
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

A JAVA APPLICATION
COMPUTER-BASED EXAMINATION

Graduation Project
COM 400

Student: Musi um $enel{20010811)

Supervisor: Asst. Prof. Dr Adil Amirjanov

Nicosia -2005

·eat

his

are

ieir

'ith

ACKNOWLEDGMENTS

I would like to acknowledge and thank to Adil Amirjanov for being such a great

supervisor for helping me all along my project and in designing every phase of this

applications' s documentation.

Special thanks to my family and friends, chiefly my Mother and Father, who simply are

the best.

Thanks also goes out to roommate and brother who were generous enough to allot their

precious time day and night in every detail of application and sharing their suggestions with

me in documentation to bring about this valuable work.

ABSTRACT

In today's world, computer applications play a very important and implacable role in

our daily life tasks. Almost everything can be managed using computers in one of two ways.

One way is making use of its hardware applications and the other one is by its software

applications.

To develop a software application an environment is need which is called Programming

Language. Programming languages give programmers the chance to write codes that will

generate an output to do a job which would be very hard for human beings in terms of time,

constraints or accuracy to perform in the same manner. In this respect Java is one and probably

the most promising Programming Language and platform to build software applications. It

offers a great deal of features and capabilities for programmers to develop applications for a

variety of missions and odd jobs. Graphical User Interface and Database connectivity are two

of its features that will be given much importance throughout this document and be employed

to devise an application.

In this project a Java application is to be designed that will supersede old-way of test

taking process with a novel and exciting form, computer-based test taking. With this program

one will be able to take the test without writing down anything, and get a feedback about the

results and performance at the end of each section, and also have the opportunity to save the

results for later use. Such an interactive test taking fashion not only eases the banal paper

based test-taking process but also makes it fun and enjoyable.

11

TABLE OF CONTENTS
A CKN O WLEDG El\ilENT i

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF ACRONYMS vi

INTRODUCTION 1

CHAPTER ONE: OBJECT ORIENTED-PROGRAMMING CONCEPTS 2

1.1 What is OOP 2

1.2 OPP Concepts 3

1.2.1 Inheritance 3

1.2.2 Reusability 3

1.3 Objects and Classes 3

1.4 Attributes of an Objects 5

1.5 Creating a Class 6

1.6 Class Methods 7

1. 7 Main Method 7

1.8 Constructor 7

1.9 Creating an Initializing Object Instances 8

1.10 Using an Instance Method or Variable 8

CHAPTER TWO: JAVA FUNDAJ.\ilENTALS 10

2.1 What is Java? 10

2.2 Features of Java Language 10

2.2.1 Simple 11

2.2.2 Object-Oriented 11

2.2.3 Architecture-Neutral. 11

2.2.4 Multithreaded 11

2.2.4 Dynamic 11

2.3 Java Basics 12

2.3.1 Variables 12

2.3.2 Data types 12

2.3.3 Creating and Using Arrays 12

iii

2.3 .4 Control Flow Statements 13

2.3 .4.1 The Switch Statement 13

2.3 .4.2 Exception Handling Statements 13

2.3 .4.3 The For Statement 14

2.3 .4.4 The If Else Statement 14

2.3 .4.5 The While and Do-While Statements .15

2.4 Swing GUI Components 16

2.4.1 JLabel 16

2.4.2 JTextField 16

2.4.3 JButton 17

2.4.4 JRadioB utton 17

2.4.5 JMenu 18

2.4.6 JPanel. 18

2.4. 7 Separators 19

2.4.8 JintemalFrame 19

2.4. 9 JFrame 20

2.4.10 JDesktopPane 20

CHAPTER THREE: DATABASE & SQL BASICS 21

3 .1 Database Systems 21

3 .2 Relational Database 21

3 .3 Microsoft Access 22

3 .4 ODBC 22

3 .5 SQL & Basic SQL Statements 23

3 .5 .1 Select Statement. 24

3 .5 .2 Delete Statement. 24

3 .5 .3 Insert Statement. 24

3.5.4 Update Statement 25

3.5.5 Create Table Statement. 25

CHAPTER FOUR: JAVA DATABASE CONNECTIVITY 26

4.1 The basics of JD BC 26

4.2 Setting up database 27

iv

4.3 Establishing Connection 27

4.3.1 Loading drivers 27

4.3.2 Making a Connection 27

4.4 The Driver Interface ; 28

4.5 The Driver Manager Class 28

4.6 The Statement Statement. 29

4.7 Executing A Query 29

4.8 Updating tables 29

4.9 Retrieving data from a ResultSet.. 29

4.10 Using the Method next() , 30

4.11 the getXXX Methods 30

CHAPTER FIVE: A JAVA APPLICATION: COMPUTER-BASED EXAMINATION .. 32

5.1 The Class Relations 32

5.2 The Components of Computer-Based Test.. 33

5.2.1 The Users Class 33

5.2.2 The Main Class 35

5.2.3 The Antonyms Class 37

5.2.4 The Analogies Class 39

5.2.5 The DataAnalysis Class .41

5.2.6 The Comparision Class .44

5.2.7 The Reading Class 45

5.2.8 The Sentence Class .47

5.2.9 The Problem Class 48

5.2.10 The About Class 50

5.2.11 The Help Class 50

5.2.12 TheDB Class 51

5.2.13 The MaskUnmask Class - 52

5.2.14 The Currentuser Class 52

5.3 Getting it All Together. 53

CONCLUSION 54

REFEREN CES 55

V

-

LIST OF ACRONYMS

JDBC

GUI

API

JVM

OOP

SQL

ODBC

ANSI

UI

HTML

RDBMS

DDL

DML

Java Database Connectivity.

Graphical User Interface.

Application Program Interface.

Java Virtual Machine.

Object Oriented Programming.

Structured Query Language.

Open Database Connectivity.

American Natioanal Standarts Institute.

User Interface.

HyperText Markup Language.

Relational Database Management System.

Data Definition Language.

Data Manipulation Labnguage.

vi

INTRODUCTION
Java is a new programming environment and language but offers a lot of facilities

and features. Programmers make great use of java for its novel approach in

programming world. Java gets most of its base from its ancestors such as C and C++

and by including some completely new characteristics it becomes much efficient and

much preferable language by programmers and companies.

Database Management Systems play a very important role in data storing. They

might be used alone or they can be merged with any programming language to

empower their usability and functionality.

In this project a software program is going to be designed in java for a computer

based examination by interweaving with Database.

Chapter one deals with the one of the most important features of java which is

Object Oriented approach. This chapter gives information about classes, objects and the

way they are used.
In chapter two java fundamentals are described briefly. That is; simple UI

components and primitive data types and variable declaration.

Chapter three reviews the very basics of Database in general. It defines the

database, the relational database system and SQL statements.

In chapter four the Java Database Connectivity is explained explicitly with

sample codes showing how to connect to the database, execute SQL statements and

retrieve the data stored in database.

Last chapter in this project presents everything done to develop a software

program which is a computer based test in java and using Microsoft Access as

Database.

1

CHAPTER ONE: OBJECT-ORIENTED PROGRAMMING

CONCEPTS

One thing that makes java so strong and easy-to-use is being Object-Oriented .Here

we will go over the basics of OOP and how they can be used in terms of codes. We will

define OOP and then discuss its concepts and then examine class structure, method

declaration, instance creation and everything regarding OOP that have been used in this

application will be given special consideration and detail about them.

1.1 WHAT IS OOP?

OOP stands for object-oriented programming, and in reality it means that the

programming is based on creating destroying objects. Every component in java is object

except simple data types, all other components must be initialized before to use them.

In classic, procedural programming we try to make the real world problem we're

attempting to solve fit a few, pre-determined data types: integers, floats, Strings, and

arrays perhaps. In object oriented programming we create a model for a real world

system. Classes are programmer-defined types that model the parts of the system.

A class is a programmer defined type that serves as a blueprint for instances of

the class. We can still have ints, floats, Strings, and arrays; but we can also have cars,

motorcycles, people, buildings, clouds, dogs, angles, students, courses, bank accounts,

and any other type that's important to our problem.

Classes specify the data and behavior possessed both by themselves and by the

objects built from them. A class has two parts: the fields and the methods. Fields

describe what the class is. Methods describe what the class does.

Using the blueprint provided by a class, we can create any number of objects,

each of which is called an instance of the class. Different objects of the same class have

the same fields and methods, but the values of the fields will in general differ. For

example, all humans have eye color but the color of each human's eyes can be different

from others.

2

1.2. OOP CONCEPTS

1.2.1 Inheritance

Inheritance is an important parameter in OOP world. By this concept we can

inherit the methods and variables declared in a class to another class which is called

child class. This way we avoid writing much code and therefore save our recourses. We

haven't use inheritance directly in our application but we did indirectly. For example:
public class About extends JPanel {}

This implements that the class About will include all the features of a Panel and

later on we may add some more methods and attributes.

1.2.2 Reusability

That is another OOP concept that we have used frequently in this project. OOP

give the programmer the chance to reuse the codes written for another purpose with

some modifications or just as its original form. For example the following code segment

is class and has been used more than ten times throughout the program that connects to

the Database:
db.connecttodatabase(deletetest);

Here db is a class that we will go over in the next section and

connecttodatabase(deletetest) is a method that establishes the connection with the given

parameter being a SQL query.

1.3 OBJECTS AND CLASSES

Object-oriented programming is modeled because, in the real world, objects are

made up of many kinds of smaller objects. However, the capability to unite objects is

only one general aspect of object-oriented programming. Object-oriented programming

provides several other concepts and features to make the creation and use of objects

easier and more flexible. The most important of these features is the class.

A class is a template for multiple objects with similar features. Classes embody

all the features of a particular set of objects. When we write a program in an object

oriented language, we don't define individual objects. We define classes of objects.

3

For example, we might have a Tree class that describes the features of all trees

(each tree has branches and roots, grows, and creates chlorophyll). The Tree class serves

as an abstract model for the concept of a tree. To reach out and grab, or interact with, or

cut down a tree, we must have a concrete instance of that tree. Of course, once we have

a Tree class, we can create lots of different instances of that tree, and each different tree

instance can have different features (it can be short, tall, bushy, drop leaves in autumn,

and so on), yet still behave like a tree and be immediately recognizable as a tree.

An instance of a class is an actual object of that class. The class is the general,

abstract representation of an object, and an instance is its concrete representation. So

what precisely, is the difference between an instance and an object? The term object is

used more generally, but both instances and objects are the concrete representations of a

class. In fact, the terms instance and object often are used interchangeably in OOP

terminology. A Tree instance and a Tree object are the same thing.

In an example closer to the kind of thing we may want to do with Java, we can

create a class for an on-off switch. The LightSwitch class defines the following features

of an on-off switch:

• Its label
• Its size
• Its appearance

The class also defines how an on-off switch behaves, as follows:

• Whether it needs a single click or a double click to be activated

• Whether it changes color when clicked

• What it does when it's activated

Once we define the LightSwitch class, we easily can create instances of that switch-in

other words, LightSwitch objects. The instances all take on the basic features of a

switch as defined by the class, but each instance can have different appearances and

behaviors based on what we want that particular switch to do. By creating a

LightSwitch class, we don't have to keep rewriting the code for each switch we want to

use in our program. Also, we can reuse the LightSwitch class to create different kinds of

switches as we need them-in any program.

4

When we write a Java program, we design and construct a set of classes. When

our program runs, instances of those classes are created and discarded as needed. Our

task, as a Java programmer, is to create the right set of classes to accomplish what our

program needs to accomplish.

Fortunately, we don't have to start from scratch. The Java environment comes

with a library of classes that implement a lot of the basic behaviors we need. A class

library is a set of classes. The Java library has classes to handle basic programming

tasks (math functions, arrays, strings, and so on) as well as classes to handle graphics

and networking behavior. In many cases, the Java class libraries may be sufficient for

our needs; all we have to do in our Java program is to create a single class that uses the

standard class libraries. For complicated Java programs, however, we may have to

create a whole set of classes with defined interactions between them.

1.4 ATTRIBUTES OF AN OBJECT

Attributes are the individual things that differentiate one object from another and

determine the appearance, state, or other qualities of that object. Consider how a

theoretical class called myclass could be created. The attributes of a myclass might

include the following:

• Color: red, orange, yellow
• Sex: male, female
• Appetite: full, hungry

Attributes of an object also can include other information about its state. For

example, we can have features for my class's attitude (enraged or calm) or its current

health (alive or dead).

Attributes are defined by variables; in fact, we can consider attributes to be

similar to global variables for the entire object. Because each instance of a class can

have different values for its variables, each variable is called an instance variable.

Instance variables define the attributes of an object. The class defines the type of the

attribute, and each instance stores its own value for that attribute.

Each attribute, as the term is used here, has a single corresponding instance

variable; changing the value of a variable changes the attribute of that object. Instance

5

variables can be set when an object is created and stay constant throughout the life of

the object, or they can change as the program runs.

Class variables apply to the class itself and to all of its instances. Instance variable

values are stored in the instance; class variable values are stored in the class itself.

1.5 CREATING A CLASS

A class is a template that describes the data and behavior associated with

instances of that class. When we instantiate a class we create an object that looks and

feels like other instances of the same class. The data associated with a class or object is

stored in variables; the behavior associated with a class or object is implemented with

methods. In the Java language, the simplest form of a class definition is

class name

Now we will give the codes of a class then analyze its variables and its structure.
class departments

{String deptname;
public String getdeptname(String name)

{ if (tfdept. get Text. equal ("Com"))
deptname="Computer Engineering";

if (tfdept. getText. equal ("Civ"))
deptname="Civil Engineering";

return deptname;

public void setdeptname(String name)
{ deptname=name;
}

This class has the name departments, and has two methods one is getdeptname()

and the other is setdeptname(). The first method reads the values in a TextField and

checks the data in it. If data is equal to Com returns Computer Engineering, if equal to

Civ returns the department name as Civil Engineering. The second method sets the

department name. User can call this method anytime and change the department name

as. Of course an instance of this class must be initialized before to be able to do that.

e.g.:
deptinstance.setdeptname="Mechanical Engineering";

6

1.6 CLASS :METHODS

Class methods are like function but within in a class. When a class instance is

created automatically its methods are too. Therefore we can call a class's methods using

the following syntax:

classname.classmethod();
ie. currentuser.getuser();

Here currentuser is an instance of Currentuser and getuser() is a method of that

class that returns the identification of present user. The code for getuser is shown below:

public String getuser()
{ try{

filereader=new FileReader("curuser.class");
br=new BufferedReader(filereader);
usernormal=br.readLine();
}

catch(Exception e) {}
return usernormal;

1.7 MAIN :METHOD

Every single application must have one main () method. Otherwise we will not be

able to run our program. The main method as it's name reveals, is the main or the

primary method with which we run the application.

public static void main(String args[J)
{

Mymain main=new Mymain();
main.show(true);

This code segment creates an instance of Mymain class and sets it to visible status.

Without this we would not be able view our output program.

1.8 CONSTRUCTORS

When we create an object for the first time it is quite to initialize all the variables

within that class. To avoid this hardship we set them up in the constructors of the class.

The constructor has the same name as Class and constructor we assign the class

variables to their initial position. For example:

public class Analogies extends JinternalFrame implements

ActionListener
{JButton,butstart,butquit,butnext,butprev,butconfirm;

7

boolean retake=false,quit=false,viewresult=false;
Currentuser currentuser=new Currentuser();

Analogies ()
{super("Analogies Test20Qs",false,false,false,false);
Container container=getContentPane();

butstart=new Jbutton ("Start);
this.setSize(Sl0,220);

setVisible(true);
}

As you can see Analogies class has a constructor with the same name in this

constructor we have assigned variables to their initial position. Thus when we invoke

class Analogies by convention the constructor will create and add them to frame.

1.9 CREATING AN INITIALIZING OBJECT INSTANCES

A class at the same time is an object. We have created a sample class in Defining

a class with the name MaskUnmask. After creating this class now we can create

instances of this class(now becomes object) anywhere in the program. Let's give the

syntax of creating an object:
classname variablename=new classname();

This statement will create an instance of classname and appoint it to

variablename. Here is the code to create an instance of Musk Unmask class:
MaskUnmask maskunmask=new MaskUnmask();

By writting this code we activate the class MaskUnmask and all its method. Or

Currentuser currentuser=new Currentuser()

1.10 USING AN INSTANCE METHOD OR VARIABLE

In the creating object instances we have created an instance for Currentuser class

and labeled is ass currentuser. And by the way Currentuser has a method that returns the

name and family name of the present user.If we say:

currentuser.getuser()

We will get the name and the surname of current user, so by creating an object

instance we can reach its methods and variables that avoid us programmers to write less

8

code but availability to reuse them, as we have done in this program. To use an instance

variable.

currentuser.usernormal="Muslum Senel"

This will appoint the String type usemomal the vaule of "Muslum Senel

9

CHAPTER TWO: JAVA FUNDAMENTALS

2.1 WHAT IS JAVA?

This project has been brought about using Java language therefore, I do find it

needful to give a brief coverage on the Java Language, its background and the APls that

are available in the version that I have worked with.

Java was developed at Sun Microsystems. Work on Java originally began with the

goal of creating a platform-independent language and operating system for consumer

electronics. At the first phase, they thought to extend C++ and thus to create a platform

neutral language but later on as their work got ahead, they realized that it would be

better to design a new Language instead of improving it.

What we know today as Java is both a programming language and an environment

for executing programs written in the Java language. Unlike traditional compilers,

which convert source code into machine-level instructions, the Java compiler translates

Java source code into instructions that are interpreted by the runtime Java Virtual

Machine (JVM). So Java is an interpreted language. That is why sometimes Java is

named as Platform and sometimes and a language. In fact Java has both capabilities.

Java can be considered as both a general-purpose language and also an internet

language. For internet purposes we use Java applets which are very useful and secure on

the net. Applications are the Java programs that are written for general-purposes and run

directly on Java platform. So our project can be classified into Application class.

2.2 FEATURES OF THE JAVA LANGUAGE

We have covered the background of Java above and now I will discuss some

features that make Java an appealing and mostly used language very briefly. I will

emphasize on one of them which is Object Oriented Programming approach in detail in

upcoming section because in this program I have used this approach or Java is based on

that approach.

10

2.2.1 Simple

The first feature of Java is its simplicity. It does look like other languages in

syntax and that makes it easier for programmers to code in Java. Another thing that

makes Java simple is that, it has only three primitive data types, integer, Boolean and

arrays all other things are classes and therefore objects.

2.2.2 Object-Oriented

This is probably the most important characteristic of Java language. Java is an

object oriented programming language because in Java everything is represented as an

object and whenever you want to make use of it you should first initiate it and then use

it. We are going to discuss this feature in detail later on. So that is enough for now about

Object oriented side of Java.

2.2.3 Architecture-Neutral

This is another important attribute of java. The application written in Java can

run on any platform. And this property of Java is called platform-independent. I wrote

this project in Windows platform but it will work on any platform.

2.2.4 Multithreaded

Writing a computer program that only does a single thing at a time is a constraint

that we face in most programming languages. With Java, we no longer face this

limitation. If we have two things to be done at the same time then we could use

multithreads that work synchronized.

2.2.5 Dynamic

Java is a dynamic language that is it can extend itself during execution. For

example suppose we created a class but we do not need it in the running phase of

program so the Java Virtual Machine will not link it to domain class but create it in the

of execution and this makes the execution process faster.

11

