
NEAR EAST UNIVERSITY

Faculty of Englneering

Department .ofComputer Engineering

JAVA<and ORACLE DATABASE
ADMINISTRA TION

Graduation Project
GOM-400

Studentı Hamza ·ÖZKARSLI (971470)

Supervisor: Halil ADAHAN
,ı

Nicosia~2004

Table of Contents
Page

Acknowledgement

Abstract

Introduetion

i

ii

m
Chapter I

1.1 RELATİONAL DATABASE MANAGEMENT

1.2 RDBMS COMPONENTS

1.2-.1 The RDBMS Kernel
J~2.2The Data Dienonary

1.3ORACLE DATABASE

1.4ORACLKFILES

1.4.1 Database Files

ı.1.2 Control Fil~s
1.4.3 Redo Logs

1.4.3.i Online Redo Logs

1.4.3.2 ()811~.~(trf,i"e~>~~do Logs
i.J·j ••Qt~er••sııpp?rtlıı,!iles

1.5 SYSTEM And USER PROCESSES

1

2
2

2

3

5

5

5

6

6

6

6

7

7

7

7

8

8

8

9

9

9

10

te
w
rı
11

1.5.1 Mandatory System Proeesses

1.5.1.1 DB'VVR

1.5.1.2 L(;,N\!R

1.5.1.3 SMON

1.5.1.4 PMON
1.5.2 Optional System Processes

1.5.2.1ARCH

l.5.2.2-CKPT

1.5.2.3 RECO

1.5.2.4 LCK

1.5.3 User Processe~

1.5.3d Şingle Task

1.5.3.2 Dedicated Server Processes

1.5.3.~ The multi- Threaded Server
/

1.6 ORACLE MEMORY

1.6.1 System Global Area

1.6.1.l Databese Buffer Cache

1.6.1.2Redo Cache

1.6.h:lShared Pool Area

1.6.1.4 SQL Area
1.6.1.5 Dietionary Caehe

1.6.2 Process Global Area1

12

12

13

13

13

14

14

Chapter If
2.1 ORACLE ACCESS<With JDB-C

z.i.ı DriverTypes
2.ı.ı.ı Tfün Driver
2.1.1.2 OC18 Driver
2.1.2 The DriverManager Class

2.1.3 The J}riv~~Class

2.1.4 The ·Coıın~ctionxClass

2.1..51lhe1Statemei:ıtiClass

2.1.6 The ResultSet Class

15

15

15

16

16

16

17

17

18

18

18

19

19

20

zo
21

21

22

22

23

2.2 SQLJ
2.2.1 Oracle SQLJ Translator

2.2.2 Oraele SQLJ Runtime

2.2.3 SQLJ Profiles
2.2.4.Oraele Extension to the SQLJ Standard

2.2.~ Bask Translatien-Steps and Runtime Processing

2~2.5.1Tra:nslation. Steps

2.2.5.2)Runtime Processing

2.2.6 s,:EJ decteratlons
2.2.7 JavaHost Expressions, Context Expression,

and ResultExpressions

2.2.7.1 Host Expressicu

2.2.7.2 Context Expression

2.2.7.3 Result Expression

23

24

24

2.2.8 Stored Producure and Funetien Calls 24

2.2.9 Multithreding in SQLJ 24

2.2.10 SQLJ and JDBC Interoprobablhty 25

2.2.10.l Conv'erting From Connection Context to ,JDBC Connection 26

2.2.10.2 Convefting from JDBC Connections to Connection Contexts 26

2.2.10.3 .Shared Connections 26

2.2.11.SQLJ in the Server 27

2.2.ll.1 Creating SQLJ Code for Use within the Server 27

2.2.11.2 Database Conneetions wfthtn t~e Server 28

2.2.11.3 Coding Issues within the Server l8

2.2.11.4 Name Resehıtion in the Server 28

2.2.11.5 SQL Names V"ersusJava Names 29

2.2.11.6 TranslatingSQLJ Source ona Client and Loading 29

Components

2.2.11.7 Error Output from the Server Emmedded Translator 30

2.3 INTRODUCTION to NET8 30

2.3.1 NetworkTranspareney 30

2.3.2 Pr9tocollnd~pçn«Jence 31

2.3.3 1Mediil'f9.~ôlogyln.depep.dence 31

2.3.4 Heterogeneous Networking 31

2.3.5 Large Scale Scalability 31

2.4 NET8 FEATURES 31

2.4.1 Scability Features 31

2.4.2 Menegeability Features 32

2.4.2.1 Host Naming 32

2.4.2.2 Oracle Net8 Assistant 3l

2.!,.3 :Multiprotocol Support Using Oracle Connectfon Manager 33

2.4.4 Oracle Trace Assistaut 33

2.4.5 Native Naming Adapters 33

2.5 NET8 OPERA TION 33

2.5.1 Conneetmg to Servers 34

2.5.2 Establishing Connectien with the Network Listener 34

2.5.2.1 Bequeathed Sessions to Dedieated Server Processes 35

2.5.2.2 Redireeted Sessions -to Existing Server Processes 35

2.5.2.3 Refused Sessions 37

2.5.3 Disconnectmg from Servers 37

2.5.3.1 User-Initiated Diseonneet 37

2.5.3.2Additional Cennection Request 38

2.5.3.3 Abnormal Conneetien Terminanon 38

2.5.3.4'Tiıner Initiated Disconnect or Dead Connection Detection 38

2.~.4 Data Operation 38

26.5 Exeeptlen Operation 39

2.5.6 Net8 and the Transparent Network Substrate 39

~~m ~
3.1 DISTRIBUTEDPROCESSING 40

3.1.1 Stack Communfoation 40

3.1.2 StackCoınmuJ].icationsin an Oraele Netwerking 42

Environment

3.1.2.1Client-Server Interactkın

3.1.1 Server -fo Server Interaetion

3.2 DISTRIBUTEDCOMPUTING USING JAVA

3.2.1Diştributed Ol>jectApplications

3.2.2RMIIııtenaces and Cfasses
3.2.2.1 The Java.Rmi.Remote Interface

3.2.3 Parameter passing in Remote Method Invoeatlon

3.2.3.1 Passing Non-Remote Objects

3.2.3.2.Passing remote objects

3.2.3Referential Integrity

3.2.3.4 ClassAnnotatlon

3.2.3.5 Parameter Transmission

3.2.4Locating Remote Objects

3.2.5 Sfübs and Skeletons

42

45

46

46

48

48

49

49

49

49

49

50

51

51

3.2.6 Thread Usage in Remote Method Invocations

3.2.7 Garbage Collection of Remote Objects

3.2.8 RMI Through)firewalls Via Proxies
3.2.8.1 How an RMI Cali is Packaged within the HTTP Protoeol

3.2.8.2 The Default Soeket Factory

3.2.8.3 Configuring the Client

3.2.8.4 Cenflgurmg the Server

3.2.8.5 Performance Issues and Limitations

Summeıy and Conchısion

References

52'

52

54

54

55

55

56

56

57

58

Acknowledgements

.First 1 want to thank Halil adahan to be my advisor. Under his guidence, 1 sııcces:fiJ.Uy

overeome many difliculties and leam a. lot about student registration system with oracle

database, In each discussion, he explained my questions patiently, and I felt my quick

progress from his advices. He always helps me a lot either in my study or my life. I asked him

many questiöns in my subject and he always answered my questions quickly and in detail.

Specıal ıhanks to Ümit İlhan for his practical adviees, And thanks ıo Faeulty of Engineering
for having such a good computational and electronical environment.

I also want to thank to my friends in.Near East Universitye . Special thanks to Hakan for
helping computer side ofmy p;roject,Murat, Mehmet and Ali.

Finally, I want to thank my family, especiallymy parents. Without their endless support and

love for me, I would never achieve my current position. I wish my mother and father lives
happily always.

Abstraet

Möderü applicatiöiiS iti today's Cörtıputef Networks irtclude the use öf rtiulilihedia

applications such as Java and Oracle. The extensive use of Java makes it possible to bring

various applications inte progress to facilitate applioation development and structured

prograrnming, Java technology not only applies with modern Computer Network standards
but also · to applications regarding seeurity systems such as banking with management with
o:racıe syst~ın. Oracıe 011 the other hand btlıigs secure, refüıble, and advıinced darabase
management system to be used interactivelywith Java for use with industrialprojects.

List of Figures
page

Figure 1.2.1.l: Oracle & Kemel. 3

Figure 1.2.2.1: Structure of Oracle 4

Figure 2.S.2. 1: Network Listener in a TypicalNet8 Connection. 34

Figure 2.5.2.2.1: Redirected Connection to .a Prespawned Dedicated
Server process. 35

Figure 2.5.2.2.2: Rediracted Connection to aDispatcher Server Process. 36

Figure 3. 1. 1.1: OSI Coromunication,şStack. 41

Figure 3. l .2.1.1: Typical Commıınications.Stack in an Oracle Environment. 42

Figure 3.2.1.1: TheDistributed and Nondistributed Models Contrasted, 47

Pigure 3.2.2.1: RMI Interfaces and Classes. 48

I: Introduction
goal of this project is to mak:e the process of student registration and maintenance in the

ımhrPrc.:ttv as easy as possible for the staff. Student registration is a very time consuming

process, but by using a fle:xible software, we can reduce this headache, The life of the staff

be made easy by the following features:

1. New student can be registered.

2. Student details can be viewed.

3. Student <lata can be deleted.

4. Student data can be changed.

5. The system is very easy to understand.

6. The system is very secure.

The program is divided into two parts: The database part and the application part. FQr the

database, to meet the security and flexibility issues, I have chosen Oracle database which is

one ofthe main topic ofmy overall project as well.

For the application part, java is my choice due to its object-oriented fiınctionalityand security

features.In the database, there iare tables which hold the student record. The tables are related
to each other using one-to-one and one-to-many relationships to the <lata integrity issues.

In the application, I have used forms and general GraphicalUser Interface components to give

the functionality and look to the environment. This project is for student database where

students <lata can be added, deleted, viewed and altered aecurately with security.

1

1.1 RELATIONAL DATABASE MANAGEMENT SYSTEM
database is an integrated collection of related data. Given a speci:fic data item, the structure

of a database facilitates the access to dara related to it. A relational database is a type of

database based in the relational model. A relational database management systern is the

software that manages a relational database. These systems come in several varieties, ranging

from single-ııser desktop systems to full-featured, global, enterprise-wide systems, such as

Oracle8.

1.2 RDBMS COMPONENTS
Two important pieces of an RDBMS architecture are' the kemel, which is the software, and

the data dictionary, which consists of.the systeıri..level data structures used by the kemel to

manage the database.

1.2.1 The RDBMS Kernel
You might think of an RDBMS as an eperating system or set of subsystems, designed

speci:fically for controlling data access, its primary functions are storing, retrieving, and

securing <lata. Like an operating system, Oracle8i manages and controls access to a given set

of resources for concurrent database users.

The subsystems of an RDBMS closely resemble those ofa host operating system and tightly

mtegrate with the host's services for machine-levelaccess to resources such as memory, CPU,

devices, and file structures. An RDBMS such as Oraclesi maintains its own list of authorized

ers and their associated privileges, manages memory caches and paging, controls locking

corlcurrent resource usage, dispatches and schedules user requests, and manages space

age within its tablespace structures. Figure 1.1 illustrates the primary subsystems of the

aclesi kernel that manage the database.

2

RI)BMS

Figure1.2.1.1: Oracle8iKemel

.2.2 The Data Diction~ry

fundamental difference l,etie~p. gın •RDBMS and other.database arid file<systemsis in the

y that they access <lata. A .RDBMS enables you fö · reference physical <lata in a more
stract, logical fashion, providing ease and :flexibility in developing application code.

ograms using an RDBMS access <lata through a database engine, creatin.ts independence

m the actual <lata source and insulating applicatiöns :from the details-of the underlying

ical <lata structures. Rather than accessing a customer number as bytes 1 through 1 O of

customer record, an application simplyrefers to the attribute Customer Number.

RDBMS takes care of where the field is stored in the database. Consider the amount of
filrimirıg mödifications that you must rnake if you change a record structure in a file

application. However, using an RDBMS, the application code would continue

by name rather than by record position, alleviating the need for any

3

<lata independence is possible because of the RDBMS'sj <lata dictionary. The <lata

stores meta-dara for all the obiects that reside in the database. Oracle's <lata

öJctionary is a set of tables and database objects that is stored in a special area ofthe database

anclınaintained exclusivelyby the Oracle kemel. As shown in Figure J1 .2, requests to read or
date the database ·- MC processed by the Oracle kemel using the information in the <lata

dictionary. The information in the <lata dictionary validates the existence of the objeçts,

provides access to them, and maps the actual physical storage location.

Aceess to aU da.ta in the. d:ataıbase is mana.gedbydıe
kemell.; appHcatkı,ns never ,,vrit:e directl!y}tı,th~databaae,

Omele
Kernel

RDBMS

Figurell2.2.l: Stnıcture of'Oracle

does the RD8MS take care of locating data, it also determines an optirnal access

store or retrieve the <lata. Oracle8 uses sophisticated algorithms that enable you to

information either for the best response for the first set ot tows, or for total

rfühoutof all rows-to be rettieved.

4

/

1.3 ORACLE DATABASE
Physically, an Oracle database is nothing more than a set of files somewhere on disk. The

physical location of these files is irrelevant to the function of the database. The files are binary
files that we can only access using the Oracle kernel software. Querying data in the database

files is typicallydone with one ofthe Oracle tools using the Structured Query Language.

Logically, the database is divided into a set of Oracle user accounts, eaçh of which is

identüied by a username and password unique to thatdatabase. Tables and other objects are

ôWnedby one of these Oracle users, and access to thedata is only available by logging in to

the database using an Oracle username· and pa.sswofd.Withôut a valid username and password

for the,,data~ase,you are defil~dacCesstô ariytlıiiı.ğ ôn the databa.se.The Oracle username and
pasS)VOfd İS differentfrorrifhe ôperating system username a:rid]'.)8.SSWOrd.

addition ter physical· files, Oracle processes and memory struetures must also be present

fore we can use the database.

ORACLE FILES
Pc\11, I discuss th~ di:fferenttypes öf filesthatOracle uses ôitthe p.arddisk drive of any

hine.

1 Database Files
database files hold the actual <lata and are typically the largest in size, from a few

~bytes to many gigabytes.· The other files· support the rest of the architecture. Depending

heir sizes, the tables and other 'objects for all fhe' useiaccO\.llltScan obviously go in one

ase file, but that's not an ideal situation because it does not make the database structure

flexible for controlling access to storage for different Oracle users, putting the database

rent disk drives, or backing up and restoring just part of the database.

ltlst have at least'one database file, but usually, we have manymore than one.. in terms of

and using the data in: the tables and other objects, the mımber or location ofthe files
rial. The database files ate fixed fa size and never grow bigger than the size at which

5

~n .••••• nı Files

uaıauasc must have at least one control file, although we typically have more than one to

against loss. The control file records the name of the database, the date and time it WtJS
ereated, the location of the database and redo logs, -and the synchronization information to

...,~uıvthat all three sets of files are always in step. Every time we add a new database or redo

fileto the database, the information is recorded in the control :files.

database must have at least two redo logs. These are the journals for the database, the

logs record all changes to the user objectsor system objects. If any type of failure occurs,

a~ loss of one or more databa,s~ files, we.can U,ŞyJhe changes recorded in the redo logs to

the database to a corısistyntst~ty withoµt losing any c:0111lllİtted transactions. in the case

non-data loss faily,re,.. such asa machine crash, Oracle can apply the information in the redo

automatically without intervention from the database administrator, The SMON

process automatically reapplies the committed changes in the redo logs to the

ıı.u;.uaua;:,ı;; files.

ike the other files used by. Qracle, .. the .. redo log files .. are fixed in size ..and never grow

tjynamically from the şize at whic.hthey were created.

1.4.3.1 Onfine Rede Logs

e online redo logs are the two or more redo log files that are always in use while the Oracle

ance is up and running. Changes we make are recorded to each of the redo logs in turn.

one is full, the other is written to, when that becomes full, the first is overwritten, and

Offline, Archfved Redo Logs

e offline or archived redo logs are exact copies of the online redo logs that have been filled,

optional whether we ask Oracle to create these. Oracle only creates them when the

abase is running in ARCHIVELOG mode. If the database is running in ARCHIVELOG

de, the ARCH background process wakes up and çopies the online redo log to the oflline

:;..:,ı.u.ıauvıı once it becomes füll.

6

While this copying is in progress, Oracle uses the other online redo log. If we have a complete

set ofoffline redo logs since the database was last backed up, we have a complete record of

changes that have been made.

We could then use this record to reapply the changes to the backup copy of the database files

ifone or more online database files are lost.

1.4.4 Other Supporting Ftles

When we start an Oracle instance, the instance parameter file determines the sizes and modes

ofthe database. This pffiiameter file is known as the INIT.ORA file. This is an ordinary text

file containing parameters for · which we can .. override }the default settings. The DBA is

responsible for creating andniodi:fying ;.theLcôntents of.thiseparameter file. On some Oracle

platforms, a SG.AP.A17) fiJeis aıso .created, which contains the starting memory address of the

Oracle SGA.

1.5 SYSTEM AND USER PROCESSES

In this part, I discuss some of the Oracle system processes that must be running for the

database to be useableriricluding the optionalprocesses .andithe\processesthctt are created for

users connectinğ<to•·tHe Oracledatal:fase.

1.5.1 Mandatory System Processes

The four Oracle system processes that must always be up · and running for the database to be

useable include DBWR (Database Writer), LGWR (Log Writer), SMON (System Monitör),

and PMON (Process Monitor).

1.5.1.1 DBWR
'fhe database writer background process writes modified database blocks in the SGA to the

illatabasefiles, It reads only the blocks, that have changed. These blocks are also calied dirty

1biocks. The database writer writes out the least recently used blocks first.

ese blocks are not necessarily written to the database when the transaction commits, the

,nly thing that always happens on a commit is that the changes are recorded and written to the

line redo log files. The database blocks will be written out later when there are not enough

:free in the SGA to read in a new bkıck.

7

1.5.1.l l,(;\l\lll

The. log writer process writes the entries in the SGA's redo buffer for one or more.transactions

to .the online redo log files. For example, when a transaction COIIllTI\t~, the log writer must

write out the entries in the redo log buffer to the redo log files on disk before the process

receives a message indicating that the commit was successful. ünce committed, the changes

are safe on disk even though thc modified database blocks are still in the SGA's database

buffer area waiting to be written out by DBWR. The SMON can always reapply the changes

from the redo logs ifthe memory's most up-to-date copy ofthe database blocks is lost.

1.5.1.3 SMON

The system monitor process looks after the instance. If two transactions are both waiting for

each other to release locks and neither of them can contintıe known as a deadlock or deadly

embrace, SMON detects tlıe situation and ene of the processes receives an error message

indicating thatıa deadlock has occurred.

SMON also releases temporary segments that are no longer in qse by the user processes which

eaused them to be created.

During idle periods, SMON.coınpacts the.free+space.frag111entsinthe database.files, making it

easier and simpler for Oracle tö allocate' storage for new database objects or for existing

database objects to grow.

addition, SMON automatieally performs recovery when the Oracle instance is first started

, if none of the files have been lost. We won't see a message • indicating that instance

covery is occurring, but the instance mighttake longer.to come up.

~1.4PMON

process monitor monitors the user processes. If any failure occurs with the user

ncesses, PMON automatically rolls back the work of the user proceşs since the transaction

arted. It releases any ·· locks taken out and other system resoutces taken up by the failed

cess. PMON also monitors the dispatcher and shared server processes, which are part of

multi-threaded server setup, and restarts them if they have died.

8

1.5.2 Optional System Proeesses

As well as the four mandatory system processes, there are a number of optional 'system

processes that we can initiate.

1.5.2.1 ARCil

When the database is running in ARCHIVELOG mode and we've started the Archiver

background process, it makes a copy of one of the online redo log files to the archive

destination. In this way, we can have a complete history of changes made to the database :files

recorded in the oflline and the online redo logs. There is no point üı keeping the Archiver
background process running ifthe database is not running in ARCHIVELOG mode.

1.5.2.2 C:KPT
A checkpoint occurs when one of the online redo log files fills, it will be overwritten when

one of the other online.redo logs fills. If the redo log file is overwritten, the changes recorded

in that file are not available for reapplying in case of system failure. At a checkpoint, the

modi:fieddatabase bııffer blocks are written down to the relative safety ofthe database fileson

disk by the database writer background process.

This means that we won'tneed the record of changes in the event of system failure with lost

memory areas. .Aftet'. a checkpoilit.ôccurs,the 'redo log can be reused.

At a checkpoint, all the database file headers and redo log file headers are updated to record

the fact that a checkpoint has occurred. The LGWR background process performs the

updating task, which could be signi:ficant if there are a large number of database and redo log

files, The entire database might have .to wait tör the checkpoint to complete before the redo
1ogs can.record :furtherdatabase changes. .To reduce the time it takes for LGWR to update the

database and redo log file headers, .we can initiatethe checkpoint process.

A checkpoint can occur at other times, such as when the entries in the redo log files reach a

definedby the database administrator.

9

1.5.2.3 RECO

We use the Recoverer background process when there is a failure in a distributed transaction,

and one or more of the databases involved need to either commit or roll back their changes. If

initiated, the Recoverer attempts to automatically commit or roll back the transaction on the

local database at timed intervals in synchronization with the Recoverer processes on the other
Oracle databases,

There is no point in keeping the Recoverer background process running if we're not using
distributed transactions on the database.

l.5.2.4 LCK

We use the lock background process-in the parallel servet setup of Oracle where more than

ône instance is running a.gainstthe same set of database files. The LCK processes running on

all instances .will' syı:ıchronizeIocking between the instances. If a user eonnects to one instance

and locks a row, the row remains locked for a user attempting to make a change on another

ınstance. Other users can always query the rows regardless of how the rows are locked by
ôther users.

can initiate . up \to ten LCK backgtound processes to reduce the bottleneck of

chronizing locking, but one is usually more than enough. You should not initiate the LCK

ckground processes unless you're implementinga parallel server setup ofOracle.

processes logically consist of.two halves. The Oracle server code, which translates and

cutes SQL statements and reads tp.e database files and memory areas, and the tool-specific

which is the executable code for the tool that is used. The server code is the same

dless of the tool that is executing the SQL statement, the same steps are involved. The
er code is sometimesknown as the Oracle kernel code.

configure the user:processes in Oracle three di:fferent ways, all of which could coexist

same instance. These three configurations are single task, dedioated server, or multi-

10

1f5~3.1 Single Task

rrthe single-task configuration, the tool-specific code and database server code are both

côn:figured into one process running on the machine. Each connection to the database has one

user process running on the machine.

l.5.3.2 Dedicated ServJr Processes

In the dedicated senver configuration, the two parts ofa user process are implemented as two

separate processes running on the machine. They commuııicate with each other using the

machine's interprocess communication mechanis:ı;ns. Each connection to the database has two

processes running on the machine. The Oracle kernelsoftware in one process is sometimes

called the shadow process.

This configuration .. .is coınmo11,. fôr IJNİ'X platforms because the>operating system cannot

protect the Ota.ele code and memory areas from the application code. it is also common for

client/servenconfigurations where the server code .resides on the server machine and the tool­

specificcode runs on the client machinewith communicationover a network.

The way the two component parts of one logicaLprocess communicate.is fundamentally the

same as if one process wereitııpleınented ôri the sanıe<rnachine,exceptthafthe two halves of
the logical prôcess'i\happeııtö?residei 011/two\ınachines atıd comnnmioate over the network

usingNet8 rather thanthe interprocess communicationmechanismsofthe operating system.

The dedicated server configuration can be wasteful because memory is allocated to the

shadow process and the number of processes that must be serviced on the machine increases,

even when the user is not ınakiııg any database..reqiıests. The dedicated server will only
process requests :from one associateddientprocess.

1.5.3.3 The Multi-Threaded Server

The multi-threadedsserver conflguration enables one Oracle server process to perform work

for rnany user processes. .This overcomes the drawbacks ofthe dedicated server configuration.

It: reduces the number .of.process.esrunning and the amount of memory used on the machine

aüd can improve system performance. The multi-threaded server introduces two new types of

systemprocesses that support this part ofthe architecture.

11

Using one of the shared server processes that cornes as part of the rnulti-threaded server

configuration is not appropriate when a user process is making rnany database requests such

as an export backup of the database. For that process, we could use a dedicated server. A

mixture ofboth ccnfigurations can coexist.

ORACLE MEMORY

In this part, I discuss how Oracle uses the rnachine's rnernory. Generally, the greater t~e real

mernory available to Oracle, the quicker the systern rııns .

•6.1 System Global Are~
e systern global area, soın.etimes known as•the shareü•g;Iôbal area, is for <lata and control

ctures in rnemory . that caı:ı. bf!\sijatf!d by >iı.11 tb,.e Ôratlf! lıac:kground and user processes

· g on that instance. Each Oracle instance has its own SGA. in fact, the SGA and

kground pfocesses ··~· wha't defines an instance. The SGA rnernory area is allocated when

instance is started, and it's flushed and deallocated when the instance is shut down.

contents of the SGA are divided into three main areas, the database buffer cache, the

ed pool area, and the red.ô cc1che.·· Th&Size ôfeach of these areas>i.s contrôlled 15y

eters in the İNiTiORA file; The bi.ğgef>y'bııcarı ıiıake the · SGA and the more of it that

fit into the rnachine's real memory as opposed to virtual memory, the quicker your

Database Buffer Cache
ua.tabase buffer cache of the · SGA holds Oracle blôcks that · have been read' in from the

files. When one process reads the blocks · for a table into memory, all the processes

instance can access those blocks;

needs to access sorne <lata, Oracle checks to see if the block is already in this

f the Oracle block is not in the buffer, it rnust be read from the database files into the

he. The buffet cache rnust have a free block available before the <lata block .can be

database files.

12

The Oracle blocks in the databa~e buffer cache in memory are arranged with t~e most recently

used at one end and the least recently used at the other. This list is constantly changing as the

database is used. If <lata must be read from the database files into memory, t1'e blocks at the

Ieast recent1y used end are written back to the database files first. The DBWR process is the

only process that writes the blocks from the database buffer cache to the database files. The

more database blocks you can hold in real memory, the quicker your instance will run.

1.6.1.2 Redo Ca~he
The online redo log files record all the changes made to user objects and system objects.

Before the changes are written out to the redo logs, Oracle stores them in the redo cache

memory area. For example, the entries in the redo log .cache are written down to the online

redo logs when the cache becomes full or vvhtma trııns~c.tion issııes a commit. The entries for

more than one transaction can 1:>e iıı.clµcledJogether in the same disk write to the redo log files.

The LGWR backğrotind process is the only process that writes out entries from this redo

cache to the online redo log files.

1.6.1.3 Shared Pool Area

The shared poolarea of the SGA has two main components, the SQL area and the dictionary

cache. You .canalt.et:Jhe siz.e of tlıese t-w-o çoınponents oniy by changing the size of the entire

shared pool area.

1.6.lA SQL Area
A SQL statement 'sent for execution to the database server must be parsed before it can

execute. The SQL area of the SGA contains the binding information, run-time buffers, parse

tree, and execution plan for all the SQL statements .sent to the database server. Because the

shared pool area is a fixed ,size, you might not see the entire set of statements that have been

executed since the instance first came up, Oracle might have flushed out some statements to

make room for others.

If a user executes a SQL statement, that statement tak.es up memory in the SQL area. If

another user executes exactly the same statement on the same objects, Oracle doesn't need to

-rPmırı;:p the second statement because the parse treııı and execution plan is already in the SQL

This part ofthe architecture saves on reparsing overhead.

13

The SQL area is also used to hold the parsed, compiled form of PLISQL blocks, which can

also be shared between user processes on the same instance.

1.6.1.5 Dictionary Çaehe

The dictionary cache in the shared pool area holds entries retrieved from the Oracle system

tables, otherwise known as the Oracle data dictionary. The data dictionary is a set of tables

located in the database :files, and because Oracle accesses these :files often, it sets aside a

separate area ofmemory to avoid disk I/0.

The cache itself holds a subset of the data from the data dictionary. It is loaded with an initial

set of entries when the instance is first started and then populated :from the database data

dictionary as :further inforrtıation is requited. The cache lrolds information about all the users,

the tables and other objects, the structure, seourity, storage, and so on.

data dictionary cache grows to occupy a larger proportion of memöry within the shared

area as needed, but the size ofthe shared pool area remains fixed.

Process Global Area

process global• area, söfüetirrıes called the program global area or PGA, contains <lata and

trol structures for one user or server process. There is one PGA for each user process to

actual contents of the PGA,. depend on whether the multi-threaded server configııration is

emented, but it typically contains memory to hold the>session's variables, arrays, some

results, and other information, If you'reusing the mtılti-threaded server, some of the

tion that is usuallyheld in the PGA is instead held in the common SGA.

of the PGA depends on the operating system used to run the Oracle instance, and

llocated, it remains the same. Memory used in the PGA does not increase according to

ofprocessing performed in the user process.

14

CHAPTER 2:0racle Integration
2.1 ORACLE ACCESS W1TH JDBC

Java is designed to be platform independent. A pure Java program written for a Windows

machine . will run without recompilation on a Solaris Şparc, an Apple Macihtosh, or any

platform with the appropriate Java virtua]machine.

JDBC extends this to databases. If we write a Java program with JDBC, given'the appropriate

database driver, that program will run agaiıist any database without having to recompile the

Java code. Without IDBC, our Java code woııld need to run platform speci:fic native database

code, thus violating the Java motto, Write ünce, Run Anywhere.

JDBC allows us to writeJava code, artı:fleavethe platform specific code to the driver, in the

event we change databases, we simply change the driver used by our Java code and we are

immediate]yreacl)'tô run againft the new database.

'
JDBC is a rich set of classes that give us transparent access to a database with a single

application progra=g ••i11t~~r:~~'. ··()~•.•~!· r1us····a~~gss•..•1s .••••~on~.•~t~ ..plug-in platform-şpecific
modules, or.dri:srs. ~~~g ~hefe. ~İ0r? ~dt~e J])~C chısses, out programs will be able to
access consistently aı;ıy database that suppotts JDBC, giving us total freedom to concentrate

on our applications and not to worry about the underlyingdatabase.

All access to .IDBC<lata sources is done through SQL. Sun has eoncentrated on IDBC issuing

SQL commands and retrieving their results in a consistent manner. Though we gain so much

ease by using this SQL interface, we do not have the raw database access that we might be

used to. With the classes we can open a coıınection to a database, execute SQL statements,
and do what we willwith the results.

2.1.1 Driver Types

As mentioned above, our Java JDBC code is portable because the database specific code is

contained in a Java class known as the driver. The two most common kinds of driver for

connecting to an Oracle database are the thin driver and the OCI driver.

15

2.1.1.1 T.lıin: Driver

"I'he .thin driver is known as a Type IV driver, it is a pure Java driver that connects to a

database using the database's native protocol. While we can use the thin driver in any

environment, the Type IV driver is intended for use in Java applets and other client-side

programs, A Java client can be run on any platform. For that reason, the JDBC driver

downloaded with an applet or used by a Java client may not have access to platform native
code and must be pure Java.

2.1.1.2 OCI8 driver

The OCI8 driver is known as a Type II driver. It uses platform native code to call the

database. Because it uses a native .API, it can connec.t.tö.and.access a database faster than the
thin driver. For the same, reasoh, Jp.e '.fype II driver .cannotbe used where theprogram does

not have access to the .ııa.tive APL This ustially applies to applets and.other clienı programs
whichmayibe deplöyed ônany arbitrary platform.

2.1.2 The DriverManagerClass

The cornerstone of the.JDBC package is the DriverManager.class. .This-class.keeps trackof

all the different available><latabaseixdtiyers. We won't · usually>.see.'t1*DriverMahager's .work,

though..This class mostly works J:,ehind.the scenes ro ensure that everything is cool for our
connections.

The DriverManager maintains a Vector that holds inforınation about all the drivers that it

knows about. The elements in the Vector contain information about the driver such as the

class name of the Driver object, a .copy of the actuaLDriver object, and fhe Driver security
context.

The DriverManager, while not a static class, maintains all static instance variables with static

access methods for registering and unregistering drivers. This allows the DrivetManager

never to need instantiation, Its data always exists as part of the Java runtime. The drivers

managed by the DriverManager class are represented by the Driver class.

16

.1.3 The Driver Class

f'/,the comerstone of JDBC is the DriverManager, then the Driver class is most certainly the

hricks · that build the JDBC. The Driver is the so:ftwarewedge that commıınicates with the

platform-dependent database, either directly or using another piece of so:ftware. How it

communicates really depends on the database, the platform, and the implementation.

is the Driver's responsibility to register with the Driverlvlanager and connect with the

database. Database connections are represented by the Connection class.

2.1.4 T4e Connection Class

The Connection class encapsulates the actual- database ·•· connection into an easy-to-use

package. 'Sticking.. with otıffotın.datiôn building>analogyihere, .th,e Connection class is the

mortar that binds the i.IDBG togeth'er. .It' is created by the>DriverManager when its

getConnection() ··· ınethod ·• is called, This method accepts a database connection l!RL and

returns a database Connection to the caller.

When we call the getConnection() method, the DriverManager asks each driver that has

registered with it.·whether··.thedatabase' .conn.ectionTJRL•.isevalid. ffiorıe drivetJtesponds

positively, tbe DriverMariağer a.sstımes a <match?If. n.ô driver responds positively:, an

SQLException is thrown. The Driverlvlanager-returns the error "no suitable driver," which

means that of all the drivers that the Driverlvlanager knows about, not one of them could

figure out the URL you passed to it.

Assuming that the URL was goodiand a Driver loaded, then the Driverxdanager will retum a

Connection object to us. What canwe do with a Connection object? Not rmıch. This class is

nothing more than an encapsulation of our database connection. it is a factory and manager

object, and is responsible for creating and managing Statement objects.

17

Connection as an open pipe1ine to our database. Database transactions travel back

forth between our program and the database through this pipeline. The Statement class

transactions.

Statement class encapsulates SQL queries to our database, Using several methods, these

s return objects that contain the results of our SQL query. When we execute an SQL

:ııery, the <lata that is returned to us is commonly called the resu1t set.

The ResultSet Class

As we've probably guessed, the ResultSet class encapsulates the results returned from an SQL

query. Normally, those results are in the form ofrows of <lata. Each row.contains one or more

columns. The ResultSet class acts asa cursor, pointing to one record ata time, enabling us to

pick out the <lata we need.

SQLJ enables us to embed staticSQLoperations in'Java code in.a way thatis compatible with

the Java design.philosophy. AJXSQDJi._pt()gram.iis· a Java prograınconta.iIDı1g embedded static

SQL stateın:entsrthatc&rnplyiWith the<A.NSI"standafd<SQLJ•••Langüage Reference syntax.

Static SQL operations are predefined, the operations themselves do not change in real-time as

a user runs the application, although the <lata values that are transmitted can change

dynamically. Typical applications contain much more static SQL than dynamic SQL.

Dynamic SQL operations are not prede:fined, the operations themselves can change in real­

time and require direct use of JDBC statemeats. However, we can use SQLJ statements and

JDBC statements in the same program.

SQLJ consists of both a translator and a runtime componenr and is smoothly integrated into

our development ··· environment. The developer runs the translator, with translation,

compilation, and customization taking place in a single step when the sql] :front-end utility is

run. The translation process replaces embedded SQL with calls to the SQLJ runtime, which

implements the SQL operaüons, In standard SQLJ this is typically, but not necessarily,

performed through calls to a .IDBC driver. In the case of an Oracle database, we would

typically use an Oracle JDBC driver. When the end user runs the SQLJ application, the

runtime is invoked to handle the SQL operations.

18

Oracle SQLJ translator is conceptually sinıilar to other Oracle precompilers and allows

developer to check SQL syntax, verify SQL operations against what is available in the

hema, and check the compatibility of Java types with corresponding database types. In this

:y, eızrors can be caught by the developer instead ofby a user at runtime.

e SQLJ methodology of embedding SQL operations directly in Java code is much more

nvenient and concise than the JDBC methodology. In this way, SQLJ reduces development

d maintenance costs in Java programs that require database connectivity. When dynamic

L is required, however, SQLJ supports interoperability with JDBC such that we can

termix SQLJ code and IDBC code in the saırıe Sôurce file. Alternatively, we can use
L/SQL blocks within:SQLl§tateriıents tôrid)'tlaıniçSQt.

2.1 OracleSQLJ Thtrıslator

is component is a precompiler that developers run after creating SQLJ source code. The

anslator, written in pure Java, supports a programming syntax that allows us to embed SQL

perations inside SQLJ executable statements. SQLJ executable statements, as well as SQLJ

eclarations, are preceded by the #sql tôkeirand canibe inferspersed with Java statements in a

QLJ source code file. SQLJ source code file naınes must have the .sqlj extension.

e translator produces a .java file and one or more SQLJ profiles, which contain information

out our SQL operations. SQLJ then automatically invokes a Java compiler to produce .class
es :from the .java file.

•2.2 Oraele SQLJ Runtiaıe

'his component is invoked automatically each time an end user runs a SQLJ application. The

QLJ runtime, also written in pure Java, implements the desired actions of our SQL

perations, accessing the database using a JDBC driver. The genede SQLJ standard does not

uire that a SQLJ runtime use a JI)BC driver to access the database, however, the Oracle

LJruntime does require a JDBC driver, and, in fact, requires an Oracle JDBC driver if our
plication is oustomized with the default Oracle customizer,

19

addition to the translator and runtime, there is a component known as the customizer. A

stomizer tailors mır SQLJ profiles for a particular database implementation and vendor­

ecific features and datatypes. Bp default, the Oracle SQLJ front end invokes an Oracle

tailor our profileş for an Oracle database and Oracle-specific features and

.en we use the Oracle customizer during translation, our application will require the Oracle
QLJ runtime and an Oracle IDBC driver when it runs.

2.3 SQLJ Proflles

QLJ profiles are serialized Java resources generated by the SQLJ translator, which contain

tails about the embedded SQL operatio:hsin our SQLJ source code. The translator creates

ıese profiles, then either serializes them and puts them into binary resource files, or puts
em into .class files accordirıgto our translator option settings.

in implementing the embedded SQL operations in our SQLJ
xecutable statements. Profiles contain information about our SQL operations and the types

d modes of <lata being accessed. A profile consists ofa collection of entries, where each

ntry maps to one SQL operation. Each entry fully specifies the corresponding SQL
operation, describingeach ofthe parametersµsed in executing thtsinstruction.

SQLJ generates a profile for each connection context class in our application, where,

ıically, each conneetion context class corresponds to a particular set of SQL ehtities we use

our database operations. The SQLJ standard requires that the profiles be of standard format

d content. Therefore, for our application to use vendor-specific extended features, our

rofiles must be customized, By default, this occurs automatically, with our profiles being
ustomized to use Oracle-specificex.tendedfeatures.

•2.4 Oraele Extensions to the SQLJ Standard

eginning with Oracle8i, Oracle SQLJ supports the SQLJ ISO specification. Because the

LJ ISO standard is a superset of tlıe SQLJ ANSI standard, it requires a .TDK 1.2 or later

nvironment that complies with J2EE. The SQLJ ANSI standard requires only .TDK 1.1.x. The

racle SQLJ translator accepts a broader rang~ of SQL syntax than the ANSI SQLJ Standard

20

.e ANSI standard addresses only the SQL92 dialect of SQL, but allows extension beyond

hat. Oracle SQLJ supports Oracle's SQL dialect, which is a superset ofSQL92. If we need to

ereate SQLJ programs that work with other DBMS vendors, avoid using SQL syntax and

SQL types that are not in the standard and, therefore, may not be supported in other

environments.

2.2.5 Basic Translatton Steps and Runtime Precessing

2.2.5.1 Translation st,ps
The following sequence ofevents occuts;presuıtıiııg each step completes without fatal error.

The NM invokes the SQLJ,trru:ıslatôr.

The transfatorpatsest}ı~isôur6ecôdeınthe .sqıj•·fiıe, cheçkmgför proper SQLJ syntax and

Iooking föttype :ı:rüsı:ı::ıatches between our declared SQL datatypes and corresponding Java

host variables.

The translator invokes t~e semantics-checker, which checks the semantics of embedded

SQL statements. The developer can use online or offline checking, according to SQLJ

option settingstlfonline\checkinğiş perforriied, theh SQLJ will coımect tö-the database to­

verifyithat tlıe>idatttbase suppôrt§i>aIFtlie<databaseifables, ·stored procedures, and SQt
syntax that the application uses, and that the host variable types in the SQLJ application

are compatible with datatypes of corresponding database columns.

The translator processes our SQLJ source code, converts SQL operations to SQLJ runtime

calls, and generates Java output code and one or more SQLJ profiles. A separate profile -is

generated for each connection context class in our source code, where a di:fferent

connection context class is typically used for each interrelated set of SQL entities that we

use in our database operations.

The NM invokes the Java compiler, which is usually, but not necessarily, the standard

javac provided with the Sun Microsystems JDK.

The compiler cônıpiles the Java source file generated in step 4 and produces Java .class

files as appropriate; Tlıis will include a .class file for each class we defined, a .class file

for each of our SQLJ declarations, and a .class file for the profile-keys class.

The NM invokes the Oracle SQLJ customizer dr other specified customizer,

The customizer customizes the profiles generated in step 4.

21

""·""·""·s- Runtime Proeessing
When a user runs the application, the SQLJ runtime reads the profıles and creates "connected

\

profiles", which incorporate database connections, Then the following occurs each time the

applicationmust access the database.
SQLJ-generated application code uses methods in a SQLJ-generated profile-keys class to

access the connected profile and read the relevant SQL ôperations. There is mapping

between SQLJ executable statements in the application and SQL operations in the profile.

2. The SQLJ-generated application code calls the SQLJ runtime, which reads the SQL

operations from the ~rrfıle.
3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to the driver.

4. The SQLJ runtime passesany iı.ıpµtparameterstothe JDBC driver.

5. The IDBC driver.e:x:e,:mfestlı~ŞQLi.9ı,.etı;1Jiotıs.
6. If any datajs to.. b~ retw~4, the database sends it to the IDBC driver, .whichsends it to the

SQLJ runtirnefo:rµ.seby our application.

2.2.6 SQLJ Declarations
A SQLJ declaration consists of the #sql .token followed by the declaration of a class. SQLJ

declarations intr()dllce şpeı:dı:ı.lized Java typet irıto oµ:r applicati()ll. 'fhere. are currently two

kinds of SQµJdecları:ı.tions;jterator/declaratiö11sand connection context declarations, defining

Java classes.

Iterator declarations define iterator classes. Iterators are conceptually similar to IDBC result

sets and are used to receive mıılti-row query <lata. An iterator is implementedas an instance of

an iterator class.

Connection context declarations define connection context classes. Each connection context

class is typically used for connections whose operations use a particular set of SQL entities.

That is to say,..inştances of a particular connection context class are used to connect to

schemas that includeSQL entities with the same names and characteristics. SQLJ implements

each database cormection.asan instance ofa connection context class.

22

'2.2. 7 Java Host Espresslons, Context Expressions, and Result Expressions

There are three categories of Java expressions used in SQLJ code: host expressions, context

expressions, and tesult expressions. Host expressions are the most frequently used and merit

the most discussion.

SQLJ uses Java host expressions to pass argumen\s between your Java code and your SQL

operations. This is how you pass information between Java and SQL. Host expressions are

interspersed within the embedded 'SQL operations ın.SQLJ source code.

The most basic kind of host expression, consisting of only a Java identifier, is referred to as a

host variable. A ~ontext expression specifies a connectiorı context instance or execution

context instance to be used for a SQLJ statenient. A result expression specifies 'an output

variable for query results or a function return.

2.2.7.1 Host Expre~sions
Any valid Java expression can·be used as a- host expressiens-In .the simplest, case, ·whioh is

typical, the exptessioııconsists\ôfijustasingle tfava···varia.ble.•·.••Othetıkirids ôffüost expressions

inchıde: arith:metic{expressföfıs;0Javaitnethod calls with retum values, Java class field values,

array elements, conditional expressions, logical expressions, or bitwise expressions, Java

identifiersused as host variables or in host expressions can represent any of the following:

1. Local variables.

2. Declared parameters.

3. Class fields.

4. Static or instancemethod calls. ··

Local variables used in host expressions can be declared anywhere that other Java variables

can be declared, Fields can be inherited from a superclass, Java variables that are legal in the

Java scope wherethe·SQLJ executable statement appears can be used in a host exp;ressionin a

SQL statement, presuining its type is convertible to or from a SQL datatype. Host exptess~ons

can be input, output, or input-output.

23

Context Expressions

context expression is an input expression that specifies the name ofa connection context

mstance or an execution context instance to be used in a SQLJ executable statement, Any

Java; expression that yields such a name can be used.

Result.~pressions

result expression is an output expression used for.query results or a function return. It can

any le~al Java expression that is assignable, meaningthat it can logicallyappear on the left

expressions and context expressiol1$appear lexically in the SQLJ space, unlik:e host

expressions, which appear lexically in the SQL space. Ther~fore, a result expression or

context expressionmust not be preceded by a colon.

2.2.8 Stored Pröcedure and Function CaDs

SQLJ provides convenient syntax for calling.stored procedures and stored . funetions in the

database. These procedures)aridofuııctions,couldibe written .fü Ja'va, .PL/SQL; or any · other

Ianguage•SUpported byth~ databhse.

A stored function requires a result expression in mır SQLJ executable statement to accept the
return value and can optionally take input, output, or input-output parameters as well. A
stored procedure doeş not have a retumvalue but can optionally take input, output, or input­

output parameters. A stored procedure can retum output through any output or input-output
parameter.

2.2.9 Multithreadingiıı SQLJ

We can use ~QLJ in writing multithreaded applications; however, any use of mnltithreading

in oıır SQLJ application is subject to the limitations of our JDBC driver. This includes any
synchronizationlimitations.

24

We are required to use a di:fferent execution context instance for each thread. We can

accomplish this in one oftwo ways.

I. Specify .connection context instances for our SQLJ statements such that a di:fferent
\

connection context instance is used for each thread, Each connection context instance

automaticallyhas its own default execution context instance,

2. If we are using the same connection context instance with multiple threads, then declare

additional execution context instances and speııify execution context instances for our

SQLJ statements such that a different execution .cqntextinstance is used for each thread.

If we are using one of the Oracle JOJ3C drivers, multiple threads can use the same connection
. 1

context instance as1ong as di:fferent execution context instances are specified and there are no

synchron,izationrequirements directly visible to the user. However, that dat~base aceess ~

sequential, only one thread is accessing the database at any given time.

lf ~ thread attempts to execute a SQL operation that uses an execution context that is in use by

another operation, then the thread . is blocked .µntil Jhe .• current . operatipn ..cpnıplytes. .If an

execution context 'Y~fy şl1ı:ıretl .l.Jı;tWee11.thr~atls,·}lıe· tJsµ.ltspf a ŞQI.Jpperatioıi perforrned .by
one thread would >be visible.· inithe öther-thread. If both threads were executing SQL

operations, a race condition might occur, the results of an execution in one thread might be

overwritten by the results of an execution in the other thread before the first thread had

processed the original results. This is why mııltiple threads are not .allowed to share an

execution context instance.

2.2.10 SQI;J and JDBC Interopefal>Uity
We can use SQLJ statements for static SQL operations, but not for dynamic operations. We

can, however, use JDBC statements for dynamic SQL operations, and there might be

situations where our application will require both static and dynamic SQL operations. SQLJ

allows us to use SQLJ. statements and JDBC statements concurrently and provides

interoperability between SQLJ constructs and JDBC constructs. Two kinds of interactions

between SQt.Tand JDBC are particularly useful:

1. between SQLJ connection contexts and JDBC connections.

2. between SQLJ iterators and JDBC result sets.

25

2.2.10.1 ConvertingJrom Connectio~ Contexts to JDBC Connectlons

Ifwe want to perform a dynamic SQL operation through a database connection that we have

established in SQLJ, then we rnııst convert the SQLJconnection. context instance to a JDBC

connection instance.

Any connection · · context instance in a SQLJ applic~tion, whether an instance of the

sqlj .runtime.rei;:DefaultContext class or ofa declared connection context class, contains an

underlying 1DBC connection instance and a getÇonnection() method that returns that IDBC

connection instance. Use the JDBC conııection instance to create IDBC statement objects if

you want to use any dynamicSQL operations.

2.2.10.2 Convertill.g from JDBC Connections t() Connectfon Conte~ts
lf we initiate'a''cörinectilııı as a'JDBC Connection or OracleConnection instance but later want
to use it asa SQLJ C{}nnection context instance, then we can convert the JDBC connection

instanceto a SQLJ connection context instance.

The DefaultContext ·class aı:ıd all·declared >cofü:ie-cttô:o. eontext cla.sses>have<a constructor that

takes a

instancei

2.2.10.3 Shared Coıınections
A SQLJ connection context instance and the associated JDBC connection instance .share the

same underlyingdatabase comı.ectioq.. When we get a JDBC cônrıectiôhµıstançe from a SQLl

connection context .instance, tlie Conriection inSfarice inhetits the state of the connection

context instanöe. ·.Among otherthinğ~?the Côı:ııiection·instance will retain the auto-commit

setting of the connection context iııstsnee.

Whenwe constrücta SQLJ connectioıi context instance from a JDBC connection instance, the

cohnection contextmsfan.ce inherits the state ofthe Connection :instance.Among other things,

the connection corıtext instance will retain the auto-commit setting of the Connection

instance.

26

Given a SQLJ connection context instance and associated JDBC connection instance, calls to

methods that alter session state in one instance will also' affect the other instance, becaııse it is

actually the underlying shared database session that · is being altered,

Because there is just a single underlying database connection, there is also a single underlying

set of transactions. A COMMIT or ROLLBACK operation in one connection instance will

affect any other connection instances that share the same underlying connection,

2.2.11 SQL~ in the Server

SQLJ code, as with any Java. code, can run in the
funetions, triggers, • .Fhtemr1se

servet-side impleırıentatiqfı'
side ;,...+,,..••ncı

server in stered procedures, stored

.öbiects. uDatabase . access is through a

source files directly in the server, Considerations for running SQLJ in the server include

several server-side coding issues as well as decisions about where to translate our code and

how to load it into the ~erver. We ınust also be aware ofhow the server deternfines the names

of generated output. We can eithe:ıı trıµ1Slate and coırıpile ona elient and load the class and
··.····· ... ·.. · ...···· .· ... ·· ..• .. · .. · .· . ·. . .· . \ • .. · ...··.. : · .. · .··. . .· . /

reseurce files itıto the setver, or we can load .sqlj source files into the sesver and have the files
automatically translated by the embedded SQLJ translator.

The embedded translator has fidifferen~ user -interface than. t,he clietıt-side translator.

Supported options can be specified using a database • table, • and error output is to a database

table. Output files ftom the translato:r, .ja-Vaiahd .Ser, aretrajısparent to the developer.

2.2.11.1'CreatingSQ1.J Code fürUsewifbin the Server
With few exceptions, writing SQLJ code for use within the target Oracle8i server is identical

to writing SQLJ cpde>ifor clie11ıt .. side use. .The few differences are due to Oracle JDBC

characteristics or gene:ralJavacharacterfatics in the servet, rather than being specific to SQLJ.

27

z.z.n.z Database Conneetions within tbe Server
The concept of connecting to a server is different when our SQLJ code is running within this

server itself, there ,is no explicit database connection. By default, an implicit channel to the

database is employed for any Java program running hı the servet. We do not have to initialize
this connection, it is aııtomaıically initialized for SQLJ programs.
We do not have to register or specify a driver, create a conriection instance, specify a defaıilt

connection context, specify any connection objects for any of our #sql statements, or close the

connection.

2.2.H.3 Codfng Issues withintheServer
Result sets issued by the .internal\driver persist>acrossicalls, and their finalizers do not release

their database c~:'i~,~~~~~r~~f1i~/'lit:ls~sji~,~~ö#ahf I: elese aliiteralors to avoJ
running out o(available cursors, oıı.illess we have a particular reason for keeping an iterator

open.

The internal driver does not support aııto-commit functionality, the aııto-commit setting is

ignored within the server. .Use explicit ÇOMMITOrROLLBACK statements-to implement or

cancel your database updates.

2.2.11.4 Name Resolq.tion in the Server
Class loading and name resolution in the server follow a very different paradigm than ona

client, because the environments themselves are very different. The resolver, which maintains

ma:ppings between class schema objects that reference each other in the server.

A class schema object · is said .to be resolved when •all of its external references to Java names

are bound. in general, all the classes ofa Java program should be compiled or loaded before

they can be resolved.

Wb,en all the class schema objects .• of a Java program in the server are resolved and none of

them have been modi:fied since being resolved, the program is effectively pre-linked and

ready to run.

A class schema object müs'f~ed before Java objects of the class can be instantiated or

methods ofthe dass~lm be: e*eeuted.

28

2.2.11~5 SQL Names versus J~va Names
SQL names such as nam.esof source, class, and resöurce schema objects are not global in the

way that Java nam.esare global. The Java Language Specification directs that package nam.es

use Internet naming eonventions to create globally unique names for Java programs. By

contrast, a fullyqualified SQL name iş interpreted only with respect to the current schema and

database.Because of this inherent difference, SQL names mııst be interpreted and processed

differsntly fromJava nam.es.SQL names ate relative names and are interpreted :from the point

ofviewof'the.schema where a program is exeeuted.

This is central to how the program binds Iocal data\stôred at that schema. Java nam.esate

global names, and the classes thar they designate can be loaded at any execution site, with

reasonable expectatipn.Jfüıt tb.(.)Ştt classes willibe olasses./that rwere used to -.compile the

program.

2.2.11~6>'franslatingSQLJ Souree ona Client and Loading Compönents

üne approach to developing SQLJ code for the server is to first run the SQLJ translator on a

client machine to take care .of translation, . compilation, and profile eustomization, Then load

the resulting elass}and resö.urceifiles/includinğSQLJ profiles into .the server, typically using a

If we are developing our soıırce on a client ınachine, and have a SQLJ translator available

there, this approach is advisable. It allows the most flexibility in running the translator,

because option-setting and error--processingare not as convenient-in.theserver.

It might also be advisable to use the SQL1 -serzclass option during translation when you
1

intend to .Joad an application irtto<theserver .. This results in SQLJ profiles ·. being converted

:from .sec sefialized resource files.to .class files and simplifiestheir rl.aming. However, profiles

converted to .class'files carmot be further customized. To fü.rthercustomize, we would have to

rerun the translator andtregenerate the profiles,

29

When we load .class files and .ser resource files into the server, either directly or using a .jar

file, the resulting database library units are referred to as Java class schema objects, for Java
\

classes and Java resource schema objects, for Java resources. Oµr SQLJ profiles will be in

resource schenıa objeçts if we load them as .ser files, or in class schema objects ifwe enabled

serzclass during translation and load them as .class files.

2.~.11~7 ErrorX>utput frem the ,Server ,;EmJ>edded .Translator
SQL,J etror :processingin the server is similar to general Java error processing hı the server.
SQLJ errors are directed µito the USER_ERRORS fable of'the user schema, We can SELECT

from the TEXT column ofthis table to get the text .ofaigiven error message.

Informational messages and. suppressable warnings are withheld by the server-side translator

in a way that is equivalent to the operation ofthe client-side translator.

l.3 INTR.0DUCTIONTONET8
Net8 enables the machines in our network to communicate with one another. It facilitates and

~ges communication >Sessio:nş between a client application and a remote database,

Specifically,•.Net.8.perfoıtrtıstbreebasic·operations.

1. Coqııeçti<>fi;\ Qp~:npigiandclositıg co:mıeçtfö~ between a client or a server acting as a

client antla database servet over a network protocol.

2. Data Transport: paçkagin~ and sending <lata such as SQL statements and <lata responses

so that it canbe transmitted and understood between a client anda server.

3. E:x;c~ption Handling: initiatingihterrupt requests fromthe client or server.

2.3.1 Network Tran.sparency

Net8 provjdesesupport for a broad..range ofinetwork transport protocols including TCP/IP,

SPX/IPX, IBMLU"p.2, Novell, and DECnet. It does so in a manner that is invisible to the

application user. This enables Net~ to interoperate across different types of computers,

operating systems;;.and networks to transparently connect any eombination of PC, UNIX,
legacy, and other systemwithout changes to the existing infrastructııre.

30

2.3 •.2 Protocol Independence

Net8 enables Oracle applications to ruh over any supported network protocol. by using the
app;ropriaJe, Oracle Protocol Adapter. Applications can be moved to another protocol stack by

installiıig· the necessary Oracle Protocol Adapter and the industry protocol stack. • -Oracle

Protocol Adapters provide Net8 access to connections over specificprotocols or networks, On

some platforms, a single Oracle Protocol Adapter will operate on several di:fferentnetwork

interfaceboardş, .allowingyou to deploy applicationsirı any networking environment.

2.3.3 Media/Topology Independence ·
When Net8 passes control of a connection to the Underlyingprotocol, it inherits all media

and(or topologies stıpport~dby that net{vorkprotocol stack. This al10wsthe netwörk protocol

to use any means ofdata transmission, such as Ethernet, Token Ring, or other, to accomplish

low lev~ldata link transmissions between two machines,

2.3.4 HeterogeneousNetworkfüg

Oracle's mültiple

2.3.5 Large Scale Scalability
By enabling us to use advanced eonnection'concentration and connection pooling features,

Net8 makes it possible for thotısand&of concurrent users ~o connect to a server.

2.4 NET8 FEA.TURES
Net8 Release 8;0<features several<enhaticefuents<thatextend scalability, matia.geability••arıd

security forthe Ora.elenetwork.

2.4.1 Scalability Feıı.tü.res
Scalability· refers to the abilityto support simultaneous network access by a large number of
clients to a single server. With Net8, this is accomplished by optimizing the usage of network

resources by reducing the number of physical network connections a server must maintain.

Net8 offers improved scalabilitythrough two new features.

31

. Connection pooling.

Connection concentration.

these features optimize usage of server network resoıırces to eliminate <lata access

tıôttlenecks. and enable large numbers of concurrent clients to aecess a single server.

dditionally, other enhancements such as a new buffering methods and asynehronous

erations further improve Net8 performanee,

4.2 Manageability Features
:t8 introduces a number of new features that will simplify configuration and admitıistration

the Oracle network for both workgroup aııd enter_priseienvfronments.

r workgroup envirorııiıents, .Net8 .offers\simple·• configuration-free conneotivity through

allation defaıılts and a. neW' name resolııtion feature called host naming. FQr enterprise

.rironmentsÇNet8 centfalizerclient administration and simplifies network management with

acle Names, In addition to these new features, Net8 introduces the Oraele Net8' Assistant.

st Naming refers. to a./new naming. nıethod which resolves service hames to network

esses by enlistili.ğ Stne;\services of': existing TCP/IP hostname resol\ltion systems. Host

aming callelin:ıinate the need for a loca.Fhatrıing configuration file in environments where

ple database connectivity is desired.

A.2.2 Oracle Net8 .Assistant

ne Oracle Net8 Assistant is a new end user, stand-alone Java application that can be

ehed either asa stand-alone applic~tionOr fröm tlıe Oracle Enterprise Manager console. It

nornates client configuration and. provides · an easy-to-use interface as well as wizards to

mfigure and manage Net8 networks.

cause the Oracle Net& Assistant is implemented in Java, it is available on any platform that

pports the Java VirtuaLMachine.

32

2.4.3 Multiprotocel S~ı_~ıport tTsing Oraele Cennecnon Manager

Oracle Connection Manager provides the capability to seamlessly connect two or more

network protocol communities, enabling transparent Net8 access across multiple protocols, In

this sense, it replaces the functionality provided by the Oracle MultiProtocol Interchange with

SQL *Net. Oracle Connection Mana~er can also be used to provide network access control.

For example, links processed through Oracle Connection Manager can be filtered on the hasis

of origin, destination, or user ID. It incorporates a Net8 application proxy for implementing

firewall-Iikefunctionality,

2.4.4' Oracie Trace Assistant
Net8 includes the ,analyzethe data stored in Net8

traee files.

an easy way to understand and take advantage of the

trace files, it is useful for diagnosing network problems and analyzing

network performance. It can be used to better pinpoint the source .of a network problem ör

identifya potential perfomıance bottleneck.

2.4.5 Na.tiv-eNafüipg-.Adipt~frs
Native NaıningAdapters, · previouslybundled with füeAdvanced Networking Option, are now

included with Net8. These adapte~~ provi~~ narive ~upp9f1 f~f İı19'1stry-standa_rd name
services, inoludingSunNIS/Yellow Pages andNovell NetWare Directory Services (NDS).

2.5 NET8 OPERATION
Net8 is responsible for enabling commµnic~fibnsbetween the cooperating pattners in an

Oracle distributed transactioıı, whethet they be y~ent-server or server-server. Speeifically,

Net8 provides three basic networking operatiöns:

1. Conn~9tOperatioııs.
2. Data Operations.

3. Exception OperatiÔ.rıs.

33

Ccımectfng to Sersers
· 'rs initiate a connect request by passing inforınation such as a usemame and password

with a short name for the database service tha~ they wish to connect. That short name,

d a service name, iş mapped to a network address contained in a connect descriptor,

~ending upon our specific network configuration, this connect deseriptor may be stored in

ofthe following.
A local names cônfiguration file called TNSNArvffiSiORA.

A Names Server for use by OracleNames.

A native naming

et8 coordinates its sessiö.tı.s

Establishinğ Connectionswith the NetworkList~ner
a single process or task setup specifically to receive connection

on behalf of an applfoation. Listeners are configured to "listen on" an address

snecified in a listener.configuration file.fora database or non-database servipe. ünce started,

listener will receive clieııfCotjnect requests on behalf ofa servi,ee, and respond in oneof

Bequeath th~ sessiorrto a new dedicate(\server process.

Redirect to an existing.serverprocess.

Refuse the session.

~<:<ii!"'cl1a.an
e-ngpro::ıe,m
(1<:1 aıeartı,, amı)

Figure2.5.2.l: Network Listener In a TypicalNet8 Connection

34

2~5.2.1 Beq,eathed Sessions to Dedieated Server Proeesses

If tl;ıe listener and server exist on the same node, the listener rnay create or spawn dedicated

server processes as connect requests are received. Dedicated server processes are committed

to one session only and exist for the duration of that sessidn, When a client disconnects, the

dedicated server process associated with the client closes. Figure 2.2 depicts the role -of the

network Iistener in a bequeathed connection to a dedicated server process.

Figure2.2 Bequeathed Cônnectiôn

2.5.2.2 Redirect~d Sessions to E.n.stmg ~enr~r Pr9ceı;ses
Alternatively, Net8 may redirect the request to an existing server process. It does this by

1

sending the address of an existing server process back to the client, The client will then resend
its connect request to t~e servet address provided.

Existing serverprecesses inclııde;

1. Prestarted orPrespawnedDedic:atedServerProcessesby the listener.

2. Dispatcher Processes created outside the listener process.

35

·esı;,awned Dedieated Server Proeesses

t8 provides the option of automatically creating dedicated server processes before the

,u~st is received. These processes Iast for the · life of the listener, and can be reused by

The use 'of prespawned dedicated server processes requires specification in a listenet

· nfiguration file.When clients disconnect, the prespawned dedicated server process

assocıated with the client retums to the idle poolrIt then.waits a specified length of time to be

assigned to another client. If no client is handeq

expıres, the prespawned server shuts

a redirected connectıon

Di~patcher Server Processes
dispatcher server process eriablesmany clients to connect to the same server without the

need for a dedieated server prôce~Sför each client. Jt,dôeş this with the help of a dispatcher

which handles and directs mııltiple incôıning session requests to the shared server.

When an Oracle serv~r has been ~c,ri:lig;trred as a mıılti-threaded server, incoming sessions are
always routed tö the>dispatcher unless either the session specifically requests a dedicated

server or no dispi6:fı~tırare available.

Once the dispatcher addresses are registered, the listener can redirect incoming connect

requests to them. The listener and the Oracle dispatcher server are now ready to receive

incomingsessions.

36

When clients disconnect, the shared server associated with the client stays active and

processes other incoming requests. Figure 2.4 depicts the role of the network listener in a

redirected connection to a dispatcher server process.

Figure2.5.2.2.2: Redirected Connection To a Dispatcher Server Process

2.5.2.3 Refused Sessions

The network listener will refuse a sessioh in the event that it does not know about the

server being requeşted, or if the server is unavailable. It refuses the session by generating and

sendinga refuse response packet back to the client.

.2.5.3Discon,ecting from Servers

Requests to disconnect from the server can be initiatedm the followingways.

:Z.5.3.1 User-Inftiated Disconnect

user' can request a disconnection from the servet when a client-server transaction

DJPletes. A server can also disconnect from a second server when .all server-server <lata

fers have been completed, andno need for the linkremains.

37

215.3.2 Additfonal CenüectıonRequest

Ifa client application is connected to a server and requires access to another user account on

the same or other server, niost Oracle tools will first disconnect the application from the

server to which it is currently connected. ünce the disconnection is completed, a connection

request to the rrew user accoıınt on the appropriate server ıs initiated.

2.5.l.3 Abnormal Connectien 'I'ermtnation

Other components will occasionally disconnect or abort communications without giving

notice to Net8. in this event, N~t8 will recognize the :failure during its next <lataoperation, and

elean up client and server operationsı-effectively disconnecting the ciırrent operation.

2.5.3.4 Timer Ittlti.ijtedJ~İğCO~~ectrörDeaa €ôııııectio*1petec{iprl

Dead eonnection detection is a feature that allows Net8 to ideiıtify cönnections that have beeh

ieft hanging!i:Oythe!abıiôrr.tıaliterıninat,on of a olient, Ona conneçtion with dead connection

detection enabled, a small probe packet is sent from server to client ata ıiser-defined interval.

the connection is irıvalid, the connection will be closed when an error is generated by the

send operation, and the server.process will-tcnninate the connection,

This feat~e ıniniıniz~stJ;ı.e>wasteofresôtircesby.conrıectionsthat•are no Ionger valid, it also
'·antomatically forces a databaşe rollback: of>uncommitted transactions and locks held by the

user ofthe broken connection.

et8 supports four sets of cÜent+sefverdata operatiens.

Sehd <latasynchronously.

Receive datlsynchrorlously;

Send <lata asynchrenously.

Receive data asynchronously.

the client side, a SQLdialogue request is forwarded using a send request in Net8. On the

er side, Net8 processes a receive request and passes the data.to the database, The opposite

urs in the return trip from the server,

38

Basic send and receive requests are synchronous, When a client initiates a request, it waits for

the server to respond with the answer. İt can then issue an additional request.

Net8 adds the capability to send and receive data requests asynchronously. This capability

was added to support the Oracle shared server, also called a multi-threaded server, which

requires asynchronous calls to service incoming requests :frommultiple clients.

2.5,5 E~ception Operations
Net8 supports three types of exception operations.

Initiate a break over the connection.

2. Reset ~ connection

3. Test the ı.;uııuıuvu

operations, t~t is, · th~ initiation öf a break. When

Interrupt key, the applioation calls this function, Additiöhally, the

database can initiate a break to the elient if an abnormal operation occurs, such as during an

attempt to load a row of invalid data using SQL*Loader.

The ('tlıer ~ ~,;~$ öpJ~'.afe'~~ fo ptO~ılcis'tfüt 1JS' Netg ~O resolve iletwork
timing issues. Net8 can irtitiate a test of the communication channel, for example, to see if

new data has arrived. The reset function is used to resolve abnormal states, such as getting the

connection back in synchronization after a break operstion has occurred.

2.5.6 Net8 and the TraJ:lsparentNe~ork Substrate (TNS)
Net8 uses the Trarıspaı'ent Network Su.bsttate aıid industry-standard networking protocols to

accomplish its basic functiot:taHty. tNS is · a fot.ındation technology that is builf iı:ıtO Net8

providing a single, common interface to a.ffindustcy-ştandard protocols.

W'ith TNS, peer-to-peef .appllcation connectivity is possible where nö direct macaine-level

connectivity exists, In peer-to-peer architecture, two or more computers can commımicate

with each other directly, without the need for any intermediary devices. In a peer-to-peer

system, a node can be both a client and a server,

39

CHAPTER 111: Process Management
3.1 DlSRIBUTED PROCESSING

Oracle databases and client applications operate in what is known as a distributed processing

environment. Distributed or cooperative process-inginvolves interaction between two or more

computers to complete a single <lata transaction. Applications such as an Oracle tool act as

clients requesting <lata to accomplish a speci:fic operation. Database servers store and provide
the data.

In a typical network configlll'atio~.clientsand seryers tnay exist as separate logical entities on

separate physical machines.i'Ibis configuration allows fora division of labor where resources

are allocated efliçiğrıtly l,~t~e~ıf a · cljent· workstation &nd the server machine. Clients

normally resi4eipn clesktcıp computers with just enough memory to execute user friendly

applicafiöns,whilea Serverhas rnore memory, disk storage, and processing power to execute
and administer the database.

This type of client-seı-ver arqhiteçture ~so enable~ ye,µ_ t(). distribllte . datapa.ses across a

network. .A distfibııted databasejs a.network .ofdatabaseS stored on mu1tiplecomputers that

appe~s to the. user as ~ singlelôgical databage.Distributed database servers are connected by

a database link, or patlı from one database to another. Öne server uses a database link to query

andmodi:fyinformation on a second server as needed, thereby acting as a client to the second
server.

3.1.1 Sfack Communleations

The concept of distributed processing .relies on the ability of cornputers separated by both

design)llld physical location to · communicate and interact with each other. This is

accomplished through a process known as stack cornrnunications.Stack communieations can

explained by referencing the Open Systern Interconnection model. In the OSI model,

mrnunication between separate cornputers occurs in a stack-like fashion with inforrnation

sing frorn one node to .the other through several layers of code. Figure 2-5 depicts a typical
SI Protocol CommunicationsStack.

40

''

'Cliorrı ~. •~pliaıl<ın Uer ~pli<"Arian ·
-~ ~-· -·" ·-· _..

Pr,,s,enıııicn S}>stem Pr,,s,enıııiaı

Sl!!Zicn Sl!!Ziaı

Trmsp:ırı 'rr.ırısp:ırı

Netıı,,ı:rk N"""""'ı

Liık LiıkN~Ca..=dm
ı· ı. Php:iaıl / Php:iaıl

' ' ' '''

''\

' ' ' '

'' '
'

Figure 3 .1.1.1 : OSI Communications Stack

Inforrtıation g~ss~tı:<.l#itıü-öug1ı<iıayers. ()11İhe clieııt side where it is packaged for transport

across . a network Inediu.ın • in a mannet that it can be translated and understood by

correspo11diııg]ayers. on the server side. A typical OSI protocol comrmınications stack will

contaiıı seven such layers.

1. Application: this is the.OS! lc!,Y~f closest to the ıısyr,J:ınd as such is dependent on the

functionality requested by tijetııier. Fof yXatnple, . in a database environrnent, a Forms

appµcatioııınay atteınpt tô iıiifiate côınınuıiicatioı:ı in order to access data from a server.

2. Presentatkın: ensures that information sent by the application layer of one system is

readable by the application layer of another system. This includes keeping track of syntax

and semantics of the data/transferred between the client and server, If necessary, the

presentation layer translates between multiple data representation formats by using a

common <lata format.

Session: as its name sugg~sts,<?st~bli.shes, n::ıanaıes, and terminates sessions between the

client and server. This is a virftıal pipe that carries data requests and responses. The

session layer manages whether the data tra:ffic can go in both directions at the same time

referred to as asy:pchronous, or in only one direction at a time referred to as synchronous.

. Transport: implements the <lata transport ensuring that the <lata is transported reliably.

Networlc ensures that the <lata transport is routed through optimal paths through a series

of interconnected subnetworks.

Link: provides reliabte transh of <lata across a physical link.

41

7. Physicalı defines the electrical, mechanical, and procedural specifications for activating,

maintaining and deactivating the physica1 link between client and server.

3.1.2 Stack Communieations in an Oracle Networldng Envlrcnment

Stack comıtıunications allow Oracle clients and servers to share, modify, and manipulate data

between themselves. The layers in a typical Oracle communications stack are similar to those

of astandard OSI communications stack.

3.1.2.1 Client-Serv~r Interaetion

In an Oracle client-servertransaction, informationıpasses through the foUowing layers

1. Client Application,

2. Oracle Call Interface,

3.

4. Net8,

5. Orac1eIPtôtocoLAdapters.

6. Network Specific Protocols.

Client
SideSlzı"k

s.,.....,,
Sio,,·Slzı"k

Clent
. AR>lic.ııia,

'ocı OPI

RDBINS T"'1.•T.nl:k
CQlllma, RDBIIIS

NI Nl

l\ll!lıwrk­
•• Specik
' Praıaoal

Figure 3, l).1.1: Typical Communications Stack in an Oracle environment

42

Client Applicatien

Oracle client applications provide all user-oriented activities, such as character or graphical

user display, screen control, data presentation, application flow, and other application

specifics. The application identifies database operations to send to the server and passes them

through to the .Oracle Call Interface.

2. Oraele Call Interface

The OCI code contains all the information required to initiate a SQL dialogue between the

client and the server.Itdenrıes>callsJothe servet to:

ı. Parse SQL stateıi1eııts fotsyııtaxValidation.

2. Open a<<.fü:fsotför.tijeSQLstatement.

3. Bind clieııt-application variables into the server shared memory.

4. Describe the contents of the fields being returned based on the values in the server's data

dictionary.

5. ExecuteSQL statements withiııthe cursor memory space;

6. Fetch-one ormöre rows ôfdataıntothe •clientapplication.

7. Close the otırsor,

The client application uses a combination of these calls to request activity within the server.

OCI caUs can be combined into a single message to the server, or they may be processed one

at a time through multiple messages ao the server, depending on the hature of the client

application. Oracle products atternpt tô ı:ninimize the number of messages sent to the server by

combining many OCI calls into'rarsingle message to the' server. When a call is perforrtıed,

control is passed to Net8 to establish the1 connection and transmit the request to the server ..

3. Two-Task Comm~m

Two-Task Cornmon provides character set and data type conversion between different

character sets or formats on the client and server. This layer is optimized to perfo~

eonversion only when required on a per connection hasis.

43

At the time of initial connection, Two Task Common is, responsible for evaluating differences

in internal data and character set representations and determining whether conversions are

required for the two computers to cornmunicate.

4. Net8

Net8 provides all session layer functionality in an Oracle communications stack. It is

responsible for establishing and maintaining the connection between a client application and

server, as well as exchanging messages between them. Net8 itself has three component layers

that facilitate session layer functionality.

1. Network Interfaeeı This layerprovides a>genericintetface for Oracle clients, servers, or

extemal processes tQJa.ccess Net8 :fü11,cfüö11s. The NFhan.dles the brea.k and reset requests

for a cpnnectiôıi:

2. NetworkRôufüıgl Netw,Oıi< Naming/ Network Authentieationı NR provides routing of

the sessiöntothe destination. This may include any intermediary destinations or 'hops',

on the route to the server destination. NN resolves aliases to a Net8 destination address.

NA negotiates any authentication requirement with the destination.

3. Transparent. NetwotkSubstfate: TNS is an underlying layer of Net8 providing a

coınrno11.itıterfacetöirtdıtstry1stan.dard\pfotocols. TNS receives requests from Net8, and

settles alFgeııeric machine ..level connectivity issues, such as the location of the server or

destination, whether one or more protocols will be involved in the connection, and how to

handle interrupts between client and server based on the capabilities of each.

The generic set of TNS functiotıszpasses control to an Oracle Protocol Adapter to make a

protocol-specific call. AdditionallyfTNS supports encryption and sequenced cryptographic
message-digests to protect <lata in transit.

5. Oraele Proteeot .Adapters

Oracle Protocol Adapters are responsible for mapping TNS functionality to industry-standard

protocols used in the client... server connection. Each adafter is responsible for mapping the
equivalent functions between TNS and a speci:fic protocol.

44

6. Network-Specifle Protoeols
All Oracle software in the client-server connection process requite an existing network

protocol stack to make the machine-level connection between the two machines. 'Ehe network

protocol is responsible only for getting the <lata from the client machine to the server machine,

at-which point the data is passed to the server-side Oracle Protoco l Adapter.

7. Server-Side Iateraetion
Information passed from a client application across a network protocol is received by a

similar commıınicatiorısstack on the server side. The process staek on the server side is the

reverse of what occurred o'n the client side with information ascending through

communication layers. The pne operation uniqu~ to the server side is the act of receiving the

initial connection through the network listener. The ;fpllowingcomponents above the Net8

session layer are different from those on the client ,side.

ı. Oracle Progran1.Interface

2. Oracle Server

1. Oracle: Progra:m.Inte:fface
The OPF perfornıs cornplerneritary function to . that of the OCI. It is responsible for

responding to each ofthe possible messages sentby the OCI. For example, an OCI request to

fetch 25 rows would have an OPI response to return the 25 rows once they have been fetched.

2. Oracle Server
The Oracle.Server side of the côriiıectionis responsibletfor receiving·dfalogrequests from.the

client OCI code .and resolving>SQE statements • on behalf of .the client · application. ünce

received, a requestis processedarid Uıe resultingdata is passrd to the OPI for responses to be
formatted and retumed to the clientapplieafion.

3.1.3 Se:tver-to-Serverinteraction
When.two servers communioate to complete a distributed transaction, the process, layers, and

dialogues are the same as in the elient-server scenario, except that there is no client

application. The server has its own version of OCI, called the Network Program Interface

(NPI). The NPI interface performs all of the functions that the OCl does for clients, allowing

a coordirıatingserver to construct SQL requests for additional servers.

45

3.2 DISTRIBUTED COMPUTING USING JAVA

Distributed systems tequire that computations running in di:fferent address spaces, potentially

on different hosts, be able to communicate. For a basic cofllllunication mechanism, the

Java™ language supports sockets, which are :flexible and sufficient for general

communication. However, sockets require the client and server to engage in applications-level

protocols to encode and decode messages for exchange, and the design of such protocols is

cumbersome and can be error-prone.

An , alternative to sockets is Remote Procedure Call, which abstracts the communication

.interfaee to the level of a procedure call; Tnstead bf.working directly with sockets, the

programmer has the illusiöflôfcallin.g alocalprôcedtıre; When in fact the arguments of the

call are packaged ııp aııc:l shippeclôfi}tö • the remote tatget of ..fhe .call.:RPC systems encode

arguments.and ı-eturfrva1ueSııSing an extefııa1datarepresetltation.

RPC, however, does not translate well into distributed object systems, where commıınication

between program-level. objects residing in di:fferent address spaces is needed. In order to

mateh the seınantics of object invocation, distributed object systems require remote method

invocation or RMI. In such .systems, a local surrôgat[.ôbjecf manages the invocation on a
remote obiect.

3.2.1 Distributed Objeet Applications

RMI applications are eften comprised of two separate programs, a server and a client. A

typical server application creates a number of remote objects, makes l'~ferences to those

remote objects accessible, and waitS for clients to · irryôketrıethodSon thdSe fe1110te objects. A

typical client application gets a remote referenee to one or more remote obiects in the server

and then invokes rnethods on them; R1vfI prövides the mecabnismby which the server and the
client commnnicate and pass infotmation back and forth. Such an applications is sometiınes

referred to as a distribtıted object application.Distributed object applicationsneed to:

1. Locate remote ôbjec:ts: Applications can use one of two mechanisms to obtain references

to remote objects. Ari appliçation can register its remote objects with RMI's siınple
naming facility, the rmiregıstry, or the application can pass and return remote .object
references as part ofits normal operation.

46

2. Commıınicate with remote objeoıs: Details of communicatinn between remote objects ~e

handled by RM1, to the programmer, remote communication looks like a standard Java
method invocation,

3. Load class bytecodes for objects that are passed as parameters or retum values: Because

RMI allows a caller to pass pure Java objects to remote objects, RMI provides the

necessarymechanismsfor loading an object's code as well as transmitting its <lata.

The illustration below depicts an 'RMI distributed .application that uses the registry to obtain

references to a remote object, The server calls the registry to associate a name with a remote

object. The client looks up the remote object byoits name in, the server's registry and then

invokes a method on it./The illustration also shows.that the RMI system uses an existing web

server to load Java class bytecodes, :froın server to client and froni client to server, for objects

when needed, RMI canrload class bytecodes using any URL protocol that is supported by the
Java system,

regiatry

ı u:ıı:ı.
' pıxıı:ooo.ı

elient

Figure 3.2.1.1: The Distributed and Nondistributed Models Contrasted

e Java distributed object model is 'similarto the Java object model in the followingways:

. A reference to a remote object çan be passed as an argument or returned as a result in any
method invocation.

. A remote object can be cast to any of the set of remote interfaces supported by the
implementationusing the built-in Java syntax for casting.

The built-in Java instanceof operator can be used ta test the remote interfaces supported
by a remote object.

The Java distributed object model differs :from the Java object model in these ways:

47

1. Clients, of remote objects interact with remote interfaces, never with the iınplementation

classes ofthose interfaces.

2. Non-remote arguments to, and results from, a remote method invocation are passed py

copy rather than by reference. This is because references to bbjects are only useful within

a single virtual maehine.

3. A remote object is passed by reference, not by copying the actual remote implementation.

4. The semantics .of some of the methods defined by class java.lang.Object are specialized

for remote objects.

5, Since the failure modes of invoking remote obiects are inherently more complioated than

the failure modes of invoking local. obiects, clients must deal with additional exceptions

that can occur during a remote method invocation.

3.2.2 R)MI .. Iııterfaces a.ıı.dClasses

The interfaces •• an.O classes that are responsible for specifying the .remote behavior of the RMI

system are defined ·• in the java.rrni package hierarchy. The following figure shows the

relationship between several ofthese interfaces and classes,

(IOE.xoopion .)

i

--ıııı,. $:lension
- -- ıııo,. irnplemenl!ı1iorı

Figüre 3.2.2.l: RMI Iriterfacesand Classes

3.2.2.1 Tbe javairmi.RemoteInt-e;rfaçe
In RMI, a remote interface is an interface that declares a set of niethods that may be invoked
from a remote Java virtual ınachine. In a remote method declaration, a remote object declared

as a parameter or >return value must be declared as the remote interface, not the

implementation class of that interface. The interface java.rrni.Remote is a marker interface

that defines no ınethods. A remote interface must at least extend the interface

java.rmi.Remote or another remote interface that extends java.rmi.Remote.

48

3.2.3 Parameter Passing in Remote Met~ocJ Invecation

An argument to, or a return value from, a remote object can be any Java object that is

serializable, This includes Java primitive types, remote Java objects, and non-remote Java

objects that implement the java.io.Seriafizable interface.

3.2.3.1 Passing Non-remote Objeets

A non-remote object, that is passed as a parameter ofa remote method invocation or returned

asa result ofa remote method invocation, is passed.by copy; that is, the object is serialized

using the Java Object Serializationmechanism.

So, when a non-remote object is passed as an argument or return value in a remote method

invocation, the çontent of the non-remote object is copied before invoking the call on the

remote object. When a non-remote object is returned :from a remote method invocation, a new

object is created in the callingvirtual machine,

3.2.3.2 Passing Remote Objects
When passing a remote bbjecfas &iparameteror returnwafue in.a remotemethod call, the stub

for the remôte ôbjectis passedOiAfemôte öbject passed .as··•a parameter: can·only implement

remote interfaces.

3.2.3. Referential Integrity

If two references to an object are passed from one Virtual Machine to another Virtual

Machine in parameters in a sin.gletemote method call and those references refer to the same

object in the sending Virtual Machine, those references will refer to a single copy of the

object in .the.receivlııgVirtual Macliin.e. Within a single remote method call, the RMI system
maintains referentialintegrity among the obiects -passed as parameters or as a return value in

the call.

3.2.3.4 Class Annofation

When an object is sent.from one Virtual Machine to another in a remote method call, the RMI

system annotates the class descriptor in the call stream with the URL infbrmation of the class

so that the class can be loaded at the receiver. It is a requirement that classes be downloaded

on demand during remote method invocation.

49

3.2.3.5 Parameter Transmission
Parameters in an RMI call are written to a stream that is a subclass öf the class

java.io.Objectfnıtputôtream in order to serialize the parameters to the destination of the

remote call. The ObjectOutputStream.subclass overrides the replaceübject method to replace

ea~h remote object with its corresponding stub class. Parameters that are objects are written to

the stream using the ObjectOutputStream.'s writeübject method. İhe ObjectOutputStream

calls the replaceübject method for each object written to the stream. via the writeübject

method. The replaceübject method of RMI's subclass of ObjectOutputStream. returns the

following:

1. If the object passetl to replaceübject is an instance of java.rıni.Remote, then it returns the

stub for the remote object. A stub fora remote object is obtained via a call to the method

java.rmi.server.Remoteübject. toStub.

2. If the object passed to replaçeübject is not an instance ofjava.rmi.Remote, then the object

is simplyreturned.

RMI's subclass of ObjectOutputStream. also implements the annotateClass method that

annotates the call stream with the location .of the class so that it can be downloaded at the

receıver.

Since parameters are written to a single ObjectOutputStrearp, references that refer to the same
\

object at the caller will refer tq the same copy of the object at the receiver. At the receiver,

parameters are read by a single'Object Input Stream.

Any other default behavior of {)bjçctOutputStream for writing objects (and similarly

ObjectinputStream for reading objects) is maintained in parameter passing. For example, the

calling of wdteReplace when writing obiects and readResolve when reading objects is

honored by RMI's parameter marshal and unmarshal streams.

In a similar mamıer to parameter pasşing in 'R.MI·· as described above, a return value (or

exception) is written to a subclass of ObjectOutputStream and has the same replacement

behavior as parameter transmission.

50

3.2.4 Locatiag Remote Objects

A simple bootstrap name server is provided for storing named references to remote objects. A

remote object reference can be ,stored using the URL-based methods of the class

javıı.rmi.Naming.

Fora client to invoke a method ona remote obiect, that client must :first obtain a reference to

the object. A refe.re~ceto a remote object is usually obtained asa parameter or return value in

a method call. The RMI system provides a simple bootstrap name server from which to obtain

remote objects on given hosts. The java.rmi.Naming class provides Uniform Resource

Locator (tJRL) based methods to look up, bınd, rebirid, unbind, and list the name-object

pairings maintained on a particular host

which is reponsible for carrying out the method
call on' the re111ôte object. in RMI, a stııb for a remote object implements the same set of

remote illterfaces that fi- remote obiect irnpMr11erits. When a stub's method is invoked, it does

the following.

1. Initiates a connectio:fı with the remote i\TM c9ntaıning the femote object.

2. Writes and transmits the parameters to the remote VM.
3. Waits for the result ofthe method invocation.

4. Reads the return vahie or exception returned.

Returns 'the value to the caller.

stub hides tJ:ı~ serıalizatiori;öf'plli-artıetgtg ana füt rietWötk-level cotiıtıılltiİcatioıt iri ôrcfor
nrP~Pnt a simple invocation ıtıeclıan.ism.tô the caller. in the remote VM, each remote object

'
have a corresponding skeleton, The skeleton is responsible for dispatching fü,e call to the
reınôte ôbject implemenUıtion. When a skeleton receives an ıncôming method

ıvocatıon it does the follOwing.

51

I. Reads the parameters for the remote nıethod.

2. Invokes the method on the actual remote obiect implementation,

3. Writes and transmits the renırn value or exception to the caller.

3.,2.6 Thread Usage in.Remote Met~od Invocations

A method dispatched by the RMI runtime to a remote object implementationmay or may not

execute in a separate 'thread, The RMI runtime makes no guarantees with respeçt to mapping

remote object invocations to threads. Since remote method invocation on the same remote

object may execute concurrently, a remote object implementation needs to make sure its

implementationis thread-safe.

3.2.7 Garbage (follectfüqtc,fr~ınôfe(Jt,j~cts
In a distributedsysteın;.3ust~s)infhelöcafsy§tem., it isdesirable to automatically delete those

remote objeçtsthatare nôlôiı.ğel'feferenced by any client. This frees the programmer from

needing to k:eeptrack of the remote objects clients so that it carrterminate appropriately, RMl

uses a reference-counting garbage collection algorithm.

To accomplishrefererice-cöuiı.tinğ.gfü'1ı,ağe cô~ctiôh; th.eRMI runtime keeps track of all live
references within.ea.ch Jı:ı.va. virtrtı;ıl n:iaclınıe..>Wliefr~]ive. teferehce enters a Java virtual

machine, its tefetence count · is irıcremeiı.ted.The :first reference to an object sends ~

referenced message to the server for the object. As live references are föund to be

unreferenced in the local · virtual machine, the count is decremented. When the Iast reference

has been discarded, an unreferencedmessage is sent tolhe server,

Many subtleties exist in the pt-ôtôcöl, most of these ate relatedto·nıainta.ining the ordering of
referenced and unreferenced nıes'sağes in order to ensl:ltethat the object is not prematurely

collected.

When a remote object is not referenced by any client, the RMI runtime refers. to it using a
weak reference. >The weak reference allows the Java virtual machine's garbage collector to

discard the objedt if no other local references to the bbject exist. The distributed garbage

eollection algorithm interacts with the local Java virtual machine's garbage collector in the

usual ways by holding normal or weak references to objeots.

52

leng as a local reference to a remote object exists, it cannot be garbage-collected and it

passed in remote calls or returned to clients. Passing a remote object adds the identi:fier

the virtual machine to which it was passed to the referenced set. A remote object needing

unreferenced notification must implement the java.rmi.server.Unreferenced interface. When

those references no longer exist, the unreferenced method will be invoked. unreferenced is
',

called when the set of references is found to be empty so it might be called more than once.

Remote objects are only collected when no more referenees, either local or remote, stili exist.

Note thar if a network partition exists between a client and a ren;ıote server object, it is

possible that premaıure collection of the remote objectwill occur (since the transport might

believe that the client crashed). Because of the pôssibility of premature collection, remote

references cannot:gµar;ahtee;.tefere:ntialdntegrity;in Qtherwords, it .is always possible that a

remote referenceirtıay)in<factrnot refet to>anexisting object. A:n•·.attempt·· to use such .a

reference will generate a RetnoteException whichmust be handled by the application.

~DynaınicClass Loaduıg
RMI allows parameters, return values and exceptions passed in RMf calls to be any object

that is serializable. RMI ııses .the object serializationsmeohanismto transmit.<lata . from · one

virtual machine to another aııd:alsd .annotates the eallestreamwith the appropriate location

information so.fhatthe class definitionfiles can be Ioaded at.the receiver.

When parameters and retum-values for a remote method invocation are unmarshalled to

become live objects in the receiving VM, class definitions are required for all of the types of

objects 'lfl the stream. The u.:t1n11Ü'shal.llııg process first arten:~pts to resolve classes by name in
its local classdoading context..RMLalso. provides a facility for dynamically loading the class

de:finitionsfor the<actual types.ôfobjeCtsipassed as parameters and return.values ·for remote
methodmvocations from network lôCatiônsspeci:fied by the transmitting endpoint.

This includes the dynamiç dow:nloadingof remote stub classes corresponding to particular

remote object implementationclasses as well as any other type that is passed by value in RMI

calls, such as the subclass of a declared parameter type, that is not already available in the

class loading context ofthe unmarshallingside.

53

/:}'
.;}\;'

}~, ,:-,.-.,,. ,;

To support dynamic class loading, the RMI runtiıne uses special subc\asse~;/,oı

java.io.ObjectOutputStream and java.io.ObjectinputStream for the marshal streams t~~~{ it
\ ..,.,,

uses for marshalling and unrnarshalling RMI paratneters and return vahıes. \:

These subelasses override the annbtateClass method of ObjectOutputStream and the

resolveClass method ofObjectlnputStream to communicate information about where-to locate

class files conta:iiıing the definitions for classes corresponding to the class descriptors in the

stream.

For every class descriptor written to an RMI marshal stream, the annotateölass method adds

to the stream the result of calling java.rmi.server.RMIClassLoader.getClassAnnotation for the

class object, whicl;ı uıay b~ null·or may be a String object represerıting the eodebase tJRL patlı

from which :the.remote endpoint should download the class definition µle for the given class.

For every cl~ssd~scriptor read from an RMI marshal stream, the rdsolveClass method reads a

single object from the stream.

If the object is a String, then resolveClass returns the result of calling

RMIClas'sL))ader.loadClass with the' annotated String object as the :first parameter and the

name of the desired class in the class descriptor as the seco:ı;ıd parameter. Otherwise,

resolveClass retums the result of calling RMIClassLoader.loadClass with the name of the

desired class as the only parameter.

3.2.8 RMI Through F~rewalls.i!a.llrQxies
The R}1I ttanşpdrt layer norma.Uy ~ttempts to open direct sockets to hosts on the Internet.

Many intraı1ets,/l1owever, have::11,ı'yVV~ which.d() not allow this. The defanlt RMI transport,

therefore, provides two alternate · HTTP-based mechanisms which enable a client behind a

firewallto jn.y()ky a method ona remote object which resides outside the :firewall.

3.2.8.1 How an RMl(Jall is Paekaged withfü the H'fTP Protocol
To get outside a firewall, the transport layer embeds an .RMI call within the :firewall-trusted

HTTP protocol, The RMI call data is sent outside as the body of an HTTP POST request, and

the return inforrnation is sent back in the body of the HTTP response. The transport layer will

formulate the POST request in one of two ways.

54

!· .If the firewall proxy will forward an HTTP request directed to an

arbitrary ,port on the host machine, then it is forwarded directly to the

port .OJJ. yvijch the RMI server is listening. The default RMI transport

lııyef)()il .the · target machine is listening with a servet socket that is

çııpal;,le of understanding and decoding RMI calls inside POST

reque~ts.

reqnests direçted to

3.2.8.2 The Def~ültSockefF'acföry
The RMI trruısport extends/the java..rmi.server.R.MtSucketFactoryclass to provide a defaıılt

-izjpleınehtati~~<?f}a< sôckefifactory which is the resource-provider for client and server

· sockets. This .çlefault socket factory creates sockets tlı~t transparently provide the firewall

tunnellingmechanism.as follows.

1. Client sockets autonıatfoallyattempt HTTP connections to hosts that cannot be contacted

with a direct socket.

2. -Server sockets autoınatic@y detect if a newly-accepted connection is an H1ffF POST

request,/iari.dif so, returfla sôcket that will expose only the body of the request to the

transport arı.d format its outputas anHTTP response.

3.2.~.3 Cônfi~~rlli,the Chent
There is no Special corıfiguratiorınecessary to enable the client to send RMI calls through a

firewall. The client can, however, disable the packaging of RMI oalls as HTTP requests by

setting the java.rmi.server.disableHttp property to equal the boolean value true.

55

3.2.8.4 Confıguring the Server

in order for a client outside the server host's domain to be able to invokemethods on a server's

remote obiects, the client must' be able to :find the server, To do this, the remote references

thatthe server exports must cônJ;ainthe:fully-quali:fied name ofthe server host.

Depending on the server's platform and network environment, this information may: or may

not be available ·· tô the Java virtual machine 01ı1 which the server is running. If it is not

available, the hôst's fully quaİifird name > nıust be speci:fied with the property
java.:rıni.server.hostnamewhen starting tlıe server.

that those sent

can only be initiated in one direetion through a firewall, a client
cannot e1x~ort its own remote objeçts outside the firewall, .because a host outside the firewall
cannot initiate a method invocatioıı backoıı.th,e -clieht,

56

Summary and Conclusion
Java is designed to be platform independent. A pure Java program written for a Windows

rnachine will run without recornpilation on a Solaris Sparc, an Apple Macintosh, or any

platform with the appropriate Java virtual rnachine.

JDBC is a rich set of classes that give us transparent access to a database with a single

application programming interface, or API. This access is done with plug-in platform-specific

rnodules, or drivers. Using these drivers and the JDBC classes, our programs will be able to

access consistently any database that supports JDBC, giving us total freedorn to concentrate

on oür applicatioris • and not to worry about the underlyi11ğ. database.

one another. It facilitates and

application and a rernote database.

operations.

passes control of a connection to the underlying protocol, it inherits all rnedia

and/or topologies supported by that network protocol stack. This allows the network protocol

to use any means of data.transın.ission, such as Ethem.et,Token.Ring, or other, to accomplish
low leveLdata.lirik transtrıissiorisbetween.rwo nıachines.

in a distribüted systern, just as in the local systern, it is desirable to autornatically delete those
rernote objects that are riôlônger referenced by any client. This frees the prograrnrner frorn

needing to keep track ofthe remote objects clients so that it can terminate appropriately. RMI

uses a reference-eounting garbagecollection algorithrn.

57

References
Reference to Books

[l]D. R. Grafhaın/an.dF.B. Golden, eds., General Electric, N.J.: Prentice Hall, 1982

[2] R. G. Holt,Semiconductor Power Electronics, Van Nostrand Reinhold Company, Inc,

1986

Reference to Web

[1] www.scansoft.com/paperport/oracles/syoregs.asp

[2] www.advantagedatabase.com

[3] www.hyperdictionary.com/computing/relational+databasemanagement+system

[4] www.cs.rit.edu/picss544/userprocesses.html

[5] www.geocrawler.com

[6] www.computing.net/netware

[7] www.csee.umbc.edu

[8] www.cise.ufl.edu

[9]www.oreilly.com

[10] www.sheenetworks.com

[11] www.roguewave.com

[12] www.citeseer.nj.nec.com/486101.html

[13] www.leamit.nl

[14] www.vet-purdue-edu/java/docs/guide/rmi-objmodel2.html

[15] www.msdn.microsoft.com/library/en-us/coın/htm

[16] www.uniform.chi.il.us/slides/corba/sld023.htm

[17] www.dcs.warwick.ac.uk/people/academic/ananda.amatya/javanotes/nodel08.html

[18] www.usc.edu/dept/fınserv/dirting/trnschehed1 .htm

[19] www.experts-exchange.com/database/oracle/Q_20680748.htm

[20] www.adp.gmbh.ch/ora/concepts/sga.html

[21] www.remote_dba.cc/sl 1.htm

[22] www.orsweb.coın/reference/orsintrnlstrc.html

58

[23J www.java.sun.com/products/jdk/ 1 .2/docs/rmi/ spec/rmitoc.doc.html

[24] www. Citeseer.nec.com

[25] www.usaid.gov

[26] .wyvw.cbbrowne.com/info/rdbms.html

[27] www.cs.emu.edu/people/claman/OODBMS

[28] www.media.wiley.com/product_ data/experct

[29] www.söıfiiıria:ft/public/ sovl_plainfosse _thesis

[30] www.cnurchilobjects.com/c/11086e.htnıl

59

Appendices

AppendixA
Glossary ofJava and Related Terms

AbstractWindow Toolkit
A collection of graphical user interface (GUI) components that were implemented using

native-platforın versions of the components. These components provide that subset of

functionaHtywhich is eommon to all native platforms, I,argely supplanted by the Project
Swing component set.

Abstraet
A Java(TM) programrııing langııage keyword used in a class definition to specify that a
classiSn.ôftObeinstantiated, but ratherinherited by other classes. An abstract class can

have abstractmethods that are not impleınented in the abstract class, but in subclasses.

Alpha Vafue

A value that indicates the opacity ofa pixel.

API
Application Progı:amm.ingJnterface. The specification of how a programmer writing an
application accesses the behavior and state of classes and objects.

Applet
A component that typically executes in a Web browser, but can execute in a variety of

other applications or devices that support the applet programming model.

Argument
A data item specified in a method cali. An argument can be a literal value, a variable, or

an expression.

A

Bean
A reusable software component. Beans can be combined to create an application.

Bit
The smallestunit.ofinfonnation in a computer, with a value of either O or 1.

Bitwise Operator
An operator that manipulates two values comparing each bit of one value to the

corresponding bit of the other value.

Block
In the Java(TM)progtatnrtıinglanğUage, any code between matching braces. Example: {

X

:B1.1süıesslogic
The code that implements the functionality of an application, In the Enterprise JavaBearıs

model, this logic is implcmcntcd by thc mcthods of an entcrpriso boan.

Byte
A şequence ofeight bits,Ti)~Java(TM) programming language provides.a corresponding

byte type.

Byteeede
Maehine ...indepeadent code generated by the Java(TM)compiler and executed by the Java

interpreter.

Cateh
A Java(TM) programming language keyword used to declare a block of statements to be

executed in the event that a Java exception, or run time error, occurs in a preceding "try"

block,

B

Ciass
In the Java(TM) • programming . language, a type that defines . the implementation of a

particular kind of object. A class definition defines instance and class variables and
methods, as well as specifying the interfaces the class implements and the immediate

superclass of the class. If the superclass is not explieitly specified, the superclass will

implicitlybe Object.

Class .method
A method that is invoked without reference to a partioular object. Class methods affect
the class as a whole{iıôt aparticularinstance ofthe class.

cıasspath·
A classpathis<a.11eııvirorımentalvariable which tells the Java(TM)virtual machine= and

Java ~echnology~basedapplications (for example, the tools located in the JDK(Tl\1)
Ll.X\hin directory) where to find the class libraries, including user-defined class

libraries.

Class varlablc
A dataitemassociated with a particular class asa whole--not with particular instances of

the class. Class variables are defined in class definitions.

Clicnt
in the client/server model of commııncations, the client.is a process that remotely

accesses resources of a · compute server, such as compute power and large memory
capacity,

Codebase
Works together with the code attribute in the <APPLET> tag to give a complete

specification ofwhere to find the main applet class file: code specifies the name of the

file, and codebase specifies the URL ofthe directory containing the file.

C

C<mımit
The point.in a transaction when all updates to any resources involved in the transaction

are made permanent.

Compilatlon unlt
The smallestunit of source code that can be compiled, In the current implementation of

the Java(TM)platforın~ the compilation unit isa :file.

Compiler
A program to translate source code into code to be executed by a computer. The

Java(TM) compilet translates source code written in the Java programming language into

bytecode for the Java virtual machine •.

(?ömpijnent
An applieaüon-level sotl:ware unit supported by a container. Components are

configurable at deployment time. The J2EE platform defines four types of components:

••.ntı,ı;rnriı::P. beans, Web components, applets, and application clients.

C<>ıışt,ı:ıçtc,r
A pseudo;,method. \füıt >çreates an object. In the Java(Tl\1) programrning language,

constructors are instaô,çe>:111ethods with the same name as their class. Constructors are

invoked using the new keyword.

Container
An entity that provides life cyole manageme11t, seeurity, deployment, and runtime

services to components, Each type of container (EJB, Web, JSP, servlet, applet, and

app}içation.client) also provicles component-specific services,

CORBA
Common Object Request Broker Architecture. A language independent, distributed

object model specified by the Object Management Group (OMG).

D

-

Declaration
A statement thaı establishes an identifier and associates attributes with it, without

necessarily reserving its storage (for <lata) or providing the implementation

Encapsulation

The localizatiotı of knowledge within a module, Because objects encapsulate data and
implementation, the user of an object can view the object as a black box that provides

sereices. Instance variables and methods can be added, deleted, or changed, but as long as

the services provided;bythe(objeçtremain the same; code that uses the object can

continue touseitMTithotı.tl:>emgwewnttem

E,ıterplise llean
:A'Bômpônentthat implements a business task or business entity; either an entity beans or

a session bean.

~f~~~prise Java Beans
A component architeeture för the development and deployment of object-oriented,

distributed, . etıterptisemlevel applioations, Applications written using the Enterprise

JavaBeans arclıitectti.:re are scalable, transaetional, and multi-user and secure.

Exception

An event during program execution that prevents the program from continuing normally;

generally, an error. The Java(TM) prograrrıming language snpports exceptions with the

try, catch, and throw keywords .. See alsoexceptionhandler .

.Exception Handler
A block of eode that reaets to a speoific type ofexception. If the exception is foran error

that the program can recover from, the program can resume executing after the exception
handler has executed.

E

Exeeutable Content

An application that runs :from within an HTML file.

Extends

Class X extends class Y to add functionality, either by adding fields or methods to class

Y, or by overriding methods of class Y. An interface extends another interface by adding

methods, Class X is said to be a subelass of class Y.

Garbage CoUedion
The automatic detectionand :freeing ofmemory that is no longer in use. The Java(TM)

runtime systemxperfhrfils;.ğarbage/côllection se that ptogranı:ıners uever explicitly. free

objects,

Gl.Jl
Graphical User Interface. Refers to the techniqaes involved in using graphics, along with

a keyboard and a mousecto provide an .easy-to .•use: interface to some program.

HTML

HyperTe~/M~rkup Language. This is a file format, based on SGML, for hypertext

documents onthe1ı:ıternet. '. It is very simple and allows for the embedding of images,

sounds, video streams;formfields and sinıple textfo:o:natting. References to other objects
are embedded using URLs.

HTTP

Hyper'I'ext Transfer Protocol: The İnternet protoeol, based on TCP/IP, used to fetch

hypertext objects :from remote hosts.

HTTPS

HTTP layered over the SSLprotocol.

F

IDL

Interface Definiti.on Language. APis written in the Java(TM) programming language that

provide standards ..based interoperability and connectivity with CORBA (Common Object

Request Broker Architecture).

HOP

Intemet ·.. Inter'"ORB Protocol, A protocol used, for communication between CORBA

objecrrequest brokers.

Implements
A Java(TM) progranıming language keyword optionally included in the class declaration
to specify any interfaces that are implemented by the current class.

An object of a particular class, in programs written in the Java(TM) programming

language, an instance ofa class is created using the new operator followed by the class

name.

hı.terı,r~ter
Aınodtile thatalterri.a.tely decodes and executes every statement in some body of code.

The Java(TM) j11ter.pı:etet'1ecodes and executes bytecode forthe Java virtual machine

JARFUes (.jar)
Java. AR.ehi-ve. Afile formatusedfor aggregating many files into one.

Java(TM)
is $'uri's .. tra.deırtı:ı.rk for a set of techrıologies for oreating and safety running software

programs ıniibothstarı.d-alone and networked environments.

Java Application Environmcnt (JAE)
Thesource code release ofthe Java Development Kit (JDK(TM)) software,

G

Java DevelopmentKit (JDK(Tl\1))
A softwa;re development environment for writing applets and · applications in the Java

pregraeıming Ianguege.

Java(TM) .Platform
Consists of the Java· language för writing programs; a set of Al'Is, class libraries, and
otherprograms used in developing, compiling, and errdrwchecking programs; and a Java

virtuahnachine whichloads and executes the class files.

JavaScript(fM)
A Web scripting language that is ıısed in both browsers and Web scrvers, Like all

scripting languages,it isused prirtıarilytotie other components together orto accept user

JavaServer Pages(TM) (JSP)
An exteıısible Web tecl:ınology that uses-template .data, custom elements, scripting
latığua.ğes~ atıdserver"'side Java objects te return dynamic content to a client. Typically
the te:ı:rit,Uite data:is·.HTML or XML· elernents, and in many cases the client is a Web

b:rowser.

Java(TM) virtual mach.me(JVM)*
A software "execııtion engirte''tlıat safely and corrıpatibly execııtes the byte codes in Java
class files onramicroprocessorfwhether in a computer or in another electronic device).

Jini(TM) Technofogy
AsefofJava APis that may be incorporated an optional package for any Java 2 Platform

Editicni TJ:ie.Jini APis enable transparent networking of devices and services and

eliminates · the need for system or network administration intervention by a user,

The Jini technology is currently an optional paekage available on all Java platform

ediıions.

H

JMAPI
Java(TM) Management API. A collection of Java programming language classes and

iµterfaces that allow developers to build system, network, and service management

applications.

~JNO!
JavaiNaıning and Directory Interface(TM). A set of APis that assist with the interfacing

to ınultiple rıaıningand directôty services.

JPEG
Joint Photographic Experts Group. An image file compression standard established by

this group. It achieves tremendous compressionat the cost of introducing distortions into

the image which are almost always imperceptible.

JRE
Java(TM) rtırttime erıvironnıent. A subset of the Java Developer Kit for end-users and
devef~pe:ts. yvh.o> want · to redistribute the runtime environment. The Java runtime

envirôrinlentcqn.sists of the Java virtual machine", the Java core classes, and supporting

Just~in.füne (JIT) Compiter>
A compiler that converts alFofthe bytecode into native machine code just as a Java(TM)

prQgraıni.s :tun. This results in nın-tinıe speed improvements over code that is interpreted

by a Javavirtualınachirıe*.

JVM
Java(TM)MirtuakMachine*. The part ofthe Java Runtime Environment responsible for

interpreting bytecodes.

I

Multitbreaded
Describes a program that is designed to have parts of its

SAX
Simple .APifö:r XML. An event-driven, serial-access mechanism for accessing

documentsw

SecuhfSôcket Layer (SSL)
A protocol that allows communieation between a. Web browser and a server to be

encrypted for privacy.

funcfümality ofa Web server, generating dynamic

côrıt(;lrıfandfütetacting with Web clients using a request-response paradigm.

SQL
.ı..,aı:ı14uagı;:;, The standardized relational database language for de:fining

ctatabas~c.öbJeetsra.rı.cı :ınanıpuıatıng<lata.

TCPIIP
based on IP. This is an Internet protocol that provides för

from one host to another.the reliable delivery

Thread
The basic üiıit. of program e.xecution. A proeess can have several threads nnıning

concurrently, each perferming. adifferent job, sueh as waiting for events or performing a

tirrıe ...eonsumingjöb thatthe program doesn't need to complete before going on. When a

thread has finished itsjob, the thread is suspended or destroyed.

J

ing language keyword that allows the user to throw an exception

ements the "throwable" interface.

A Java(TM) programming language keyword used in method declarations that specify

which exceptions are not handled within the method but rather passed to the next higher

level of the program.

Try
keyword that defines a block of statements that may

exception is thrown, an optional "catch"block can

ceptions thrown within the "try" block. Also, an optional ":finally"

xecuted regardless ofwhether an exception is thrown or not.

URL
forwriting atext reference to an arbitrarypiece of

"protocol://host/localinfo"where protocol specifies

object (likeHTTP or FTP), host specifies the İnternet name

and localinfo is a string (often a file name) passed to the

K

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	Table of Contents
	1.4.3.2 ()811~.~(trf,i"e~>~~do Logs
	ii
	m
	w

	Images
	Image 1

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1

	Page 5
	Titles
	~~m ~

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	Acknowledgements

	Images
	Image 1

	Page 8
	Titles
	Abstraet

	Images
	Image 1
	Image 2

	Page 9
	Titles
	List of Figures

	Images
	Image 1

	Page 10
	Titles
	I: Introduction
	1

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	RI)BMS

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Titles
	5

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	7

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Titles
	CHAPTER 2:0racle Integration

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Titles
	21

	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1
	Image 2
	Image 3

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Images
	Image 1
	Image 2
	Image 3

	Page 37
	Titles
	their database c~:'i~,~~~~~r~~f1i~/'lit:ls~sji~,~~ö#ahf I: elese aliiteralors to avoJ
	2.2.11.4 Name Resolq.tion in the Server

	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Titles
	l.3 INTR.0DUCTION TO NET8

	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1
	Image 2

	Page 43
	Images
	Image 1
	Image 2
	Image 3

	Page 44
	Titles
	2.5.2.2 Redirect~d Sessions to E.n.stmg ~enr~r Pr9ceı;ses

	Images
	Image 1
	Image 2
	Image 3

	Page 45
	Titles
	36

	Images
	Image 1
	Image 2

	Page 46
	Images
	Image 1
	Image 2

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Titles
	CHAPTER 111: Process Management

	Images
	Image 1

	Page 50
	Titles
	'
	'
	'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 51
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 52
	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Images
	Image 1

	Page 56
	Images
	Image 1
	Image 2

	Page 57
	Titles
	i

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Titles
	49

	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1
	Image 2

	Page 61
	Titles
	3.2. 7 Garbage (follectfüqtc,fr~ınôfe(Jt,j~cts
	52

	Images
	Image 1

	Page 62
	Images
	Image 1

	Page 63
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Images
	Image 1
	Image 2
	Image 3

	Page 65
	Titles
	56

	Images
	Image 1

	Page 66
	Titles
	Summary and Conclusion

	Images
	Image 1
	Image 2
	Image 3

	Page 67
	Titles
	References

	Images
	Image 1

	Page 68
	Images
	Image 1
	Image 2

	Page 69
	Titles
	Appendices
	AbstractWindow Toolkit
	API
	A

	Images
	Image 1

	Page 70
	Images
	Image 1

	Page 71
	Titles
	Ciass

	Images
	Image 1

	Page 72
	Titles
	C<mımit
	(?ömpijnent
	CORBA

	Images
	Image 1
	Image 2

	Page 73
	Images
	Image 1

	Page 74
	Images
	Image 1

	Page 75
	Titles
	hı.terı,r~ter

	Images
	Image 1

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Titles
	~JNO!
	JRE

	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 79
	Titles
	K

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

