o

3 b
g1

N i

NEAR EAST UNIVERSITY

Faculty of Englneering

Department .of Computer Engineering

JAVA<and ORACLE DATABASE
ADMINISTRA TION

Graduation Project
GOM-400

Studenti Hamza -OZKARSLI (971470)

Supervisor: Halil ADAHAN

Nicosia~2004

Table of Contents

Acknowledgement
Abstract
Introduetion
Chapter 1
1.1 RELATIONAL DATABASE MANAGEMENT
1.2 RDBMS COMPONENTS
12-1 The RDBMS Kernel
J~2.2The Data Dienonary
1.30RACLE DATABASE
1.4 ORACLKFILES
1.4.1 Database Files
1.1.2 Control Fil~s
1.4.3 Redo Logs
1.4.3.1 Online Redo Logs
1.4.32 ()81 1~~(trfi"e~>~~d0 Logs
1.J J 'Qt~ersupp?rtli,liles
1.5 SYSTEM And USER PROCESSES
1.5.1 Mandatory System Proeesses
1.5.1.1 DB'VVR
1.5.1.2 L(;,N\IR
1.5.1.3 SMON
1.5.1.4 PMON
1.5.2 Optional System Processes
1.5.2.1 ARCH
1.5.2.2-CKPT
1.5.2.3 RECO
1.5.24 LCK
1.5.3 User Processe~
1.5.3d Single Task

1.5.3.2 Dedicated Server Processes

- 3

© © © ©® 0 0w N N N N OO g o WD

—+
o S

=

Il
11

1.5.3.~ The multi- Threaded Server
/
1.6 ORACLE MEMORY

1.6.1 System Global Area
1.6.1.1 Databese Buffer Cache
1.6.1.2Redo Cache
1.6.h:1Shared Pool Area
1.6.1.4 SQL Area

1.6.1.5 Dietionary Cache

1.6.2 Process Global Area

Chapter If
2.1 ORACLE ACCESS<With JDB-C

z.1.1 DriverTypes

2.1.1.1 Tfiin Driver

2.1.1.2 OC18 Driver

2.1.2 The DriverManager Class
2.1.3 The J}riv~~Class

2.1.4 The -Coun~ctionxClass
2.1.511he:Statemei:1tiClass

2.1.6 The ResultSet Class

2.2 SQLJ

2.2.1 Oracle SQLJ Translator

2.2.2 Oraele SQLJ Runtime

2.2.3 SQLIJ Profiles

2.2.4.0racle Extension to the SQLJ Standard

2.2.~Bask Translatien-Steps and Runtime Processing

2~2.5.1Tra:nslation. Steps

2.2.5.2)Runtime Processing

2.2.6 s,:EJ decteratlons

2.2.7 JavaHost Expressions, Context Expression,
and ResultExpressions

2.2.7.1 Host Expressicu

2.2.7.2 Context Expression

2.2.7.3 Result Expression

12
12
13
13
13
14
14

15
15
15
16
16
16
17
17
18
18
18
19
19
20
10
21
21
22
22
23

23
24
24

2.2.8 Stored Producure and Funetien Calls 24

2.2.9 Multithreding in SQLJ 24
2.2.10 SQLJ and JDBC Interoprobablhty 25
2.2.10.1 Conv'erting From Connection Context to ,JDBC Connection 26
2.2.10.2 Convefting from JDBC Connections to Connection Contexts 26
2.2.10.3 .Shared Connections 26
2.2.11.SQLJ in the Server 27
2.2.11.1 Creating SQLJ Code for Use within the Server 27
2.2.11.2 Database Conneetions wfthtn t~e Server 28
2.2.11.3 Coding Issues within the Server 18
2.2.11.4 Name Resehition in the Server 28
2.2.11.5 SQL Names V'"ersusJava Names 29
2.2.11.6 TranslatingSQLJ Source ona Client and Loading 29
Components
2.2.11.7 Error Output from the Server Emmedded Translator 30
2.3 INTRODUCTION to NET8 30
2.3.1 NetworkTranspareney 30
2.3.2 Pr9tocollnd~p¢n«Jence 31
2.3.3 1Mediil'f9.~6logyln.depep.dence 31
2.3.4 Heterogeneous Networking 31
2.3.5 Large Scale Scalability 31
2.4 NET8 FEATURES 31
2.4.1 Scability Features 31
2.4.2 Menegeability Features 32
2.4.2.1 Host Naming 32
2.4.2.2 Oracle Net8 Assistant 31
2.1,.3 :Multiprotocol Support Using Oracle Connectfon Manager 33
2.4.4 Oracle Trace Assistaut 33
2.4.5 Native Naming Adapters 33
2.5 NET8 OPERA TION 33
2.5.1 Conneetmg to Servers 34
2.5.2 Establishing Connectien with the Network Listener 34
2.5.2.1 Bequeathed Sessions to Dedieated Server Processes 35

2.5.2.2 Redireeted Sessions -to Existing Server Processes 35

2.5.2.3 Refused Sessions
2.5.3 Disconnectmg from Servers
2.5.3.1 User-Initiated Diseonneet
2.5.3.2Additional Cennection Request
2.5.3.3 Abnormal Conneetien Terminanon
2.5.3.4'Timer Initiated Disconnect or Dead Connection Detection
2.~.4 Data Operation
26.5 Exeeptlen Operation
2.5.6 Net8 and the Transparent Network Substrate
~~Mm

3.1 DISTRIBUTED PROCESSING
3.1.1 Stack Communfoation
3.1.2 StackCoinmul].icationsin an Oraele Netwerking

Environment

3.1.2.1 Client-Server Interactkin
3.1.1 Server -fo Server Interaetion

3.2 DISTRIBUTED COMPUTING USING JAVA
3.2.1 Distributed Ol>jectApplications
3.2.2RMlIntenaces and Cfasses
3.2.2.1 The Java.Rmi.Remote Interface
3.2.3 Parameter passing in Remote Method Invoeatlon
3.2.3.1 Passing Non-Remote Objects
3.2.3.2.Passing remote objects
3.2.3 Referential Integrity
3.2.3.4 Class Annotatlon
3.2.3.5 Parameter Transmission
3.2.4Locating Remote Objects
3.2.5 Sfiibs and Skeletons

37
37
37
38
38
38
38
39
39

40
40
42

42
45
46
16
48
48
19
19
19
19
19
50
51
51

3.2.6 Thread Usage in Remote Method Invocations

3.2.7 Garbage Collection of Remote Objects

3.2.8 RMI Through)firewalls Via Proxies

3.2.8.1 How an RMI Cali is Packaged within the HTTP Protoeol
3.2.8.2 The Default Soeket Factory

3.2.8.3 Configuring the Client

3.2.8.4 Cenflgurmg the Server

3.2.8.5 Performance Issues and Limitations

Summeily and Conchision

References

52'
52
54
54
55

55
56

56

57
58

Acknowledgements

First 1 want to thank Halil adahan to be my advisor. Under his guidence, | succes:fiJ.Uy
overeome many difliculties and leam a. lot about student registration system with oracle
database, In each discussion, he explained my questions patiently, and 1 felt my quick
progress from his advices. He always helps me a lot either in my study or my life. I asked him

many questions in my subject and he always answered my questions quickly and in detail.

Specialihanks to Umit Ilhan for his practical adviees, And thanks 10 Faeulty of Engineering

for having such a good computational and electronical environment.

I also want to thank to my friends in.Near East University. Special thanks to Hakan for
helping computer side of my p;roject,Murat, Mehmet and Ali.

Finally, I want to thank my family, especially my parents. Without their endless support and
love for me, I would never achieve my current position. I wish my mother and father lives

happily always.

Abstraet

Moderli applicati6iiS iti today's Cortiputef Networks irtclude the use of rtiulilihedia
applications such as Java and Oracle. The extensive use of Java makes it possible to bring
various applications inte progress to facilitate applioation development and structured
prograrnming,Java technology not only applies with modern Computer Network standards
but also to applications regarding seeurity systems such as banking with management with
o:racie systvn. Oracie 011 the other hand btligs secure, refiible, and adviinced darabase

management systemto be used interactively with Java for use with industrial projects.

List of Figures

Figure 1.2.1.1: Oracle & Kemel.
Figure 1.2.2.1: Structure of Oracle
Figure 2.5.2. 1: Network Listener in a TypicalNet8 Connection.

Figure 2.5.2.2.1: Redirected Connectionto .a Prespawned Dedicated
Server process.

Figure 2.5.2.2.2: Rediracted Connectionto a Dispatcher Server Process.
Figure 3.1.1.1: OSI Coromunication,Stack.

Figure 3.1.2.1.1: Typical Communications.Stack in an Oracle Environment.
Figure 3.2.1.1: TheDistributed and Nondistributed Models Contrasted,

Pigure 3.2.2.1: RMI Interfaces and Classes.

page

34

35

36

41

42

47

48

CHAPTER I: Introduction

goal of'this project is to mak:e the process of student registration and maintenance in the
wrhrReesty as easy as possible for the staff. Student registration is a very time consuming
process, but by using a fle:xible software, we can reduce this headache, The life of the staff
be made easy by the following features:
1. New student can be registered.
Student details can be viewed.
Student <lata can be deleted.
Student data can be changed.

The system is very easy to understand.

S vk e

The system s very secure.

The program is divided into two parts: The database part and the application part. FQr the
database, to meet the security and flexibilityissues, [have chosen Oracle database which is

one ofthe maintopic ofmy overall project as well.

For the application part, java is my choice due to its object-oriented fiinctionalityand security
features.In the database, there iare tables which hold the student record. The tables are related

to each other using one-to-one and one-to-many relationshipsto the <lata integrity issues.

In the application, I have used forms and general Graphical User Interface components to give
the functionality and look to the environment. This project is for student database where

students <lata can be added, deleted, viewed and altered aecurately with security.

1.1 RELATIONAL DATABASE MANAGEMENT SYSTEM

database is an integrated collection of related data. Given a speci:fic data item, the structure
of a database facilitates the access to dara related to it. A relational database is a type of
database based in the relational model. A relational database management systern is the
software that manages a relational database. These systems come in several varieties, ranging

from single-user desktop systems to full-featured, global, enterprise-wide systems, such as

OracleS.

1.2RDBMS COMPONENTS
Two important pieces of an RDBMS architecture are' the kemel, which is the software, and

the data dictionary, which consists of.the systeirilevel data structures used by the kemel to

manage the database.

1.2.1 The RDBMS Kernel

You might think of an RDBMS as an eperating system or set of subsystems, designed
speci:fically for controlling data access, its primary functions are storing, retrieving, and
securing <lata. Like an operating system, Oracle8i manages and controls access to a given set

ofresources for concurrent database users.

The subsystems of an RDBMS closely resemble those ofa host operating system and tightly
mtegrate with the host's services for machine-levelaccess to resources such as memory, CPU,
',devices, and file structures. An RDBMS such as Oraclesi maintains its own list of authorized
asers and their associated privileges, manages memory caches and paging, controls locking
for corlcurrent resource usage, dispatches and schedules user requests, and manages space
usage within its tablespace structures. Figure 1.1 illustrates the primary subsystems of the

Draclesi kernel that manage the database.

Security

Langiage
Processing

Menory
- Management

Process
Control

Lock

Storage
Marpensent

- Management

Trasaction ¢ Logging and
Control A Becovery

" Disteibution
Ciomired

Figurel.2.1.1: Oracle8iKemel

.2.2 The Data Diction~ry

A fundamental difference lL,etie~p. gn'RDBMS and other. database arid file<systemsis in the
Way that they access <lata. A .RDBMS enables you {0 reference physical <lata in a more
abytract, logical fashion, providing ease and :flexibility in developing application code.
begrams using an RDBMS access <lata through a database engine, creatin.ts independence
from the actual <lata source and insulating applications :from the details-of the underlying
gyﬁical <lata structures. Rather than accessing a customer number as bytes | through 10 of

€ustomer record, an application simplyrefers to the attribute Customer Number.

RDBMS takes care of where the field is stored iIl the database. Consider the amount of

08tfilriming modifications that you must rnake if you change a record structure in a file

This <lata independence is possible because of the RDBMS'sj <lata dictionary. The <lata
"dicytim stores meta-dara for all the obiects that reside in the database. Oracle's <lata
Olctionary is a set of tables and database objects that is stored in a special area ofthe database
anclinaintained exclusivelyby the Oracle kemel. As shown in Figure i .2, requests to read or
_update the database:MC processed by the Oracle kemel using the information in the <lata
,d"ictionary. The information in the <lata dictionary validates the existence of the objects,

provides access to them, and maps the actual physical storage location.

Aceess to aU da.tain the. d:atatbase is mana.gedbydie
kemell.; appHcatki,ns never ,vrit:e directl!y}t1,th-databaae,

Apphication

X
R

i 1}
AL

w

It

Daata Dichionary Drata Repository

Omele
Kernel

RDBMS

Figurell2.2.1: Stnicture of'Oracle

t only does the RDSMS take care of locating data, it also determines an optirnal access
path to store or retrieve the <lata. Oracle8 uses sophisticated algorithms that enable you to
retrieve information either for the best response for the first set ot tows, or for total

oufhjoutofall rows-to be rettieved.

1.3 ORACLE DATABASE

Physically, an Oracle database is nothing more than a set of files somewhere on disk. The
physical location Ofthese files is irrelevant to the function ofthe database. The files are binary
files that we can only access using the Oracle kernel software. Querying data in the database

files is typicallydone with one ofthe Oracle tools using the Structured Query Language.

Logically, the database is divided into a set of Oracle user accounts, each of which is
_identiiied by a username and password unique to thatdatabase. Tables and other objects are
0Wnedby one of these Oracle users, and access to thedata is only available by logging in to
| the database using an Oracle username and pa.sswofd. Without a valid username and password
for the,,data~ase, you are defil~dacCesstd ariytliiir.g On the databa.se. The Oracle username and
pasS)VOLd s different frorrithe Operating system username a:rid |.)8.SSWOrd.

addition ter physical files, Oracle processes and memory struetures must also be present

before we can use the database.

1.4 ORACLE FILES

In this Pc\ll, Tdiscuss th~di:fferenttypes Of filesthatOracle uses Oitthe p.arddisk drive of any
chine.

4.1 Database Files

their sizes, the tables and other 'objects for all fhe' useiaccO\.1lltScan obviously go in one

abase file, but that's not an ideal situation because it does not make the database structure

re created.

4.2 Contyol Files

Any darmiase must have at least one control file, although we typically have more than one to
guard against loss. The control file records the name of the database, the date and time it WtJS
ereatel] the location of the database and redo logs, -and the synchronization information to
ensurevthat all three sets of files are always in step. Every time we add a new database or redo

log fileto the database, the information is recorded in the control files.

1.4.3 Redo Logs

Any database must have at least two redo logs. These are the journals for the database, the
redo logs record all changes to the user objectsor system objects. If any type of failure occurs,
Such a~ loss of one or more databa,s~ files, we.can U,SyJhe changes recorded in the redo logs to
bring the database to a corsistyntst~ty without losing any c:01111llitted transactions. in the case
of pon-data loss faily,re, such asa machine crash, Oracle can apply the information in the redo
logs automatically without intervention from the database administrator, The SMON
background process automatically reapplies the committed changes in the redo logs to the

datahor files.

Like the other files used by. Qracle, .the.redo log files.are fixed in size and never grow

tjynamically from the size at whic.hthey were created.

1.4.3.1 Onfine Rede Logs

The online redo logs are the two or more redo log files that are always in use while the Oracle
instance is up and running. Changes we make are recorded to each of the redo logs in turn.
‘When one is full, the other is written to, when that becomes full, the first is overwritten, and

the cycle contihues.

’i;4,3.2 Offline, Archfved Redo Logs

The offline or archived redo logs are exact copies of the online redo logs that have been filled,
is. optional whether we ask Oracle to create these. Oracle only creates them when the
database is running in ARCHIVELOG mode. If the database is running in ARCHIVELOG
mode, the ARCH background process wakes up and c¢opies the online redo log to the oflline

destinntivi once it becomes fuill.

While this copying is in progress, Oracle uses the other online redo log. If we have a complete
set ofoffline redo logs since the database was last backed up, we have a complete record of

changes that have been made.

We could then use this record to reapply the changes to the backup copy of the database files

ifone or more online database files are lost.

1.4.4 Other Supporting Ftles

When we start an Oracle instance, the instance parameter file determines the sizes and modes
ofthe database. This pffiiameter file is known as the INIT.ORA file. This is an ordinary text
file containing parameters for which we can .override }the default settings. The DBA is
responsible for creating andniodi:fying ;.theLcontents of.thiseparameter file. On some Oracle
platforms, a SG.AP.A17) fiJeis aiso .created, which contains the starting memory address of the

Oracle SGA.

1.5 SYSTEM AND USER PROCESSES
In this part, I discuss some of the Oracle system processes that must be running for the
database to be useableriricluding the optionalprocesses .andithe\processesthctt are created for

users connecting<toe-tHe Oracledatal:fase.

1.5.1 Mandatory System Processes

The four Oracle system processes that must always be up and running for the database to be
useable include DBWR (Database Writer), LGWR (Log Writer), SMON (System Monitor),
and PMON (Process Monitor).

1.5.1.1 DBWR
'the database writer background process writes modified database blocks in the SGA to the
illatabasefiles, It reads only the blocks, that have changed. These blocks are also calied dirty

Ibiocks. The database writer writes out the least recently used blocks first.

These blocks are not necessarily written to the database when the transaction commits, the
only thing that always happens on a commit is that the changes are recorded and written to the
online redo log files. The database blocks will be written out later when there are not enough

buffers :free in the SGA to read in a new bkick.

1.5.1.1 1, (;\1\1

The. log writer process writes the entries in the SGA's redo buffer for one or more.transactions
to .the online redo log files. For example, when a transaction COIllTI\t~, the log writer must
write out the entries in the redo log buffer to the redo log files on disk before the process
receives a message indicating that the commit was successful. lince committed, the changes
are safe on disk even though thc modified database blocks are still in the SGA's database
buffer area waiting to be written out by DBWR. The SMON can always reapply the changes

from the redo logs ifthe memory's most up-to-date copy ofthe database blocks is lost.

'1.5.1.3 SMON

The system monitor process looks after the instance. If two transactions are both waiting for

each other to release locks and neither of them can contintiec known as a deadlock or deadly
embrace, SMON detects tlie situation and ene of the processes receives an error message
indicating thatia deadlock has occurred.

SMON also releases temporary segments that are no longer in gse by the user processes which

eaused them to be created.

During idle periods, SMON.compacts the.freet+space.fragl11lentsinthe database.files, making it
easier and simpler for Oracle to allocate' storage for new database objects or for existing

database objects to grow.

i addition, SMON automatieally performs recovery when the Oracle instance is first started

up, if none of the files have been lost. We won't see a message indicating that instance

Tetovery is occurring, but the instance mighttake longer.to come up.

5~1.4PMON

The process monitor monitors the user processes. If any failure occurs with the user
Bficesses, PMON automatically rolls back the work of the user process since the transaction

Sigtted. It releases any locks taken out and other system resoutces taken up by the failed

PIOcess. PMON also monitors the dispatcher and shared server processes, which are part of

the multi-threaded server setup, and restarts them ifthey have died.

1.5.2 Optional System Proeesses

~As well as the four mandatory system processes, there are a number of optional 'system

processes that we can initiate.

1.5.2.1 ARCil

When the database is running in ARCHIVELOG mode and we've started the Archiver
background process, it makes a copy Of one of the online redo log files to the archive
destination. In this way, we can have a complete history of changes made to the database :files
recorded in the oflline and the online redo logs. There is no point U1 keeping the Archiver

background process running ifthe database is not running in ARCHIVELOG mode.

1.5.2.2 C:KPT

A checkpoint occurs when one of the online redo log files fills, it will be overwritten when
one of'the other online.redo logs fills. Ifthe redo log file is overwritten, the changes recorded
in that file are not available for reapplying in case of system failure. At a checkpoint, the
modi:fieddatabase buffer blocks are written down to the relative safety ofthe database fileson
disk by the database writer background process.

This means that we won'tneed the record of changes in the event of system failure with lost

memory areas. .Aftet. a checkpoilit.0ccurs,the 'redo log can be reused.

At a checkpoint, all the database file headers and redo log file headers are updated to record
the fact that a checkpoint has occurred. The LGWR background process performs the
updating task, which could be signi:ficant if there are a large number of database and redo log
files, The entire database might have .to wait tOI the checkpoint to complete before the redo
logs can.record :furtherdatabase changes. . To reduce the time it takes for LGWR to update the

database and redo log file headers,.we can initiatethe checkpoint process.

A checkpoint can occur at other times, such as when the entries in the redo log files reach a

limit defined by the database administrator.

1.5.2.3 RECO

We use the Recoverer background process when there is a failure in a distributed transaction,

and one or more of the databases involved need to either commit or roll back their changes. If
initiated, the Recoverer attempts to automatically commit or roll back the transaction on the

local database at timed intervals in synchronization with the Recoverer processes on the other

Oracle databases,

There is no point in keeping the Recoverer background process running if we're not using

distributed transactions on the database.

1524 LCK

We use the lock background process-in the parallel servet setup of Oracle where more than
One instance is running a.gainstthe same set of database files. The LCK processes running on
all instances .will' sy1:1ichronizdocking between the instances. If a user eonnects to one instance
and locks a row, the row remains locked for a user attempting to make a change on another

nstance. Other users can always query the rows regardless of how the rows are locked by

Other users.

You can initiate up\to ten LCK backgtound processes to reduce the bottleneck of
SBmchronizing locking, but one is usually more than enough. You should not initiate the LCK

'hackground processes unless you're implementinga parallel server setup of Oracle.

.5.3 User Processes

User processes logically consist of.two halves. The Oracle server code, which translates and
@Xeg\utes SQL statements and reads tp.e database files and memory areas, and the tool-specific
code, which is the executable code for the tool that is used. The server code is the same
B8 jless of the tool that is executing the SQL statement, the same steps are involved. The

SETVEr code is sometimes known as the Oracle kernel code.

an configure the user:processes in Oracle three di:fferent ways, all of which could coexist

same instance. These three configurations are single task, dedioated server, or multi-

hreaded server.

10

1i5~3.1 Single Task
Irthe single-task configuration, the tool-specific code and database server code are both

con:figured into one process running on the machine. Each connection to the database has one

‘user process running on the machine.

1.5.3.2 Dedicated ServJr Processes

In the dedicated senver configuration, the two parts ofa user process are implemented as two
separate processes running on the machine. They communicate with each other using the
machine's interprocess communication mechanis:i;ns. Each connection to the database has two
processes running on the machine. The Oracle kernelsoftware in one process is sometimes

called the shadow process.

This configuration ..is commoll,. for IINI'X platforms because the>operating system cannot
protect the Ota.ele code and memory areas from the application code. it is also common for
client/servenconfigurations where the server code .resides on the server machine and the tool-
specificcode runs on the client machine with communication over a network.

The way the two component parts of one logicaLprocess communicate.is fundamentally the
same as if one process wereitiipleinented Ori the sanie<rnachinegxceptthafthe two halves of
the logical process'i\happentd?residei 011/two\inachines atid comnnmioate over the network

using Net8 rather thanthe interprocess communication mechanismsofthe operating system.

The dedicated server configuration can be wasteful because memory is allocated to the
shadow process and the number of processes that must be serviced on the machine increases,
even when the user is not making any database.reqiiests. The dedicated server will only

process requests :from one associateddientprocess.

1.5.3.3 The Multi-Threaded Server

The multi-threadedsserver conflguration enables one Oracle server process to perform work
- for rnany user processes. . This overcomes the drawbacks ofthe dedicated server configuration.
It: reduces the number .of.process.esrunning and the amount of memory used on the machine
aiid can improve system performance. The multi-threaded server introduces two new types of

system processes that support this part ofthe architecture.

11

Using one of the shared server processes that cornes as part of the rnulti-threaded server
configuration is not appropriate when a user process is making rnany database requests such
as an export backup of the database. For that process, we could use a dedicated server. A

mixture ofboth cenfigurations can coexist.

1.6 ORACLE MEMORY

In this part, I discuss how Oracle uses the rnachine's rnernory. Generally, the greater t~¢ real

mernory available to Oracle, the quicker the systern runs.

146.1 System Global Are~

The systern global area, soin.etimes known asethe shareiieg;Iobal area, is for <lata and control
stryctures in rnemory that (ALl bfl\sijatfld by >i] th,.e Oratlf! lac:kground and user processes
runming on that instance. Each Oracle instance has its own SGA. in fact, the SGA and
background pfocesses ~ wha't defines an instance. The SGA rernory area is allocated when

the instance is started, and it's flushed and deallocated when the instance is shut down.

contents of the SGA are divided into three main areas, the database buffer cache, the
mred pool area, and the red.d cclche. Th&Size oOfeach of these areas>i.s controlled 15y
parameters inthe INiTiORA file; The bi.ggef>y'buCall riiake the SGA and the more of it that
’ fit into the rnachine's real memory as opposed to virtual memory, the quicker your

ce will run,

1.1 Database Buffer Cache
database buffer cache of the SGA holds Oracle blocks that have been read' in from the

base files. When one process reads the blocks for a table into memory, all the processes

that instance can access those blocks;

process needs to access sorne <lata, Oracle checks to see if the block is already in this
. e Oracle block is not in the buffer, it rnust be read from the database files into the
cache The buffet cache rnust have a free block available before the <lata block .can be

om the database files.

12

The Oracle blocks in the databa~e buffer cache in memory are arranged with t~e most recently
used at one end and the least recently used at the other. This list is constantly changing as the
database is used. If <lata must be read from the database files into memory, tl'e blocks at the
least recently used end are written back to the database files first. The DBWR process is the
only process that writes the blocks from the database buffer cache to the database files. The

more database blocks you can hold in real memory, the quicker your instance will run.

1.6.1.2 Redo Ca~he

The online redo log files record all the changes made to user objects and system objects.
Before the changes are written out to the redo logs, Oracle stores them in the redo cache
memory area. For example, the entries I the redo log .cache are written down to the online
redo logs when the cache becomes full or vvhtma triins~c.tion issuies a commit. The entries for

more than one transaction can I> in.clucledJogether in the same disk write to the redo log files.

The LGWR backgrotind process is the only process that writes out entries from this redo

~cache to the online redo log files.

1.6.1.3 Shared Pool Area
The shared poolarea of the SGA has two main components, the SQL area and the dictionary
cache. You .canalt.et:Jhe siz.e oftliese t-w-0 components oniy by changing the size of the entire

shared pool area.

1.6.1A SQL Area

A SQL statement 'sent for execution to the database server must be parsed before it can
execute. The SQL area of the SGA contains the binding information, run-time buffers, parse
tree, and execution plan for all the SQL statements .sent to the database server. Because the
shared pool area is a fixed ,size, you might not see the entire set of statements that have been
executed since the instance first came up, Oracle might have flushed out some statements to

make room for others.

If a user executes a SQL statement, that statement tak.es up memory in the SQL area. If
another user executes exactly the same statement on the same objects, Oracle doesn't need to
<Ppuap the second statement because the parse tremr and execution plan is already in the SQL

area. This part ofthe architecture saves on reparsing overhead.

13

The SQL area is also used to hold the parsed, compiled form of PLISQL blocks, which can

also be shared between user processes on the same instance.

1.6.1.5 Dictionary Cache

The dictionary cache in the shared pool area holds entries retrieved from the Oracle system
tables, otherwise known as the Oracle data dictionary. The data dictionary is a set of tables
located in the database :files, and because Oracle accesses these :files often, it sets aside a

separate area ofmemory to avoid disk 1/0.

The cache itself holds a subset of the data from the data dictionary. It is loaded with an initial
set of entries when the instance is first started and then populated :from the database data
dictionary as :further inforrtiation is requited. The cache lrolds information about all the users,

the tables and other objects, the structure, seourity, storage, and so on.

The data dictionary cache grows to occupy a larger proportion of memdry within the shared

Pool area as needed, but the size ofthe shared pool area remains fixed.

:'1-6-2 Process Global Area
The process globale area, sofiietirries called the program global area or PGA, contains <lata and
om0l structures for one user or server process. There is one PGA for each user process to

the database.

1€ actual contents of the PGA,. depend on whether the multi-threaded server configuration is
im?]emented, but it typically contains memory to hold the>session's variables, arrays, some
OWS results, and other information, If you'reusing the mtilti-threaded server, some of the

: IMation that is usuallyheld in the PGA is instead held in the common SGA.
~s§ze of the PGA depends on the operating system used to run the Oracle instance, and

'afﬂl%féfﬁted, it remains the same. Memory used in the PGA does not increase according to

amount of processing performed in the user process.

14

CHAPTER 2:0racle Integration
2.1 ORACLE ACCESS WITH JDBC

Java is designed to be platform independent. A pure Java program written for a Windows
machine will run without recompilation on a Solaris Sparc, an Apple Macihtosh, or any

platform with the appropriate Java virtua] machine.

JDBC extends this to databases. If we write a Java program with JDBC, given'the appropriate
database driver, that program will run agaitist any database without having to recompile the
Java code. Without IDBC, our Java code worild need to run platform speci:fic native database

code, thus violating the Java motto, Write iince, Run Anywhere.

JDBC allows us to writeJava code, arti:fleavethe platform specific code to the driver, in the
event we change databases, we simply change the driver used by our Java code and we are
immediate]yreacl)'t0 run againft the new database.

JDBC is a rich set of classes that give us transparent access to a database with a single

application progra=g il lt~r~~" 8; " rlus-a~~gsslsm~on~~t~ plug-in platform-gpecific
r L]

modules, or.dri:srs. ~~~g ~hefe. ~| ~dt~e J])~C chisses, out programs will be able to

access consistently ai;ty database that suppotts JDBC, giving us total freedom to concentrate

on our applications and not to worry about the underlying database.

All access to .IDBC<lata sources is done through SQL. Sun has eoncentrated on IDBC issuing
SQL commands and retrieving their results in a consistent manner. Though we gain so much
ease by using this SQL interface, we do not have the raw database access that we might be
used to. With the classes we can open a counection to a database, execute SQL statements,

and do what we will with the results.

2.1.1 Driver Types
As mentioned above, our Java JDBC code is portable because the database specific code is
contained in a Java class known as the driver. The two most common kinds of driver for

connecting to an Oracle database are the thin driver and the OCI driver.

15

2.1.1.1 T.hin: Driver
"I'he .thin driver is known as a Type IV driver, it is a pure Java driver that connects to a
database using the database's native protocol. While we can use the thin driver in any

environment, the Type IV driver is intended for use in Java applets and other client-side

" programs, A Java client can be run on any platform. For that reason, the JDBC driver
downloaded with an applet or used by a Java client may not have access to platform native

code and must be pure Java.

2.1.1.2 OCIS8 driver

The OCIS8 driver is known as a Type II driver. It uses platform native code to call the
database. Because it uses a native .APL it can connec.t.td.and.access a database faster than the
thin driver. For the same, reasoh, Jp.e ".fype Il driver .cannotbe used where the program does
not have access to the .na.tive APL This ustially applies to applets and.other clien1 programs
which mayibe depldyed Onany arbitrary platform.

2.1.2 The DriverManager Class
- The cornerstone of the.JDBC package is the DriverManager.class. .This-class.keeps trackof
all the different available><latabaseixdtiyers. We won't usually>.see.'t] DriverMahager's .work,

though.. This class mostly works J:,ehind.the scenes 0 ensure that everything is cool for our

connections.

The DriverManager maintains a Vector that holds inforination about all the drivers that it
knows about. The elements in the Vector contain information about the driver such as the

class name of the Driver object, a.copy of the actual.Driver object, and the Driver security

context.

The DriverManager, while not a static class, maintains all static instance variables with static
access methods for registering and unregistering drivers. This allows the DrivetManager
never to need instantiation, Its data always exists as part of the Java runtime. The drivers

managed by the DriverManager class are represented by the Driver class.

16

2.1.3 The Driver Class

If/the comerstone of JDBC is the DriverManager, then the Driver class is most certainly the
hricks that build the JDBC. The Driver is the so:ftwarewedge that communicates with the
platform-dependent database, either directly or using another piece of so:ftware. How it

. communicates really depends on the database, the platform, and the implementation.

is the Driver's responsibility to register with the Driverlvlanager and connect with the

database. Database connections are represented by the Connection class.

- 2.1.4 T4e Connection Class

The Connection class encapsulates the actual- database' connection into an easy-to-use
package. 'Sticking with otiffotin.dation building>analogyihere, .the Connection class is the
mortar that binds the i.IDBG togeth'er. .It' is created by the>DriverManager when its
getConnection()- method" is called, This method accepts a database connection I!'RL and

returns a database Connection to the caller.

When we call the getConnection() method, the DriverManager asks each driver that has
registered with it.-whether--.thedatabase' .conn.ectionTJRLe.isevalid. ffiorie drivetJtesponds
positively, tbe DriverMariager a.sstimes a <match?If. n.0 driver responds positively:, an
SQLException is thrown. The Driverlvlanager-returns the error "no suitable driver," which
means that of all the drivers that the Driverlvlanager knows about, not one of them could

figure out the URL you passed to it.

Assuming that the URL was goodiand a Driver loaded, then the Driverxdanager will retum a
Connection object to us. What canwe do with a Connection object? Not rmich. This class is
nothing more than an encapsulation of our database connection. it is a factory and manager

object, and is responsible for creating and managing Statement objects.

17

2.1.5 The Statement Class
Picture the Connection as an open pipeline to our database. Database transactions travel back
and forth between our program and the database through this pipeline. The Statement class

represents these transactions.

The Statement class encapsulates SQL queries to our database, Using several methods, these
alls return objects that contain the results of our SQL query. When we execute an SQL

Q¥ery, the <lata that is returned to us is commonly called the result set.

2.1.6 The ResultSet Class

As we've probably guessed, the ResultSet class encapsulates the results returned from an SQL
’ query. Normally, those results are in the form ofrows of<lata. Each row.contains one or more
_columns. The ResultSet class acts asa cursor, pointing to one record ata time, enabling us to

_pick out the <lata we need.

- 228SQLJ

- SQLJ enables us to embed staticSQLoperations in'Java code in.a way thatis compatible with
the Java design.philosophy. AJXSQDIJi. pt()gram.iis* a Java programconta.ilDilg embedded static
SQL statemn:entsrthatc&rnplyiWith the<A.NSI"standafd<SQLJeesLangiiage Reference syntax.
Static SQL operations are predefined, the operations themselves do not change in real-time as
a user runs the application, although the <lata values that are transmitted can change
dynamically. Typical applications contain much more static SQL than dynamic SQL.
Dynamic SQL operations are notf prede:fined, the operations themselves can change in real-
time and require direct use of JDBC statemeats. However, we can use SQLJ statements and

JDBC statements in the same program.

SQLJ consists of both a translator and a runtime componenr and is smoothly integrated into
our development - environment. The developer runs the translator, with translation,
compilation, and customization taking place in a single step when the sql] :front-end utility is
run. The translation process replaces embedded SQL with calls to the SQLJ runtime, which
implements the SQL operations, In standard SQLJ this is typically, but not necessarily,
performed through calls to a .IDBC driver. In the case of an Oracle database, we would
typically use an Oracle JDBC driver. When the end user runs the SQLJ application, the

runtime is invoked to handle the SQL operations.

18

The oracle SQLIJ translator is conceptually siniilar to other Oracle precompilers and allows
the developer to check SQL syntax, verify SQL operations against what is available in the
Segwma, and check the compatibility of Java types with corresponding database types. In this

Wa:y, eizrors can be caught by the developer instead ofby a user at runtime.

The SQLJ methodology of embedding SQL operations directly in Java code is much more
e?‘Ohvenient and concise than the JDBC methodology. In this way, SQLJ reduces development
a0y maintenance costs in Java programs that require database connectivity. When dynamic
SQL is required, however, SQLJ supports interoperability with JDBC such that we can

Btermix SQLJ code and IDBC code in the sairie Source file. Alternatively, we can use
PL/SQL blocks within:SQLI{tateriients toridytlami¢ SQt.

'2.2.1 OracleSQLJ Thtrislator

Thyg component is a precompiler that developers run after creating SQLJ source code. The
ﬁanslator, written in pure Java, supports a programming syntax that allows us to embed SQL
OYperations inside SQLJ executable statements. SQLJ executable statements, as well as SQLJ
'declarations, are preceded by the #sql tokeirand canibe inferspersed with Java statements in a

SQLJ source code file. SQLIJ source code file nanes must have the .sqlj extension.

The translator produces a .java file and one or more SQLJ profiles, which contain information
about our SQL operations. SQLJ then automatically invokes a Java compilerto produce .class

files :from the .javafile

2:2.2 Oraele SQLJ Runtiale

Thhis component is invoked automatically each time an end user runs a SQLJ application. The
QLJ runtime, also written in pure Java, implements the desired actions of our SQL
Operations, accessing the database using a JDBC driver. The genede SQLJ standard does not
"Cquire that a SQLJ runtime use a JI)BC driver to access the database, however, the Oracle
, ,SQLJruntime does require a JDBC driver, and, in fact, requires an Oracle JDBC driver if our

: aPplication is oustomized with the default Oracle customizer,

19

~addition to the translator and runtime, there is a component known as the customizer. A
SUstomizer tailors mir SQLJ profiles for a particular database implementation and vendor-
SPecific features and datatypes. Bp default, the Oracle SQLJ front end invokes an Oracle

customizer to tailor our profiles for an Oracle database and Oracle-specific features and
1gtatypes.

~.en we use the Oracle customizer during translation, our application will require the Oracle

’SQLJ runtime and an Oracle IDBC driver when it runs.

2.2.3 SQLI Proflles

SbLJ profiles are serialized Java resources generated by the SQLJ translator, which contain
de

tails about the embedded SQL operatio:hsin our SQLJ source code. The translator creates
ﬁllese profiles, then either serializes them and puts them into binary resource files, or puts

them into .class files accordirigto our translator option settings.

SQLT profiles are in implementing the embedded SQL operations in our SQLJ
®ecutable statements. Profiles contain information about our SQL operations and the types
a4 modes of <lata being accessed. A profile consists ofa collection of entries, where each
’ Entry maps to one SQL operation. Each entry fully specifies the corresponding SQL

_operation, describing each ofthe parametersused in executing thtsinstruction.

SQLJ generates a profile for each connection context class in our application, where,

'tyHically, each conneetion context class corresponds to a particular set of SQL ehtities we use

M our database operations. The SQLJ standard requires that the profiles be of standard format

a4 content. Therefore, for our application to use vendor-specific extended features, our

Profiles must be customized, By default, this occurs automatically, with our profiles being

Customized to use Oracle-specificex.tendedfeatures.

*2.4 Oraele Extensions to the SQLJ Standard

Beginning with Oracle8i, Oracle SQLJ supports the SQLJ ISO specification. Because the
SQLJ ISO standard is a superset of the SQLJ ANSI standard, it requires a .TDK 1.2 or later
?ﬁvironment that complies with J2EE. The SQLJ ANSI standard requires only .TDK 1.1.x. The
racle SQLJ translator accepts a broader rang~of SQL syntax than the ANSI SQLJ Standard

()

20

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension beyond
that. Oracle SQLJ supports Oracle's SQL dialect, which is a superset ofSQL92. If we need to
ereate SQLJ programs that work with other DBMS vendors, avoid using SQL syntax and
SQL types that are not in the standard and, therefore, may not be supported in other

_environments.
- 2.2.5 Basic Translatton Steps and Runtime Precessing

2.2.5.1 Translation st,ps

The following sequence ofevents occuts;presuitiing each step completes without fatal error.
1. The NM invokes the SQLIJ,trru:islator.

2. The transfatorpatsest}1~isour6ecodemthe .sqijefile, checkmgfor proper SQLJ syntax and
looking fottype uriisuriatches between our declared SQL datatypes and corresponding Java
host variables.

3. The translator invokes t~e semantics-checker, which checks the semantics of embedded
SQL statements. The developer can use online or offline checking, according to SQLJ
option settingstlfonline\checkingis perforriied, theh SQLJ will coimect to-the database to-
verifyithat the>idatttbase support§i>alFtlie<databaseifables, -stored procedures, and SQt
syntax that the application uses, and that the host variable types in the SQLJ application
are compatible with datatypes of corresponding database columns.

4. The translator processes our SQLJ source code, converts SQL operations to SQLJ runtime
calls, and generates Java output code and one or more SQLJ profiles. A separate profile -is
generated for each connection context class in our source code, where a di:fferent
connection context class is typically used for each interrelated set of SQL entities that we
use in our database operations.

5. The NM invokes the Java compiler, which is usually, but not necessarily, the standard
javac provided with the Sun Microsystems JDK.

6. The compiler compiles the Java source file generated in step 4 and produces Java .class
files as appropriate; This will include a .class file for each class we defined, a .class file
for each of our SQLJ declarations, and a .class file for the profile-keys class.

7. The NM invokes the Oracle SQLJ customizer dr other specified customizer,

8. The customizer customizes the profiles generated in step 4.

21

; - . :
?.m.%2 Runtime Proeessing

When a user runs the application, the SQLJ runtime reads the profiles and creates "connected

_ profiles", which incorporate database connections, Then the following occurs each time the

application must access the database.

1. SQLJ-generated application code uses methods in a SQLJ-generated profile-keys class to
access the connected profile and read the relevant SQL operations. There is mapping
between SQLJ executable statements in the application and SQL operations in the profile.

2. The SQLJ-generated application code calls the SQLJ runtime, which reads the SQL

operations from the ~rrfile.

The SQLJ runtime calls the JDBC driver and passes the SQL operations to the driver.

The SQLJ runtime passesany it.ipptparameterstothe JDBC driver.

The IDBC driver.e:x:e,:mfestli~SQLi.91,.et1;1Jiot1s.

If any datajs to.b~retw~4, the database sends it to the IDBC driver,.whichsends it to the

o oA w

SQLJ runtirnefo:ru.seby our application.

2.2.6 SQLJ Declarations

A SQLJ declaration consists of the #sql .token followed by the declaration of a class. SQLJ
declarations intr()dllce spet:dirlized Java typet irito op:r applicati()ll. 'there. are currently two
kinds of SQuJdeclari:1.tions;jterator/declaratio 1 1and connection context declarations, defining

Java classes.

Iterator declarations define iterator classes. Iterators are conceptually similarto IDBC result
sets and are used to receive multi-row query <lata. An iterator is implemented as an instance of

an iterator class.

Connection context declarations define connection context classes. Each connection context
class is typically used for connections whose operations use a particular set of SQL entities.
That is to say,..instances of a particular connection context class are used to connect to
schemas that include SQL entities with the same names and characteristics. SQLJ implements

each database cormection.asan instance ofa connection context class.

22

"2.2.7 Java Host Espresslons, Context Expressions, and Result Expressions
 There are three categories of Java expressions used in SQLJ code: host expressions, context
_expressions, and tesult expressions. Host expressions are the most frequently used and merit

_the most discussion.

SQLJ uses Java host expressions to pass argumen\s between your Java code and your SQL
operations. This is how you pass information between Java and SQL. Host expressions are

interspersed within the embedded 'SQL operations 1n.SQLJ source code.

The most basic kind of host expression, consisting of only a Java identifier, is referred to as a
host variable. A ~ontext expression specifies a connectior1 context instance or execution
context instance to be used for a SQLJ statenient. A result expression specifies'an output

variable for query results or a function return.

- 2.2.7.1 Host Expre~sions

Any valid Java expression can-be used as a- host expressiens-In .the simplest, case, whioh is
typical, the exptessioiiconsists\Ofijustasingle tfava---varia.ble:-.*«Othetikirids 6ffiiost expressions
inchide: arith:metic {expressfofis;Javaitnethod calls with retum values, Java class field values,
array elements, conditional expressions, logical expressions, or bitwise expressions, Java
identifiersused as host variables or in host expressions can represent any ofthe following:

1. Local variables.

2. Declared parameters.

3. Class fields.

4. Static or instance method calls.

Local variables used in host expressions can be declared anywhere that other Java variables
can be declared, Fields can be inherited from a superclass, Java variables that are legal in the
Java scope wherethe:SQLJ executable statement appears can be used in a host exp;ressionin a
SQL statement, presuining its type is convertible to or from a SQL datatype. Host exptess~ons

can be input, output, or input-output.

23

2.2/1.2 Context Expressions
A gontext expression is an input expression that specifies the name ofa connection context
#stalice or an execution context instance to be used in a SQLJ executable statement, Any

legal Java; expression that yields such a name can be used.

2.2.7.3 Result.~pressions
A result expression is an output expression used for.query results or a function return. It can

be any le~al Java expression that is assignable, meaningthat it can logically appear on the left

side of an equals sign.

Result expressions and context expressioll$appear lexically in the SQLJ space, unlik:e host
expressions, which appear lexically in the SQL space. Ther~fore, a result expression or

context expression must not be preceded by a colon.

2.2.8 Stored Procedureand Function CaDs
SQLJ provides convenient syntax for calling.stored procedures and stored funetions in the
database. These procedures)aridofunctions,couldibe written .fii Ja'va, PL/SQL; or any other

Ianguage*SUpported byth~ databhse.

A stored function requires aresult expression in mir SQLJ executable statement to accept the
return value and can optionally take input, output, or input-output parameters as well. A
stored procedure does not have a retum value but can optionally take input, output, or input-
output parameters. A stored procedure can retum output through any output or input-output

parameter.

2.2.9 Multithreadingin SQLJ
We can use ~QLJ in writing multithreaded applications; however, any use of mnltithreading
in our SQLJ application is subject to the limitations of our JDBC driver. This includes any

synchronization limitations.

24

We are required to use a di:fferent execution context instance for each thread. We can

accomplish this in one oftwo ways.

I Specify .connection context instances for our SQLJ statements such that a di:fferent
connection context instance is used for each thread, Each connection context instance
automaticallyhas its own default execution context instance,

2. If we are using the same connection context instance with multiple threads, then declare
additional execution context instances and spenify execution context instances for our

SQLJ statements such that a different execution .cqntextinstance is used for each thread.

If we are using one of'the Oracle JOJ3C drivers, multiple threads can use the same connection
context instance as long as di:fferent execution context instances are specified and there are no
synchron,izationrequirements directly visible to the user. However, that dat~base aceess ~

sequential, only one thread is accessing the database at any given time.

If ~ thread attempts to execute a SQL operation that uses an execution context that is in use by
another operation, then the thread is blocked .until Jhe ' current operatipn .cpniplytes..If an
execution context 'Y~fy slluiretl .LJitWeell.thr~atls, }lie- tJsp.ltspfa SQILJpperationi perforrned .by
one thread would >be visible.: inithe other-thread. If both threads were executing SQL
operations, a race condition might occur, the results of an execution in one thread might be
overwritten by the results of all execution in the other thread before the first thread had
processed the original results. This is why multiple threads are not .allowed to share an

execution context instance.

2.2.10 SQL;J and JDBC Interopefal>Uity

We can use SQLJ statements for static SQL operations, but not for dynamic operations. We
can, however, use JDBC statements for dynamic SQL operations, and there might be
situations where our application will require both static and dynamic SQL operations. SQLJ
allows us to use SQLJ. statements and JDBC statements concurrently and provides
interoperability between SQLJ constructs and JDBC constructs. Two kinds of interactions

between SQt.Tand JDBC are particularly useful:

1. between SQLJ connection contexts and JDBC connections.

2. between SQLJ iterators and JDBC result sets.

25

2.2.10.1 Convertinglrom Connectio~ Contexts to JDBC Connectlons
- Ifwe want to perform a dynamic SQL operation through a database connection that we have
established in SQLJ, then we rnust convert the SQLJconnection. context instance to a JDBC

connection instance.

Any connection ' context instance in a SQLJ applic~tion, whether an instance of the
sqlj .runtime.rei;:DefaultContext class or ofa declared connection context class, contains an
underlying 1DBC connection instance and a getConnection() method that returns that IDBC

connection instance. Use the JDBC conuection instance to create IDBC statement objects if

you want to use any dynamic SQL operations.

2.2.10.2 Convertill.g from JDBC Connections t() Connectfon Conte~ts
If we initiate'a"corinectilinas a'JlDBC Connection or OracleConnection instance but later want
to use it asa SQLJ C{}nnection context instance, then we can convert the JDBC connection

instanceto a SQLJ connection context instance.

The DefaultContext -classar:id all- declared >cofiizie-cttd:0. eontext cla.sses>have<a constructor that
takes a JDBC connection instance as “input and constructs a SQLJ connection contex!

instancei

2.2.10.3 Shared Comunections

A SQLJ connection context instance and the associated JDBC connection instance .share the
same underlying database comi.ectioq.. When we get a JDBC conriectioh pistange from a SQLI
connection context .instance, tliec Conriection inSfariceinhetits the state of the connection
context instande. -.Among otherthing~?the Co1:niectioninstance will retain the auto-commit

setting ofthe connection context iustsnee.

When we constriicta SQLJ connectioii context instance from a JDBC connection instance, the
cohnection contextmsfan.ce inherits the state ofthe Connection :instance.Among other things,

the connection coritext instance will retain the auto-commit setting of the Connection

instance.

26

Given a SQLJ connection context instance and associated JDBC connection instance, calls to
methods that alter session state in one instance will also' affect the other instance, because it is

actually the underlying shared database session that is being altered,

Because there is just a single underlying database connection, there is also a single underlying
set of transactions. A COMMIT or ROLLBACK operation in one connection instance will

affect any other connection instances that share the same underlying connection,

2.2.11 SQL~in the Server

SQLJ code, as with any Java. code, can run in the Oracle8i server in stered procedures, stored
funetions, triggers, - Enterpuise JavaBeans, or CORBA objects.uDatabase access is through a
servet-side implemenmﬁgh;(}fxthef:.‘SQLJ runtime in combination with the Oracle JDBC server-

side terasnl driver.

In addition, an embedded SQLIJ translator in the Oracle8i server is available to translate SQL]J
source files directly in the server, Considerations for running SQLJ in the server include
several server-side coding issues as well as decisions about where to translate our code and
how to load it into the ~erver. We must also be aware ofhow the server deternfines the names
of generated output. We can eithe:un tr1HI§Iate and corripile ona elient and load :[he class and
reseurce files itito the setver, Ol we can load .sqlj source files into the sesver and have the files

automatically translated bythe embedded SQLJ translator.

The embedded translator has fidifferen~ user -interface than. the clietit-side translator.
Supported options can be specified using a database 'table, 'and error output is to a database

table. Output files ftom the translato:r, .ja-Vaiahd .Ser, aretrajisparent to the developer.

2.2.11.1'CreatingSQ1.J Code fiirUsewifbin the Server
With few exceptions, writing SQLJ code for use within the target Oracle8i server is identical
to writing SQLJ cpde>ifor cliellit.side use. .The few differences are due to Oracle JDBC

characteristics or gene:ralJavacharacterfatics in the servet, rather than being specific to SQLJ.

27

Z.Z.11.Z Database Conneetions within tbe Server

The concept of connecting to a server is different when our SQLJ code is running within this
server itself, there ,is no explicit database connection. By default, an implicit channel to the
database is employed for any Java program running hi the servet. We do not have to initialize
this connection, it is antomatically initialized for SQLJ programs.

We do not have to register or specify a driver, create a conriection instance, specify a defaiilt
connection context, specify any connection objects for any of our #sql statements, or close the

connection.

2.2.H.3 Codfng Issues withintheServer

Result sets issued by the .internal\driver persist>acrossicalls, and their finalizers do not release

their database c~:'i~,~~~~~r~~fli~/ 'lit:ls~sji~,~~6#ahf I: elese aliiteralors to avol

running out o(available cursors, ou.illess we have a particular reason for keeping an iterator

open.

The internal driver does not support anto-commit functionality, the anto-commit setting is
ignored within the server. .Use explicit COMMITOrROLLBACK statements-to implement or

cancel your database updates.

2.2.11.4 Name Resolqg.tionin the Server
Class loading and name resolution in the server follow a very different paradigm than ona
client, because the environments themselves are very different. The resolver, which maintains

ma:ppings between class schema objects that reference each other inthe server.

A class schema object is said .to be resolved when eall of its external references to Java names
are bound. in general, all the classes ofa Java program should be compiled or loaded before

they can be resolved.

Whb,en all the class schema objects 'of @ Java program in the server are resolved and none of
them have been modi:fied since being resolved, the program is effectively pre-linked and
ready to run.

A class schema object misf-ed before Java objects of the class can be instantiated or

methods ofthe dass~Im be; e*eeuted.

28

2.2.11~5 SQL Names versus J~va Names

SQL names such as nam.esof source, class, and resdurce schema objects are not global in the
way that Java nam.esare global. The Java Language Specification directs that package nam.es
use Internet naming eonventions to create globally unique names for Java programs. By
contrast, a fully qualified SQL name is interpreted only with respect to the current schema and
database.Because of this inherent difference, SQL names miist be interpreted and processed
differsntly from Java nam.es.SQL names ate relative names and are interpreted :from the point

ofview of'the.schema where a program is exeeuted.

This is central to how the program binds Iocal data\stored at that schema. Java nam.esate
global names, and the classes thar they designate can be loaded at any execution site, with
reasonable expectatipn.Jflut tb.()Stt classes willibe olasses./that rwere used to -compile the

program.

2.2.11~6>"franslatingSQLJ Souree ona Client and Loading Compdnents

tine approach to developing SQLJ code for the server is to first run the SQLJ translator on a
client machine to take care .oftranslation, compilation, and profile eustomization, Then load
the resulting elass }and reso.urceifiles/includingSQLJ profiles into .the server, typically using a

Java archive file.

If we are developing our soiirce on a client inachine, and have a SQLIJ translator available
there, this approach is advisable. It allows the most flexibility in running the translator,

because option-setting and error--processingare not as convenient-in.theserver.

It might also be advisable to use the SQL1 -serzclass option during translation when you
intend to .Joad an application irtto<theserver.. This results in SQLJ profiles being converted
:from .sec sefialized resource files.to .class files and simplifiestheir rl.aming. However, profiles
converted to .class'files carmot be further customized. To fii.rthercustomize, we would have to

rerun the translator andtregenerate the profiles,

29

When we load .class files and .ser resource files into the server, either directly or using a .jar
file, the resulting database library units are referred to as Java class\ schema objects, for Java
classes and Java resource schema objects, for Java resources. Our SQLJ profiles will be in
resource schenia objects if we load them as .ser files, or in class schema objects ifwe enabled

serzclass during translation and load them as .class files.

2.~.11~7 ErrorX>utput frem the ,Server,;EmJ>edded . Translator
SQL,J etror :processingin the server is similarto general Java error processing hi the server.

SQLJ errors are directed pito the USER_ERRORS fable of'the user schema, We can SELECT

from the TEXT column ofthis table to get the text .ofaigiven error message.

Informational messages and. suppressable warnings are withheld by the server-side translator

in a way that is equivalentto the operation ofthe client-side translator.

1.3 INTR.ODUCTION TONETS

Net8 enables the machines in our network to communicate with one another. It facilitates and

~ges communication >Sessio:ng between a client application and a remote database,

Specifically;Net.8.perfoitrtistbreebasic operations.

1. Coquegti<>fi;\ Qp~:npigiandclositig co:mie¢tfo~ between a client or a server acting as a
client antla database servet over a network protocol.

2. Data Transport: packagin~ and sending <lata such as SQL statements and <lata responses
so that it canbe transmitted and understood between a client anda server.

3. E:x;c~ption Handling: initiatingihterrupt requests fromthe client or server.

2.3.1 Network Tran.sparency

Net8 provjdesesupport for a broad.range ofinetwork transport protocols including TCP/IP,
SPX/IPX, IBMLU"p.2, Novell, and DECnet. It does so in a manner that is invisibleto the
application user. This enables Net~ to interoperate across different types of computers,
operating systems;;.and networks to transparently connect any eombination of PC, UNIX,

legacy, and other systemwithout changes to the existing infrastructure.

30

2.3:2 Protocol Independence

Net8 enables Oracle applications to ruh over any supported network protocol. by using the
app;ropriale, Oracle Protocol Adapter. Applications can be moved to another protocol stack by
installiiig the necessary Oracle Protocol Adapter and the industry protocol stack. -Oracle
 Protocol Adapters provide Net8 access to connections over specificprotocols or networks, On
- some platforms, a single Oracle Protocol Adapter will operate on several di:fferentnetwork

interface boards, .allowingyou to deploy applicationsiri any networking environment.

2.3.3 Media/Topology Independence

When Net8 passes control of a connection to the Underlyingprotocol, it inherits all media
and(or topologies stipport~d by that net{vorkprotocol stack. This all10wsthe netwdrk protocol
to use any means ofdata transmission, such as Ethernet, Token Ring, or other, to accomplish

low lev~ldata link transmissions between two machines,

2.3.4 HeterogeneousNetworkfiig
Oracle's client-server and = server-server models provide conneétivity between miiltiple

network protocols using Orakcle“:@oﬂﬁection Manager.

2.3.5 Large Scale Scalability

By enabling us to use advanced eonnection'concentration and connection pooling features,

Net8 makes it possible for thotisand&of concurrent users ~o connect to a server.

2.4 NET8 FEA.TURES

Net8 Release 8;0<features several<enhaticefuents<thatextend scalability, matia.geabilityeearid

security forthe Ora.elenetwork.

2.4.1 Scalability Fem.tii.res

Scalability refers to the abilityto support simultaneous network access by a large number of
clients to a single server. With Net8, this is accomplished by optimizing the usage of network
- resources by reducing the number of physical network connections a server must maintain.

Net8 offers improved scalabilitythrough two new features.

31

1. Connection pooling.

2.7 Connection concentration.

Both of these features optimize usage of server network resonrces to eliminate <lata access
bottlenecks. and enable large numbers of concurrent clients to aecess a single server.
_Additionally, other enhancements such as a new buffering methods and asynehronous

‘Operations further improve Net8 performanee,

24.2 Manageability Features

Net8 introduces a number of new features that will simplify configuration and admitiistration
ofthe Oracle network for both workgroup and enter priseienvfronments.

For workgroup enviroruiients, .Net8 .offers\simple-* configuration-free conneotivity through
installation defaults and 2 neW' name resolntion feature called host naming. FQr enterprise
envrironmentsCNet8 centfalizerclient administration and simplifies network management with

racle Names, In addition to these new features, Net8 introduces the Oraele Net8' Assistant.

2.4.2.1 Host Naming

Host Naming refers. to a./new naming. niethod which resolves service hames to network
addresses by enlistili.g Stne;\services oOf':existing TCP/IP hostname resol\ltion systems. Host
MNaming callelin:iinate the need for a loca.Fhatriing configuration file in environments where

simple database connectivity is desired.

2A.2.2 Oracle Net8 .Assistant

The Oracle Net8 Assistant is a new end user, stand-alone Java application that can be
aunehed either asa stand-alone applic~tionOr from tlie Oracle Enterprise Manager console. It
amornates client configuration and. provides an easy-to-use interface as well as wizards to

gomfigure and manage Net8 networks.

Because the Oracle Net& Assistant is implemented in Java, it is available on any platform that

siipports the Java VirtuaLMachine.

32

2.4.3 Multiprotocel ~ S~1_~port tTsing Oraele Cennecnon Manager

Oracle Connection Manager provides the capability to seamlessly connect two or more
network protocol communities, enabling transparent Net8 access across multiple protocols, In
this sense, it replaces the functionality provided by the Oracle MultiProtocol Interchange with
SQL *Net. Oracle Connection Mana~er can also be used to provide network access control.
For example, links processed through Oracle Connection Manager can be filtered on the hasis
of origin, destination, or user ID. It incorporates a Net8 application proxy for implementing

firewall-likefunctionality,

2.4.4' Oracie Trace Assistant
Net8 includes the Oracle Trace Assistant to help decode and ,analyzethe data stored in Net8

trace files.

The Oracle Trace Assistant provides an easy way to understand and take advantage of the
information stored in trace files, it is useful for diagnosing network problems and analyzing
network performance. It can be used to better pinpoint the source .of a network problem or

identifya potential perfomiance bottleneck.

2.4.5 Na.tiv-eNafiiipg-. Adipt~frs
Native Naining Adapters, previouslybundled with fiie Advanced Networking Option, are now

included with Net8. These adapte~~ provi~~ narive ~upp9fl f~f [119'1stry-standa_rd name
services, inoluding Sun NIS/Yellow Pages and Novell NetWare Directory Services (NDS).

2.5 NET8 OPERATION

Net8 is responsible for enabling commpunic~fibnsbetween the cooperating pattners N an
Oracle distributed transaction, whethet they be y~ent-server or server-server. Speeifically,
Net8 provides three basic networking operations:

1. Conn~9tOperatioiis.

2. Data Operations.

3. Exception OperatiO.is.

33

5.1 Ccimectfng to Sersers

IJsefs initiate a connect request by passing inforination such as a usemame and password
along With a short name for the database service tha~ they wish to connect. That short name,
called a service name, is mapped to a network address contained in a connect descriptor,

Be;‘ending upon our specific network configuration, this connect deseriptor may be stored in

one ofthe following.
1. A local names configuration file called TNSNArvffiSIORA.

2. A Names Server for use by Oracle Names.

i

3. A native naming servme such as NIS or DCE CDS.

Net8 coordinates its mﬁm w1th the khelp of a network hstener

2_5';2' Establishing Connectionswith the NetworkList~ner

The network listener is a single process or task setup specifically to receive connection
requests O behalf of an applfoation. Listeners are configured to "listen on" an address
gpeeified in a listener.configuration file.fora database or non-database servipe. iince started,
the listener will receive clienfCotjnect requests on behalf ofa servi,ee, and respond in one of
hreé ways:

Bequeath th~ sessiorrto a new dedicate(\server process.

2. Redirect to an existing.serverprocess.

3. Refuse the session.

~<:<iil"'clla.an

e-ngpro::1e,m
g S (i< areart1,, ami)
TR]

fsterer -
o
i
‘g? 2f
) 3

Heth
Lt ner

it
Client

qum: nnd
L e emsian

Figure2.5.2.1: Network Listener In a Typical Net8 Connection

34

2~5.2.1 Beq,eathed Sessions to Dedicated Server Proeesses

If tl;ie listener and server exist on the same node, the listener rnay create or spawn dedicated
server processes as connect requests are received. Dedicated server processes are committed
to one session only and exist for the duration of that sessidn, When a client disconnects, the
dedicated server process associated with the client closes. Figure 2.2 depicts the role -of the

network listener in a bequeathed connection to a dedicated server process.

[Dafabams S e r Campubs ¢

e

¥

1 '
g |
[: o
! i

" a Beuen fa
” dedicated senmr
proess

Figure2.2 Bequeathed Connection To aDediCated Server Process

2.5.2.2 Redirect~d Sessions t0 E.n.stmg ~enr~r Procer;ses

Alternatively, Net8 may redirect the request to an existing server process. It does this by

sending the address of ANl existing server process back to the client, The client will then resend
its connect request to t~e servet address provided.

Existing server precesses include;

1. Prestarted orPrespawnedDedic:atedServerProcessesby the listener.

2. Dispatcher Processes created outside the listener process.

35

P1-esi;,awned Dedieated Server Proeesses

Net8 provides the option of automatically creating dedicated server processes before the

_requ~stis received. These processes last for the life of the listener, and can be reused by

bsequent connection requests.

The use 'of prespawned dedicated server processes requires specification in a listenet
configuration fileWhen clients disconnect, the prespawned dedicated server process
_associated with the client retums to the idle poolrIt then.waits a specified length oftime to be
1 aésigned to another client. If no client is hand&ﬁ to the prespawned server before the timeout
_expires, the prespawned server shuts down. Figure 2—3 depicts the role of the network listener

_inaredirected connection to a prespawned dedicated server process.

Pres peeened De:lu:u‘bad
Heryar

FiguréQ.S.ZZ.‘lZ:' Redirected Connection To a‘Prespawned Dedicated Server Process

2. Di~patcher Server Processes
A dispatcher server process eriables many clients to connect to the same server without the
need for a dedieated server proce~Sfor each client. Jt,does this with the help of a dispatcher

which handles and directs multiple incoiing session requests to the shared server.

When an Oracle serv~rhas been ~ciligitrred as a multi-threaded server, incoming sessions are

always routed to the>dispatcher unless either the session specifically requests a dedicated

server or no dispi6:fi~tirare available.

Once the dispatcher addresses are registered, the listener can redirect incoming connect

requests to them. The listener and the Oracle dispatcher server are now ready to receive

incoming sessions.

36

When clients disconnect, the shared server associated with the client stays active and

processes other incoming requests. Figure 2.4 depicts the role of the network listener in a

redirected connection to a dispatcher server process.

il

Dimpmisher

N\,

Wit Thresided
ZeTyar

Het
Slisnt

Figure2.5.2.2.2: Redirected Connection To a Dispatcher Server Process

2.5.2.3 Refused Sessions
The network listener will refuse a sessioh in the event that it does not know about the

server being requested, or if the server is unavailable.It refuses the session by generating and

sending a refuse response packet back to the client.

.2.5.3 Discon,ecting from Servers

Requests to disconnect from the server can be initiated [ll the following ways.

:7.5.3.1 User-Inftiated Disconnect

A user' can request a disconnection from the servet when a client-server transaction
coDJPletes. A server can also disconnect from a second server when .all server-server <lata

transfers have been completed, andno need for the linkremains.

37

1 215.3.2 Additfonal CenitiectionRequest

Ifa client application is connected to a server and requires access to another user account on
the same or other server, niost Oracle tools will first disconnect the application from the
server to which it is currently connected. iince the disconnection is completed, a connection

request to the rrew user account on the appropriate server 1s initiated.

2.5.1.3 Abnormal Connectien 'l'ermtnation
Other components will occasionally disconnect or abort communications without giving
_ notice to Net8. in this event, N~t8 will recognize the :failure during its next <lataoperation, and

elean up client and server operationsi-effectively disconnecting the ciirrent operation.

2.5.3.4 Timer Ittlti.ijtedJ~I3CO~~ectrérDeaa €onnectio* 1 petec {iprl

 Dead eonnection detection is afeature that allows Net8 to ideittify connections that have beeh
ieft hanging!i:Oythe!abiiorr.tialiterminat,on of a olient, Ona connection with dead connection
detection enabled, a small probe packet is sent from server to client ata iiser-defined interval.
the connection is irivalid, the connection will be closed when an error is generated by the

send operation, and the server.process will-tcnninate the connection,

_ This feat~e 1minimiz~stl;1.e>wasteofresotircesby.conriectionsthateare no longer valid, it also
antomatically forces a databage rollback: of>uncommitted transactions and locks held by the

user ofthe broken connection.

2.5.4 Data Operations
Net8 supports four sets of cUent+sefverdata operatiens.

1. Sehd <latasynchronously.

Z. Receive datlsynchrorlously;
- Send <lata asynchrenously.

Receive data asynchronously.
On the client side, a SQLdialogue request is forwarded using a send request in Net8. On the

SCrver side, Net8 processes a receive request and passes the data.to the database, The opposite

urs in the return trip from the server,

38

Basic send and receive requests are synchronous, When a client initiates a request, it waits for

the server to respond with the answer. It can then issue an additional request.

Net8 adds the capability to send and receive data requests asynchronously. This capability
was added to support the Oracle shared server, also called a multi-threaded server, which

requires asynchronous calls to service incoming requests :frommultiple clients.

2.5,5 E~ception Operations

Net8 supports three types of exception operations.

Initiate a break over the connection.

2 Reset ~ connection fOI‘ Synchtom?atlon aﬁ@r a bl'eak

3. Test the 1. md;miq of the connectxon for mcommg break

The user controls only Qne bf these three operations, t~t is, th~ initiation 6f a break. When

the user presses the Interrupt key, the applioation calls this function, Additidhally, the
database can initiate a break to the elient if an abnormal operation occurs, such as during an

attempt to load a row of invalid data using SQL *Loader.

The (‘ther ~ ~,;~$ OpJ ~'.afe'~~ fo ptO~leis'tfiit 1]S Netg ~0 resolve iletwork

timing issues. Net8 can irtitiate a test of the communication channel, for example, to see if
new data has arrived. The reset function is used to resolve abnormal states, such as getting the

connection back in synchronization after a break operstion has occurred.

2.5.6 Net8 and the Tral:lsparentNe~ork Substrate (TNS)

Net8 uses the Trarispai'ent Network Su.bsttate aiid industry-standard networking protocols to

accomplish its basic functiot:taHty. INS is a fot.ndation technology that is builf ittO Net8

. providing a single, common interface to a.ffindustcy-standard protocols.

W'ith TNS, peer-to-peef .appllcation connectivity is possible where nd direct macaine-level

connectivity exists, In peer-to-peer architecture, two or more computers can commimicate

with each other directly, without the need for any intermediary devices. In a peer-to-peer

system, a node can be both a client and a server,

39

CHAPTER 111: Process Management

3.1 DISRIBUTED PROCESSING

Oracle databases and client applications operate in what is known as a distributed processing
environment. Distributed or cooperative process-inginvolves interaction between two or more
computers to complete a single <lata transaction. Applications such as an Oracle tool act as

clients requesting <lata to accomplish a speci:fic operation. Database servers store and provide
the data.

In a typical network configlll'atio~.clientsand seryerstnay exist as separate logical entities on
separate physical machines.i'Ibis configuration allows fora division of labor where resources
are allocated eflicigritly I,~t~e~1f a cljent workstation &nd the server machine. Clients
normally resideipn clesktcip computers with just enough memory to execute user friendly

applicafions, while d Serverhas rnore memory, disk storage, and processing power to execute

and administer the database.

This type of client-sei-ver arghitecture ~so enable~ye,u . distribllte . datapa.ses across a
network. .A distfibuted databasejs a.network .ofdatabaseS stored on multiplecomputers that
appe~s to the. user as ~ singlelogical databage. Distributed database servers are connected by
a database link, or patli from one database to another. One server uses a database linkto query

and modi:fyinformation on a second server as needed, thereby acting as a client to the second

SETVver.

3.1.1 Sfack Communleations

The concept of distributed processing .relies on the ability of cornputers separated by both
design)llld physical location to communicate and interact with each other. This is
accomplished through a process known as stack cornrnunications. Stack communieations can
explained by referencing the Open Systern Interconnection model. In the OSI model,
COmrnunication between separate cornputers occurs in a stack-like fashion with inforrnation

Passing frorn one node to .the other through several layers of code. Figure 2-5 depicts a typical

OSI Protocol Communications Stack.

40

across . d network Inediu.in ' in a mannet that

L‘&i:nt

N Berver
Gide Sinck Fide Bingk
cottnck: acobklkiges - , conmek: scobkftigms
Cliorr1 x "0
~pliail<in Uer ~pli<"Arian- '
yv et e ! '
Pr,,s,eniicn S)>stem Pr,,s,en1ia ! v
Sl Zicn SI!! Zia1
Trmsp:1r1 'rr.arispir
Net,,1:rkk Nlllllllllll
1
1
Litk Litk
' ~
I\ Ca..=dm
" 111 Php:iail / Php:iail '
'

Figure 3.1.1.1: OSI Communications Stack

Inforrtiation g~ss~t:<I#itiii-dugli<itayers. (11lhe client side where it is packaged for transport

it can be translated and understood by

correspol 1ding]ayers. on the server side. A typical OSI protocol comrminications stack will

contain seven such layers.

Application: this is the.OS! IcLY~f closest to the usyr,J:ind as such is dependent on the
functionality requested by tijetnier. Fof yXatnple, in d database environrnent, a Forms
appucationnay attemnpt to iiiifiate céminuiiicatior:1 in order to access data from a server.

Presentatkin: ensures that information sent by the application layer of one system is

readable by the application layer of another system. This includes keeping track of syntax

and semantics of the data/transferred between the client and server, If necessary, the

presentation layer translates between multiple data representation formats by using a

common <lata format.
as its name sugg-~sts,<?st~bli.shes, n::1anaies, and terminates sessions between the

The

Session:
client and server. This is a virftial pipe that carries data requests and responses.
session layer manages whether the data tra:ffic can go in both directions at the same time
referred to as asy:pchronous, or in only one direction at a time referred to as synchronous.
Transport: implements the <lata transport ensuring that the <lata is transported reliably.
Networlc ensures that the <lata transport is routed through optimal paths through a series

of interconnected subnetworks.

Link: provides reliabte transh of <lata across a physical link.

41

7. Physicali defines the electrical, mechanical, and procedural specifications for activating,

maintaining and deactivating the physical link between client and server.

3.1.2 Stack Communieations in an Oracle Networldng Envlrcnment
Stack comitunications allow Oracle clients and servers to share, modify, and manipulate data
between themselves. The layers in a typical Oracle communications stack are similar to those

of astandard OSI communications stack.

3.1.2.1 Client-Serv~r Interaetion
In an Oracle client-servertransaction, informationipasses through the foUowing layers

1. Client Application,

N

Oracle Call Interface,

Two Task Common

Net8,

OraclelPtotocol.Adapters.

I

Network Specific Protocols.

Client Seperirgy
SideSlz1"k Sio,, Slz1"k
Clent . Ehack
AR>lic.uiia, = o fs ey grm T l
‘ocl Bpmtem OPI
RDBINS TCQI[[Er‘,Tjk RDBIIIS
NI NI
I MRITaRA MARNEA b | neb
N
O
Profacd
ﬂﬁkmk Adepier
Nlwrk- e Netunrh-

» Specik Z SPE‘!:;

Praiaoal

Figure 3,1).1.1: Typical Communications Stack in an Oracle environment

42

Client Applicatien

Oracle client applications provide all user-oriented activities, such as character or graphical
user display, screen control, data presentation, application flow, and other application
specifics. The application identifies database operations to send to the server and passes them

through to the .Oracle Call Interface.

2. Oraele Call Interface
The OCI code contains all the information required to initiate a SQL dialogue between the

client and the server.Itdenries>callsJothe servet to:

1. Parse SQL stateiilents fotsyntaxValidation.

2. Open a<<.fii:fsotfor.tijeSQLstatement.

3. Bind client-application variables into the server shared memory.

4. Describe the contents of the fields being returned based on the values in the server's data
dictionary.

5. ExecuteSQL statements withinthe cursor memory space;

6. Fetch-one ormore rows O6fdataintothe eclientapplication.

7. Close the otirsor,

The client application uses a combination of these calls to request activity within the server.
OCI caUs can be combined into a single message to the server, or they may be processed one
at a time through multiple messages ao the server, depending on the hature of the client
application. Oracle products atternpt t0 1:ninimizethe number of messages sent to the server by
combining many OCI calls into'rarsingle message to the' server. When a call is perforrtied,

control is passed to Net8 to establish the connection and transmit the request to the server.

3. Two-Task Comm~m
Two-Task Cornmon provides character set and data type conversion between different
character sets or formats on the client and server. This layer is optimized to perfo~

eonversion only when required on a per connection hasis.

43

At the time of initial connection, Two Task Common is, responsible for evaluating differences
in internal data and character set representations and determining whether conversions are

required for the two computers to cornmunicate.

4. Net8

Net8 provides all session layer functionality in an Oracle communications stack. It is
responsible for establishing and maintaining the connection between a client application and
server, as well as exchanging messages between them. Net8 itself has three component layers

that facilitate session layer functionality.

I. Network Interface1 This layerprovides a>genericintetface for Oracle clients, servers, or
extemal processes tQJa.ccess Net8 fillcfiélls. The NFhan.dles the brea.k and reset requests
for a cpnnectidii:

2. NetworkRoufligl Netw,01i< Naming/ Network Authentieationi NR provides routing of
the sessiontothe destination. This may include any intermediary destinations or 'hops',
on the route to the server destination. NN resolves aliases to a Net8 destination address.
NA negotiates any authentication requirement with the destination.

3. Transparent. NetwotkSubstfate: TNS is an underlying layer of Net§8 providing a
comrnol l.ititerfacetdirtditstry I stan.dard\pfotocols. TNS receives requests from Net8, and
settles alFgeueric machine .level connectivity issues, such as the location of the server or
destination, whether one or more protocols will be involved in the connection, and how to

handle interrupts between client and server based on the capabilities of each.

The generic set of TNS functiotiszpasses control to an Oracle Protocol Adapter to make a
protocol-specific call. AdditionallyfTNS supports encryption and sequenced cryptographic

message-digests to protect <lata intransit.

5. Oraele Proteeot .Adapters
Oracle Protocol Adapters are responsible for mapping TNS functionality to industry-standard
protocols used in the client.server connection. Each adafter is responsible for mapping the

equivalent functions between TNS and a speci:fic protocol.

44

6. Network-Specifle Protoeols

All Oracle software in the client-server connection process requite an existing network
protocol stack to make the machine-level connection between the two machines. 'Ehe network
protocol is responsible only for getting the <lata from the client machine to the server machine,

at-which point the data is passed to the server-side Oracle Protoco | Adapter.

7. Server-Side lateraetion

Information passed from a client application across a network protocol is received by a
similar communicatiorisstack on the server side. The process staeck on the server side is the
reverse of what occurred o'n the client side with information ascending through
communication layers. The pne operation uniqu~to the server side is the act of receiving the
initial connection through the network listener. The ;fpllowingcomponents above the Net8

session layer are different from those on the client side.

1. Oracle Progranl.Interface

2. Oracle Server

1. Oracle: Progra:m.Inte:fface

The OPF perfornis cornplerneritary function to that of the OCI. It is responsible for

responding to each ofthe possible messages sentby the OCI. For example, an OCI request to

fetch 25 rows would have an OPI response to return the 25 rows once they have been fetched.

2. Oracle Server

The Oracle.Server side of'the coriiiectionis responsibletfor receiving-dfalogrequests from.the
client OCI code .and resolving>SQE statements' on behalf of .the client application. ilince
received, a requestis processedarid Ule resulting data is passrd to the OPI for responses to be

formatted and retumed to the clientapplieafion.

3.1.3 Se:tver-to-Serverinteraction

When .two servers communioateto complete a distributed transaction, the process, layers, and
dialogues are the same as in the elient-server scenario, except that there is no client
application. The server has its own version of OCI, called the Network Program Interface
(NPI). The NPI interface performs all of the functions that the OCI does for clients, allowing

a coordinatingserver to construct SQL requests for additional servers.

45

3.2 DISTRIBUTED COMPUTING USING JAVA

Distributed systems tequire that computations running in di:fferent address spaces, potentially
on different hosts, be able to communicate. For a basic cofllllunication mechanism, the
Java™ language supports sockets, which are :flexible and sufficient for general
communication. However, sockets require the client and server to engage in applications-level
protocols to encode and decode messages for exchange, and the design of such protocols is

cumbersome and can be error-prone.

An, alternative to sockets is Remote Procedure Call, which abstracts the communication
.interfaee to the level of a procedure call; Tnstead bf.working directly with sockets, the
programmer has the illusi6flofcallin.g alocalprocedtire; When in fact the arguments of the
call are packaged up auc:l shippecl6fi}to the remote tatget of .fhe .call.: RPC systems encode

arguments.and 1-eturfrvalue$iSing an extefualdatarepresetltation.

RPC, however, does not translate well into distributed object systems, where communication
between program-level. objects residing in di:fferent address spaces is needed. In order to
mateh the seiantics of object invocation, distributed object systems require remote method
invocation or RMI. In such .systems, a local surrdgat[.0bjecf manages the invocation on a

remote obiect.

3.2.1 Distributed Objeet Applications

RMI applications are eften comprised of two separate programs, a server and a client. A
typical server application creates a number of remote objects, makes I'~ferencesto those
remote objects accessible, and waitS for clients to irryoketriethodSon thdSe fel110te objects. A
typical client application gets a remote referenee to one or more remote obiects in the server
and then invokes rnethods on them; RIVil provides the mecabnismby which the server and the
client commnnicate and pass infotmation back and forth. Such an applications is sometiines

referred to asa distribtited object application. Distributed object applicationsneed to:

1. Locate remote Objec:ts: Applications can use one of two mechanismsto obtain references
to remote objects. Ari appligation can register its remote objects with RMI's siinple
naming facility, the rmiregistry, or the application can pass and return remote .object

references as part ofits normal operation.

46

2. Commumicate with remote objeois: Details of communicatinn between remote objects ~e
handled by RM1, to the programmer, remote communication looks like a standard Java
method invocation,

3. Load class bytecodes for objects that are passed as parameters or retum values: Because
RMI allows a caller to pass pure Java objects to remote objects, RMI provides the

necessary mechanisms for loading an object's code as well as transmitting its <lata.

The illustration below depicts an'RMI distributed .applicationthat uses the registry to obtain
references to a remote object, The server calls the registry to associate a name with a remote
object. The client looks up the remote object byoits name in, the server's registry and then
invokes a method on it./The illustration also shows.that the RMI systemuses an existing web

server to load Java class bytecodes, :fromn server to client and froni client to server, for objects

when needed, RMI canrload class bytecodes using any URL protocol that is supported by the

Java system,

regiatry

UL
' pIXi000.1

Figure 3.2.1.1: The Distributed and Nondistributed Models Contrasted
The Java distributed object modelis 'similarto the Java object model in the following ways:

1 A reference to a remote object ¢an be passed as an argument or returned as a result in any

method invocation.

2 A remote object can be cast to any of the set of remote interfaces supported by the

implementationusing the built-in Java syntax for casting.

The built-in Java instanceof operator can be used ta test the remote interfaces supported

by a remote object.

The Java distributed object model differs :from the Java object model in these ways:

47

1. Clients, of remote objects interact with remote interfaces, never with the implementation
classes ofthose interfaces.

2. Non-remote arguments to, and results from, a remote method invocation are passed py
copy rather than by reference. This is because references to bbjects are only useful within
a single virtual machine.

3. A remote object is passed by reference, not by copying the actual remote implementation.

4. The semantics .of some of the methods defined by class java.lang.Object are specialized
for remote objects.

5, Since the failure modes of invoking remote obiects are inherently more complioated than
the failure modes of invoking local. obiects, clients must deal with additional exceptions

that can occur during a remote method invocation.

3.2.2 R)MI Interfaces a.i1.dClasses
The interfaces *an.O classes that are responsible for specifying the .remote behavior of the RMI
system are defined 'in the java.rrni package hierarchy. The following figure shows the

relationship between several ofthese interfaces and classes,

Fiterfaces

{ -Pemets ‘}-,,--- «{RemdiaObijed) - (1OE.xoopion .)
L
{RemobExcepion}

--Ii,. $:lension
--- 1o, irnplemenl!iliort

Figiire 3.2.2.1: RMI Iriterfacesand Classes

3.2.2.1 Tbe javairmi.Remotelnt-e;rface

In RMI, a remote interface is an interface that declares a set of niethods that may be invoked
from a remote Java virtual imnachine. In a remote method declaration, a remote object declared
as a parameter or>return value must be declared as the remote interface, not the
implementation class of that interface. The interface java.rrni.Remote is a marker interface
that defines no ethods. A remote interface must at least extend the interface

java.rmi.Remote or another remote interface that extends java.rmi.Remote.

48

3.2.3 Parameter Passing in Remote Met~oc] Invecation
An argument to, or a return value from, a remote object can be any Java object that is
serializable, This includes Java primitive types, remote Java objects, and non-remote Java

objects that implement the java.io.Seriafizable interface.

3.2.3.1 Passing Non-remote Objeets
A non-remote object, that is passed as a parameter ofa remote method invocation or returned
asa result ofa remote method invocation, is passed.by copy, that is, the object is serialized

using the Java Object Serializationmechanism.

So, when a non-remote object is passed as an argument or return value in a remote method
invocation, the content of the non-remote object is copied before invoking the call on the
remote object. When a non-remote object is returned :from a remote method invocation, a new

object is created in the calling virtual machine,

3.2.3.2 Passing Remote Objects
When passing a remote bbjecfas &iparameteror returnwafue in.a remote method call, the stub
for the remdte Objectis passedOiAfemdte Object passed .as-*a parameter: can-only implement

remote interfaces.

3.2.3. Referential Integrity

If two references to an object are passed from one Virtual Machine to another Virtual
Machine in parameters in a sin.gletemote method call and those references refer to the same
object in the sending Virtual Machine, those references will refer to a single copy of the
object in .the receiving Virtual Macliin.e. Within @ single remote method call, the RMI system
maintains referentialintegrity among the obiects-passed as parameters or as a return value in

the call.

3.2.3.4 Class Annofation

When an object is sent.from one Virtual Machine to another in a remote method call, the RMI
system annotates the class descriptor in the call stream with the URL infbrmation of the class
so that the class can be loaded at the receiver. It is a requirement that classes be downloaded

on demand during remote method invocation.

49

3.2.3.5 Parameter Transmission

Parameters in an RMI call are written to d stream that is a subclass Of the class
java.io.Objectfnitputotream in order to serialize the parameters to the destination of the
remote call. The ObjectOutputStream.subclass overrides the replaceiibject method to replace
ea~hremote object with its corresponding stub class. Parameters that are objects are written to
the stream using the ObjectOutputStream.'s writeiibject method. The ObjectOutputStream
calls the replaceiibject method for each object written to the stream. via the writeilibject
method. The replaceiibject method of RMI's subclass of ObjectOutputStream. returns the

following:

1. Ifthe object passetl to replaceiibject is an instance ofjava.rini.Remote, then it returns the
stub for the remote object. A stub fora remote object is obtained via a call to the method
java.rmi.server.Remotetibject. toStub.

2. Ifthe object passed to replageiibject is not an instance ofjava.rmi.Remote, then the object

is simplyreturned.

RMI's subclass of ObjectOutputStream. also implements the annotateClass method that
annotates the call stream with the location .of the class so that it can be downloaded at the

receiver.

Since parameters are written to a single ObjectOutputStrearp, references that refer to the same
object at the caller will refer tq the same copy of the object at the receiver. At the receiver,

parameters are read by a single'Object Input Stream.

Any other default behavior of {)bjcctOutputStream for writing objects (and similarly
ObjectinputStream for reading objects) is maintained in parameter passing. For example, the
calling of wdteReplace when writing obiects and readResolve when reading objects is

honored by RMI's parameter marshal and unmarshal streams.
In a similar mamier to parameter passing in RMI- as described above, a return value (or

exception) is written to a subclass of ObjectOutputStream and has the same replacement

behavior as parameter transmission.

50

3.2.4 Locatiag Remote Objects
A simple bootstrap name server is provided for storing named references to remote objects. A

remote object reference can be ,stored using the URL-based methods of the class

javir.rmi.Naming.

Fora client to invoke a method ona remote obiect, that client must :first obtain a reference to
the object. A refe.re~ceto a remote object is usually obtained asa parameter or return value in
a method call. The RMI system provides a simple bootstrap name server from which to obtain
remote objects on given hosts. The java.rmi.Naming class provides Uniform Resource
Locator (tJRL) based methods to look up, bind, rebirid, unbind, and list the name-object

pairings maintained on a particular host and port.

325 Stubs and Skeletons

RMI uses a standard mechamsm for commumcatmg w1th remote obJects stubs and skeletons.

A stub for a remote objec‘ aéts asa. chenf's Iocal representatlve or proxy for the remote pbject.

The callerb‘mvokes a method on the local stub which is reponsible for carrying out the method
call on' the relllote obJect in RMI, a stub for a remote object implements the same set of
remote illterfaces that fi- remote obiect impMrllerits. When a stub's method is invoked, it does

the following.

1. Initiates a connectio:fi with the remote i\TM c¢9ntamning the femote object.
2. Writes and transmits the parameters to the remote VM.

3. Waits for the result ofthe method invocation.

4. Reads the return vahie or exception returned.
5

. Returns 'the value to the caller.

The stub hides tli1~ seralizatiori;6f'plli-artietgtg ana fUt rietWstk-level cotittulltiicationt iri drcfor
10 fPPat.. a simple invocation 1tieclian.ism.to the caller. in the remote VM, each remote object
may have a corresponding skeleton, The skeleton is responsible for d1spatch1ng fli,e call to the
actual remdte object implemenUition. When a skeleton receives an incéming method

mwocation it does the follOwing.

51

I. Reads the parameters for the remote niethod.
2. Invokesthe method on the actual remote obiect implementation,

3. Writes and transmits the renirn value or exception to the caller.

3.,2.6 Thread Usage in.Remote Met~od Invocations

A method dispatched by the RMI runtime to a remote object implementation may or may not
execute in a separate 'thread, The RMI runtime makes no guarantees with respegt to mapping
remote object invocations to threads. Since remote method invocation on the same remote
object may execute concurrently, a remote object implementation needs to make sure its

implementationis thread-safe.

3.2.7 Garbage (follectfiigtc,fr~1nofe(Jt,j~cts

In a distributedsystein;.3ust~s)intheldcafsy§tem., it isdesirable to automatically delete those
remote objectsthatare ndloil.gel'feferenced by any client. This frees the programmer from
needing to k:eeptrack of the remote objects clients so that it carrterminate appropriately, RMI

uses a reference-counting garbage collection algorithm.

To accomplishrefererice-couir.tinggfii'l1,age co~ctidh; th.e RMI runtime keeps track of all live
references within.ea.ch Juiva. virtrti;l n:iachnie>Wliefr~ |ive. teferehce enters a Java virtual
machine, its tefetence count is iricremeirted. The :first reference to an object sends ~
referenced message to the server for the object. As live references are found to be
unreferenced in the local virtual machine, the count is decremented. When the Iast reference
has been discarded, an unreferenced message is sent tolhe server,

Many subtleties exist in the pt-6tocol, most of these ate relatedto-niainta.ining the ordering of
referenced and unreferenced nies'sagesin order to ensl:ltethat the object is not prematurely

collected.

When a remote object is not referenced by any client, the RMI runtime refers.to it using a
weak reference. >The weak reference allows the Java virtual machine's garbage collector to
discard the objedt if no other local references to the bbject exist. The distributed garbage
eollection algorithm interacts with the local Java virtual machine's garbage collector in the

usual ways by holding normal or weak references to objeots.

52

As leng as a local reference to a remote object exists, it cannot be garbage-collected and it
canbe passed in remote calls or returned to clients. Passing a remote object adds the identi:fier
for the virtual machine to which it was passed to the referenced set. A remote object needing
unreferenced notification must implement the java.rmi.server.Unreferenced interface. When
those references no longer exist, the unreferenced method will be invoked. unreferenced is
called when the set of references is found to be empty so it might be called more than once.

Remote objects are only collected when no more referenees, either local or remote, stili exist.

Note thar if a network partition exists between a client and a ren;iote server object, it is
possible that premaiure collection of the remote objectwill occur (since the transport might
believe that the client crashed). Because ofthe pdssibility of premature collection, remote
references cannot: guar;ahtee;.tefere:ntialdntegrityin Qtherwords, it.is always possible that a
remote referenceirtiay)in<factrnot refet to>anexisting object. A .attempt--to use such .a

reference will generate d RetnoteException which must be handled by the application.

~DynainicClass Loaduig

RMI allows parameters, return values and exceptions passed in RMf calls to be any object
that is serializable. RMI uses.the object serializationsmeohanismto transmit.<lata from one
virtual machine to another and:alsd .annotates the eallestream with the appropriate location

information so.fhatthe class definition files can be loaded at.the receiver.

When parameters and retum-values for a remote method invocation are unmarshalled to
become live objects in the receiving VM, class definitions are required for all of the types of
objects 'lfl the stream. The u.:tlnl1U'shalllug process first arten:~pts to resolve classes by name in
its local classdoading context.. RMLalso. provides a facility for dynamicallyloading the class
de:finitionsfor the<actual types.6fobjeCtsipassed as parameters and return.values -for remote

method mvocations from network 16Cationsspeci:fied by the transmitting endpoint.

This includes the dynami¢c dow:nloadingof remote stub classes corresponding to particular
remote object implementation classes as well as any other type that is passed by value in RMI
calls, such as the subclass of a declared parameter type, that is not already available in the

class loading context ofthe unmarshallingside.

53

/!

51N

3240

To support dynamic class loading, the RMI runtime wuses special subc\asse~;/,01
java.io.ObjectOutputStream and java.io.ObjectinputStream for the marshal streams t~~{ it

uses for marshalling and unrnarshalling RMI paratneters and return vahies. \:

These subelasses override the annbtateClass method of ObjectOutputStream and the
resolveClass method ofObjectlnputStream to communicate information about where-to locate
class files conta:iiling the definitions for classes corresponding to the class descriptors in the

stream.

For every class descriptor written to an RMI marshal stream, the annotatedlass method adds
to the stream the result of calling java.rmi.server.RMIClassLoader.getClassAnnotation for the
class object, whicl;iuiay b~ null-or may be a String object represeriting the eodebase tJRL path

from which :the.remote endpoint should download the class definition ple for the given class.

For every cl~ssd~scriptor read from an RMI marshal stream, the rdsolveClass method reads a

single object from the stream.

If the object is a String, then resolveClass returns the result of calling
RMIClas'sL))ader.loadClass with the' annotated String object as the :first parameter and the
name of the desired class in the class descriptor as the secoi;id parameter. Otherwise,
resolveClass retums the result of calling RMIClassLoader.loadClass with the name of the

desired class as the only parameter.

3.2.8 RMI Through F~rewalls.i!a.llrQxies

The R}1I ttangpdrt layer norma.Uy ~ttempts to open direct sockets to hosts on the Internet.
Many intrailets,/1lowever, have:11,I'yVV~ which.d() not allow this. The defanlt RMI transport,
therefore, provides two alternate HTTP-based mechanisms which enable a client behind a

firewallto jn.y()ky a method ona remote object which resides outside the :firewall.

3.2.8.1 How an RMI(Jall is Packaged withfii the H'fTP Protocol

To get outside a firewall, the transport layer embeds an .RMI call within the :firewall-trusted
HTTP protocol, The RMI call data is sent outside as the body of an HTTP POST request, and
the return inforrnation is sent back in the body of the HTTP response. The transport layer will

formulate the POST request in one of two ways.

54

Al

[If the firewall proxy will forward an HTTP request directed to an
arbitrary ,port on the host machine, then it is forwarded directly to the
port 01 yvijch the RMI server is listening. The default RMI transport
lnyef)oi .the target machine is listening with a servet socket that is
cupal;,le of understanding and decoding RMI calls inside POST

reque~ts.

2. I'f the firewall proxy will only forward HTTP reqnests directed to
certain Well-kndwn HTTP ports, then the call will be forwarded to the
HTTP server hstenmg on port 80 of the host ‘machine, and a CGI script

will be; exécuted 0 forward the call to the target RMI server port oh

‘the same machme

3.2.8.2 The Def~iiltSockefF'acfory

The RMI trruisport extends/the java.rmi.server.R.MtSucketFactoryclass to provide a defanlt

-iszle1nehtati~~<?f}a< sockefifactory which is the resource-provider for client and server

'sockets. This .¢lefault socket factory creates sockets tli~t transparently provide the firewall

tunnellingmechanism.as follows.

1. Client sockets autoniatfoallyattempt HTTP connections to hosts that cannot be contacted
with a direct socket.

2. -Server sockets autoinatic@y detect if a newly-accepted connection is an H1ffF POST
request,/iari.dif so, returfla socket that will expose only the body of the request to the

transport ari.d format its outputas anHTTP response.

3.2.~.3 Confi~~rllithe Chent

There is no Special corifiguratiorinecessary to enable the client to send RMI calls through a
firewall. The client can, however, disable the packaging of RMI oalls as HTTP requests by

setting the java.rmi.server.disableHttp property to equal the boolean value true.

35

3.2.8.4 Configuring the Server

in order for a client outside the server host's domain to be able to invoke methods on a server's
remote obiects, the client must' be able to :find the server, To do this, the remote references

thatthe server exports must conJ;ainthe:fully-quali:fied name ofthe server host.

Depending on the server's platform and network environment, this information may: or may
not be available to the Java virtual machine o1 which the server is running. If it is not

available, the host's fully qualifird name> nwst be specified with the property

java.:rmi.server.hostnamewhen starting tlie server.

3.2.8.5 Performance Issues and Limitations
Calls trangmitted v1a HTTP requests "a:re at least an order of magnitude slower that those sent
through direct sockets mthout takmg proxy forwaﬁdmg delays into consideration.

Becayse HTTP requests ¢4, only be initiated in one direetion through a firewall, a client
cannot elx~ort its own remote objects outside the firewall,.because a host outside the firewall

cannot initiate a method invocation backoii.th,e -clieht,

56

Summary and Conclusion

Java is designed to be platform independent. A pure Java program written for a Windows
rnachine will run without recornpilation on a Solaris Sparc, an Apple Macintosh, or any

platform with the appropriate Java virtual rnachine.

JDBC is a rich set of classes that give us transparent access to a database with a single
application programming interface, or API. This access is done with plug-in platform-specific
rnodules, or drivers. Using these drivers and the JDBC classes, our programs will be able to
access consistently any database that supports JDBC, giving us total freedorn to concentrate

on olir applicatioris'and not to worry about the underlyil1§. database.

Net8 eriables;,.tkh:ey;mgchings“}in’«ourk,.networ‘k to communicate with one another. It facilitates and
manages communication sessions between a client application and a rernote database.

Spemﬁcally, Net8 perforrns three basic operations.

When Net8 passes control of a connection to the underlying protocol, it inherits all rnedia
and/or topologies supported by that network protocol stack. This allows the network protocol
to use any means of data.transin.ission, such a8 Ethem.et, Token.Ring, or other, to accomplish

low leveLdatalirik transtriissiorisbetween.rwo niachines.

in d distriblited systern, just as in the local systern, it is desirable to autornatically delete those
rernote objects that are ridlonger referenced by any client. This frees the prograrnrner frorn
needing to keep track ofthe remote objects clients so that it can terminate appropriately. RMI

uses a reference-eounting garbagecollection algorithrn.

57

References

Reference to Books

[1]1D. R. Grafhain/an.dF.B. Golden, eds., General Electric, N.J.: Prentice Hall, 1982
[2] R. G. Holt,Semiconductor Power Electronics, Van Nostrand Reinhold Company, Inc,

1986

Reference to Web

[1] www.scansoft.com/paperport/oracles/syoregs.asp

[2] www.advantagedatabase.com

[3] www.hyperdictionary.com/computing/relational+databasemanagement+system
[4] www.cs.rit.edu/picss544/userprocesses.html

[5] www.geocrawler.com

[6] www.computing.net/netware

[7] www.csee.umbc.edu

[8] www.cise.ufl.edu

[9]www.oreilly.com

[10] www.sheenetworks.com

[11] www.roguewave.com

[12] www.citeseer.nj.nec.com/486101 .html

[13] www.leamit.nl

[14] www.vet-purdue-edu/java/docs/guide/rmi-objmodel2.html
[15] www.msdn.microsoft.com/library/en-us/comn/htm

[16] www.uniform.chi.il.us/slides/corba/sld023.htm

[17] www.dcs.warwick.ac.uk/people/academic/ananda.amatya/javanotes/nodel08.html
[18] www.usc.edu/dept/finserv/dirting/trnschehed | .htm

[19] www.experts-exchange.com/database/oracle/Q 20680748.htm
[20] www.adp.gmbh.ch/ora/concepts/sga.html

[21] www.remote dba.cc/sl 1.htm

[22] www .orsweb.coin/reference/orsintrnlstrc.html

58

www.java.sun.com/products/jdk/ 1.2/docs/rmi/ spec/rmitoc.doc.html

www. Citeseer.nec.com

www.usaid.gov
.wyvw.cbbrowne.com/info/rdbms.html
www.cs.emu.edu/people/claman/OODBMS
www.media.wiley.com/product data/experct
www.sotfiiria: ft/public/ sovl plainfosse _thesis

www.cnurchilobjects.com/c/11086¢.htnil

59

Appendices
AppendixA

Glossary ofJava and Related Terms

AbstractWindow Toolkit

A collection of graphical user interface (GUI) components that were implemented using
native-platforin versions of the components. These components provide that subset of
functionaHty which is eommon to all native platforms, I,argely supplanted by the Project

Swing component set.

Abstraet
A Java(TM) programrning langiniage keyword used in a class definition to specify that a
classiSn.6ftObeinstantiated, but ratherinherited by other classes. An abstract class can

have abstractmethods that are not implemented in the abstract class, but in subclasses.

Alpha Vafue

A value that indicates the opacity ofa pixel.

API
Application Progi:amm.ingInterface. The specification of how a programmer writing an

application accesses the behavior and state of classes and objects.

Applet
A component that typically executes in a Web browser, but can execute in a variety of

other applications or devices that support the applet programming model.

Argument
A data item specified in a method cali. An argument can be a literal value, a variable, or

an expression.

Bean

A reusable software component. Beans can be combined to create an application.

Bit
The smallestunit.ofinfonnation in a computer, with a value ofeither O or 1.

Bitwise Operator

An operator that manipulates two values comparing each bit of one value to the

corresponding bit of the other value.

Block
In the Java(TM)progtatnrtiinglangUage, any code between matching braces. Example: |

X

:Bl.1stitesslogic
The code that implements the functionality of an application, In the Enterprise JavaBearis

model, this logic is implemented by the mcthods ofan entcrpriso boan.

Byte

A sequence ofeight bits, Ti)~Java(TM) programming language provides.acorresponding

byte type.

Byteeede
Macehine .indepeadent code generated by the Java(TM)compiler and executed by the Java

interpreter.

Cateh
A Java(TM) programming language keyword used to declare a block of'statements to be

executed in the event that a Java exception, or run time error, occurs in a preceding "try"

block,

Ciass
In the Java(TM) programming language, a type that defines the implementation of a

particular kind of object. A class definition defines instance and class variables and
methods, as well as specifying the interfaces the class implements and the immediate
superclass of the class. Ifthe superclass is not explieitly specified, the superclass will

implicitlybe Object.

Class .method
A method that is invoked without reference to a partioular object. Class methods affect

the class as a whole {116t aparticularinstance ofthe class.

ciasspath-

A classpathis<a.l1 eunvirorimentalvariable which tells the Java(TM) virtual machine= and
Java ~echnology~basedapplications (for example, the tools located in the JDK(TI\1)
LL.X\hin directory) where to find the class libraries, including user-defined class

libraries.

Class varlablc
A dataitemassociated with a particular class asa whole--not with particular instances of

the class. Class variables are defined in class definitions.

Clicnt
in the client/server model of commiincations, the client.is a process that remotely

accesses resources of a compute server, such as compute power and large memory

capacity,

Codebase
Works together with the code attribute in the <APPLET>tag to give a complete

specification of where to find the main applet class file: code specifies the name ofthe

file, and codebase specifiesthe URL ofthe directory containing the file.

C<mimit

The point.in a transaction when all updates to any resources involved in the transaction

are made permanent.

Compilatlon unlt

The smallestunit of source code that can be compiled, In the current implementation of

the Java(TM)platforin~ the compilation unit is a file.

Compiler
A program to translate source code into code to be executed by a computer. The
Java(TM) compilet translates source code written in the Java programming language into

bytecode for the Java virtual machine °.

(?0mpijnent
An applieaiion-level ~ sotl:ware unit supported by a container. Components are
configurable at deployment time. The J2EE platform defines four types of components:

LB, beans, Web components, applets, and application clients.

O LT

C<ust,riagte,r
A pseudo;,method. \fiit >¢reates an object. In the Java(TI\l) programrning language,
constructors are instad,ge>:111ethods with the same name as their class. Constructors are

invoked using the new keyword.

Container
An entity that provides life cyole managemellt, seeurity, deployment, and runtime
services to components, Each type of container (EJB, Web, JSP, servlet, applet, and

app}ication.client) also provicles component-specific ~ services,

CORBA
Common Object Request Broker Architecture. A language independent, distributed

object model specified by the Object Management Group (OMG).

Declaration
A statement thai establishes an identifier and associates attributes with it, without

necessarily reserving its storage (for <lata) or providing the implementation

Encapsulation

The localizatiot1 of knowledge within a module, Because objects encapsulate data and
implementation, the user ofan object can view the object as a black box that provides
sereices. Instance variables and methods can be added, deleted, or changed, but as long as
the services provided;bythe(objectremain the same; code that uses the object can

continue touseitMTithot1.tl:>emgwewnttem

Eiterplise llean
:A'Bomponentthat implements a business task or business entity; either an entity beans or

a session bean.

~f~~~prise Java Beans
A component architeeture for the development and deployment of object-oriented,

distributed, = etiterptisemlevel applioations, Applications written using the Enterprise

JavaBeans architectti.:re are scalable, transaetional, and multi-user and secure.

Exception
An event during program execution that prevents the program from continuing normally;
generally, an error. The Java(TM) prograrriming language snpports exceptions with the

try, catch, and throw keywords .. See alsoexceptionhandler .

.Exception Handler
A block ofeode that reaets to a speoific type ofexception. If the exception is foran error
that the program can recover from, the program can resume executing after the exception

handler has executed.

Exeeutable Content

An application that runs :from within an HTML file.

Extends
Class X extends class Y to add functionality, either by adding fields or methods to class
Y, or by overriding methods of class Y. An interface extends another interface by adding

methods, Class X is said to be a subelass of class Y.

Garbage CoUedion
The automatic detectionand :freeing ofmemory that is no longer in use. The Java(TM)
runtime systemxperthrfils;.garbage/collection se that ptogrant:iners uever explicitly. free

objects,

GLJ1
Graphical User Interface. Refers to the techniqaes involved in using graphics, along with

a keyboard and a mousecto provide an.easy-to.use:interface to some program.

HTML
HyperTe~/M~tkup Language. This is a file format, based on SGML, for hypertext
documents ontheluiternet. It is very simple and allows for the embedding of images,

sounds, video streams;formfields and siniple textfo:o:natting. References to other objects
are embedded using URLs.

HTTP
HyperText Transfer Protocol: The Internet protoeol, based on TCP/IP, used to fetch

hypertext objects :from remote hosts.

HTTPS
HTTP layered over the SSL protocol.

IDL

Interface Definiti.on Language. APis written in the Java(TM) programming language that
provide standards .based interoperability and connectivity with CORBA (Common Object

Request Broker Architecture).

HOP
Intemet . Inter""ORB Protocol, A protocol used, for communication between CORBA

objecrrequest brokers.

Implements
A Java(TM) prograniming language keyword optionally included in the class declaration

to specify any interfaces that are implemented by the current class.

An object of a particular class, in programs written in the Java(TM) programming
language, an instance ofa class is created using the new operator followed by the class

name.

hutert,r~ter
Ainodtile thatalterri.a.tely decodes and executes every statement in some body ofcode.

The Java(TM) jllter.pretet'lecodes and executes bytecode forthe Java virtual machine

JARFUes (.jar)

Java. AR.chi-ve. Afile formatusedfor aggregating many files into one.

Java(TM)
is $url's tra.derrtvrk for a set of techriologies for oreating and safety running software

programs 1niibothstari.d-alone and networked environments.

Java Application Environment (JAE)
Thesource code release ofthe Java Development Kit (JDK(TM)) software,

Java DevelopmentKit (JDK(TI\1))
A softwa;re development environment for writing applets and applications in the Java

pregraeiming languege.

Java(TM) .Platform
Consists of the Java- language for writing programs; a set of Al'ls, class libraries, and
otherprograms used in developing, compiling, and errdrwchecking programs; and a Java

virtuahnachine whichloads and executes the class files.

JavaScript(fM)
A Web scripting language that is used in both browsers and Web scrvers, Like all
scripting languages,it isused prirtiarilytotie other components together orto accept user

input; :

JavaServer Pages(TM) (JSP)

An exteusible Web tecl:mnology that uses-template .data, custom elements, scripting
latigua.ges~ atidserver"'side Java objects te return dynamic content to a client. Typically
the te:urit,Uite data:is”. HTML or XML- elernents, and in many cases the client is a Web

b:rowser.

Java(TM) virtual mach.me(JVM)*
A software "execntion engirte"thiat safely and corripatibly executes the byte codes in Java

class files ONramicroprocessorfwhether in a computer or in another electronic device).

Jini(TM) Technofogy

AsefofJava APis that may be incorporated an optional package for any Java 2 Platform
Editicni TJ:ie.Jini APis enable transparent networking of devices and services and
eliminates the need for system or network administration intervention by a user,
The Jini technology is currently an optional paekage available on all Java platform

editions.

JMAPI
Java(TM) Management API. A collection of Java programming language classes and
ipterfaces that allow developers to build system, network, and service management

applications.

~INO!
JavaiNaining and Directory Interface(TM). A set of APis that assist with the interfacing

to multiple ramingand directoty services.

JPEG
Joint Photographic Experts Group. An image file compression standard established by
this group. It achieves tremendous compressionat the cost of introducing distortions into

the image which are almost always imperceptible.

JRE
Java(TM) rtirttime errvironnient. A subset of the Java Developer Kit for end-users and
devef~pe:ts. yWh.0> want to redistribute the runtime environment. The Java runtime

envirorinlentcqn.sists of the Java virtual machine", the Java core classes, and supportin
q pporting

Just~in.fiine (JIT) Compiter>
A compiler that converts alFofthe bytecode into native machine code just as a Java(TM)
prQgrami.s :tun. This results in nin-tinie speed improvements over code that is interpreted

by aJavavirtualinachirie*.

JVM
Java(TM)MirtuakMachine*. The part ofthe Java Runtime Environment responsible for

interpreting bytecodes.

Multitbreaded

Describes a program that is designed to have parts of its code execute con

SAX

Simple .APifo:r XML. An event-driven, serial-access mechanism for accessing®

documentsw

SecuhfSécket Layer (SSL)
A protocol that allows communieation between a. Web browser and a server to be

encrypted for privacy.

Servlet
A Java program that extends the funcfiimality ofa Web server, generating dynamic

corit(;lrifandfiitetacting with Web clients using a request-response paradigm.

SQL
Structured Query Languag: The standardized relational database language for de:fining

ctatabas~c.6bJeetsra.r.c1 :manipulating <lata.

TCPIIP
Transmission Control Protocol based on IP. This is an Internet protocol that provides for

the reliable delivery of streams of data from one host to another.

Thread

The basic iiit. of program e.xecution. A proeess can have several threads nnining
concurrently, each perferming. adifferent job, sueh as waiting for events or performing a
tirrie .eonsumingjob thatthe program doesn't need to complete before going on. When a

thread has finished itsjob, the thread is suspended or destroyed.

I pmgré;ﬁming language keyword that allows the user to throw an exception

L mp]ements the "throwable" interface.

A Java(TM) programming language keyword used in method declarations that specify

which exceptions are not handled within the method but rather passed to the next higher

level ofthe program.

Try -
A Java(TM) programrmn‘ iang age keyword that defines a block of statements that may

ge‘ 9.0 ',ptlon Ifan exceptlon is thrown, an optional "catch"block can

handl ‘sp, ﬁé‘ex@eptlons thrown within the "try" block. Also, an optional ":finally"

bl’Q(:k;V\fil‘lfl e‘executed regardless ofwhether an exception is thrown or not.

URL
for writing atextreference to an arbitrarypiece of
"protocol:/host/localinfo" where protocol specifies
object (like HTTP or FTP), host specifies the internet name
and localinfo is a string (often a file name) passed to the
protocol handler on the 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	Table of Contents
	1.4.3.2 ()811~.~(trf,i"e~>~~do Logs
	ii
	m
	w

	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1

	Page 5
	Titles
	~~m ~

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	Acknowledgements

	Images
	Image 1

	Page 8
	Titles
	Abstraet

	Images
	Image 1
	Image 2

	Page 9
	Titles
	List of Figures

	Images
	Image 1

	Page 10
	Titles
	I: Introduction
	1

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	RI)BMS

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Titles
	5

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	7

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Titles
	CHAPTER 2:0racle Integration

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Titles
	21

	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1
	Image 2
	Image 3

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Images
	Image 1
	Image 2
	Image 3

	Page 37
	Titles
	their database c~:'i~,~~~~~r~~f1i~/'lit:ls~sji~,~~ö#ahf I: elese aliiteralors to avoJ
	2.2.11.4 Name Resolq.tion in the Server

	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Titles
	l.3 INTR.0DUCTION TO NET8

	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1
	Image 2

	Page 43
	Images
	Image 1
	Image 2
	Image 3

	Page 44
	Titles
	2.5.2.2 Redirect~d Sessions to E.n.stmg ~enr~r Pr9ceı;ses

	Images
	Image 1
	Image 2
	Image 3

	Page 45
	Titles
	36

	Images
	Image 1
	Image 2

	Page 46
	Images
	Image 1
	Image 2

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Titles
	CHAPTER 111: Process Management

	Images
	Image 1

	Page 50
	Titles
	'
	'
	'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 51
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 52
	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Images
	Image 1

	Page 56
	Images
	Image 1
	Image 2

	Page 57
	Titles
	i

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Titles
	49

	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1
	Image 2

	Page 61
	Titles
	3.2. 7 Garbage (follectfüqtc,fr~ınôfe(Jt,j~cts
	52

	Images
	Image 1

	Page 62
	Images
	Image 1

	Page 63
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Images
	Image 1
	Image 2
	Image 3

	Page 65
	Titles
	56

	Images
	Image 1

	Page 66
	Titles
	Summary and Conclusion

	Images
	Image 1
	Image 2
	Image 3

	Page 67
	Titles
	References

	Images
	Image 1

	Page 68
	Images
	Image 1
	Image 2

	Page 69
	Titles
	Appendices
	AbstractWindow Toolkit
	API
	A

	Images
	Image 1

	Page 70
	Images
	Image 1

	Page 71
	Titles
	Ciass

	Images
	Image 1

	Page 72
	Titles
	C<mımit
	(?ömpijnent
	CORBA

	Images
	Image 1
	Image 2

	Page 73
	Images
	Image 1

	Page 74
	Images
	Image 1

	Page 75
	Titles
	hı.terı,r~ter

	Images
	Image 1

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Titles
	~JNO!
	JRE

	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 79
	Titles
	K

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

