competiti.veANN (850 elements) for 10000 epochs

24 Results of Competitive ANN (850 elements) for 20000 epochs

25 Results of Competitive ANN (850 elements) for 40000 epochs

26 Epochs vs. Average Error for Competitive ANN (850 elements)

27
The accuracy table of LVQ network with three wavelet levels and
performance of O .135.

28
The accuracy table of LVQ network with four wavelet levels with
performance of 0.124.

29
The accuracy table of LVQ network with five wavelet levels with
performance of O. 1.~

•

106

Appendix A
MATLAB code

Training set Matrix (for original image)

% for class A images (59 images) where the images saved in the work space in the
form of 'LA_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
image_vector = image_gray(:); % converts the matrix to column vector.
training_ set(:,i) = image_vector; % fills the training set matrix.
end

% for class B images (59 images) where the images saved in the work space in the
form of 'LB_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LB_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
image_vector = image_gray(:); % converts the matrix to column vector.
training_ set(:,i+59}= image_vector; % fills the training set matrix.
end

% for class C images (59 images) where the images saved in the work space in the
form of 'LC_'i'.jpg' where I is the image number.
for i=l:1:59
image RGB = imread(['LC ',num2str(i),' .jpg']); %converts the image to 3D-matrix.
image=gray = irriage_RGB[,:,l); %converts the 3D-matrix to 2D-matrix.
image_vector= image_gray(:); % converts the matrix to column vector.
training_set(:,i+59) = image_vector;% fills the training set matrix.
End

•

I

Training set Matrix (for one level WA VELET decomposition)

% for class A images (59 images) where the images saved in the work space in the form of
'LA_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
image_ vector = A 1 (:); % converts the matrix to column vector.
training_set(:,i) = image_ vector;% fills the training set matrix.
end

% for class B images (59 images) where the images saved in the work space in the form of
'LB_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LB_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
image_ vector = A 1 (:); % converts the matrix to column vector.
training_set(:,i+59) = image_ vector;% fills the training set matrix.
end

% for class C images (59 images) where the images saved in the work space in the form of
'LC_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LC_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image __RGB(:,:,1); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 151 level wavelet decomposition
image_vector = A 1 (:); % converts the matrix to column vector.
training_set(:,i+59) = image_vector;% fills the training set matrix.
end

•

II

Training set Matrix (for two levels WA VELET decomposition)

% for class A images (59 images) where the images saved in the work space in the form of
'LA_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 1st level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
image_ vector = B 1 (:); % converts the matrix to column vector.
training_ set(:,i) = image_ vector; % fills the training set matrix.
end

% for class B images (59 images) where the images saved in the work space in the form of
'LB_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LB_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 1st level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
image_ vector= Bl(:);% converts the matrix to column vector.
training_ set(:,i+59) = image_ vector; % fills the training set matrix.
end

% for class C images (59 images) where the images saved in the work space in the form of
'LC_'i'.jpg' where I is the image number.
for i=l:1:59
image_ RGB = imread(['LC _' ,num2str(i),' .jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 151 level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
image_vector = B 1 (:}; % converts the matrix to column vector.
training_ set(:,i+59) = image_vector; % fills the training set matrix.

·end

•

III

Training set Matrix (for three levels WAVELET decomposition)

% for class A images (59 images) where the images saved in the work space in the form of
'LA _'i' .jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
image_ vector = C 1 (:); % converts the matrix to column vector.
training_ set(:,i) = image_ vector; % fills the training set matrix.

end

% for class B images (59 images) where the images saved in the work space in the form of
'LB_'i' .jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LB_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 1st level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
image_vector =Cl(:);% converts the matrix to column vector.
training_set(:,i+59) = image_vector;% fills the training set matrix.
end

% for class C images (59 images) where the images saved in the work space in the form of
'LC_'i' .jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LC_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the 1st level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
image_vector= Cl(:);% converts the matrix to column vector.
training_set(:,i+59) = ünage_vector; % fills the training set matrix.
end @l

..
•

IV

Training set Matrix (for four levels WA VELET decomposition)

o/o for class A images (59 images) where the images saved in the work space in the form of
'LA _'i' .jpg' where I is the image number.
for i=l: 1 :59
image_ RGB = imread(['LA _' ,num2str(i),' .jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
image_ vector = D 1 (:); o/o converts the matrix to column vector.
training_ set(:,i) = image_ vector; o/o fills the training set matrix.
end

o/o for class B images (59 images) where the images saved in the work space in the form of
'LB_'i'.jpg' where I is the image number.
for i=l:1:59
image_ RGB = imread(['LB _' ,num2str(i),' .jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
image_ vector= Dl(:); o/o converts the matrix to column vector.
training_set(:,i+59) = image_vector; o/o fills the training set matrix.
end

o/o for class C images (59 images) where the images saved in the work space in the form of
'LC_'i'.jpg' where I is the image number.
for i=l:1:59
image_ RGB = imread(['LC _' ,num2str(i),' .jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the l" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4;_); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
image_ vector= Dl(:); o/o converts the matrix to column vector.
training_set(:,i+59) = image_vector; % fills the training set matrix.
end

•

V

Training set Matrix (for five levels WA VELET decomposition)

% for class A images (59 images) where the images saved in the work space in the form of
'LA_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2°d level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
[El E2 E3 E4]=dwt2(Dl,'db4'); %computes the 5th level wavelet decomposition
image_vector =El(:);% converts the matrix to column vector.
training_ set(:,i) = image , vector; % fills the training set matrix.
end

% for class B images (59 images) where the images saved in the work space in the form of
'LB _'i' .jpg' where I is the image number.
for i=l: 1 :59
image_RGB = imread(['LB_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image_gray,'db4'); %computes the I" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
[El E2 E3 E4]=dwt2(D1,'db4'); %computes the 5th level wavelet decomposition
image_ vector= El(:);% converts the matrix to column vector.
training_ set(:,i+59) = image_ vector; % fills the training set matrix.

end

% for class C images (59 images) where the images saved in the work space in the form of
'LC_'i'.jpg' where I is the image number.
for i=l:1:59
image_RGB = imread(['LC_',num2str(i),'.jpg']); %converts the image to 3D-matrix.
image_gray = image_RGB(:,:,l); %converts the 3D-matrix to 2D-matrix.
[Al A2 A3 A4]=dwt2(image;ay,'db4'); %computes the l" level wavelet decomposition
[Bl B2 B3 B4]=dwt2(Al,'db4'); %computes the 2nd level wavelet decomposition
[Cl C2 C3 C4]=dwt2(Bl,'db4'); %computes the 3rd level wavelet decomposition
[Dl D2 D3 D4]=dwt2(Cl,'db4'); %computes the 4th level wavelet decomposition
[El E2 E3 E4]=dwt2(Dl,'db4'); %computes the 5!h level wavelet decomposition
image_ vector= El(:);% converts the matrix to column vector.
training_ set(:,i+59) = image_ vector; % fills the training set matrix.

end

VI

Network initiation for Competition Layer

ranges=(minmax(training_set));
o/ominmaxwill take the maximum value and the minimum value of the (training_set)
matrix rows, and put these values in the (ranges) matrix.

net=newc(Ranges,3);
%Since the number of classes in our design is three, so the number of neurons in the
competitive layer will always be (3) regardless the number of input.

Network initiation for LVQ Layer

ranges=(minmax(training_set));
o/ominmaxwill take the maximum value and the minimum value of the (training_set)
matrix rows, and put these values in the (ranges) matrix.

net= newlvq(minmax(training set),6, [l/3 1/3 1/3),0.001,

'learnlvl');
%Minmax(training_set) Equal to the ranges matrix of the input training set.
%6 Is the number of subclasses
%[1/3 1/3 1/3] The percentage of each class training set.
%0.001 The training rate
o/o'leamlvl' The learning function

Network initiation for LVQ Layer

net.trainparam.epochs=lOOO;
%Defines the maximum number of times the complete data set may be used
for training,

net.trainparam.show=lOO;
%Defines the time between status reports of the training function.

net.trainparam.goal=le-2;
%Defines the maximum error accepted in the training process .

•
net=train(net,trainin_set,targets);
%This command will train the network with the data matrix as its input, and
the target matrix as its output in case od the Competitive network we omit
the targets.

VIII

Target matrix for Feedforward classification

%Class one outputs:
targets(l,1:20)=1;
targets(l,21:60)=0;

%Class two outputs:
targets(2,1:20)=0;
targets(2,21:40)=1;
targets(2,41:60)=0;

%Class three outputs:
targets(3,1:40)=0;
targets(3,41:60)=1;

Target matrix for LVQ classification

targets_classes_indices(l,1:1:20) = 1;
%sets the first 59 elements in the target row vector to one which means the first class.

targets_classes_indices (1,21:1:40) = 2;
%sets the second 59 elements in the target row vector to two which means the second
class.

targets_classes_indices (1,41:1:60) = 3;
%sets the third 59 elements in the target row vector to three which means the third class.

targets_classes_vector = ind2vec(targets_classes indices);
%converts the targets vector from indices form into vector form.

Network initiation for Feedforward

"'ranges=(minmax(training_set));
%minmax will take the maximum value and the minimum value of the (training_set)
matrix rows, and put these values in the (ranges) matrix.

net=newff (ranges, [265216, 3] , { 'tansig', 'purelin'}, 'trainlm') ;
%This command will create the neural network with all the specification mentioned
above in the network description.

VII

Full code for feedforward (for original image)

net=network;
net.numlnputs = 1;
net.numLayers = 2;
net.inputs{ 1} .size= 530432;
for i =1:1:59

image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
image_ vector = image _gray(:);
training_set(:,i+59)= image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LB _',num2str(i),' jpg']);
image_gray = image_RGB(:,:,1);
image_ vector = image _gray(:);
training_ set(:,i+5 9)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
image_ vector = image _gray(:);
training_ set(:,i+59)= image_ vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l,21:60) = O;
%class two outputs
targets(2, 1 :20) = O;
targets(2,21 :40) = 1;
targets(2,41 :60) = O;
%class three outputs
targets(3, 1 :40) = O;
targets(3,41:60) = 1;
ranges= (minmax(training_set));
net= newff(ranges,[265216,3], {'tansig','purelin'} ,'trainlm');
net.trainparam.epochs = 1000; •
net.trainparam.show = 100;
net.trainparam.goal = le-2;
net=train(net,[O 1],[0 1]); •

IX

Full code for feedforward (using one level wavelet decomposition)

net=network;
net.numlnputs = 1;
net.nuınLayers = 2;
net.inputs{ 1} .size= 135148;
for i =1:1:59

image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
image_vector = Al(:);
training_set(:,i+59)= image_ vector

end
for i =1:1:59

image_RGB = imread(['LB_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
image_ vector= Al(:);
training_ set(:,i+59)= image_ vector;

end
fori=l:1:59

image _RGB = imread(['LC _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
image_ vector= Al(:);
training_set(:,i+59)= image_ vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l,21:60) = O;
%class two outputs
targets(2, 1 :20) = O;
targets(2,21 :40) = 1;
targets(2,41 :60) = O;
%class three outputs
targets(3, 1 :40) = O;
targets(3,41:60) = 1;
ranges= (minmax(training_set));
net= newff(ranges,[67800,3],{'tansig','purelin'},'trainlm');
net.trainparam.epochs = 1000
net.trainparam.show = 100
net.trainparam.goal = le-2
pause
net=train(net,training_ set,targets)

•

X

Full code for feedforward (using two level wavelet decomposition)

net=network;
net.numlnputs = 1;
net.nurnLayers = 2;
net.inputs{!} .size= 35037;
for i =1:1:59

image_ RGB = irnread(['LA _' ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(irnage_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
image_vector = Bl(:);
training_set(:,i+59) = image_vector;

end
for i =1:1:59

image_RGB = imread(['LB_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(irnage_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
image_vector= Bl(:);
training_ set(:,i+59)= image_vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(irnage_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
image_vector = B 1 (:);
training_ set(:,i+59)= image_vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l,21:60) = O;
%class two outputs
targets(2, 1 :20) = O;
targets(2,21 :40) = 1;
targets(2,41 :60) = O;
%class three outputs
targets(3, 1 :40) = O;
targets(3,41:60)= l;

• , ranges= (minmax(training_set));
net = newff(ranges,[17710,3],{'tansig','purelin'} ,'trainlm');
net.trainparam.epochs = 1000
net.trainparam.show = 100
net.trainparam.goal = 1 e-2
pause
net=train(net,training_set,targets)

•

XI

Full code for feedforward (using three level wavelet decomposition)

net=network;
net.numlnputs = 1;
net.numLayers = 2;
net.inputs { 1} .size = 9440;
for i =1:1:59

image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
image_ vector= Cl(:);
training_ set(:,i) = image_ vector;

end
for i =1:1:59

image _RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
image_ vector= Cl(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
image_ vector= Cl(:);
training_set(:,i+59)= image_ vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l,21:60) = O;
%class two outputs
targets(2,l:20) = O;
targets(2,21 :40) = 1;
targets(2,41 :60) = O;
%class three outputs
targ"ets(3, 1 :40) = O;
targets(3,41:60) = 1;
ranges= (minmax(training_set));
net= newff(ranges,[4820,3], {'tansig','purelin'} ,'trainlm');
net.trainparam.epochs = 1000
net.trainparam.show = 100
net.trainparam.goal = le-2
pause
net=train(net,training_ set, targets)

•

XII

~

Full code for feedforward (using four level wavelet decomposition)

net=network;
net.numlnputs = 1;
net.numLayers = 2;
net.inputs{ 1} .size= 2666;
for i =1:1:59

image _RGB = imread(['LA _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');
image_ vector= Dl(:);
training_set(:,i+59) = image_vector;

end
for i =1:1:59

image_RGB = imread(['LB.: ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');
image_vector = D 1 (:);
training_ set(:,i+59)= image_vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[B1 B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(B1,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');
image_vector = Dl(:);
training_ set(:,i+59)= image_vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l,21 :60) = O;
%class two outputs
targets(2, 1 :20) = O;
targets(2,21 :40) = 1;
targets(2,41 :60) = O;
%class three outputs
targets(3, 1 :40) = O;
targets(3,41:60) = 1;
ranges= (minmax(training_set));
net= newff(ranges,[1440c,3], {'tansig','purelin'},'trainlm');
net.trainparam.epochs = 1000
net.trainparam.show = 100

•

XIII

net.trainparam.goal = le-2
net=train(net,training_ set,targets)

Full code for feedforward network (using five level wavelet decomposition)

net=network;
net.numlnputs = 1;
net.numLayers = 2;
net.inputs{ 1} .size= 2666;
for i =1:1:59

image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');
[El E2 E3 E4]= dwt2(D1,'db4');
image_ vector= El(:);
training_set(:,i+59) =image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');
[El E2 E3 E4]= dwt2(D1,'db4');
image_vector = El(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LC _' ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]= dwt2(image_gray,'db4');
[Bl B2 B3 B4]= dwt2(Al,'db4');
[Cl C2 C3 C4]= dwt2(Bl,'db4');
[Dl D2 D3 D4]= dwt2(Cl,'db4');_
[El E2 E3 E4]= dwt2(D1,'db4');
image_ vector= El(:);
training_set(:,i+59)= image_ vector;

end
%class one outputs
targets(l,1:20) = 1;
targets(l ,21 :60) = O;
%class two outputs
targets(2, 1 :20) = O;
targets(2,21 :40) = 1;
targets(2,41:60) = O;
%class three outputs

•

XIV

targets(3, 1 :40) = O;
targets(3,41 :60) = 1;
ranges= (minmax(training_set));
net= newff(ranges,[l 440c,3], {'tansig','purelin'} ,'trainlm');
net.train param.epochs = 1000
net.trainparam.show = 100
net.trainparam.goal = le-2
pause
net=train(net, training_ set, targets)

Full Code using the competitive network (for original image)

for i =1:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
image_vector = image_gray(:);
training_ set(:,i)= image_ vector;

end
for i =1:1:59

image _RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
image_ vector = image _gray(:);
training_set(:,i+59)= image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LC _' ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
image_ vector= image_gray(:);
training_set(:,i+59)= image_ vector;

end
ranges=[O 1];
net=newc(ranges,3);
net.trainparam.epochs= 10000;
net=train(net, training_ set);

Full Code using the competitive nesworkıusing one level wavelet decomposition)

for i =1:1:59
image __RGB = imread(['LA_',num2str(i),'.jpg']);
image gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
image_ vector= Al(:);
training_ set(:;i+5 9)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LB_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');

•

xv

image_ vector = A 1 (:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
image_ vector= Al(:);
training_ set(:,i+59)= image_ vector;

end
ranges=(minmax(training_ set));
net=newc(ranges,3);
net.trainparam.epochs=l 0000;
net=train(net, training_ set);

Full Code using the competitive network (using two level wavelet decomposition)

for i =1:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
image_ vector= Bl(:);
training_ set(:,i+59)= image_ vector;

end
fori=l:1:59

image_RGB = imread(['LB_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
image_ vector= Bl(:);
training_ set(:,i+5 9)= image_ vector;

end
for i =I :1 :5

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
image_ vector = B 1 (:);
training_ set(:,i+59)= image_ vector;

end
ranges=(minmax(training_ set));
net=newc(ranges,3);
net. trainparam.epochs= 10000;
net=train(net, training_ set);

•

XVI

Full Code using the competitive network(using three level wavelet decomposition)

for i =1:1:59
image _RGB = imread(['LA _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
image_ vector= Cl(:);
training_ set(:,i+5 9)= image_ vector;

end
fori=l:1:59

image_ RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
image_ vector= Cl(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LC _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
image_ vector= Cl(:);
training_ set(:,i+59)= image_ vector;

end
ranges=(minmax(training_set));
net=newc(ranges,3);
net.trainparam.epochs= 10000;
net=train(net,training_set);

Full Code using the competitive network (using four level wavelet decomposition)

for i =1 :1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image_ vector= Dl(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LB_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
(Al A2 A3 A4]=dwt2(image_gray,'db4');

•

XVII

[Bl B2 B3 B.4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image_ vector = D 1 (:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image_ vector = D 1 (:);
training_ set(:,i+59)= image_ vector;

end
ranges=(minmax(training_ set));
net=newc(ranges,3);
net.trainpararn.epochs= 10000;
net=train(net,training_set);

Full Code using the competitive network (using five level wavelet decomposition)

for i =1:1:59
image_RGB = irnread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(Dl,'db4');
image_ vector= El(:);
training_ set(:,i+59)= image_ vector;

end
fori=l:1:59

image _RGB = imread(['LB _' ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(irnage_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');

• [Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(Dl,'db4');
image_ vector= El(:);
training_ set(:,i+59)= image_ vector;

end "
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');

•

XVIII

[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(D1,'db4');
image_vector = El(:);
training_ set(:,i+59)= image_ vector;

end
ranges=(minmax(training_set));
net=newc(ranges,3);
net.trainparam.epochs= 10000;
net=train(net, training_ set);

Full code using LVQ (for original image)

for i =1:1:59
image _RGB = imread(['LA _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
image_ vector= image_gray(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image _RGB = imread(['LB _' ,num2str(i),' .j pg']);
image_gray = image_RGB(:,:,1);
image_vector = image_gray(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_ RGB = imread(['LC _' ,num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
image_ vector = image _gray(:);
training_ set(:,i+59)= image_ vector;

end
targets_classes_indices(l,1:1:20) = 1;
targets_classes_indices(l,21:1:40) = 2;
targets_ classes _indices(l,41: 1 :60) = 3;
targets_ classes_ vector = ind2vec(targets_ classes_ indices);
targets=full(targets _classes_ vector);
ranges=[530432* 118];
net= newlvq(minmax(ranges),6,[1/3 1/3 1/3],0.001,'leamlvl');
net.trainparam.goal = 0.1
net.trainparam.epochs = 1000;
net = train(net,training_ set,targets classes_ vector)

•

Full code using LVQ (using one level wavelet decomposition)

for i =1:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
image_vector= Al(:);

XIX

training_ set(:,i+59)= image_ vector;
end
for i =1:1:59 .

image _RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
image , vector= Al(:);
training_ set(:,i+59)= image_ vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
image_ vector= Al(:);
training , set(:,i+59)= image_ vector;

end

targets_ classes_ indices(1, 1: 1 :20)= 1;
targets_classes_indices(l,21: 1 :40)=2;
targets_ classes_ indices(1,41: 1 :60)=3;
targets=full(targets_ classes _indices);
pause
targets_ classes , vector = ind2vec(targets_ classes , indices);
net=newlvq(minmax(training_ set),6,[1/3 1/3 1/3],0.001,'learnlvl ');
net.trainparam.goal = 0.1;
net.trainparam.epochs = 1000;
pause
net = train(net,training_ set,targets_classes_indices)

Full code using LVQ (using two level wavelet decomposition)

for i=1:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
imagegray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
image_vector= Bl(:);
training_ set(:,i+59)= image_vector;

end
for i =1:1:59

image~RGB = imread(['LB_',num2str(i),' .jpg']);
imagegray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[B! B2 B3 B4]=dwt2(Al,'db4');
image vector = Bl(:);
training_set(:,i+59)~ image_vector;

end
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);

xx

[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
image_ vector = B 1 (:);
training_ set(:,i+59)= image_ vector;

end
targets_ classes_ indices(l, 1: 1 :20)= 1;
targets_ classes _indices(l,21: 1 :40)=2;
targets_ classes _indices(l,41: 1 :60)=3;
targets=full(targets _classes _indices);
targets_ classes_ vector = ind2vec(targets _classes_ indices);
net=newlvq(minmax(training_set),6,[1/3 1/3 l/3],0.001,'leamlvl ');
net.trainparam.goal = O.I;
net.trainparam.epochs = 1000;
net = train(net,training_ set,targets _classes_ indices)

Full code using LVQ (using three level wavelet decomposition)

for i =1:1:59
image_ RGB = imread(['LA_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
rcıc; C3 C4]=dwt2(Bl,'db4');
image_vector= Cl(:);
training_set(:,i+59)= image_vector;

end'
for i=1:1:59

image_RGB = imread(['LB_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
image_vector = C 1 (:);
training_set(:,i+59)= image_vector;

end
for i =1:1:59

"image_RGB = imread(['LC_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
image_vector= Cl(:);
training_ set(:,i+59)= image_vector;

end

targets_::classes_indices(l, 1: 1 :20)=1;
targets_classes_indices(1,21 : 1 :40)=2;
targets_classes_indices(l,41: 1 :60)=3;
targets=full(targets _classes_ indices);
targets_classes_vector = ind2vec(targets_classes_indices);

XXI

[net=newlvq(minmax(training_set),6,[1/3 1/3 1/3],0.001,'leamlvl');
I net.trainparam.goal = O.I;
· net.trainparam.epochs = 1000;
net = train(net,training_ set,targets_classes_:_indices)

Full code using LVQ (using four level wavelet decomposition)

fori=l:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image vector = Dl(:);
training_ set(:,i+59)= image_vector;

end
for i =I: I: 59

image, RGB = imread(['LB_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl'C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image vector = Dl(:);
training, set(:,i+59)= image_vector;

end'
for i =1:1:59

image_RGB = imread(['LC_',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
image vector = Dl(:);
training, set(:,i+59)= image_vector;

end "
targets_classes_indices(l, I: 1 :20)=1;
targets_classes, indices(l,21: I :40)=2;
targets_classes_indices(l,41 :1 :60)=3;
largets=full(targets_ classes, indices);
targets_ classes_vector = ind2vec(targets_classes_ indices);
net=newlvq(minmax(training_ set),6,[1/3 1/3 1/3],0.001,'leamlvl ');
net.trainparam.goal = 0.1;
net.trainparam.epochs = 1000;
net = train(net,training_ set,targets_classes_ indices)

•

XXII

Full code using LVQ (using five level wavelet decomposition)

for i =1:1:59
image_RGB = imread(['LA_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(D1,'db4');
image_ vector= El(:);
training_set(:,i+59)= image_ vector;

end
fori=l:1:59

image _RGB = imread(['LB _',num2str(i),' .jpg']);
image_gray = image_RGB(:,:,l);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(D1,'db4');
image_ vector= El(:);
training_ set(:,i+59)= image_ vector;

end
fori=l:1:59

image_RGB = imread(['LC_',num2str(i),'.jpg']);
image_gray = image_RGB(:,:,1);
[Al A2 A3 A4]=dwt2(image_gray,'db4');
[Bl B2 B3 B4]=dwt2(Al,'db4');
[Cl C2 C3 C4]=dwt2(Bl,'db4');
[Dl D2 D3 D4]=dwt2(Cl,'db4');
[El E2 E3 E4]=dwt2(Dl,'db4');
image_vector = El(:);
training_set(:,i+59)= image_ vector;

end
targets_ classes _indices(1, 1: 1 :20)= 1;
targets_ classes _indices(l ,21: 1 :40)=2;
targets_ classes _indices(1,41: 1 :60)=3;
targets=full(targets_ classes_ indices);
targets_ classes_ vector = ind2vec(targets _classes _indices); •
İıet=newlvq(minmax(training_set),6,[1/3 1/3 l/3],0.001,'leamlvl');
net.trainparam.goal = 0.1;
net.trainparam.epochs = 1000;
net= train(net,training_set,targets classes jndices)

XXIII

REFERENCES

[1] http://www.dacs.dtic.mil/techs/neural/neural2.html

[2] http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.shtml

[31 http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/newc .html

[4] http://www.mathworks.com/ access/helpdesk/help/toolbox/nnet/newff .html

[5] http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/newl vg .html

R

ABSTRACT

Since the beginning, humankind has sought to use elements in the surrounding environment

to make life easier and the tasks at hand more efficient. In keeping with this. tradition,

people have toyed with and explored the concept of using machines to solve problems since

ancient times, Only in this 20th century have significant advances occurred, making the

possibility of an actual manifestation of artificial intelligence more and more a reality.

This project explores the theoretical and particular underpinning of Neural Networks and

its applications, the reader of this project will come away with an appreciation for the basic

concepts of Neural Network., and with an idea about Image classification using Artificial
Neural Networks field and the use of its applications.

This projects includes three kinds of network are using for image classification, also this

project is supplied with MATLAB code which help in implementing and training the neural

network for image classification and the reader of this project will learn about the wavelet

decomposition which help in compression or reducing the image size without losing the
image data.

11

Table of Contents

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

INTROUDUCTION

CHAPTER 1: ARTIFICIAL NEURAL NETWORKS

11

ııı

1

.. ı. 1 Overview 5

1.2 Introduction to Artificial Neural Network 5

1.2.1 Artificial Neural Networks 6

1 .2.2 Analogy of the Brain 6

1 .2.3 Artificial Neurons and how they work 7

1.3 Components of Artificial Neural Network. 9

1.3.1 Neurons 9

1.3.2 Layers 9

1.3.3 Connections (weights) 10

1.3 .4 Transfer Function 10

1 .4 Artificial Neural Network: Operation Mode and

Training Mode 11

1 .4. 1 Operation Mode 11

1.4.2 Training Mode 13

1.4.2.1 Supervised 'Fraining. 13

1.4.2.2 Unsupervised Training (Adaptive Training) 14

1.5 Artificial Neural Networks versus Traditional Computing • 16

1.6 The Artificial Neural Network Applications 16

1.6. 1 Banking and Financial 17

1.6.2 Language Processing 17

1.6.3 Character Recognition 17

1.6.4 Image (data) Compression 18

ııı

_. •.•.•..--------~~
1.7

1.6.5 Pattern Recognition

Neural networks structure
1.7.1 FeedForward-Back Propagation Neural Network

summery

18

19

19

22
1.8

CHAPTER 2: CLASSIFICATION METHOD

2.1 Overview
23

2.2 Statistical Methods
23

_,.
2.2.1 Maximum likelihood Classification

23

2.2.2 Minimum distance Classification
24

2.3 Classification using Artificial Neural Network
24

2.3.1 Competitive Neural Network
24

2;3.1.1 Basic Operation of Competitive Layer
25

2.3.1.2 Source of error in the competitive layer network
26

2.3.1.3 Bias Leaming Rule (leamcon)
26

2.3.2 Leaming Vector Quantization(LVQ)
27

2.3.2.1 Architecture of Leaming Vector Quantization Network
27

2.3.2.2 Training ofLVQ Networks
29

2.3.2.3 Drawbacks ofLVQNetworks
30

2.4 Summary
30

CHAPTER 3: INTRODUCTION TO WAVELET ANALYSIS

3.1 Overview
32

3.2 The need ofwavelet transformation
32

•

3.3 The Drawback ofFourier Transform
33

3.4 The solution of the limitation of the Fourier Transform
33

3.5 The appearance of Wavelet analysis
34

3.6 Wavelet Computing
35

3.6.1 The Continuous Wavelet Transform and the wavelet series 36

iv

3.6.2 The Discrete Wavelet Transform
37

3.6.3 DWT and Filter Banks
38

3.7 Wavelet Families
40

3.8 Summary
41

CHAPTER 4: DESIGN OBJECTIVE AND PREPROCESSING

4.1

4.2

4.3

4.4

4.5

Overview
42

43

47

48

48

49

55

Image characteristics
The MTLAB Wavelet Toolbox usage

4.3.1 The decomposition process

4.3.2 The reconstruction Process
Images preprocessing; the use ofWAVELET transformer

Summary

CHAPTER 5: FEEDFORWARD DESIGN

5.1 Overview
56

5.2 The FeedForward Construction
56

5.3 FeedForward ANN Design using the original size 59

5.4 The use of Wavelet transformation
64

5.5 The end results ofFeedForward design 66

5.6 Summary
67

CHAPTER 6: CLASSIFICATION USING COMPETITIVE LAYER ANN

6.1 Overview
68

6.2 Construction of Competitive Layer ANN
68

6.3 Network design for the original size images 69

'6.4 Network design for reduced images size 71

6.4.1 Network design using third wavelet decomposition 72

V

6.4.2 Network design using fourth level wavelet decomposition 77

6.4.3 Network design using fifth level wavelet decomposition 82

6.5 Summary 87

Chapter 7: CLASSIFICATION USING LEARNING VECTOR

QUANTIZATION

7.1 Overview 88
7.2 Construction of LVQ ANN 88
7.3 Network design for the original size images 89
7.4 LVQ Network design for reduced images size (one wavelet level) 91

7.5 LVQ Network design for reduced images size (two levels wavelet) 94
7.6 LVQ Network design for reduced images size (three levels wavelet) 94
7.7 Network design for reduced images size (four levels wavelet) 99
7.8 Network design for reduced images size (five levels wavelet) 101
7.9 Summary 102

CONCLUSION

LIST OF FIGURES

LIST OF TABLES

APPENDIX

REFERENCES

103

105

106

I

R

Vl

