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ABSTARCT 

This project that I explain to parallel and distributed systems, 
horus,distributed computing system(DCE) ,mathematically applicati­ 
ons of parallel and distributed system(Example branch and bound 
algorithm,load balancing,combinational obtimization). 

There is a fundemental difference between them DCE,Horus and 
Mathematically parallel distributed systems. 

This document summarize the main features of parallel and 
distributed systems,horus,DCE and mathematically applications of 
parallel and distributed system.What we feel is most important 
difference between them,discusses differences between individual 
capabilities and the maturity of both specifications and products,and 
cunculudes with view of how an organization should select 
technology most appropriate to its parallel and distributed systems. 

I practice all graphic of parallel and distributed systems. 



INTRODUCTION 

The department applications of parallel and distributed systems has its 
traditional field of work in the complex areas of database and information 
systems.A multitude of system and application projects has been carried 
out,constantly exploring new subject areas. 

There are several types of distributed processing systems in which the 
componnents are hooked together by telecommunications.List the main reasons 
for function distribution.Reasons for using hierarchical systems distribution.An 
important group of reasons on some configurations is related to data-where it is 
kept and how it is maintained. 

Applications areas is computers can be employed for a wide variety of purpose 
but computers are particularly suited to certain kinds of work.It may be possible 
to use a computer for a particular application if certain criteria are met. Whether 
or not a computer is used will depend on other factors.Considers for criteria and . 
factors and then deals with a variety of particular applications which illustrate 
the general princhiples. 

We describe the main characteristics of distributed systems,their classification 
and programming techniques.Example demonstrate the application areas of 
distributed systems. 

Horus a flexible group communication systems. 

Networks of workstations runing under a multiuser multitasking operating 
system like unix are an increasingly commonplace personel computing 
environment.Due to their use as personal computing these workstations are 
typically underutilized most of the time.Branch and bound algorithms for 
combinatorial optimization on a cluster of workstations.Branch and bound 
algorithm can yield satisfactory speed-up on a cluster of workstations. The of 
describe parallezations of the brach-and-bound algorithm for 
multicomputers.We use as our problem domain the travelling salesperson 
described in all the parallel algorithms described in this section use the 
branching and bounding heuristics developed by little et al. The final part of this 
section discusses anomalies in parallel branc-and-bound algorithm. 



General information about the Department 

Applications of Parallel and Distributed Systems 

Area of Responsibility 

The department Applications of Parallel and Distributed Systems has its "traditional" field of 
work in the complex areas of database and information systems. A multitude of system and 
application projects has been carried out, constantly exploring new subject areas. The 
emphasis of the department's research are the following: 

Area of Research 

Databases and Transaction Management for Open Systems 

In this research area we are determining how database management systems and their 
functionality can be used in open systems that do not comprise central administration 
components. The WWW ( or the Intra-/Internet in general) might be seen as a typical example 
of such systems, but similar approaches including mobile access and processing facilities are 
also considered (e.g. OMG and OSF proposals). Evaluation of concepts is done by specific 
prototypes and related example applications like earth observations systems (EOS) or product 
data management (PDM). 

Parallel Database Technology 

New application areas with more demanding requirements or databases within open 
networks of information systems lead to a rapid increase of data volumes and query 
complexity. Well-known examples are the areas OLAP and data mining, profiling services or 
publish/subscribe services. The necessity to process large data sets very efficiently and to 
reduce response times requires parallel database technology. However, whenever possible, 
this should be transparent to the user. Parallelization steps which are considered in department 
projects are above all input/output, operators of the database engine, and measures to 
parallelize query execution plans. 

Extensible Database Technology 

The first commercial object-relational DBMS are available since some years. This 
technology promises to manage complex data structures with an efficient support for complex 
queries at the same time. Furthermore, DBMS vendors enable third party vendors to extend 
the base systems by program packages which are specific for an application area. These 
packages contain new data structures together with corresponding operators, support for more 
efficient query processing and meta data. An example is a package that adds support for 
geographic information systems by providing base functionality like geometric data 
structures, systems of coordinates, and spatial queries, for example. Further application areas 
like data mining and profiling are examined within this technology framework. 
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Query Processing in Database Systems 

Today's database systems are used in many diverse application areas (e.g. business 
and administration, engineering or knowledge-based applications) for efficient data 
management. The requirements for database processing and especially for query processing 
are mainly determined by prevailing development trends like e.g. extension of data models, 
use of multi-processor or multi-computer architectures for database servers or 
workstation/server environments. In this project area we develop conceptual and 
implementory foundations for advanced query processing. Furthermore we examine 
technologies that form a reusable and extensible base to built adapted query processors. These 
concepts allow to customize query processing engines to specific application scenarios. 
Obvious advantages of this approach are a substantially reduced development time, a flexible 
adaptivity as well as a high reuse of technology, implementation concepts and existing 
software. 

Product Data Management and Exchange 

This project deals with the management and exchange of product data, covering the 
design stage as well as efficient and long-term storage of data during the whole product 
lifecycle. Though relational and object-oriented DBS already offer some basic support, most 
applications in this area have been developed using other solutions. Special emphasis has 
been put on the International Standard for the Exchange of Product Data (STEP), which 
defines the object-oriented data definition language EXPRESS as well as the navigational 
access interface SDAI (Standard Data Access Interface). 

Decision Support and Data Mining 

Large databases generally contain important strategic information, which cannot be 
accessed by normal OL TP-applications. Thus special knowledge discovery methods are 
required, which are both CPU and 1/0-intensive. Research in this field focuses on the 
development of strategies using parallelism as well as exploiting appropriate query 
optimization techniques. 

Workflow Management 

During the last two years, research in the field of workflow management has become 
more and more important. Since 1987, the research group Applications of Parallel and 
Distributed Systems is involved in projects about the management of long-lived activities and 
their combination with traditional, transaction-oriented methods. In 1990, the concept of 
ConTracts was created. Since then, this concept has been systematically extended to a 
platform for efficient, fault tolerant workflow management systems. 

Flow Control in Design Applications 

In integrated computer supported design environments the designflow manager has to 
keep any cooperation and interaction of the design activities consistent. Those activities 
comprise all designing interactions and CAD tools. There are different layers of activity 
abstraction to be found, which build in a natural and system integrated way the typical 
structure of flow management in a tool oriented design environment. A typical design flow 
can be divided into interacting sub design flows, which can be well defined as. flow protocols 
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on the different activity layers. This project aims at developing corresponding design concepts 
to support flexible and layer specific control flow management, which compose an overall 
control flow management. In doing so, already existing concepts in the areas of transaction 
processing, workflow systems, and group work should be considered. 

Geographic Information Systems 

With the growing interest in a computer supported presentation, administration and 
analysis of spatially referenced data the importance of geographic information systems (GIS) 
has increased significantly. The central component of GIS is a geographic or a spatial 
database system. These systems differ from the traditional data base management systems 
developed primarily for business and administration needs mainly by the fact that they offer 
special concepts and technologies especially for spatial data models and languages and 
efficient data structures for storage of and access to spatial data. In this project area we 
address questions concerning the system architecture of GIS, the design of geographical query 
languages, and especially the integration of geographic database systems based on object­ 
relational technology. 

Component Technology and Middleware 

Modern information systems are characterized by a high degree of heterogeneity and 
distribution of software and hardware. This is especially true for most projects of the 
department "AS" (e.g. earth observation systems, geographical information systems, product 
data management systems, design control, etc). Moreover, these systems mostly consist of 
autonomous components (like e.g. database applications, TP monitors or user interaction). In 
order to cope with the complexity of such systems, it is necessary to model the entire system 
as a combination of separate components that interact via appropriate middleware. In this 
sense, the term middleware comprises file and database management systems, TP monitors, 
network services and e-mail systems, workflow systems as well as more complex frameworks 
like CORBA or DCOM. In this project area we will deal with the design and efficiency of 
such component-based systems. Particular emphasis will be put on efficient data access and 
data shipping techniques. The main goal is to design, implement and evaluate concepts for 
distributed (heterogeneous) data management supporting STEP-based applications, e.g. CAD 
tools or bill-of-material processing. Due to heterogeneity and distribution of components, 
modern concepts which support Intranet and Internet (like CORBA and Java) will be used and 
evaluated as well. 

Models and Tools for Parallel Programming 

Based on computationally intensive problems, as they can be found in typical 
engineering applications, we develop approaches which do not - as is usually the case - take 
the algorithmical structure of a given problem for granted, but which modify some base 
mechanisms taken from the database field in such a way that they can be used for parallel 
programming environments in a variety of applications. One of the main' goals is to transfer 
the potential of automatic parallelism - which has proven successful for descriptive database 
queries - to the programming of different applications. A very interesting idea is to use a two­ 
tier programming model; at one level the numerical algorithms are coded in conventional 
sequential style, at the second level the topology of the problem is specified in a way that 
allows for automatic detection and control of parallelism. 
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TYPES OF DISTRIBUTED SYSTEMS 

There are several types of distributed processing systems in which the components are 
hooked together by telecommunications. This chapter categorizes them and gives examples. 

HORIZONTAL VS. VERTICAL DISTRIBUTION 

First we shall distinguish between horizontal and vertical distribution.By vertical 
distribution we mean that there is a hierarchy of processors, as in Fig.1. The transaction may 
enter and leave the computer system at the lowest level. The lowest level may be able to 
process the transaction or may execute certain functions and pass it up to the next level. 
Some, or all, transactions eventually reach the highest level, which will probably have access 
to on-line files or data bases. The machine at the top of a hierarchy might be a computer 
system in its own right, performing its own type of processing on its own transactions. The 
data it uses is, however, passed to it from lower-level systems. 

The machine at the top might be a head-office system which receives data from factory, 
branch, warehouse, and other systems. 

By horizontial distribution we imply that the distributed processors do not differ in rank. 
They are of equal status-peers-and we refer to them as peer-coupled systems. A transaction 
may use only one processor, although there are multiple processors available. On some peer­ 
coupled systems a transaction may pass from one system to another, causing different sets of 
files to be updated. 

Figure.2 illustrates horizontal distribution. The top diagram shows multiple processors 
connected to a bus or wideband short-distance channel. The second diagram shows multiple 
processors connected to a loop, perhaps spanning several buildings in a factory complex, 
university campus, or shopping center, but in some systems being comprised of long-carrier 
connections. The 
third and fourth diagrams show horizantal computer networks in which a user may access one 
of many machines. 

Types of Distributed Systems 

-/ 

·~ 

Level 3 

Level 1 

Figure 1 Vertical distribution. 
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COOPERATIVE OPERATION 

In some networks the user has a choice of computer systems available to him, but he 
normally employs only one computer at a time. The computers are programmed in­ 
dependently, and each computer performs its own functions. In other networks the computers 
are programmed to cooperate with one another to solve a common set of problems. This is 
often the case in a vertical system (Fig.l ), The lower-level machines are programmed to pass 
work to the higher-level ma- chines. This is sometimes true also in a horizontal system. The 
processing of one transaction may begin on one machine and pass to another. The different 
computers perform different functions or maintain and update different files. The machines 
may be minicomputers in the same location or computers scattered across the world on a 
network. 

FUNCTION DISTRIBUTION VS. SYSTEM DISTRIBUTION: 

In some distributed systems, usually vertical systems, functions are distributed, but not 
the capability to fully process entire transactions. The lower-level machines in Fig. I may be 
intelligent terminals or intelligent controllers in which processors are used for functions such 
as message editing, screen formatting, data collection dialogue with terminal operators, 
security, or message compaction or concentration. They do not complete the processing of 
entire transactions. 

Werefer to this distribution as function distribution and contrast it with system such as 
message editing, screen formatting, data collection dialogue with terminal operators, security, 
or message compaction or concentration. They do not complete the processing of entire 
transactions. We refer to this distribution as function distribution and contrast it with system 
distribution in which the lower-level machines are system in their own right, processing their 
own transactions ,and occasionally passing transactions or data up the hierarchy to higher 
level machines 

r-9rnn-syni~a,:!'<'9A"f 
sa1,an.rn· .syiu.:.,n 

5 



,. 
In a systems distribution environment the lower machines may be entirely different from, 

and incompatible with, the higher machines. In a function distribution environment, close 
cooperation between the lower-level and higher-level machines is vital. Overal system 
standards are necessary to govern what functions are distributed and exactly how the lower 
and higher machines form part of a common system architecture with appropriately integrated 
control mechanisms and software. 
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When the peripheral nodes are not self-sufficient systems but perform a function 
subservient to a higher-level distant computer, we speak of intelligent terminals, intelligent 
terminal cluster controllers, or intelligent concentrators. These terms imply a vertical 
distribution of function in which all or most transactions have to be transmitted, possibly in a 
modified form, to a higher-level computer system, or possibly to a network of higher-level 
computer systems. 

The centralized teleprocessing system of 1970 employed simple terminals and carried out 
almost all of its functions in the central computer. At first system control and housekeeping 
functions were moved out, then functions such as data collection, editing, and dialogue with 
terminal operators, and finally many of the application programs themselves. Figure 4 shows 
places where intelligence could reside in a vertical function distribution system: 

1. In the host computer, B 

2. In a line control unit or "front-end" network control computer, C 

Many function are necessary to control a terminal network .If the host computer 
performs all the operations itself ,it will be constantly interrupting its main processing, and 
many machine cycles will be needed for line control. Some of the line control functions 
may be performed by a separate line control unit. In some systems, all of them are 
performed by a separate and specialized computer. The proportion of functions which are 
performed by a line control unit, which by the host computer hard- ware and which by its 
software, varies widely from system to system. Some application functions could be 
performed by the subsystem computer-for example, accuracy checking and message 
logging. 
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A major advantage of using a front-end network-control computer is that when the 
host computer has a software crash or brief failure, the network can remain functionally 
operational. Restart and recovery of the network without errors or lost transactions is a 
tedious and often time-consuming operation, and if it happens often it can be very 
frustrating to the end users. 

3. In the mid-network nodes, D and E 

The mid-network nodes or concentrators may take a variety of different forms. 
They may be relatively simple machines with unchangeable logic. They may have wired­ 
in logic, part or all of which can be changed by an engineer. They may be micro 
programmed. Or they may be stored-program computers, sometimes designed solely for 
concentration or switching, but sometimes also capable of other operations and equipped 
with files, high-speed printers, and other input-output equipment. 

D l M!d'vA('tW{)fk r!Odtl!I IQf CO"-CQf1tr-~t4'::,1, 
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4. In the terminal control unit, F 

Terminal control units also differ widely in their complexity, ranging from simple 
hardwired devices to stored-program computers with much software. Increasingly they are 
computers with storage units and there is a trend towards greater power and larger storage. 
They may control one terminal or many. They may be programmed to interact with the 
terminal operator to provide a psychologically effective dialogue in which only an essential 
kernel is transmitted to or from the host computer. They may generate diagrams on a graphics 
terminal or interact with the operator's use of a light pen. They are often the main component 
in carrying out the assortment of distributed functions which this chapter will list. 
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5. In the terminal, G 

"Intelligent terminals" are becoming more intelligent. Their processing functions range 
from single operations such as accumulating totals in a system which handles financial 
transactions, to dialogues with operators involving much programming. Some intelligent 
terminals do substantial editing of input and output data. Some terminals perform important 
security functions. 

Where several terminals share a control unit, F, such functions are probably better 
performed in the control unit, leaving the terminal s simple inexpensive mechanism in which 
the main design concern may be tailoring the keyboard and other operator mechanisms to the 
applications in question. 

6. In a "back-end" file or data base management processor, A 

File or data base operations may be handled by a "back-end" processor. This can carry out 
the specialized functions of data base management or file searching operations. It can prevent 
interference between separate transactions updating the same data. It can be designed to give a 
high level of data security protection. "Back-end" processors, where they exist today, are 
normally cable-connected to their local host computer. They could, especially when high­ 
bandwidth networks or communications satellite facilities are available, be remote from the 
host computers which use them. 

CHOICE OF FUNCTION LOCATION 

The designer, faced with different locations in which he could place functions, may choose 
his configuration with objectives such as the following: 

1. Minimum total system cost. There is often a trade-off between distributed function cost 
and telecommunications cost. 

2. High reliability. The value attached to system availability will vary from one system to an­ 
other. The systems analyst must evaluate how much extra money is worth spending on 
duplexing, 
alternate routing and distributed processing to achieve high availability. On some systems 
reliability is vital. A supermarket must be able to keep its cash registers going when a 
communication line or distant host computer fails. 

3. Security . In some systems function distribution is vital for system security (as we discuss 
later). 

4. Psychologically effective dialogue with terminal users. Function distribution is used to 
make the dialogue fast, effective and error-free. 

5. Complexity. Excessive complexity should be avoided. The problems multiply roughly as 
the square of the complexity. 

6. Software cost. Some types of function distribution occurring throughout a network incur a 
high programming expenditure. The use of stored- program peripheral machines may inflate 
cost. 
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7. Flexibility and expandability. It is necessary to choose hardware and software 
techniques that can easily be changed and expanded later especially because 
telecommunications and net-working technology are changing so fast. Some approaches 
make this step difficult. 

REASONS FOR FUNCTION 

Lists the main reasons for function distribution. They fall into three categories: 

!.Reasons associated with the host 

Many machine instructions are needed to handle all of the telecommunications functions. 
The load on a central machine could be too great if it had to handle all of these functions. A 
single computer operates in a largely serial fashion executing one instruction at a time. It 
seems generally desirable to introduce parallelism into computing so that the circuits execute 
many operations simultaneously. This is the case when machine functions are distributed to 
many small machines. 

2. Reasons associated with the network 

There are many possible mechanisms which can be used to make the network function 
efficiently. We will discuss them later in the book, These mechanisms are, used to lower the 
overall cost of transmission and increase its reliability. The network configuration is likely to 
change substantially on most systems, both because of application development and 
increasing traffic, and because of changes in networking technology which are now coming a 
fast and furious rate. Function-distribution may be used to isolate the changing network from 
parts of the system so that the other parts do not have to be modified as the network changes. 
The term network transparency is used to imply that changes which occur in the network be 
not evident to and not affect the users. 

REASONS FOR FUNCTION DISTRIBUTION 

1. Psychologically Effective Dialogues 

• Local interaction. Much of the dialogue interaction takes place locally rather than 
being transmitted, and hence can be designed without concern for transmission 
constraints. 

• Local panel storage. Panels or graphics displayed as part of the dialogue can be 
stored locally. 

• Speed 
Local responses are fast. Time delays which are so frustrating in many terminal 

dialogues can be largely avoided. The delays that do occur when host response is needed 
can be absorbed into the dialogue structures. 

2. Reduction of Telecommunications Costs 
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• Reduction of number of messages. 
In many dialogues the number of messages transmitted to and fro can be reduced by an 
order of magnitude because dialogue is carried on within the terminal or local controller. 

• Reduction of message size. 
Messages for some applications can be much shortened because repetitive information is 
transmitted. 

• Reduction of number of line turnarounds. Because the number of messages is reduced; 
and because a terminal cluster controller or concentrator can combine many small 
messages into one block for trans- mission. 

• Bulk transmission. 
Nontime-critical items can be collected and stored for later batch transmission over a 
switched connection. 

• Data compaction. 
There are various ways of compressing data so that fewer bits have to be transmitted. 
This effectively increases the transmission speed. 

• Minimum cost routing. The machine establishing a link could attempt first to set up a 
minimum-cost connection, e.g., a corporate tie-line network. If these are busy it could try 
pro- gressively more expensive connections (e.g., WATS, direct distance dialing). 

• Controlled network access. 
Terminal users may be prevented from making expensive unauthorized calls. 

3.Reliability 

• Local autonomy. 
A local operation can continue, possibly in a fallback mode (using a minimal set of 
functions), when the location is cut off from the host computer by a circuit, network, or 
host failure. On certain systems this is vital 

• Automatic dial backup. 
A machine may be able to dial a connection if a leased circuit fails 

• Automatic alternate routing. 
A machine may be able to use an alternate leased circuit or network path when a 
network failure occurs. 

• Control procedures. 
Control procedures can be used to recover from errors, or failures and to ensure that no 
messages are lost or double-processed. 

• Automatic load balancing. 
A machine may be able to dial an extra circuit or use a different computer to handle 
high traffic peaks. 
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4. Less Load on Host 

• The Parallel operations. 
The parallel operation of many small processors relieves the host computer of much of 
its work load, and lessens the degree of multiprogramming. In some systems this is vital 
because the host is overburdened with data base operations. 
• Permits large numbers of terminals. 
Some systems require too many terminals for it to be possible to connect them directly 
to a host computer. Distributed control and operations make the system possible. 

5. Fast Response Times 

• Process mechanisms. 
Local controllers can read instruments rapidly and give a rapid response to process 
control mechanisms when necessary. 
• Human mechanisms. 
Fast reaction is possible to human actions such as the use of a plastic card or the 
drawing of a curve with a light pen. 

• Dialogue response items. 
Dialogues requiring fast response times (such as multiple menu selection) can be handled by 
local controllers. 

6. Data Collection 

• Data entry terminals. 
Many inexpensive data entry terminals (for example, on a factory shop floor) can be 
connected to a local controller which gathers data for later transmission. 

• Local error checking. 
Local checks can be made on the accuracy or syntax of terminal entries. An attempt is made 
to correct the entries before transmitting them to the host. 

• Instrumentation. 
Local controllers scan or control instruments, gathering the result for transmission to a host 
computer. 

7. More Attractive Output 

• Local editing. 
Editing of output received at terminals can lay out the data attractively for printers or screen 
displays. Repetitive headings, lines, or text, and page numbers can be added locally. Multiple 
editing formats can be stored locally. 

8. Peaks 

• Interactive and real-time systems often have peaks of traffic which are difficult or 
expensive to accommodate without function distribution. Storage at the periphery 
allows the peak transactions to be buffered or filed until they can be transmitted and 
processed economically. 
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9. Security 

• Cryptography. 
Cryptography on some systems gives a high measure of protection from wire- tapping, 
tampering with magnetic-stripe plastic cards, etc. Cryptography is vital on certain electronic 
fund transfer systems. 

• Access control. 
Security controls can prevent calls from unauthorized sources from being accepted, and 
prevent terminals from contacting unauthorized machines. 

10. Network Independence 

• Network transparency. 
Programmers of machines using networks should not be concerned with details of how the 

network functions. They should simply pass messages to the network interface and receive 
messages from it. 

• Network evolution. 
As networks grow and evolve, and as different networks are merged, programs in machines 

using the networks should not have to be rewritten. 
• New networks. 

Network technology is changing fast. As applications are switched to new types of 
networks (e.g:, DDS, value-added networks, Datadial, satellite networks); the programs in the 
using machines should not have to be rewritten. 

11. Terminal Independence 

• New terminals. , 
Terminal design is changing fast. If a new terminal is substituted, the old pro grams should 

not have to be rewritten. Software in terminal controllers may make the new terminals appear 
like the old. 

• Virtual terminal features. 
Application programs may be written without a detailed knowledge of the terminal that 

they will use. For example, the screen size or print-line size may not be known. The 
programmers use specified constraints on output, and the distributed- intelligence mechanisms 
map their output to the device in question. 

Mechanisms relating to the network may reside in any of the locations indicated in Fig. 4. 
A terminal or a controller for a cluster of terminals may have mechanisms intended to 
minimize the transmission cost. A .front-end communications processor may relieve the host 
of all network functions, and maintain network operations without loss of data if the host or 
its software fails. Intelligence may also reside in midnetwork nodes such as packet­ 
switching devices, concentrators, intelligent ex- changes, or telephone company equipment 
in systems such as AT &T's ACS. The phrase "intelligent network" is increasingly used to 
imply that the network itself uses , computers to share transmission links or other resources in 
an efficient, dependable manner. 
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3. Reasons associated with the end user 

Probably the most important of the three categories is that associated with the end user. 
On many systems built prior to the era of function distribution, the dialogue that takes place 
between the terminal and its operator is technically crude. It is often difficult for the user to 
learn, and clumsy and frustrating in operation. The user is forced to learn mnemonics and to 
remember specific sequences in which items must be entered. The response times are often 
inappropriate. The majority of the users who should be employing terminals are unable to 
make the machines work, and generally discount the possibility of ever using them because 
they perceive them as being difficult-designed for technicians, programmers, or a specially 
trained and dedicated staff. One psychologist describes many of these user-terminal interfaces 
as "unfit for human consumption." 

In the. past there has been good reason for the crudity of terminal dialogues. The 
terminals had no intelligence. Every character typed and displayed had to be transmitted over 
the network. The network often used leased voice lines serving many terminals, and to 
minimize the network cost, the number of characters transmitted was kept low. The response 
times were often higher than psychologically appropriate because of the queries on the lines. 

With intelligent terminals or controllers the dialogue processing can take place in the 
local machine. Most of the characters are not transmitted over the telephone lines. The only 
characters transmitted are those which take essential information to the central computer and 
carry back essential information to the terminal. These characters will often be only a small 
fraction of the total characters typed and displayed in a psychologically effective dialogue. 

Much of the future growth of the computer industry is dependent on making the 
machines easy to use and understand for the masses of people in all walks of life who will 
employ them, and distributed intelligence can play a vital part in this. 

HIERARCHICAL DISTRIBUTED PROCESSING 

So far this chapter has discussed function distribution in which the peripheral machines 
are not self-sufficient when isolated from their host by a telecommunications or other failure. 
Now let us expand the discussion to processing distribution in which the peripheral processors 
keep their own data and can be self- sufficient, but which are connected to higher-level 
systems. 

There is not necessarily a sharp boundary line between function distribution and 
system distribution. In some cases there has tended to be growth from function distribution to 
system distribution, with more and more power being demanded in peripheral machines. In 
other cases the peripheral machines started as standalone minicomputers and became linked 
into a higher-level system. 

The application programming steps for most (but not all) commercial transactions do not 
require a large computer. Small, inexpensive, mass-produced processors such as those 
discussed in 
the previous chapter could usually handle the whole transaction.They would handle it with a 
much smaller software path length than a large computer . The difference in software path 
length greatly reinforces the arguments about there no longer being economies of scale.Some 
large mainframes with complex data base management systems use more than 100,000 
software instructions per transaction and only a few thousand application instructions per 
transaction. 

In some cases there are good reasons for storing the data which a transaction requires 
centrally 
In other cases the data also can be kept in storage attached to the local machine. 
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As we commented earlier, criteria for determining whether a transaction is transmitted 
could be: 

1. It needs the power of a large computer 

2. It needs data which are stored centrally 

If one of these criteria does not apply, then the transaction is processed locally. Most 
commercial transactions and many scientific calculations do not need the power of a large 
computer. There are exceptions such as simulations and complex models. Many of these 
exceptions would not use the teleprocessing anyway. But the second criterion-centralized 
data-is important to some, but not all, data. Consequently data base and data 
communications techniques are closely related, and computer manufacturers produce data 
base, data communications (DBDC) software. 

EXAMPLES OF HIERARCHICAL CONFIGURATIONS 

Some examples of hierarchical configurations are as follows: 
Llnsurance 

The branches of an insurance company each have their own processor with a printer 
and terminals. This processor handles most of the computing requirements of the branch. 
Details of the insurance contracts made are sent to a head office computer for risk analysis 
and actuarial calculations. The head-office management has up-to-the- minute information 
on the company's financial position and exposure, and can adjust the quotations given b 
the salesmen accordingly. 

2. A chain store 
Each store in a chain has a minicomputer which records sales and handles inventory 

control and accounts receivable. It prints sales slips (receipts) for customers at the time of 
sale. Salesmen and office personnel can use the terminals to display pricing inventory and 
accounts receivable information, and customer statements. The store management can 
display salesman 
performance information and goods aging and other analysis reports. 

The store systems transmit inventory and sales information to the head office 
system.At night they receive inventory change information.The fast receipt of inventory 
and sales information enables the head office system to keep the inventory of the entire 
organization to a minimum. 

The store systems run unattended.Any program changes are transmitted to the systems 
from the head office computer. 

3. Production control 

Various different production departments in a factory complex each have a mnu­ 
computer. Work station terminals on the shop floor are connected to the minicomputer and the 
workers enter details of the operations they perform. The task of scheduling the operations so 
as to make the best utilization of men and machines is done by the minicomputer. The shop 
foreman displays these operations schedules and often makes changes to them because of 
local problems and priorities.He frequently makes a change and instructs the machine to 
reperform itsscheduling program. 

Details of the work to be done are made up by a higher-level computer which receives 
information about sales and delivery dates,and performs a gross and net breakdown of the 
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parts that must be manufactured to fill the orders.The central computer passes its job 
reqirements to the shop floor minicmputers, and receives status reports from them. 

PROCESS CONTROL 

Hierarchies of processors were common in process control applications before they were 
used in commercial data processing. Many instruments taking readings in an industrial or 
chemical process are connected to a small reliable computer which scans the readings looking 
for exceptions or analyzing trends. The same computer may automatically control part of the 
operation, setting switches, operating relays, regulating temperatures, adjusting values, and so 
on. 

Response time must be fast on some process control applications. A local mun­ 
computer is used to ensure fast response. Increasingly today, tiny cheap microprocessors are 
being employed in instruments and control mechanisms. Many such devices may be attached 
to a minicomputer which stores data relating to the process being controlled. A higher-level 
computer may be concerned with planning the operations, optimization, providing 
information for management control, or general data processing. Figure 6 shows a 
configuration in a steel mill, with different processors each having its own two-level process­ 
control system, with these systems being linked to a higher production planning system. 

In hospitals, the elaborate patient instrumentation used in intensive-care wards is 
monitored and controlled by small, local and highly reliable computers. These in turn are 
linked to higher-level machines which can perform complex analyses, provide in- formation 
to stations, record patient histories, and so on. 

CAUSALLY COUPLED 

In some configurations the design of the peripheral systems is largely independent of the 
design of the higher- level systems. In others the periphery and the center are so closely 
related that they are really separate components of the same system. 

An example of a causally coupled configuration is a corporate head-office information 
system which derives its data from separate systems, separately installed in different corporate 
departments. These systems transmit data at the end of the day to the control system where it 
is edited, reformatted, and filed in a different manner to that in the peripheral systems, to 
serve a different purpose. The installers of the peripheral systems designed them for their own 
needs and were largely unaware of the needs of the central system. An example of a closely 
coupled design is a banking system in which all customer data is stored by a central computer. 
(This does not apply to all banks. Some have loosely distributed systems.) A small computer 
in each branch, or group of branches, serves the processing needs of that branch, providing 
the tellers and the officer with the information they need at the terminals. Customer data is 
also stored in the branch com- largely in case of a failure of the central system or the 
telecommunications link to it. The peripheral files are strictly subsets of the central file. The 
programs developed for the peripheral computers are compiled on the central computer, and 
loaded from it into the peripheral computers. Changes in the peripheral programs are made 
centrally and transmitted. Account balancing requires tight cooperation of the peripheral and 
central machines. 
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Figure 6 a hierarchy of computers in a steel mill which integrates the process control in 
several plant areas, and production planning. The system gives higher productivity of plant 
operations and permits immediate response to customer orders. 

MULTIPLE LEVELS 

Vertically distributed configurations may contain more than two levels of processor. In some 
there may be as many as four levels . 

The lowest level may consist of intelligent terminals for data entry, or microprocessors in a 
factory, scanning instruments. 

The next level may be a computer in a sales region assembling and storing data that 
relates to that region, or a computer in a factory assembling the data from the microprocessors 
and being used for production planning. 

The third level is a conventional large computer system in the divisional head office, 
performing many types of data processing and maintaining large data bases for routine 
operations. This computer center receives data from the lower systems and sends instructions 
to them. 

The highest level is a corporate management information system, with data structured 
differently from that in the systems used for routine operations. This system may be designed 
to assist various types of high-management decision making. It may run complex corporate 
financial models or elaborate programs to assist in optimizing certain corporate operations, for 
example, scheduling a tanker fleet. It receives summary data from other, lower systems. 
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REASONS FOR HIERARCHIES 

Reasons for using hierarchical systems distribution are, summarized in Box 3 .2. The set 
of reasons should include those in Box 3 .1 on function distribution. An important group of 
reasons on some configurations is related to data-where it is kept and how it is maintained. 
Also of great importance are arguments relating to human, political, and organizational 
reasons, in addition to technical reasons . 

HORIZONTAL DISTRIBUTION 
So far we have discussed vertically distributed systems. Now we will consider 

horizontal distribution. 
Some software, control mechanisms and system architectures are primarily oriented to 

vertical distribution, and some are primarily for peer-coupled systems. A transport subsystem 
which merely transmits data between computers could be designed to serve a horizontal or 
vertical configuration equally well. The differences are more important in the higher-level 
activities such as file man- agreement, or data base management, intelligent terminal control, 
data compression, editing, man-machine dialogues, recovery, restart, and so on. 

In reality, major differences are found in the transport subsystems also. A transport 
subsystem designed for vertical distribution can have simpler flow control and routing control 
mechanisms, and have simpler recovery procedures. It may use elaborate concentrators or 
other devices for maximizing network utilization, and may employ some of the function 
distribution features listed in Box 3 .1. We discuss these mechanisms later in the book. 

BOX 3.2 Technical reasons for using hierarchical distributed processing 

(Note there are also human, political, and organizational reasons which are often more 
important than these technical reasons.) 
· Cost. 
Total system cost may be lower. There is less data transmission and many functions are 
moved from the host machine. 

· Capacity. 
The host may not be able to handle the workload without distribution. Distribution permits 

many functions to be performed in parallel. 

· Availability. 
Fault tolerant design can be used. Critical applications continue when there has been a host 

or telecommunications failure. The small peripheral processors may be substitutable. In some 
systems high reliability is vital; e.g., a supermarket system, or hospital patient monitoring. 

· Response time. 
Local responses to critical functions can be fast; no telecommunications delay; no 

scheduling problems; instruments are scanned and controlled by a local device. 

· User interface. 
A better user interface can be employed, e.g., better terminal dialogue, when the user 

interacts with a local machine; also better graphics or screen design; more responses, faster 
response time. 
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· Simplicity. 
Separation of the peripheral functions can give a simpler, more modular system design. 

· More function. 
More system functions are often found because of ease of implementing them on the 

peripheral machines. Salary savings often result from increased peripheral functions. 

· Separate data organizations. 
The data on the higher-level system may be differently organized from those on the 

peripheral systems (e.g., corporate management information organized for spontaneous 
searching versus local detailed operational data tightly organized for one application). 
Reasons for horizontal computer networks 

· Resource sharing. 
Expensive or unique resources can be shared by a large community of users, as on 

ARPANET. 

· Diversity. 
Users have access to many different computers, programs, and data banks . 

. Transaction interchange 
Transactions are passed from one system to another or from one corporation to another: 

e:g., financial transactions passed between banks on SWIFT; airline reservations or messages 
passed between computers in separate airlines, as on SIT A. 

· Separate systems linked. 
Separate previously existing systems are linked so that one can use another's data or 

programs, or to permit users to access all of them. 

· Local autonomy. 
Local autonomous rmrucomputer systems are favored, with their own files, and some 

transactions need data which reside on the file of a separate system. 

· Functional separation. 
Instead of one computer center performing all types of work, separate centers specialize in 
different types. For example, one does large-scale scientific computation. One does 
information retrieval. One has a data base for certain classes of application. One does mass 
printing and mailing. 
· Transmission cost. 

Separate systems share a common network designed to minimize the combined data ( and 
possibly voice) transmission cost. 

· Reliability and security. 
When one system fails, others can process transactions. If one system is destroyed, its files 

can be reconstructed on another. 

· Load sharing. 
Unpredictable peaks of work on one machine can be off-loaded to other machines. 
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· Encouragement of development. 
A corporate network can permit small data processing groups to develop applications. 

PATTERNS OF WORK 

Because of the mechanisms built into software or systems architecture, designers 
sometimes try to make all configurations vertical, or all configurations horizontal. This can 
result in excessive aver- head, system inflexibility, or clumsy control. Whether or not a 
configuration should be vertical, or horizontal, or both, depends upon the patterns of work the 
configuration must accomplish and the patterns of data usage. 

In designing a distributed system we are concerned with such questions as: 
· Where are the units of processing work required? 
· How large are these units". What size of processing machine do they need? 
· Are the units independent, or does one depend on the results of another? 
· What stored data do the work units employ? 
· Do they share common or independent data? 
· What transactions must pass between one unit and another? What are the patterns of 
transaction flow? 
· Must transactions pass between the units of work immediately, or is a delay acceptable? 
What is the cost of delay? 

The answers to these questions differ from one organization to another. The patterns of 
work are different. The patterns of information flow between work units are different. 
Different types of corporations tend, therefore, to have their own natural shapes for distributed 
processing. What is best for an airline is not necessarily best for an insurance company. 

The nature of the work units may be such that they can be independent of one another and 
have no need to know what each of the others is doing. They may be standalone units having 
no communication with any other unit-possibly standalone minicomputers. On the other hand, 
they may need to share common data which resides centrally. In this case there are vertical 
links to a common data store. There may be multiple such data stores which themselves 
pass information to a higher system. Alternatively the work units at one level may be such 
that they need to pass information to other units at the same level. This situation may lead 
naturally to hori- zontal communication; but it could also, if necessary, be handled vertically 
with a centralized processor relaying transactions between the units. 

EXAMPLES 

1. An airline reservation system requires a common pool of data on seat availability. 
Geographically scattered work units use, and may update, the data in this pool. Each of them 
needs data which is up-to-date second by second. This data needs to be kept centrally. The 
bulkiest data are those relating to passengers. A passenger may telephone the airline in cities 
far apart; when he does so the agent to whom he talks must be able to access needed data. In 
order to rind the data it is easier to keep it centrally also. 
2. A car rental firm may permit its customers to pick up a car at one location and leave it at 
another. When the car is picked up a computer terminal prepares the contract. When the car is 
left a terminal is used to check the contract and calculate the bill. If a minicomputer at each 
location performed these functions, horizontal communication would be needed between the 
destination location and the location where the car was picked up. However, some centralized 

19 



work is also needed because it is necessary to keep track of the company's cars and ensure 
that they are distributed appropriately for each day's crop of customers. Credit and other 
details about regular customers may also be kept centrally. The shape of the work therefore 
indicates both vertical and horizontal dis- tribution. However, because the centralized 
(vertical) links are needed, the customer con- tracts may also be kept centrally and the same 
links used to access them. The rental offices may then use intelligent terminals rather than 
complete minicomputers. 

3. Insurance companies have offices in different locations. They keep details about customers 
and their policies. An office does not normally need to share these data with another office or 
pass transactions to it. The offices could therefore use standalone machines. Customers in 
different locations may have different requirements. In the U.S. different states have different 
insurance regulations and tax laws. The different machines may therefore be programmed 
some what differently. The insurance company's head office, however, needs to know 
enough details of all customers policies to enable it to evaluate the company's cash flow, and 
risks, and to perform actuarial calculations which enable it to control the company's financial 
exposure. Enough data for this purpose is therefore passed upwards to the head office. This 
vertical communication does not need to be real-time, as in the case of an airline reservation 
system. It can be transmitted in periodic batches. 

Although the pattern of the work in an insurance company is appropriate for a decentralized 
system, that does not necessarily mean that a decentralized system will be the cheapest or 
best. There are various arguments for centralization, among them economies of scale, 
centralized control of programming, and use of data base software. A function-distribution 
rather than a processing-distribution configuration is used in some insurance companies. 

4. In a group of banks, each handles its own customers with its own data processing system. 
A customer in one bank, however, can make monetary transfers to customers in other banks. 
A network is set up by the banks to perform such transfers electronically. The money is 
moved very rapidly and hence is available for use or interest-gathering by banks for a longer 
period. The use of this ' 'float" more than pays for the network. In this example we have a 
peer-coupled configuration with need for a horizontal transfer between the work units. 

DEGREE OF HOMOGENEITY : 

We may classify horizontal configurations according to the degree of homogeneity of the 
systems which communicate. This affects the design, the choice of software and network 
techniques and, often, the overall management. At one extreme we have identical machines 
running the same application pro- grams in the same corporation. In other words the 
processing load has been split between several identical computers. At the other extreme we 
have incompatible ma- chines running entirely different programs in different organizations, 
but nevertheless interconnected by a network. One of the best known examples of this is 
ARP ANET, interconnecting university and research centers. 

NONCOOPERATIVE SYSTEMS 

We may subdivide configurations into those composed of cooperative and non cooperative 
systems. A non cooperative configuration consists of computer systems installed 
independently by different authorities with no common agency controlling their design, but 
linked by a common shared network. 

20 



• 
When the networking capability becomes accepted and understood by the various system 

development groups, there may be slightly less non cooperation. Developers know that a 
certain data base exists on another system. They may learn to think in terms of interchanging. 
data, sharing resources, and establishing compatible transaction formats. 
Because the cost and ease of networking will improve greatly in the future, some 

corporations have attempted to impose certain standards on their diverse systems groups, 
which will eventually make interconnection of the systems more practical or more valuable. 
Among the types of standards imposed or attempted have been the following: 

1. Standardization of transaction formats. 
2. Standardization of line control discipline. 
3. Use of compatible computers (one large corporation decreed that all minicomputers 

should be DEC machines, possibly anticipating future use of DEC's network 
architecture). 

4. Standardization of data field formats and use of an organization-wide data dictionary. 
5. Standardization ofrecord or segment formats. 
6. Use of a common data description language (e.g., CODASYL DDL, or IBM's DLII) 
7. Use of a common data base management software. 
8. Use of a common networking architecture. 

COO PERA TING SYSTEMS 

Cooperating systems are designed to achieve a common purpose, serve a single 
organization, or interchange data in an agreed-upon manner. We can subdivide cooperating 
systems into those in which the separate systems are used by the same organization and 
those in which separate corporations are interlinked. 

Networks which interlink separate corporations are found today in certain industries. In 
the future they may become common in most industries to bypass the laborintensive steps of 
mailing, sorting, and key-entering orders, invoices, and other documents which pass from a 
computer in one organization to a computer in another. 

Industries with inter corporate computer networks today include banking and air- lines. 
Most major airlines have reservation systems in which terminals over a wide geographic area 
are connected to a central computer. Worldwide airlines have worldwide networks. Many 
booking requests cannot be fulfilled completely by the airline to which they were made. The 
airline might have no seats available, or the journey may necessitate flights on more than one 
earner. 

Booking messages therefore have to be passed from the computer in one airline to the 
computer in another, and often the response is passed back swiftly enough to inform the 
booking agent who initiated the request at his terminal. In order to achieve this linking of 
separate systems all partici- pating airlines must agree to a rigorously defined format for the 
messages passing between the airlines. This format is standardized by an industry association, 
A TA in the United States and IATA internationally. To operate the interlinking network, the 
air- lines set up independent nonprofit organizations. 

ARINC (Aeronautical Radio Incorporated) in the U.S., and STTA internationally (Societe 
International de Telecommunications Aeronautique ). The separate airlines must send AT A- or 
IATA-format messages using the ARINC or SITA protocols. These networks began as 
networks for sending low-speed off line telprinter messages. As the need arose they were 
upgraded to handle fast-response messages between computers as well as conventional 

21 



• 
teleprinter traffic.The computer-to-computer network of SIT A (including future proposed 
links). 

Networks have also been designed to connect bank computers for moving money. 
The SIT A network's present and proposed trunks. Many smaller, lower-level centers are 

connected to those shown. 
and messages almost instantaneously between banks. As with the case of airlines, the bank 
computers are differently programmed, incompatible machines, set up by widely different 
corporations in different countries. Like the airlines the banks must send rigorously formatted 
messages and observe precise network protocols. In this case a very high level of security 
must be built into the cooperative procedures because sums exceeding a million dollars are 
transmitted between computers. 

SYSTEMS UNDER ONE MANAGEMENT 

Much of the use of distributed computing is within one corporation under one management. 
This could result in a compatible configuration using a common networking architecture. 
Often, however, the systems to be linked were installed separately in separate locations 
without any thought about eventual interconnection. The files or data bases are incompatible; 
the same data field is formatted differently in different systems; programs cannot be moved 
from one computer to another without rewriting; where teleprocessing is used the terminals 
are incompatible; and even the line control procedures are different so the terminals cannot be 
changed without a major upheaval in the systems they are connected to. In this environment a 
major reprogramming and redesign effort is needed before networking becomes of much 
value, and often this effort is .too expensive. 

It is necessary that systems in different functional areas of a corporation be developed by 
different groups. Corporate data processing is much too complex for one group to develop 
more than a portion of it. The current trend to decentralization is resulting in more and more 
autonomous groups carrying out application development. This a valuable trend because it 
results in more people being involved in application development, and the development being 
done locally where the application problems are understood. 

INTERFACES 

In order to make computer networking of value, it is desirable that the interfaces between 
the separately developed systems be rigorously defined and adhered to. If the interfaces are 
preserved, each development group can work autonomously. 

There are several levels of interface: 

1. Interface to the transport subsystem which permits blocks of data to be moved 
between distant machines. This interface can be defined independently of the 
application or the firms which use the network. 

2. Interfaces for the software services which are external to the transport subsystem but 
not part of the application programs; for example software for remote file access, 
compaction, con- version, cryptography, setting up sessions, editing messages, and so 
on. 
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3. Applications interfaces defining what transaction types are interchanged between 

different application systems. These can be defined independently of the choice of 
networking software or hardware. 

Interface 1, above, is provided by some common carrier systems for computer networking 
(the CCITT X.25 standard, for example). Interfaces 1 and 2 are provided by some of the 
manufacturers protocols for computer networks and distributed processing (for example 
IBM's and DEC's architectures for networks). Interface 3, above, is usually up to the systems 
analysts.Gives an illustration of computers serving six functional areas in a corporation, and 
shows the transaction types flowing between them. A typical transaction would be given a 
rigorously defined format. When they are transmitted between machines, data would be in the 
format with additional headers and a trailer prescribed by interfaces 1 and 2. 

As changing costs take the computer industry increasingly toward distributed processing, 
one highly desirable characteristic is portability of programs. Programs should be capable of 
being moved from one processor to another and gaining access to distributed data instead of 
centralized data. There are arguments for, and against, distributed processing, and there are 
many possible distributed configurations. It is advantageous for a manufacturer's product lines 
to possess the flexibility to change system configurations without the need to rewrite 
programs. 

The interfaces and protocols that are desirable for distributed processing make the software 
complex, as we shall see. Furthermore there are so many different configurations, functions, 
machines, operating systems, access methods and data base management systems that need to 
be supported that it will be years before the software for distributed systems can do everything 
that is theoretically desirable. New machines, operating systems, and other software will 
increasingly be designed to plug into the rigorously defined architectures for distributed 
systems. 

Computer networks and distributed processing are a vitally important and fundamental step 
in the growth of the computing and telecommunications industries. There is a long road 
ahead, and the journey will take years to come. 

Applications Areas 

INTRODUCTION 

1. Computers can be employed for a wide variety of purposes but computers are 
particularly suited to certain kinds of work. It may be possible to use a computer for a 
particular application if certain criteria are met. Whether or not a computer is used will 
depend on other factors. This chapter considers these criteria and factors and then deals with a 
variety of particular applications which illustrate the general principles. 

CRITERIA FOR USING COMPUTERS 

2.The following are the criteria by which to judge an application's possible 
suitability to the use of computers: 

a. Volume. The computer is particularly suited to handling large amounts of data. 
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b.Accuracy. The need for a high degree of accuracy is satisifed by the computer 
and its consistency can be relied upon. 

c.Repetitiveness. Processing cycles that repeat themselves over and over again are 
ideally suited to computers. Once programmed the computer happily goes on and 
on automatically performing as many cycles as required. 

d.Complexity. The computer can perform the most complex calculations. As 
long as the application can be programmed then the computer can provide the 
answers required. 

e.Speed. Computers work at phenomenal speeds. This combined with their ability 
to communicate with other systems, even those at remote locations, enables them 
to respond very quickly to given situations. 

f.Common data. One item of data on a computer system may be involved m 
several different procedures, or accessed by a variety of users. 

It can be updated and inspected by a number of different users. In manual systems data is 
often accessible to a limited number of people for particular purposes. This can hinder the 
work of others who need access to the data. 

3.It is usually the combination of two or more of the criteria listed which will indicate the 
suitability of an application to computer use. The criteria that have been described will be 
used by those who carry out a Preliminary Survey in order to judge the suitability of 
applications for computerisation. 

OTHER FACTORS 

4.If the general criteria for using a computer suggest that a particular application may be 
suitable for computerisation, then there are a number of questions which will require 
satisfactory answers before any decision to computerise is taken. The main questions will be;- 

a. Is the use of a computer for this application technically feasible? ie. can it be 
done with the computer technology currently available? 

b. Would the use of a computer be cost effective? ie. would the computer pay for 
itself in terms of the benefits it would provide? 

c. Would the use of a computer be socially acceptable? ie. would the impact of 
the computer on people's work, jobs or general lifestyle be acceptable? 

5.The answers to questions such as those just mentioned, change with changing 
circumstances. For example many computer applications which were mere science fiction a 
few years ago, are now technically feasible. eg. the use of simple robots. Developments in 
microelectronics have reduced prices so that applications which have been technically feasible 
for twenty years or more, are only now becoming cost effective. Peoples willingness to accept 
computers depends on previous experience, general attitudes, and on how well or badly they 
have been informed. 
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LEVELS OF COMPUTERISATION 

6. The extent to which an application may be computerised will be determined by the 
nature of the work involved. Three basic levels of computerisation may be identified: 
basic levels of computerisation may be identified 

a. Complete computerisation. Simple well defined and repetitive tasks can often be 
completely computerised eg. basic clerical functions or control of simple machines. 

b. Partial computerisation. Computer is can often be applied to applications which 
require the control of operations under some agreed plan or strategy. The computer may 
take oven routine control bat may be monitored by humans, who will also deal with 
exceptional cases eg. the day to day operation of a stock control system or a computerised 
production line. 

c. Computer aided applications. Computers may be used in many applications to aid 
management or decision making, by the Sorely provision of accurate results or information 
eg. the computer can be used to analyse problems or simulate systems in order to aid 
designing or planning. 

MAIN AREAS OF APPLICATION 

7. Two main areas of computer application may be identified 
a. Commercial applications. This covers the use of 
computers for clerical, administrative and business uses, in private and public 
organisations, ie. the emphasis is on data prOOOssiog. (in. Collecting, maintaining and 
manipulating volumes of data to produce information). 
b. Scientific, Engineering and Research Applications. This covers the use of computers 
for complex calculations, the design, analysis and control of physical systems, and the 
analysis of experimental data or results, in. the emphasis on Scientific Processing (in. the 
rapid processing of data relating to complex problems.) 
There are other to minor areas which do not fall into either or the two main categories eg. 

Personal Computing in computing done as a hobby. One could argue that it fulls into wiser category. 

8. Many organisations use computers for a variety of applications. For example a 
manufacturer may use computers for data processing, scientific research and engineering 
development work. 

COMMON APPLICATIONS 

9.Payroll. This is a well established computer application normally handled by batch 
processing. The production of the weekly wages or monthly salary payments of employees is 
a regular repetitive clerical task on sizeable volumes of data and ideal for computerisation. 

IO.Office Automation. In contrast with payroll which is a long standing computer 
application, office automation is a relatively new area of computerisation. 

In automated offices many of the routine clerical and secretarial tasks are taken over by 
computer based equipment which exploits developments in microelectronics. 
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11. Elements of such systems include: 
a. Modern computer systems. 
b. Word processing systems (ie. Computers used for document preparation). 
c. Modern methods of displaying and copying data electronically 
d. Modern communication links able to interconnect all elements in the system to one 
another and to other systems eg. by networks or electronic mail (details later). 

12.Stock Control. This application will be discussed . The control of stock is important in 
both public and private orgnaisation. 

13.Production and labour control. The success of an organisation depends on how well 
it manages its resources. People, machines, materials, money and buildings all need careful 
management. Computers are used to control production and labour, just as they are used to 
control stock. 

14. Accounting. There are many routine clerical tasks associated with recording details of 
financial transactions made by an organisation. This has given rise to the frequent use of 
computer for such accounting functions, particularly in larger organisations 

EXTENDING AND INTEGRATING APPLICATIONS 

15. Many basic applications can be extended to give useful information for 
management purposes eg. using a stock control system to provide reports to management. 
Further benefits can be obtained by integrating different 16. applications eg. linking the 
payroll system to the labour or production control system. 

16. Further benefits can be obtained by integrating different applications eg. linking 
the payroll system to the labour or production control system. 

PARTICULAR APPLICATIONS AREAS 

17.In this section a number of particular applications areas are described because of 
their importance and interest. 

18.Applications exploiting the full computational power of computers. Many of these 
applications have a scientific bias. They include:- 

a. Weather forecasting systems. Reliable weather forecasting a demands vast 
computational powers. This is an area for the super computers (ie. computers 
with exceptionally fast processors). 

b. Mathematical and Statistical Analysis. This includes large calculations and 
the solution of mathematical problems. The applications requiring this include 
research in physics, chemistry, geology, archaeology, medicine astronomy etc. 
Some commercial problems also have a mathematical bias eg. those ,that require 
mathematical analysis to determine the optimum use of resources. 

c. Design work. Computers can be exploited as design tool in engineering and other 
disciplines. CAD (Computer Aided Design) is growing in importance in 
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Electronic, Electrical, Mechanical and Aeronautical Engineering and 
Architecture.This application often also exploits in computer graphics. 

19.Analog Computing. Most computers in everyday use today are digital computers. 
That is, they are computers which carry out operations on distinct data values in discrete 
steps. Analog computers, in contrast to digital computers carry out operations on data which 
can vary continuously. 

20.Financial Applications. The banks and insurance companies are major users of 
commercial computer systems. Here is an indication of some of the ways in which banks 
use computers: 

a. Automatic cheque clearing. Since the late 1950s banks in Britain have used a 
computerised system for handling cheques which ensures that payments by 
cheque are cleared within three days. 

b. Standing Orders and Direct Debit. Regular payments may be made 
automatically by banks as part of a computerised system called BACS 
(Bankers' Automatic Clearing Services Ltd). Magnetic tape is used to store 
details of the transactions for a particular day. 

c. General uses. Bank customer accounts are largely computerised and some 
details, eg. current balance, may be available on-line. 

d. Newer uses. Within the last ten years or so a number of special purpose cash 
dispensing machines have been introduced for use outside banks even when 
the banks are not open. This is a computerised service. 

21.The cashless society. The success of computers in banking and in supporting credit 
card systems such as BARCLAYCARD or ACCESS has led many people to predict that we 
will eventually have a "cashless society" in which credit cards and special tills will cater for 
all "money" transactions. At present over 90% of all payments are in cash. 

22.Retailing. The use of computers in the retail trades is now widespread. There have 
been numerous developments particularly in the area of data capture. 

23.Some large supermarket chains have large and sophisticated stock control systems in 
which tills, using laser scanners, provide on-line data capture, and also have warehouses 
which are fully computerised. 

24. Medical Applications. There are numerous. applications of computers in medicine. 
Here are some exam research 

a. Computers can be used as an aid to medical research the by analysing data produced 
from experiments e trial of drugs. 

b. Computers can be used to aid diagnosis. The computer acts as a large bank of data 
about known medical conditions. Once the computer system has been set up by 
medical experts an ordinary doctor can be taken through a question and answer session 
by the computer until a correct diagnosis is made. 

c. Computers can be used to hold details of dentists' or GPs' patients. Small computer 
systems have been used for years in increasing numbers since the late 70 s. 

d. Computerised children's health records for immunisation have been used by local 
health authorities for a number of . These records are used by medical officers, health 
years visitors etc. 
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25. Education. Computers of specialist study in Computer Studies, they are used as an 

extremely versatile way of aiding the understanding of a user wide variety of other subjects. 
The computer can guide a course of instruction at a VDU. The computer can through provide 
instructions and ask questions of the user CAI of activity is called CAL (Computer Aided 
Learn g) (Computer Aided Instruction). 

26. Computers are also used for a number of other applications the marking of multiple 
choice examination in Education eg examination results for many papers and processing 
examinations boards. 

27. Manufacturing. Some aspects of computer use in manufacturing stock a ring 
facturing have already been covered egineering design.The design control, and engineering 
computerised, and testing processes are design, hence the terms CAD and CADMAT 
Computer (Computer Aided Manufacture Aided Design Manufacture and Testing). 

In some countries, particularly in Scandinavia, there are public mittees charged with the 
task of approving the design of systems that are to contain personal data. To make their task 
easier, design guidelines are being developed and these will give a passive users some 
influence , although quite indirect on the design of systems in which they may be included. 

APPLICATION AREAS 

The use of CBISs has spread from the research applications in technical d natural 
sciences , government statistical services and military systems for which they ere 
initially used in the mid- l 950s to ' t ally all research areas, government and business 
administration, health services the study and development of hence and music scores, 
teaching from pre-school to post-graduate, customer services computing, and other areas. 
Today it is difficult to find an area which has not been affected to some degree by 
automation. And indeed, new application areas s em limited only by our imagination. 

Perhaps not all applications are good in the sense that automation has improved some 
facet of the work or leisure activity, or has have been a economically justifiable. However 
as the costs f computer power continue to fall and the aveila6le computer power and memory 
space continue to increase, the economics of applications will continue to improve . 

In the following discussion we will list a number of traditional application areas 
and note a few of the more unusual application . The idea is to stimulate the reader's 
imagination not to list good application 

Business Applications 
The best-established business CBISs are at the operational level of the organization . 

These s est ms capture operating data product customer , suppliers, and employees. They 
then produce r port inventory status, customer billing, material orders, payrolls, budgets, and 
accounts. Traditional CBIS applications are found in: 

• production management: production control, engineering support (CAD/CAM)project 
management, inventory management internal accounting. 

• marketing: market research, sales support, customer service supplier systems. 
• personnel management: payroll, project assignment , personnel development 

(education, job histories, recruitment). 
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USING COMPUTER-BASED INFORMATION SYSTEMS 

• planning: decision support systems, operational analysis, project scheduling, 
forecasting, simulations. 

• finance: budget planning, portfolio management, accounts receivable or payable, 
general ledger. 

• office management: word processing for reports and letters, scheduling of 
meetings, message/memo systems, archives, information retrieval systems. 

Within business applications, current CBIS development efforts are directed toward 
providing office management and office activities with automated tools and toward making 
the organization's data and data processing facilities more readily available to both tactical­ 
and strategic- level management. Under the name of decision support systems (DSS), 
management decision aids are being provided for use in forecasting, statistical analysis, 
econometric analysis, and simulation of decision alternatives. 

Improvements in terminal facilities and user interface languages are allowing non-EDP 
personnel and infrequent users to use DP services. The advent of microcomputers has allowed 
data processing services to move into the office and into small businesses, such as medical 
offices, dental offices, or local groceries. 

Government and Public Service Applications 

Many of the types of CBISs applicable in business administration are also applicable in 
government administration at all levels, from national to local, and in all sections, including 
health and social services, communications, justice, military, and others. Examples include 
personnel administration, finance, customer/client services, and project management. 

In addition, specific government and public service operations use a number of CBIS 
applications. These include: 

• law enforcement: criminal and crime registers, court scheduling, law research. 
• health services: patient journals, hospital service scheduling; intensive care 

monitoring, outpatient registers, billing and payment, national health services 
(Medicare/Medicaid), medical research. 

• social services: participant registration (such as Social Security membership), 
recipient payments, registration of social services and pro- grams, school 
administration, Social Security administration. 

• internal revenue services: personal and business tax management, budgeting. 
statistical services: census, labour statistics, business, export and import. 

APPLICATION AREAS 

• military applications: research, space exploration, strategic planning. 
• weather forecasting. 
• library and information services: recording and making available information 

about books, articles, and laws; medical information; consumer reports; statistical 
reports. 

• graphic services: constructing maps of states, counties, or cities; presentation of 
data in graphic form; locating special items, such as fire hydrants, candy shops, or 
hospitals. Also, in government and public service areas, as well as in the private 
sector, organizations are developing CBISs aimed at providing information­ 
processing services to high-level management, office staff, and the general public. 

29 



Particularly interesting is the development of public information services where 
"customers," that is, anyone with a terminal, telephone, or TV, will be able to 
reach a news/information service and receive information covering any of a 
number of areas, from weather to sports to foreign and local news. Customers will 
also be able to order anything from airline tickets to food. 

Research Applications 

Almost all possible areas of research have made or can make use of CBISs. For 
example: 

• Statistical methods are useful for determining relationships between observed 
phenomena in areas such as weather, stars, public opinions, epidemics, word usage 
in texts, and many others. 

• Computer simulations are useful for analyzing models of functions of people 
(medicine), animals (biology), organizations and technical systems, and many 
others. 

• Information retrieval techniques are useful for organizing, and selecting individual 
items from; voluminous quantities of texts, and from reference collections 
(catalogs) for manuscripts, music scores, descriptions of pictures, museum objects, 
specialist directories, and so on. 

• Graphic techniques can be used for studying almost all physical items from 
molecules and cells, towns and populations, to the solar system. 

The special area of artificial intelligence uses the computer heavily to mimic human 
behavior in order to better understand how we function, the point being to be able to 
construct useful robotic helpers. Also, the computer and CBISs are vital to the further 
development of computers and CBISs. 

Educational Applications 

There are two important CBIS application areas in the educational sector, one in 
school administration and the other in support of teaching activities. Both these areas have 
made use of CBISs and are continuing to expand their use. A primary impetus to the use of 
automated tools is the advent of microcomputers, providing inexpensive computational 
power. 
School administration, for one school or for a nation's or district's school system; is similar in 
many ways to business and government ad- ministration, including financial and personnel 
management; student (= customer/client) administration, and course (= product/service) 
administration. An interesting special application is the problem of scheduling students, 
teachers, courses, rooms, and time. 

Computer-assisted instruction (CAI) programs for drills in spelling and math; 
simulated experiments in chemistry and physics; language development in English, Spanish, 
arid German; and many other areas are available. CAI programs are also available for a host 
of teach-your- self courses from programming and typing to history. CAI systems have been 
developed for the traditional school system, grades 1 through 12, for pre-school learning, for 
adult education, and for special job training. An example of the last would be the flight 
simulators used to train pilots. 
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Home Applications 

With the advent of microcomputers, computing has become financially accessible to 
many homes and families. There are literally thousands of programs available for the 
microcomputer owner and his or her spouse and children. These include business systems to 
support home economics, such as check managers, word processors for letter writing, 
information retrieval systems for recipe collections, address list pro- grams for Christmas card 
lists, CAI programs for homework and new learning, and, of course, games. 

The home market is becoming increasingly interesting to the information-service 
industry, which is offering home users such services as news and weather reports, stock 
market services, home banking, mail order services, airline reservations, and access to 
extensive data bases. 
Computers are already used in our cars and stoves. They can also be used to regulate lighting 
and heating, and as burglar alarms. 

Introduction to Distributed Systems and Distributed Software 

We describe the main characteristics of distributed systems, their classification end 
programming techniques. Examples demonstrate the application areas of distributed systems. 

Changes in Computing Technology 

During the last two decades the principal application of the information processing and 
computing technology has been to central computers. Up to several thousand terminals have 
been connected to such centralised systems. Users sitting in front of their terminals have 
shared the central processor, the attached equipment for data storage, and the available 
programs. Each user is granted time slices of the central processor, so that the computer is 
shared between the various users. The execution of the users' programs is interleaved with 
several users sharing the execution time of the central processor. This type of system is called 
a time sharing system; it can be regarded as the parallel or concurrent execution of several 
programs i.e. their execution on several processors. If the same program is executed by 
several users each execution is in a different state, i.e. each user has his own set of data and 
the program instruction to be executed next is specific to the user. The execution of a program 
for a particular user is called a process (A more detailed discussion of the term process is 
given in section 1.3). Each process is given individual time slices of the central processor. 

Several processes can have access to the same data base concurrently. This can lead to a 
situation in which the database is in an inconsistent state. This happens if for example one 
process wants to write to the database but access to the central processor is given to another 
process so that only parts of the new data have been written to the data base. As such other 
processes can have altered the data base before the first process can again access the central 
processor. To keep the data in a consistent state, access to shared data must be synchronised. 
In order to do this several synchronisation concepts have been developed. Synchronisation 
allows the execution of processes to be controlled, e.g. a process is stopped until another 
process has reached a certain state. Most programs have involved access to data bases. The 
major task of data base applications has been the retrieval. processing updating and replacing 
of data in data in. The programs process one or more data bases. The aim has been to develop 
a data model which covers all data aspects of an organisation in order to avoid that the same 
data is contained in more than one data bases. 

This has been done by designing a single closed data base or by merging several 
existing data bases. The application programs try to; meet the requirements of organisational 
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units but they cannot cover the requirements of small groups or individuals. The computer has 
to be used for the most important tasks of as many users as possible in order to recoup its high 
cost. There has been no room for individual wishes and requirements. Before starting the 
development of a new program or changing an existing program the requirements of all the 
users have to be ascertained. This is a complicated and cumbersome process. The 
development or alteration of a program has taken a long time, especially if new data which is 
not available in the existing data bases or was not even foreseen in the data model has been 
required. 

Since the eightes a new trend emerged, personal computers or PC's. These allow the 
environment of each user to be individually configured. All the computing capability, storage 
capacity, data, and programs belong to the owner of the PC. This has made it possible to 
implement programs which meet the reqirements of a single user much better. The exclusive 
ownership of computer capability has allowed the development of very convenient user 
interfaces and individually tailored solutions. This has been supported by window oriented 
operating systems, text processing systems, table calculation programs, graphics programs, 
etc. PC's have provided a very individual and convenient form of computer access. In order to 
provide access to data which is shared by several users PC's have been connected to host 
computers. PC's, workstations (which can be considered as more powerful PC's) and host 
computers have been combined in client server systems. The PC's are considered as clients 
which can use the services provided by specialised servers. The main part of the application 
program runs on the client but some parts run on specialised servers. For example a data base 
application together, with a convenient user interface runs on a PC separate and apart from the 
database system which runs on a server. Via special communication services, clients can 
access the facilities provided by the servers. Another technique has been to connect computers 
with each other directly. These loosely coupled computer systems can exchange data directly 
instead of sharing data stored on a connected server. Instead of shared data, messages are 
used. These different types of computer networks support different types of applications and 
programs. 

Characteristics of Distributed Systems 

A precise and general definition of a distributed system is not very easy and as far as 
we know, a definition does not exist which has been generally accepted. Therefore we do 
what nearly all authors who have written books about different aspects of distributed systems 
do: we try to give the reader a good understanding of the nature of distributed systems by 
describing their major characteristics. Experience has shown that this is an adequate substitute 
for a definition. 

Distributed computer environments are based on distributed computer systems which 
consist of a set of processing components connected by a communication network. The 
software systems running on the various processing components ex- change data through the 
communication network. This type of system is also called loosely coupled distributed 
system. Processing nodes can be composed of several processors which share memory. This 
shared memory is used to exchange information by the software executed on such a node. 
This type of system is called a tightly coupled distributed system. The advantages of 
distributed systems are outlined in nearly all books and papers related to the topic e.g. 
/SHW A89/, /COD088/. Below we mention the most important ones /SHW A89/: 

• Increased Performance 
Performance is generally defined in terms of average response time and through- put. If 
processing capability can be located where it is required the response time can be highly 
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reduced. Data can be processed locally before it is sent to other nodes for further 
processing. This increases throughput. 
• Increased reliability 
Normally nodes in a distributed system can take over the tasks of other nodes which are 
currently out of order. This means that a distributed system continues its work with 
reduced performance but with little or no reduction of functionality 
• Increased flexibility 
Additional functionality can be added to a distributed system or the number of users can 
be permanently increased. A distributed system allows this system growth by simply 
adding more processing nodes. 

Parallel or Concurrent Programs 

Before we consider the characteristics of distributed software in more detail, we have 
to consider the concepts of parallel processes and programs. Parallel or concurrent programs 
are characterised by a set of statements inter- related by multiple control threads. Each 
sequence of statements executed by one or more control threads is called a process object 
/NEHM8Ba/ /ZOH088/ (The term 'process' shall be used instead of 'process object' when it is 
clear from the context that we mean a process object). The relationship between processes or 
threads and process objects is shown in the following figure. 

Concurrent or parallel programs are either interleaved, distributed, or both. For a 
programmer it is not necessary to know whether multitasking or a distributed system is used 
to run his program. 
Normally the processes of a concurrent program share the resources such as processor, 

memory, disk, and databases, and if they cooperate in order to reach a common goal they 
exchange information and synchronise their activities. 

Their are two reasons to structure a program in parallel executable process objects: 

1. Fine grain parallelism is mainly used to accelerate large numerical computations. This 
type of parallelism is often achieved by using vector processors and the pipelining of 
operations. It is mainly implemented by hardware. 

2. Structural parallelism is used if the structure of the task to be performed is fundamentally 
parallel. The process objects are a very important concept for structuring programs in certain 
application areas, e.g. operating systems, real time systems, and communication systems. 
Especially in real time systems which must react to external events, processes (objects) are 
used to achieve separation of the tasks IF AP A88/. Each process handles a related set of events 
and cooperates with other processes to achieve a common purpose. In order to cooperate, 
processes exchange information either via shared data or via messages. 

When considering the software running on a distributed system we can distinguish 
between networked computing systems and cooperative computing systems /SHW A89/. In 
the following sections the major aspects and applications of these two distributed software 
types are discussed. 
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NETWORKED COMPUTING 

Network Structure and the Remote Procedure Call Concept 

Networked computing is characterized by several sequences of jobs which arrive 
independently at various nodes. The jobs are designed and implemented more or less 
independently of each other and are only loosely coupled. The distributed sys- tern serves 
primarily as a resource sharing network. 
A very common example of resource sharing is the file server. All files are located on a 
dedicated node in a distributed system. Software components running on other nodes send 
their file access requests to the file server software. The file server executes these requests and 
returns the results (to the clients). 
In addition to file servers many other kinds of servers such as print servers, compute servers, 
data base servers, and mail servers have been implemented As with the file server, clients 
send their requests to the appropriate server and receive the results for further processing. 
Servers process the requests from the various clients more or less independently of each other. 
The programs running on the clients can be viewed as being designed and developed 
independently of each other. 
The following figure shows the concept of client server systems. 

Clint Server Request Message 
Get Request 

Execute Request 
Send Reply 

Send Request 

Reply Message 

In client server system, the clients represent the users of a distributed system and 
servers represent different operating system functions or a commonly used application. 

The following figure shows a simple example of a client server system. 
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This system has a print server,a file server and the users which run on workstations 
and personel computers.The server software and the client software can run on the same type 
of computer. The different nodes are connected by a local area network. 

From a user's point of view a client/server system can hardly be distinguished from a 
central system.e.g. a user cannot see whether a file is located on his local system or on a 
remote file server node.For the user the client/server system appears to be a very convenient 
and flexible central computing system.Mostly the user does not know whether a file is stored 
on his PC or on a file server.To the user the storage capacity of the server appears to be part of 
the PC storage capacity. 

Client/server systems are also very flexible. For a new application a specialised new 
server can be added e.g. data base systems run on specialised data base servers which have 
short access times. Data base applications are primarily controlled by the local client; all the 
data is stored at the data base server and special computations are executed by a compute 
server (also called number cruncher). The application program running on the client, calls the 
required functions provided by the servers. This is done mainly by way of remote procedure 
calls (RPC). An RPC resembles a procedure call except that it is used in distributed systems. 
The following is a description of how the RPC works. The program running on the client 
looks like a normal sequential program. The services of a particular server are invoked via a 
remote procedure call. The caller of a remote procedure is stopped until the invoked remote 
procedure is finished and the server has provided the results to the calling client in the same 
way that parameters are returned by a procedure. The servers are used in the same way that 
library procedures are used. This means that remote procedure calls hide the distribution of 
the functions of the system even at the program level. The programmer does not need to 
concern himself with the system distribution. 

The figure below shows the basic structure of a client/server system. 
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In the DCE client and server programs are executed by threads i.e. processes. Threads 

use an RPC in order to communicate with each other and binary semaphores and conditional 
variables for synchronisation. In the DCE remote procedure calls are supported by directory 
services (DCE Call Directory Service) and security services (DCE Security Service). 
Directory services map logical names to physical addresses. If a client calls a particular 
service provided by a server, the directory service is used to find the appropriate server. The 
DCE security service provides features for secure communication and controlled access to 
resources. Distribute Time Service provides precise clock synchronisation in a distributed 
system. This is required for event logging, error recovery, etc. The distributed file service 
allows the sharing of files across the whole system. Finally the diskless support service allows 
workstations to use background disk files on file servers as if they were local disks 
/SCHILL93/, /OSF92/. 

Cooperative Computing 

In cooperative computing a set of processes runs on several processing nodes. These 
processes cooperate to reach a common goal and together they form a distributed program. 
This is different from the client/server systems described above. In cooperative systems the 
processes which comprise the distributed program are coupled very closely. This means that 
the closely coupled processes are executed on a loosely coupled system. 

In cooperative systems, the distribution of computing capability is not hidden behind 
programming concepts. The different program sections running on different computers 
comprise a single program; but it can be seen at the programming level that the program 
ections are executed concurrently. These different program sections are also processes. 
Processes form a very important concept for central systems, client server systems and 
ooperative systems. If processes have to work together to perform their task, they must 
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exchange data and synchronise their execution. Programming systems for concurrent systems 
contain communication and synchronisation concepts. Cooperative programming resembles a 
human organisation which works together to achieve a common goal. Its members must 
communicate with each other and must synchronise their activities. 
The following figure shows the basic structure of cooperative systems. 

Application Application 
........................ 

Communication ~ Sy:tJ9.hI9Di.~~Jio.n_s _ 
Computer System • • • • • Computer System 

Network 

Coperative systems are mainly used for the automation of technical process and the 
implementation of communication software.Technical process in the mostly part consist of 
several parallel activities.This means that several processes which can be implemented in 
different ways work together to perform their task. 

Host System Host System Host System 

Application Application 

Software Software ••• 

Communication Com municalion 

Software Software 

Application 

Software 

Comm uni cat ion 

Software 

Communication System 
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Communication Software Systems 

A communication system consist of a communication network and the communication 
software which runs on the various processing nodes.The communication software provides a 
more ar less convenient communication service for the application sotware.The application 
software on each node uses the communication service to excahange messages with the 
application software running on other nodes. 

In order to provide a convenient communication service the commuyyication soft­ 
ware systems also exchange messages. This message exchange is based on the sim- pler 
communication mechanism provided directly by the network. For example the network 
provides a communication service which only allows the transfer of a sin- gle byte. The 
communication service provided by the communication software al- lows byte strings of a 
fixed or even an unlimited length to be sent or received. This can be implemented in the 
followmg way: The application software of a host system A wants to send a sequence of bytes 
to the application software of a host system B. The sequence of bytes is given to the 
communication system by the application system. The communication system on host system 
A sends a byte with the length of the byte string (the number of bytes) to the communication 
system on host system B. The communication system on host system B sends back an 
acknowledgement. This is a byte with a certain value. After the communication software on 
host system A has received the acknowledgement it starts to transfer the bytes of the byte 
string. When system B has received the number of bytes indicated in the first byte it again 
sends an acknowledgement. After sending the acknowledgement, the communication software 
on host system B gives the received byte string to the application software. This 
communication sequence which implements the transfer of a byte string is just a simplistic 
illustration of what communication software can do. As the example above shows, the 
communication between the communication software systems follows well defined rules. 
These rules are called protocols. The need to provide convenient communication services for 
the application software leads to software communication protocols which can be extremely 
complex and must be organised in layers. Each layer offers an improved communication 
service to the layer above. The widely used reference model for Open Systems Inter­ 
connection (OSI) defined by the International Standard Organisation (ISO) pro- poses seven 
protocol layers /IS07498/. Each layer provides a certain service to the layer above. The 
service provided by a layer is implemented by the protocol specific to its layer and by the 
services of the layer below. In a host system the services specific to the layer are realized by 
protocol entities. The layer protocol is defined between protocol entities of the same layer. 
These exchange information by using the service of the layer below. In each host system there 
must be at least one entity per layer. The set of entities of different layers in a host system is 
called a protocol stack. The implementation of these protocol stacks is called communication 
software. Communication software has the following execution properties /DROB 86/: 

• interleaved execution of several entities on the same system 
• distributed execution of entities of the same layer on different systems. Interleaved and 

distributed computations are usually modeled as systems of parallel processes. 
Processes executing in parallel normally have to exchange information if they are to 
cooperate in solving a common task. Entities are modeled by one or more processes. 
Using or providing a service means exchanging information with processes 
representing entities of the layer below or above. The figure above shows 

Technical Process Control Software Systems 
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Another important example of cooperative computing is a distributed technical 
process control system. The basic structure of technical systems controlled systems is shown 
in the following figure /NEHM84/. 

User 
f 

e;. •1 1 Standart 1/Q Devices 

I -----0 • • • o Process I/Q Devices 
I I 

Technical Process 
The communication between computer systems and technical systems must meet hard 

realtime requirements, whereas the communication with the user is more or less dialogue­ 
oriented with less emphasis on time conditions ( except in the case emergency signals such as 
fyre alarms). For the sake of simplicity, we will focus on the relationship between technical 
systems and real-time computer systems. A technical system consists of several mutually 
independent functional units which communicate via appropriate interfaces with the computer 
system. Therefore the real time program must react to several simultanous inputs. This 
implies the structuring of a process control software system that takes into account a number 
of processes. Each process handles a certain group of signals. The basic requirement for a 
process control software system is the capability to follow the changes of the technical system 
as fast as possible. The infomation in the process control software must be as close as possible 
to the state of the technical system. The easiest way to achieve this is to design a process for 
each interface element. This leads to the software system structure shown in the following 
figure /NEHM84/. 
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l.5.3 Electronic Data Interchange (EDI) 
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Electronic Data Interchange (EDI) is the computer-to-computer exchange of inter- and 
intracompany technical and business data, based on the use of standards /DIGIT90/ (see 
figure below of the EDI business model) . .--'-~~~~~~~~ 

Other 

Divisions 

Vendors Customers 

Trading 

Partners 
These data can be structured or unstructured. Exchanging unstructured data follows specific 
communication standards although the data content is not in a structured format. More 
important is the exchange of structured data. Examples of structured data exchange are: 

Trade Data Interchange 
This type of EDI document exchange is mainly used to automate business processes. 
Examples of trade data interchanges include a request for quotation (RfQ), purchase 
orders, purchase order acknowledgements, etc. Each company and industry has its own 
requirements for the structure and contents of these documents. A number of specific 
industry and national bodies have been formed with the intention of standardising the 
format and content of messages. For the chemical industry CEFIC is the EDI standard and 
for the auto industry the related EDI standard is called ODETTE. The standard defined by 
CCITT is called EDIF ACT. In order to exchange EDIF ACT documents very often the 
CCITT E-Mail standard X.400 is recommended /liILL90/. 
- Electronic Funds Transfer Payment against invoices, electronic point of sale (EPOS) and 
clearing systems are examples of electronic funds transfer. 

- Technical Data Interchange 
Improvement in technical communication can play a key role in determining the success 
of a project. There is growing demand from trades for communication between their CAD 
( computer aided design ) workstation and the workstations of important vendors. 

The following example shows how the different types of EDI interactions are used to 
handle a business process. 
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Processing 
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Quality 

Shipping 

In organisations people work together to reach a common goal. The formal interaction 
between members of an organisation is described by structures and procedures. Additionally 
there exist informal interactions which are very important. Both types of interactions can and 
should be supported by computers. Computer Supported Cooperative Work (CSCW) deals 
with the study and development of computer systems called groupware, which purpose it is to 
facilitate these formal and informal interactions /ENGLEH88/. 

CSCW projects can be classified into four types /ENGLEHB8/ namely: 

1. Groups which are not geographically distributed and require common access in realtime 
Examples: presentation software, group decision systems 

2. Groups which are geographically distributed and require common access in realtime 
Examples: video conferencing, screen sharing 

3. Asynchronous collaboration among people who are geographically distributed. 
Examples; notes conferences, joint editing 

4. Asynchronous collaboration among people who are not geographically distributed 
Examples: project management, personal time schedule management 

Groupware requires computers connected by a network. Thus groupware systems are 
distributed systems. Members of a group share data and exchange messages. Therefore 
groupware software systems are combinations of network and cooperative computing. 



• 

Combination of Network Computing and Cooperative Computing 

Cooperative computing can be combined with client server systems. Processes in a 
distributed system can have access to servers. From the standpoint of a client server 
system the processes of a cooperative system can be considered as client processes. In a 
technical process control software system a process can collect data from the technical 
process. This data is stored in a file located on a file server node. The following figure 
shows an example of a combination of a cooperative and a client/ server system. Process 
A, Process B and Process C form a cooperative software system. Process B and Process C 
use the file server. This means that process B and process C are clients of the file server. 

Communication for 
Cooperative computing 

Process A 

--.. 

~ ork ) 
~ ~ -------------- 

Use of 
File Server 

File Server 

File Server 

Process Node 
Distributed Computing System 
A distributed computing system is not yet a Noema. Many of the components are present but 
some are still missing or not fully integrated. The network would be the communication 
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mechanism for the distributed computing Noema supporting message passing, protocols, and 
asynchronous communication. The languages of communication are the protocols built up 
with bytes of data. Replication and groups of services could be made available with special 
name space management services available on the network. Some information may be kept in 
a data warehouse for analysis. Some information could be locally cached. Some functions 
could be pre-evaluated and stored in anticipation of usage. Both code and data may have a 
common representation. Thus programs are to be treated as data in some cases and programs 
in other cases. Not all data can be interpreted as a program. The distributed computing Noema 
would need a security system with authentication, authorization, and data privacy. The next 
chapters define how to build a distributed computing Noema. 

Distributed Computing System 

In our distributed computing system: 

A "Node" is a Network-User" Interface (NUI) that provides network access to the 
WWW*. This node maybe as simple and economical as a "JavaTerm", which has a 
decent processor, limited memory/cache, 1/0 devices and optional pheripherals such 
as CD ROM, hard disk, an input device which handles portable storage etc .. A node 
could also be a terminal, such as a UNIX workstation, PC or Mac with network 
capabilities*. Their processing storage and local applications may differ, but their 
operations should be mostly dependent on their network bandwidth (which network 
service providers, such as PacTel, MCI provide) and the pipe of the servers (end­ 
service providers). 

A "Server" is a computer that provides services interactively. Services include 
providing executables ( e.g. we may remotely load Word and run it in our network 
interface), database or search engine (e.g Component library of Tl), banks, stock 
broker firms or any entity that handles and processes requests. 

A "Site" is a network destination that provides non-interactive information. For 
example, most people/organization's home page nowadays which contains visual 
display only and does not accept/require user input is merely a site. 

What differentiates a Server from and a Site is: a server is interactive "active" while a 
site is "inactive." 
Serena (aka wleung) argues that the above two could/should be grouped together and 
called sites, while another definition of Server should be formulated. 

During the last group meeting (10/12), Professor Newton mentioned that there 
could/should be something between a node and servers. This intermediary could be: 
1) State Manager 

2)Memory 
3) Temporary mirror site (proposed by Susan) 

State Manager manages things that doesn't fit into the cache, it could be handled by a 
central "Service Provider"* which interacts with other servers/sites. However, this 
would present a major security problem; who's to believe that a "Service Provider" 
would ensure security of clients' data from internal and external access. (Maybe digital 
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signitures would be required to access and retrieve enscripted data, or maybe 
enscription could be done at the clients or over the network) There would also be a 
durability problem. What happens when a State Manager goes down? If we have mirror 
images, then consistency and security problems arise and this all leads us to the 
ultimate debate of how distributed systems should be architected. 
As for network main memory and mirror sites, administration problems immediately 
come up to my mind. How can they be administered, monitored and by whom? How 
can data security be provided for this virtual object? 

My argument is that none of these intermediate onjects should exist, i.e. nodes should 
interact directly with servers (present model of WWW). At todays' price and 
technology curve, pockets-sized DRAM or hard-disk at an acceptable price, 
performance and capacity (>=500MB) is imminent. One might argue that 500MB is not 
a lot of stoarge. That's because in today's standards, people store executables in their 
hard disks, but in the future, all people need is their personal documents (e.g. word­ 
processing files, database, spread-sheets, etc.) that they (regularly) edit as executables 
will be run off the Net. As for large audio, video files and graphically intense 
operations such as CAD or games, they should stay at their respective servers where an 
adequate bandwidth and special transmission mechanisms are provided. 

State management in this case is done either on a local storage (cache or hard disk) 
and/or at the server. Less consistency concerns is achieved at the expense of a higher 
response time for applications (updates need to go as far as the server instead of an 
intermediate node). 

The Future 

Microsoft's dominance of local processing will be displaced by major database and 
database tools (e.g. Oracle, Informix) companies together with software vendors that 
develop network-based applications that run at the servers, aimed at providing high 
throughput, scalability, etc. 

Hardware vendors, such as Cisco and Bay Networks will be a force as well in helping 
clients design and implement the appropriate network/WAN strategies. 

FootNote * 
1) A User may be a human being, processes or other computers. 
2) WWW may include or be a part of the Information Superhighway. 
3) If "Everything" (from mail to Word, Quicken) is run within a network interface, 
would CPU processing power and speed be relevant in the future, or this will be a 
hardware issue that primarily interests "Server" side of the operations. Primary end-user 
concern . would be network bandwidth and display capabilities. 
4) "Service Provider" could be network services providers such as PacTel or software 
vendors such as Oracle. 
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Chap. 22 CCITT Recommendation X.2~ 361 

1. A user machine decides 
to disconnect a virtual call. 
It sends a CLEAR REQUEST 
packAI 10 the DCE giving the 
number of the logical channel 
to be cleared User · 

machine ' 
sends 
CLEAR 

REQUEST 

Clearing can l>e initiated in 
any state (except the two 
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the clearing process). 3 The remote DCE sends a 

CLEAR INOICA TION packet 
, ' to the user machine at the other 

end of the logical channel giving 
the number of the logical channel 
to be cleared. 

ANY STA TE ,.# 
EXCEPT 
P6 or P7 , , 

DCE sends 
CLEAR 

INDICATION 

DCE sends 
CLEAR 
INDICATION 

User machine sends CALL 
ACCEPTED (possible only 
if the previous state was 
DCE WAITING) 

(possible only if the previous 
state was DCE WAITING. P2) Jf -~ / 

/ , , 
/ DCE sends 

2. The DCE sends back a CLEAR CLEAR 
CONFIRMATION packet and CONFIRMATION 
sends a control message or CLEAR 
to the DCE at the other end of INDICATION 
the logical channel. 

(after a time­ 
out in the 
network) 

0
, 

1 
y 

' ' User ', 
machine ', 
sends , 
CLEAR 4. The user machine responds 

CONFIRMATION With a CLEAR CONFIRM· 
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REQUEST 

Figure 22.16 A state diagram for the clearing process. A normal dis­ 
connect of a virtual call follows the four numbered steps shown in red. 

be permitted either to place calls but not accept calls from other users, or to accept calls but 
not place them. 

Packet Retransmission 

A user machine can ask its DCE to retransmit one or several data packets. It does this by 
sending a REJECT packet to the DCE containing the Receive Sequence Number, R, of a 
packet received. The DCE retransmits packet Rand those following it. The number of packets 
for retransmission cannot exceed the flow-control window size. This is not an end-to-end 
mechanism. The request for retransmission of a data packet cannot be relayed to the user 
which originated that packet. 

Flow control parameter selection 

A network normally has a given maximum window size and maximum data length. A 
user machine may optionally operate at less than these because it has limited buffer size or 
control capability. The window size and maximum data length is referred to as a throughput 
class and may be indicated in the facilities field of a CALL REQUEST packet. If there is no 
such indication, the call is connected with the highest attainable values. 

48 



• 

HORUS: A Flexible Group Communications System 

Computing represents a prorrussmg step towards robustness for mission-critical 
distributed applications.Proccess replicated for availability or as part of a coherent cache.They 
can been used to support highly available security domains.And,group mechanisms fit well 
an emerging geneneration of intelligent network and collaborative work applications. 

Yet there is little agreement concerning how process groups should look or beha­ 
ve. The requirements that applications place on a group infrastructure can vary tremen­ 
dously,and there may be fundamental trdeoffs between semantics and performance.E- 
ven the most appropriate way to present the group abstraction to the application depends on 
the setting. 

This paper reports on the Horus system,which provides an unusually flexible group 
communication model to application-developens.This flexibility extends to sys- 
tem interfaces,the properties provided by a protocol stack,and even the configuration of Horus 
itself,which can run in user space,in an operating system kernel or microker- 
nel or be split between them. 

Horus can be used through any of several application interfaces.These include toolkitstyled 
interfaces,but also interfaces that hide group functionality behind Unix communication 
system-calls.the Tk/Tcl programming language,and other distributed computing 
constructs. The intent is that it be possible to be slide Horus beneath an existing system as 
transparently as possible,for example to introduce fault-tolerance or security without requiring 
substantial changes to the system being hardened. 

Horus provides efficient support for the virtually synchronous execution model. 
This model was introduced by the Isis Toolkit,and has been adopted with some changes by 
such systems as Transis,Psync,Trans/Total ,RMP,and Rampart.The model is based on group 
membership and communication primitives,and can support a variety of facult-tolerant 
tools,such as for load-balanced request execution,fault tolerant computation,coherently 
replicated data and security. 

Although often desirable properties like virtual synchrony may sometimes be un­ 
Wanted,introduce unnecessary overheads,or conflict with other objectives such as real-time 
guarantees.Moreover,the optimal implementation of a desired group communication property 
sometimes depends on the runtime environment.In an insecure environment ,one might accept 
the overhead of data encryption,but wish to avoid this cost when running inside a firewall.On 
a platform like the IBM SP2,which has reliable message transmission,protocols for message 
retransmission would be superfluous. 

Accordingly,Horus provides an architecture whereby the protocol supporting a group can 
be varied,at runtime, to match the specific requirements of its application and environment. 

It does this using a structured framework for protocol composition,which incorporates 
ideas from systems such as the Unix "streams"framework and the x-kernel.but replaces point­ 
to point communication with group communication as the fundamental abstraction.In horns 
group communication support is provided by stacking protocol modules that have a regular 
architectureand in which each module has a separate responsibility.A process group can be 
optimized by dynamically including or excluding particular modules from its protocol stack. 

Horus also innovates by introducing run-time configuration,group communication 
interfaces full thread-safety.and supporting messages that may span multiple address 
spaces.Since horns does not provide control operations and has one single address 
format,protocol layers can be mixed and matched freely.In both streams and the x-kernel.the 
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different protocol modules supply many different control operations,and design their own 
address format,both severely limiting such configuration flexibility. 

1- A LAYERED PROCESS GROUP ARCHITECTURE 

We find it useful to think of horns central protocol abstraction as resembling a lego 
block,the horus"system" is thus like a "box" of lego blocks.Each type of block implements a 
microprotocol that provides a different communication feature.To promote the combination of 
these blocks into macroprotocols with desired properties,the blocks have standardized top and 
bottom interfaces that allows them to stacked on top of each other at run time in a variety of 
ways.Obviously,not every sort of protocol block makes sense above or below every other 
sort.But the conceptual value of the architecture is that where it makes sense to create a new 
protocol by restacking existing blocks in a new way,doing so is staightforwad. 

Techically,each horns protocol block is a software module with a set of entry points for 
down call and upcall procedures.For example there is a downcall to send a messsage and an 
upcall to receive a message.Each layer is idendified by an ASCII name and registers its upcall 
and down call handlers at initialization time.There is a strong similarity between horns 
protocol blocks and object classes in an object-oriented inheritance scheme and readers may 
wish to think of protocol blocks as members of a class hierarchy. 

To see how this works,consider the horns message-send operation.It looks up the message 
send entry in the topmost block and invokes that fuction. This function may add a header to 
the message and will then typically invoke message-send again.This time control passes to the 
message send function in the layer below it. This repeats itself recursively until the bottom 
most block is reached and invokes a driver to actually send the message. 

The specific layers currently supported by horns solve such problems as interfacing the 
systems to varied communication transport mechanisms overcoming lost packets eneryption 
and decryption ,maintaining group membership helping a process that joins a group obtain the 
state of the group merging a group that has partitioned,flow control,etc.Horus also includes 
tools to assist in the development and debugging of new layers. 

Each stack of block is carefully shielded from other stacks.It has its own prioritized 
threads,and has controlled access to available memory through a mechanism called memory 
channels.Horus has a memory schedular that dynamically assigns the rate at which each stack 
can allocate memory depending on availability and priority so that no stack can monopolize 
the available memory.This is particulary important inside a kernel,or if one of the stacks has 
soft real-time requirements. 

Besides threads and memory channels each stack deals with three other types of 
objects:endpoints,groups,and messages.The endpoint object models the communicating 
entity.Depending on the application it may correspond to a machine ,a process ,a thread ,a 
socket,a port ,and so forth.An endpoint has an address and can send receive 
messages.However as we will see later messages are not addressed to endpoint but to 
groups.The endpoint address is used for membership purposes. 

A group object is used to maintain the local protocol state on an endpoint.Associated with 
each group object is the group address to which messages are sent and a view a list of 
destination endpoint addresses that are believed to be accessible group members.Since a 
group object is purely local ,horns technically allows different views of the same group.An 
endpoint may have multiple group objects allowing it to communicate with different groups 
and views.A user can install new views when processes crash or recover and can use one of 
several membership protocols to reach some form of agreement on views between multiple 
group objects in the sam group. 
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It does this using a structured framework for protocol composition,which incorporates 

ideas from systems such as the Unix "streams"framework and the x-kernel.but replaces point­ 
to point communication with group communication as the fundamental abstraction.In horns 
group communication support is provided by stacking protocol modules that have a regular 
architectureand in which each module has a separate responsibility.A process group can be 
optimized by dynamically including or excluding particular modules from its protocol stack. 

Horus also innovates by introducing run-time configuration,group communication 
interfaces full thread-safety.and supporting messages that may span multiple address 
spaces.Since horns does not provide control operations and has one single address 
format,protocol layers can be mixed and matched freely.In both streams and the x-kernel.the 
'different protocol modules supply many different control operations,and design their own 
address format,both severely limiting such configuration flexibility. 

2- A LAYERED PROCESS GROUP ARCHITECTURE 

We find it useful to think of horns central protocol abstraction as resembling a lego block,the 
horus"system" is thus like a "box" of lego blocks.Each type of block implements a 
microprotocol that provides a different communication feature.To promote the combination of 
these blocks into macroprotocols with desired properties,the blocks have standardized top and 
bottom interfaces that allows them to stacked on top of each other at run time in a variety of 
ways.Obviously,not every sort of protocol block makes sense above or below every other 
sort.But the conceptual value of the architecture is that where it makes sense to create a new 
protocol by restacking existing blocks in a new way,doing so is staightforwad. 

Techically,each horns protocol block is a software module with a set of entry points for 
down call and upcall procedures.For example there is a downcall to send a messsage and an 
upcall to receive a message.Each layer is idendified by an ASCII name and registers its upcall 
and down call handlers at initialization time.There is a strong similarity between horns 
protocol blocks and object classes in an object-oriented inheritance scheme and readers may 
wish to think of protocol blocks as members of a class hierarchy. 

To see how this works,consider the horns message-send operation.It looks up the message 
send entry in the topmost block and invokes that fuction. This function may add a header to 
the message and will then typically invoke message-send again.This time control passes to the 
message send function in the layer below it.This repeats itself recursively until the bottom 
most block is reached and invokes a driver to actually send the message. 

The specific layers currently supported by horns solve such problems as interfacing the 
systems to varied communication transport mechanisms overcoming lost packets eneryption 
and decryption ,maintaining group membership helping a process that joins a group obtain the 
state of the group merging a group that has partitioned,flow control,etc.Horus also includes 
tools to assist in the development and debugging of new layers. 

Each stack of block is carefully shielded from other stacks.It has its own prioritized 
threads,and has controlled access to available memory through a mechanism called memory 
channels.Horus has a memory schedular that dynamically assigns the rate at which each stack 
can allocate memory depending on availability and priority so that no stack can monopolize 
the available memory.This is particulary important inside a kernel,or if one of the stacks has 
soft real-time requirements. 

Besides threads and memory channels each stack deals with three other types of 
objects:endpoints,groups,and messages.The endpoint object models the communicating 
entity.Depending on the application it may correspond to a machine ,a process ,a thread ,a 
socket,a port ,and so forth.An endpoint has an address and can send receive 
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messages.However as we will see later messages are not addressed to endpoint but to 
groups.The endpoint address is used for membership purposes. 

A group object is used to maintain the local protocol state on an endpoint.Associated with 
each group object is the group address to which messages are sent and a view a list of 
destination endpoint addresses that are believed to be accessible group members.Since a 
group object is purely local .horus technically allows different views of the same group.An 
endpoint may have multiple group objects allowing it to communicate with different groups 
and views.A user can install new views when processes crash or recover and can use one of 
several membership protocols to reach some form of agreement on views between multiple 
group objects in the sam group. 
Horus provides a large collection of microprotocols.Some of the most important ones are: 

Proposed Sidebar 

COM-The COM layer provides the horns group interface to such low-level protocols as 
IP,UDP,and some ATM interface. 
NAK-This layer implements a negative acknowledgement based message retransmission 
protocol. 
CYCLE-Multimedia message dissemination. 
P ARCLD-Hierarchical message dissemination 
FRAG-Fragmentation/reassembly. 
MBRSHIP-This layer provides each member with a list of end points that are believed to be 
accessible.It runs a consensus protocol to provide it users with a virtually synchronous 
execution model. 
EC-Flow control 
TOTAL-Totally ordered message delivery . 
ST ABLE-This layer detects when a message has been delivered to all destination 
endpoints,and can be garbage collected. 
CRYPT-Eneryption/deenyption 
MERGE-Location and merging of multiple group instance. 

The message object is a local storage structure .It is interface includes operations to push and 
pop protocol headers.Message are passed from layer to layer by passing a pointer and never 
need be copied. 
A thread at the bottom most layer waits for messages arriving on the network 

interface.When a message on to the layer above it.This repeats itself recursively.If necessary a 
layer may drop a message or buffer it for delayed delivery.When multiple messages .However 
since each message is delivered using its own thread ,this ordering may be lost depending on 
the scheduling policies used by the thread schedular .Therefore,horus numbers the message 
and uses event count synchronization variables to reconstruct the order where necessary. 

2-Protocol Stacks 

The microprotocol architecture of horns would not be of great value unless the various 
classes of process group protocols that we might wish to support can be significant 
functionality.Our experince in this regard has been very positive. 
The layers FRAG,NAK and COM respectively break large messages into smaller 

ones,overcome packet loss using negative acknowledgements,and interface .Horus to the 
underlying transport protocols.The adjacent stack is similar,but provides weaker ordering and 
includes a layer that supports "state transfer"to a process joining a group or when groups 
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merge after a network partrtion .To the right is a stack that supports scaling through a 
hierarchical structure in which each parent process is responsible for a set of 
"child"processes.The dual stack illustrated in this case represents a feature whereby a message 
can be routed down one of several stacks,depending on the type of processing 
required.Additional protocol blocks provide functionality such as data eneryption packing 
small messages for efficient communication ,isochronous communication . 
Layered protocol architectures sometimes perform poorly.Traditional layered systems 

impose an order on which protocols process messages limiting opportunities for optimization 
and imposing excessive overhead.Clack and Tennenhouse have suggested that the key to good 
performance rests.Systems based on the ILP priciple avoid inter-layer ordering constraints 
and can perform as well as monolithically structure system. 

3-Using Horus to build a robust groupware application 

Earlier we commented that horns can be hidden behind standart application programmer 
interfaces.A good illustration of how thisdone arose when we interfaced the graphical 
programming language to horns. 
A challenge posed by running systems like horns side with a package like windows . 

That such packages are rarely designed with threads or horns communication stacks in mind 
.To avoid a complex integration task. 
Architecturally,CMT consists of a multi-media server process that multicasts video and 

audio to a set of clients.We decided to replicate the server using a primary -backup 
approach. Where the backup servers stand by to back up failed or slow primaries. 

4-Electra 

The information of process groups into CMT required sophistication with horns and its 
intercept proxies.Many potential users would lack the sophistication and knowledge ofhorus 
required to do this hence we recognized a need for a way to introduce horns functionality in a 
more transparent way.This goal evokes an image of "plug and plug" robustness,and leads one 
to think in terms of an object-oriented approach computing. 

The common object request broker architecture (CORBA) is emerging as a major 
standard for supporting object-oriented distributed environments.Object-oriented distributed 
applications that comply with CORBA can invoke one-another methots with relative ease.Our 
work resulted in a CORBA compliant interface to horns which we call electra .Electra can be 
used without horus,and vice versa ,but the combination represents a more complete system. 
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IMPLEMENTING BRANCH-AND -BOUND 

ALGORITHMS ON A CLUSTER OF 
WORKSTATIONS - 

A SURVEY, SOME NEW RESULTS AND 
OPEN PROBLEMS 

Abstract 

Networks of workstations running under a multiuser, multitasking operating system 
like UNIX are an increasingly commonplace personal computing environment. Due to 
their use as personal computers these workstations are typically underutilized most of the 
time. Thus it is attractive to develop software to use the ample free computing resources 
to configure a loosely coupled multi computer to solve computation intensive problems in 
a distributed fashion. In this paper we discuss the feasibility of implementing Branch-and­ 
Bound algorithms for combinatorial Optimization on a cluster of workstations. Thereby 
we use experiences made by us when solving the Vertex-Cover-Problem on a cluster of 8 
HP 9000 - 330 workstations under HP-UX connected via Ethernet and reports from 
literature about combinatorial optimization on multi computers. Besides presenting 
performance results we discuss programming techniques balancing for the workload, for 
interprocess communication and for distributed termination. Based on this evidence we 
conclude that given proper tuning a distributed Branch-and-Bound algorithm can yield 
satisfactory speed-up on a cluster of workstations. However, tools are needed that make 
the development and run-time control of such applications easier while preserving the 
favourable efficiency. 

The Economics of Distributed Computing 

Organizations are increasingly using a network of workstations running under a multi user, 
multitasking operating system like UNIX to support their members with computing power 
that can be easily and flexibly accessed from the working place (see the table of computer unit 
sales taken from [L YNCH90]). Typically, a workstation in such an environment is used 
primarily by it's owner, mostly for tasks like Computer Aided Design, Software Development 
or High Quality Typesetting. The programs supporting these tasks can be executed largely 
independent of programs run on other nodes, and the network is used primarily for sharing 
files, programs and 1/0-devices. Therefore, a workstation is often underutilized, e.g. while its 
owner is occupied with non-computerized tasks or is executing computationally lightweight 
tasks like text-editing. In such an environment it becomes attractive to think about developing 
software that "collects" the free cycles on the workstations and uses these otherwise wasted 
resources to solve a problem that is computationally too demanding for one machine. 
Obviously, this approach is only several workstations can work simultaneously on different 
subproblems relatively independent feasible if the problem under consideration can be 
decomposed in such a way, that of each other. 
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Type of Computer Unit Sales 1983 
I I{"'\ 

"';·I Unit Sales 198~;,1 . 
Mainframes 1,851 1,497 ·~o~, 

"·, •,) -1 

Workstations 3,460 180,000 .•. , .... · . -- 
Personal Computers 5,900,000 _ 9,400,000 

decomposable computation-intensive problem is the relative cost-effectiveness of such a 
multicomputer when compared to one strong single-processor machine. This sounds paradox 
from the point Another rationale for looking at a cluster of workstations as the target for 
implementing a of view of Grosch's Law, which states that whereby c represents the cost at a 
computer system, k ist a constant and e is the computing power of the system. In the Sixties, 
Grosch's Law was empirically valid, i.e. it could be observed that indeed the rate of growth of 
the cost of a computing system was under-proportional to its power (see e.g. [SHARPE69]). 
However, today we find increasing cost per MIPS for different types of comupters (see the 
table taken from [L YNCH90] below): 

Type Of Computer Cost per MIPS (in Thousands USD ) 
Mainframe 180 
Super-Mini 60 
Small Department Computer 20 
32-Bit Personal Computer 2 

Thus, while computing power increases linearly as does cost when an additional processor 
is added to a multicomputer that solves a decomposable problem, the cost increases overpro­ 
portional when one tries to achieve the same increase in power with a single-processor 
configuration in a higher machine class. Notwithstanding these economical arguments, 
paralleization ist the only alternative if no single-processor machine strong enough for a 
certain problem exists. To illustrate our arguments, we give cost and performance figures for 
a Branch-and-Bound algorithm for solving the Vertex-Cover-Problem, executed on a cluster 
of 8 HP 9000/330 workstations and on a HP 9000/845. A HP 9000/330 is equipped with a 
68020/68881 CPU/FPU and 4MB RAM, a HP 9000/845 is a multiuser system with HP 
Precision Architecture and 48 MB RAM. With the workstation-cluster we achieved an 7.5 
increase in power via distribution at the 8-fold cost, while a speed-up of 2.35 via the use of 
the stronger single processor system would increase the cost by a factor 16. 
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The condition for achieving such savings is that the implementation exhibits sufficient speed. 
up, i.e. that one can indeed combine several "2CV to drive as fast as a Ferrari", as illustrated 
below, thus the following chapters are concerned with techniques for coordinating 
workstations to efficiently work together on the solution of one problem. Thereby we use the 
example given above and similar findings from literature to illustrate our ideas. 

Cordinating distributed Branch-and-Bound algorithms 

Branch-and-Bound is a standard principle to solve combinatorial optimization problems (for 
a reference of Branch-and-Bound algorithms see e.g. [LA WLER66]). The basic idea is to 
traverse the space of possible solutions in a tree-like manner, whereby new instances are 
generated via applying a "branching procedure" to existing ones. A "bounding procedure" is 
used to prune parts of the tree which cannot contain an optimum based on the knowledge 
obtained so far. Phrased in a more algorithmic way, a Branch-and-Bound algorithm functions 
as follows: 

form an en-sty pool of subproblems and initialize the bound 

while there are subproblems left to inspect do: 

select one subproblem and apply the branching rule 

for each child do: 

compute the lower bound 

if a feasible solution with a better bound is found 

then record it and update the boupd 

else If the child cannot be pruned 

then add it to the pool of subproblems 

end 

end 

One obvious way to construct a distributed version of such an algorithm is to 
simultaneously "branch and bound" from several subproblems by the available processors. On 
first sight, one might think that such a distributed algorithm exhibits linear speed-up. 
However, in [LA 184] Lai and Sahni show that even when the processors can access the tree 
elements and the bound at the same speed as one processor, "anomalies" can occur. That is, it 
can happen that a distributed Branch-and-Bound algorithm which uses n2 processors may take 
more time than one that uses n, processors even though n->n, or that one can achieve speed­ 
ups that are in excess of n2/nl. The first phenomenon is due to the fact that often several nodes 
have the same value of the bounding function, so that the search direction of the processors 
can be distracted from a promising part of the search space. On the other hand, a distributed 
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algorithm may find a good feasible solution earlier than a sequential one and can use it to 
prune nodes which would be expanded in the sequential case thus causing super linear speed­ 
up. 

A cluster of workstations is a loosely-coupled multicomputer, i.e. each processor has a local 
memory, which it can access considerably faster than the memory of another processor via the 
network. For instance, in our configuration - HP 9000/330 workstations under HP-UX 
connected via Ethernet - we found that for a test graph with 70 nodes and average degree 30 a 
workstation can process 28.8 subproblems per second for the Vertex-Cover-Problem if the 
heap' containing the nodes of the Branch-and-Bound tree is stored locally. If it has to access a 
heap located at another workstation to store and retrieve subproblems it can process only 1.1 
subproblems . Thus if one stores all subproblems on a particular workstation designated as 
"problem server", the other processors spend much more time in accessing the problem pool 
and bound than they would in the sequential case and speed-up suffers2. If one inspects the 
Branch-and-Bound algorithm given above, one finds that it is not necessary for a processor to 
be able to access all tree-elements but rather only one instance and the bound. Thus one can 
distribute the heap containing the subproblems to reduce access over the network. However, 
when using this storage method, strategies have to be devised to prevent that some processors 
run out of subproblems while others are still working ("idle time"). Another potential problem 
caused by distributed storage is that it can happen that a processor inspects subproblems 
which it could prune would it know the better bound stored in the memory of another 
processor ("search overhead"). Furthermore, the detection of the termination condition is 
more complicated than in the central case and one has to find a strategy for initializing each 
processor with a proper set of subproblems. 
Initialization can be achieved if one node generates subproblems and distributes them to the 

other nodes. A method that uses fewer messages at the price of more local computing is to let 
all nodes begin to work at the same problem and to enumerate subproblems (see 
[VORNBERGER86]). As soon as a processor has a number of subproblems in its heap that 
exceeds its processor number it removes all subproblems except the last one generated from 
its local heap. Then it continues to work on that sub problem. Distributed Termination can be 
achieved by defining a Hamiltonian cycle on the network and one master processor ( see 
IILOLIING89]). If the master node is idle, it sends a "yellow token" to its neighbor. Idle nodes 
pass the token to their neighbor, until the master is reached again. When the master is idle and 
has not received any new subproblems while the token was circulating, it sends a "red token" 
to its neighbor. All nodes pass the "red token" on if they are idle and did not receive any 
subproblems since they have received the "yellow token". If the "red token" returns to the 
master, all nodes are idle and the master can start collecting the solution. 
The trickier part in an implementation of a distributed Branch-and-Bound algorithm is to 

find a strategy for synchronizing the bound and supplying the processors with "good" 
subproblems to avoid, idle-time and search-overhead while keeping network traffic low. Two 
questions have to be addressed when developing such a strategy: 

• What kind of strategy should be used? 
That is, what kind of local events should trigger a communication to which node to 
synchronize the bound and/or to transfer subproblems in what fashion? 
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• How should the strategy be adapted to different problems and configurations? 
Obviously, there is a trade-off between search-overhead, idle time and communication effort. 
The more efficient communication is, the more often a node can coordinate with other 
processors. 

These questions have been the subject of a number of experimental studies. Before we present 
these results, we review the metrics used to describe the performance of a distributed Branch­ 
and-Bound algorithm: 

• Total run time(t) 
The time necessary to compute the solution. It includes the time needed to distribute the 
initial problem to the nodes, to detect that a solution has been found and the time needed to 
collect the solution. 

• Idle time (idle) 
This is the sum of all times a node sits idle waiting for new problems except the time until the 
node receives subproblems for the first time. 

• Iterations (iter) 
The number of iterations made by one node. This number is an indicator for the balancing of 
the workload across the nodes and an indicator how many iterations more/less than the 
sequential version had to be carried out to get the result. 

• Iterations per second (itps) 
This nuber indicates how fast new problems are generated. If we compare the itps rating of 
the sequential version with that of the parallel version, we see how additional communication 
effort affects the speed of computation. 

• Speedup (su) 
is defined as ratio of time needed by the sequential version (tl) to the time needed when using 
k nodes in parallel (tk) 

• Efficiency ( eff) 
is a measurement of how well the processors are utilised. It is computed as speedup divided 
by number of nodes. 

• Search-Overhead (reliter) 
We let itersequ be the number of iterations needed by the sequential algorithm and define the 
search-overhead reliter as 

The earliest study about load-balancing in Branch-and-Bound algorithms known to the 
authors was reported by Vornberger (VORNBERGER86]. He studied a distributed 
implementation of Held and Knrps Branch-and-Bound algorithm for solving the Travelling - 
Salesman-Problem (TSP). For this algorithm a minimum spanning tree algorithm is used as 
bounding procedure, subproblems are generated by fixing certain edges to be members of the 
cycle. Vornbergers target configuration was a ring of 16 personal computers equipped with 
Intel 8088 processors, 256 KB RAM and two R5232 serial ports that allow communication 
with each of the neighbours of a PC. His first strategy was that each processor works on its 
local heap and requests a problem instance from its neighbours only if its local heap is idle. 
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Experiments with this method of coordination revealed several pritfalls of this simple 
distributed mechanism: 

• if it has to access a heap located at another workstation to store and retrieve 
subproblems initially, only the master node that starts the computation has 
subproblems, all other heaps are empty, causing the other processors to 

(inefficently) requesting work from their neighbours. Thus communication effort is 
wasted, as it does not reduce the initial idle time. 

• the problem given upon request from an idle processor usually is finished quite fast, 
causing the receving processor to communicate again. 

• as the bound obtained by a neighbouring node is only made known to a node if its or 
its neighbours heap is empty, search overhead is possible, i.e. problem instances are 
inspected even though somewhere in the network a bound is stored that indicates that 
these instances cannot possibly lead to the optimum. 

To cope with these problems, Vornberger introduced three heuristics: 
• At the beginning all k processors (not only the master) put the initial subtour into the 

heap, then iterate the while loop until at least k subtours are in the heap and then the 
processor with number i deletes from its heap all subtours but the i-tb cheapest This 
guarantees a fast distribution of disjoint , roughly equal sized, subtours to all 
processors. 

• Upon request, not only one problem is sent but several, depending on some heuristic 
arguments such as the total number of subproblems in the heap and the difference 
between the lowest bound in the heap and the cost of the temporary solution. 

• Processor A asks his neighbour B for work not only with an "unconditional request" 
when A has run out of reasonable subtours but also at certain intervalls ( depending on 
an increase of the smallest lower bound in his heap by a certain constant) with a 
"conditional request". Such a request is only granted by B, if B detects that his own 
smallest lower bound is mailer than Ks smallest lower bound by more than this 
constant." 

The f9llowing figure depicts the speed-up obtained with the improved strategy for 20 
experiments with random graphs with 30 vertices, degree 4 and edge costs varying between 1 
and 200. As can bee seen, via good tuning Vornberger could achieve a satisfactory speed-up - 
even on his rather limited configuration. 

In [KUMAR87] Kumar et.al. study the impact of storage and coordination methods on 
Parallel Best-First Search of State-Space Graphs via a parallel A* algorithm, a Branch-and­ 
Bound algorithm that always selects the element with the lowest bound for expansion. The 
experiments reported were conducted on a BBN Butterfly shared-memory multiprocessor, 
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which consist of up to 256 processor-memory pairs whereby each processor's local memory is 
accessible to other processors via a fast switch. On this configuration Kumar et.al. 
implemented, among others, various versions of this algorithm for the TSP and the Vertex­ 
Cover-Problem (VCP). 

The VCP is defined on an undirected Graph G = (V,E). A subset U of Vis called a Vertex­ 
Cover, if for all vertices (u,v) either u or v is element of U. The solution for a given Graph G 
is that Veitex-Cover which has minimal cardinality. 

To generate subproblems for a given subcover sp one applies the following rules (for further 
details see [MONIEN81ID]): 

• select one node x from that part of G, which has not yet been covered by sp 

• generate two new subproblems SPl, SP2 
The bound b for a subproblem can be computed as b = ICI + IMI where CI denotes the 
cardinality of the subcover C and IMI denotes the cardinality of a "maximum matching" M in 
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the restgraph (IMI is equal to the number of nodes which must be added to the subcover in 
order to cover the whole graph G). 

The performance of the TSP with a centralized implementation of the subproblem pool is 
shown in the following figure. Since the BBN Butterfly is a shared memory machine, memory 
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contention can occur. The maximum speedup of such a configuration is hence Texp/Taccess 
whereby Texp denotes the time needed to process a subproblem and Taccess denotes the time 
needed to access the subproblem pool. We see that in the 15 city-case contention inhibts 
further speed-up at about 13.7, while in the 25 city-case contention occurs only at a higher 
level. This is because the time to expand on subproblem in the TSP is O(M2), with M 
equalling the number of cities involved. 

To avoid this contention, distributed control mechanisms can be adopted. Kumar investigate 
the following strategies: 

Blackboard Strategy: 
Each processor maintains a local heap. It selects the node to be expanded from the 
local subproblem pool and then compares this node with the nodes stored on a 
central "blackboard". If the local node is not within a certain limit, some good nodes 
are transferred from the blackboard to the local pool or vice versa. Then the node to 
be expanded is selected again from the local pool. 

• Random Communication Strategy: 
This strategy is suited for topologies with small diameters. Expanded subproblems 
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nto the local pool of randomly choosen nodes. The optimal frequency of 
communication is a function of the cost of communication. 

• Ring Communication Strategy: 
This strategy is preferably used with topologies with large diameters. Each processor 
forms an element of a virtual ring and has two neighbours. Newly generated 
subproblems are inserted into the pool of the selected neighbour. 

Below the results for these strategies used to solve the TSP are given. The parameters of the 
strategies were determined experimentally. It turned out that the Blackboard strategy was 
superior to the other strategies, of which the random strategy showed better performance. 
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The VCP is more prone to speed-up anomalies than the TSP, because for this problem there 
arc many nodes in its state-space tree that have the same cost as the least-cost solution. Speed­ 
up is therefore greatly determined by how early one processor expands the subproblem 
leading to the goal. The results of the centralized strategy for the VCP are even less 
favourable as those given for the TSP, since Texp of the VCP is smaller than Texp of the 
TSP. Therefore the processors spend most of their time in accessing the subproblem pool and 
thus causing congestion. The following table depicts the results for the distributed strategies. 
Again the blackboard strategy is the best. However, for this problem the difference to the 
random strategy, which again ranks second, is not as large as in the case of the TSP. 

Another study that probes into the relative advantage of centralized versus distributed 
storage of the subproblem pool in distributed Branch-and-Bound algorithms is presented in 
[LULINGS9j. Luling studied two strategies for solving the VCP on a network of transputers. 
One is based on a distributed heap structure, the second one uses a ternary tree structure to 
store all subproblems at a designated root node. Luling uses the following rules to coordinate 
the local heaps in the distributed version: 

• If the heapweight of processor i increases more than HEAPW _ UP percent, node i 
sends subproblems to its neighbours. 
• if the heapweight of processor j decreases more than HEAPW _ DOWN percent, 
node i sends his local heapweight to its neighbours. 

• if node i receives a message containing the heapweight of node j, it sends 
subproblems to node j, while heapweighttj) > (1 + TRESH)*heapweight(i). 
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• subproblems are only distributed while heapweight(i) > MIN_ HEAPW. 

HEAPW_UP, HEAPWDOWN, TRESH and MIN_HEAPW are parameters of this strar 
whereby the heapweight is defined as number of elements stored in the heap that may lea 
a better solution. 

For 20 graphs with 150 nodes and average degree 30 benchmarks were run on a networl 
up to 63 Inmos T800 transputers. One run was conducted on a transputer network consi 
of 60 processor nodes with diameter 5. For this configuration the parameters where the be 
performance could be observed in a number of experiments ,, 
HEAPW_UP=0.5,HEAPW_DOWN=0.2, TRESH=0.2 and MIN_HEAPW=:5. In 
following table the results for 5 typical graphs on a 60 processor topology with diameter - presented: 
Graph 
Id 

Time iterations time 
60 processor 

iterations 
60 r_rocessors 

1 r_rocessor speedup effi 1 r_rocessor 
0 11842,97 

20998,21 
20826,10 
10796,53 
10555,15 

38100 
66335 
65951 
33828 
33003 

205,79 
356,89 
354,27 
181,61 
209,53 

38149 
66343 
65958 
32513 
37944 

1 
2 
3 
4 

57,54 
58,84 
58,79 
59,44 
50,37 

0,9: 
0,9~ 
0,9- 
0,99 
0,8" 75018,96 237217 1308,09 240907 57,35 

They show that the efficiency of this implementation is unformly high, the observe 
variance being quite small. Experiments on 32 nodes configured as ring revealed that in thi 
case good parameters for the coordination rules were IEAPWUP=0.2, HEAPW _DOW);C 
10, TRESH~=0.10, MIN HIEAPW=5. The results presented below are consistent with tho 
reported in [KUMAR87]: they show that the ring structure is not as efficient as the structur 
with smaller diameter, since small differences add up over a number of processors and yiek 
in large overall differences of work-load. This can be seen also from the parameter setting_ 
used: communication is much more encouraged with these low settings as opposed to the 
medium ones shown above. 
Graph Time Iterations Time Iterations 

speedup efficiency 
Id lproccessors I processors 32processors 32processors 0 

11515,95 38100 369,09 37194 31,20 0,975 
l 20414,90 66335 669,27 66766 30,50 0,953 2 20257,59 65951 666,81 66307 30,37 0,949 

10500,24 33828 391,12 38360 26,84 0,839 
3 

10087,81 33003 344,52 34470 29,28 0,915 
4 

72776,49 237217 2440,81 243097 29,81 0,932 
To compare these results with the performance with a centralized storage tests were 

performed using 63 transputer nodes configured as ternary tree, whereby only the root node 
stores the heap. To cut down on accesses of the root node, a subproblem that has the same 
value of the bounding function than its parent is not inserted into the central heap but kept 
local as input to the next iteration. In view of the results presented above. one would expect 
that this centralized strategy would lead to congestion quickly. However. as the table below 
shows, the centralized strategy outperformed the decentralized version: 



• 
Graph Time iterations time iterations speedup efficiency 

I 
rd 1 processor 1 processor 63processor 63processors 

0 5488,69 37953 88,64 38033 61,92 0,983 I 9499,36 66768 152,60 66815 62,25 0,988 2 9401,62 66017 150,88 66035 62,31 0,989 3 5015,47 34038 81,06 34188 61,87 0,982 4 4807,94 32949 77,70 33005 61,88 0,982 

34212,98 237725 550,88 238076 62,11 0,986 I 

This indicates how efficient the communication mechanism provided by the transputers is. As 
can be seen from the table below, the root process is only very slightly blocked by the 
additional communication necessary and that the load is well-balanced and idle times are 
small. Luling has done additional research on ternary-tree based configurations which show 
that for constant communication and storage management cost the speedup increases, if the 
computation time for a single subproblem on a slave processor is sufficiently high. However 
it is questionable whether this result also holds for larger networks, especially as the memory 
of one transputer may not be large enough for storing the heap for larger problems so that a 
distributed storage becomes necessary from this point of view. 

Computation time 152,6 
Idle time root process 0,6350 
Min idle time slaves 0,5496 
Max idle time slaves 1,3743 
Avg idle time slaves 1, 1011 
Iterations root process 895 
Min iterations slaves 1007 
Max iterations slaves 1133 
Avg. iterations slaves 1063 

The aim of our implementation is to study whether the techniques developed by 
Vornberger, Kumar et.al. and Luling for coordinating distributed Branch-and-Bound 
algorithms on a tightly-coupled multicomputer are also applicable to achieve a satisfactory 
speed-up on a loosely-coupled multicomputer such as a cluster of workstations. We 
implemented both sequential and parallel Branch-and-Bound algorithms for solving the VCP 
on HP 9000/330 workstations using the C programming language. Randomly generated test­ 
graphs with 120 nodes and average degree 30 were used for the performance measurements. 
With this input, the sequential version took 4: 13 hours (15,180 seconds) on the average to 
complete on an unloaded workstation running in multiuser-mode with all usual background 
daemons active. On the average it performed 159,009 iterations at an average of 10.47 
iterations per second. The distributed version was benchmarked using 8 unloaded networked 
HP 9000/330 workstations. Thereby we basically used Lulings coordination strategy 
described above. Compared to the communication in a transputer network. in oer environment 
communication is slow. Thus we have to expect that the favourable parameter settings differ 
from those found by Luling. Furthermore, on workstations under ll:\IT ccztext switches are 
expensive and should be avoided. As will be described in the next section. we implemented 
the computions and heap management in seperate processes, whereby ilie heap manageme 
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process checks the local heap and bound whether a coordination rule fires. To cut down 
context switches, we suspend 
this prpcess after each scan for an interval speciefied by the parameter SLEEP. Due to t­ 
operating-system limitations the minimum value for SLEEP is one. Therefore we chose as test 
values for SLEEP one and three. A total of 180 experiments ( at least 5 per parameter setting) 
was conducted with the following parameter-settings. 

Parametreler 
Values 

HEAPW- UP 0,5 0,7 
0,3 0,5 0,7 

HEAPW-DOWN 0,2 0,4 
5 

TRESH I 3 

MIN-HEAPW 

SLEEP 

The following table summarizes the values for the above introduced metrics per parameter 
setting: 

HEAPW- HEAPW- TRESH SLEEP t V(t) iter V(iT SU V(SU) rel Y(rel 

UP DOWN ER) ter Iter) 

0,5 0,3 0,2 I I 895,66 500,48 825,33 103,36 8,43 1,96 0,92 0,21 

0,5 0,3 0,2 3 2794,33 232,56 624,66 250,60 5,46 0,46 1,20 0,04 

0,5 0,3 0,4 I 1586,66 778,60 620,33 210,86 I 1,92 6,07 0,76 0,34 

0,5 0,3 0,4 3 I 523,33 523,63 164,66 33,35 11,26 4,58 0,74 0,28 

0,5 0,5 0,2 I 3186,00 321,42 540,33 423,24 4,80 0,45 1,30 0, I I 

0,5 0,5 0,2 3 2678,40 248,00 392,00 319,97 5,70 0,50 I, 17 0,06 

0,5 0,5 0,4 I 2409,33 64,55 602,33 350,96 6,30 0,17 I, I 5 0,02 

0,5 0,5 0,4 3 2534,33 I 18,60 739,66 143,27 5,99 0,28 1,21 0,05 

0,5 0,7 0,2 1 3003,33 98,08 535,00 191,16 5,05 0,16 1,33 0,06 

0,5 0,7 0,2 3 2659,33 93,22 600,00 430,68 5,71 0,20 1,21 0,02 

0,5 0,7 0,4 I 2905,66 323,59 372,66 250,79 5,27 0,58 1,32 0,08 

0,5 0,7 0,4 3 2545,33 32,50 305,33 239,35 5,96 0,07 1,19 0,03 

0,7 0,3 0,2 I 1553,33 155,18 560,00 261,82 9,86 1,05 0,76 0,09 

0,7 0,3 0,2 3 2747,00 494,98 508,33 328,14 5,71 1,15 1,06 0, 18 

0,7 0,3 0,4 I 1025,00 470,79 599,00 358,69 19,57 12,52 0,5 I 0,23 

0,7 0,3 0,4 3 2847,66 479,55 211,66 15,25 5,48 0,99 1,11 0,13 

0,7 0,5 0,2 I 2609,33 65,75 276,66 328, 70 5,82 0,14 1,21 0,01 

0,7 0,5 0,2 3 2463,66 378,19 461,66 192,59 6,27 1,05 1,10 0,09 

0,7 0,5 0,4 I 2333,33 602,93 679,66 138,87 6,95 2,06 1,08 0,22 

0,7 0,5 0,4 3 2684,00 50,38 796,33 174,43 5,66 0,10 I,22 0,03 

0,7 0,7 0,2 I 2576,00 73,50 624,00 253,79 5,89 0,16 1,18 0,03 

0,7 0,7 0,2 3 2534,00 257,27 677,00 338,60 6,03 0,60 l,16 0,06 

0,7 0,7 0,4 I 2525,66 162,16 633,66 262,74 6,03 0,38 1,20 0,03 

0,7 0,7 0,4 3 2575,00 166,04 408,00 414,39 5,91 0,39 1,21 0,04 
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As already noted in IKUMAR87] and [LULING89], also in our experiments we found 
anomalous behavior, i.e. runs with reliter» 1 or reliter « 1. To check whether the parameter 
settings have significant influence on the total run time, we performed a variance analysis (for 
details on this technique see e.g.(FAHRMEIER84]). On the 1 percent level the parameters 
HEAPW _DOWN, TRESH and SLEEP and interactions of HEAPW _UP versus SLEEP and 
HEAPW _ DOWN versus SLEEP were significant. On the 5 percent level the interaction of 
HEAPW _ UP versus TRESH becomes significant, too. To illustrate the dependence of 
performance on the parameter settings graphically, the following figure shows the speed-up 
gained versus HEAPW _DOWN, given the parameters THRESH (Tb) and SLEEP. 
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We see that for our configuration it is favourable to keep all parameters small as is the case 
in Luling's ring-configuration. However, due to the more expensive communication our 
parameters in general are larger than those found by Luling. The SLEEP parameter can be left 
at 1 and thus the functionality associated with it can be neglected. We would also like to point 
out that the significant speed-up gained with the parameter-settings HEAPW _DOWN=0.3, 
THRESH=0.4, SLEEP=l is also due to a single anomalous speedup of 35 (!) and therefore 
the minimum may be less distinct if more experiments are taken as basis for the determination 
of the mean speed-up. To illustrate what we can expect from our distributed system on 
average, we compute the means of the metrics over all runs conducted: 

Variable Mean Std Dev. Minimum Maximum 
Total 2300.4 636,70 425,0 3597,0 
runtime 
Total 556,63 285,27 16,0 998,0 
iterations 
Speedup 7,5 4,09 4,220 35,720 
reliter 1,0 0,25 0,2120 1,4590 
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To provide further insight into the coordination achieved via our strategy, the following 
figure shows the distribution of the number of iterations across the eight nodes for the best 
and worst-case experienced in our tests. 
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In view of this experimental data and the results from literature presented above, it seems 
justified to conclude that from the viewpoint of performance Branch-and-Bound algorithms 
are suitable for execution on multicomputers. While the speed-up results are comparable for 
tightly-coupled and loosely-coupled systems, it seems that on the latter one has to expect a 
higher variance in the performance. However, besides exhibiting satisfactory performance an 
algorithm should also be easy to program, debug, main tam and use. As we shall demonstrate 
in the sequel, it is this area where additional work remains to be done. 

Programming a and Controlling Distributed Branch-and-Bound Algorithms on a 
Cluster of Workstations 

In Our application most of the time a processor "behaves" as if it would be a stand-alone 
computer executing a sequential Branch-and-Bound algorithm using its local heap. However, 
if the contacted. This introduces Condition-parts of the coordination rules are satisfied, 
another node is contracted. This introduces a nonsequential element as the receiver then has to 
stop computing and to execute the code for answering a communication request. A 
mechanism that supports this functionality and is available on many UNIX systems is a 
remote procedure call (RPC). an abstraction similar to the procedure-call-mechanism in 
sequential programming languages3.With this mechanism we can separate the computing 
process from code dealing with coordination and leave the scheduling of the processes to the 
operating system. As RPC implements synchronous communication, deadlocks can occur if 
the sending and receiving of messages is implemented in the same code, namely if node A 
wants to communicate with node B, which at the same time wants to contact node A. Thus we 
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separate these functions in two processes, Communication Server R and Communication 
Server S. All three processes of the application have to access the local heap, which we 
implemented using shared memory to which all processes connect. Therefore we arrive at the 
following structure: 

Computing Process 
I ~ 

1J .., DJ 

/ Communication )---.j g. 0 RPC I - C: ro :::, 
Server R 3 a. 

1J 
0 
0 

I - 
RPC I Communication 

Server~ 
Shared 

Memory IPC 

Local Area Network 

Server S manages the shared memory segment ( creation and deletion), starts Server R and 
the computing-process, does load-balancing and terminates server R and the computing 
process. If Server S runs on the master node in the network, it also handles insertion of the 
start element, time measurement, the end-of-computation-detection and the collection of 
results and statistics. Server R answers incoming requests. Basically, the computing process is 
identical to the sequential version. Additional features are that the automatic insertion of a 
start element into the 
Local heap is suppressed and that statistics about the idle time are gathered. Furthermore, 

the program does not terminate on the "heapempty"-condition, but then enters an endless loop 
waiting for new problems. In order to inform the communication process about the status of 
the computing process, the computing process puts its current status (running or idle) into a 
predefined status-register in shared memory. 
This distributed program system for solving the VCP as described above consists of twice 

the Lines of code of the sequential version. Its coding was considerably more elaborate, 
especially as it involved the use of the novel programming techniques described above. A 
similar finding LS reported in [KALLSTROM88], where experiences made when a 
distributed simulated annealing algorithm to solve the traveling salesman problem was 
implemented on an IPSC hypercube via C and libraries, on a network of transputers in 
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OCCAM and in C on a Sequent Balance, a shared memory multiprocessor. Among others, 
Kallstrom and Thakkar found that programming multi computers in C via libraries is 
cumbersome and error-prone and that the resulting programs typically are much larger than 
their counter pieces for shared-memory multiprocessors. Reviewing the structure of our 
application depicted above one finds that only the computing process is specific for the VCP, 
while the two server processes could be used for other algorithms of this type too, albeit with 
different coordination rules. It thus seems plausible to implement the functions provided by 
these processes for general use and to provide an abstraction of a space of sub problems 
shared by all processors in the multi computer that the application programmer can use in a 
similar way like the sequential data structure. According to the level of generality, approaches 
taken in literature in this direction can be divided into two classes: 

• Packages supporting the distribution of tree-traversal backtrack algorithms by 
providing a distributed data structure for storing the nodes of the backtrack tree ( e.g. 
DIE as presented in (FINKEL87]) 

• Languages that provide access to distributed shared memory whose structure can be 
determined by the programmer (e.g. LINDA as discussed in [GELBRNTER89II) 

DIB was developed by Finkel and Manber as a tool for supporting the distribution of 
backtrack algorithms. It requires the user only to specify a root-node, the branching and the 
bounding procedure. The distribution of subproblems and termination is handled by DIB. The 
load sharing algorithm used is rather simple, similar to the first strategy used in 
[VORNBERGER86], though DIB tries to avoid the transfer of nodes on lower levels of the 
tree that can be solved quickly to keep communication low. LINDA offers access to a shared 
"tuple Space" which is distributed over several hosts in a transparent way. The tupel space 
consists of tuples, which are content-adressable sequences of fields with a defined type. The 
tuples can be used to implement a variety of distributed data structures, whose access routines 
can be implemented via LINDA primitives that allow the insertion and deletion of tuples. 
Additional to storing passive data transparently, LINDA also provides an operation for the 
transparent execution of routines, whose results become passive tuples upon completion. 
LINDA is available for use with a number of programming languages. It has simple routines 
for storing the tuples at the different nodes ( either full replication or storage at the node where 
a tuple was inserted into the tuple-space). To the authors' knowledge, no further coordination 
mechanisms have been implemented so far and current research on algorithms for distributed 
shared memory focuses on proper ways of transparently storing and accessing objects used by 
several nodes rather than on techniques for load balancing (see e.g. [STUMM90]). Thus, such 
tools should provide language constructs that allow the application programmer to use 
problem- and configuration specific rules for sharing information among several nodes like 
those introduced above. 
Besides these programming problems, also the run-time control of a distributed Branch­ 

and-Bound algorithm on a cluster of workstations is non-trivial. Tightly-coupled 
multicomputers typically are "node-shared", i.e. at the beginning of an execution a user 
reserves the nodes he needs exclusively. In our case, the program is run as a collection of 
background processes on time-sharing machines, each one being controlled by its owner. 
Thus the implementation must be prepared to deal with a "nonconstant" configuration: the 
number of iterations per second on a node may decrease because its owner starts a foreground 
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process or a node may become completely unavailable because its owner terminated the 
processes of the Branch-and-Bound application or due to a power failure or switch-off 
Compared to an implementation on a tightly coupled system this makes the coordination more 
difficult as one also has to deal with load imbalances caused by other processes. To avoid the 
disturbance of other user processes, LINDA distributes load according to a "policy file" 
where the owner of a workstation specifies when and under what conditions he is willing to 
provide cycles on his machine for general use. A safeguard against incomplete tree-traversal 
caused by node failures is that a host stores all subprbblems it hands over to other hosts. If a 
host fails, the nodes that have sent subproblems to it reevaluate these instances. If problems 
were transferred more than one time, additional communications are necessary to determine 
the subtree lost. The price paid for this functionality is increased network traffic, since a node 
receiving problems must notify the sender when it has finished evaluating the subproblem 
handed over. Under DIR a node even does not await the detection of a failure and starts 
inspecting subproblems sent away if it becomes idle. With regard to the master node, other 
nodes can take this role if the previously determined master processor has filed. For instance, 
one can determine that the node having the lowest node-id should take the responsibilities of 
the master. Lets assume that the node with identification one is the master, that all nodes are 
idle, node 1 sends out the yellow token, but crashes before the token has completed its round. 
Now node n gets a timeout when trying to pass the yellow token back to the master. It sends a 
status message to all other nodes notifying them to remove node 1 from their list of available 
nodes. Upon receiving this message, node 2 discards the first entry from its node-table and 
realizes that it has become master. In this role it issues the yellow token and the cycle starts 
agam. 

Conclusion 

Branch-and-Bound algorithms scale up well, given proper coordination. The speed-up on a 
cluster of workstations is comparable to the one arrived at when using tightly-coupled 
multicomputers like transputers or hypercubes, albeit the variance observed over different 
runs is higher. Thus thinking about the distribution of such an algorithm is worth the effort, 
especially if processor time available anyhow would be left unused. Moreover, the results 
demonstrate that for this type of algorithms it can be economically sensible to use several 
cheap slow processors instead of one single processor configuration. However, these benefits 
are not for free. Due to the fact that on a loosely-coupled system several applications are run 
at the same time by different users mostly in an interactive way, the control of a long-running 
application on such a multicomputer is more difficult than on a tightly-coupled system. Thus 
special techniques are necessary to avoid the disturbance of other applications and to ensure 
fault tolerance. Also programming of a distributed version of a Branch-and-Bound algorithm 
is considerably complex than implementing a sequential version. This is reflected not only in 
lines of code but also by the need for application programmers to cope with new 
programming problems such as dissemination of global information, load-balancing, 
distributed termination or deadlock prevention. Based on this evidence we argue that while it 
seems that from the viewpoint of performance the feasibility of using a cluster of workstations 
as a loosely-coupled multicomputer for running Branch-and-Bound algorithms is well 
demonstrated, it is decisive to give the application programmer tools that ease the 
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programming task to foster the wide-spread use of networks of workstations also as devices 
for computation intensive computing. 

PARALLEL COMPUTING: THEORY AND PRACTICE 

PARALLEL BRANCH-AND-BOUND ALGORITHMS 

The first two parts of describe parallelizations of the branch-and-bound algorithm for 
multiprocessors and multicomputers. respectively. We use as our problem domain the 
traveling salesperson problem described in All the parallel algorithms described in this 
section use the branching and bounding heuristics developed by Little et al. 

The final part of this section discusses anomalies in parallel branch-and-bound 
algorithms conditions under which adding processors may result in slowdown or superlinear 
speedup. 

Multiprocessor Algorithms 
Mohan 1983) has developed two parallelizations of the traveling salesperson algorithm 

presented . The first parallel algorithm involves a parallelization of the for loop: the second 
parallel algorithm executes the repeat loop in parallel. 
As presented before. the for loop has a natural parallelism of 2-each node has only two 

children. However, by selecting k edges to be considered for inclusion or exclusion, the 
number of children of each node increases to 2k since constraints reflecting all combinations 
of inclusion and exclusion must be generated. The modified algorithm is Clearly this data­ 
parallel algorithm is appropriate for 2k processors. 

The second algorithm creates a number of processes that asynchronously explore the tree of 
subproblems until a solution has been found. Each process repeatedly removes the unexplored 
subproblem with the smallest lower bound from the ordered list of unexplored subproblems. 
Then it decomposes the problem (unless it can be solved directly), and inserts the two newly 
created subproblems in their proper places in the ordered list of problems to be examined. A 
process must have exclusive control of the list in order to insert and delete elements, but the 
time taken for these tasks is relatively small compared to the time needed to decompose a 
problem. Thus contention for this list should not be a significant inhibitor of speedup. 
The speedup of these two parallel algorithms on Cm* (a NUMA multiprocessor) is 

contrasted .The first algorithm achieves extremely poor speedup. The additional processors 
spend most of their time creating nodes that are never explored, because their lower bounds 
are too high. Mohan's second algorithm achieves, with 16 processors. a speedup of about 8 
when solving a 30-vertex TSP. The major obstacle to higher speedup is the number of 
nonlocal memory references made by the processors. 

COMBINATORIAL SEARCH 

TRAVELING SALESPERSON (UMA MULTIPROCESSOR): 
begin 

reduce weight matrix, determining the root's lower bound initially only the 
root is in the state space tree while true do 
select the unexamined node in the state space tree 

with the smallest lower bound 
if the node represents a tour then exit the loop endif 
select the k edges whose exclusion increases 

the lower bound the most 
for the 2k cases representing all inclusion-exclusion 

combinations of the selected edges do 
create a child node with the correct constraints 
find the lower bound for the child node 
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endfor 
end while 
end 

Hirt-level description of a parallel traveling salesperson algorithm developed by Mohan 
(198 .. The algoritlim is designed for implementation on a UMA multiprocessor, but it does 
not ac reve good speedup. 
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Multicomputer Algorithms 

Quinn (1990) has implemented four variants of an algorithm to solve the traveling 
salesperson problem on hypercube muiticomputers. The algorithm uses distributed priority 
queues of unexamined subproblems-one queue per processor. The performance of the 
parallel algorithm depends upon the heuristic the processors use to exchange unexamined 
subproblems with each other. Major portions of this subsection first appeared in Quinn 
(1990). 

Let p - 2d denote the number of processors. Assume that the branching factor of the state 
space tree is k; i.e., assume that each node in the tree has k children. Let N be the minimum 
number of constraints that must be added to the original problem in order to produce a 
subproblem that is solvable. In other 

PARALLEL COMPUTING: THEORY AND PRACTICE 

Words, any solution node must have depth > N in the state space tree. Let x be the time 
needed to examine a subproblem and either solve it or decompose it into k subproblems. Let k 
be the time needed to transfer a subproblem from one processor's priority queue to another 
processor's queue. and assume that both the sender and the receiver processors must devote 
time X to the transfer. 

The asynchronous branch-and-bound algorithm distributes the unexamined subproblems 
among the processors. In each of its iterations every processor with a nonempty priority queue 
removes the unexamined subproblem with the smallest lower bound and either solves the 
problem directly or divides it into k subproblems. (Note: Although each processor iterates 
through a sequence of operations. there is no synchronization among processors.) If a 
processor divides a problem into k subproblems. it puts the subproblems into its priority 
queue, then uses a heuristic to send in of its unexamined subproblems to neighboring 
processors. where in < k. At the beginning of execution. Processor O contains the original 
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problem in its pnonty queue. Because each processor distributes in subproblems every 
iteration. lip) = =log., 1 p 1 iterations are sufficient to provide every processor with at least one 
unexamined subproblem. 

In order for a solution to be found and guaranteed optimal. two conditions must be met. 
First, at least one of the solution nodes ( and hence all of its ancestors in the state space tree) 
must be examined. Second processors must examine all nodes in the state space tree whose 
lower bounds are less than the cost of the optimal solution. The execution time of the 
algorithm is determined by whichever event occurs last. The event occuring last is determined 
by the number of processors and the shape of the state space tree. 

To derive an expression for the execution time of the parallel algorithm, we first determine 
the amount of time needed to examine all of the worthwhile nodes in the state space tree. 
Assuming that sub problems are exchanged evenly among processors. Every iteration requires 
time x+2m11,: time x to decompose or solve a subproblem. Time m to send in subproblems to 
other processors and time ml to receive (on average) m subproblems from other processors. 
If S is the number of worthwhile subproblems in the state space tree. I(p) is the number of 
iterations before all processors are actively involved. and G(p) is the number of worthwhile 
subproblems examined in the first I (p) iterations, then S - G(p) worthwhile subproblems 
remain to be examined after the first 1 (p) iterations. If the percentage of worthwhile node 
examinations performed by the p processors after the first lip) iterations is E(p). the number of 
additional iterations required to examine all worthwhile subproblems is[F(S - G(p)/(pE(p))}. 
Multiplying the time per iteration by the number of iterations, we see that the amount of time 
needed to examine all worthwhile 
siihnrnhb-rns is Second. we determine the amount of time needed for the search to reach a 
solution node, the length of the critical path. Let M denote the depth of the 

COMBINATORIAL SEARCH 

Solution node in the state space tree. Let T(p) denote the number of transfers on the critical 
path from the root of the state space tree to the solution node. In other words. T(p) is the 
number of times that subproblems leading to the solution are transferred from one processor's 
priority queue to another processor's queue. Every transfer incurs a penalty of x-'2 + A. The A 
term is the time needed to perform the transfer. The x/2 term is the expected delay before the 
subproblem can be evaluated by the destination processor. since the destination processor is 
likely to be in the middle of decomposing another subproblem when the transfer begins. The 
total amount of time needed for the search to find a solution is 

(M + l)(x + 2ml) + T(p)(x/2 + A) (13.2) 

Since the asynchronous algorithm completes when both previously mentioned conditions 
are met, the execution time of the algorithm is the maximum of the times in expressions 13 .1 
and 13.2. 

Quinn has tested the model by implementing four parallel best-first, branch-and-bound 
algorithms to solve the traveling salesperson problem. All these algorithms use the reduction 
heuristic of Little et al. The algorithms have been implemented on a 64-processor nCUBE 
3200 hypercube multicomputer. 

All four algorithms have been executed on the same set of ten 30-vertex graphs. The edge 
weights are asymmetrical and randomly chosen from a uniform distribution of integer values 
ranging from O through 99. Every algorithm beings with Processor O possessing the original 
problem, and relies upon successive subproblem decomposition steps to work toward a 
solution. 

During an iteration every processor with a nonempty priority queue removes the 
unexamined subproblem with the smallest lower bound and either solves the problem directly 
or divides it into two subproblems. It sends one unexamined subproblem to a neighboring 
processor and receives (on average) one unexamined subproblem from a neighboring 
processor. Quinn determined the parameters needed for the analytical model by recording the 
actions taken by the processors during their solution of the ten 30-vertex problem instances. 
All these parallel algorithms had the following parameters: S 559, k = 2, m = 1, x 125 msec, 
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and A= 1 msec. Values of G(p), E(p), and T(p) varied from algorithm to algorithm. 

All four algorithms use the following rule to distribute subproblems among the processors. 
Let p - 2d be the number of processors. On iteration i Processor j sends the unexamined 
subproblem to Processor r, where r is found by inverting bit (i mod d) of j. With this 
distribution rule 1 (p) = log, p. 

Each algorithm has a unique heuristic for choosing which unexamined sub-problem to send 
to a neighboring processor. Algorithm 1 puts the newly created subproblem with the edge 
inclusion constraint into the priority queue and sends the subproblem with the edge exclusion 
constraint. Algorithm 2 puts the newly created subproblem with the smaller lower bound into 
the priority queue and sends the subproblem with the higher lower bound. Algorithm 3 puts 
both newly created subproblems on its priority queue, then deletes the second-best 

Processors Alg.1 Alg.2 Alg.3 Alg.4 

1 Actual 1,00 1,00 1,00 1,00 
Predicted 1,00 1,00 1,00 1,00 

2 Actual 1,88 1,87 1,89 1,93 
Predicted 1,90 1,90 1,96 1,96 

4 Actual 3,52 3,43 3,73 3,65 
Predicted 3,58 3,58 3,85 3,85 

8 Actual 5,67 5,43 6,59 6,50 
Predicted 5,76 5,69 7,09 7,09 

16 Actual 7,39 6,86 10,20 9,12 
Predicted 7,58 7,00 11,33 10,51 

32 Actual 8,07 7,96 12,92 11,50 
Predicted 7,89 7,89 15,20 12,91 

64 Actual 7,01 7,34 12,57 12,99 
Predicted 9,05 6,27 13,74 13,10 

Actual and predicted speedups of asynchonrous branch-and-bound algorithms 1, 2, 3 
and 4 on nCUBE 3200. Values represent averages over ten 30-vertex instances of the 
traveling salesperson problem with asymmetrical integer distances. 

Problem from the priority queue and sends it. Algorithm 4 puts both newly created 
subproblems on its priority queue. then deletes the best problem from the priority queue and 
sends it. 
The upper entries of Fig. 13-1 ' indicate the speedup measured on the nCUBE 3200 for 

each of these four algorithms. The lower, italicized values are the speedups predicted by 
Quinn's model. Despite the simplifying assumptions, most notably the assumption that all 
subproblem decompositions require the same amount of time, the model is a reasonably 
accurate predictor of speedup. 

For the solution of a 30-vertex traveling salesperson problem on 64 processors. execution 
time is dominated by the time needed to examine all worthwhile subproblems. Hence the 
difference in speedup among the four asynchronous algorithms is a reflection of how well 
they kept processors busy doing useful work. plots the percentage of worthwhile subproblem 
examinations as a function of distance from Processor 0, the processor given the initial 
problem. as the algorithms execute on a six-dimensional hypercube. The "distance" between 
two processors is the length of the shortest path in the hypercube linking them. The significant 
differences in the curves illustrate how a simple change in the subproblem distribution 
heuristic can have a dramatic effect on the efficiency of the parallel algorithm, by increasing 
or decreasing the percentage of time various processors spend examining useful subproblems. 
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Because the execution times of the asynchronous algorithms on the 30-vertex traveling 
salesperson problem are dominated by the time needed to solve all worthwhile subproblems, 
Fig. 13-12 does not validate expression 13 .2. To illustrate the precision of this part of the 
model, we present the performance of Algorithm 4 solving 10 instances of the 20-vertex 
traveling salesperson problem. For this smaller-sized problem the speedup of Algorithm 4 is 
constrained by the time needed to traverse the critical path because: (1) the state space tree 
has relatively few worthwhile subproblems and (2) subproblems leading to the solution are 
frequently transferred from one processor to another. contrasts the actual and predicted 
speedups of this algorithm. 

We can use the model to predict the performance of these algorithms on other 
multicomputers because changing the value of A does not affect the values of the other 
parameters. 
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To summarize, multicomputer implementations of parallel branch-and-bound algorithms 
that keep unexamined subproblems in a single priority queue have a 

Actual and predicted speedups for Algorithm 4 solving 20-vertex traveling salesperson 
problem. Values represent averages over ten problem instances. 

Processors Actual Predicted 
1 1,00 1,00 
2 1,63 1,87 
4 1,92 2,00 
8 1,90 2,01 
16 2,04 2,01 
32 2,26 2,01 
64 2,21 2,04 

PARALLEL COMPUTING: THEORY AND PRACTICE 

Number of disadvantages. One processor must have a disproportionately large memory, 
and that processor is involved in every communication. Distributing the unexamined 
subproblems among the processors balances the memory requirements. reduces the number of 
communications, and distributes the messages over the network, which can result in a more 
practical algorithm that actually achieves higher speedup. Whether or not the potential for 
higher speedup is realized depends upon the effectiveness of the subproblem-distribution 
heuristic in assigning processors useful work. 

Anomalies in Parallel Branch and Bound 

In this section we present Lai and Sahni's (1984) analysis of the speedups theoretically 
achievable by a parallel branch-and-bound algorithm. We must make a few assumptions in 
order for the analysis to be manageable. Assume that the time needed to examine any node in 
the tree and decompose it is constant for all nodes in the state space tree. Furthermore, assume 
that execution of the parallel algorithm consists of a number of 'iterations.' During each 
iteration every processor examines a unique subproblem if one is available and decomposes it. 
Given a particular branch-and-bound problem to be solved and a particular lower bounding 
function g. define l(p) to be the number of iterations required to find a solution node when p 
processors are used. 
The first theorem shows that increasing the number of processors can actually increase the 
number of iterations required to find a solution. 
Theorem 13 .1. Given n~ < n~ and k > 0, there exists a state space tree such that kl (nl) < I (n2). 
(See Lai and Sahni [1984].) 
Proof Consider the state space tree shown in All nodes labeled have the same lower bound, 
which happens to be the value of the least-cost answer node (node A(. Nodes labeled">" have 
a lower bound greater than the value of the least-cost answer node. When ii1 processors 
conduct the search, on the first iteration the root node is expanded into nl + 1 children nodes. 
The second iteration consists of expanding the n~ leftmost nodes at level 2 into n nodes at 
level 3. Of the nodes at level 3, nl-1 of them cannot lead to the solution and are discarded. 
On iteration 3 the remaining node at level 3 and node B are expanded. Since the node at level 
3 leads to the solution node, the algorithm terminates. Hence I(nl) = 3. 
When n2 processors conduct the search, the first iteration is the same: The root node is 
expanded into nl + 1 children nodes. On the second iteration, however, all nl + 1 nodes at 
level 2 are expanded, yielding n, +n2 nodes at level 3. Since only n2 nodes at level 3 can be 
expanded on iteration 3, it could happen that the n2 rightmost nodes would be the nodes 
chosen. If we assume the processors expanded the n2 rightmost nodes at level 3, n2 nodes at 
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level 4 would be created, and iterations 4, 5, 6, ... , 3k could be devoted to a wild-goose 
chase, expanding nodes down the right part of the tree. The solution node A would be 
expanded on iteration 3k + 1. Hence 1 (n2) = 3k + 1. Combining the two results yields k I(n1) 
= 3k < 3k + 1 = 1 (n-). 
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Because many nodes have a lower bound equal to the value of the least-cost answer node­ 
fl'-we see the anomaly described in the Theorem 1. What would happen if g(x) = f-, 
whenever x is not a solution node? 

Definition .1. A node x is critical if g(x) <f 

Theorem 2. If g(x) = f* whenever x is not a solution node, then 1(1) > I(n) for all n> 1. 
(See Lai and Sahni (1984).) 

Proof By the definition of the best-first branch-and-bound heuristic, only critical nodes and 
least-cost answer nodes can be expanded. In addition, every critical node must be expanded 
before any least-cost answer node is expanded. Hence if the number of critical nodes is in. 
then 1 (]) = m. When n > 1, at least one of the nodes expanded each iteration must be a 
critical node (Prob. 13-5). Hence a least-cost answer node must be examined no later than 
iteration m. Thus if the number of critical nodes is in, then 1 (n) < m. Therefore 1 (1) > 1 (n) 
for all n > 1. 

The following theorem proves that increasing the number of processors can actually cause 
a disproportionate decrease in the number of iterations required to find a solution node. 

Theorem 13.3. Given nl < n2 and k > n2/nl, then there exists a state space tree such that I 
(n/I(n2) > k > n2/nl. (See Lai and Sahni [1984).) 

Proo/This is left to the reader as Prob. 13-6. 

Theorem 13.4. If g (x) = f* whenever xis not a least-cost answer node, then I (1) I I 
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(n) < n for n > 1. (See Lai and Sahni [1984].) 

PARALLEL COMPUTING: THEORY AND PRACTICE 

Proof Let m be the number of critical nodes. Then 1 (1) = m (Theorem 13 .2). All critical 
nodes must be expanded before the parallel branch-and-bound algorithm can terminate (Prob. 
13-7). Hence J(n) > rn/n, or 1(1)/l(n) < n. 
Lai and Sahni have found anomalous behavior in some instances of the 0-1 knapsack 

problem, but they conclude that anomalous behavior is rarely encoun tered in practice and 
that, in general. (1) increasing the number of processors will not increase execution time 
(assuming the problem is large enough), and (2) superlinear speedup cannot be expected. 

ALPHA-BETA SEARCH 

The most successful computer programs to play two-person zero-sum of games perfect 
information, such as chess, checkers, and go, have been based on exhaustive search 
algorithms. These algorithms consider series of possible moves and countermoves , evaluate 
the desirability of the resulting board position then work their way back up the tree of moves 
to determine the best initial move. 

Given a trivial game, the minimax algorithm can be used to determine the best strategy. 
Figure 13-16a represents the game tree of a hypothetical gain with rules left unstated, played 
for money. Dotted edges represent moves ma hr the first player: solid lines represent moves 
made by the second player. The root of the tree is the initial condition of the game. The leaves 
of this game tree represent outcomes of the game. Interior nodes represent intermediate 
conditions. The outcomes are always put in terms of advantage to the first player. Thus 
positive numbers indicate the amount of money won by the first player, while negative 
numbers indicate the amount of money lost by the first player. The algorithm assumes that the 
second player tries to minimize the gain of the first player, while the first player tries to 
maximize his or her own gain, hence the name of the algorithm. Figure 13-16b is the same tree 
with the values of the interior nodes filled in. The value of this game to the first player is 2. If 
the first player plays the minimax strategy he or she is guaranteed to win at least two dollars. 

Stockman (1979) has pointed out that a game tree is an example of an AND/OR tree. The 
AND nodes represent positions where it is the second player's turn to move. The OR nodes 
represent positions where it is the first player's turn to move. 

Nontrivial games such as chess have game trees that are far too complicated to be evaluated 
exactly. For example, de Groot has estimated that there may be 3884 positions in a chess 
game tree ( de Groot 1965). Thus current chess-playing programs examine moves and 
countermoves only to a certain depth, then, that point, estimate the value of the board position 
to the first player. Of course, evaluation functions are unreliable. If a perfect evaluation 
function existed, the need for searching would be eliminated (Prob. 13-9). As we have seen, 
all 
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possible moves and countermoves from a position p to some predetermined lookahead 
horizon can be represented by a game tree. The minimax value of the game tree can be found 
by applying the evaluation function to the leaves of the tree (the terminal nodes), then 
working backward up the tree. If it is the second player's move at a particular nonterminal 
node in the game tree, the value assigned is the minimum over all its children nodes. If it is 
the first player's move, the value assigned is the maximum over all its children nodes. 

Given a game tree in which every position has b legal moves, it is easy to see that a 
minimax search of the game tree to depth d examines bd leaves. 

It is generally true that the deeper the search, the better the quality of play. That is why 
alpha-beta pruning has proven to be valuable. Alpha-beta pruning, a form of branch-and­ 
bound algorithm, avoids searching subtrees whose evaluation cannot influence the outcome of 
the search, i.e., cannot change the choice of move. Hence it allows a deeper search in the 
same amount of time. 

The alpha-beta algorithm, displayed in Fig. 13-17, is called with four arguments: pas, the 
current condition of the game; a and B, the range of values over which the search is to be 
made: and depth, the depth of the search that I 
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ALPHA.BET A (pos, a, B, depth) 

Reference a {Lower cutoff value) 
(Upper cutoff value) 

Value pas (Position) 
depth (Search depth) 

Parameter max.c (Maximum possible number of moves} 
Local c17L.rnax.c] (Children of pas m game tree) 

cutoff (Set to TRUE when okay to prune) 
(Iterates through legal moves) 

val (Value returned from search) 
width (Number of legal moves) 

begin 
if depth < 0 then 
return (EVALUATE (post) (Evaluate terminal node) endif 
width GENERATE.MOVES(pos) if width= 0 then 
return (EVALUATE (pas)) (No legal moves) 
endif 
cutoff=- FALSE 

while i < width and cutoff= FALSE do 
vat r+« ALPHA.BET A (clli], a, ~, depth-i) 
if pas is MAX-NODE and tat > a then 

a-tat 

else if ~OS is MIN-NODE and tat «=- then~*- tat endif endif 
ifa > -rhen 

cutoff TRUE 
endif 
j *-i-r-1 

end while 
if pas is MAX-NODE then return a else return~ 
endif 

end 
Sequential alpha-beta algorithm. 
to be made. The function returns the minimax value of the position pas. The original board 
position is a MAX-NODE. Every child of a MAX-NODE is a MIN-NODE. Every child of a 
MIN-NODE is a MAX-NODE. 
To illustrate the workings of the alpha-beta algorithm, consider the game tree in This tree 

represents the same game as that in 
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Except that nodes not examined by the alpha-beta algorithm are not included. When the 
algorithm begins execution, a -cc and B cc. The algorithm traverses the nodes of the tree in 
preorder; the values of a and - converge as the search progresses. 

The nodes drawn in heavy lines in Fig. 13-18 represent places where pruning occurs. To 
explore the conditions under which pruning happens let us consider an arbitrary interior node 
in the search tree. When the search reaches this node, we know that some choice of moves 
that has already been considered leads to a value of at least a for the player moving first. We 
also know that correct play on the part of the opponent will ensure that the first player cannot 
get a- value more than+-. Hence a and - define a window for the search. 
If the interior node pas is a MAX-NODE, then it is the first player's move. If vat, the value 

of the game tree searched from node pas is greater than a, then a is changed to vat, a better 
line of play has been found for player one. 
Analogously, if the interior node pas is a MIN-NODE, then it is the second player's move. 

If vat, the value of the game tree searched from node pas is less than+-, then - is changed to 
vat; a better line of play has been found for player two. 

However, if at any time the value of a exceeds the value of B, there is no need to search 
further. It is in the best interests of one of the players to block the line of play leading to node 
pas. 

For example, consider the node labeled A in . The value returned from the search of the 
first child of A is 3, which is greater than 2, the value fl. It is not in the second player's 
interest to allow play to reach this position, since there is another line of play guaranteeing a 
value no higher than 2. Hence there is no point in continuing the search from this game 
position. 
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To what extent can alpha-beta pruning reduce the number of leaf nodes that must be 
examined? The algorithm does the most pruning on a perfectly ordered game tree, that is, a 
game tree in which the best move from each position is always searched first (see Fig. 13-19). 
Assuming a perfectly ordered game tree with a search depth of d and uniform branching 
factor b, Slagle and Dixon (1969) have shown that the number of leaf nodes examined by the 
alpha-beta algorithm is 

Opt(b, d) = b[d/ 1 ± bLd/2J -In other words, in the best case it is 

possible for the alpha-beta algorithm to 
examine no more than approximately twice the square root of the number of nodes searched 
by the minimax algorithm. 

Definition 13 .2. The effective branching factor of an algorithm searching a game 
tree of depth dis the dth root of the number of leaf nodes evaluated by the algorithm. 

Casting Slagle and Dixon's result in terms of this definition, an alpha-beta search reduces 
the effective branching factor from b to -.115 when searching a perfectly ordered game tree. 

Of course, a perfectly ordered search is not possible in practice. However, experimental 
evidence indicates that sequential alpha-beta algorithms often search no more than 50 percent 
more nodes than would be searched if the tree were perfectly ordered. Hence in practice the 
alpha-beta search algorithm exhibits much higher performance than minimax. 

Two common enhancements to the alpha-beta search algorithm are aspiration search and 
iterative deepening. Aspiration search makes an estimate of the value v of the board position 
at the root of the game tree, figures the probable error e of that estimate, then calls the alpha­ 
beta algorithm figuring the probable error e of that estimate, then calls the alpha-beta 
algorithm With the initial window (v - e, v - e). If the value of the game tree does indeed 
fall within this window of values, then the search will complete sooner than if the algorithm 
had been called with the initial window (-cc, cc). If the value of the game tree is less than ,. 
- e, then the search will return the value v - e, and the algorithm must be called again with 
another window, such as (-cc, v - e). Similarlv, if the value of the game tree is greater than 
v + e, then the search returns the value v + e, and another search will have to be done with a 
modified initial window, such as (v + e, cc). 

Another variant oh the standard alpha-beta algorithm is called iterative deepening. Each 
level of a game tree is called a ply and corresponds :o the moves of one of the players. 
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Iterative deepening is the use of a (d- 1)-ply search to prepare for a d-ply search. This 
technique has three advantages (Marsland and Campbell 1982). First, it allows the time spent 
in a search to be controlled. The search can continue deeper and deeper into the game tree 
until the time allotted has expired. Second, results of the (d - 1)-ply search can be used to 
improve the ordering of the nodes during the d-ply search, making the node ordering similar 
to perfect ordering, and allowing the alpha-beta search n execute more quickly. Finally, the 
value returned from a (d- 1)-ply search can be used as the center of the window for ad-ply 
aspiration search. 

PARALLEL ALPHA-BETA SEARCH 

Parallel Move Generation and Position Evaluation 

Alpha-beta search has a number of opportunities for parallel execution One approach is to 
parallelize move generation and position evaluation. The custom chess machine HITECHTM, 
with 64 processors organized as an 8 x 8 array has taken this route. However, the speedup that 
can be achieved with this aproach is limited by the parallelism inherent in these activities. 
Further improvements in speedup lie in parallelizing the search process. 

Parallel Aspiration Search 

Another straightforward parallelization of the alpha-beta algorithm is tone by performing an 
aspiration search in parallel. If three processors are z-ailable, then each processor can be 
assigned one of the windows (-cc,: -(v-e, v+e), and (v+e, cc). Ideally the processor 
searching (v-e, v±~ will succeed, but all three processors will finish no later than a single 
processor searching the window (-cc, cc). More processors can be accommodand by 
creating more windows with smaller ranges. Baudet (1978a, 1978b) explored parallel 
aspiration on the Cm* NUMA multiprocessor. 

PARALLEL COMPUTING: THEORY AND PRACTICE 

Work on parallel aspiration for the game of chess has led to two conclusions. First, the 
maximum expected speedup is typically five or six, regardless of the number of available 
processors. This is because Opt(b, d) is a lower bound on the cost of alpha-beta search, even 
when both a and ~ are initially set equal to the value eventually returned from the search. 
Second, parallel aspiration search can sometimes lead to superlinear speedup when two or 
three processors are being used. 

Parallel Subtree Evaluation 

Many believe that significant speedups can only be achieved by allowing processors to 
examine independent subtrees in parallel. There are two important overheads to be 
considered. Search overhead refers to the increase in the number of nodes that must be 
examined owing to the introduction of parallelism. Communication overhead refers to the 
time spent coordinating the processes performing the searching. Search overhead can be 
reduced at the expense of communication overhead by keeping every processor aware of the 
current search window. Communication overhead can be reduced at the expense of search 
overhead by allowing processors to work with outdated search windows. 

For example. consider this simple method of performing alpha-beta search in parallel. Split 
the game tree at the root, and give every processor an equal share of the subtrees. Let every 
processor perform an alpha-beta search on its subtrees. Each processor begins with the search 
window (~. ~ ), and no processor ever notifies other processors of the changes in its search 
window. Clearly this algorithm minimizes communication overhead. What is the speedup 
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achievable by this method? 
Theorem 5. Given a perfectly ordered uniform game tree of depth d and branching factor b. 

the number of node examinations performed by alpha-beta search in the first branch's subtree 
is(See Hyatt et al. [ 1989].) Proof Slagle and Dixon (1969) showed that the minimum number 
of nodes examined from a type 1 node of depth dis br(dl)l J ±bL(d1)/21 - 1. In a perfectly 
ordered game tree, the first child of a type 1 node is also a type 1 node, so we simply replace d 
with d- 1 in their expression. 

Theorem.5 demonstrates that the examination of the first branch of a perfectly ordered 
game tree takes a disproportionate share of the computation time. For example, consider a 
10-ply search of a perfectly ordered tree that has a branching factor of 38 (such as a chess 
game tree). The minimum number of 

COMBINATORIAL SEARCH 

Node examinations is 158,470.335. The minimum number of node examinations in the first 
branch is 81,320,303. By Amdahl's law it is clear that if only one processor is responsible for 
searching the first move's subtree, speedup will be less than two. 
In addition, because every processor's search must begin with -oc and - as the values for 

a and+-. respectively, the parallel algorithm will not prune as many subtrees as the sequential 
algorithm. A complete elimination of communication overhead creates significant search 
overhead. 
Let's look at the other extreme. What must be done to eliminate search overhead 

completely? We will make the assumption that the game tree is perfectly ordered. Look at 
Fig. 13-19. If we want to eliminate search overhead, we must ensure the parallel algorithm 
prunes the same nodes as the sequential algorithm. First consider searching the subtree of a 
type 1 node. The first child is a type I node; the remaining children are type 2 nodes. 
Searching subtrees rooted by type 2 nodes requires up-to-date values of a and - in order to 
prune all but the first children of the type 2 nodes. To get up-to-date values, the search of the 
subtrees rooted by type 2 nodes cannot begin until the search of the subtree rooted by the type 
I node has finished, returning a and -. However, once the values of a and - are known, all 
type 2 nodes may be searched in parallel without processor interaction. 
Next, let's look at the search of a subtree of a type 2 node. Since all but the first child are 

pruned. there is no parallelism to be exploited. 
Finally, consider the search of a subtree of a type 3 node. All its children are type 2 nodes, 

and these nodes may be searched in parallel without processor interaction. 
In practice, search trees are not perfectly ordered, but this exercise has demonstrated that a 

parallel alpha-beta algorithm can significantly reduce search overhead by delaying the search 
of some subtrees until more accurate bounds information is available. 

Distributed Tree Search 

Ferguson and Korf (1988) have developed a parallel tree searching algorithm called 
Distributed Tree Search (DTS), which, when evaluating game trees, has achieved good 
speedups. Although the DTS algorithm is suitable for solving a variety of tree search 
problems, we will describe its use as a tool to perform parallel alpha-beta search. 
The DTS algorithm executes by assigning processes to nodes of the search tree. Each 

process controls one or more physical processors. When the algorithm begins execution, a 
single process, called the root process, is assigned to the root node of the search tree. It 
controls the entire set of physical processors performing the search. 
When a process is assigned to a nonterminal node, it generates the children of that node by 

evaluating the legal moves. The process assigns processors to 
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The children nodes based upon the processor allocation strategy. For example, if the search 
is using a breadth-first processor allocation scheme, one processor is allocated to each child 
node until there are no more processors to allocate. At this point a new process is created for 
each child node that is allocated at least one processor. The parent process suspends operation 
until it receives a message from another process. 

When a process is assigned to a terminal node, it returns the value of that node and its set 
of allocated processors to the parent, then terminates. 

The first child process to complete the search of its subtree sends a message with its values 
of a and - to the parent. It returns its set of processors to the parent and terminates. The parent 
process wakes up when it receives the message from its child. It reallocates the freed 
processors to one or more of its active child processes. It may also send one or more of its 
child processes new values of a and -. The reallocation of processors from quicker processes 
to slower processes produces efficient load balancing. Notice that in this scheme a child 
process may be awakened by its parent, which is passing along additional processors. After 
reallocating processors. parent processes suspend operation until they receive another 
message. When all child processes have terminated, the parent process returns a. -. and the set 
of processors to the parent and terminates. When the root process terminates, the algorithm 
has completed. 

Three implementation details improve the performance of the DTS algorithm. First, every 
blocked process should share a physical processor with one of its child processes. In this way 
all processors stay busy. Second, when a blocked parent process is awakened, it should have 
higher priority for execution than processes corresponding to nodes deeper in the search tree. 
Third, when the search reaches a point where there is only a single processor allocated to a 
node, the process controlling the processor should execute the standard sequential alpha-beta 
search algorithm. 
Proof The execution time of the sequential algorithm is proportional to the number of leaf 

nodes it evaluates, or O ((bx)--) - 0 (b" '). The DTS algorithm with breadth-first allocation 
distributes processors evenly among the branches of the search tree, until there is one 
processor per node. This occurs at depth O(logb p). The time complexity of this part of the 
search is also O(log- p), since allocations at the same level in the tree occur in parallel. Once 
the search has reached a point where there is one processor per node, every processor 
performs the sequential alpha-beta algorithm on the remaining subtree of depth O(d- logs p). 
The time needed for these searches is O(bx(d-ogb P)), since the effective branching factor is 
bx. Propagating values back to the root has time complexity O(log- p). The overall time 
complexity of the DTS algorithm is O(log- p+b '-4 '05bP). As the depth d grows, the second 
term dominates, and the parallel time complexity is O(bxdiogh P)). The speedup is the 
sequential time complexity divided by the parallel time complexity, or 

To test the DTS algorithm, Ferguson and Korf (1988) have implemented the game of 
Othello. Their node-ordering function results in an effective branching factor of about b66. 
The program implements parallel alpha-beta search using the DTS algorithm. Ferguson and 
Korf executed the algorithm on 40 midgame positions using 1, 2, 4, 8, 16, and 32 nodes of an 
Intel iPSC hypercube multicomputer. They estimated the speedup achieved by the program by 
dividing the number of node evaluations performed by the sequential algorithm by the number 
of node evaluations performed per processor by the parallel algorithm. For example, they 
estimate an average speedup of 10 for 32 processors. Figure 13-20 plots the speedup achieved 
by their algorithm. 

Ferguson and Korf have implemented another processor allocation strategy, called bound­ 
and-branch, which corresponds closely to the algorithm described at the end of the last 
subsection. When the search reaches a type I node, all processors are allocated to the leftmost 
child. After the search returns with cutoff bounds from the subtree rooted by the leftmost 
child, the processors are assigned to the remaining children nodes in a breadth-first manner. 
When the search reaches a node having type 2 or 3, cutoff bounds already exist, and the 
processors are assigned in breadth-first fashion. 

Ferguson and Korf have empirically determined that the bound-and-branch strategy 
achieves higher speedup than the breadth-first allocation strategy, even when the node 
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ordering is not perfect. They have implemented a version of the Othello program that uses 
iterative deepening and the bound-and-branch 
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processor allocation strategy. The actual speedup achieved by the program is 12 on 32 
processors. 

SUMMARY 
One way to differentiate between combinatorial search problems is to categorize them by 

the kind of state space tree they traverse. Divide-and-conquer algorithms traverse AND trees: 
the solution to a problem or subproblem is found only when the solution to all its children is 
found. Branch-and-bound algorithms traverse OR trees: the solution to a problem or 
subproblem can be found by solving any of its children. Game trees contain both AND 
nonterminal nodes and OR nonterminal nodes. 

Parallel combinatorial search algorithms for all these trees have been proposed. The 
speedup achievable through the parallel search of an AND tree is limited by propagation and 
combining overhead. 
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Mohan (1983) has implemented programs to solve the traveling salesperson problem on a 

NUMA multiprocessor. Quinn (1990) has implemented programs to solve the same problem 
on hypercube multicomputers. Their work demonstrates the potential for implementing 
branch-and-bound algorithms on MIMD computers. The fundamental problem faced by 
designers of parallel branch-and-bound algorithms is keeping the efficiency of the processors 
high by focusing the search on the nodes the sequential algorithm examines. 

Lai and Sahni (1984) have given examples of state space trees for which parallel best-first 
branch-and-bound algorithms can show anomalous behavior, such as superlinear speedup. 
Experiments they have performed with the simulated parallel solution of the 0-1 knapsack 
problem show that anomalous behavior can really occur, albeit rarely. 

Alpha-beta search has proven to be an efficient method for evaluating game trees. Several 
improvements on the standard alpha-beta search have been invented, including aspiration 
search and iterative deepening. Several methods have been proposed to parallelize alpha-beta 
search. These methods include parallel move generation and evaluation, parallel aspiration 
search, and the parallel search of independent subtrees. Only the third method seems to have 
enough parallelism to scale to massively parallel machines. Minimizing communication 
overhead can cause an unacceptable amount of search overhead, and vice versa. Ferguson and 
Korf (1988) have developed the bound-and-branch strategy to keep an acceptable balance 
while minimizing the two kinds of overhead. 

BIBLIOGRAPHIC NOTES 

Ibaraki (1976a, 1976b) has analyzed sequential branch-and-bound algorithms. Imai et al. 
(1979) wrote an early paper describing a parallel branch-and-bound algorithm. Wah et al. 
(1984, 1985) discuss ManipTM, a computer specifically designed to execute best-first branch­ 
and-bound algorithms. They also 

Length 1 2 3 4 5 6 
8 17,2 11,7 8,9 7,1 5,9 5,1 
16 33,1 22,4 16,9 13,7 11,4 9,8 
32 61,6 41,7 31,4 25,2 21,1 18, 1 
64 106,6 72,1 54,4 43,7 36,5 31, 1 
128 169,5 114,4 86,1 69,1 57,6 49,4 
256 241,2 162,2 121,4 97,1 81,0 69,5 
512 304,8 203,4 152,4 121,4 101,6 87,1 
1024 351, 1 233,4 174,9 139,8 116,4 99,8 
2048 380,8 252,2 188,8 150,8 125,6 107,6 

Load Balancing 

The goal of load balancing is to keep processor nodes busy and have them finish roughly at 
the same time. We say a program is balanced if its computation is equally distributed across 
all processors. Valuable processor cycles are wasted if some nodes have to wait on others to 
finish. More important, the greatest speedup is possible only when all processors are busy, all 
of the time. 

An application should be analyzed to make sure it is balanced. If the work load is known 
beforehand, it is possible to statically determine a balanced distribution of work at compile 
time. On the other hand, if the work load is not known beforehand, the parallel processors 
must dynamically adjust the load. Static techniques can be applied by the programmer, but 
dynamic techniques must be applied by either the operating system or the application software 
during program execution. 
• Chapter 9 discusses a number of techniques for static and dynamic load balancing. We 
merely describe a few simple techniques for dynamic balancing here. 
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There are several heuristics for dynamic load balancing. In what follows, we show two 
variations of the same load balancing heuristic given in Ranka. In both versions, the load is 
balanced by averaging the load over processors that are directly connected. In heuristic Hi, a 
processor transmits its entire work load, including the necessary data, to its neighbor 
processor. In heuristic H2, however, a processor transmits only the amount of work that is in 
excess of the average work load. 

It is left as an exercise for the reader to find the differences between Hi and H2 and to 
determine the cases in which each heuristic is better than the other (see problem 6). 

PROGRAMMING HYPERCUBES 

Hi 

Load Balance HI () 

For(i=O:i<CubeSize :i++) 

SendMyLoad to neighbor processor along dimension i: 

Receive HisLoad from neighbor processor along dimension i. 

and append to MyLoad; 
Avg= (MyLoadSize + HisLoadSize) /2: 

if (MyLoadSize > Avg) MyLoadSize = Avg: 
else if (HisLoadSize ) Avg) MyLoadSize += HisLoadSize - Avg: 

Load Balance H2 

For (i=O:i<CubeSize:I++) 

SendMyLoad to neighbor processor along dimension : : 

Receive HisLoad from neighbor processor along dimension i. 
Avg= (MyLoadSize ± HisLoadSize) 2: 

if (MyLoadSize > Avg) 

Send extra load (MvLoad Size -Avg) to neighbor processor along dimension. O; 

My-LoadSize=Avg: 

else if IHisLoadSize > Avg 

Receive extra load (Avg - HisLoadSize from neighbor processor along dimension 

>MyLoadSize --- HisLoadSize -Avg; 

Overhead is always associated with dynamic load balancing; therefore, we should be 
careful when using this technique to balance the load. Before incorporating a load balancing 
scheme into an algorithm, one must weigh the potential reduction in time 
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required to complete the work against the time required to balance the load. If it takes longer 
to balance the load than to complete the work, it is not practical to balance the load using this 
method. It might be even better to perform the algorithm without dynamic load balancing. 

Load balancing also depends on the way the problem is distributed in the system. 
Distributing a problem among the nodes in a parallel computer can be done through either 
domain decomposition or control decomposition. In domain decomposition, the domain of the 
input data are partitioned and the partitions are assigned to different processors. In control 
decomposition, program tasks are divided and distributed among processors. 
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CONCLUSION 

This project that I explanition of parallel distributed systems.The 
department applications of parallel and distributed systems has its traditional 
field of work in the complex areas of databases and information systems.A 
multitude of system and application projects has been carried out,constantly 
exploring new subject areas. 

There are types a distributed processing systems and function distribution 
systems.List the main reasons for function distribution. 

In the following discussion we will list a number of traditional application 
areas and note a few of the more unusual application. The idea is to stimulate the 
readers imagination not to list good application. 

We describe the main characteristic of distributed systems,their 
classification end programming techniques.Examples demonstratethe applicati­ 
on areas of distributed systems. 

The osf distributed computing environment (DCE) is an industry standart, 
Vendor-neutral set of disributed computing technologies.It provides security 
services to protect and control access to data,name services that make it easy to 
find distributed resources,and a highly scalable model for organizing widely 
scattered users,services,and data.DCE runs on all major computing platforms 
and is designed to support distributed applications in heterogeneous hardware 
and software environments.DCE is a key technology in three of todays most 
important areas of computing security theworld wibe web and distributed 
system. 

Horus a flexible group communications system. 
Branch and bound algorithm scale up well,given proper coordination.The 

speed-up on a cluster of worksatations is comparable to the one arrived at when 
using tightly-coupled multicomputers like transputers or hypercubes albeit the 
variance observed over different runs is higher.Thus thinking about the 
distributed of such an algorithm is worth the effort,especially if processor time 
available anyhow would be left unused.Moreover,the results demonstrate that 
for this type of algorithms it can be economically sensible to use several cheap 
slow processors instead of one single processor configuration.However these 
benefits are not for free.Due to the fact that on a loosely-coupled system several 
applications are run at the same time by different users mostly in an interactive 
way,the control of a long-running application on such a multicomputer is more 
difficult than on a tightly-coupled system. Thus special techniques are necessary 
to avoid the disturbance of other applications and to ensure fault tolerance.Also 
programming of a distributed version of a branch and bound algorithm is 
considerably complex than implementing a sequential version. This is reflected 
not only in lines of code but also by the need for application programmers to 
cope with new programming problems such as dissemination of global 
information ,load -balancing ,distributed termination or deadlock 
prevention.Based on this evidence we argue that while it seems that from the 
viewpoint of performance the feasibility of using a cluster of workstations as a 
loosely-coupled multicomputer for running branc and bound algorithms is well 
demonstrated . 
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