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ABSTRACT 

Due to the complexity of the processes, it has become very difficult to control 

them on the base of traditional methods. In such condition it is necessary to use modem 

methods for solving these problems. One of such method is global optimization algorithm 

based on mechanics of natural selection and natural genetics, which is called Genetic 

Algorithms. In this project the application problems of genetic algorithms for 

optimization problems, its specific characters and structures are given. The Basic Genetic 

operations, Selection, Reproduction, Crossover, Encoding and Mutation operations are 

widely described . The effectivity of genetic algorithms for solving the genetic algorithms 

are shown in the following chapters. After the representation of optimization problems, 

structural optimization and the finding of optimal solution of quadratic equation are 
given. 

The practical application for selection, reproduction, crossover, and mutation 

operation are shown. The functional implementation of GA based optimization in 

MATLAB Toolbox is considered. 
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INTRODUCTION 

The GENETIC ALGORITHMS is a model of machine learning, which derives its 

behavior from a metaphor of the processes of EVOLUTION in nature. This is done by 

the creation within a machine of a POPULATION of INDIVIDUALS represented by 

CHROMOSOMES, in essence of a set of character strings that are analogous to the base- 

4 chromosomes that we see in our own DNA The individuals in the population then go 
through a process of evolution. 

Genetic algorithms (GA) seek to solve optimization problems using the methods 

of evolution, specifically survival of the fittest. In a typical optimization problem, there 

are a number of variables, which control the process, and a formula or algorithm, which 

combines the variables to fully model the process. The problem is then to find the values 

of the variables, which optimize the model in some way. If the model is a formula, then 

we will usually be seeking the maximum or minimum value of the formula. There are 

many mathematical methods, which can optimize problems of this nature ( and very 

quickly) for fairly "well-behaved" problems. These traditional methods tend to break 

down when the problem is not so "well-behaved." We should note that EVOLUTION (in 

nature or anywhere else) is not a purposive or directed process. That is, there is no 

evidence to support the assertion that the goal of evolution is to produce Mankind. 

Indeed, the processes of nature seem to boil down to different Individuals competing for 

resources in the ENVIRONMENT. Some are better than others, those that are better are 

more likely to survive and propagate their genetic material. In nature, we see that the 

encoding for our genetic information (GENOME) is done in a way that admits asexual 

REPRODUCTION (such as by budding) typically results in OFFSPRING that are 

genetically identical to the PARENT. Sexual REPRODUCTION allows the creation of 

genetically radically different offspring that are still having the same general flavor 

(SPECIES). At the molecular level what occurs (wild over simplification alert) is that a 

pair of Chromosomes bump into one another, exchange chunks of genetic information 

and drift apart. This is the RECOMBINATION operation, which GA errors generally 
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refer to as CROSSOVER because of the way that genetic material crosses over from one 

chromosome to another, 

The CROSSOVER operation happens in an ENVIRONMENT where the 

ELECTION of who gets to mate is a function of the FITNESS of the INDIVIDUAL, i.e. 

how good the individual is at competing in its environment-Some GENETIC 

ALGORITHMS use a simple function of the fitness measure to select individuals 

(probabilistically) to undergo genetic operations such as crossover or asexual 

REPRODUCTION (the propagation of genetic material unaltered). This is fitness­ 

proportionate selection. Other implementations use a model in which certain randomly 

selected individuals in a subgroup compete and the fittest is selected. This is called 

tournament selection and is the form of selection we see in nature when stags rut to vie 

for the privilege of mating with a herd of hinds. The two processes that most contribute to 
evolution are crossover and fitness based on reproduction. 

As it turn~ out, there are mathematical proofs that indicate that the process of 

FITNESS proportionate REPRODUCTION is, in fact, near optimal in some senses, 

MUTATION also plays a role in this process, although how important its role is 

continues to be a matter of debate (some refer to it as a background operator, while others 

view it as playing the dominant role in the evolutionary process). It cannot be stressed too 

strongly that the GENETIC ALGORITHM (as a SIMULATION of a genetic process) is 

not a random search for a solution to a problem (highly fit INDIVIDUAL), The genetic 

algorithm uses stochastic processes, but the result is distinctly non-random (better than 

random) GENETIC ALGORITHMS are used for a number of different application areas. 

An example of this would be multidimensional OPTIMIZATION problems in 

which the character string of the CHROMOSOME can be used to encode the values for 

the different parameters being optimized. In practice, therefore, we can implement this 

genetic model of computation by having arrays of bits or characters to represent the 

CHROMOSOME, Simple bit manipulation operations allow the implementation of 

CROSSOVER, MUTATION and other operations. Although a substantial amount of 

research has been performed on variable-length strings and other structures, the majority 
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of work with GENETIC ALGORITHM is focused on fixed-length character strings. We 

should focus on both this aspect of fixed-lengthiness and the need to encode the 

representation of the solution being sought as a character string, since these are crucial 

aspects that distinguish GENETIC PROGRAMMING, which does not have a fixed 

length representation and there is typically no encoding of the problem, 

When the GENETIC ALGORITHM is implemented it is usually done in a 

manner that involves the following cycle: Evaluate the FITNESS of all of the 

INDIVIDUALS in the POPULATION. Create a new population by performing operations 

such as CROSSOVER, fitness-proportionate REPRODUCTION and MUTATION on 

the individuals whose fitness has just been measured. Discard the old population and 
iterate using the new population. 

One iteration of this loop is referred to as a GENERATION. There is no 

theoretical reason for this as an implementation model. Indeed, we do not see this 

punctuated behavior in POPULATIONS in nature as a whole, but it is a convenient 
implementation model. 

The first GENERATION (generation 0) of this process operates on a 

POPULATION of randomly generated INDIVIDUALS. From there on, the genetic 

operations, in concert with the FITNESS measure, operate to improve the population. 

Description: 

Genetic algorithms use a vocabulary borrowed from natural genetics, a candidate 

solution is called an individual. Quite often this individual called also truing or 

chromosome. This might be a little bit misleading; each cell of every organism of a given 

species carries a certain number of chromosomes, however, we talk about one­ 

chromosome individuals only. Chromosomes are made of units genes arranged in linear 

succession; every gene controls the inheritance of one or several characters 

Each gene can assume a finite number of values, called alleys (feature values). In 

binary representation chromosome is a vector, consisting of the bits succession, i.e. the 
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succession of zeroes and ones. A set of chromosomes makes a population. A number of 

chromosomes in population define a population size. The genetic algorithm evaluates a 

population and generates a new one iteratively, with each successive population referred 

to as a generation. The population undergoes a simulated evolution, at each generation 

the relatively "good" solutions reproduce while the relatively "bad" solutions die. To 

distinguish between different solutions we use an objective ( evaluation) function, which 

plays the role of an environment. Quite often the objective function is called also fitness 
function. 

Vlll 
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CHAPTER ONE 

STATE OF ART UNDERSTANDING GENETIC ALGORITHMS FOR 

SOLVING OPTIMIZATION PROBLEMS 

1.1.1 - First Words 

Genetic algorithms are a part of evolutionary computing, which is a rapidly 

growing area of artificial intelligence. As you can guess, genetic algorithms are inspired by 

Darwin's theory about evolution. Simply said, solution to a problem solved by genetic 

algorithms is evolved. 

1.1.2 - History 

Idea of evolutionary computing was introduced in the 1960s by I. Rechenberg in 

his work "Evolution strategies" (Evolutions strategy in original). His idea was then 

developed by other researchers. Genetic Algorithms (GA) were invented by John Holland 

and developed by him and his students and colleagues. This lead to Holland's book 

"Adaption in Natural and Artificial Systems" published in 1975. 

In 1992 John Koza has used genetic algorithm to evolve programs to perform 

certain tasks. He called his method "genetic programming" (GP). LISP programs were 

used, because programs in this language can expressed in the form of a "parse tree", which 

is the object the GA works on. 

1.2 - Chromosome 

All living organisms consist of cells. In each cell there is the same set of 

chromosomes. Chromosomes are strings of DNA and serves as a model for the whole 

organism. A chromosome consist of genes, blocks of DNA. Each gene encodes a particular 

protein. Basically can be said, that each gene encodes a trait, for example color of eyes. 
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Possible settings for a trait ( e.g. blue, brown) are called alleles. Each gene has its own 

position in the chromosome. This position is called locus. 

Complete set of genetic material ( all chromosomes) is called genome. Particular set 

of genes in genome is called genotype. The genotype is with later development after birth 

base for the organism's phenotype, its physical and mental characteristics, such as eye 

color, intelligence etc. 

1.2.1 - Reproduction 

During reproduction, first occurs recombination ( or crossover). Genes from parents 

form in some way the whole new chromosome. The new created offspring can then be 

mutated. Mutation means, that the elements of DNA are a bit changed. This changes are 

mainly caused by errors in copying genes from parents. 

The fitness of an organism is measured by success of the organism in its life. 

1.3 - Search Space 

1.3.1- Search Space 

If we are solving some problem, we are usually looking for some solution, which 

will be the best among others. The space of all feasible solutions (it means objects among 

those the desired solution is) is called search space (also state space). Each point in the 

search space represents one feasible solution. Each feasible solution can be "marked" by its 

value or fitness for the problem. We are looking for our solution, which is one point ( or 

more) among feasible solutions, that is one point in the search space. 

The looking for a solution is then equal to a looking for some extreme (minimum or 

maximum) in the search space. The search space can be whole known by the time of 

solving a problem, but usually we know only a few points from it and we are generating 

other points as the process of finding solution continues. 
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Example of a search space 

The problem is that the search can be very complicated. One does not know where 

to look for the solution and where to start. There are many methods, how to find some 

suitable solution (i.e. not necessarily the best solution), for example hill climbing, tabu 

search, simulated annealing and genetic algorithm. The solution found by these methods is 

often considered as a good solution, because it is not often possible to prove what is the 

real optimum. 

1.3.2 - NP-hard Problems 

Examples of difficult problems, which cannot be solved in the "traditional" way, 

are NP problems. 

There are many tasks for which we know fast (polynomial) algorithms. There are 

also some problems that are not possible to be solved algorithmically. For some problems 

was proved that they are not solvable in polynomial time. 

But there are many important tasks, for which it is very difficult to find a solution, 

but once we have it, it is easy to check the solution. This fact led to NP-complete 

problems. NP stands for no deterministic polynomial and it means that it is possible to 

"guess" the solution (by some no deterministic algorithm) and then check it, both in 

polynomial time. If we had a machine that can guess, we would be able to find a solution 

in some reasonable time. 

3 
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Studying of NP-complete problems is for simplicity restricted to the problems, 

where the answer can be yes or no. Because there are tasks with complicated outputs, a 

class of problems called NP-hard problems has been introduced. This class is not as limited 

as class of NP-complete problems. 

For NP-problems is characteristic that some simple algorithm to find a solution is 

obvious at a first sight just trying all possible solutions. But this algorithm is very slow 

(usually O (Y'n)) and even for a bit bigger instances of the problems it is not usable at all. 

Today nobody knows if some faster exact algorithm exists. Proving or disproving 

this remains as a big task for new researchers (and maybe you). Today many people think, 

that such an algorithm does not exist and so they are looking for some alternative methods, 

example of these methods are genetic algorithms. 

Examples of the NP problems are satisfiability problem, traveling salesman 

problem or knapsack problem. Compendium of NP problems is available. 

1.4 - Basic Genetic Algorithms 

1.4.1 - Basics Of Genetic Algorithms 

The three most important aspects of using genetic algorithms are: 

(1) Definition of the objective function. 

(2) Definition and implementation of the genetic representation. 

(3) Definition and implementation of the genetic operators. Once these three 

have been defined. 

The generic genetic algorithm should work fairly well. Beyond that you can try 

many different variations to improve performance, find multiple optima (species -if they 

exist, or parallels the algorithms. 
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Algorithm GA is 

II Start with an initial time 

T: ==O; 

I I Initialize a usually random population of individuals 

Initpopulation P (t); 

I I Evaluate fitness of all initial individuals of population 

Evaluate P (t); 

II Test for termination criterion (time, fitness, etc.) 

While not done do 

I I Increase the time counter 

T:=t+l, 

II Select a sub-population for offspring production 

P': = select parents P (t); 

II Recombine the "genes" of selected parents 

Recombine P' (t); 

II Perturb the mated population stochastically 

Mutate P' (t), 

II Evaluate it's new fitness evaluate P' (t); 
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I I Select the survivors from actual fitness 

P: = survive P,P'(t); 

od 

End GA. 

Generate Initial Population 

Assess Initial Population 

Select Population 

Recombine New Population 

Mutate New Population 

Assess New Population 

No 

,, 
"· Terminate Search? 

Yes 

Stop? 

1.5 -The Genetic Operators 

The initial population is chosen at random. GA simulates genetic evolution of a 

population of tentative solutfons. (individuals) by means of selection and survival of the 

fittest, crossover and mutations. Every individual is typically represented as a bit sequence, 

which makes up its "genetic code". The function to be optimized provides "fitness" values. 

The structure of a simple genetic algorithm is the same as the structure of any convolution 

program. During iteration t, a genetic algorithm maintains a population of potential 
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solutions (chromosomes, vectors), G (t)= ~; , ..... ,x~ }, each solution x; is evaluated to give 

some measure of its"' fitness" Then, a new population (iteration t+ 1) is formed by 

selecting the more fit individuals. Some members of this new population undergo 

reproduction by means of crossover and mutation, to form new solutions. Crossover 

combines the features of two parent chromosomes to form two similar offspring by 

swapping corresponding segments of the parents- For example, if the parents are 

represented by five-dimensional vectors ( a1, b., c1, «; e1 ) and ( a2, b2, c2, d2, e2 ) , then 

crossing the chromosomes after the second gene would produce the offspring 

( a1,b1,c2,d2,e2 )and ( a2,b2,c1,d1,e1 ). Mutation arbitrarily after one or more genes of 

a selected chromosome, by a random change with a probability equal to the mutation rate. 

For concrete problem GA has the following block-schema .We discuss the actions 

of a genetic algorithm for a simple parameter optimization problem. Now suppose we wish 

to maximize a function of k variables, f ( x1 , •.... x k): RA-> R. If the optimization problem 

is to minimize a function f, this is equivalent to maximizing a function g, where g=-f, i.e. 

min{J(x)}= max{g(x)}= {- J{x}} 

Suppose further that each variable x can take values from a domain 

D; = [a;,bJ c in and f(x) ~ 0 for all X;. We wish to optimize the function f with some 

required precision; suppose sex decimal places for the variables values are desirable. 

It is clear that to achieve such precision each domain D; , should be cut into 

( b, - a; )* 106 equal size ranges. Let us denote by mi the smallest integer such us 

( b, - a; )* 106 ~ Zm, -1. Then a representation having each variable X; coded as a binary 

string of length m, clearly satisfies the precision requirement. Additionally, the following 

formula interprets each such string: X; =a;+ decimal(lOOl/ 0012) .Where decimal 

( string2 )represents the decimal value of that binary string. Now, each chromosome (as a 
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Initialization 

Evaluation 

R.A.S Stop 

Selection 

Cross over 

Mutation 

STRUCTURE OF SIMPLE GENETIC ALGORITHM 
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k 
potential solution) is represented by a binary string of length m = L m; , the first ml bits 

i=l 

map into a value from the range [a1, b11 the next group of m2 bits map into a value from 

the range [a3,b3land so on, the last group of mk bits map into a value from the range 

[ak,bk].To initialize a population, we can simply set some Ps number of chromosomes 

randomly in a bit wise fashion. However, if we have some knowledge about the 

distribution of potential optima, we may use such information in arranging the set of initial 

(potential) solutions. The rest of the algorithm is straightforward, in each generation we 

evaluate each chromosome (using the function f on the decoded sequences of variables), 
select new population with respect to the probability distribution based on fitness values, 

and recombine the chromosomes in the new population by mutation and crossover 

operators. After some number of generations, when no further improvement is observed, 

the best chromosome represents an (possibly the global) optimal solution. Often we stop 

the algorithm after a fixed number of iterations depending on speed and resource criteria. 

For the selection process (selection of a new population with respect to the probability 

distribution based on fitness values), we must implement the following actions at first, 

Calculate the fitness value eval(v;}for each chromosome vJi = 1, .... ,pJ. 

• Find the total fitness of the population 

P, 

F = L eval(v;) 
i=l 

• Calculate the probability of a selection p; for each chromosome v;(i = l, .... ,pJ: 

i eval(v;)/ 
Pn = /F 

• Calculate a cumulative probability p~ for each chromosome v;(i = 1, .... ,ps): 
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i 

i - " j Pcum - LJPn 
j=l 

The selection process is implemented p s times; each time we select a single 

chromosome for a new population in the following way: 

• Generate a random (float) number r from the range [0,1], 

• If r < p~,m then select the first chromosome ( v, ); otherwise select the I - t 1 chromosome 

v;(2 ~ i ~ pJ such that 

PH <r=r; cum cum 

Obviously, some chromosomes would be selected more than once; the best 

chromosomes get more copies; the average stay even, and the worst die off. Now we are 

ready to apply the first recombination operator, crossover, to the individuals in the new 

population. One of the parameters of a genetic system is probability of crossover pc . This 

probability gives us the expected number pc p s of chromosomes which undergo the 

crossover operation. We proceed in the following way: 

For each chromosome in the (new) population: 

• Generate a random (float) number r from the range [0,1]; 

• If r < pc , select given chromosome for crossover; 

Now we mate selected chromosomes randomly: for each pair of coupled 

chromosomes we generate random integer number pos from the range [l.m-l] (m is the 

total length-number of bits - in a chromosome} The number pos indicate the position of 

the crossing point. Two chromosomes 
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(cl Cz · · .C pose pos+l ··.Cm) 

are replaced by a pair of their offspring: 

(cl Cz · · .C posb pos+l · · .bm) 

The intuition behind the applicability of the crossover operator is information exchange 

between different potential solutions. 

The next recombination operator, mutation, is performed on a bit-by- bit basis. 

Another parameter of the genetic system, probability of mutation Pm, gives us the 

expected number of mutated bits pm · m · p s .Every bit ( in all chromosomes in the whole 

population) has an equal chance to undergo mutation i.e. change from O told of vice versa. 

So we proceed in the following way. 

For each chromosome in the current (i.e., after crossover) population and for each bit 

within the chromosome, 

• Generate a random (float) number r from the range [0,1]; 

• If r < Pm mutate the bit. 

The intuition behind the mutation operator is the introduction of some extra variability into 

the population. 

Following selection, crossover, and mutation, the new population is ready for its 

next evaluation. This evaluation is used to build the probability distribution (for the next 

selection process). The rest of evolution is just cyclic repetition of the above steps. 

10 
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However, as it frequently occurs, in earlier generations the fitness values of some 

chromosomes are better than the value of the best chromosome after a finite number of 

generations. 

It is necessary to note, that classical GA may employ roulette wheel method for 

selection, which is a stochastic version of the survival of the fittest mechanism. In this 

method of selection, candidate strings from the current generation G( t) are selected to 

survive to the next generation G(t=l) by designing a roulette wheel where each string in the 

population is represented on the wheel in proportion to its fitness value. Thus those strings, 

which have a high fitness, are given a large share of the wheel, while those strings with 

low fitness are given a relatively small portion of the roulette wheel. Finally, spinning the 

roulette wheel p s times and accepting as candidates those strings, which are indicated at 

the completion of the spin, make selections, 

Example 1.5: As an example, Suppose P, =5, and consider the following initial 

population of strings; 

G (O)= {(10110),(11000),(11110),(0lOOI),(00110)}, For each string v;, in the 

population, the fitness may be evaluated: eval(v;). The appropriate share of the roulette 
wheel to allot the i-th string is obtained by dividing the fitness of the i-th string by the sum 

of the fatnesses of the entire population: 

eval(v)~, 
/ teval(v;) 

Figure (1.5) shows a listing of the population with associated fitness values and the 

corresponding roulette wheel. 
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To compute the next population of strings, the roulette wheel is spun five times [3], 

The strings chosen by this method of selection, though, are only candidate strings for the 

next population. Before actually being copied into the new population, these strings must 

undergo crossover and mutation. 

String Fitness Relative (A) - 
vi eval(v;) Fitness 

Vi 10110 2.23 0.14 

V2 11000 7.27 0.47 

V3 11110 1.05 0.07 

V4 01001 3,35 0.21 

Vs 00110 1.69 0.11 

(B) 

In figure (A) listing of the five-string population and the associated fitness values, 

(b) Corresponding roulette wheel for string selection. 

The integers shown on the roulette wheel correspond to string labels, 

100100 

110100 110101 

100101 

12 
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(a) (b) (c) 

An example (figure) of a crossover for two 6-bit strings, 

(a) Two strings are selected for crossover. 

(b) A crossover site is selected at random. In this case, k =4, 

( c) Now swap the two strings after the k-th bit. 

Pairs of the Ps (assume Ps even) candidate strings, which have survived selection, 

are next chosen for crossover, which is a recombination mechanism. The probability that 

the crossover operator is applied will be denoted by pc . Pairs of string are selected 

randomly from G (t), without replacement, for crossover. A random integer k, called the 

crossing site, is chosen from { 1,2, ... m-1}, and then the tits from the two chosen strings 

are swapped after the k-th bit with a probability Pc. This process is repeated until G (t) is 

empty. For example. Figure 11.3. Illustrates a crossover for two 6-bit strings. In this case, 

the crossing site k is 4, so the bits from the two strings are swapped after the fourth bit. 

Finally, after crossover, mutation is applied to the candidate strings. The mutation 

operator is a stochastic bit-wise complementation applied with uniform probability Pm. 

That is, for each single bit in the population, the value of the bit is nipped from O to 1 or 

from 1 to O with probability Pm. As an example, suppose pm=O. 1, and the string v=l 1100 

is to undergo mutation. The easiest way to determine which bits, if any, to flip is to choose 

a uniform random number rE [0,1] for each bit in the string. If r s: Pm, then the bit is 

flipped; otherwise, no action is taken. For the string v above, suppose the random numbers 

(0.91, 0.43, 0.03,0.67,0,29) were generated, and then the resulting mutation is shown 

bellow. In this case, the third bit was flipped. 

Before mutation: 11100 

After mutation: 11000 

13 
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After mutation, the candidate strings are copied into the new population of strings 

G (t+ 1), and the whole process is repeated 141. 

1.6 - Genetic Algorithms based on Optimization 

1.6.1 - Optimization based on Genetic Algorithms 

Genetic algorithms were formally introduced in the United States in the 1970s by 

John Holland at University of Michigan. The continuing price/performance improvements 

of computational systems have made them attractive for some types of optimization. In 

particular, genetic algorithms work very well on mixed ( continuous and discrete), 

combinatorial problems. They are less susceptible to getting 'stuck' at local optima than 

gradient search methods. But they tend to be computationally expensive. 

To use a genetic algorithm, you must represent a solution to your problem as a 

genome ( or chromosome). The genetic algorithm then creates a population of solutions and 

applies genetic operators such as mutation and crossover to evolve the solutions in order to 

find the best one. 

This presentation outlines some of the basics of genetic algorithms. The three most 

important aspects of using genetic algorithms are: 

(1) Definition of the objective function. 

(2) Definition and implementation of the genetic representation. 

(3) Definition and implementation of the genetic operators, Once these three have 

been defined, the generic genetic algorithm should work fairly well. Beyond that you can 

try many different variations to improve performance, find multiple optima (species - if 

they exist), or parallelism the algorithms. 

Genetic algorithm (GA) uses the principles of evolution, natural selection, and 

genetics from natural biological systems in a computer algorithm to simulate evolution. 
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Essentially, the genetic algorithm is an optimization technique that performs a parallel, 

stochastic, but directed search to evolve the most fit population. In this section we will 

introduce the genetic algorithm and explain how it can be used for design of fuzzy 

systems. The genetic algorithm borrows ideas from and attempts to simulate Darwin's 

theory on natural selection and Mendel's work in genetics on inheritance. The genetic 

algorithm is an optimization technique that evaluates more than one area of the search 

space and can discover more than one solution to a problem. In particular, it provides a 

stochastic optimization method where if it "gets stuck" at a local optimum, it tries to 

simultaneously find other parts of the search space and jump out" of the local optimum to a 

global one. 

start 

l r analysis program 

merit functi± evaluation 
[loop} l 

L convergence test__. end 

modificatiof algorithm 

1.6.1 Characteristics common to all optimizers 

1.6.2 - Genetic Algorithm Structural Optimization 

Atomistic models of materials can provide accurate total energies. For problems 

where the structures are not known, however, discovering the lowest energy geometry is 

difficult. This is particularly true for atomic clusters, whose structure may vary 

dramatically with a small change in the number of atoms. For this type of problem, the 

number of possible stable structures increases exponentially fast with the number of atoms. 

Furthermore, there is considerable experimental difficulty in determining the structure of 

an atomic cluster. We have been able to address this problem using a novel approach to 

applying genetic algorithms. The Darwinian evolution process inspires these algorithms. A 
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population of structures is maintained, and "mating" structures and selecting out the lowest 

energy geometries produce new generations, 

The key to a successful genetic algorithm is to design a mating process that allows 

for the good parts of the parent structures to be inherited by the next generation. Such a 

process allows for efficient searching of the possible stable structures. A poor mating 

algorithm is no better than a random search. We have designed a new mating process, 

depicted at left. Two structures are chosen as "parent" structures, Each one is divided into 

two halves by a cleavage plane. A new structure is generated by connecting half of each 

parent into a new cluster, followed by atomic relaxation to a local minimum. We have 

successfully applied our "cut and paste" approach to a number of challenging problems, 

including: (12). 

1.7 - Genetic Algorithm 

1.7.1- Basic Description 

Genetic algorithms are inspired by Darwin's theory about evolution. Solution to a 

problem solved by genetic algorithms is evolved. 

Algorithm is started with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are taken and used to form a new population. 

This is motivated by a hope, that the new population will be better than the old one. 

Solutions which are selected to form new solutions ( offspring) are selected according to 

their fitness ,the more suitable they are the more chances they have to reproduce. 

16 



• 

This is repeated until some condition (for example number of populations or 

improvement of the best solution) is satisfied. 

1. 7.2 - Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 
2. [Fitness] Evaluate the fitness/(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the 

new population is complete 

a. [Selection] Select two parent chromosomes from a population according 

to their fitness (the better fitness, the bigger chance to be selected) 

b. [Crossover] With a crossover probability cross over the parents to form 

a new offspring ( children). If no crossover was performed, offspring is 

an exact copy of parents. 
c. [Mutation] With a mutation probability mutate new offspring at each 

locus (position in chromosome). 

d. [Accepting] Place new offspring in a new population 

4. [Replace] Use new generated population for a further run of algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

Some Comments: 

As you can see, the outline of Basic GA is very general. There are many things that 

can be implemented differently in various problems. 
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First question is how to create chromosomes, what type of encoding choose. With 

this is connected crossover and mutation; the two basic operators of GA Encoding, 

crossover and mutation are introduced in next chapter. 

Next questions are how to select parents for crossover. This can be done in many 

ways, but the main idea is to select the better parents ( in hope that the better parents will 

produce better offspring). Also you may think, that making new population only by new 

offspring can cause lost of the best chromosome from the last population. This is true, so 

so called elitism is often used. This means, that at least one best solution is copied without 

changes to a new population, so the best solution found can survive to end of run. 

Maybe you are wandering, why genetic algorithms do work. It can be partially 

explained by Schema Theorem (Holland), however, this theorem has been criticized in 

recent time. If you want to know more, check other resources. 

1.8 - Operators of GA 

As you can see from the genetic algorithm, the crossover and mutation are the most 

important part of the genetic algorithm. The performance is influenced mainly by these two 

operators. Before we can explain more about crossover and mutation, some information 

about chromosomes will be given. 

1.8.1 - Encoding of a Chromosome 

The chromosome should in some way contain information about solution that it 

represents. The most used way of encoding is a binary string. The chromosome then could 

look like this: 

Chromosome 1 1101100100110110 

Chromosome 2 1101111000011110 
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Each chromosome has one binary string. Each bit in this string can represent some 

characteristic of the solution. Or the whole string can represent a number - this has been 

used in the basic GA 

Of course, there are many other ways of encoding. This depends mainly on the 

solved problem. For example, one can encode directly integer or real numbers, sometimes 

it is useful to encode some permutations and so on. 

1.8.2 - Crossover 

After we have decided what encoding we will use, we can make a step to crossover. 

Crossover selects genes from parent chromosomes and creates a new offspring. The 

simplest way how to do this is to choose randomly some crossover point and everything 
' before this point copy from a first parent and then everything after a crossover point copy 

from the second parent. 

Crossover can then look like this ( I is the crossover point): 

Chromosome 1 11011 I 00100110110 

Chromosome 2 11011 I 11000011110 

Offspring 1 11011 I 11000011110 

Offspring 2 11011 I 00100110110 

There are other ways to make crossover, for example we can choose more 

crossover points. Crossover can be rather complicated and very depends on encoding of the 

encoding of chromosome. Specific crossover made for a specific problem can improve 

performance of the genetic algorithm. 
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1.8.3 - Mutation 

After a crossover is performed, mutation takes place. This is to prevent falling all 

solutions in population into a local optimum of solved problem. Mutation changes 

randomly the new offspring. For binary encoding we can switch a few randomly chosen 

bits from 1 to O or from O to 1. Mutation can then be following: 

Original offspring 1 1101111000011110 

Original offspring 2 1101100100110110 

Mutated offspring 1 1100111000011110 

Mutated offspring 2 1101101100110110 

The mutation depends on the encoding as well as the crossover. For example when 

we are encoding permutations, mutation could be exchanging two genes. 

1.9 - Parameters of Genetic Algorithms 

1.9.1 - Crossover and Mutation Probability 

There are two basic parameters of GA - crossover probability and mutation probability. 

Crossover probability says how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made from 

parts of parents' chromosome. If crossover probability is 100%, then all offspring is made 

by crossover. If it is 0%, whole new generation is made from exact copies of chromosomes 

from old population (but this does not mean that the new generation is the 

same!).Crossover is made in hope that new chromosomes will have good parts of old 

chromosomes and maybe the new chromosomes will be better. However it is good to leave 

some part of population survive to next generation. 

Mutation probability says how often will be parts of chromosome mutated. If there 

is no mutation, offspring is taken after crossover ( or copy) without any change. If mutation 

is performed, part of chromosome is changed. If mutation probability is 100%, whole 

20 



• 

chromosome is changed, if it is 0%, nothing is changed. 

Mutation is made to prevent falling GA into local extreme, but it should not occur very 

often, because then GA will in fact change to random search. 

1.9.2 - Other Parameters 

There are also some other parameters of GA One also important parameter is population 

size. 

Population size says how many chromosomes are in population (in one generation). 

If there are too few chromosomes, GA have a few possibilities to perform crossover and 

only a small part of search space is explored. On the other hand, if there are too many 

chromosomes, GA slows down. Research shows that after some limit ( which depends 

mainly on encoding and the problem) it is not useful to increase population size, because it 

does not make solving the problem faster. 

1.10 - Selection 

As you already know from the Genetic algorithm outline, chromosomes are 

selected from the population to be parents to crossover. The problem is how to select these 

chromosomes. According to Darwin's evolution theory the best ones should survive and 

create new offspring. There are many methods how to select the best chromosomes, for 

example roulette wheel selection, Boltzman selection, tournament selection, rank selection, 

steady state selection and some others. 

1.10.1 - Roulette Wheel Selection 

Parents are selected according to their fitness. The better the chromosomes are, the 

more chances to be selected they have. Imagine a roulette wheel where are placed all 

chromosomes in the population, every has its place big accordingly to its fitness function, 

like on the following picture. 
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1111 Chromosome 1 

• Chromosome 2 

1§1 Chromosome 3 

l1ill Chromosome 4 

Then a marble is thrown there and selects the chromosome. Chromosome with biggest 

fitness will be selected more times. 

Following algorithm can simulate this. 

)i'- [Sum] Calculate sum of all chromosome fitness's in population - sum S. 

)i'- [Select] Generate random number from interval (O,S) - r. 

)i'- [Loop] Go through the population and sum fitness's from O - sums. When the 

sums is greater then r, stop and return the chromosome where you are. 

Of course, step 1 is performed only once for each population. 

1.10.2 - Rank Selection 

The previous selection will have problems when the fitness's differs very much. 

For example, if the best chromosome fitness is 90% of the entire roulette wheel then the 

other chromosomes will have very few chances to be selected. 

Rank selection first ranks the population and then every chromosome receives 

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the best 

will have fitness N (number of chromosomes in population). 

You can see in following picture, how the situation changes after changing fitness 
p· -: __ -·., ·.=: .. -- .. ...,.___ 

to order number. /. J t:-f';,;, ;,· '~ 

.:::,~ .\.. .6-~ ;.... n: trr 
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Cl Chromosome 1 

• Chromosome 2 

mil Chromosome 3 

11!1 Chromosome 4 

Situation before ranking (graph of fitness's) 

Ill Chromosome 1 

• Chromosome 2 
IE Chromosome 3 

rm Chromosome 4 

Situation after ranking (graph of order numbers) 

After this all the chromosomes have a chance to be selected. But this method can 

lead to slower convergence, because the best chromosomes do not differ so much from 

other ones. 

1.10.3 - Steady-State Selection 

This is not particular method of selecting parents. Main idea of this selection is that 

big part of chromosomes should survive to next generation. 

GA then works in a following way. In every generation is selected a few (good - 

with high fitness) chromosomes for creating a new offspring. Then some (bad - with low 
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fitness) chromosomes are removed and the new offspring is placed in their place. The rest 

of population survives to new generation. 

1.10.4 - Elitism 

Idea of elitism has been already introduced. When creating new population by 

crossover and mutation, we have a big chance, that we will loose the best chromosome. 

Elitism is name of method, which first copies the best chromosome ( or a few best 

chromosomes) to new population. The rest is done in classical way. Elitism can very 

rapidly increase performance of GA, because it prevents losing the best found solution. 

1.11 - Encoding 

Encoding of chromosomes is one of the problems, when you are starting to solve 

problem with GA Encoding very depends on the problem. In this section will be 

introduced some encodings, which have been already used with some success. 

1.11.1 - Binary Encoding 

Binary encoding is the most common, mainly because first works about GA used 

this type of encoding. 

In binary encoding every chromosome is a string of bits, 0 or 1. 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 

Example of chromosomes with binary encoding 
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Binary encoding gives many possible chromosomes even with a small number of 

alleles. On the other hand, this encoding is often not natural for many problems and 

sometimes corrections must be made after crossover and/or mutation. 

Example of Problem: Knapsack problem 

The problem: There are things with given value and size. The knapsack has given 

capacity. Select things to maximize the value of things in knapsack, but do not 

extend knapsack capacity. 

Encoding: Each bit says, if the corresponding thing is in knapsack. 

1.11.2 - Permutation Encoding 

Permutation encoding can be used in ordering problems, such as travelling 

salesman problem or task ordering problem. 

In permutation encoding, every chromosome is a string of numbers, which 

represents number in a sequence. 

Chromosome A 1 5 3 2 6 4 7 9 8 

Chromosome B 8 5 6 7 2 3 1 4 9 

Example of chromosomes with permutation encoding 

Permutation encoding is only useful for ordering problems. Even for this problems 

for some types of crossover and mutation corrections must be made to leave the 

chromosome consistent (i.e. have real sequence in it). 

Example of Problem: Travelling salesman problem (TSP) 

The problem: There are cities and given distances between them. Travelling 

salesman has to visit all of them, but he does not to travel very much. Find a 
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sequence of cities to minimize travelled distance. 

Encoding: Chromosome says order of cities, in which salesman will visit them. 

1.11.3 - Value Encoding 

Direct value encoding can be used in problems, where some complicated values, 

such as real numbers, are used. Use of binary encoding for this type of problems would be 

very difficult. 

In value encoding, every chromosome is a string of some values. Values can be 

anything connected to problem, form numbers, real numbers or chars to some complicated 

objects. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

Example of chromosomes with value encoding 

Value encoding is very good for some special problems. On the other hand, for this 

encoding is often necessary to develop some new crossover and mutation specific for the 

problem. 

Example of Problem: Finding weights for neural network 

the problem: There is some neural network with given architecture. Find weights for inputs 

of neurons to train the network for wanted output. 

Encoding: Real values in chromoso:rp_es represent corresponding weights for inputs. 

1.11.4 - Tree Encoding 

Tree encoding is used mainly for evolving programs or expressions, for genetic 

programmmg. 
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In tree encoding every chromosome is a tree of some objects, such as functions or 

commands in programming language. 

Chromosome A Chromosome B 

('~) 
[ do until l \---~~ \ 

I \ 
,,--,·- .. / }- ..••.. 

( X) ( I \ I \ 
\ 

', ! ' ) rsteP) r wall} ....._ __ ,, •. ,,<" /·.._~·""· 

I \ I .. 
/---<, )-- ... '-~.~ .. ·· 
( 5 ) ' y \ 
\ ,I t. I 
'-~-- ··--. .•. ~_.,.,.,r' 

(+x(/5y)) ( do until step wall ) 

Example of chromosomes with tree encoding. 

Tree encoding is good for evolving programs. Programing language LISP is often 

used to this, because programs in it are represented in this form and can be easily parsed as 

a tree, so the crossover and mutation can be done relatively easily. 

Example of Problem: Finding a function from given values 

the problem: Some input and output values are given. Task is to find a function, which will 

give the best ( closest to wanted) output to all inputs. 

Encoding: Chromosome is a function represented in a tree. 

1.12 - Crossover and Mutation 

Crossover and mutation are two basic operators of GA Performance of GA very 

depends on them. Type and implementation of operators depends on encoding and also on 

a problem. There are many ways how to do crossover and mutation. There are only some 

examples and suggestions how to do it for several encoding. 
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1.12.1 - Binary Encoding 

1.12.1.1 - Crossover 

Single point crossover - one crossover point is selected, binary string from 

beginning of chromosome to the crossover point is copied from one parent, the rest 

is copied from the second parent . 

Parent A Parent B 
~·fi&'""'•'--·. + ~•arn•t· = 

Offspring 

11001011+11011111 = 11001111 

Two point crossover - two crossover point are selected, binary string from 

beginning of chromosome to the first crossover point is copied from one parent, the 

part from the first to the second crossover point is copied from the second parent 

and the rest is copied from the first parent 

Parent A Parent B Offspring 

+ - - 
11001011 + 11011111 = 11011111 

Uniform crossover - bits are randomly copied from the first or from the second 

parent 

Parent A Parent B Offspring 

+ - - 
11001011 + 11011101 = 11011111 
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Arithmetic crossover - some arithmetic operation is performed to make a new 

offspring 

Parent A Parent B Offspring 

+ - - 
11001011 + 11011111 = 11001001 (AND) 

1.12.1.2 - Mutation 

Bit inversion - selected bits are inverted 

After crossover After mutation 

=> 

11001001 => 10001001 

1.12.2 - Permutation Encoding 

1.12.2.1 - Crossover 

Single point crossover - one crossover point is selected, till this point the 

permutation is copied from the first parent, then the second parent is 

scanned and if the number is not yet in the offspring it is added 

Note: there are more ways how to produce the rest after crossover point 

(1 2 3 4 5 6 7 8 9) + ( 4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7) 

1.12.2.2 - Mutation 

Order changing - two numbers are selected and exchanged 
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( 1 2 3 4 5 6 8 9 7) => ( 1 8 3 4 5 6 2 9 7) 

1.12.3 - Value Encoding 

1.12.3.1 - Crossover 

All crossovers from binary encoding can be used 

1.12.3 .2 - Mutation 

Adding a small number (for real value encoding) - to selected values is 

added ( or subtracted) a small number 

(1.29 5.68 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55) 

1.12.4 - Tree Encoding 

1. 12 .4. 1 - Crossover 

Tree crossover - in both parent one crossover point is selected, parents are divided 

in that point and exchange part below crossover point to produce new offspring 

Parent A Parent B Offspring 

+ - - 
3 

1.12.4.2 - Mutation 

Changing operator, number - selected nodes are changed 

30 



• 

1.13 - Traveling Salesman Problem 

1.13.1 - About the Problem 

Travelling salesman problem (TSP) has been already mentioned in one of the 

previous chapters. To repeat it, there are cities and given distances between 

them. Travelling salesman has to visit all of them, but he does not to travel very much. Task 

is to find a sequence of cities to minimize travelled distance. In other words, find a 

minimal Hamiltonian tour in a complete graph of N nodes. 

1.13.2 - Implementation 

Population of 16 chromosomes is used. For encoding these chromosome 

permutation encoding is used about encoding you can find, how to encode permutation of 

cities for TSP. TSP is solved on complete graph (i.e. each node is connected to each other) 

with euclidian distances. Note that after adding and deleting city it is necessary to create 

new chromosomes and restart whole genetic algorithm. 

You can select crossover and mutation type. I will describe what they mean. 

1.13.3 - Crossover 

• One point - part of the first parent is copied and the rest is taken in the 

same order as in the second parent 

• Two point - two parts of the first parent are copied and the rest between 

is taken in the same order as in the second parent 

• None - no crossover, offspring is exact copy of parents 

1.13.4 - Mutation 

• Normal random - a few cities are chosen and exchanged 

• Random, only improving - a few cities are randomly chosen and 

exchanged only if they improve solution (increase fitness) 
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• Systematic, only improving - cities are systematically chosen and 

exchanged only if they improve solution (increase fitness) 

• Random improving - the same as "random, only improving", but before 

this is "normal random" mutation performed 

• Systematic improving - the same as "systematic, only improving", but 

before this is "normal random" mutation performed 

• None - no mutation 

1.13.5 - Encoding 

Chromosomes are functions represented in a tree. 

1.14 - Recommendations 

1.14.1 - Parameters of GA 

This chapter should give you some basic recommendations if you have decided to 

implement your genetic algorithm. These recommendations are very general. Probably you 

will want to experiment with your own GA for specific problem, because today there is no 

general theory which would describe parameters of GA for any problem. 

Recommendations are often results of some empiric studies of GAs, which were often 

performed only on binary encoding . 

./ Cross-over-rate 

Crossover rate generally should be high, about 80%-95%. (However some 

results show that for some problems crossover rate about 60% is the best.) 

./ Mutation-rate 

On the other side, mutation rate should be very low. Best rates reported are 

about 0.5%-1% . 

./ Population-size 

It may be surprising, that very big population size usually does not improve 
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performance of GA (in meaning of speed of finding solution). Good population 

size is about 20-30, however sometimes sizes 50-100 are reported as best. Some 

research also shows, that best population size depends on encoding, on size of 

encoded string. It means, if you have chromosome with 32 bits, the population 

should be say 32, but surely two times more than the best population size for 

chromosome with 16 bits . 

./ Selection 

Basic roulette wheel selection can be used, but sometimes rank selection can be 

better. There are also some more sophisticated method, which changes 

parameters of selection during run of GA Basically they behaves like simulated 

annealing. But surely elitism should be used (if you do not use other method for 

saving the best found solution). You can also try steady state selection . 

./ Encoding 

Encoding depends on the problem and also on the size of instance of the 

problem. Operators depend on encoding and on the problem. 

1.14.2 - Applications of GA 

Genetic algorithms have been used for difficult problems (such as NP-hard 

problems), for machine learning and also for evolving simple programs. They have been 

also used for some art, for evolving pictures and music. 

Advantage of GAs is in their parallelism. GA is travelling in a search space with 

more individuals ( and with genotype rather than phenotype) so they are less likely to get 

stuck in a local extreme like some other methods. 

They are also easy to implement. Once you have some GA, you just have to write 

new chromosome (just one object) to solve another problem. With the same encoding you 

just change the fitness function and it is all. On the other hand, choosing encoding and 

fitness function can be difficult. 

33 



• 

Disadvantage of GAs is in their computational time. They can be slower than some 

other methods. But with todays computers it is not so big problem. 

To get an idea about problems solved by GA, here is a short list of some applications: 

o Nonlinear dynamical systems - predicting, data analysis 

o Designing neural networks, both architecture and weights 

o Robot trajectory 

o Evolving LISP programs (genetic programming) 

o Strategy planning 

o Finding shape of protein molecules 

o TSP and sequence scheduling 

o Functions for creating images 
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CHAPTER TWO 

GENETIC ALGORITHMS FROM MODELS 

2.1 - Introduction 

Trading models are algorithms proposing trading recommendations for financial 

assets. In our approach we limit this definition to a set of rules based on past financial data. 

The financial data, which are typically series of prices, enter the trading model in the form 

of indicators corresponding to various kinds of averages. Although progress has been made 

in understanding financial markets, there is no definitive prescription on how to build a 

successful trading model and how to define the indicators. Automatic search and 

optimization techniques can be considered when addressing this problem. 

However, optimizing trading models for financial assets without overfitting is a 

very difficult task because the scientific understanding of financial markets is still very 

limited. Overfitting means building the indicators to fit a set of past data so well that they 

are no longer of general value: instead. of modeling the principles underlying the price 

movements, they model the specific movements observed during a particular time period. 

Such a model usually exhibits a different behavior ( or may fail to trade successfully at all) 

when tested out-of-sample. This difficulty is related to the fact that many financial time 

series do not show stability of their statistical behavior over time especially when they are 

analyzed intra-daily. 

To minimize over fitting during optimization, the optimization process must include 

the following important ingredients: 

o a good measure of the trading model performance, 

o indicator evaluation for different time series, 

o large data samples, 

o a robust optimization technique, 
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o last but not least strict testing procedures. 

The new element we want to present in this paper is a way to automize the search 

for improved trading models. Genetic algorithms offer a promising approach for 

addressing such problems. Genetic algorithms consider a population of possible solutions 

to a given problem and evolve it according to mechanisms borrowed from natural genetic 

evolution: reproduction and selection. The criterion for selecting an individual is based on 

its fitness to the environment, or more precisely, to the quality of the solution it bears. A 

possible solution is coded as a gene, which is formally the data structure containing the 

values of the quantities characterizing the solutions. 

In the framework of the present application, a gene will contain the indicator 

parameters, for example time horizons and a weighting function for the past, and also the 

type of operations used to combine them. The fitness function will be based on the return 

obtained when following the recommendations of a given trading model. 

2.2 - The main ingredients of simple trading models 

In this section, we review the different ingredients that constitute the basis of a 

trading model and reformulate them in terms of simple quantities that can be used in 

conjunction with a genetic algorithm. Real trading models can be quite complicated and 

may require many different rules that also depend on the models own trading history. Here 

we limit ourselves to simple models that depend essentially on a set of indicators that are 

pure functions of the price history or of the current return. The purpose of this 

simplification is to make model coding and representation issues easier so we can study 

indicator behavior. 

The basic rule of a simple trend-following trading model is 
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IF III > K THEN G: = sign (I) ELSE G: = 0 

Where I is an indicator whose sign and value give the direction and strength of the current 

trend. The constant K is a break level and G, called the gearing, is the recommended 

position of the model such that, long = + 1, short = -1 and neutral = 0 . D 
In this study we investigate how to construct and select good indicators or 

combinations of indicators in order to make such simple trading models robust (i.e. so that 

they perform well out-of-sample). 

More complex models can be developed afterwards combining such simple trading 

models or using more complex rules. For instance to introduce a simple contrarian strategy 

the previous rule can be modified as 

IF III> K THEN G: = sign (I)* sign (L - S) ELSE G: = O 

Where S is an indicator that gives the strategy (trend following if S < L or contrarian if 

(S > L), and the constant Lis the overbought/oversold break level. 

2.3 - Trading model indicators 

Indicators are variables of the trading system algorithm whose values, together with 

the system rules, determine the trading decision process. In various papers we gave 

different descriptions of indicators that have been used in conjunction with trading models. 

Here, we focus on some abstract classification of these indicators in order to combine them 

sensibly with the genetic algorithm. For the time being, the indicators we use are function 

of the time series itself. In a later stage, we can envisage using as indicators for a particular 

time series a function of other time series, like, for instance, interest rate functions for 

studying FX-rates. 

First, we define two general classes of indicators. The symmetric Is and the antisymmetric 

I a indicators: 
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Where X is the basic variable used to define the indicator. This variable is 

generally a function the logarithm of price X but can be also a function the current return 

of the model Tc . A typical antisymmetric indicator is a momentum of the logarithm of 

price itself (I a (X) = XwhereX = x). A typical symmetric indicator would be a measure of 

the volatility. The simplest one is the absolute price change 

(Is (X) = [XJwhereX = x(t;)- x(t; - M)) . The two classes will be used differently in the 

trading model. The antisymmetric indicators are the ones that provide the dealing signal 

while the symmetric indicators modulate it. For instance, they may forbid the model to 

trade or may modulate the threshold values. An indicator using the current return can be 

used for programming stop losses or stop profit, or to compute the risk of an open position. 

Indicators are characterized by several parameters. We first describe the parameters 

that are common to both classes of indicators. Any indicator of the sort described here is 

composed of moving averages (MA). of different types so the first parameter is the range 

!it r of the moving average. The second is the weighting function of the past. As linear 

combinations of repeated applications of EMAs have much useful propertieswe use here a 

weighting function with two parameters defined as 

Where we have two additional parameters: j and n, withl(j(n 

The quantity EMA~)isthe ith application of the EMA operator, i.e. 

Where EMA~ is computed with the formula 
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And EMA~)= X. With this definition, MAx,;,ncan model a wide variety of moving 

averages of the series X(t). 

In addition to a moving average, an indicator may be a momentum of various 
orders. The simple momentum (of orderO) is defined as: 

mx,;,n(t)= X(t)-MA X,J,n(t), (2.5) 

The concept of momentum can be extended to the first momentum which is a 

difference of two moving averages with different ranges, and the second momentum which 

is a linear combination of three moving averages with different ranges with the property 

that this combination is equal to zero for a straight line; it indicates the overall curvature of 

the series for a certain depth in the past. To avoid the introduction of too many additional 

parameters in the indicators, we restrict the possible variation of the order of the 
momentum parameter to only three possible values 0, 1 and 2. 

Because of the construction of some input variable X, mainly used in the 

computation of symmetric indicators, the number of parameters in the problem may be 

extended. For instance, the volatility has two parameters, the price change time interval 
and the sample period on which the volatility is computed. 

In order to be able to combine different indicators and obtain similar results for 

different FX rate time series we need to normalize each indicator. To obtain this 

normalization we divide the value of the indicator by the square root of a long term 

moving average of the squared values of the indicator. Such normalization is also very 
useful in order to make the indicators more adaptive to the market changes. 
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2.4 - Operations on indicators 

The operations on the indicators are essentially the four mathematical operations: 

+, -, *, /. In order to generate sensible trading models these operations must be performed 

following a set of rules: 

o In section 2, we saw that the trading model takes a position according to an 

antisymmetric indicator I and a symmetric or antisymmetric strategy indicator S . 

To limit the size of the function space and prevent the generation of very complex 

functions, the operations * and I are restricted to operate between a symmetric and 

an antisymmetric indicator and the operations + and - are restricted to operate 

between indicators of the same type. 

o For all the operations the problem of normalization is present. In the case of 

multiplications or divisions scaling is not necessary because we have already 

constructed the indicators so that they are of order one. In the case of additions and 

subtractions the resulting indicator need to be renormalized. 

o Division should only be used with a modified value of the indicator in order to 

avoid division by zero. One would never divide by I but by I+ sign(I)* e 

where e is a small positive constant. This constant can be chosen to be always the 

same if the indicators are well normalized, for instance 0.0001. 

o We shall assume that the number of operations allowed is limited. We limit this 

number to three at first. 

We have deliberately left out a large number of possible operations; square roots, 

power functions or any log or exp functions. This is for the sake of simplicity and also 

because we think that the present set is already wide enough to produce interesting results. 

These additional operations can be included at a later stage. 
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2.5 - Risk-sensitive performance measure 

We wrote in the introduction that optimizing trading models is difficult because of 

the noise present in the data and the risk of overfitting. The challenge is to find indicators 

that are robust in the sense of being smooth and giving consistent results out-of-sample. 

The first step is to define a value describing trading model performance in order to 

minimize the overfitting in the in-sample period and allowing us to compare different 

trading models against each other. The profit made by the model could be this fitness 

function but such a measure does not take into account the risk assumed by the model. As 

risk is a major concern of investors it is necessary to add a risk component to the fitness 

function. We use a risk-sensitive performance measure of the trading model that was 

developed for the optimization ofFX real-time trading models. This performance measure, 

called xeff' is defined as: 

- C 2 
Xeff = R --CF (2.6) 

2 

Where R is the annualized average total return, C( C)O) is a risk aversion constant 

and CF2 is the variance of the the total return curve against time, where a steady linear 

growth of the total return represents the zero variance case. Because the variance CF2 2 0, 

we have Xeff :::; R. While the total return may mask considerable risk introduced by a high 

return volatility, the effective return is risk-sensitive: the higher the volatility of return the 

lower the effective return. In other words, high effective returns indicate highly stable 

returns. 

A good approach to obtain more robust indicators is to test each new indicator 

simultaneously on different exchange rate time series (since our experience has shown that 

trading models are robust if they work simultaneously on different rates without changing 

parameters). This increases the number of possible situations tested by the model in 

sample. The performance measure of the model is then given by the average of the 
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X eff performance measure obtained for each time series corrected by the variance of the 

different xeff values. 

- o-X ff 
x;ff = xeff -T c2.1) 

This correction decreases the probability of obtaining indicators that have a good 

average overall but which vary strongly from one time series to another. 

2.6 -Trading model optimization 

To optimize and test our trading models we split the available historical data into 

three different periods. The first period is used to build-up the indicators, the second one is 

for the optimization of the trading model parameters and the third is for selecting the best 

trading models. The build-up period generally contains more than ten years of daily data, 

which is used to update long-term indicators. The end of this period is 12 December 1986 

for all the exchange rates. As many exchange rate time series do not show stability of their 

statistical behavior over time, the rest of the historical data, from 1 January 1987 to 30 

June 1994, is divided into different alternating periods of in-sample and out-of-sample 

data. By this subdivision of the in-sample period we may test a larger variety of statistical 

behaviors and we increase the probability of getting more robust and up-to-date 

parameters. The size of each in-sample period must be large enough to obtain statistically 

valid performance measures. Here we use in-sample periods with a size of one and a half 

years. The performance measure of the model is then given by the Xeff performance 

measure obtained from all in-sample periods. 

The optimization process involves thousands of simulation runs through the in­ 

sample data. To obtain results in a reasonable amount of time we extract and use only 

hourly data ( equally spaced in the business time scale). This choice of data sampling 

produces trading models with results, which are very similar to the ones obtained with the 

full high frequency time series. To select the best parameter set we need an algorithm 
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which explores the parameter space in an efficient way and chooses solutions that 

correspond not only to the largest average effective return but also lie on broad peaks or 

high flat regions of the effective return function. Such a requirement will ensure that small 

variations in the model parameters keep the system in the high performance region in terms 

of xeff. 

Genetic algorithms (GA) have been shown to be useful in the optimization -of 

multimodel functions in highly complex landscapes, especially when the function does not 

have an analytic description and is noisy or discontinuous. The usefulness of genetic 

algorithms for such problems comes from their evolutionary, adaptive capabilities. When 

given a measure of the fitness (performance) of a particular solution and a population of 

adequately coded feasible solutions, the GA is able to search many regions of the 

parameter space simultaneously. In the GA, better than average solutions are sampled more 

frequently and thus, through the genetic operations of crossover and mutation, new 

prorrusmg solutions are generated and the average fitness of the whole population 

improves over time. Although GAs is not guaranteed to find the global optimum, thev tend 

to converge towards good regions of high fitness. This is all we need, since global optima 

may be of little use in our application. In the next section we will first describe a '' naive 

genetic algorithm approach to our problem, pointing out its drawbacks and how they can 

be circumvented. 

2. 7 - The genetic algorithm to find and optimize simple trading models 

For our first attempt, we used a classical genetic algorithm with the following features· 

• Each gene is represented as an array of real numbers. In such a representation, 

element of the array can be used to store parameters of different types (Boo 

integer and real values). Except the Boolean types that can take only the values 

1, all the other parameters can be selected from a given list of possible 

varied in a given range. 
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• The population of a few tens of individuals is initialized at random, although 

seeding the initial population with reselected individuals is also possible. The 

selection of individuals for reproduction is fitness-proportionate, sometimes called 

roulette wheel selection. We use here a two-point crossover and mutation. For the 

mutation, we pick randomly a value inside the allowed range (list). In the 

crossover, the corresponding elements of the two genes to be modified are either 

simply exchanged or computed by linear interpolation. The probabilities of 

crossover and mutation are respectively 0.9 and 0.08. 

• We use generational replacement with elitism and no duplicates. At each new 

generation the major part of the population of parents is replaced by their 

offspring's. Only a limited number of the best individuals (the elite) are kept 

unchanged. The elite rate is generally of the order of 5% of the population size. We 

also eliminate all duplicate individuals to maintain population diversity and to 

avoid useless and time-consuming fitness evaluations. 

The trading model evaluation program does the fitness evaluation. This is a lengthy 

process since each gene (trading model) runs through a long time series of prices. In fact, 

this phase accounts for most of the total computing time. Because the different parameters 

are directly stored in the gene, the evaluation program is able to translate straightforwardly 

the content of the gene into the trading model to test. If a given gene corresponds to an 

invalid trading model the evaluation program returns the minimum possible fitness. Such a 

gene is eliminated in the construction of the next generation. The number of invalid 

individuals is usually very small. 

To speed up this process, all genes of a given generation are evaluated in parallel 

over several machines of a workstation network. This has been done so far with a special­ 

purpose network job queuing system. In future versions, we plan to use the more portable 

PVM (Parallel Virtual Machine) system, which will allow us to take advantage of several 

different platforms in a transparent way. In this distributed computing approach special 

attention must be paid to fault-recovery and check pointing issues. 
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When running the above genetic algorithm, the performance of the selected moc 

on the data set used in the learning process (in-sample) was excellent. The behavior 

these models on the test data set (out-of-sample) was, however, not satisfactory. This · 

very common phenomenon known as overfitting that plagues most real-world data-dri: 

processes. As explained in the introduction, there are many techniques to try to av 

overfitting. In this case, it seems that the GA described above is itself partly responsible 

the poor generalization capabilities. In fact, the population invariably converges afte 

while on one high-fitness, but often unstable, peak. In the next section we pres 

modifications to the standard genetic algorithms that allow simultaneous searching 

different high-fitness solutions. It will show that a judicious selection among the "b 

solutions helps reducing the overfitting problem. 

2.8 - Genetic algorithms with sharing scheme for multi-modal function: 

In the context of genetic algorithms, optimizing multi-modal functions has b 

investigated using methods inspired from the natural notions of niche and species. · 

general goal is to be able to create and maintain several subpopulations, ideally one 

major peak of the fitness function, instead of having the whole population converge to 

global optimum. 

Goldberg and Richardson proposed one of the best methods. The idea is that 

GA perception of the fitness function is changed in such a way that when individuals t 

to concentrate around a high peak, the fitness there is reduced by a factor proportions 

the number of individuals in the region. This has the effect of diminishing 

attractiveness of the peak and allowing parts of the population to concentrate on o 

regions. This effective fitness of an individual i, called the shared fitness SI is given b 
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Where f(i)is the original fitness and m(i)is called the niche count. For an individual i , 

the quantity m(i) is calculated by summing the sharing function values sh contributed by 
' 

all N individuals of the population: 

N 

m(i) = Ish(diJ) (2.9) 
J=I 

Where diJ is the distance between two individuals i and j and 

(2.10) 

The quantities a and as are constants. 

A difficulty of this method is to choose an adequate value of as as this requires 

prior knowledge about the number of peaks in the solution space. In our economic 

applications as well as in many realistic problems, this information is not readily available. 

A new method is proposed in based on a different sharing scheme and using an 

adaptive cluster methodology. The authors show that this method is effective at revealing 

unknown multi-modal function structures and is able to maintain subpopulation diversity. 

This method establishes analogies between clusters and niches in the following way: the 

GA population is divided, by McQueen's adaptive KMEAN clustering algorithm, into K 

clusters of individuals that correspond to K niches. The shared fitness calculation is the 

same as in the classical sharing method, but the niche count m(i) is no longer associated 
with as. In this case the number of individuals in the cluster to which the individual 

i belongs plays a central role in the niche count calculation. As the number of clusters is 

associated with the number of niches (peaks), the individuals are put into a single partition 

of K clusters, where K is not fixed a prior i , but determined by the algorithm itself 
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Therefore no a priori knowledge about the number of peaks of the fitness function is 

required as in the classical sharing method. The niche count m(i)is computed as: 

(2.11) 

Where N c is the number of individuals in the cluster a, c is a constant, d;c is the 

distance between the individual i and the centroid of its niche. The algorithm requires a 

distance metric in order to compute the distance between two clusters and the distance 

between one individual and one cluster. Two clusters are merged if the distance between 

their centroids is smaller than a threshold parameter Dmin. Moreover, when an individual is 

further away than a maximum distance D max from all existing cluster centroids, a new 

cluster is formed with this individual as a member. The efficiency of the algorithm is 

improved by sorting the population in descending order according to the individual's 

fitness before the application of the clustering. 

Such a standard genetic algorithm with sharing and clustering has been applied to 

standard multi-modal and continuous fitness functions with good results. One example of a 

more complex application is the determination of the optimum parameters of the business 

time scale that is used for analyzing price history and computing indicators. In this 

example, the optimization is quite difficult because we have to optimize simultaneously 17 

parameters and the function to optimize is non-linear in some of the parameters. To solve 

this problem it was necessary to normalize the parameter space for the genetic algorithm, 

i.e. each parameter is only allowed to vary in the range [0,1]. In simple problems the two 

clustering parameters are generally set to Dmax = 0.15and Dmax = 0.15. But here, because 

of the high dimensionality of the parameter space, the values of the clustering parameters 

D min and D max must be much larger. In this case, the two parameters are multiplied b 

J;,, where n in the number of parameters to be optimized. The results obtained with this 

genetic algorithm are very good and the sharing and clustering methods clearly increased 
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the speed of convergence compared to the simple genetic algorithm described in the 
previous section. 

When applied to the indicator optimization problem the genetic algorithm with 

sharing and clustering runs into difficulties. If the fitness landscape contains too many 

sharp peaks of high fitness all the selected clusters concentrate around these peaks and the 

genetic algorithm is unable to find robust solutions. In the next section, we propose some 

modifications to the genetic algorithm to detect clusters in the parameter space that 
I 

correspond to more general and robust solutions. 

2.9 - Modified sharing function for robust optimizations 

We need to find a new genetic algorithm that avoids the concentration of many 

individuals around sharp peaks of high fitness but detects broad regions of the parameter 

space that contain a group of individuals with a high average fitness level and a small 

variance of the individual fitness values. 

To solve this problem we propose a new sharing function that penalizes clusters 

with a large variance of the individual fitness values and also penalizes clusters with too 

many solutions concentrated inside too small a region. The distance metric considered here 

is the Euclidean distance computed in the real parameter space (phenotypic sharing). In the 

proposed sharing scheme all the individuals that belong to a given cluster c will share the 
same fitness value, i.e. 

(2.12) 

Where Ne is the number of genes in the cluster c and where the average fitness value 

le And standard deviation of the individual fitness values a(fc ) as defined as usual by 

48 



• 

- 1 N, 

t; = Ne frf(i) (2.13) 

As the method is based on the distribution of gene fitness inside each cluster, we 

keep only the clusters that contain at least a minimum number of members. We use here a 

minimum cluster size of two individuals. As we also need to keep enough clusters of 

reasonable size, we have to limit the size of the largest clusters. The term N c IN av of the 

equation (2.5) is used to control the number of genes inside each cluster. If Ne is smaller 

than the expected average number of genes inside each cluster N av the correction is 
J 

reduced, otherwise it is increased. In this study the constant N av is chosen as the population 

size divide by the (pre-configured) expected number of clusters to be kept. 

The second term (1- rd)/ rd of equation (2.5) is used to penalize clusters with a 

concentration of genes around their centroid that is too high. The value rdis defined as: 

(2.14) 

Where d.; is the distance of gene i to the centroid of the corresponding cluster c . 

Here the square root is used to avoid too large a correction for an average concentration of 

genes. 

To keep the cluster's space as large as possible, we also have to minimize the 

overlap between different clusters. To reduce this overlap, the clustering parameter 

D min must be quite large and here we use D min = D max. In order to have reasonable 

clustering parameters for a parameter space of high dimensionality, the values of the two 

clustering parameters D mm and D max are multiplied by /;z where n is the number of 

parameters to be optimized. 
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With this new sharing scheme, the selection pressure is no longer specific to each 

individual, as in a standard GA, but is the same for all genes present in a given cluster. 

This gives us a selection mechanism, which tries to find subpopulations of solutions with 

an average high quality instead of the best individual solution. Of course, the overall 

convergence speed is a little reduced. 

The selection pressure towards good solutions is still present through the adaptive 

cluster methodology, which tends to create clusters around a group of good individuals and 

through the reproduction technique that uses elitism and mating restriction inside each 

cluster. Moreover, to keep variety in the population, all the individuals who do not really 

belong to any clusters (i.e. which are further away than the maximum distance DmaJrom 

all existing cluster centroids) will have an unmodified fitness value. During the 

reproduction phase these individuals will have no mating restriction and generally a 

slightly higher selection probability. 

To speed up the full process, the result of each different gene is stored and not 

recomputed when this gene appears again in future generations. Moreover, the information 

of all the previously computed solutions can be used at the end to assess the reasonableness 

of the optimum solution. 

When finished, the algorithm selects for each cluster the best solution that is not 

further away than D max/ 2 from the cluster centroid. The final solution selected from the 

cluster is the solution that has the greatest average fitness after correcting for variance, i.e. 

the maximum value of fc - CT(fc) . 
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CHAPTER THREE 

NON-LINEAR OPTIMIZATION 

3.1 - Non-linear optimization 

The general constrained optimization problem is to minimize a nonlinear function 

subject to nonlinear constraints. Two equivalent formulations of this problem are useful for 

describing algorithms. They are 

min{f(x): c;(x) s O,i E T,c,(x)= O,i E &} (3.1) 

Where each ci is a mapping from ilr to 91, and T and & are index sets for 

inequality and equality constraints, respectively; and 

min{J(x);c(x)= O,l s x s u} (3.2) 

Where c maps 91n to 91m, and the lower- and upper-bound vectors, 1 and u , may 
\ 

contain some infinite components. 

The main techniques that have been proposed for solving constrained optimization 

problems are reduced-gradient methods, sequential linear and quadratic programming 

methods, and methods based on augmented Lagrangians and exact penalty functions. 

Fundamental to the understanding of these algorithms is the Lagrangian function, which 

for formulation (3 .1) is defined as: 

iETUE 

The Lagrange is used to express first-order and second-order conditions for a local 

minimizer. We simplify matters by stating just first-order necessary and second-order 

sufficiency conditions without trying to make the weakest possible assumptions. 
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The first-order necessary conditions for the existence of a local minimizer x • of the 

constrained optimization problem (3 .1) require the existence of Lagrange multipliers {, 

such that 

V xL(x· .r )= Vf(x* )+ I,{Vc;(x· )= 0 
iEA* 

Is the active set at x , and { ~ 0 if i E A* n I . This result requires a constraint 

qualification to ensure that the geometry of the feasible set is adequately captured by a 

linearization of the constraints about x * . A standard constraint qualification requires the 

constraint normal, V c; (x ·) for i E A*, to be linearly independent. 

The second-order sufficiency condition requires that (x *, ,f) satisfies the first-order 
condition and that the Hessian of the Lagrangian 

v'2xxL(x*,2°)=V2 J(x·)+ I,(V2c;(x*) 
iEA. 

Satisfies the condition 

For all nonzero (J) in the set 

Where 

* J, * •l I, * *} T+ = l! E A r, T : A; )0 f, T0 = l! E A r, T : AI = 0 
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The previous condition guarantees that the optimization problem is well behaved 

near x * ; in particular, if the second-order sufficiency condition holds, then x * is a strict 

local minimizer of the constrained problem. An important ingredient in the convergence 

analysis of a constrained algorithm is its behavior in the vicinity of a point (x *, X) 
that satisfies the second-order sufficiency condition. 

3.1.1- The Sequential Quadratic Programming Algorithm 

It is a generalization of Newton's method for unconstrained optimization in that it 

finds a step away from the current point by minimizing a quadratic model of the problem. 

A number of packages, including NPSOL, NLPQL, OPSYC, OPTIMA, MATLAB, and 

SQP, are founded on this approach. In its purest form, the sequential QP algorithm replaces 

the objective function ""._ith the quadratic approximation 

and replaces the constraint functions by linear approximations. For the formulation (3.1), 

the step d k is calculated by solving the quadratic subprogram 

(3.3) 

The local convergence properties of the sequential QP approach are well 

understood when ( x ·, ,,f) satisfies the second-order sufficiency conditions. If the starting 

point x0 is sufficiently close to x • , and the Lagrange multiplier estimates {2k} remain 

sufficiently close to X, then the sequence generated by setting x k+i = x k + d k converges to 
x • at a second-order rate. These assurances cannot be made in other cases. Indeed, codes 
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based on this approach must modify the sub-problem (3.3) when the quadratic qk is 

unbounded below on the feasible set or when the feasible region is empty. 

The Lagrange multiplier estimates that are needed to set up the second-order term 

m q k can be obtained by solving an auxiliary problem or by simply using the optimal 

multipliers for the quadratic sub-problem at the previous iteration. Although the first 

approach can lead to more accurate estimates, most codes use the second approach. 

The strategy based on (3.3) makes the decision about which of the inequality 

constraints appear to be active at the solution internally during the solution of the quadratic 

program. A somewhat different algorithm is obtained by making this decision prior to 

formulating the quadratic program. This variant explicitly maintains a working set Wk of 

apparently active indices and solves the quadratic programming problem 

To find the step dk. The contents of Wk updated at each iteration by examining the 

Lagrange multipliers for the sub-problem (3.4) and by examining the values of c;(xk + l)at 

the new iterate xk + 1 for i ~Wk. This approach is usually called the EQP (equality-based 

QP) variant of sequential QP, to distinguish it from the IQP (inequality-based QP) variant 

described above. 

The sequential QP approach outlined above requires the computation of 

'v2xxL(xk,Ak ). Most codes replace this matrix with the BFGS approximation Bk, which 

is updated at each iteration. An obvious update strategy ( consistent with the BFGS update 

for unconstrained optimization) would be to define 

and update the matrix Bk by using the BFGS formula 
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However, one of the properties that make Broyden-class methods appealing for 

unconstrained problems-its maintenance of positive definiteness in Bk is no longer assured, 

since V~L(x* ,X)is usually positive definite only in a subspace. This difficulty may be 

overcome by modifying Yk . Whenever Y: 8 k is not sufficiently positive, Yk is reset to 

Where e k E [OJ) is the number closest to I such that Y: 8 k ~ o-8[ Bk 8 k for some 

a E (0,1). The SQP and NLPQL codes use an approach of this type. 

The convergence properties of the basic sequential QP algorithm can be improved 

by using a line search. The choice of distance to move along the direction generated by the 

sub-problem is not as clear as in the unconstrained case, where we simply choose a step 

length that approximately minimizes f along the search direction. For constrained 
problems we would like the next iterate not only to decrease f but also to come closer to 

satisfying the constraints. Often these two aims conflict, so it is necessary to weigh their 

relative importance and define a merit or penalty function, which we can use as a criterion 

for determining whether or not one point is better than another. The /1 merit function 

Pi(x~ v) = f(x) + I>ilc;(x)I + z>; max(c;(x),O), (3.5) 
iE8 iEJ' 

Where v;)Oare penalty parameters, is used in the NLPQL, MATLAB, and SQP 

codes, while the augmented Lagrangian merit function 
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Where 

Is used in the NLPQL, NPSOL, and OPTIMA codes. The OPSYC code for 

equality-constrained problems (for which T = <l>) uses the merit function 

1 

/(x)+ LA;C;(x) +( Iv;c;(x) )z 
iEE iEB 

Which combines features of P., and LA . 

An important property of the /1 merit function is that if (x ·, ,.i*) satisfies the 

second-order sufficiency condition, then x • is a local minimizer of P., , provided the 

penalty parameters are chosen so that vi >IA; I - Although this is an attractive property, the 

use of P., requires care. The main difficulty is that P., is not differentiable at any 

x with c; ( x) = 0 . Another difficulty is that although x • is a local minimizer of P., , it is still 

possible for the function to be unbounded below. Thus, minimizing P., does not always 

lead to a solution of the constrained problem. 

The merit function LA has similar properties. If ( x ·, X) satisfies the second-order 

sufficiency condition and A = ,.i· , then x is a local minimizer of P., , provided the penalty 

parameters v, are sufficiently large. If A -::f. ,.i* , then we can say only that LA has a 

minimizer x(,1,) near x • and that x(A) approaches x * as A converges to ,.i*. Note that in 

contrast to P., , the merit function LA is differentiable. The Hessian matrix of LA is 

discontinuous at any x with A; + v; c; ( x) = 0 for i E T, but, at least in the case T; = <l> , 

these points tend to occur far from the solution. 
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The use of these merit functions by NLPQL is typical of other codes. Given an 

iterate xk and the search direction dk, NLPQL sets xk+l = xk + akdk, where the step length 

a k approximately minimizes ( x k + ad k; v) . If the merit function LA is selected, the step 

length a k is chosen to approximately minimize LA ( x k + ad k > Ak + a( Ak+l - Ak ); v ), where 

dkis a solution of the quadratic programming sub-problem (3.3) and },,_,k+1is the associated 

Lagrange multiplier. 

3.1.2 - Augmented Lagrangian Algorithm 

These are based on successive minimization of the augmented Lagrangian LA with 

respect to x , with updates of A and possibly v occurring between iterations. An 

augmented Lagrangian algorithm for the constrained optimization problem computes 

xk+l as an approximate minimizer of the sub-problem 

Includes only the equality constraints. Updating of the multipliers usually takes the form 

This approach is relatively easy to implement because the main computational 

operation at each iteration is minimization of the smooth function LA with respect to x , 

subject only to bound constraints. A large-scale implementation of the augmented 

Lagrangian approach can be found in the LANCELOT package, which solves the bound­ 

constrained sub-problem by using special data structures to exploit the (group partially 

separable) structure of the underlying problem. The OPTIMA and OPTP ACK libraries 

also contain augmented Lagrangian codes. 
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3.1.3 - Reduced-Gradient Algorithm 

These avoid the use of penalty parameters by searching along curves that stay near 

the feasible set. Essentially, these methods take the formulation (3.2) and use the equality 

constraints to eliminate a subset of the variables, thereby reducing the original problem to a 

bound-constrained problem in the space of the remaining variables. If x B is the vector of 

eliminated or basic variables, and x N is the vector of no basic variables, then 

Where the mapping h is defined implicitly by the equation 

(We have assumed that the components of have been arranged so that the basic variables 

come first.) In practice, x B = h( x N ) 

Can be recalculated using Newton's method whenever xN changes. Each Newton 

iteration has the form 

Where a B c is the Jacobian matrix of c with respect to the basic variables. The original 

constrained problem is now transformed into the bound-constrained problem. 

Algorithms for this reduced sub-problem subdivide the no basic variables into two 

categories. These are the fixed variables x F , which usually include most of the variables 

that are at either their upper or lower bounds and that are to be held constant on the current 

iteration, and the super basic variables x8 , which are free to move on this iteration. The 
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standard reduced-gradient algorithm, implemented in CON OPT, searches along the 

steepest-descent direction in the super basic variables. The generalized reduced-gradient 

codes GRG2 and LSGRG2 use more sophisticated approaches. They either maintain a 

dense BFGS approximation of the Hessian off with respect to x8 or use limited-memory 

conjugate gradient techniques. MINOS also uses a dense approximation to the super basic 

Hessian matrix. The main difference between MINOS and the other three codes is that 

MINOS does not apply the reduced-gradient algorithm directly to problem (3 .1 ), but rather 

uses it to solve a linearly constrained sub-problem to find the next step. The overall 

technique is known as a projected augmented Lagrangian algorithm. 

Operations involving the inverse of oBc(xB,xN) are frequently required in 

reduced-gradient algorithms. These operations are facilitated by an LU factorization of the 

matrix. GRG2 performs a dense factorization, while CONOPT, MINOS, and LSGRG2 use 

sparse factorization techniques, making them more suitable for large-scale problems. 

When some of the components of the constraint functions are linear, most 

algorithms aim to retain feasibility of all iterates with respect to these constraints. The 

optimization problem becomes easier in the sense that there is no curvature term 

corresponding to these constraints that must be accounted for and, because of feasibility; 

these constraints make no contribution to the merit function. Numerous codes, such as 

NPSOL, MINOS and some routines from the NAG (NAG Fortran or NAG C) library, are 

able to take advantage of linearity in the constraint set. Other codes, such as those in the 

IMSL, PORT 3, and PROC NLP libraries, are specifically designed for linearly 

constrained problems. The IMSL codes are based on a sequential quadratic programming 

algorithm that combines features of the EQP and IQP variants. At each iteration, this 

algorithm determines a set N k of near-active indices defined by: 
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Where the tolerances r; tend to decrease on later iterations. The step d K is 

obtained by solving the sub-problem. 

Where 

And Bx is a BFGS approximation to V2 f(xx). This algorithm is designed to avoid 

the short steps that EQP methods sometimes produce, without taking many unnecessary 

constraints into account, as IQP methods do. · 

3.1.4 - Feasible Sequential Quadratic Programming Algorithm 

Finally, we mention feasible sequential quadratic programming algorithms, which, 

as their name suggests, constrain all iterates to be feasible. They are more expensive than 

standard sequential QP algorithms, but they are useful when the objective function f is 

difficult or impossible to calculate outside the feasible set, or when termination of the 

algorithm at an infeasible point (which may happen with most algorithms) is undesirable. 

The code FSQP solves problems of the form 

min{f(x): c(x) ~ O,Ax = b} 

In this algorithm, the step is defined as a combination of the sequential QP 

direction, a strictly feasible direction ( which points into the interior of the feasible set) and, 

possibly, a second-order correction direction. This mix of directions is adjusted to ensure 

feasibility while retaining fast local convergence properties. Feasible algorithms have the 

additional advantage that the objective function f can be used as a merit function, since, 

by definition, the constraints are always satisfied. FSQP also solves problems in which f 
is not itself smooth, but is rather the maximum of a finite set of smooth functions. 
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CONCLUSION 

First of all in this project the state of understanding the art of genetic 

algorithms for solving genetic algorithms is considered . The Crossover and 

Mutation are the two basic parameters of genetic algorithms .In Encoding the 

crossover these parameters are used. 

The other parameters of genetic algorithms are Selection, Encoding and 

Population-size. 

The applications of genetic algorithms are used to solve the NP-hard 

problems for machine learning and also for evolving simple problems. The main 

features of the genetic algorithms are based on optimization and they are 

represented by Multimodal functions and Simple trading models. 

The problems are also solved by using the Non-linear optimization. Solving 

the non-linear optimization the algorithms were used that are as follows: 

a) The Sequential Quadratic programming algorithm. 

b) Augmented Langragian algorithm. 

c) Reduced-gradient algorithm. 

d) Feasible Sequential Quadratic Programming algorithm. 

The main techniques used for solving constrained optimization problems 

are written above. By using these algorithms we solved the optimization problems. 

The Appendices were used in these algorithms that are as follows: 

1) Conopt 

2) GrG2 

3) Lancelot 

4) Mat-lab Optimization Toolbox 

5) Minos etc. 
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APPENDICES 

CON OPT 
General non-linear programming models with sparse non-linear constraints 

The algorithm in CONOPT is based on the generalized reduced gradient (GRG) 

algorithm. All matrix operations are implemented by using sparse matrix techniques to 

allow very large models. Without compromising the reliability of the GRG approach, the 

overhead of the GRG algorithm is minimized by, for example, using dynamic feasibility 

tolerances, reusing Jacobians whenever possible, and using an efficient re-inversion 

routine. The algorithm uses many dynamically set tolerances and therefore runs, in most 
cases, with default parameters. 

CONOPT is available as a subroutine library and as a subsystem under the 

modeling systems AIMMS, AMPL, GAMS, and LINGO. CONOPT is available for PCs 

and most workstations. All versions are distributed in compiled form. The system is 

continuously being updated, mainly to improve reliability and efficiency on large models. 

The latest additions are options for SLP and steepestedge. 

GRG2 

Non-linear programming 

GRG2 uses an implementation of the generalized reduced gradient (GRG) 

algorithm. It seeks a feasible solution first (if one is not provided) and then retains 

feasibility as the objective is improved. It uses a robust implementation of the BFGS quasi­ 

Newton algorithm as its default choice for determining a search direction. A limited­ 

memory conjugate gradient method is also available, permitting solutions of problems with 

hundreds or thousands of variables. The problem Jacobian is stored and manipulated as a 

dense matrix, so the effective size limit is one to two hundred active constraints ( excluding 

simple bounds on the variables, which are handle · · 



The GRG2 software may be used as a stand-alone system or called as a subroutine. 

The user is not required to supply code for first partial derivatives of problem functions; 

forward or central difference approximations may be used instead. Documentation includes 

a 60-page user's guide, in-line documentation for the subroutine interface, and complete 

installation instructions. 

GRG2 is written in ANSI FORTRAN. AC version is also available. Machine 

dependencies are relegated to the subroutine INITLZ, which defines three machine­ 

dependent constants. 

Lancelot 

Unconstrained Optimization Problem 

The LANCELOT package uses an augmented Lagrangian approach to handle all 

constraints other than simple bounds. The bounds are dealt with explicitly at the level of an 

outer-iteration sub problem, where a bound-constrained nonlinear optimization problem is 

approximately solved at each iteration. 

The algorithm for solving the bounded problem combines a trust region approach 

adapted to handle the bound constraints, projected gradient techniques, and special data 

structures to exploit the (group partially separable) structure of the underlying problem. 

The software additionally provides direct and iterative linear solvers (for Newton 

equations), a variety of preconditioning and scaling algorithms for more difficult problems, 

quasi-Newton and Newton methods, provision for analytical and finite-difference 

gradients, and an automatic decoder capable of reading problems expressed in Standard 

Input Format (SIF). 

LANCELOT A is written is standard ANSI Fortran 77. Single- and double­ 

precision versions are available. Machine dependencies are isolated and easily adaptable. 

Automatic installation procedures are available for DEC VMS, DEC UL TRIX, Sun UNIX, 

Cray UNI COS, IBM VM/CMS, and IBM AIX. 
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Mat-lab Optimization Toolbox 

Linear programming, quadratic programming, unconstrained and 

constrained optimization of nonlinear functions, nonlinear equations, nonlinear least 

squares, minimax, multi objective optimization, semi-infinite programming. 

Linear programming --- a variant of the simplex method. An initial phase is 

needed to identify a feasible point 

Quadratic programming --- an active set method. A linear programming problem 
is solved to determine an initial feasible point. 

Unconstrained minimization --- two routines are supplied. One implements a 

quasi-Newton algorithm, using either DFP or BFGS to update an approximate inverse 

Hessian, according to a switch selected by the user. Gradients may be supplied by the user; 

if they are not, finite differencing is used. The second routine uses the Nelder-Mead 

simplex algorithm, for which derivatives are not needed. 

Constrained minimization --- sequential quadratic programming. The BFGS 

formula is used to maintain an approximation to the Hessian. Han's merit function is used 
to determine the step length at each iteration. 

Nonlinear equations --- Newton's method and the Levenberg-Marquardt algorithm 

are supplied. The user chooses the algorithm by setting a switch. 

Nonlinear least squares --- the Gauss-Newton method and the Levenberg­ 

Marquardt method are supplied. The user makes the choice. 

Minimax --- these problems can be formulated as constrained optimization 

problems, and a sequential quadratic programming algorithm is used to solve them here. 

Advantage is taken of the structure of the problem in the choice of approximate Hessian. 
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Multi objective optimization --- The problem is formulated as one of decreasing a 

number of objective functions below a certain threshold simultaneously, so it is viewed as 

a constrained optimization problem. Again, sequential quadratic programming is used to 

solve it. 

Semi-infinite programming --- Cubic and quadratic interpolation is used to locate 

peaks in the infinite constraint set and therefore to reduce the problem to a constrained 

optimization problem. 

Minos 

Linear programming, unconstrained and constrained nonlinear optimization 

Linear programming: A primal simplex method is used. A sparse LU 

factorization of the basis is maintained, using a Markowitz ordering scheme and Bartels­ 

Golub updates as implemented in the LUSOL package of Gill, Murray, Saunders, and 

Wright. 

Nonlinear objective, linear constraints: A reduced-gradient algorithm is used. 

This is an active-set method (a natural extension of the simplex method). The variables are 

classified as-, super basic, and non-basic, with the number of super basics indicating the 

effective non-linearity of the objective. The constraints are satisfied before the objective is 

evaluated. Feasibility is maintained thereafter. Search directions are generated using a 

quasi-Newton approximation to the reduced Hessian. 

Nonlinear constraints: A projected augmented Lagrangian algorithm is used. As 

in Robinson's method, each major iteration solves a linearly constrained sub problem to 

generate a search direction. The sub problem objective is an augmented Lagrangian 

function. The sub problem constraints are the true linear constraints plus linearizations of 

the nonlinear constraints. Convergence is usually achieved, although the step length choice 

is heuristic. (A reliable merit function is not yet known.) 
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MINOS is designed to handle thousands of constraints and variables. Constraint data may 

be input from MPS files or via subroutine parameters. Non-linearities are specified by 

Fortran subroutines. (Ideally these should provide both functions and gradients. Missing 

gradients are estimated by finite differences.) The GAMS and AMPL systems may be used 

as alternative user interfaces. See their entries for details. 

MINOS is distributed on floppy disk. Fortran 77 source code is provided, along 

with test problems and makes files for Unix, VMS and DOS systems. 

Nag C Library 

Linear programming, quadratic programming, minimization of a nonlinear 

function (unconstrained, bound-constrained, linearly constrained, and nonlinearly 

constrained), and minimization of a sum of squares. 

For problems with nonlinear constraints, a sequential QP algorithm is used. For 

unconstrained problems and problems with simple bounds, quasi-Newton and conjugate 

gradient methods are provided. The Nelder-Mead simplex method is provided for 

unconstrained problems. For minimizing a sum of squares, a Gauss-Newton method is 

used. The LP and QP routines use a numerically stable active-set strategy. 

An option-setting mechanism is provided in all routines, in order to keep the basic 

parameter-list to a minimum, while allowing a large degree of flexibility in controlling the 

algorithm. The routines have the ability to print the solution, as well as various amounts of 

intermediate output to monitor the computation. 

Service routines are provided for checking user-supplied routines for first 

derivatives and for computing a covariance matrix for nonlinear least squares problems. 

The NAG C Library is available in tested, compiled form for several 

hardware/ software-computing environments. 
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Nag Fortran Library 

Linear programming, mixed-integer linear programming, quadratic 

programming, minimization of a nonlinear function (unconstrained, bound 

constrained, linearly constrained, and nonlinearly constrained), and minimization of 

a sum of squares (unconstrained, bound constrained, linearly constrained, and 

nonlinearly constrained). 

For problems with nonlinear constraints, a sequential QP algorithm is used. For 

unconstrained problems and problems with simple bounds, quasi-Newton, modified 

Newton, and conjugate gradient methods are provided. The Nelder-Mead simplex method 

is provided for unconstrained problems. For minimizing a sum of squares, a Gauss-Newton 

method is used. The LP and QP routines use a numerically stable active set strategy in 

which the linear constraint matrix may be dense or sparse. Problem data may be supplied 

in MPSX format. 

An option-setting mechanism is provided in the more recent routines, in order to 

keep the basic parameter list to a minimum, while allowing a large degree of flexibility in 

controlling the algorithm. These routines also have the ability to print the solution, as well 

as various amounts of intermediate output to monitor the computation. 

Service routines are provided for approximating first or second derivatives by finite 

differences, for checking user-supplied routines for first or second derivatives, and for 

computing a covariance matrix for nonlinear least squares problems. 

The N~G Fortran Library is available in tested, compiled form for a large number 

of different hardware and software computing environments. 
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NLPQL 

Smooth nonlinear programming with equality and inequality constraints 

NLPQL solves smooth nonlinear programming problems, i.e. minimizes a 

nonlinear objective function subject to nonlinear equality and inequality constraints. It is 

assumed that all model functions are continuously differentiable. 

The internal algorithm is a sequential quadratic programming (SQP) method. 

Proceeding from a quadratic approximation of the Lagrangian function and a linearization 

of the constraints, a quadratic sub problem is formulated and solved to get a search 

direction. Subsequently a line search is performed with respect to two alternative merit 

functions, and the Hessian approximation is updated by the modified BFGS formula. 

Special features of NLPQL are 

• Separate handling of upper and lower bounds on the variables, 

• Reverse communication, 

• Internal scaling, 

• Initial multiplier and Hessian approximation, 

• Feasibility with respect to bounds and linear constraints, 

• Full documentation by initial comments. 

NLPQL is written in double-precision Fortran 77 and organized in the form of a 

subroutine. Nonlinear problem functions and analytical gradients must be provided by the 

user within special subroutines or the calling program. 
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NPSOL 

Minimization of smooth nonlinear functions 

NPSOL is a Fortran package designed to solve the nonlinear programming 

problem: the minimization of a smooth nonlinear function subject to a set of constraints on 
the variables. The problem is assumed to be stated in the following form: 

minimize 

XE9t 
f(x) 

subject 

Where f(x) is a smooth nonlinear function, A is an mj matrix, and c(x) is an mw 
vector of smooth nonlinear constraint functions. 

The user must supply an initial estimate of the solution of the problem, subroutines 

that evaluate f(x), c(x), and as many first partial derivatives as possible. Unspecified 
derivatives are approximated by finite differences. 

If the problem is large and sparse, the MINOS package should be used, since 
NPSOL treats all matrices as dense. 

NPSOL is a sequential quadratic programming method incorporating an augmented 

Lagrangian merit function and a BFGS quasi-Newton approximation to the Hessian of the 

Lagrangian. If there are no nonlinear constraints, the gradients of the bound and linear 

constraints are never recomputed, and NPSOL will function as a specialized algorithm for 
linearly constrained optimization. 

It can be arranged that the problem functions are evaluated only at points that are 
feasible with respect to the bounds and linear constraints. 
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NPSOL uses subroutines from the LSSOL constrained linear least squares package, 

which is distributed together with NPSOL. 

Optima Library 

Unconstrained optimization, constrained optimization, sensitivity analysis 

OPVM --- Unconstrained optimization, unstructured objective function; suitable for small 
problems. 

OPVMB --- Optimization subject to simple bounds. 

OPLS --- Unconstrained nonlinear least squares. 

OPNL --- Nonlinear equations, by minimizing sum of squares of the residuals. 

OPCG --- Nonlinear conjugate gradient method. 

OPODEU --- Unconstrained optimization problems by tracing the solution curve of a 

system of ODEs (homotopy method). 

OPTNHP --- Unconstrained optimization using the truncated Newton method; no Hessian 
storage or calculation required. 

OPRQP --- Sequential quadratic programming, but superseded by the OPXRQP routine. 

OPXRQP --- A more efficient implementation of sequential quadratic programming; uses 
the EQP variant. 

OPSQP --- Another implementation of sequential quadratic programming, but uses the IQP 

variant, which gives rise to inequality-constrained sub problems. 

OP ALQP --- Similar to OPSQP, but uses an augmented Lagrangian line search function. 

OPSMT --- Nonlinear programming, using a SUMT technique. 
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OPIPF --- Sequential minimization of a sequence of augmented Lagrangians. 

OPODEC --- Homotopy method: traces the solution curve of a system of OD Es. 

OPSEN ---Tests the sensitivity of the objective function around the optimal point of an 

unconstrained problem. 

OPSEC --- Like OPSEN, but for the solution of a constrained problem. 

Software is written in Fortran 77. 

Optpack 

Unconstrained optimization and nonlinear constrained optimization with special 

software to handle bound constraints, linear equality constraints, and general 

nonlinear constraints 

Unconstrained optimization is performed using the conjugate gradient algorithm. 

Constrained optimization is performed using a new scheme that combines multiplier 

methods with preconditioning and linearization techniques to accelerate convergence. 

The software is written in double precision Fortran. The code is documented by 

internal comments. Research reports providing the theoretical basis for the algorithms are 

available on request. User feedback is much appreciated. 

Port 

General minimization, nonlinear least squares, separable nonlinear least squares, 

linear inequalities, linear programming, and quadratic programming. 

The nonlinear optimizers have unconstrained and bound-constrained variants, and 

use trust region algorithms. Gradients and Jacobians can be provided by the caller or 

approximated automatically by finite differences. The general minimization routines use 

either a quasi-Newton approximation to the Hessian matrix or a Hessian provided by the 
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caller; the nonlinear least squares routines adaptively switch between the Gauss-Newton 

Hessian approximation and an "augmented" approximation that uses a quasi-Newton 

update. Function and, if necessary, gradient values may be provided either by subroutines 

or by reverse communication. 

There is a special separable nonlinear least squares solver for the case of one 

nonlinear variable; it uses Brent's one-dimensional minimization algorithm for the 

nonlinear variable. Brent's algorithm is also available by itself, as is an implementation of 

the Nelder-Mead simplex method. 

The feasible point (linear inequalities) and linear and quadratic programming 

routines start by taking steps through the interior and end with an active set strategy. The 

quadratic programming solvers use the Bunch-Kaufman factorization and thus can find 

local minimizes of indefinite problems. 

None of the solvers is meant for large numbers of variables. When there are n 

variables and m equations (where m = 1 for general minimization), the nonlinear solvers 

require o ( n " 2 m ) or o ( n " 3 ) arithmetic operations per iteration. The linear and 

quadratic solvers use dense-matrix techniques. 

Software is written in ANSI Fortran 77, with single- and double-precision versions 

of all solvers. Machine-dependent constants are provided by subroutines IlMACH, 

RlMACH, and DlMACH. 

PROC NLP (SAS/OR Software) 

General and specialized nonlinear optimization 

The NLP procedure offers a set of opnnuzan 

maximizing a continuous nonlinear func · 

general linear, and nonlinear equality 

number of algorithms for solving 

es for minimizing or 

es with boundary 

. PROC :-..LP supports a 

c1rna~c of the special structure e 
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of the objective and constraint functions. Two algorithms are especially designed for 

quadratic optimization problems, and two other algorithms are provided for the efficient 

solution of nonlinear least-squares problems. 

PROC NLP is part of SAS/OR Software, a fully integrated component of the SAS 

System. Along with its programming statements, PROC NLP uses SAS data sets 

(proprietary format) for input and for output. By taking advantage of the SAS System's 

Multiple Engine Architecture, PROC NLP can in effect read from and write to over fifty 

different database formats. 

In addition to producing output SAS data sets, PROC NLP can print text output 

detailing the initial decision variable values, the search for an initial feasible solution, the 

optimization history, and the values of decision variables, derivatives, and covariance 

matrices at optimality. 

Input Data 

• Objective function and the constraints are specified using the programming 

statements of PROC NLP 

• Additional data sets can be used to generate constraints and objectives 

o DATA= data set specifies an objective function that is a combination of n 
other functions 

o INQUAD= data set (sparse or dense format) specifies the objective of a 

quadratic programming problem 

o INEST= or INV AR= data set specifies initial values for the decision 

variables, the values of constants that are referred to in the program 

statements, as well as simple boundary and general linear constraints 

o MODEL= data set specifies a model saved from a previous execution of the 

NLP procedure 
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Output Data 

• OUT= output data set contains variables generated in the program statements 

defining the objective function (and perhaps derivatives) plus any variables used in 
a DATA= input data set 

• OUTEST= data set contains values of decision variables, derivatives, and 

covariance matrices at optimality, and can be used in subsequent PROC NLP calls 
as an INEST= input data set 

• OUTMOD= data set contains the programming statements and can be used in 

subsequent PROC NLP calls as a MODEL= input data set 

Optimizers 

The following algorithms are available via PROC NLP for use with these categories of 
nonlinear programs: 

• Nonlinear min/maximization with linear constraints 

o A trust-region algorithm (Dennis, Gay, & Welch, 1981, Gay, 1983, and 
More and Sorensen, 1983) 

o Two different Newton-Raphson algorithms using line search or ridging 

o Quasi-Newton algorithms updating either an approximation of the inverse 

Hessian or the Cholesky factor of an approximate Hessian 

o A double dogleg algorithm (Gay, 1983 and Dennis and Mei, 1979) 

o Various conjugate gradient algorithms with the Powell and Beale automatic 

restart update (Powell, 1977, and Beale, 1972), Fletcher-Reeves update, 

Poliak-Ribiere update, or conjugant-descent update (Fletcher, 1987) 

o The Nelder-Mead simplex algorithm with a modification of Powell's 

COBYLA implementation (Powell, 1992) 
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• Nonlinear min/maximization, unconstrained or with boundary constraints 

o Any of the algorithms listed above, substituting the original Nelder-Mead 

simplex algorithm for the COBYLA version 

• Nonlinear min/maximization with nonlinear constraints 

o A quasi-Newton algorithm that is a modification of Powell's Variable 

Metric Constrained Watch Dog (VMCWD) algorithm (Powell, 1978, 1982) 

o The Nelder-Mead simplex algorithm with a modification of Powell's 

COBYLA implementation (Powell, 1992) 

• Nonlinear least squares with linear constraints 

o The Levenberg-Marquardt algorithm (More, 1978) 

o a hybrid quasi-Newton algorithm (Fletcher & Xu, 1987, Lindstrom & 

Wedin, 1984, and Al-Baali & Fletcher, 1986) 

• Quadratic min/maximization with linear or boundary constraints 

o Solve as a linear complementarily problem (if the symmetric matrix is 

positive/negative semi-definite for a min/maximization and the variables are 

restricted to be positive) 

o Use a general quadratic optimization active set algorithm (Gill, Murray, 

Saunders, & Wright, 1984) 

Derivatives 

PROC NLP may require derivatives of the objective function and the constraints. 

These can be obtained 

• Analytically (using a special derivative compiler), the default method 

• Via finite difference approximations 

• Via user-supplied exact or approximate numerical functions 
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Problem Size Limitations 

The size of a problem that PROC NLP can solve depends on the host platform, the 

available memory, and the available space for utility data sets. PROC NLP does not place 

any additional limits on problem size. 

Available Platforms 

The SAS System is supported on all major personal computer, workstation, and 

mainframe operating systems. 

SQP 

Nonlinear programming 

SQP uses an implementation of Powell's successive quadratic programming 

algorithm and is aimed specifically at large, sparse nonlinear programs. It solves the 

quadratic programming sub-problems by using a sparsest-exploiting reduced gradient 

method. Sparse data structures are used for the constraint Jacobian, and there is an option 

to represent the approximate Hessian as a small set of vectors using a limited memory­ 
updating scheme. 

SQP requires the same user-supplied subroutines as GRG2 and has similar 

subroutine and data file interfaces. The entry describing GRG2 contains more details. 

SQP is written in ANSI FOR TRAN. Machine dependencies are relegated to the 

subroutine INITLZ, which defines three machine-dependent constants. 
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