
l

CONTENTS

Topic: Page Number:

CHAPTER 1: PREFACE

CHAPTER 2: INTRODUCTION
2.1- What is logical database design .

CHAPTER 3: DATAMODELS
3 .1- Conceptual Data Models .
3.2- Logical Data Models .
3.3- Physical Data Models .

CHAPTER 4: LOGICAL DAT AB.ASE DESIGN .
4.1- Entity Attributes Vs Object-Relation Approach .
4.2- Rules to guide Database design .

CHAPTER 5: FOX PRO & dBASE .
-e,

CHAPTER 6: HOS PIT AL DESIGN DEFINITION

CHAPTER 7: CONCLUSION

CHAPTER 8: APPENDIX
8.A- Flowcharts
8.B- Model Diagram
8.C- Selected Codes

1

2
2

5
5
6
7

22
23
25

31

35

55

56
56
67
68

ACKNOWLEDGMENTS

First thank Allah for what ever he gives, secondly I would like to dedicate my thesis to

my dad, mom, family back home, and all my friends whom sat behind me during the hard times,

and special thanks to Miss: Besime ERIN my project supervisor who encouraged me to finish this

thesis and provided me with all the material, finally I appreciate all the help from the professors

and teachers in Near East University through out the years.

Samir ZAIDAN

Jan 26th 2001

PREFACE
The purpose of this thesis is to define the Near East Hospital Information

system Database. As all of the data described in the database are derived from data

captured by project.

It is useful to review the Data Element Dictionary. This document contains

definitions and file description for each of the data elements to be collected as part of

the project. In addition, a high level overview of the design of the system, and

structure of the various records and fields to be submitted to hospital system are

provided.

Purpose of this Thesis

This project defines the Near East Hospital Information System database

files.

Audience for this Thesis

The intended audience for this project includes the follow:

(1) Codes - any codes that are responsible for creating and maintaining the data

elements and file description specified in this project.

(2) Screens - those individuals who wish to view the data collected and processed

as part of the Hospital Project from a "summary" or "subtotaled" point of

view. The database files are used by the hospital Reception staff to verify that

the underlying unitary data reported as part of the project are valid and

consistent from term-to-term and year-to-year.

Scope of this thesis

The central role of this project is to provide information concerning the

hospital Information System Database files. This document provides an overview of

the database design as well as detailed specifications for each of the database files and

data elements that comprise them.

Also, This document is both intended, to give a detailed explanation of the

sources of the data used to create the files, and a detailed explanation as to how the

files can be used. The source for all files is the data collected and processed as part of

the Hospital Information System project.

1

Introduction

The success of a database is completely dependent on the logical database

design. Even if we buy expensive and fast hardware and software, the quality of the

database design will dictate whether a project will succeed. In a way, it is the Achilles

heel of a project.

A good database design does the following:

1. Provides minimum search time when locating specific record.

2. Stores data in the most efficient manner possible to keep the database from

growing too large.

3. Makes data updates as easy as possible.

4. Is flexible enough to allow inclusion of new functions required of the program.

The database design process can be divided into six steps:

1. Requirement analysis.

2. Conceptual database design.

3. Logical database design.

4. Schema refinements.

5. Physical database design.

6. Security database design.

What is logical database design?

It is the phase in the system development life cycle concerned with

constructing tables and their columns. During this phase decisions are made about

which piece of data should be stored and how those pieces should be arranged

logically in tables. This phase precedes physical database design where the emphasis

is on how the data is really stored on disk. Physical database design deals with issues

such as storage and performance.

This one-day workshop discusses all the aspects of logical database design.

Structured techniques for developing a logical design are discussed. Additionally,

many guidelines, tips, and tricks are given. And logical database design is looked at

2

\ from a transactional and from a data warehouse environment. Because the use of data

warehouse is different, different rules apply.

Two opposing techniques exist to perform logical database design. The

bottom-up approach, which is based on normalization, is the oldest and most well

known one. One start with placing all columns in one wide table and then these tables

are decomposed into more well structured tables. The decomposition is based on rules

called the normal forms. The second technique, the top-down approach, uses as a

starting point information models where semantic and object-oriented concepts, such

as subtypes and aggregates, are used. These concepts are translated into tables and

columns using an algorithm. Both approaches have their advantages and

disadvantages en is, therefore, discussed thoroughly.

Although some of the rules described in thirds workshop do stem from

relational theory, such as the normal forms, the emphasis will be on practical issues.

The workshop is a culmination of many years of experience of designing large

operational databases and data warehouses.

The aim of logical design is to construct a logical schema that correctly and

efficiently represents all of the information described by an entity relationship schema

produced during the conceptual design phase. This is not just a simple translation

from one model to another for two reasons, first, there not a close correspondence

between the models involved because not all the constructs of the entity-relationship

model can be translated naturally into the relational model. For example, while an

entity can easily be represented by a relation. There are various options for the

generalizations. Secondly, the aim of conceptual design is to represent the data

accurately and naturally from a high-level, computer-independent point of view.

Logical design is instead the basis for the actual implementation of the application,

and must take into account, as far as possible, the performance of the final product.

The schema must there for be destructed in such away as to make the execution of the

projected operations as efficient as possible. In sum, we must plan a task that is not

only a translation (from the conceptual model to the logical) but also reorganization.

Since the organization can for the most part be dealt with independently of the logical

model, it is helpful to divide the logical design into two steps:

3

I • Restructing of the Entity-Relationship schema, which is independent of the

chosen logical model and is based on criteria for the optimization of the

schema and the simplification of the following step.

• Translation into the logical model, which refers to a specific logical model (In

our case, the relational model) and can include a further optimization, based

on the features of the logical model itself.

The input for the first step is the conceptual schema produced in the preceding

phase and the estimated database load. In terms of the amount of data, and the

operational requirements. The result obtained is a restricted Entity-Relationship

schema.

4

DATA MODELS

Levels of abstraction usually categorize data models:

• Conceptual

• Logical

• Physical

These have no agreed formal definitions. Professional data modelers understand the

approximate scope of each.

Conceptual Data Model:

A conceptual data model shows data through business eyes.

It suppresses technical details to emphasize:
r

• All entities, which have business meaning.

• Important relationships (including many-to-many).

• A few significant attributes in the entities.

• A few identifiers or candidate keys.

Customer

5

The Logical Data Model

- Is a generic relational schema (in at least INF) which -

• Replaces many-to-many relationships with associative entities

• Defines a full population of entity attributes

• May Use non-physical entities for domains and sub-types

• Establishes entity identifiers

• Has no specifics for any RDBMS or

configuration

Customer
Custom,r number 81.
Name A.30
Phone A10

Sales Order
Sates ordtr number 1
D.1tt D
Salesman A2

Item
ill!. 8.111-t-------~
Item number A16
Description A40

Propagation of foreign keys may be explicit or implied in a logical data model. As

long as the resulting physical schema includes the necessary foreign key columns and

joins, the representation of foreign keys in the logical model is a matter of

convenience and taste.

Replacing many-to-many relationships with associative entities is necessary to model

1st normal form, support internal attributes and secondary relationships, and enable

alternate identifiers.

6

Physical Data Model

A physical data model is a database design for:

• One DBMS product
Customer

• One site configuration

Customer number ~ M!fil not null
Name ohar(.'30) null
Phone char(1e) null

Customer_numbe:r = Customer_numbet

Sales_Order
Sales order number ~ iDJ .D.2.!...n.Y!!
Customer_number <11<> char(?) not null
Date datetime not null
Salesman char(2) not null

••
Sales_order_number • ,Sales_o·rder_number

Sales order item
SKU <pk fl<> s..b..!.!(11) not null
Sales order number <pkfk> iDJ not null
quantity int not null
Price money not null

A physical data model may include:

.lli!.! ~ cii,i{rn ntl.nJill'
ltem_number ch.11(1e) not null

• I Description char(40) null

SKU • SKU

·~~~~~__t_~~~ r llom

• Referential integrity

• Indexes

• Views

• Alternate keys and other constraints

• Tablespaces and physical storage objects

Conceptual Data Model - An Example:

Person

Mechanic

Non Worker

Inspector Badge

is qualified on

7

Logical Data Model - Same Example:

Person
Name

Worker
wo·rfoTp

---------~ I Non Worker

Inspector Badge
Inspector Badge

Employee
DateHired _
Address
Date of Birth
Name
Social Security

,_.+-i"
___ ,.,/

Mecha_lJ,[c Clerk Driver Pilot Candidate~ Contractor Inspector

lrispeCtoi"Quali~calion
Inspector Qualification Pilot License

Pilot License Expiration

Aircraft Type
Aircraft Type

Physical Data Model - Same Example:

Worker
-~ ~
Name
Worker Type

Employee
~--<pkfk>
,WOR_Name
Date Hired
\Address
Date of Birth
Name
Social Security

Pilot Candidate Contractor Inspector
Worker ID <pk fk>
Name

Inspector Badge Sl..!s=.
Name

Pilot Inspector Qualifl~ation
Inspector Qualification ~
Inspector Badge <fk>
Aircraft Type <fk>

Pilot License -
Pilot License Expiration
~ ~

Pilot Qu"alification ~ I f~~_craftType
~ , Aircraft Type
~

Aircraft Type
PIL Worker ID
WQcher!Q

8

What is an Entity?

Person, place, or thing? (Too specific)

Any thing in which the business has an interest? (Too[

vague) ?

A synonym for a relational table? (Misses the point)

An information container in 1st normal form which:

• Records a fixed set of attributes

• Holds O to,n occurrences

• Is a relational abstraction of some real-world

concept

• May or may not map to a physical table in the database

What is a Relationship?

Customer

A connection, association, or rule among entities:

"Customer places Sales Order"

"Item occurs on Sales Order"

In a conceptual model, it is sufficient to state or draw the

relationship.
occurs on

A logical model defines specific means of joining two entities via implied or

expressed foreign keys.

Relationships can be classified into a few relationship types.

9

Foreign Keys (FK):

A foreign key is a function, not a fact!
State

state state row
name code id
CK CK CK
Alabama AL 1
California CA 2
New York NY 3
Tennessee TN 4

A foreign key is the result of relationship and

identity.

If the relationship changes, so does the foreign

key.

ft

If the parent identifier changes, so does the child's

Disaster
row disaster
id year
FK
2 1979
2 1982
2 1995

the The "child" entity gets foreign- key attributes to match

identifier of its "parent" entity.

foreign key.

What is an Entity Identifier?

The identifier of an entity is some set of attributes whose combined value is

unique for all instances of that entity.

Thus an entity's identifier is one of its (possibly

several) candidate keys. Customer
If an entity has more than one candidate key, the

choice of one to be the identifier is an arbitrary
Customer Nbr

'-
convenience for RDBMS operation. .Narne

Address While an entity identifier is not absolutely

mandatory, it is hard to think of a useful entity

without one.

10

Evolving the Logical Model:

Normalize structures

Populate attributes

Aggregate data items into new entities

Nominate candidate keys

Re-Normalize on the new candidate keys

Re-Normalize

L

Normalization:

(
• Normalize

Entity ~

• Populate " Aggregate

I
• Nominate

Select

Normal forms are the property that we can use to evaluate the quality of

relational database. We will see that when a relation does not satisfy a normal form,

then it presents redundancies and produces undesirable behaviour during update

11

operations. This principle can be used to carry out quality analysis on relational

databases and so constitutes a useful tool for database design. For the schemas that do

not satisfy the normal form, we can provide a procedure called Normalization.

Normalization allows the non-normalized schemas to be transformed in to new

schemas for which the satisfaction of a normal form is guaranteed.

Normalization theory constitutes a useful verification tool, which indicates

amendments, it has been developed in the context of the relational model and for this

reason, it provides analysis and design techniques for the out come of logical design.

Normalization can also be used on the Entity-Relationship schemas and during

the quality analysis of the conceptual design.

Normalizing to a Logical Model:

Every raindrop, every snowflake, every hailstone has a single speck of dust at the

core.

Every logical entity has a single idea at its core.

The essence of normalization is one entity = one idea:

• A customer is a person or organization that buys from us.

• A service order holds one customer ~equest for service.

Examine complex data structures for hidden entities in:

• Nouns - tangible or intangible

• Adjectives whose value is one of a known list ...

female [male; green I yellow I red; 6' I 8' I 10'
• Embedded ideas, which can exist on their own

Populating Attributes:

For each entity, ask, "What properties does this thing have - even if nothing else exists

around it?"

12

• A person has age - even the last person on earth.

• A building has height - even if it is abandoned.

• A song has a key, even if it is unsung.

Ask of each property, "Does this entity have only one of these?"

• A person is of one age.

• A building is of one height.

• A song may be written in one key but sung in another!

An attribute is a property of an entity, which depends solely on its entity - nothing else

- and can have only one value at a time

Domains:

6 feet 1/4 inches + 51.6 years =?

A domain (in relational usage) is a set of values and operations that may be used to

populate and operate on one or more columns.

The values may be specified by list or formula.

While is not yet any theoretical or practical way to limit the operations applied to a

domain, this example shows the need.

Aggregating Entity Attributes:

Sometimes you can reveal

the data dictionary for homeless attributes:

entities by looking in

• "To whom

what about the

does

year

atomic weight

in which an

belong?

element And

was discovered?"

13

• Aggregate atomic weight and year into anew entity called Atomic Element.

Crosscheck data elements captured in the data dictionary from

data flow diagrams, use cases, or other analysis.

All data structures and data elements discovered in

analysis must be accounted for in the logical model. Vehicle

Looking for Hierarchies

Entities often occur in hierarchies - family trees

related by inheritance.
Car Truck

This is sub-typing or specialization and generalization

- the same as building 00 class structures. Worker

Each child entity inherits all attributes and

relationships from its We define properties at their

highest level in the hierarchy to avoid redundancy.

Contractor

In a conceptual model, we ignore how inheritance operates.

Later we want to specify how super-and sub-types map from the logical model to

physical structures parent.

Generalization:

Hierarchies let us locate attributes and relationships at the appropriate level.

Owner
All vehicles have:

• VIN and Registration

• Owner

The attributes and relationship are generalized To all

vehicles.

14

Specialization: Owner

• Only cars have primary drivers and seat

belts. Vehicle

• Only trucks have gross vehicle weight. Primary Driver VIN
Registration

These attributes and relationships are

specialized to the child level. Car
--1

Seat belts

Specialization of Relationships:

Optional parent relationships usually hide a need for

specialization. Ask your self:

• Is the relationship sometimes true for each instance?

l)

has preferred
I

is preferred
J ··:i

Then it is correctly modeled as optional.

• Is the relationship always true for some instances?

Then it requires some customers must have a default warehouse.

For others it does not exist (in this model).

By splitting the Customer entity into two sub-types, we can model the relationship to
Warehouse precisely.

is served from
-1-

is default for

.t

15

Populating a Conceptual Data Model:

• Diagram entities

• Diagram relationships

• Look for hierarchies:

• Sub-types I super-types

• Specialization /generalization

• Class hierarchies

? .
'

Diagramming Entities:

The entity symbol is a rectangle with the

name at the top.

The entity name must be descriptive and meaningful. An unambiguous text

definition is important.

The entity graphic symbol may differ slightly by CASE tool or author but the

shape is unimportant.

The entity name is how people will refer to the entity. In the conceptual model

an entity name should not be limited by RDBMS product limits - this is a generic

name for the business. When physical DBMS object names are assigned, be sure to

take into account the naming limits and reserved words of your target.

For example, what is a customer?

• Someone who has purchased?

• Any organization or person who may purchase?

Will this entity definition be clear two years later to a new team?

16

An Entity represents

• A tangible thing, a real-world event, or any intangible concept: "Product", "Sales

visit", "Customer class discount"

• A class of things, not any one instance. "Person" has instances of "Tom" and

"Simone".

Entities are not -

• Independent or Dependent. Those terms apply only to the identification choice you

make.

• Fundamental, Attributive, or Associative. Classifications have meaning only in a

model context of entities and relationships.

Diagramming Relationships:

The relationship symbol is a line between two entities. Define a relationship with:

• Predicate statements in one or both directions

• Unambiguous text description

• (A name is not important)

• cordiality symbols at each end

Will the relationship be clear two years later to a new team?

Relationships are -

• Unambiguous, immutable expressions of business rules.

• Binary or unary in IE, SSADM, IDEFlX and 00 methods.

• Logical objects. Relationships can be reattached, with their properties intact, to

different entities.

Relationships are not -

17

• Identifying or Non-Identifying. Those apply only to entity identification.

• Information containers. If you sense a need for information about a "relationship"

then it is an entity!

• DBMS objects. Relationships only define joins between entities.

Relationship Notations:

There are many notation styles for relationships.

There are no standards for relationship style.

Different styles are read in different directions

But they all express the same information!

Relationship Cardinality:

Cardinality specifies the number of
instances which may be involved m

each entity of a relationship.

minimum ofl maximum of

Customer pteces

Sales Order is placed by

0 n Sales Order

Customer

at least 1 I possibly n

Most methods show the Boolean I Sales Order is placed by
abstract, not the absolute number,------------------

because this determines the relationship type ...

Customer ptece« No

Yes

Yes
No

Sales Order

Customer

Relationship Types: Link

Relationships are grouped by their cardinality:
Sub-Type

Physical Segment

• One-to-Many is the only relational form. Possession

Child

• >99% of logical model
Characteristic

Pt1raclo:x:

Relationship Types:
Association

18

One-to-One is a special case of One-to-Many;

<1 % of a logical model

Populating Attributes:

For each entity, ask "What properties does this thing have - even if nothing

else exists around it?"

• A person has age - even the last person on earth.

• A building has height - even if it is abandoned.

• A song has a key, even if it is unsung.

Ask of each property, "Does this entity have only one of these?"

• A person is of one age.

• A building is of one height.

• A song may be written in one key but sung in another!

An attribute is a property of an entity which depends solely on its entity -

nothing else - and can have only one value at a time.

What are Candidate Keys?

A candidate key is any set of one table's~-----------~

columns whose combined value is unique

throughout that table.

Code Name Admission
NV Nevada 36
TN Tennessee 16
MO Missouri 24
PA Pennsylvania 1
HI Hawaii 50
IN Indiana 19

• In the U.S. each state has a unique code - one

candidate key.

• Each state name is also unique - another

candidate key.

• And so is the order of admission to the union.

Since both code and name are unique, code and name together are also unique.

That's another candidate key - seven with all the combinations.

19

Why are Candidate Keys?

As a candidate for selection as the one identifier or primary key. A candidate

key usually holds the core idea inside an entity:

This state table is about states, which are known by their names.

A candidate key always expresses a business rule of uniqueness:

• Every state has a unique state code for mailing.

A table or entity with no candidate key is probably not normalized. and almost

certainly not useful in an information system.

Testing Candidate Keys

A candidate key is unique. Is that enough?

Social security number is unique. Were you born with one?

A candidate key's value must exist. It cannot be null.

Your driver's license number is unique. Can it change?

The value of a candidate key must be stable. It's value cannot change outside

the control of the system.

The value of a candidate key is unique, extant, and stable.

Re-Normalize on the Candidate Key:

After at least one candidate key has been noted, every attribute and

relationship of the entity must be tested -

• Does this property depend solely and completely on the candidate key?

If not, move the property (normalize it) to the entity where

it depends solely and completely on the candidate key.

Repeat these steps -

20

• Normalization

• Population

• Candidate keys

• Re-normalization

until every object in the data dictionary is consumed and

every entity is normalized to at lest INF.

1st Normal Form:

For a given table, every row must have

the same columns. To remove embedded lists:
Not normalized

Mother 1st child 2nd child 3rd child
Sarah Sally Mark Ashley
Mother 1st child
Oblieh Raoul

1st normal form
Mother Mother Child
Sarah Sarah Sally
Oblieh Sarah Mark

Sarah Ashley
Oblieh Raoul

Alternate 1st normal form
Mother 1st child 2nd child 3rd child
Sarah Sally Mark Ashley
Oblieh Raoul (nul) (nul)

Separate children from parents, or -

Provide a series of columns to hold

all of any parent's children.

But the latter method has drawbacks:

Multiple columns hold the children

More children require disruptive database

redesign

Ugly nulls where any parent has less than the maximum.

21

LOGICAL DATABASE DESIGN

Logical database design uses several rules or concepts which are reasonably

well understood and accepted. Disagreement arises in formulating a particular

methodology-the place to start and the sequence of steps to follow in applying those

rules, After a brief discussion of database design methodologies, this section presents

several concepts, principles, or rules which are generally recognized and applied

regardless of the particular methodology used.

Database Design Methodologies

A database design methodology specifies a sequence of steps to follow in

developing a "good" database design-one that meets user needs for information and

that satisfies performance constraints. Each step consists of the application of a set of

techniques or rules that may be formalized to varying degrees and embodied in

software tools. A methodology should he (I) usable in a wide variety of design situa

tions and (2) reproducible in different designers. The second objective implies that the

methodology be teachable, and that those trained in applying the methodology would

arrive at the same end result. This is not evident in the present state of the art. Logical

database design remains very much than art.

Theory and Pry [1982] outline a database design methodology consisting of four

steps;

1. User Information Requirements-involving the users in analyzing

organizational needs, setting the scope of interest, investigating what people do

(organizational tasks; usage patterns), and determining the data elements needed to

perform those tasks,

2. Conceptual Design-developing a high-level diagrammatic representation of a

logical data structure; a structure which includes object domains, events, entities,

attributes, and relationships: a structure which seeks to model the users' world.

3. Implementation Design-refining the conceptual design, checking for

satisfaction of user needs and for consistency, and adjusting it to meet processing and

performance constraints in a particular computer and DBMS environment.

22

4. Physical Design-developing record storage designs, clustering, and

establishing access paths.

The techniques and rules in the steps of a methodology are applied iteratively

in the process of unfolding, growing, and refining a database design. For a starting

point, some suggest applying the methodology to individual user application areas or

local views. Different user views may contain related complementary parts or

overlapping pans. Multiple local views are then consolidated into a global logical

structure or conceptual schema. The process of consolidation seeks to resolve

inconsistencies, and to integrate related pieces. Even within a local view, there may be

redundant, overlapping, and inconsistent pads. The rules of a methodology are

intended to assist the designer in asking the right questions and representing the data

structure in a coherent and consistent way regardless of the scope of the design

activity, and regardless of whether it begins with individual local views or a global

perspective. The product of the design activity will grow as it unfolds over the area of

interest; and it will be refined as the rules are applied to focus attention on particular

aspects of an infinitely complex reality and to resolve ambiguities and inconsistencies

in the developing database structure.

Entity-Attribute-Relation versus Object-Relation Approaches

Perhaps the most significant difference among methodologies or approaches to

logical database design is found. in the point at which data items are clustered or

grouped into records. The top division of the taxonomy of data structures presented in

Chapter 4 reflects this division. The number of basic constructs distinguishes the two

approaches: Those which presume an early clustering are often called "Entity

Attribute-Relation" or "E-A-R" approaches; the alternative is called the "Object

Relation" or "0-R" approach.

Historically data processing has always worked with records. Programming

languages such as COBOL and FORTRAN cluster data items into records. The

formation of records as a contiguous set of data items is necessary for efficient data

processing. A record is the unit of access for getting data in and out of programs. Data

is moved to and from secondary storage in blocks of records. Earlier data processing

23

systems forced a "unit record" view, that is, all data for an application had to reside in

a single sequence of records (this reflected the technology of the day, which used

what was called "unit record equipment"). Even today, with DBMSs supporting a

multifile data structure, data exists in the form of records in most organizations. Users

are very familiar and comfortable with a record-oriented view of their data. Most

designers today use an E-A-R approach to logical database design.

The major problem with the E-A-R approach to logical database design is that

it allows the relationships among data items within a record to be hidden. It does not

force the designer to explicitly consider and define inter record structures. This ac

counts for the recent emphasis in the literature on record decomposition and
0

normalization based on an analysis of functional and multivalued dependencies. These

techniques are all aimed at uncovering and making explicit the relationships among

individual data items within records.

The end result of repeatedly applying record decomposition rules is irreducible

varies-at which point there exists at most one non-identifier data item within each

record. By then the designer will have considered all inter item relationships.

At the implementation or physical level, data items must be clustered into

records for efficient data processing. Even at the logical level, it is still relevant and

useful to think of attributes which cluster around and describe entities, whether the

attribute items are considered as part of entity records or as individual object domains.

It is relatively unimportant whether the design activity starts with records which are

decomposed to analyze inter item relationships, or starts with object domains which

are clustered to form records. In practice a designer will do both. It is important that

certain rules and concepts be applied in the design process. Early formation of records

is dangerous only if it inhibits the designer from properly analyzing intrarecord

relationships among data items, and from considering alternative groupings of items

into records -Ideally, the formation of records should be part of the implementation

phase of database design since it is done primarily for system convenience and

processing efficiency. In fact, it is desirable to have software tools to perform the

clustering, leaving the designer to concentrate on defining the individual data objects,

relationships, and performance factors and constraints.

In a strict application of the object-relation approach to logical design, all

object domains are treated equally. In the E-A-R approach, attention is initially

focused on entities, then on the attributes of those entities, which may tum out to be

24

other entities. In fact, the distinction between attributes and entities is often confusing

and arbitrary Again, regardless of the approach taken, it is important for the designer

to focus attention on the more important parts of the users' world being modeled in

the data structure. This is automatically done in the E-A-R approach but can also be

done in the 0-R approach. The designer needs a high level of abstraction when

developing a data structure and may start out by representing the main entities as

boxes labeled with a name only.

Rules to Guide Logical Database Design

Even though there is no widespread acceptance of any particular design

methodology, there is general recognition of many underlying rules and concepts used

in logical database design. They relate to conceptual design and part of

implementation design.

A good database designer will generally know these rules and apply them,

often intuitively, wherever they are relevant in the process of developing, checking,

and refining a database design.

The following rules are presented here in a reasonably logical order, but there

is no implication that they should be applied in any strict sequence. There is also no

implication that these rules are sufficient or complete for the database design task.

While progress is being made in formalizing the principles and process of database

design, it still depends heavily on human intelligence and experience. Even

experienced designers can arrive at different database designs, which purport to model

the same user environment.

ENTITY: Clearly identify the entities to be represented in the database.

An entity is any object (person, place, thing), event, or abstract concept within

the scope of interest about which data is collected. An entity is the object of decisions

and actions within an organization. Entities are the pivotal elements in a data structure

and must be well defined. Staff out by focusing on the main entities, gradually

expanding the logical data structure view to include related entities. When looking at

25

an existing database, clearly define the primary entity, which is described in each file

(record type).

INCLUSION: Specify the criteriafor including (or excluding) entity instances from a

defined class of entities.

The ENTITY rule names a class of entities and the INCLUSION rule specifies

the conditions for membership in that class. For example, does the EMPLOYEE

entity class include managers, job applicants, rejected job applicants, those fired or

laid off, those who quit, or employees on definite or indefinite leave'? Consideration

of these other "EMPLOYEES" may suggest broadening the name of the entity class,

or it may give rise to another entity class. Narrowing (subsetting) or broadening the

definition of the entity class represents movement along the generalization hierarchy.

ATTRIBUTE: Identify the attributes of each entity.

Initially focus on the major attributes of each entity. Some will be clear and

obvious, some will seem to be artificial, and some may also relate to other entities.

Include all attributes, which assist in understanding the nature of the entity being de

scribed. Include at least one attribute from each set of similar attributes.

ATTRIBUTE CHARACTERISTICS: Define the characteristics of each attribute:

Clearly define the characteristics of each attribute. Initially focus on name,

type, (size), existence, uniqueness, and some indication of the nature of the value set.

When describing an existing database, specify any encoding of data item values.

Description of other characteristics can be deferred until later in the database design

process. Eventually plan to describe one attribute per page in the final database

documentation.

DERIVED ATTRIBUTE: identify and define derived attributes.

26

The values of an attribute may be derived from the values of other attributes in

the database. Specify the derivation rule, which may be an expression for a derived

item or a statistical calculation across instances of an entity type or a repeating group.

IDENTIFIER: Designate the attribute(s), which uniquely identify entity instances in

each entity class.

An entity identifier may be a single attribute (EMPNO) or multiple attributes

(UNIT and JOECODE for POSITION). There may be multiple identifiers for the

same entity (EMPNQ and SOCIAL SECURITY NUMBER). Indicate if the identifier

is not guaranteed to be unique. The identifier can be a good clue to understanding the

nature of the entity described in an existing file.

RELATIONSHIP: identify the primary relationships between entities.

RELATIONSHIP CHARACTERISTICS:

Define the characteristics of interentity relationships, particularly exclusivity

and exhaustibility (or dependency).

Exclusivity refers to whether instances of one entity type can be related to at

most one or more than one instance of another entity type. Since it is defined in both

directions there are four possibilities: 1:1. l:Many, Many: I, Many: Many. Exhaust

stability (also called dependency or personality) specifies whether or not an instance

of one entity type must be related to an instance of another entity type. Indicate if

there is some condition on the dependency of a relationship. Also indicate if there is

some minimum or maximum cardinality on the ''many" side of a relationship. (See

section 6.3.3 for more detail on these characteristics.)

FOREIGN IDENTIFIER: indicate the basis for each relationship by including, as an

attribute in one entity type, the identifier from each related entity type.'

Every relationship is based upon common domain(s) in the related entity

records. At the logical level, it is necessary to include the identifier of a related entity

as a foreign identifier. In the storage structure, if the common domain is not explicitly

27

stored in a related record, then some form of physical pointer is necessary to represent

the relationship.

DERIVED RELATIONSHIPS: Suppress derived relationships.

The logical database design should not include relationships, which can be

derived from other relationships. For example, it is reasonable to think of

organizational units as possessing a pool of skills. Furthermore, such information can

be retrieved from the database. However, such a relationship should not be defined

since it is derived from the ORGANIZATION-EMPLOYEE relationship and the

EMPLOYEE-SKILL relationship. An organizational unit only possesses skills

because it has employeeswho possess skills,

REPEATING GROUP: isolate any multivalued data item or repeating group of data

items within a record.

This rule ensures that a record only contains atomic (single-valued) data items,

thus allowing only flat files. This is also called first normal form. The real importance

of this rule is to force the designer to explicitly recognize a "something-to-many"

relationship and possibly a new entity type. If a repeating group of data items

becomes a new entity record type, the identifier of its parent record must propagate

down into the new record. If the relationship was actually many-to-many, the

propagated identifier becomes part of the identifier of the new record; if the

relationship was one-to-many, the propagated identifier becomes a foreign identifier

in the new record (but not part of the identifier). Multi-valued data items or nested

repeating groups of data items may be included in the storage structure of a record (as

they are in a hierarchical data structure).

PARTIAL DEPENDENCY: Each attribute must be dependent upon the whole rec

ord (entity) identifier.

An attribute that is dependent upon only part of the identifier should be

removed from the record, and placed in a record where that part of the identifier is the

28

whole identifier. Suppose we had a record with the following data items: EMPNO,

SKILLCODE, SKILL DESCRIPTION, and PROFICIENCY. The identifier would

have to be the first two data items jointly since PROFICIENCY relates to both of

them together. However, DESCRIPTION relates only to the SKILLCODE and,

therefore, should not be in this record. A record with no partial dependencies is said to

be in second normal form.

TRANSITIVE DEPENDENCY: Each attribute within a record must be directly

dependent upon the entity identifier.

Any attribute, which is not directly dependent upon the record identifier,

should be removed from the record, and related directly to the object on which it is

functionally dependent. For example, if the EMPLOYEE record contained UNIT and

BOSS, and the employee was moved to another organizational unit, it would not be

sufficient to update the employee's UNIT-the BOSS data item would also have to be

changed. The update anomaly results because BOSS is directly dependent upon UNIT

and not EMPNO. BOSS does not belong in the EMPLOYEE record even if
processing is faster and easier; it belongs in the ORGANIZATIONAL UNIT record.

A record with no partial or transitive dependencies is said to be in third normal form.

Restated: An attribute should be dependent upon the identifier, the whole identifier,

and nothing but the identifier.

Application of the previous three rules to arrive at third normal form requires

an examination of every attribute in a record. A record not in third normal form

produces undesirable update anomalies. To identify these anomalies, the designer can

ask: If a given attribute is updated, what other attributes must change, or if another

attribute is updated, what effect will it have on the given attribute?

NAMING: Assign names to entities, attributes, and relationships using a consist-

ent, well-defined naming convention.

When describing an existing database, watch for naming inconsistencies

different names for the same object, or the same name used to refer to different

objects.

29

STORAGE & ACCESS: Suppress any consideration of physical storage structures

and access mechanisms in describing the logical structure of the data.

This includes any stored ordering on the records in a file, and whether or not a data

item is indexed. Do not be concerned with questions of how to find or access a

particular record in a file, perhaps along a relationship Remember, all relationships

are inherent! y bi-directional.

-.

30

FOXPRO & Dbase

FoxPro enables you to convert your existing dBase programs and applications.
To make the process seamless, FoxPro version 2.6 includes:

A Catalog Manager Interface that provides convenient access to database files and
functions.
A collection of wizards, which simplify common database tasks.
Language additions that provide dBASE IV language compatibility.

FoxPro 2.6 Professional EditioD'

FoxPro 2.6 is available in two editions, Standard and Professional. The Professional
edition includes all the features of the Standard edition, plus:

Client-Server Query Wizard
Connectivity Kit
Distribution Kit
Library Construction Kit .

These additional features allow you to connect to remote data, distribute your
applications to others, and build sharable libraries of functions.

Terminology Differences Between dBASE and FoxPro

Most of the terminology that a dBASE user encounters in FoxPro will be
familiar, but there are a few differences. This table lists some of the more prominent
differences.

dBASETerm
Database
Form
Horizontal Bar Menu
Pop-up Menu
Pull-down Menu
View

FoxPro Term
Table
Screen
Menu Bar
Popup
Menu or Menu Popup
Cursor

31

File Extensions

Following is a list of the extensions assigned to files used by FoxPro. In the "FoxPro
Platform" column; "All" indicates three platforms, FoxPro for MS-DOS, Windows
and Macintosh.

File Extension FoxPro Files FoxPro Platform

.ACT FoxDoc Action Diagram All

.APP Generated Application All

.BAK File Backup All

.CDX Compound Index File All

.DBF Table/Database All

.DBT FoxBASE+ Memo File All

.DLL Dynamic Link Library Windows

.DOC FoxDoc Reports All

.ERR Compilation Error File All

.EXE Executable Program MS-DOS and Macintosh

.FCT FoxPro Catalog Memo File All

.FPC FoxPro Catalog All

.FPQ Wizard-generated Updatable Query All

.FKY Macro Save File All

.FLL FoxPro for Windows Library Windows

.FMT Format File All

.FPT Table/Database Memo File All

.FRT Report Memo File All

.FRX Report File All

.FXD FoxDoc Supporting File All

.FXP Compiled FoxPro Program All

.HLP Graphical Help File Windows and Macintosh

.IDX Single-Entry Index File All

.INT Code Page File All

.INT Collation Sequence File All

.LBT Label Memo All

.LBX Label File All

.MEM Memory Variable Save File All

.MLB Macintosh Library Macintosh

.MNT Menu Memo All

.MNX Menu File All

.MPR Generated Menu Program All

.MPX Compiled Menu Program All

.MSG FoxDoc Message File All

.PJT Project Memo All

.PJX Project File All

.PLB FoxPro for MS-DOS Library MS-DOS

.PRG FoxPro Program · All

.PRX Compiled Format All

.QPR Generated Query Program All

.QPX Compiled Query Program All

.SCT Screen Memo All

32

File Name and Extension File Description FoxPro Platform

.sex Screen File All

.SPR Generated Screen Program All

.SPX Compiled Screen Program All

.TBK Memo File Backup All
TMP Temporary File All
.TXT Text File All
.VUE View File All
.WIN Window Save File All
CONFIG.FP Configuration File MS-DOS
CONFIG.FPW Configuration File Windows
CONFIG.FPM Configuration File Macintosh
FOXHELP.DBF
FOXHELP.FPT DBF-style Help All
FOXHELP.HLP Graphical Help File Windows and Macintosh
FOXUSER.DBF Resource File All

File Extension Differences Between dBASE and FoxPro

The following table lists differences in file extensions between dBASE and FoxPro.
0

File Type dBASE Extension(s) FoxPro Extension(s)

Applications
Catalogs
Indexes
Labels
Menus
Programs
Projects
Queries
Reports
Screens
Tables

.APP, .PRG
.CAT
.MDX,.NDX
.LBL, .LBG
(none)
.PRG, .PRS
(none)
.QBE, .QBO, .UPD, UPO
.FRM, .FRG, .FRO
.SCR, .FMT, .FMO
.DBF, .DBT •

.APP

.FPC, .FCT

.IDX, .CDX

.LBX, .LBT

.MNX, .MNT, .MPR

.PRG, .FXP

.PJX, .PJT

.QPR, .FPQ, .CSQ

.FRX, .FRT

.sex, .SCT, .SPR

.DBF, .FPT

Switching from dBASE

dBASE and FoxPro are dialects of the same language, Xbase. All dBASE III
Plus programs and most dBASE IV programs will run in FoxPro without making any
changes. If a program does not run correctly, or if you want to enhance a dBASE
program in FoxPro, you must convert your dBASE files to FoxPro. If you want, the
Catalog Manager can automatically convert these files for you.

33

Overview

The following procedure is an overview of the process you will use to convert
your dBASE files into FoxPro.

1. Create a backup copy ofyour dBASE files.
2. Determine if your program requires changes.
3. Modify your files. ·
4. Enhance your dBASE program or create a new FoxPro application.

To enhance your program or create new applications, you can use the FoxPro Power
Tools, including the Screen Builder, Report Writer, and RQBE. FoxPro also provides
a set of wizards for quickly creating tables, queries, screens, reports, and
applications. Power Tools and wizards are accessible from within the Catalog
Manager when you choose New or Modify, or from the Command Window.
Terminology Differences Between dBASE IV and FoxPro

Catalog Manager

The Catalog Manager is a graphical interface that enables you to manage
catalogs (.FPC or .CAT files) easily. Catalogs can contain tables, queries, screens,
reports, labels and programs. From this central location, you can create, modify, and
run these FoxPro files. You can also use AutoMigrate to migrate existing dB ASE III
and dBASE IV files. The Catalog Manager, written entirely in FoxPro, is an example
of the type of application you can develop· in FoxPro.

FoxPro catalogs are single-user files. If you run more than one concurrent
session of FoxPro, each session must have a local copy of the FOXUSER resource
file. You can add table, query, screen, report, label and program files to more than one
catalog.

Using Wizards

Microsoft FoxPro 2.6 provides the following wizards to help you complete
common data management tasks:

Client-Server Query Wizard
Group/Total Report Wizard
Label Wizard
Mail Merge Wizard
Multi-Column Report Wizard

Report Wizard
Screen Wizard
SQL Query Wizard
'Fable Wizard
Updateable Query Wizard

FoxPro Enhancements to the Xbase Language

FoxPro contains many commands and functions that do not exist in dB ASE IV (or, of
course, dBASE III PLUS).

.34

Main Screen:

The main screen describes the l" user interface, which guide the user through

in the different screens in the program.

It includes 8 bottoms: Reception, Departments, Patients, Doctors, Employees, Rooms,

Accounting, External Pharmacy, About bottom, and Exit bottom to quiet the program.

1. Reception:

Here we automate a real life procedure, when we divide the Reception into

tow sub screens: Search & clinic

RECEPTION

ljrs·wcei11 ctrsrc .·= J -11- ...•••.........
. II CLOSE

35

1.1 Clinic:

Although the clinic screen inside the reception screen but it is acting as the

essentially data entry In the system, here we ask the new coming patients to fill the

admission form, which we can get by pressing the print out bottom in the button of the

screen. If the patient considered as an IN patient he will have a record inside our

PATINTS database file, otherwise ·~e- will be an Outpatient, and he can take his

prescription to the Pharmacy department.

CLINIC
Date: @11100

Patient Id: ~
Name: ~HAMED

Surname: Gfil
Birth Date: lmmoo
Nationality: !SUDAN

Job: !ENC

Diagnosis: ~
Situation:

Tag Name Type Width Dec

~Table Structure m
Field

~ date Date 8 F

I
i"!!

-- t id Character 10 =
1= name Character 16
""'
••••

surname Character 16
birthdate Date 8 --

~

C nationalit Character 16

b job Character 10
[diagnosis Character 20 F

Insert ~

Qelete ~

lOK!4 ;_di

ICTancel 1

~linic . .db[Fields: 9 I~ I Lengt.t,_; 115

36

1.2 Search:

In order to offer a high quality services inside the system, the 2nd sub screen of

the reception menu is the SEARCH engine, our searching engine can give the users a

very soon result for any question about the main tow categories inside our system:

DOCTORS & PATIENTS. And locate the users with their available information.

CHOOSE A SEARCH TOPIC:

!flPatient,NarneJ I
IL o'.ictor Name I

,t'.LOSI!

Enter Patient Na~e:

37

Dr_id Name Surname
'ZAIDAN

Address

jhon j smith
D1 SAMIA

D 3 +~~~~li~fr •••.••••••••.•••••••••••••••• ! ~~i;;.;~~
D4 !WATSON ! SEEP · ~~ !''" : ,.!····· .

Enter The Doctor NaMe:

38

2. Departments:

The department screen give information about the various DEPARTMENT

inside the system, as the name of department, number of doctors, patients, employees

and rooms, and also the head of the department.

DEPARTMENTS

Dep_id:

Dep_name: [Internal medidne

Extension: Im .I
~
E=:l
~
~
[all all

Noofrooms:

No of doctors:

No ofpati.en'ls:

No ofemp:

Headofdep:

t!'J Table Structure ml
Tag Type Width Dec Name

..
dep_id Character 10 F r !!!!!!

dep_name Character 30 l!:aaaa r extension Character 10
~

noofroom Character 10 ...
k.- noofdoctor Character 10

noofpatien Character 10
~

noofemp Character 10 I r headofdep Character 20 1 F.

Field

Insert ~

I! Q~lete II

d: \hos\deg_artme. d Eield~: 811 ILength: 111

39

3. Doctors:

Doctor's names, specialization, and privet information are located in the

designated DOCTORS screen.

J)OCTORS

DrID: ~ Name: !SAMIR

Surname: !ZAIDAN I Address: ILEFKOSA

~ Plwne: !2235410 I
Age: 11!] Nationalit: [SUDANESE

Date Oflliring: [07/07193 I Salary: [2,0001 $

Rank: [A I Exrention: [6661

Specilization: [Ear & Nose & Throat

~Table Structure £1

Tag Name Type Width Dec

[dr_id Character 10 Fi
~ !!!!!!!

name Character 16
ii.iii, r:: surname Character 16

0 address Character 30

ri phone Character 10
[extention Character 10
~

r specilize Character 20
salary Numeric 12 on - ..,I

d:_',ihos_\doe_tor ~db[field~; 12

40

Field

Insert ...•.........
1c12~1~te 1

163

4. Patients:

The main and most important category in our system, which all the system run

and automates to provide a good service for them are the PATIENTS. In here we

complete the patient's file which .had come from the clinic by the detailed

information, like address, job, sex and cause of admission, as a mater of how the

system is setup, no such patients can have a file unless they are described IN patients,

otherwise the system give a massage saying that" This Patient is out".

Inside the Patients screen we have tow sub screens:

Patients

Name: !PDITER I
Date ofBirth: ! 1Dlll5/66 I

Address: IMAGUSA ~

Nationality: !INDIAN I
CauseofAdmis: !soMEHEADACHE

Patient ID: [P13

Surname: [CHAK

Gender:

Job:

Phone: [8839237

Date Of Adm: [02/02/99

Discharge Date: !02114/99

Dept Name: !STOMATOLOCY

Room No: [R4

l,Daily_Checki)

Bed No: [B6

History

Tag Name Type Width Dec

~Table Structure mJ
Field

r patint_id Character 10

~

~ •... !""'

rJ name Character 16 •... = D surname Character 16

Cl datebirth Date 8

r. gender Character :. ~ 11....i r address Character - r job Character 10
Iii- r nationalit Character 14 F
ct~bqs_\P<!tientctbf Fields;

41

Jnsert

Qelete =----

OK

Cancel]

15

4.1 History:

Here the patients that has been revisiting the hospital would have some

information a bout their previous conditions declared in file has the name HISTORY.

This screen display medical information about the patient, such like allergies,

inherited families' diseases, exams tested for him and diagnosis. This file has great

utilities, cause it make a good relation between the present and past medical problems

for the patient, and also assist the new doctors with the wanted information about their

patients.

HISTORY OF PATIENT

I mis PATIENT 1s oui.JI

Patient ID: lr!D Name: Sur Name: [I

Penonal:

Family: Alleqpes:

Put: Present:

DlffDiaCJlo1ls: L----~ DiaCJlosls:

Physice:wn: Biochemical: C I
I Blood: f

RIOLOGICAL TEST

x_ray: r
Nuiclear:

Sonop-.phy: l

Chief Complaint:

~Table Structure rJ
I

Tag Name Type Width Dec

Q patient_id Character 10 • - L. name Character 16 r =
~

surname Character 16

chief comp Character 30 r personal Character 15
= r: past Character. 15
•••••
[. family Character 15

[f present Character 15 F;

Field

Insert J

Delete J
-

OK I
C~ncelJ

rl:-',ho~~bis!Qr,1:1 .. dbf Fields: 17 JI LLemg_th: 2Z_3

42

4.2 Daily Checkup:

The 2nd sub screen inside the patient's screen is the DAILY CHECKUP

screen, which concern in watching and daily control of the patient's situation. By

clicking the print bottom we can get a printed out schedule showing the patient's

situation at the time.

DAILY CHECK-UP

Patient Id: 18
Name: IATILLA I Sur Name: [KER.EM

Check Date: los/09199 I

Exam: I URINE

Medicine: lsrAMOLEEN

DocmrName: [JHONSMI1H

Cl Table Structure Ei
Name Type Width Dec Field

patint_id Character 10
Character 15 I I n 111 Insert

name
surname Character 15 u I I 11[Delete I
checkdate Date 8
exam Character 10 I medicine Character 10 I I IL[dK!
doctor Character 16 m

Fields:_~~ ?]rflengt"·

43

5. Employees:

The EMPLOYEES screen shows up some information about the employees

like their name, job, date of hiring and salaries.

[:l Employme ll!lffiil Im
EMPLOYEES

Name: [hitham EmpID: [E2 I
Surname: [,aeed I Address: 1~

~ Job: [kok I
Dam Ofllirin;: l11130/ll9 I Nationality: I&

Phone: 1675498 I Salary: CillJ $

l:'] Table Structure f3
Tag Name . Type Width Dec Field

emp_id Character 10
11 ~ emp_name Character 16 111 !nsert

emp_surnam Character 16 I 1 I I 111 Delete
address Character 70
jop Character 12
date_hire Date 8
nationalit Character 14
phone Character 10 I I ~

d: \hos\employf!!El., dbl lf!Fields: s]r~gth: 172

44

6. Rooms:

To offer a good service inside the hospital, and to provide the patients with

high cares for their health, our room must conforms the medical specifications. In the

ROOMS screen we enter some data like room number, department, type and beds in

the room, full or empty.

ROOMS

Room No: IRJ I Bed No: IRJ B2

Department: IBLOODBANK I Bed Price: I 221 s
Room Type: I NORMAL IFI Situation: !!)FULL

rt)EMPTY No ofBeds: I JI

lop llllfrev ~l!Hext ll[fnd ~,~9.~~i~ll[Add ~l[Edjt !J[eTete~l[P1int II~~

L!l Table Structure 13
Tag Name Type Width Dec Field

room_no Character 10 ~
~f I••••• JI I dep Character 25

room_type Character 12 I(Delete]
bed no Numeric 10 ol
bed_no Character 10
bed_price Numeric 10 o I' I l10K
situation Character 10 Ii Cancel j

om,dbf IIJFields: 7JI I Leng_th: __ 8

45

7. Accounting:

This is the only department in our system that has a certain need for security,

so here the system will ask you about your authority, and you should know the

PASSWORD, otherwise you will receive a massage saying "The password is wrong".

If you have the authority then the ACCOUNTING screen will appear to you.

This screen consists of four sub screens.

Enter the Password:

THE PASSWARD IS WRONG!

Press ENTER Please,

46

!flsALARIESI]

!PATD!NT AccoffenJI
l~sW.SEITJNOl

1. Salaries:

This screen also has tow sub screens:

SALARIES

[oocroRs]
'"""""'"'"""'"""'·

EMPLOYEES

47

7 .1.1 Doctors:

Here there is a view over the doctor's salaries, specialize, and under special

function we can calculate the net wages after subtracting the tax from it.

DOCTORS SALARIES

Doctor ID: [DI

Name: t,.,,\11
SW'JWlle: !ZAIDAN

Salary: I 2,0001

Specialization: !Ear & Nooe & Throat

Tax: I 1001 $

Total: I 1,900 I s

~Table Structure £1

Tag Name Type Width Dec Field

name Character 16
surname Character 16 I I n 111 Insert

specialize Character 20 : II I I I! Delete J
salary Numeric 12
tax Numeric 12
total Numeric 12

d: \hos\salaries. dbl Eields:

48

7.1.2 Employees:

The same like the former one, this screen views the salaries of employees after

taking the tax out.

Employees Salaries

Emp ID: ~

Name: JWII.LIM

Surname: JHAS

Job: !WAITER

Salary: I 2001 $

Tax: J 101 $

Total: I 190! $

~Table Structure f3
Tag Name Type Width Dec Field

·emp_id Character 10
name Character 16 I I n 111 [nsert

surname Character

'" ~ I
I 111 .R_elete

special Cherecter 15
salary Numeric 15 0
tax Numeric 15 o I II I lrlfK
total Numeric 15 0
I

d: \hos\esalary. dl:lf If I Fields·

49

7 .2 Patients Account:

The patients account screen describe the financial relation between the

inpatient and the accounting department, we have another function calculate the total

amount the patient should pay. By obtaining the duration that the patient stay inside

the hospital, price of the room and the price of medicines. And here we can get a

receipt by clicking the print bottom;

PATIENTS ACCOUNTING
Patient Id: [PIO

Name: t,;,,~11·
Sunwne: [Ol'llER

Date of Adnw: [12112189 I
Room No: ~
Bed No: ~

Bed Prue: I 33[$

Medicine: I 44[$

Discharge Date: [12114199 I
Total: I 120,626 [$

C"j Table Struct!'lre 13
Tag Name 'width Dec Field Type

patint_id Character 10

~

I··
l"

....
name Character 16 ••• r surname Character 16 r1 datofadmis Date 8

~

~:n
room_no Character 10 r bed_no Character 10

r:,,,,
Numeric 10 bed_price =: Numeric 10 ~ medicine

!nsert

Qelete ~

~

Wcancel ~

d: \hos\paccount, db Eields: 10

50

7.3 Outcomes:

As so as we automate a real life application, we should consider the financial relation

between the hospital and outside environments, and considering the total amount of

OUTCOMES can bound that. Not more than buying of foods, new medical instrument

and maintenance.

OUTCOMES

Date: 102112199 I
Foods:

Medicines:

Medinltrwn:

Other Smcks:

Total:

78]

m

eJ Table Structure 13
Tag Name Type Width Dec Field

date Date 8
foods Numeric 10 o•n 11, insert

medicines Numeric 10
0 •1 I 11! .Q.elete

medinstrum Numeric 10 0
other stock Numeric 10 0

'
total Numeric 10 0

Length: 59 d~\hos\outcornes. dbf Fields:

51

7.4 Password Setting:

The last sub screen in the accounting department expand the security of the

system by giving the ability for authority people to change the password from time to

time, as a routine to avoid any unexpected hacking to the system security.

PASSWORD SETTING

Enter the New Pas sward: IO MER I

m~.~jJJJ l@:e1ete I I~]

52

8. Pharmacy:

The system provides the patients in and outside the hospital with an EXTERNAL

PHARMACY.

PHARMACY

Meclicin ID: 1021 I
Meclicine: !SCORNED I

Price:

Pharma.cut: !MOHAMED HUS SAM

r'tiDilirtmiOI/~
Tag Name T,oe w;dlh Dec F;eld "

I In I j medicin_id Character I j 8 ' ' lfji/l
medicine
price
pharmacist

Character
Float
Character

Insert 10
12
20

0 Delete ~

OK

Cancel

Length: 51 d:\hos\phar!11act dbl

53

9. About Box:

The ABOUT BOX bottom is a small preview about the project, supervisor and

the programmer.

Hospital Information System project
Using Fo11Pro programming

Done under the Supervision of:
Miss: Besime Erin

& Submitted By:
S amir Omer Zaidan 980993
Near East University
Faculty of Engineering

Department Of computer Engineerin

54

Conclusion

The database programming are one of the most growing up fields in the

computer world, and the applications of it are spreading and entering everywhere in

our real life.

The FoxPro is one of the most used programming referring to its high control

in database management and design, I believe that the entire Visual FoxPro had

become more useful is gaining more ground on the application, but the main reason

for me to use FoxPro because I've been familiar with it, and I got some experience in

solving its problems and making a good control through in the program.

In this project, the Hospital database has been taking regarding to a small

Hospital in Sudan, and it can do the same services that provided by any Hospital or

Clinic, with a slight changes to the design cope with it.

I had given attended to make it easy to the use of any public user, security
abilities are capable and upgrading are easy, and all these features fall in favors of the
program.

55

MAIN MENU

Print main
menu screen

Input choice

56

True

True

Department

Patients

Doctors

Employees

True ..,I I Reception

l False
True

Close DAT.

END

57

Accounting

Rooms

Pharmacy

About Box

Reception

Open Reception
Data

Print Reception
menu

Input choice

Close DAT.

END

58

True

True

Clinic

Search

Clinic

Open New Patient.
Data

Print form of
admission

Close New
Patients data

Return to

59

Accounting

Open Account
Data

Input choice

True

True

True

60

Salaries

Outcomes

Patients Acc.

Fal$e

Close DAT.

Menu

61

Salaries

Open Salaries.dbf

Print Salaries
menu

Input choice

Close Salaries
DAT.

Return To
Main Menu

62

Doctors

Employees

Patients

Open Patient
Data. File

Input Patient ID

Input Date, Name,
Job, Address ... etc.

Open History
Data File

Input Allergies,
Diagnosis, etc.

Close History
Data File

Open Daily Checkup
Data File

Input Date, Exam,
medicines.

Close Patients
Data File

Return To Main
Menu

63

Close Dafly Checkup
Data File

Outcomes

Open Outcomes
Data File

Read Date, foods, medicines,
new instrument, and other

stocks

Display Total

Close
Outcomes

Data

Return to
Account Menu

64

Doctors &
Employees
Salaries

Open Dr&
EMPData

Input ID, Name,
Surname, Specialize,
Salary, Tax & Total

Write To Salary
Data File

Close Salaries
Data File

Return To
Account Menu

65

Edit Or
Add Data

Save
Changes

Search

Open All Data Files

Search By:
Patient Name Or
Doctor Name

Search In
Data Files

No

Close All
Data Files

Return To
Reception Menu

Yes Specify
Location

66

Main Screen Code:

SET TALK OFF
SET CLOCK off
close all
SET READBORDER ON

IF NOT WEXIST("mmm")
DEFINE WINDOW mmm ;

AT 0.000, 0.000 ;
SIZE 30.308,98.167;
FONT "MS Sans Serif", 8 ;
STYLE "B";
FLOAT;
CLOSE;
MINIMIZE;
COLOR RGB(,,,0,128,128);
ICON FILE LOCFILE("NEU2.ICO","ICO",;

"Where is neu2?")
MOVE WINDOW mmm CENTER

END IF

IF WVISIBLE("mmm")
ACTIVATE WINDOW mmm SAME

ELSE
ACTIVATE WINDOW mmm NOSHOW

END IF

@ 0.000,19.667 SAY (LOCFILE("neu3.bmp","BMPIICOIPCTIICN", "Where is
neu3?")) BITMAP;

SIZE 28.538,58.000 ;
STRETCH;
STYLE "T"

@ 1.231,25.833 SAY "Near East Hospital";
FONT "Times New Roman", 24;
STYLE "BT";
COLOR RGB(255,255,255,0,255,255)

@ 6.385,22.833 GET B ;
PICTURE "@*HN \<Department" ;
SIZE 1.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID BT('dep') ;

68

MESSAGE 'Show Different Departments.'

@ 9.769,17.833 GET B ;
PICTURE "@*HN \<Patients" ;
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID BT('pat');
MESSAGE'.'

@ 13.692,16.833 GET B;
PICTURE "@*HN Dvccctors'";
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID BT('doc') ;
MESSAGE'.'

@ 18.308,20.333 GET B;
PICTURE "@*HN \<Employees";
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID BT('emp') ;
MESSAGE'.'

@ 22.615,28.667 GET B ;
PICTURE "@*HN A \<bout" ;
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID BT('abt');
MESSAGE'.'

@ 6.385,58.833 GET B ;
PICTURE "@*HN \<Reception";
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif', 8 ;
STYLE "B";
VALID BT('rec') ;
MESSAGE'.'

69

@ 9.692,64.167 GET B;
PICTURE "@*HN \<Accounting";
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif', 8 ;
STYLE "B";
VALID BT('acc');
MESSAGE'.'

@ 13.692,64.833 GET B;
PICTURE "@*HN Roovcms'";
SIZE l.769,14.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
V AUD BT('rom') ;
MESSAGE'.'

@ 18.308,61.000 GET B ;
PICTURE "@*HN Pvcharmacy'";
SIZE l.769,14.167,0.667 ;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
V AUD BT('pha') ;
MESSAGE'.'

@ 22.692,54.000 GET B ;
PICTURE "@*HN \<Close";
SIZE l.769,13.667,0.667 ;
DEFAULT 1;
FONT "MS Sans Serif", 8;
STYLE "B";
V AUD bt('EXIT') ;
MESSAGE 'Close screen.'

@ 1.385,22.000 TO 4.154,74.167;
PEN 1, 8;
STYLE "16";
COLOR RGB(0,0,0,,,,)

@ 5.538,12.000 TO 25.923,84.167;
PEN 1, 8;
STYLE "16";
COLOR RGB(0,0,0,,,,)

70

* ***
* * * * WindowsREAD contains clauses from SCREEN main
* *
* ***
*

READ CYCLE
PROCEDURE BT

PARAMETER m.btnname
DO CASE

CASE m.btnname='dep'
DO department.prg

CASE m.btnnamee'pat'
DO patients.prg

CASE m.btnname='doc'
DO doctors.prg

CASE m.btnname='emp'
DO employees.prg

CASE m.btnname='abt'
DO about.prg

CASE m.btnname='rec'
DO reception.prg

CASE m.bmname='acc'
DO password.prg

CASE rn.btnname='rom'
DO rooms.prg

CASE m.btnname='pha'
DO pharmacy.prg

CASE m.btnname='EXIT'
set sysm to defa
DEACTIVATE WINDOW mmm
RELEASE WINDOW mmm
SET CLOCK OFF

71

ENDCASE
RETURN

Password Code:

CLOSE DATABASES
define window SamOO at 12,12 size 4,40 system
activate window SamOO
@1.308,1 say "Enter the Password:"
@ 1.308,20.550 GET m.ps ;

SIZE 1.000, 18.000 ;
DEFAULT"";
FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE "@K XXXXXXXXXXXXXXXX" ;
COLOR ,RGB(0,0,0,0,0,0)

read
release window SamOO
show gets
USE pas.dbf
set ORDER TO TAG 'wrd'
seek pass
*IF FOUND()
LOCATE ALL FOR M.PS=pass

IF FOUND()
WAIT WINDOW " PASSWORD IS OK " NO WAIT
DO accounting.PRO

ELSE
WAIT WINDOW " PASSWORD IS WRONG " NOWAIT
DOMEXXSSl
END IF
*USE
*endif
return

PROCEDURE MEXXSS 1
DEFINE WINDOW _qjnl 12 ;

AT 0.000, 0.000 ;
SIZE 18.615,57.667 ;
TITLE" SEARCHING ";
FONT "MS Sans Serif", 8 ;
FLOAT NOCLOSE MINIMIZE SYSTEM

MOVE WINDOW _qjnl 12 CENTER
ACTIVATE WINDOW _qjn112 NOSHOW

@ 5.923,7.000 SAY" THE PASSWARD IS WRONG!";

72

FONT "Arial", 13 ;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,0,128,128)

@ 9.923,9.000 SAY "Press ENTER Please! ";
FONT "Arial", 12;

STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,0,128,128)

ACTIVATE WINDOW _qjnl 12
READ
RELEASE WINDOW _qjnl 12

RETURN

73

Patients Code

* ***
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PATIENT.SPR 01:10:48 * 23/01/01
*

* * Author's Name
* * Copyright (c) 2001 Company Name
* Address
* City, Zip
* * Description:
* This program was automatically generated by GENSCRN.
*

*
*
*

*
* PATIENT/Windows Setup Code - SECTION 1

* *
* ***
*
#REGION 1
PRIVATE wzfields, wztalk
IF SET("TALK") = "ON"

SET TALK OFF
m.wztalk = "ON"

ELSE
m.wztalk = "OFF"

END IF
m. wzfields=SET('FIELDS ')
SET FIELDS OFF
IF m.wztalk = "ON"

SET TALK ON
END IF

74

#REGIONO
REGIONAL m.currarea, m.talkstat, m.compstat

IF SET("TALK") = "ON"
SET TALK OFF
m.talkstat = "ON"

ELSE
m.talkstat = "OFF"

END IF
m.compstat = SET("COMPATIBLE")
SET COMPATIBLE FOXPLUS

m.rborder = SET("READBORDER")
SET READBORDER ON

m.currarea = SELECT()

* ***
* * * * PATIENT/Windows Databases, Indexes, Relations
* *
* ***
*
IF USED("patient")

SELECT patient
SET ORDER TO TAG "ddd"

ELSE
SELECTO
USE (LOCFILE("patient.dbf',"DBF","Where is patient?"));

AGAIN ALIAS patient ;
ORDER TAG "ddd"

END IF

* ***
* *
* * Windows Window definitions
* *
* ***
*
IF NOT WEXIST("_Oaulhyxus")

DEFINE WINDOW _Oaulhyxus;
AT 0.000, 0.000 ;
SIZE 25.692,97.167 ;
TITLE"";
FONT "MS Sans Serif", 8 ;
STYLE "B";

75

FLOAT;
CLOSE;
MINIMIZE;
COLOR RGB(,,,192,192,192)

MOVE WINDOW _Oaulhyxus CENTER
END IF

* ***
* *
* PATIENT/Windows Setup Code - SECTION 2 *
* *
* ***
*
#REGION 1

#DEFINE C_DBFEMPTY
#DEFINE C_EDITS
#DEFINE C_TOPFILE
#DEFINE C_ENDFILE
#DEFINE C_BRTITLE
#DEFINE C_NOLOCK
#DEFINE C_ECANCEL
#DEFINE C_DELREC
#DEFINE C_NOFEA T
#DEFINE C_NOWIZ
#DEFINE C_MAKEREPO
#DEFINE C_NOREPO
#DEFINE C_DELNOTE
#DEFINE C_READONL Y
#DEFINE C_NOTABLE
#DEFINE C_BADEXPR
#DEFINE C_LOCWIZ

'Database is empty, add a record?'
'Please finish your edits.'
'Top of file.'
'End of file.'
'Locate Record'
'Sorry, could not lock record -- try again later.'
'Edits Canceled.'
'Delete selected record?'
'Feature not available yet.'
'Wizard application is not available.'
'Creating report with Report Wizard.'
'Could not create report.'
'Deleting records ... '
'Table is read-only. No editing allowed.'
'No table selected. Open table or run query.'
'Invalid expression.'
'Locate WIZARD.APP:'

#DEFINE C_MUL TIT ABLE 'You have multiple related tables. Adding records in not
allowed.'

MOVE WINDOW '_Oaulhyxus' CENTER
PRIVATE isediting,isadding, wztblarr
PRIVATE wzolddelete, wzolderror, wzoldesc
PRIVATE wzalias, tempcurs, wzlastrec
PRIVATE isreadonly ,find_drop,is2table

IF EMPTY(ALIAS())
WAIT WINDOW C_NOTABLE
RETURN

END IF

m. wztblarr= "
m. wzalias=SELECT()

76

m.isediting=.F.
m.isadding=.F.
m.is2table = .F.
m.wzolddelete=SET('DELETE')
SET DELETED ON
m.tempcurs=SYS(2015) &&used if General field
m. wzlastrec = 1
m. wzolderror=Olv ('error')
ON ERROR DO wizerrorhandler
wzoldesc=Olv ('KEY', 'ESCAPE')
ON KEY LABEL ESCAPE
m.find_drop = IIF(_DOS,0,2)

m.isreadonly=IIF(ISREAD(),.T.,.F.)
IF m.isreadonly

WAIT WINDOW C_READONL Y TIMEOUT 1
END IF

IF RECCOUNT()=O AND lm.isreadonly AND fox_alert(C_DBFEMPTY)
APPEND BLANK

END IF

GOTO TOP
SCATTER MEMV AR MEMO

* ***
* *
* * PATIENT/Windows Screen Layout
* *
* ***
*
#REGION 1
IF WVISIBLE("_Oaulhyxus")

ACTIVATE WINDOW _Oaulhyxus SAME
ELSE

ACTIVATE WINDOW _Oaulhyxus NOSHOW
END IF
@ 0.385,34.000 SAY "Patients" ;

FONT "Times New Roman", 16;
STYLE "BT";
COLOR RGB(128,0,0,,,,)

@ 2.692,0.000 TO 2.692,96.833 ;
PEN2, 8;
STYLE "1"

@ 22.077,0.000 TO 22.077,96.833;
PEN 2, 8;
STYLE "1"

@ 3.692,2.833 SAY "Patient ID:" ;

77

SIZE 0.938,13.667;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 3.692,18.833 GET m.patint_id;
SIZE 1.000,16.000;
DEFAULT" II;

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@K XXXXXXXXXX" ;
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 3.692,45.333 SAY "Name:" ;
SIZE 0.938,18.000;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 3.769,65.333 GET m.name;
SIZE 1.000,30.400 ;
DEFAULT II II;

FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE"@ XXXXXXXXXXXXXXXXXXXXXXXXXXXX";
WHENSAMl();
COLOR ,RGB(0,0,0,255,255,255)

@ 5.769,2.833 SAY "Surname:" ;
SIZE 0.938,13.667 ;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 5.769,18.833 GET m.sumame;
SIZE 1.000,27.400;
DEFAULT II";
FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@K XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" ;
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 5.846,45.333 SAY "Date of Birth:" ;
SIZE 0.938,18.000;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 5.846,65.333 GET m.datebirth;
SIZE 1.000,9.200;
DEFAULT II II;

78

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@K";
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 7.846,2.833 SAY "Gender:" ;
SIZE 0.938,13.667;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 7.769,18.667 GET m.gender;
PICTURE "@*RHN M;F" ;
SIZE 1.308,6.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif', 8 ;
STYLE "BT";
WHEN isediting

@ 7.846,45.333 SAY "Address:" ;
SIZE 0.938, 18.000 ;
FONT "Times New Roman", 10 ;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 7.923,65.333 EDIT m.address;
SIZE 3.000,29.833,0.000;
PICTURE "@K

xxx
XXXXXXXXXXXXXXXXXX'' ;

DEFAULT"";
FONT "MS Sans Serif', 8 ;
STYLE "B";
SCROLL;
WHEN isediting ;
COLOR ,RGB(,,,255,255,255)

@ 9.923,2.833 SAY "Job:";
SIZE 0.938,13.667;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 10.000, 18.833 GET m.job ;
SIZE 1.000,27.400 ;
DEFAULT"";
FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE "@K XXXXXXXXXXXXXXXXXXXXXXXXXXX" ;
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 12.000,2.833 SAY "Phone:" ;

79

SIZE 0.938,13.667;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 12.077,18.833 GET m.phone;
SIZE 1.000,16.000;
DEFAULT II II;

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@KXXXXXXXXXX";
WHEN isediting;
COLOR ,RGB(0,0,0,255,255,255)

@ 12.231,45.833 SAY "Nationality:" ;
SIZE 0.938,18.000;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 12.231,65.833 GET m.nationalit;
SIZE 1.000,16.000;
DEFAULT II II;

FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE "@K XXXXXXXXXX" ;
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 14.077,2.833 SAY "Date Of Adm:";
SIZE 0.938,13.667;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 14.154,18.833 GET m.datofadmis;
SIZE 1.000,16.000;
DEFAULT II II;

FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE "@KXXXXXXXXXX";
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 14.462,45.833 SAY "Cause of Admis:" ;
SIZE 0.938,18.000;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 14.462,65.833 GET m.causeadmis;
SIZE 1.000,28.000 ;
DEFAULT II II;

80

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@K XXXXXXXXXXXXXXXXXXXXXXXXXXXXX" ;
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 16.538,0.333 SAY "Discharge Date:" ;
SIZE 0.938,16.167;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 16.538,18.833 GET m.outdate;
SIZE 1.000,16.000;
DEFAULT II II;

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@KXXXXXXXXXX";
WHEN isediting ;
COLOR ,RGB(0,0,0,255,255,255)

@ 18.538,0.333 SAY "Dept Name:";
SIZE 0.938,16.167;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 18.538,18.833 GET m.dep_name;
SIZE 1.000,35.000 ;
DEFAULT II II;

FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@K

xxx
XXX''· ' WHEN isediting ;

COLOR ,RGB(0,0,0,255,255,255)
@ 20.538,0.333 SAY "Room No:" ;

SIZE 0.938,16.167;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 20.538,18.833 GET m.room_no;
SIZE 1.000,16.000;
DEFAULT"";
FONT "Times New Roman", 8;
STYLE "B";
PICTURE "@KXXXXXXXXXX";
WHEN isediting;
COLOR ,RGB(0,0,0,255,255,255)

81

@ 20.538,30.333 SAY "Bed No:" ;
SIZE 0.938,16.167;
FONT "Times New Roman", 10;
STYLE "BT";
PICTURE "@J";
COLOR RGB(,,,255,255,255)

@ 20.538,50.833 GET m.bed_no;
SIZE 1.000,16.000;
DEFAULT II II;

FONT "Times New Roman", 8 ;
STYLE "B";
PICTURE "@K XXXXXXXXXX" ;
WHEN isediting;
COLOR ,RGB(0,0,0,255,255,255)

@ 23.000,7.833 GET m.top_btn;
PICTURE "@*HN \<Top";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('TOP') ;
MESSAGE 'Go to first record.'

@ 23.000,15.833 GET m.prev_btn;
PICTURE "@*HN \<Prev";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('PREV') ;
MESSAGE 'Go to previous record.'

@ 23.000,23.833 GET m.next_btn ;
PICTURE "@*HN \<Next";
SIZE 1.769,7.833,0.667 ;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('NEXT') ;
MESSAGE 'Go to next record.'

@ 23.000,31.833 GET m.end_btn;
PICTURE "@*HN \<End";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif', 8 ;
STYLE "B";
VALID btn_ val('END') ;
MESSAGE 'Go to last record.'

@ 23.000,39.833 GET m.loc_btn;
PICTURE "@*HN \<Locate";
SIZE 1.769,7.833,0.667;
DEFAULT 1;

82

FONT "MS Sans Serif', 8 ;
STYLE "B";
VALID btn_ val('LOCA TE') ;
MESSAGE 'Locate a record.'

@ 23.000,47.833 GET m.add_btn;
PICTURE "@*HN \<Add";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('ADD') ;
MESSAGE 'Add a new record.'

@ 23.000,55.833 GET m.edit_btn;
PICTURE "@*HN Ed\<it";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('EDIT') ;
MESSAGE 'Edit current record.'

@ 23.000,63.833 GET m.del_btn ;
PICTURE "@*HN \<Delete";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('DELETE') ;
MESSAGE 'Delete current record.'

@ 23.000,71.833 GET m.pmt_btn;
PICTURE "@*HN Pvcrint'";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif', 8 ;
STYLE "B";
VALID btn_ val('PRINT') ;
MESSAGE 'Print report.'

@ 23.000,79.833 GET m.exit_btn;
PICTURE "@*HN \<Close";
SIZE 1.769,7.833,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('EXIT') ;
MESSAGE 'Close screen.'

@ 16.615,60.000 GET m.dal_btn;
PICTURE "@*HN Daily Checkup";
SIZE 1.769,15.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;

83

STYLE "B";
VALID btn_ val('DAL')

@ 16.615,78.000 GET m.his_btn;
PICTURE "@*HN History";
SIZE l.769,12.167,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B";
VALID btn_ val('HISTORY')

IF NOT WVISIBLE("_Oaulhyxus")
ACTIVATE WINDOW _Oaulhyxus

END IF

* ***
* *
* WindowsREAD contains clauses from SCREEN patient *
* *
* ***
*
READ CYCLE;

ACTIVATE READACT() ;
DEACTIVATE READDEAC() ;
NO LOCK

RELEASE WINDOW _Oaulhyxus

* ***
* *
* Windows Closing Databases *
* *
* ***
*
IF USED("patient")

SELECT patient
USE

END IF

SELECT (m.currarea)

#REGIONO

84

SET READBORDER &rborder

IF m.talkstat = "ON"
SET TALK ON

END IF
IF m.compstat = "ON"

SET COMPATIBLE ON
END IF

* ***

* *
* PATIENT/Windows Cleanup Code *
* *
* ***

*
#REGION 1
SET DELETED &wzolddelete
SET FIELDS &wzfields
ON ERROR &wzolderror
ON KEY LABEL ESCAPE &wzoldesc
DO CASE
CASE _DOS AND SET('DISPLA Y')='VGA25'

@24,0 CLEAR TO 24,79
CASE _DOS AND SET('DISPLA Y')='VGASO'

@49,0 CLEAR TO 49,79
CASE_DOS

@24,0 CLEAR TO 24,79
ENDCASE

****Procedures****

*
*
*
*
*
*

*
* PATIENT/Windows Supporting Procedures and Functions

*

#REGION 1
PROCEDURE readdeac
IF isediting
ACTIVATE WINDOW '_Oaulhyxus'
WAIT WINDOW C_EDITS NOW AIT

END IF
IF !WVISIBLE(WOUTPUT())
CLEAR READ
RETURN .T.

85

END IF
RETURN .F.

PROCEDURE readact
IF !isediting

SELECT (m.wzalias)
SHOW GETS

END IF
DO REFRESH

RETURN

PROCEDURE wizerrorhandler
* This very simple error handler is primarily intended
* to trap for General field OLE errors which may occur
* during editing from the MODIFY GENERAL window.
WAIT WINDOW message()

RETURN

PROCEDURE printrec
PRIVATE sOldError,wizfname,saverec,savearea,tmpcurs,tmpstr
PRIVATE prnt_btn,p_recs,p_output,pr_out,pr_record
STORE 1 TO p_recs,p_output
STORE O TO prnt_btn
STORE RECNO() TO saverec
m.sOldError=ON('error')
DO pdialog
IF m.prnt_btn = 2
RETURN

END IF
IF !FILE(ALIAS()+'.FRX')

m. wizfname=SYS(2004)+'WIZARDS\'+'WIZARD .APP'
IF !FILE(m.wizfname)

ON ERROR*
m. wizfname=LOCFILE('WIZARD.APP' ,'APP' ,C_LOCWIZ)
ON ERROR &sOldError
IF ! 'WIZARD .APP'$UPPER(m. wizfname)
WAIT WINDOW C_NOWIZ
RETURN
END IF

END IF
WAIT WINDOW C_MAKEREPO NOW AIT

m.savearea=SELECT()
m. tmpcurs='_'+ LEFT(SYS(3), 7)
CREATE CURSOR (m.tmpcurs) (comment m)
m.tmpstr ='*LAYOUT= COLUMNAR'+CHR(13)+CHR(10)
INSERT INTO (m.tmpcurs) VALUES(m.tmpstr)
SELECT (m.savearea)
DO (m.wizfname) WITH

",'WZ_QREPO','NOSCRN/CREATE',ALIAS(),m.tmpcurs

86

USE IN (m.tmpcurs)
WAIT CLEAR

IF !FILE(ALIAS()+'.FRX') &&wizard could not create report
WAIT WINDOW C_NOREPO
RETURN
END IF

END IF

m.pr_out=IIF(m.p_output=l,'TO PRINT NOCONSOLE','PREVIEW')
m.pr_record=IIF(m.p_recs=l,'NEXT 1','ALL')
REPORT FORM (ALIAS()) &pr_out &pr_record
GO m.saverec

RETURN

PROCEDURE BTN_ VAL
PARAMETER m.btnname
DO CASE
CASE m.btnname='T'O]"

GO TOP
WAIT WINDOW C_TOPFILE NOW AIT

CASE m. btnname='PREV'
IF !BOF()

SKIP -1
END IF
IFBOF()

WAIT WINDOW C_TOPFILE NOWAIT
GO TOP

END IF

CASE m.btnname=Hl S'
DO D:\HOS\HISTORY.PRG

CASE m.btnname='DAL'
DO D:\HOS\DA YCHKUP.PRG

CASE m.btnname='NEXT'
IF !EOF()

SKIP 1
END IF
IFEOF()

WAIT WINDOW C_ENDFILE NOW AIT
GO BOTTOM

END IF
CASE m.btnname='END'

GO BOTTOM
WAIT WINDOW C_ENDFILE NOW AIT

CASE m.btnname='LOCATE'
DO loc_dlog

87

CASE m.btnname='ADD' AND !isediting &&add record
isediting=. T.
isadding=.T.
=edithand('ADD')
_curobj=l
DO refresh
SHOW GETS
RETURN

CASE m.btnname='EDIT' AND !isediting &&edit record
IF EOF() OR BOF()

WAIT WINDOW C_ENDFILE NOW AIT
RETURN

END IF
IFRLOCK()

isediting=.T.
_curobj=l
DO refresh
RETURN

ELSE
WAIT WINDOW C_NOLOCK

END IF
CASE m.btnname='EDIT' AND isediting &&save record

IF isadding
=edithand('SA VE')

ELSE
GATHER MEMV AR MEMO

END IF
UNLOCK
isediting=.F.
is adding= .F.
DO refresh

CASE m.btnname='DELETE' AND isediting
IF isadding

=edithand('CANCEL')
END IF
isediting=.F.
isadding=.F.
UNLOCK
WAIT WINDOW C_ECANCEL NO WAIT
DO refresh

CASE m.btnname='DELETE'
IF EOF() OR BOF()

WAIT WINDOW C_ENDFILE NOW AIT
RETURN

END IF
IF fox_alert(C_DELREC)

DELETE
IF !EOF() AND DELETED()

SKIP 1
END IF

&&cancel record

88

IFEOF()
WAIT WINDOW C_ENDFILE NOW AIT
GO BOTTOM

END IF
END IF

CASE m.btnname='PRINT'
DO printrec
RETURN

CASE m.btnname='EXIT'
m.bailout=.T. &&this is needed if used with FoxApp
CLEAR READ
RETURN

ENDCASE
SCATTER MEMV AR MEMO
SHOW GETS

RETURN

PROCEDURE REFRESH
DO CASE
CASE m.isreadonly AND RECCOUNT()=O

SHOW GETS DISABLE
SHOW GET exit_btn ENABLE

CASE m.isreadonly
SHOW GET add_btn DISABLE
SHOW GET del_btn DISABLE
SHOW GET edit_btn DISABLE

CASE (RECCOUNT()=O OR EOF()) AND !m.isediting
SHOW GETS DISABLE
SHOW GET add_btn ENABLE
SHOW GET exit_btn ENABLE

CASE m.isediting
SHOW GET find_drop DISABLE

SHOW GET top_btn DISABLE
SHOW GET prev _btn DISABLE
SHOW GET loc_btn DISABLE
SHOW GET next_btn DISABLE
SHOW GET end_btn DISABLE
SHOW GET add_btn DISABLE
SHOW GET prnt_btn DISABLE
SHOW GET exit_btn DISABLE
SHOW GET edit_btn,1 PROMPT "vcSave"
SHOW GET del_btn,1 PROMPT "\<Cancel"
ON KEY LABEL ESCAPE DO BTN_ VAL WITH 'DELETE'
RETURN

OTHERWISE
SHOW GET edit_btn,1 PROMPT "Ed\<it"
SHOW GET del_btn,1 PROMPT "\<Delete"
SHOW GETS ENABLE

ENDCASE

89

IF m.is2table
SHOW GET add_btn DISABLE

END IF
ON KEY LABEL ESCAPE

RETURN

PROCEDURE edithand
PARAMETER m.paction
* procedure handles edits
DO CASE
CASE m.paction = 'ADD'

SCATTER MEMV AR MEMO BLANK
CASE m.paction = 'SA VE'

INSERT INTO (ALIAS()) FROM MEMV AR
CASE m.paction = 'CANCEL'

* nothing here
ENDCASE

RETURN

PROCEDURE fox_alert
PARAMETER wzalrtmess
PRIVATE alrtbtn
m.alrtbtn=2

DEFINE WINDOW _qeclij2t7 AT 0,0 SIZE 8,50;
FONT "MS Sans Serif',10 STYLE 'B';
FLOAT NOCLOSE NO MINIMIZE DOUBLE TITLE WTITLE()

MOVE WINDOW _qeclij2t7 CENTER
ACTIVATE WINDOW _qeclij2t7 NOSHOW
@ 2,(50-txtwidth(wzalrtmess))/2 SAY wzalrtmess;
FONT "MS Sans Serif", 10 STYLE "B"

@ 6,18 GET m.alrtbtn;
PICTURE "@*HT \<OK;\?\!\<Cancel";
SIZE 1.769,8.667,1.333 ;
FONT "MS Sans Serif', 8 STYLE "B"

ACTIVATE WINDOW _qeclij2t7
READ CYCLE MODAL
RELEASE WINDOW _qeclij2t7

RETURN m.alrtbtne l

PROCEDURE pdialog
DEFINE WINDOW _qjn12zbvh ;

AT 0.000, 0.000 ;
SIZE 13.231,54.800;
TITLE "Microsoft FoxPro" ;
FONT "MS Sans Serif", 8 ;
FLOAT NOCLOSE MINIMIZE SYSTEM

MOVE WINDOW _qjn12zbvh CENTER
ACTIVATE WINDOW _qjn12zbvh NOSHOW

90

@ 2.846,33.600 SAY "Output:" ;
FONT "MS Sans Serif", 8 ;
STYLE "BT"

@ 2.846,4.800 SAY "Print:" ;
FONT "MS Sans Serif", 8 ;
STYLE "BT"

@ 4.692,7.200 GET m.p_recs;
PICTURE "@*RVN \<Current Record;\<All Records";
SIZE 1.308,18.500,0.308 ;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "BT"

@ 4.692,36.000 GET m.p_output ;
PICTURE "@*RVN \<Printer;Pre\<view";
SIZE 1.308,12.000,0.308;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "BT"

@ 10.154,16.600 GET m.pmt_btn;
PICTURE "@*HT Pvcrint.Ca'<ncel'";
SIZE 1.769,8.667,0.667;
DEFAULT 1;
FONT "MS Sans Serif", 8 ;
STYLE "B"

ACTIVATE WINDOW _qjn12zbvh
READ CYCLE MODAL
RELEASE WINDOW _qjn12zbvh

RETURN

PROCEDURE loc_dlog
PRIVATE gfields,i
DEFINE WINDOW wzlocate FROM 1, 1 TO 20,40;

SYSTEM GROW CLOSE ZOOM FLOAT FONT "MS Sans Serif" ,8
MOVE WINDOW wzlocate CENTER
m.gfields=SET('FIELDS',2)
IF !EMPTY (RELATION (1))

SET FIELDS ON
IF m.gfields # 'GLOBAL'

SET FIELDS GLOBAL
END IF
IF EMPTY(FLDLIST())

m.i=I
DO WHILE !EMPTY(OBJVAR(m.i))

IF ATC('M.',OBJVAR(m.i))=O
SET FIELDS TO (OBJVAR(m.i))

END IF
m.i = m.i + 1

END DO
END IF

91

END IF
BROWSE WINDOW wzlocate NOEDIT NODELETE ;

NOMENU TITLE C_BRTITLE
SET FIELDS &gfields
SET FIELDS OFF
RELEASE WINDOW wzlocate

RETURN

FUNCTION SAMl
CLOSE DATABASES
USE (LOCFILE("clinic.dbf',"DBF","Where is clinic?"));

SHARE;
AGAIN ALIAS clinic;
ORDER TAG "id"

SEEK m.patint_id
IF in="in"
*IF FOUND(IN="IN")
*DO CASE
* situation="in"
m.name=name
m.sumame=sumame
m.datebirthebirthdate
m.nationalit=nationalit
m.job=job
m.datofadmisedate

ELSE
WAIT WINDOW " THIS PATIENT IS OUT " NOW AIT

END IF

show gets
CLOSE DATABASES
USE (LOCFILE("patient.dbf","dbf',"WHERE IS patient?"));
share;
AGAIN ALIAS patient ;
ORDER TAG "ddd"

RETURN

92

	Page 1
	Titles
	Topic:
	CONTENTS
	Page Number:
	55

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGMENTS
	Jan 26th 2001

	Page 3
	Titles
	PREFACE
	1

	Page 4
	Titles
	Introduction
	2

	Tables
	Table 1

	Page 5
	Page 6
	Titles
	I

	Page 7
	Titles
	DATA MODELS

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	��
	·~~~~~__t_~~~

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	Logical Data Model - Same Example:
	Physical Data Model - Same Example:
	~ ~
	~
	8

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 11
	Titles
	?

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	ft
	Customer
	Customer Nbr
	.Narne

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 13
	Titles
	Re-Normalize
	L
	(
	� Normalize
	Entity ~
	� Populate
	� Nominate
	Select
	"
	Aggregate
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Page 15
	Titles
	�

	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	I
	.t

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 18
	Titles
	?
	.
	'

	Page 19
	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Tables
	Table 1

	Page 22
	Page 23
	Tables
	Table 1

	Page 24
	Titles
	LOGICAL DATABASE DESIGN

	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Titles
	-.

	Images
	Image 1

	Page 33
	Titles
	FOXPRO & Dbase
	Terminology Differences Between dBASE and FoxPro

	Page 34
	Titles
	File Extensions

	Images
	Image 1

	Tables
	Table 1

	Page 35
	Titles
	Switching from dBASE

	Tables
	Table 1

	Page 36
	Titles
	Overview
	Using Wizards
	FoxPro Enhancements to the Xbase Language

	Images
	Image 1

	Page 37
	Titles
	Main Screen:
	RECEPTION
	ljrs·wcei11 ctrsrc
	.·= J -11- ...���.........

	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Titles
	CLINIC

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 39
	Images
	Image 1
	Image 2
	Image 3

	Page 40
	Titles
	D 3 +~~~~li~fr ���.��������.���������������� ! ~~i;;.;~~
	Enter The Doctor NaMe:
	38

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 41
	Titles
	DEPARTMENTS
	d: \hos\deg_artme. d
	39
	Eield~:
	811 ILength:

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 42
	Titles
	3. Doctors:
	Doctor's names, specialization, and privet information are located in the
	J)OCTORS
	...�.........
	1c12~1~te 1
	40

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1
	Table 2

	Page 43
	Titles
	l,Daily_Checki)
	=----

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2

	Page 44
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3

	Page 45
	Titles
	DAILY CHECK-UP

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2

	Page 46
	Titles
	5. Employees:
	The EMPLOYEES screen shows up some information about the employees
	44

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 47
	Titles
	45

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 48
	Titles
	46

	Images
	Image 1
	Image 2
	Image 3

	Page 49
	Titles
	SALARIES
	[oocroRs]

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Titles
	DOCTORS SALARIES

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 51
	Titles
	7.1.2 Employees:
	The same like the former one, this screen views the salaries of employees after
	Employees Salaries
	49

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2

	Page 52
	Titles
	PATIENTS ACCOUNTING

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1
	Table 2

	Page 53
	Titles
	m

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 54
	Titles
	PASSWORD SETTING
	m~.~jJJJ l@:e1ete I I~]

	Images
	Image 1
	Image 2

	Page 55
	Titles
	8. Pharmacy:
	The system provides the patients in and outside the hospital with an EXTERNAL
	PHARMACY
	OK
	r'tiDilirtmiOI/~
	53

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 56
	Titles
	9. About Box:
	The ABOUT BOX bottom is a small preview about the project, supervisor and
	54

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 57
	Titles
	Conclusion

	Images
	Image 1

	Page 58
	Titles
	MAIN MENU

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 59
	Images
	Image 1
	Image 2

	Page 60
	Titles
	Reception
	END
	58
	True
	True

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 61
	Titles
	Clinic
	Close New
	Return to
	59

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 62
	Titles
	Accounting

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 63
	Titles
	61
	Fal$e
	Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 64
	Titles
	Salaries

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 65
	Titles
	Patients
	Open Patient
	Open History
	Open Daily Checkup
	Close Dafly Checkup
	Close Patients
	63
	Return To Main
	Close History

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 66
	Titles
	Outcomes

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 67
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 68
	Titles
	Search

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 69
	Images
	Image 1
	Image 2

	Page 70
	Images
	Image 1
	Image 2

	Page 71
	Images
	Image 1

	Page 72
	Images
	Image 1

	Page 73
	Titles
	* ***
	* *
	* *
	* ***
	*

	Images
	Image 1

	Page 74
	Images
	Image 1

	Page 75
	Titles
	73

	Images
	Image 1

	Page 76
	Titles
	* *
	*
	* *
	*

	Images
	Image 1

	Page 77
	Titles
	* *
	* *
	*
	* *
	* *
	*
	*
	*

	Images
	Image 1

	Page 78
	Titles
	*
	*
	*

	Images
	Image 1

	Page 79
	Titles
	* ***
	* *
	*
	*
	* ***
	*

	Images
	Image 1

	Page 80
	Images
	Image 1

	Page 81
	Titles
	PICTURE "@K

	Images
	Image 1

	Page 82
	Page 83
	Titles
	xxx
	'

	Images
	Image 1

	Page 84
	Images
	Image 1

	Page 85
	Images
	Image 1

	Page 86
	Titles
	* *
	*
	*
	* *
	*
	* *
	*
	*
	* *
	*

	Images
	Image 1

	Page 87
	Titles
	* *
	*
	* *

	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Images
	Image 1

