
•

NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

Department of Computer
Engineering

GRADUATION PROJECT
COM400

Parallel and Distributed
Systems

Supervisor: Besime Erin
Submitted by: Meltem Asilsoylu

(960216)

JUNE,2000

•

CONTENTS

CHAPTER!

1-General information about the department applications of parallel
and distributed systems.

1.1 Area of research
1.1.1 Databases and Transsaction Management for Open Systems
1.1.2 Parallel Database Technology
1.1.3 Extensible Databases Technology
1.1.4 Query Processing in Database Systems
1.1. 5 Product Data Management and Exchange
1.1. 6 Decision Support and Data Mining
1.1. 7 Workflow Management
1.1.8 Flow Control in Design Applications
1.1.9 Geographic Information Systems
1.1.lOComponent Technology and Middleware
1.1.11 Models and Tools for Parallel Programming

CHAPTER2
1-Types of distributed systems
l. lHorizontal vs.Vertical Distribution
l .2Cooperative Operation
2-Choice of Function Location
2.lMinimum total system cost
2.2High reliability
2.3Security
2.4Psychologically effective dialogue with terminal users
2.5Complexity
2.6Software cost
2.7Flexibility and expandability
3-Reasons for function distribution
3. I Psychologically Effective Dialogue
3 .2Reduction of Telecommunications Costs
3 .3Reliability
3. 4 Less Load on Host
3.5Fast Response Times
3 .6DataCollection
3. 7More Attractive Output

•

3.8Peaks
3 .9Security
3 .1 ONetwork Indepence
3 .11 Terminal Indepence
4-Applications Areas
4 .1 Criteria for using Computers
4.20ther Factors
4.3Levels Of Computerisation
4.4Main Areas Of Application
4. 5Common Application
4.6Extending and Integrating Applications
4.7Particular Applications Areas

CHAPTER3
1-Introduction to Distribution Systems and Distributed Software
l.lChanges in Computing Technology
l .2Characteristics ofDistributed Systems
l .3Parallel or Concurrent Programs
2-Networked Computing
2. lNetwork Structure and the Remote Procedure Call Concept
2. 2Cooperative Computing
2.3Communication Software Systems
2.4Technical Process Control Software Systems
2.5Technical Data Interchange
2.6Combination of Network Computing and Cooperative Computing

CHAPTER4
1-Distributed Computing System
2-Horus:A Flexible Group Communication System
2.lA Layered Process Group Architecture
2.2Protocol Stacks
2.3Using Horus to build a robust groupware application
2.4Electra

CHAPTERS
1-Implementing Branch-and-Bound Algorithms on a Cluster of
Workstations a Survey some new results and open problems
1.1 The Economics of Distributed Computing
l .2Cordinating distributed branch-and-bound algorithms
l .3Blackboard Strategy
2-Parallel Branch And Bound Algorithms
2. lMultiprocessor Algorithms

2.2Combinatorial Search

3-Parallel Computing Theory and Practice
3. I Anomalies in Parallel Branch and Bound
3.2Alpha-Beta Search
3 .3Parallel Move Generation and Position Evaluation
3.4Parallel Subtree Evaluation
3. 4 Distributed Tree Search
3.5Programming Hypercubes

•

ABSTARCT

This project that I explain to parallel and distributed systems,
horus,distributed computing system(DCE) ,mathematically applicati­
ons of parallel and distributed system(Example branch and bound
algorithm,load balancing,combinational obtimization).

There is a fundemental difference between them DCE,Horus and
Mathematically parallel distributed systems.

This document summarize the main features of parallel and
distributed systems,horus,DCE and mathematically applications of
parallel and distributed system.What we feel is most important
difference between them,discusses differences between individual
capabilities and the maturity of both specifications and products,and
cunculudes with view of how an organization should select
technology most appropriate to its parallel and distributed systems.

I practice all graphic of parallel and distributed systems.

INTRODUCTION

The department applications of parallel and distributed systems has its
traditional field of work in the complex areas of database and information
systems.A multitude of system and application projects has been carried
out,constantly exploring new subject areas.

There are several types of distributed processing systems in which the
componnents are hooked together by telecommunications.List the main reasons
for function distribution.Reasons for using hierarchical systems distribution.An
important group of reasons on some configurations is related to data-where it is
kept and how it is maintained.

Applications areas is computers can be employed for a wide variety of purpose
but computers are particularly suited to certain kinds of work.It may be possible
to use a computer for a particular application if certain criteria are met. Whether
or not a computer is used will depend on other factors.Considers for criteria and .
factors and then deals with a variety of particular applications which illustrate
the general princhiples.

We describe the main characteristics of distributed systems,their classification
and programming techniques.Example demonstrate the application areas of
distributed systems.

Horus a flexible group communication systems.

Networks of workstations runing under a multiuser multitasking operating
system like unix are an increasingly commonplace personel computing
environment.Due to their use as personal computing these workstations are
typically underutilized most of the time.Branch and bound algorithms for
combinatorial optimization on a cluster of workstations.Branch and bound
algorithm can yield satisfactory speed-up on a cluster of workstations. The of
describe parallezations of the brach-and-bound algorithm for
multicomputers.We use as our problem domain the travelling salesperson
described in all the parallel algorithms described in this section use the
branching and bounding heuristics developed by little et al. The final part of this
section discusses anomalies in parallel branc-and-bound algorithm.

General information about the Department

Applications of Parallel and Distributed Systems

Area of Responsibility

The department Applications of Parallel and Distributed Systems has its "traditional" field of
work in the complex areas of database and information systems. A multitude of system and
application projects has been carried out, constantly exploring new subject areas. The
emphasis of the department's research are the following:

Area of Research

Databases and Transaction Management for Open Systems

In this research area we are determining how database management systems and their
functionality can be used in open systems that do not comprise central administration
components. The WWW (or the Intra-/Internet in general) might be seen as a typical example
of such systems, but similar approaches including mobile access and processing facilities are
also considered (e.g. OMG and OSF proposals). Evaluation of concepts is done by specific
prototypes and related example applications like earth observations systems (EOS) or product
data management (PDM).

Parallel Database Technology

New application areas with more demanding requirements or databases within open
networks of information systems lead to a rapid increase of data volumes and query
complexity. Well-known examples are the areas OLAP and data mining, profiling services or
publish/subscribe services. The necessity to process large data sets very efficiently and to
reduce response times requires parallel database technology. However, whenever possible,
this should be transparent to the user. Parallelization steps which are considered in department
projects are above all input/output, operators of the database engine, and measures to
parallelize query execution plans.

Extensible Database Technology

The first commercial object-relational DBMS are available since some years. This
technology promises to manage complex data structures with an efficient support for complex
queries at the same time. Furthermore, DBMS vendors enable third party vendors to extend
the base systems by program packages which are specific for an application area. These
packages contain new data structures together with corresponding operators, support for more
efficient query processing and meta data. An example is a package that adds support for
geographic information systems by providing base functionality like geometric data
structures, systems of coordinates, and spatial queries, for example. Further application areas
like data mining and profiling are examined within this technology framework.

1

Query Processing in Database Systems

Today's database systems are used in many diverse application areas (e.g. business
and administration, engineering or knowledge-based applications) for efficient data
management. The requirements for database processing and especially for query processing
are mainly determined by prevailing development trends like e.g. extension of data models,
use of multi-processor or multi-computer architectures for database servers or
workstation/server environments. In this project area we develop conceptual and
implementory foundations for advanced query processing. Furthermore we examine
technologies that form a reusable and extensible base to built adapted query processors. These
concepts allow to customize query processing engines to specific application scenarios.
Obvious advantages of this approach are a substantially reduced development time, a flexible
adaptivity as well as a high reuse of technology, implementation concepts and existing
software.

Product Data Management and Exchange

This project deals with the management and exchange of product data, covering the
design stage as well as efficient and long-term storage of data during the whole product
lifecycle. Though relational and object-oriented DBS already offer some basic support, most
applications in this area have been developed using other solutions. Special emphasis has
been put on the International Standard for the Exchange of Product Data (STEP), which
defines the object-oriented data definition language EXPRESS as well as the navigational
access interface SDAI (Standard Data Access Interface).

Decision Support and Data Mining

Large databases generally contain important strategic information, which cannot be
accessed by normal OL TP-applications. Thus special knowledge discovery methods are
required, which are both CPU and 1/0-intensive. Research in this field focuses on the
development of strategies using parallelism as well as exploiting appropriate query
optimization techniques.

Workflow Management

During the last two years, research in the field of workflow management has become
more and more important. Since 1987, the research group Applications of Parallel and
Distributed Systems is involved in projects about the management of long-lived activities and
their combination with traditional, transaction-oriented methods. In 1990, the concept of
ConTracts was created. Since then, this concept has been systematically extended to a
platform for efficient, fault tolerant workflow management systems.

Flow Control in Design Applications

In integrated computer supported design environments the designflow manager has to
keep any cooperation and interaction of the design activities consistent. Those activities
comprise all designing interactions and CAD tools. There are different layers of activity
abstraction to be found, which build in a natural and system integrated way the typical
structure of flow management in a tool oriented design environment. A typical design flow
can be divided into interacting sub design flows, which can be well defined as. flow protocols

2

on the different activity layers. This project aims at developing corresponding design concepts
to support flexible and layer specific control flow management, which compose an overall
control flow management. In doing so, already existing concepts in the areas of transaction
processing, workflow systems, and group work should be considered.

Geographic Information Systems

With the growing interest in a computer supported presentation, administration and
analysis of spatially referenced data the importance of geographic information systems (GIS)
has increased significantly. The central component of GIS is a geographic or a spatial
database system. These systems differ from the traditional data base management systems
developed primarily for business and administration needs mainly by the fact that they offer
special concepts and technologies especially for spatial data models and languages and
efficient data structures for storage of and access to spatial data. In this project area we
address questions concerning the system architecture of GIS, the design of geographical query
languages, and especially the integration of geographic database systems based on object­
relational technology.

Component Technology and Middleware

Modern information systems are characterized by a high degree of heterogeneity and
distribution of software and hardware. This is especially true for most projects of the
department "AS" (e.g. earth observation systems, geographical information systems, product
data management systems, design control, etc). Moreover, these systems mostly consist of
autonomous components (like e.g. database applications, TP monitors or user interaction). In
order to cope with the complexity of such systems, it is necessary to model the entire system
as a combination of separate components that interact via appropriate middleware. In this
sense, the term middleware comprises file and database management systems, TP monitors,
network services and e-mail systems, workflow systems as well as more complex frameworks
like CORBA or DCOM. In this project area we will deal with the design and efficiency of
such component-based systems. Particular emphasis will be put on efficient data access and
data shipping techniques. The main goal is to design, implement and evaluate concepts for
distributed (heterogeneous) data management supporting STEP-based applications, e.g. CAD
tools or bill-of-material processing. Due to heterogeneity and distribution of components,
modern concepts which support Intranet and Internet (like CORBA and Java) will be used and
evaluated as well.

Models and Tools for Parallel Programming

Based on computationally intensive problems, as they can be found in typical
engineering applications, we develop approaches which do not - as is usually the case - take
the algorithmical structure of a given problem for granted, but which modify some base
mechanisms taken from the database field in such a way that they can be used for parallel
programming environments in a variety of applications. One of the main' goals is to transfer
the potential of automatic parallelism - which has proven successful for descriptive database
queries - to the programming of different applications. A very interesting idea is to use a two­
tier programming model; at one level the numerical algorithms are coded in conventional
sequential style, at the second level the topology of the problem is specified in a way that
allows for automatic detection and control of parallelism.

3

TYPES OF DISTRIBUTED SYSTEMS

There are several types of distributed processing systems in which the components are
hooked together by telecommunications. This chapter categorizes them and gives examples.

HORIZONTAL VS. VERTICAL DISTRIBUTION

First we shall distinguish between horizontal and vertical distribution.By vertical
distribution we mean that there is a hierarchy of processors, as in Fig.1. The transaction may
enter and leave the computer system at the lowest level. The lowest level may be able to
process the transaction or may execute certain functions and pass it up to the next level.
Some, or all, transactions eventually reach the highest level, which will probably have access
to on-line files or data bases. The machine at the top of a hierarchy might be a computer
system in its own right, performing its own type of processing on its own transactions. The
data it uses is, however, passed to it from lower-level systems.

The machine at the top might be a head-office system which receives data from factory,
branch, warehouse, and other systems.

By horizontial distribution we imply that the distributed processors do not differ in rank.
They are of equal status-peers-and we refer to them as peer-coupled systems. A transaction
may use only one processor, although there are multiple processors available. On some peer­
coupled systems a transaction may pass from one system to another, causing different sets of
files to be updated.

Figure.2 illustrates horizontal distribution. The top diagram shows multiple processors
connected to a bus or wideband short-distance channel. The second diagram shows multiple
processors connected to a loop, perhaps spanning several buildings in a factory complex,
university campus, or shopping center, but in some systems being comprised of long-carrier
connections. The
third and fourth diagrams show horizantal computer networks in which a user may access one
of many machines.

Types of Distributed Systems

-/

·~

Level 3

Level 1

Figure 1 Vertical distribution.

4

..
COOPERATIVE OPERATION

In some networks the user has a choice of computer systems available to him, but he
normally employs only one computer at a time. The computers are programmed in­
dependently, and each computer performs its own functions. In other networks the computers
are programmed to cooperate with one another to solve a common set of problems. This is
often the case in a vertical system (Fig.l), The lower-level machines are programmed to pass
work to the higher-level ma- chines. This is sometimes true also in a horizontal system. The
processing of one transaction may begin on one machine and pass to another. The different
computers perform different functions or maintain and update different files. The machines
may be minicomputers in the same location or computers scattered across the world on a
network.

FUNCTION DISTRIBUTION VS. SYSTEM DISTRIBUTION:

In some distributed systems, usually vertical systems, functions are distributed, but not
the capability to fully process entire transactions. The lower-level machines in Fig. I may be
intelligent terminals or intelligent controllers in which processors are used for functions such
as message editing, screen formatting, data collection dialogue with terminal operators,
security, or message compaction or concentration. They do not complete the processing of
entire transactions.

Werefer to this distribution as function distribution and contrast it with system such as
message editing, screen formatting, data collection dialogue with terminal operators, security,
or message compaction or concentration. They do not complete the processing of entire
transactions. We refer to this distribution as function distribution and contrast it with system
distribution in which the lower-level machines are system in their own right, processing their
own transactions ,and occasionally passing transactions or data up the hierarchy to higher
level machines

r-9rnn-syni~a,:!'<'9A"f
sa1,an.rn· .syiu.:.,n

5

,.
In a systems distribution environment the lower machines may be entirely different from,

and incompatible with, the higher machines. In a function distribution environment, close
cooperation between the lower-level and higher-level machines is vital. Overal system
standards are necessary to govern what functions are distributed and exactly how the lower
and higher machines form part of a common system architecture with appropriately integrated
control mechanisms and software.

Largn
computers

Netvvcrk
controi
proct-;ssors

Tofffi\na! r
contro! [J
W'Y''GS'i''"'· J'/ l ·- "' " >1 I I

/ / I !

/ / I ; I I ;
~ r-'-1 r L. r-1-,
LJ L...J :-..J i......J

/1 /
/ I ' / ! 1

/ / f
1 I 1

/ I f
I _L I

CJ L] o I
['.J

FUNCTION DISTRUBUTION

; i

II i
, I

~~.

\ .
I \

\ \
I \ 60

When the peripheral nodes are not self-sufficient systems but perform a function
subservient to a higher-level distant computer, we speak of intelligent terminals, intelligent
terminal cluster controllers, or intelligent concentrators. These terms imply a vertical
distribution of function in which all or most transactions have to be transmitted, possibly in a
modified form, to a higher-level computer system, or possibly to a network of higher-level
computer systems.

The centralized teleprocessing system of 1970 employed simple terminals and carried out
almost all of its functions in the central computer. At first system control and housekeeping
functions were moved out, then functions such as data collection, editing, and dialogue with
terminal operators, and finally many of the application programs themselves. Figure 4 shows
places where intelligence could reside in a vertical function distribution system:

1. In the host computer, B

2. In a line control unit or "front-end" network control computer, C

Many function are necessary to control a terminal network .If the host computer
performs all the operations itself ,it will be constantly interrupting its main processing, and
many machine cycles will be needed for line control. Some of the line control functions
may be performed by a separate line control unit. In some systems, all of them are
performed by a separate and specialized computer. The proportion of functions which are
performed by a line control unit, which by the host computer hard- ware and which by its
software, varies widely from system to system. Some application functions could be
performed by the subsystem computer-for example, accuracy checking and message
logging.

6

•

A major advantage of using a front-end network-control computer is that when the
host computer has a software crash or brief failure, the network can remain functionally
operational. Restart and recovery of the network without errors or lost transactions is a
tedious and often time-consuming operation, and if it happens often it can be very
frustrating to the end users.

3. In the mid-network nodes, D and E

The mid-network nodes or concentrators may take a variety of different forms.
They may be relatively simple machines with unchangeable logic. They may have wired­
in logic, part or all of which can be changed by an engineer. They may be micro
programmed. Or they may be stored-program computers, sometimes designed solely for
concentration or switching, but sometimes also capable of other operations and equipped
with files, high-speed printers, and other input-output equipment.

D l M!d'vA('tW{)fk r!Odtl!I IQf CO"-CQf1tr-~t4'::,1,
. tQ<Jting. pad.;r,-1-switchit\',t or m~i;s,,ne·swltc:>,lng

'

\ \h
\ ~-
\'"· "~~

mlnal comrcuer

ff\1e.!H9er-,MJ:1r.m!nnl~

Fi.1/tirt:, '$. .4, Places where f.n·tc!li.gehce can reside in a dtstribured-Jntel­
!igcnce, nttiwork,

4. In the terminal control unit, F

Terminal control units also differ widely in their complexity, ranging from simple
hardwired devices to stored-program computers with much software. Increasingly they are
computers with storage units and there is a trend towards greater power and larger storage.
They may control one terminal or many. They may be programmed to interact with the
terminal operator to provide a psychologically effective dialogue in which only an essential
kernel is transmitted to or from the host computer. They may generate diagrams on a graphics
terminal or interact with the operator's use of a light pen. They are often the main component
in carrying out the assortment of distributed functions which this chapter will list.

7

5. In the terminal, G

"Intelligent terminals" are becoming more intelligent. Their processing functions range
from single operations such as accumulating totals in a system which handles financial
transactions, to dialogues with operators involving much programming. Some intelligent
terminals do substantial editing of input and output data. Some terminals perform important
security functions.

Where several terminals share a control unit, F, such functions are probably better
performed in the control unit, leaving the terminal s simple inexpensive mechanism in which
the main design concern may be tailoring the keyboard and other operator mechanisms to the
applications in question.

6. In a "back-end" file or data base management processor, A

File or data base operations may be handled by a "back-end" processor. This can carry out
the specialized functions of data base management or file searching operations. It can prevent
interference between separate transactions updating the same data. It can be designed to give a
high level of data security protection. "Back-end" processors, where they exist today, are
normally cable-connected to their local host computer. They could, especially when high­
bandwidth networks or communications satellite facilities are available, be remote from the
host computers which use them.

CHOICE OF FUNCTION LOCATION

The designer, faced with different locations in which he could place functions, may choose
his configuration with objectives such as the following:

1. Minimum total system cost. There is often a trade-off between distributed function cost
and telecommunications cost.

2. High reliability. The value attached to system availability will vary from one system to an­
other. The systems analyst must evaluate how much extra money is worth spending on
duplexing,
alternate routing and distributed processing to achieve high availability. On some systems
reliability is vital. A supermarket must be able to keep its cash registers going when a
communication line or distant host computer fails.

3. Security . In some systems function distribution is vital for system security (as we discuss
later).

4. Psychologically effective dialogue with terminal users. Function distribution is used to
make the dialogue fast, effective and error-free.

5. Complexity. Excessive complexity should be avoided. The problems multiply roughly as
the square of the complexity.

6. Software cost. Some types of function distribution occurring throughout a network incur a
high programming expenditure. The use of stored- program peripheral machines may inflate
cost.

8

7. Flexibility and expandability. It is necessary to choose hardware and software
techniques that can easily be changed and expanded later especially because
telecommunications and net-working technology are changing so fast. Some approaches
make this step difficult.

REASONS FOR FUNCTION

Lists the main reasons for function distribution. They fall into three categories:

!.Reasons associated with the host

Many machine instructions are needed to handle all of the telecommunications functions.
The load on a central machine could be too great if it had to handle all of these functions. A
single computer operates in a largely serial fashion executing one instruction at a time. It
seems generally desirable to introduce parallelism into computing so that the circuits execute
many operations simultaneously. This is the case when machine functions are distributed to
many small machines.

2. Reasons associated with the network

There are many possible mechanisms which can be used to make the network function
efficiently. We will discuss them later in the book, These mechanisms are, used to lower the
overall cost of transmission and increase its reliability. The network configuration is likely to
change substantially on most systems, both because of application development and
increasing traffic, and because of changes in networking technology which are now coming a
fast and furious rate. Function-distribution may be used to isolate the changing network from
parts of the system so that the other parts do not have to be modified as the network changes.
The term network transparency is used to imply that changes which occur in the network be
not evident to and not affect the users.

REASONS FOR FUNCTION DISTRIBUTION

1. Psychologically Effective Dialogues

• Local interaction. Much of the dialogue interaction takes place locally rather than
being transmitted, and hence can be designed without concern for transmission
constraints.

• Local panel storage. Panels or graphics displayed as part of the dialogue can be
stored locally.

• Speed
Local responses are fast. Time delays which are so frustrating in many terminal

dialogues can be largely avoided. The delays that do occur when host response is needed
can be absorbed into the dialogue structures.

2. Reduction of Telecommunications Costs

9

•

• Reduction of number of messages.
In many dialogues the number of messages transmitted to and fro can be reduced by an
order of magnitude because dialogue is carried on within the terminal or local controller.

• Reduction of message size.
Messages for some applications can be much shortened because repetitive information is
transmitted.

• Reduction of number of line turnarounds. Because the number of messages is reduced;
and because a terminal cluster controller or concentrator can combine many small
messages into one block for trans- mission.

• Bulk transmission.
Nontime-critical items can be collected and stored for later batch transmission over a
switched connection.

• Data compaction.
There are various ways of compressing data so that fewer bits have to be transmitted.
This effectively increases the transmission speed.

• Minimum cost routing. The machine establishing a link could attempt first to set up a
minimum-cost connection, e.g., a corporate tie-line network. If these are busy it could try
pro- gressively more expensive connections (e.g., WATS, direct distance dialing).

• Controlled network access.
Terminal users may be prevented from making expensive unauthorized calls.

3.Reliability

• Local autonomy.
A local operation can continue, possibly in a fallback mode (using a minimal set of
functions), when the location is cut off from the host computer by a circuit, network, or
host failure. On certain systems this is vital

• Automatic dial backup.
A machine may be able to dial a connection if a leased circuit fails

• Automatic alternate routing.
A machine may be able to use an alternate leased circuit or network path when a
network failure occurs.

• Control procedures.
Control procedures can be used to recover from errors, or failures and to ensure that no
messages are lost or double-processed.

• Automatic load balancing.
A machine may be able to dial an extra circuit or use a different computer to handle
high traffic peaks.

10

4. Less Load on Host

• The Parallel operations.
The parallel operation of many small processors relieves the host computer of much of
its work load, and lessens the degree of multiprogramming. In some systems this is vital
because the host is overburdened with data base operations.
• Permits large numbers of terminals.
Some systems require too many terminals for it to be possible to connect them directly
to a host computer. Distributed control and operations make the system possible.

5. Fast Response Times

• Process mechanisms.
Local controllers can read instruments rapidly and give a rapid response to process
control mechanisms when necessary.
• Human mechanisms.
Fast reaction is possible to human actions such as the use of a plastic card or the
drawing of a curve with a light pen.

• Dialogue response items.
Dialogues requiring fast response times (such as multiple menu selection) can be handled by
local controllers.

6. Data Collection

• Data entry terminals.
Many inexpensive data entry terminals (for example, on a factory shop floor) can be
connected to a local controller which gathers data for later transmission.

• Local error checking.
Local checks can be made on the accuracy or syntax of terminal entries. An attempt is made
to correct the entries before transmitting them to the host.

• Instrumentation.
Local controllers scan or control instruments, gathering the result for transmission to a host
computer.

7. More Attractive Output

• Local editing.
Editing of output received at terminals can lay out the data attractively for printers or screen
displays. Repetitive headings, lines, or text, and page numbers can be added locally. Multiple
editing formats can be stored locally.

8. Peaks

• Interactive and real-time systems often have peaks of traffic which are difficult or
expensive to accommodate without function distribution. Storage at the periphery
allows the peak transactions to be buffered or filed until they can be transmitted and
processed economically.

11

•

9. Security

• Cryptography.
Cryptography on some systems gives a high measure of protection from wire- tapping,
tampering with magnetic-stripe plastic cards, etc. Cryptography is vital on certain electronic
fund transfer systems.

• Access control.
Security controls can prevent calls from unauthorized sources from being accepted, and
prevent terminals from contacting unauthorized machines.

10. Network Independence

• Network transparency.
Programmers of machines using networks should not be concerned with details of how the

network functions. They should simply pass messages to the network interface and receive
messages from it.

• Network evolution.
As networks grow and evolve, and as different networks are merged, programs in machines

using the networks should not have to be rewritten.
• New networks.

Network technology is changing fast. As applications are switched to new types of
networks (e.g:, DDS, value-added networks, Datadial, satellite networks); the programs in the
using machines should not have to be rewritten.

11. Terminal Independence

• New terminals. ,
Terminal design is changing fast. If a new terminal is substituted, the old pro grams should

not have to be rewritten. Software in terminal controllers may make the new terminals appear
like the old.

• Virtual terminal features.
Application programs may be written without a detailed knowledge of the terminal that

they will use. For example, the screen size or print-line size may not be known. The
programmers use specified constraints on output, and the distributed- intelligence mechanisms
map their output to the device in question.

Mechanisms relating to the network may reside in any of the locations indicated in Fig. 4.
A terminal or a controller for a cluster of terminals may have mechanisms intended to
minimize the transmission cost. A .front-end communications processor may relieve the host
of all network functions, and maintain network operations without loss of data if the host or
its software fails. Intelligence may also reside in midnetwork nodes such as packet­
switching devices, concentrators, intelligent ex- changes, or telephone company equipment
in systems such as AT &T's ACS. The phrase "intelligent network" is increasingly used to
imply that the network itself uses , computers to share transmission links or other resources in
an efficient, dependable manner.

12

•

3. Reasons associated with the end user

Probably the most important of the three categories is that associated with the end user.
On many systems built prior to the era of function distribution, the dialogue that takes place
between the terminal and its operator is technically crude. It is often difficult for the user to
learn, and clumsy and frustrating in operation. The user is forced to learn mnemonics and to
remember specific sequences in which items must be entered. The response times are often
inappropriate. The majority of the users who should be employing terminals are unable to
make the machines work, and generally discount the possibility of ever using them because
they perceive them as being difficult-designed for technicians, programmers, or a specially
trained and dedicated staff. One psychologist describes many of these user-terminal interfaces
as "unfit for human consumption."

In the. past there has been good reason for the crudity of terminal dialogues. The
terminals had no intelligence. Every character typed and displayed had to be transmitted over
the network. The network often used leased voice lines serving many terminals, and to
minimize the network cost, the number of characters transmitted was kept low. The response
times were often higher than psychologically appropriate because of the queries on the lines.

With intelligent terminals or controllers the dialogue processing can take place in the
local machine. Most of the characters are not transmitted over the telephone lines. The only
characters transmitted are those which take essential information to the central computer and
carry back essential information to the terminal. These characters will often be only a small
fraction of the total characters typed and displayed in a psychologically effective dialogue.

Much of the future growth of the computer industry is dependent on making the
machines easy to use and understand for the masses of people in all walks of life who will
employ them, and distributed intelligence can play a vital part in this.

HIERARCHICAL DISTRIBUTED PROCESSING

So far this chapter has discussed function distribution in which the peripheral machines
are not self-sufficient when isolated from their host by a telecommunications or other failure.
Now let us expand the discussion to processing distribution in which the peripheral processors
keep their own data and can be self- sufficient, but which are connected to higher-level
systems.

There is not necessarily a sharp boundary line between function distribution and
system distribution. In some cases there has tended to be growth from function distribution to
system distribution, with more and more power being demanded in peripheral machines. In
other cases the peripheral machines started as standalone minicomputers and became linked
into a higher-level system.

The application programming steps for most (but not all) commercial transactions do not
require a large computer. Small, inexpensive, mass-produced processors such as those
discussed in
the previous chapter could usually handle the whole transaction.They would handle it with a
much smaller software path length than a large computer . The difference in software path
length greatly reinforces the arguments about there no longer being economies of scale.Some
large mainframes with complex data base management systems use more than 100,000
software instructions per transaction and only a few thousand application instructions per
transaction.

In some cases there are good reasons for storing the data which a transaction requires
centrally
In other cases the data also can be kept in storage attached to the local machine.

13

As we commented earlier, criteria for determining whether a transaction is transmitted
could be:

1. It needs the power of a large computer

2. It needs data which are stored centrally

If one of these criteria does not apply, then the transaction is processed locally. Most
commercial transactions and many scientific calculations do not need the power of a large
computer. There are exceptions such as simulations and complex models. Many of these
exceptions would not use the teleprocessing anyway. But the second criterion-centralized
data-is important to some, but not all, data. Consequently data base and data
communications techniques are closely related, and computer manufacturers produce data
base, data communications (DBDC) software.

EXAMPLES OF HIERARCHICAL CONFIGURATIONS

Some examples of hierarchical configurations are as follows:
Llnsurance

The branches of an insurance company each have their own processor with a printer
and terminals. This processor handles most of the computing requirements of the branch.
Details of the insurance contracts made are sent to a head office computer for risk analysis
and actuarial calculations. The head-office management has up-to-the- minute information
on the company's financial position and exposure, and can adjust the quotations given b
the salesmen accordingly.

2. A chain store
Each store in a chain has a minicomputer which records sales and handles inventory

control and accounts receivable. It prints sales slips (receipts) for customers at the time of
sale. Salesmen and office personnel can use the terminals to display pricing inventory and
accounts receivable information, and customer statements. The store management can
display salesman
performance information and goods aging and other analysis reports.

The store systems transmit inventory and sales information to the head office
system.At night they receive inventory change information.The fast receipt of inventory
and sales information enables the head office system to keep the inventory of the entire
organization to a minimum.

The store systems run unattended.Any program changes are transmitted to the systems
from the head office computer.

3. Production control

Various different production departments in a factory complex each have a mnu­
computer. Work station terminals on the shop floor are connected to the minicomputer and the
workers enter details of the operations they perform. The task of scheduling the operations so
as to make the best utilization of men and machines is done by the minicomputer. The shop
foreman displays these operations schedules and often makes changes to them because of
local problems and priorities.He frequently makes a change and instructs the machine to
reperform itsscheduling program.

Details of the work to be done are made up by a higher-level computer which receives
information about sales and delivery dates,and performs a gross and net breakdown of the

14

parts that must be manufactured to fill the orders.The central computer passes its job
reqirements to the shop floor minicmputers, and receives status reports from them.

PROCESS CONTROL

Hierarchies of processors were common in process control applications before they were
used in commercial data processing. Many instruments taking readings in an industrial or
chemical process are connected to a small reliable computer which scans the readings looking
for exceptions or analyzing trends. The same computer may automatically control part of the
operation, setting switches, operating relays, regulating temperatures, adjusting values, and so
on.

Response time must be fast on some process control applications. A local mun­
computer is used to ensure fast response. Increasingly today, tiny cheap microprocessors are
being employed in instruments and control mechanisms. Many such devices may be attached
to a minicomputer which stores data relating to the process being controlled. A higher-level
computer may be concerned with planning the operations, optimization, providing
information for management control, or general data processing. Figure 6 shows a
configuration in a steel mill, with different processors each having its own two-level process­
control system, with these systems being linked to a higher production planning system.

In hospitals, the elaborate patient instrumentation used in intensive-care wards is
monitored and controlled by small, local and highly reliable computers. These in turn are
linked to higher-level machines which can perform complex analyses, provide in- formation
to stations, record patient histories, and so on.

CAUSALLY COUPLED

In some configurations the design of the peripheral systems is largely independent of the
design of the higher- level systems. In others the periphery and the center are so closely
related that they are really separate components of the same system.

An example of a causally coupled configuration is a corporate head-office information
system which derives its data from separate systems, separately installed in different corporate
departments. These systems transmit data at the end of the day to the control system where it
is edited, reformatted, and filed in a different manner to that in the peripheral systems, to
serve a different purpose. The installers of the peripheral systems designed them for their own
needs and were largely unaware of the needs of the central system. An example of a closely
coupled design is a banking system in which all customer data is stored by a central computer.
(This does not apply to all banks. Some have loosely distributed systems.) A small computer
in each branch, or group of branches, serves the processing needs of that branch, providing
the tellers and the officer with the information they need at the terminals. Customer data is
also stored in the branch com- largely in case of a failure of the central system or the
telecommunications link to it. The peripheral files are strictly subsets of the central file. The
programs developed for the peripheral computers are compiled on the central computer, and
loaded from it into the peripheral computers. Changes in the peripheral programs are made
centrally and transmitted. Account balancing requires tight cooperation of the peripheral and
central machines.

15

Bn::akdqwn of
customer orders.
Prodvction
plannintJ

G,mora!
darn ptoe,Ts.sing

Pipe t1nd tube

Smnu
p(OCt) ss-cootror
oomp(Jters
for tl\t) control
ot machiner·r

Figure 6 a hierarchy of computers in a steel mill which integrates the process control in
several plant areas, and production planning. The system gives higher productivity of plant
operations and permits immediate response to customer orders.

MULTIPLE LEVELS

Vertically distributed configurations may contain more than two levels of processor. In some
there may be as many as four levels .

The lowest level may consist of intelligent terminals for data entry, or microprocessors in a
factory, scanning instruments.

The next level may be a computer in a sales region assembling and storing data that
relates to that region, or a computer in a factory assembling the data from the microprocessors
and being used for production planning.

The third level is a conventional large computer system in the divisional head office,
performing many types of data processing and maintaining large data bases for routine
operations. This computer center receives data from the lower systems and sends instructions
to them.

The highest level is a corporate management information system, with data structured
differently from that in the systems used for routine operations. This system may be designed
to assist various types of high-management decision making. It may run complex corporate
financial models or elaborate programs to assist in optimizing certain corporate operations, for
example, scheduling a tanker fleet. It receives summary data from other, lower systems.

16

•

REASONS FOR HIERARCHIES

Reasons for using hierarchical systems distribution are, summarized in Box 3 .2. The set
of reasons should include those in Box 3 .1 on function distribution. An important group of
reasons on some configurations is related to data-where it is kept and how it is maintained.
Also of great importance are arguments relating to human, political, and organizational
reasons, in addition to technical reasons .

HORIZONTAL DISTRIBUTION
So far we have discussed vertically distributed systems. Now we will consider

horizontal distribution.
Some software, control mechanisms and system architectures are primarily oriented to

vertical distribution, and some are primarily for peer-coupled systems. A transport subsystem
which merely transmits data between computers could be designed to serve a horizontal or
vertical configuration equally well. The differences are more important in the higher-level
activities such as file man- agreement, or data base management, intelligent terminal control,
data compression, editing, man-machine dialogues, recovery, restart, and so on.

In reality, major differences are found in the transport subsystems also. A transport
subsystem designed for vertical distribution can have simpler flow control and routing control
mechanisms, and have simpler recovery procedures. It may use elaborate concentrators or
other devices for maximizing network utilization, and may employ some of the function
distribution features listed in Box 3 .1. We discuss these mechanisms later in the book.

BOX 3.2 Technical reasons for using hierarchical distributed processing

(Note there are also human, political, and organizational reasons which are often more
important than these technical reasons.)
· Cost.
Total system cost may be lower. There is less data transmission and many functions are
moved from the host machine.

· Capacity.
The host may not be able to handle the workload without distribution. Distribution permits

many functions to be performed in parallel.

· Availability.
Fault tolerant design can be used. Critical applications continue when there has been a host

or telecommunications failure. The small peripheral processors may be substitutable. In some
systems high reliability is vital; e.g., a supermarket system, or hospital patient monitoring.

· Response time.
Local responses to critical functions can be fast; no telecommunications delay; no

scheduling problems; instruments are scanned and controlled by a local device.

· User interface.
A better user interface can be employed, e.g., better terminal dialogue, when the user

interacts with a local machine; also better graphics or screen design; more responses, faster
response time.

17

· Simplicity.
Separation of the peripheral functions can give a simpler, more modular system design.

· More function.
More system functions are often found because of ease of implementing them on the

peripheral machines. Salary savings often result from increased peripheral functions.

· Separate data organizations.
The data on the higher-level system may be differently organized from those on the

peripheral systems (e.g., corporate management information organized for spontaneous
searching versus local detailed operational data tightly organized for one application).
Reasons for horizontal computer networks

· Resource sharing.
Expensive or unique resources can be shared by a large community of users, as on

ARPANET.

· Diversity.
Users have access to many different computers, programs, and data banks .

. Transaction interchange
Transactions are passed from one system to another or from one corporation to another:

e:g., financial transactions passed between banks on SWIFT; airline reservations or messages
passed between computers in separate airlines, as on SIT A.

· Separate systems linked.
Separate previously existing systems are linked so that one can use another's data or

programs, or to permit users to access all of them.

· Local autonomy.
Local autonomous rmrucomputer systems are favored, with their own files, and some

transactions need data which reside on the file of a separate system.

· Functional separation.
Instead of one computer center performing all types of work, separate centers specialize in
different types. For example, one does large-scale scientific computation. One does
information retrieval. One has a data base for certain classes of application. One does mass
printing and mailing.
· Transmission cost.

Separate systems share a common network designed to minimize the combined data (and
possibly voice) transmission cost.

· Reliability and security.
When one system fails, others can process transactions. If one system is destroyed, its files

can be reconstructed on another.

· Load sharing.
Unpredictable peaks of work on one machine can be off-loaded to other machines.

18

•

· Encouragement of development.
A corporate network can permit small data processing groups to develop applications.

PATTERNS OF WORK

Because of the mechanisms built into software or systems architecture, designers
sometimes try to make all configurations vertical, or all configurations horizontal. This can
result in excessive aver- head, system inflexibility, or clumsy control. Whether or not a
configuration should be vertical, or horizontal, or both, depends upon the patterns of work the
configuration must accomplish and the patterns of data usage.

In designing a distributed system we are concerned with such questions as:
· Where are the units of processing work required?
· How large are these units". What size of processing machine do they need?
· Are the units independent, or does one depend on the results of another?
· What stored data do the work units employ?
· Do they share common or independent data?
· What transactions must pass between one unit and another? What are the patterns of
transaction flow?
· Must transactions pass between the units of work immediately, or is a delay acceptable?
What is the cost of delay?

The answers to these questions differ from one organization to another. The patterns of
work are different. The patterns of information flow between work units are different.
Different types of corporations tend, therefore, to have their own natural shapes for distributed
processing. What is best for an airline is not necessarily best for an insurance company.

The nature of the work units may be such that they can be independent of one another and
have no need to know what each of the others is doing. They may be standalone units having
no communication with any other unit-possibly standalone minicomputers. On the other hand,
they may need to share common data which resides centrally. In this case there are vertical
links to a common data store. There may be multiple such data stores which themselves
pass information to a higher system. Alternatively the work units at one level may be such
that they need to pass information to other units at the same level. This situation may lead
naturally to hori- zontal communication; but it could also, if necessary, be handled vertically
with a centralized processor relaying transactions between the units.

EXAMPLES

1. An airline reservation system requires a common pool of data on seat availability.
Geographically scattered work units use, and may update, the data in this pool. Each of them
needs data which is up-to-date second by second. This data needs to be kept centrally. The
bulkiest data are those relating to passengers. A passenger may telephone the airline in cities
far apart; when he does so the agent to whom he talks must be able to access needed data. In
order to rind the data it is easier to keep it centrally also.
2. A car rental firm may permit its customers to pick up a car at one location and leave it at
another. When the car is picked up a computer terminal prepares the contract. When the car is
left a terminal is used to check the contract and calculate the bill. If a minicomputer at each
location performed these functions, horizontal communication would be needed between the
destination location and the location where the car was picked up. However, some centralized

19

work is also needed because it is necessary to keep track of the company's cars and ensure
that they are distributed appropriately for each day's crop of customers. Credit and other
details about regular customers may also be kept centrally. The shape of the work therefore
indicates both vertical and horizontal dis- tribution. However, because the centralized
(vertical) links are needed, the customer con- tracts may also be kept centrally and the same
links used to access them. The rental offices may then use intelligent terminals rather than
complete minicomputers.

3. Insurance companies have offices in different locations. They keep details about customers
and their policies. An office does not normally need to share these data with another office or
pass transactions to it. The offices could therefore use standalone machines. Customers in
different locations may have different requirements. In the U.S. different states have different
insurance regulations and tax laws. The different machines may therefore be programmed
some what differently. The insurance company's head office, however, needs to know
enough details of all customers policies to enable it to evaluate the company's cash flow, and
risks, and to perform actuarial calculations which enable it to control the company's financial
exposure. Enough data for this purpose is therefore passed upwards to the head office. This
vertical communication does not need to be real-time, as in the case of an airline reservation
system. It can be transmitted in periodic batches.

Although the pattern of the work in an insurance company is appropriate for a decentralized
system, that does not necessarily mean that a decentralized system will be the cheapest or
best. There are various arguments for centralization, among them economies of scale,
centralized control of programming, and use of data base software. A function-distribution
rather than a processing-distribution configuration is used in some insurance companies.

4. In a group of banks, each handles its own customers with its own data processing system.
A customer in one bank, however, can make monetary transfers to customers in other banks.
A network is set up by the banks to perform such transfers electronically. The money is
moved very rapidly and hence is available for use or interest-gathering by banks for a longer
period. The use of this ' 'float" more than pays for the network. In this example we have a
peer-coupled configuration with need for a horizontal transfer between the work units.

DEGREE OF HOMOGENEITY :

We may classify horizontal configurations according to the degree of homogeneity of the
systems which communicate. This affects the design, the choice of software and network
techniques and, often, the overall management. At one extreme we have identical machines
running the same application pro- grams in the same corporation. In other words the
processing load has been split between several identical computers. At the other extreme we
have incompatible ma- chines running entirely different programs in different organizations,
but nevertheless interconnected by a network. One of the best known examples of this is
ARP ANET, interconnecting university and research centers.

NONCOOPERATIVE SYSTEMS

We may subdivide configurations into those composed of cooperative and non cooperative
systems. A non cooperative configuration consists of computer systems installed
independently by different authorities with no common agency controlling their design, but
linked by a common shared network.

20

•
When the networking capability becomes accepted and understood by the various system

development groups, there may be slightly less non cooperation. Developers know that a
certain data base exists on another system. They may learn to think in terms of interchanging.
data, sharing resources, and establishing compatible transaction formats.
Because the cost and ease of networking will improve greatly in the future, some

corporations have attempted to impose certain standards on their diverse systems groups,
which will eventually make interconnection of the systems more practical or more valuable.
Among the types of standards imposed or attempted have been the following:

1. Standardization of transaction formats.
2. Standardization of line control discipline.
3. Use of compatible computers (one large corporation decreed that all minicomputers

should be DEC machines, possibly anticipating future use of DEC's network
architecture).

4. Standardization of data field formats and use of an organization-wide data dictionary.
5. Standardization ofrecord or segment formats.
6. Use of a common data description language (e.g., CODASYL DDL, or IBM's DLII)
7. Use of a common data base management software.
8. Use of a common networking architecture.

COO PERA TING SYSTEMS

Cooperating systems are designed to achieve a common purpose, serve a single
organization, or interchange data in an agreed-upon manner. We can subdivide cooperating
systems into those in which the separate systems are used by the same organization and
those in which separate corporations are interlinked.

Networks which interlink separate corporations are found today in certain industries. In
the future they may become common in most industries to bypass the laborintensive steps of
mailing, sorting, and key-entering orders, invoices, and other documents which pass from a
computer in one organization to a computer in another.

Industries with inter corporate computer networks today include banking and air- lines.
Most major airlines have reservation systems in which terminals over a wide geographic area
are connected to a central computer. Worldwide airlines have worldwide networks. Many
booking requests cannot be fulfilled completely by the airline to which they were made. The
airline might have no seats available, or the journey may necessitate flights on more than one
earner.

Booking messages therefore have to be passed from the computer in one airline to the
computer in another, and often the response is passed back swiftly enough to inform the
booking agent who initiated the request at his terminal. In order to achieve this linking of
separate systems all partici- pating airlines must agree to a rigorously defined format for the
messages passing between the airlines. This format is standardized by an industry association,
A TA in the United States and IATA internationally. To operate the interlinking network, the
air- lines set up independent nonprofit organizations.

ARINC (Aeronautical Radio Incorporated) in the U.S., and STTA internationally (Societe
International de Telecommunications Aeronautique). The separate airlines must send AT A- or
IATA-format messages using the ARINC or SITA protocols. These networks began as
networks for sending low-speed off line telprinter messages. As the need arose they were
upgraded to handle fast-response messages between computers as well as conventional

21

•
teleprinter traffic.The computer-to-computer network of SIT A (including future proposed
links).

Networks have also been designed to connect bank computers for moving money.
The SIT A network's present and proposed trunks. Many smaller, lower-level centers are

connected to those shown.
and messages almost instantaneously between banks. As with the case of airlines, the bank
computers are differently programmed, incompatible machines, set up by widely different
corporations in different countries. Like the airlines the banks must send rigorously formatted
messages and observe precise network protocols. In this case a very high level of security
must be built into the cooperative procedures because sums exceeding a million dollars are
transmitted between computers.

SYSTEMS UNDER ONE MANAGEMENT

Much of the use of distributed computing is within one corporation under one management.
This could result in a compatible configuration using a common networking architecture.
Often, however, the systems to be linked were installed separately in separate locations
without any thought about eventual interconnection. The files or data bases are incompatible;
the same data field is formatted differently in different systems; programs cannot be moved
from one computer to another without rewriting; where teleprocessing is used the terminals
are incompatible; and even the line control procedures are different so the terminals cannot be
changed without a major upheaval in the systems they are connected to. In this environment a
major reprogramming and redesign effort is needed before networking becomes of much
value, and often this effort is .too expensive.

It is necessary that systems in different functional areas of a corporation be developed by
different groups. Corporate data processing is much too complex for one group to develop
more than a portion of it. The current trend to decentralization is resulting in more and more
autonomous groups carrying out application development. This a valuable trend because it
results in more people being involved in application development, and the development being
done locally where the application problems are understood.

INTERFACES

In order to make computer networking of value, it is desirable that the interfaces between
the separately developed systems be rigorously defined and adhered to. If the interfaces are
preserved, each development group can work autonomously.

There are several levels of interface:

1. Interface to the transport subsystem which permits blocks of data to be moved
between distant machines. This interface can be defined independently of the
application or the firms which use the network.

2. Interfaces for the software services which are external to the transport subsystem but
not part of the application programs; for example software for remote file access,
compaction, con- version, cryptography, setting up sessions, editing messages, and so
on.

22

•
3. Applications interfaces defining what transaction types are interchanged between

different application systems. These can be defined independently of the choice of
networking software or hardware.

Interface 1, above, is provided by some common carrier systems for computer networking
(the CCITT X.25 standard, for example). Interfaces 1 and 2 are provided by some of the
manufacturers protocols for computer networks and distributed processing (for example
IBM's and DEC's architectures for networks). Interface 3, above, is usually up to the systems
analysts.Gives an illustration of computers serving six functional areas in a corporation, and
shows the transaction types flowing between them. A typical transaction would be given a
rigorously defined format. When they are transmitted between machines, data would be in the
format with additional headers and a trailer prescribed by interfaces 1 and 2.

As changing costs take the computer industry increasingly toward distributed processing,
one highly desirable characteristic is portability of programs. Programs should be capable of
being moved from one processor to another and gaining access to distributed data instead of
centralized data. There are arguments for, and against, distributed processing, and there are
many possible distributed configurations. It is advantageous for a manufacturer's product lines
to possess the flexibility to change system configurations without the need to rewrite
programs.

The interfaces and protocols that are desirable for distributed processing make the software
complex, as we shall see. Furthermore there are so many different configurations, functions,
machines, operating systems, access methods and data base management systems that need to
be supported that it will be years before the software for distributed systems can do everything
that is theoretically desirable. New machines, operating systems, and other software will
increasingly be designed to plug into the rigorously defined architectures for distributed
systems.

Computer networks and distributed processing are a vitally important and fundamental step
in the growth of the computing and telecommunications industries. There is a long road
ahead, and the journey will take years to come.

Applications Areas

INTRODUCTION

1. Computers can be employed for a wide variety of purposes but computers are
particularly suited to certain kinds of work. It may be possible to use a computer for a
particular application if certain criteria are met. Whether or not a computer is used will
depend on other factors. This chapter considers these criteria and factors and then deals with a
variety of particular applications which illustrate the general principles.

CRITERIA FOR USING COMPUTERS

2.The following are the criteria by which to judge an application's possible
suitability to the use of computers:

a. Volume. The computer is particularly suited to handling large amounts of data.

23

•
b.Accuracy. The need for a high degree of accuracy is satisifed by the computer
and its consistency can be relied upon.

c.Repetitiveness. Processing cycles that repeat themselves over and over again are
ideally suited to computers. Once programmed the computer happily goes on and
on automatically performing as many cycles as required.

d.Complexity. The computer can perform the most complex calculations. As
long as the application can be programmed then the computer can provide the
answers required.

e.Speed. Computers work at phenomenal speeds. This combined with their ability
to communicate with other systems, even those at remote locations, enables them
to respond very quickly to given situations.

f.Common data. One item of data on a computer system may be involved m
several different procedures, or accessed by a variety of users.

It can be updated and inspected by a number of different users. In manual systems data is
often accessible to a limited number of people for particular purposes. This can hinder the
work of others who need access to the data.

3.It is usually the combination of two or more of the criteria listed which will indicate the
suitability of an application to computer use. The criteria that have been described will be
used by those who carry out a Preliminary Survey in order to judge the suitability of
applications for computerisation.

OTHER FACTORS

4.If the general criteria for using a computer suggest that a particular application may be
suitable for computerisation, then there are a number of questions which will require
satisfactory answers before any decision to computerise is taken. The main questions will be;-

a. Is the use of a computer for this application technically feasible? ie. can it be
done with the computer technology currently available?

b. Would the use of a computer be cost effective? ie. would the computer pay for
itself in terms of the benefits it would provide?

c. Would the use of a computer be socially acceptable? ie. would the impact of
the computer on people's work, jobs or general lifestyle be acceptable?

5.The answers to questions such as those just mentioned, change with changing
circumstances. For example many computer applications which were mere science fiction a
few years ago, are now technically feasible. eg. the use of simple robots. Developments in
microelectronics have reduced prices so that applications which have been technically feasible
for twenty years or more, are only now becoming cost effective. Peoples willingness to accept
computers depends on previous experience, general attitudes, and on how well or badly they
have been informed.

24

•

LEVELS OF COMPUTERISATION

6. The extent to which an application may be computerised will be determined by the
nature of the work involved. Three basic levels of computerisation may be identified:
basic levels of computerisation may be identified

a. Complete computerisation. Simple well defined and repetitive tasks can often be
completely computerised eg. basic clerical functions or control of simple machines.

b. Partial computerisation. Computer is can often be applied to applications which
require the control of operations under some agreed plan or strategy. The computer may
take oven routine control bat may be monitored by humans, who will also deal with
exceptional cases eg. the day to day operation of a stock control system or a computerised
production line.

c. Computer aided applications. Computers may be used in many applications to aid
management or decision making, by the Sorely provision of accurate results or information
eg. the computer can be used to analyse problems or simulate systems in order to aid
designing or planning.

MAIN AREAS OF APPLICATION

7. Two main areas of computer application may be identified
a. Commercial applications. This covers the use of
computers for clerical, administrative and business uses, in private and public
organisations, ie. the emphasis is on data prOOOssiog. (in. Collecting, maintaining and
manipulating volumes of data to produce information).
b. Scientific, Engineering and Research Applications. This covers the use of computers
for complex calculations, the design, analysis and control of physical systems, and the
analysis of experimental data or results, in. the emphasis on Scientific Processing (in. the
rapid processing of data relating to complex problems.)
There are other to minor areas which do not fall into either or the two main categories eg.

Personal Computing in computing done as a hobby. One could argue that it fulls into wiser category.

8. Many organisations use computers for a variety of applications. For example a
manufacturer may use computers for data processing, scientific research and engineering
development work.

COMMON APPLICATIONS

9.Payroll. This is a well established computer application normally handled by batch
processing. The production of the weekly wages or monthly salary payments of employees is
a regular repetitive clerical task on sizeable volumes of data and ideal for computerisation.

IO.Office Automation. In contrast with payroll which is a long standing computer
application, office automation is a relatively new area of computerisation.

In automated offices many of the routine clerical and secretarial tasks are taken over by
computer based equipment which exploits developments in microelectronics.

25

•

11. Elements of such systems include:
a. Modern computer systems.
b. Word processing systems (ie. Computers used for document preparation).
c. Modern methods of displaying and copying data electronically
d. Modern communication links able to interconnect all elements in the system to one
another and to other systems eg. by networks or electronic mail (details later).

12.Stock Control. This application will be discussed . The control of stock is important in
both public and private orgnaisation.

13.Production and labour control. The success of an organisation depends on how well
it manages its resources. People, machines, materials, money and buildings all need careful
management. Computers are used to control production and labour, just as they are used to
control stock.

14. Accounting. There are many routine clerical tasks associated with recording details of
financial transactions made by an organisation. This has given rise to the frequent use of
computer for such accounting functions, particularly in larger organisations

EXTENDING AND INTEGRATING APPLICATIONS

15. Many basic applications can be extended to give useful information for
management purposes eg. using a stock control system to provide reports to management.
Further benefits can be obtained by integrating different 16. applications eg. linking the
payroll system to the labour or production control system.

16. Further benefits can be obtained by integrating different applications eg. linking
the payroll system to the labour or production control system.

PARTICULAR APPLICATIONS AREAS

17.In this section a number of particular applications areas are described because of
their importance and interest.

18.Applications exploiting the full computational power of computers. Many of these
applications have a scientific bias. They include:-

a. Weather forecasting systems. Reliable weather forecasting a demands vast
computational powers. This is an area for the super computers (ie. computers
with exceptionally fast processors).

b. Mathematical and Statistical Analysis. This includes large calculations and
the solution of mathematical problems. The applications requiring this include
research in physics, chemistry, geology, archaeology, medicine astronomy etc.
Some commercial problems also have a mathematical bias eg. those ,that require
mathematical analysis to determine the optimum use of resources.

c. Design work. Computers can be exploited as design tool in engineering and other
disciplines. CAD (Computer Aided Design) is growing in importance in

26

•
Electronic, Electrical, Mechanical and Aeronautical Engineering and
Architecture.This application often also exploits in computer graphics.

19.Analog Computing. Most computers in everyday use today are digital computers.
That is, they are computers which carry out operations on distinct data values in discrete
steps. Analog computers, in contrast to digital computers carry out operations on data which
can vary continuously.

20.Financial Applications. The banks and insurance companies are major users of
commercial computer systems. Here is an indication of some of the ways in which banks
use computers:

a. Automatic cheque clearing. Since the late 1950s banks in Britain have used a
computerised system for handling cheques which ensures that payments by
cheque are cleared within three days.

b. Standing Orders and Direct Debit. Regular payments may be made
automatically by banks as part of a computerised system called BACS
(Bankers' Automatic Clearing Services Ltd). Magnetic tape is used to store
details of the transactions for a particular day.

c. General uses. Bank customer accounts are largely computerised and some
details, eg. current balance, may be available on-line.

d. Newer uses. Within the last ten years or so a number of special purpose cash
dispensing machines have been introduced for use outside banks even when
the banks are not open. This is a computerised service.

21.The cashless society. The success of computers in banking and in supporting credit
card systems such as BARCLAYCARD or ACCESS has led many people to predict that we
will eventually have a "cashless society" in which credit cards and special tills will cater for
all "money" transactions. At present over 90% of all payments are in cash.

22.Retailing. The use of computers in the retail trades is now widespread. There have
been numerous developments particularly in the area of data capture.

23.Some large supermarket chains have large and sophisticated stock control systems in
which tills, using laser scanners, provide on-line data capture, and also have warehouses
which are fully computerised.

24. Medical Applications. There are numerous. applications of computers in medicine.
Here are some exam research

a. Computers can be used as an aid to medical research the by analysing data produced
from experiments e trial of drugs.

b. Computers can be used to aid diagnosis. The computer acts as a large bank of data
about known medical conditions. Once the computer system has been set up by
medical experts an ordinary doctor can be taken through a question and answer session
by the computer until a correct diagnosis is made.

c. Computers can be used to hold details of dentists' or GPs' patients. Small computer
systems have been used for years in increasing numbers since the late 70 s.

d. Computerised children's health records for immunisation have been used by local
health authorities for a number of . These records are used by medical officers, health
years visitors etc.

27

•
25. Education. Computers of specialist study in Computer Studies, they are used as an

extremely versatile way of aiding the understanding of a user wide variety of other subjects.
The computer can guide a course of instruction at a VDU. The computer can through provide
instructions and ask questions of the user CAI of activity is called CAL (Computer Aided
Learn g) (Computer Aided Instruction).

26. Computers are also used for a number of other applications the marking of multiple
choice examination in Education eg examination results for many papers and processing
examinations boards.

27. Manufacturing. Some aspects of computer use in manufacturing stock a ring
facturing have already been covered egineering design.The design control, and engineering
computerised, and testing processes are design, hence the terms CAD and CADMAT
Computer (Computer Aided Manufacture Aided Design Manufacture and Testing).

In some countries, particularly in Scandinavia, there are public mittees charged with the
task of approving the design of systems that are to contain personal data. To make their task
easier, design guidelines are being developed and these will give a passive users some
influence , although quite indirect on the design of systems in which they may be included.

APPLICATION AREAS

The use of CBISs has spread from the research applications in technical d natural
sciences , government statistical services and military systems for which they ere
initially used in the mid- l 950s to ' t ally all research areas, government and business
administration, health services the study and development of hence and music scores,
teaching from pre-school to post-graduate, customer services computing, and other areas.
Today it is difficult to find an area which has not been affected to some degree by
automation. And indeed, new application areas s em limited only by our imagination.

Perhaps not all applications are good in the sense that automation has improved some
facet of the work or leisure activity, or has have been a economically justifiable. However
as the costs f computer power continue to fall and the aveila6le computer power and memory
space continue to increase, the economics of applications will continue to improve .

In the following discussion we will list a number of traditional application areas
and note a few of the more unusual application . The idea is to stimulate the reader's
imagination not to list good application

Business Applications
The best-established business CBISs are at the operational level of the organization .

These s est ms capture operating data product customer , suppliers, and employees. They
then produce r port inventory status, customer billing, material orders, payrolls, budgets, and
accounts. Traditional CBIS applications are found in:

• production management: production control, engineering support (CAD/CAM)project
management, inventory management internal accounting.

• marketing: market research, sales support, customer service supplier systems.
• personnel management: payroll, project assignment , personnel development

(education, job histories, recruitment).

28

•

USING COMPUTER-BASED INFORMATION SYSTEMS

• planning: decision support systems, operational analysis, project scheduling,
forecasting, simulations.

• finance: budget planning, portfolio management, accounts receivable or payable,
general ledger.

• office management: word processing for reports and letters, scheduling of
meetings, message/memo systems, archives, information retrieval systems.

Within business applications, current CBIS development efforts are directed toward
providing office management and office activities with automated tools and toward making
the organization's data and data processing facilities more readily available to both tactical­
and strategic- level management. Under the name of decision support systems (DSS),
management decision aids are being provided for use in forecasting, statistical analysis,
econometric analysis, and simulation of decision alternatives.

Improvements in terminal facilities and user interface languages are allowing non-EDP
personnel and infrequent users to use DP services. The advent of microcomputers has allowed
data processing services to move into the office and into small businesses, such as medical
offices, dental offices, or local groceries.

Government and Public Service Applications

Many of the types of CBISs applicable in business administration are also applicable in
government administration at all levels, from national to local, and in all sections, including
health and social services, communications, justice, military, and others. Examples include
personnel administration, finance, customer/client services, and project management.

In addition, specific government and public service operations use a number of CBIS
applications. These include:

• law enforcement: criminal and crime registers, court scheduling, law research.
• health services: patient journals, hospital service scheduling; intensive care

monitoring, outpatient registers, billing and payment, national health services
(Medicare/Medicaid), medical research.

• social services: participant registration (such as Social Security membership),
recipient payments, registration of social services and pro- grams, school
administration, Social Security administration.

• internal revenue services: personal and business tax management, budgeting.
statistical services: census, labour statistics, business, export and import.

APPLICATION AREAS

• military applications: research, space exploration, strategic planning.
• weather forecasting.
• library and information services: recording and making available information

about books, articles, and laws; medical information; consumer reports; statistical
reports.

• graphic services: constructing maps of states, counties, or cities; presentation of
data in graphic form; locating special items, such as fire hydrants, candy shops, or
hospitals. Also, in government and public service areas, as well as in the private
sector, organizations are developing CBISs aimed at providing information­
processing services to high-level management, office staff, and the general public.

29

Particularly interesting is the development of public information services where
"customers," that is, anyone with a terminal, telephone, or TV, will be able to
reach a news/information service and receive information covering any of a
number of areas, from weather to sports to foreign and local news. Customers will
also be able to order anything from airline tickets to food.

Research Applications

Almost all possible areas of research have made or can make use of CBISs. For
example:

• Statistical methods are useful for determining relationships between observed
phenomena in areas such as weather, stars, public opinions, epidemics, word usage
in texts, and many others.

• Computer simulations are useful for analyzing models of functions of people
(medicine), animals (biology), organizations and technical systems, and many
others.

• Information retrieval techniques are useful for organizing, and selecting individual
items from; voluminous quantities of texts, and from reference collections
(catalogs) for manuscripts, music scores, descriptions of pictures, museum objects,
specialist directories, and so on.

• Graphic techniques can be used for studying almost all physical items from
molecules and cells, towns and populations, to the solar system.

The special area of artificial intelligence uses the computer heavily to mimic human
behavior in order to better understand how we function, the point being to be able to
construct useful robotic helpers. Also, the computer and CBISs are vital to the further
development of computers and CBISs.

Educational Applications

There are two important CBIS application areas in the educational sector, one in
school administration and the other in support of teaching activities. Both these areas have
made use of CBISs and are continuing to expand their use. A primary impetus to the use of
automated tools is the advent of microcomputers, providing inexpensive computational
power.
School administration, for one school or for a nation's or district's school system; is similar in
many ways to business and government ad- ministration, including financial and personnel
management; student (= customer/client) administration, and course (= product/service)
administration. An interesting special application is the problem of scheduling students,
teachers, courses, rooms, and time.

Computer-assisted instruction (CAI) programs for drills in spelling and math;
simulated experiments in chemistry and physics; language development in English, Spanish,
arid German; and many other areas are available. CAI programs are also available for a host
of teach-your- self courses from programming and typing to history. CAI systems have been
developed for the traditional school system, grades 1 through 12, for pre-school learning, for
adult education, and for special job training. An example of the last would be the flight
simulators used to train pilots.

30

Home Applications

With the advent of microcomputers, computing has become financially accessible to
many homes and families. There are literally thousands of programs available for the
microcomputer owner and his or her spouse and children. These include business systems to
support home economics, such as check managers, word processors for letter writing,
information retrieval systems for recipe collections, address list pro- grams for Christmas card
lists, CAI programs for homework and new learning, and, of course, games.

The home market is becoming increasingly interesting to the information-service
industry, which is offering home users such services as news and weather reports, stock
market services, home banking, mail order services, airline reservations, and access to
extensive data bases.
Computers are already used in our cars and stoves. They can also be used to regulate lighting
and heating, and as burglar alarms.

Introduction to Distributed Systems and Distributed Software

We describe the main characteristics of distributed systems, their classification end
programming techniques. Examples demonstrate the application areas of distributed systems.

Changes in Computing Technology

During the last two decades the principal application of the information processing and
computing technology has been to central computers. Up to several thousand terminals have
been connected to such centralised systems. Users sitting in front of their terminals have
shared the central processor, the attached equipment for data storage, and the available
programs. Each user is granted time slices of the central processor, so that the computer is
shared between the various users. The execution of the users' programs is interleaved with
several users sharing the execution time of the central processor. This type of system is called
a time sharing system; it can be regarded as the parallel or concurrent execution of several
programs i.e. their execution on several processors. If the same program is executed by
several users each execution is in a different state, i.e. each user has his own set of data and
the program instruction to be executed next is specific to the user. The execution of a program
for a particular user is called a process (A more detailed discussion of the term process is
given in section 1.3). Each process is given individual time slices of the central processor.

Several processes can have access to the same data base concurrently. This can lead to a
situation in which the database is in an inconsistent state. This happens if for example one
process wants to write to the database but access to the central processor is given to another
process so that only parts of the new data have been written to the data base. As such other
processes can have altered the data base before the first process can again access the central
processor. To keep the data in a consistent state, access to shared data must be synchronised.
In order to do this several synchronisation concepts have been developed. Synchronisation
allows the execution of processes to be controlled, e.g. a process is stopped until another
process has reached a certain state. Most programs have involved access to data bases. The
major task of data base applications has been the retrieval. processing updating and replacing
of data in data in. The programs process one or more data bases. The aim has been to develop
a data model which covers all data aspects of an organisation in order to avoid that the same
data is contained in more than one data bases.

This has been done by designing a single closed data base or by merging several
existing data bases. The application programs try to; meet the requirements of organisational

31

•

units but they cannot cover the requirements of small groups or individuals. The computer has
to be used for the most important tasks of as many users as possible in order to recoup its high
cost. There has been no room for individual wishes and requirements. Before starting the
development of a new program or changing an existing program the requirements of all the
users have to be ascertained. This is a complicated and cumbersome process. The
development or alteration of a program has taken a long time, especially if new data which is
not available in the existing data bases or was not even foreseen in the data model has been
required.

Since the eightes a new trend emerged, personal computers or PC's. These allow the
environment of each user to be individually configured. All the computing capability, storage
capacity, data, and programs belong to the owner of the PC. This has made it possible to
implement programs which meet the reqirements of a single user much better. The exclusive
ownership of computer capability has allowed the development of very convenient user
interfaces and individually tailored solutions. This has been supported by window oriented
operating systems, text processing systems, table calculation programs, graphics programs,
etc. PC's have provided a very individual and convenient form of computer access. In order to
provide access to data which is shared by several users PC's have been connected to host
computers. PC's, workstations (which can be considered as more powerful PC's) and host
computers have been combined in client server systems. The PC's are considered as clients
which can use the services provided by specialised servers. The main part of the application
program runs on the client but some parts run on specialised servers. For example a data base
application together, with a convenient user interface runs on a PC separate and apart from the
database system which runs on a server. Via special communication services, clients can
access the facilities provided by the servers. Another technique has been to connect computers
with each other directly. These loosely coupled computer systems can exchange data directly
instead of sharing data stored on a connected server. Instead of shared data, messages are
used. These different types of computer networks support different types of applications and
programs.

Characteristics of Distributed Systems

A precise and general definition of a distributed system is not very easy and as far as
we know, a definition does not exist which has been generally accepted. Therefore we do
what nearly all authors who have written books about different aspects of distributed systems
do: we try to give the reader a good understanding of the nature of distributed systems by
describing their major characteristics. Experience has shown that this is an adequate substitute
for a definition.

Distributed computer environments are based on distributed computer systems which
consist of a set of processing components connected by a communication network. The
software systems running on the various processing components ex- change data through the
communication network. This type of system is also called loosely coupled distributed
system. Processing nodes can be composed of several processors which share memory. This
shared memory is used to exchange information by the software executed on such a node.
This type of system is called a tightly coupled distributed system. The advantages of
distributed systems are outlined in nearly all books and papers related to the topic e.g.
/SHW A89/, /COD088/. Below we mention the most important ones /SHW A89/:

• Increased Performance
Performance is generally defined in terms of average response time and through- put. If
processing capability can be located where it is required the response time can be highly

32

•

reduced. Data can be processed locally before it is sent to other nodes for further
processing. This increases throughput.
• Increased reliability
Normally nodes in a distributed system can take over the tasks of other nodes which are
currently out of order. This means that a distributed system continues its work with
reduced performance but with little or no reduction of functionality
• Increased flexibility
Additional functionality can be added to a distributed system or the number of users can
be permanently increased. A distributed system allows this system growth by simply
adding more processing nodes.

Parallel or Concurrent Programs

Before we consider the characteristics of distributed software in more detail, we have
to consider the concepts of parallel processes and programs. Parallel or concurrent programs
are characterised by a set of statements inter- related by multiple control threads. Each
sequence of statements executed by one or more control threads is called a process object
/NEHM8Ba/ /ZOH088/ (The term 'process' shall be used instead of 'process object' when it is
clear from the context that we mean a process object). The relationship between processes or
threads and process objects is shown in the following figure.

Concurrent or parallel programs are either interleaved, distributed, or both. For a
programmer it is not necessary to know whether multitasking or a distributed system is used
to run his program.
Normally the processes of a concurrent program share the resources such as processor,

memory, disk, and databases, and if they cooperate in order to reach a common goal they
exchange information and synchronise their activities.

Their are two reasons to structure a program in parallel executable process objects:

1. Fine grain parallelism is mainly used to accelerate large numerical computations. This
type of parallelism is often achieved by using vector processors and the pipelining of
operations. It is mainly implemented by hardware.

2. Structural parallelism is used if the structure of the task to be performed is fundamentally
parallel. The process objects are a very important concept for structuring programs in certain
application areas, e.g. operating systems, real time systems, and communication systems.
Especially in real time systems which must react to external events, processes (objects) are
used to achieve separation of the tasks IF AP A88/. Each process handles a related set of events
and cooperates with other processes to achieve a common purpose. In order to cooperate,
processes exchange information either via shared data or via messages.

When considering the software running on a distributed system we can distinguish
between networked computing systems and cooperative computing systems /SHW A89/. In
the following sections the major aspects and applications of these two distributed software
types are discussed.

33

•
NETWORKED COMPUTING

Network Structure and the Remote Procedure Call Concept

Networked computing is characterized by several sequences of jobs which arrive
independently at various nodes. The jobs are designed and implemented more or less
independently of each other and are only loosely coupled. The distributed sys- tern serves
primarily as a resource sharing network.
A very common example of resource sharing is the file server. All files are located on a
dedicated node in a distributed system. Software components running on other nodes send
their file access requests to the file server software. The file server executes these requests and
returns the results (to the clients).
In addition to file servers many other kinds of servers such as print servers, compute servers,
data base servers, and mail servers have been implemented As with the file server, clients
send their requests to the appropriate server and receive the results for further processing.
Servers process the requests from the various clients more or less independently of each other.
The programs running on the clients can be viewed as being designed and developed
independently of each other.
The following figure shows the concept of client server systems.

Clint Server Request Message
Get Request

Execute Request
Send Reply

Send Request

Reply Message

In client server system, the clients represent the users of a distributed system and
servers represent different operating system functions or a commonly used application.

The following figure shows a simple example of a client server system.

34

•

Network

F

I I
J \ \ work

- station ~

ile Server Print Server 1--1

work
- station ,.

Mail 1--1
Server

•• ~

This system has a print server,a file server and the users which run on workstations
and personel computers.The server software and the client software can run on the same type
of computer. The different nodes are connected by a local area network.

From a user's point of view a client/server system can hardly be distinguished from a
central system.e.g. a user cannot see whether a file is located on his local system or on a
remote file server node.For the user the client/server system appears to be a very convenient
and flexible central computing system.Mostly the user does not know whether a file is stored
on his PC or on a file server.To the user the storage capacity of the server appears to be part of
the PC storage capacity.

Client/server systems are also very flexible. For a new application a specialised new
server can be added e.g. data base systems run on specialised data base servers which have
short access times. Data base applications are primarily controlled by the local client; all the
data is stored at the data base server and special computations are executed by a compute
server (also called number cruncher). The application program running on the client, calls the
required functions provided by the servers. This is done mainly by way of remote procedure
calls (RPC). An RPC resembles a procedure call except that it is used in distributed systems.
The following is a description of how the RPC works. The program running on the client
looks like a normal sequential program. The services of a particular server are invoked via a
remote procedure call. The caller of a remote procedure is stopped until the invoked remote
procedure is finished and the server has provided the results to the calling client in the same
way that parameters are returned by a procedure. The servers are used in the same way that
library procedures are used. This means that remote procedure calls hide the distribution of
the functions of the system even at the program level. The programmer does not need to
concern himself with the system distribution.

The figure below shows the basic structure of a client/server system.

35

•

application • • • • • application

cilent • • • • • cilent

network

senrer server
• • • • •

36

Diroctoiyl Security I ~istr.
Service Service File Sys.

Remote Producecall

Threads

Local Operation System & Transport Service
In the DCE client and server programs are executed by threads i.e. processes. Threads

use an RPC in order to communicate with each other and binary semaphores and conditional
variables for synchronisation. In the DCE remote procedure calls are supported by directory
services (DCE Call Directory Service) and security services (DCE Security Service).
Directory services map logical names to physical addresses. If a client calls a particular
service provided by a server, the directory service is used to find the appropriate server. The
DCE security service provides features for secure communication and controlled access to
resources. Distribute Time Service provides precise clock synchronisation in a distributed
system. This is required for event logging, error recovery, etc. The distributed file service
allows the sharing of files across the whole system. Finally the diskless support service allows
workstations to use background disk files on file servers as if they were local disks
/SCHILL93/, /OSF92/.

Cooperative Computing

In cooperative computing a set of processes runs on several processing nodes. These
processes cooperate to reach a common goal and together they form a distributed program.
This is different from the client/server systems described above. In cooperative systems the
processes which comprise the distributed program are coupled very closely. This means that
the closely coupled processes are executed on a loosely coupled system.

In cooperative systems, the distribution of computing capability is not hidden behind
programming concepts. The different program sections running on different computers
comprise a single program; but it can be seen at the programming level that the program
ections are executed concurrently. These different program sections are also processes.
Processes form a very important concept for central systems, client server systems and
ooperative systems. If processes have to work together to perform their task, they must

37

•
exchange data and synchronise their execution. Programming systems for concurrent systems
contain communication and synchronisation concepts. Cooperative programming resembles a
human organisation which works together to achieve a common goal. Its members must
communicate with each other and must synchronise their activities.
The following figure shows the basic structure of cooperative systems.

Application Application
........................

Communication ~ Sy:tJ9.hI9Di.~~Jio.n_s _
Computer System • • • • • Computer System

Network

Coperative systems are mainly used for the automation of technical process and the
implementation of communication software.Technical process in the mostly part consist of
several parallel activities.This means that several processes which can be implemented in
different ways work together to perform their task.

Host System Host System Host System

Application Application

Software Software •••

Communication Com municalion

Software Software

Application

Software

Comm uni cat ion

Software

Communication System

38

•

Communication Software Systems

A communication system consist of a communication network and the communication
software which runs on the various processing nodes.The communication software provides a
more ar less convenient communication service for the application sotware.The application
software on each node uses the communication service to excahange messages with the
application software running on other nodes.

In order to provide a convenient communication service the commuyyication soft­
ware systems also exchange messages. This message exchange is based on the sim- pler
communication mechanism provided directly by the network. For example the network
provides a communication service which only allows the transfer of a sin- gle byte. The
communication service provided by the communication software al- lows byte strings of a
fixed or even an unlimited length to be sent or received. This can be implemented in the
followmg way: The application software of a host system A wants to send a sequence of bytes
to the application software of a host system B. The sequence of bytes is given to the
communication system by the application system. The communication system on host system
A sends a byte with the length of the byte string (the number of bytes) to the communication
system on host system B. The communication system on host system B sends back an
acknowledgement. This is a byte with a certain value. After the communication software on
host system A has received the acknowledgement it starts to transfer the bytes of the byte
string. When system B has received the number of bytes indicated in the first byte it again
sends an acknowledgement. After sending the acknowledgement, the communication software
on host system B gives the received byte string to the application software. This
communication sequence which implements the transfer of a byte string is just a simplistic
illustration of what communication software can do. As the example above shows, the
communication between the communication software systems follows well defined rules.
These rules are called protocols. The need to provide convenient communication services for
the application software leads to software communication protocols which can be extremely
complex and must be organised in layers. Each layer offers an improved communication
service to the layer above. The widely used reference model for Open Systems Inter­
connection (OSI) defined by the International Standard Organisation (ISO) pro- poses seven
protocol layers /IS07498/. Each layer provides a certain service to the layer above. The
service provided by a layer is implemented by the protocol specific to its layer and by the
services of the layer below. In a host system the services specific to the layer are realized by
protocol entities. The layer protocol is defined between protocol entities of the same layer.
These exchange information by using the service of the layer below. In each host system there
must be at least one entity per layer. The set of entities of different layers in a host system is
called a protocol stack. The implementation of these protocol stacks is called communication
software. Communication software has the following execution properties /DROB 86/:

• interleaved execution of several entities on the same system
• distributed execution of entities of the same layer on different systems. Interleaved and

distributed computations are usually modeled as systems of parallel processes.
Processes executing in parallel normally have to exchange information if they are to
cooperate in solving a common task. Entities are modeled by one or more processes.
Using or providing a service means exchanging information with processes
representing entities of the layer below or above. The figure above shows

Technical Process Control Software Systems

39

•

Another important example of cooperative computing is a distributed technical
process control system. The basic structure of technical systems controlled systems is shown
in the following figure /NEHM84/.

User
f

e;. •1 1 Standart 1/Q Devices

I -----0 • • • o Process I/Q Devices
I I

Technical Process
The communication between computer systems and technical systems must meet hard

realtime requirements, whereas the communication with the user is more or less dialogue­
oriented with less emphasis on time conditions (except in the case emergency signals such as
fyre alarms). For the sake of simplicity, we will focus on the relationship between technical
systems and real-time computer systems. A technical system consists of several mutually
independent functional units which communicate via appropriate interfaces with the computer
system. Therefore the real time program must react to several simultanous inputs. This
implies the structuring of a process control software system that takes into account a number
of processes. Each process handles a certain group of signals. The basic requirement for a
process control software system is the capability to follow the changes of the technical system
as fast as possible. The infomation in the process control software must be as close as possible
to the state of the technical system. The easiest way to achieve this is to design a process for
each interface element. This leads to the software system structure shown in the following
figure /NEHM84/.

40

•

Protocol

Protocol

Protocol

Protocol

41

user

•

• • •

• •

•
•
•

• • •

• • •

•
•
• • • •

• • •
Tecnical process

l.5.3 Electronic Data Interchange (EDI)

42

..
Electronic Data Interchange (EDI) is the computer-to-computer exchange of inter- and
intracompany technical and business data, based on the use of standards /DIGIT90/ (see
figure below of the EDI business model) . .--'-~~~~~~~~

Other

Divisions

Vendors Customers

Trading

Partners
These data can be structured or unstructured. Exchanging unstructured data follows specific
communication standards although the data content is not in a structured format. More
important is the exchange of structured data. Examples of structured data exchange are:

Trade Data Interchange
This type of EDI document exchange is mainly used to automate business processes.
Examples of trade data interchanges include a request for quotation (RfQ), purchase
orders, purchase order acknowledgements, etc. Each company and industry has its own
requirements for the structure and contents of these documents. A number of specific
industry and national bodies have been formed with the intention of standardising the
format and content of messages. For the chemical industry CEFIC is the EDI standard and
for the auto industry the related EDI standard is called ODETTE. The standard defined by
CCITT is called EDIF ACT. In order to exchange EDIF ACT documents very often the
CCITT E-Mail standard X.400 is recommended /liILL90/.
- Electronic Funds Transfer Payment against invoices, electronic point of sale (EPOS) and
clearing systems are examples of electronic funds transfer.

- Technical Data Interchange
Improvement in technical communication can play a key role in determining the success
of a project. There is growing demand from trades for communication between their CAD
(computer aided design) workstation and the workstations of important vendors.

The following example shows how the different types of EDI interactions are used to
handle a business process.

43

Buyer
Purchasing

Manufacturing
Requirements
Accounts
Payable
Incoming
Inspection

Receiving

Groupware

•

Seller
Order
Processing
Manufacturing
Schedule
Accounts
Receivable
Quality

Shipping

In organisations people work together to reach a common goal. The formal interaction
between members of an organisation is described by structures and procedures. Additionally
there exist informal interactions which are very important. Both types of interactions can and
should be supported by computers. Computer Supported Cooperative Work (CSCW) deals
with the study and development of computer systems called groupware, which purpose it is to
facilitate these formal and informal interactions /ENGLEH88/.

CSCW projects can be classified into four types /ENGLEHB8/ namely:

1. Groups which are not geographically distributed and require common access in realtime
Examples: presentation software, group decision systems

2. Groups which are geographically distributed and require common access in realtime
Examples: video conferencing, screen sharing

3. Asynchronous collaboration among people who are geographically distributed.
Examples; notes conferences, joint editing

4. Asynchronous collaboration among people who are not geographically distributed
Examples: project management, personal time schedule management

Groupware requires computers connected by a network. Thus groupware systems are
distributed systems. Members of a group share data and exchange messages. Therefore
groupware software systems are combinations of network and cooperative computing.

•

Combination of Network Computing and Cooperative Computing

Cooperative computing can be combined with client server systems. Processes in a
distributed system can have access to servers. From the standpoint of a client server
system the processes of a cooperative system can be considered as client processes. In a
technical process control software system a process can collect data from the technical
process. This data is stored in a file located on a file server node. The following figure
shows an example of a combination of a cooperative and a client/ server system. Process
A, Process B and Process C form a cooperative software system. Process B and Process C
use the file server. This means that process B and process C are clients of the file server.

Communication for
Cooperative computing

Process A

--..

~ ork)
~ ~ --------------

Use of
File Server

File Server

File Server

Process Node
Distributed Computing System
A distributed computing system is not yet a Noema. Many of the components are present but
some are still missing or not fully integrated. The network would be the communication

45

•

mechanism for the distributed computing Noema supporting message passing, protocols, and
asynchronous communication. The languages of communication are the protocols built up
with bytes of data. Replication and groups of services could be made available with special
name space management services available on the network. Some information may be kept in
a data warehouse for analysis. Some information could be locally cached. Some functions
could be pre-evaluated and stored in anticipation of usage. Both code and data may have a
common representation. Thus programs are to be treated as data in some cases and programs
in other cases. Not all data can be interpreted as a program. The distributed computing Noema
would need a security system with authentication, authorization, and data privacy. The next
chapters define how to build a distributed computing Noema.

Distributed Computing System

In our distributed computing system:

A "Node" is a Network-User" Interface (NUI) that provides network access to the
WWW*. This node maybe as simple and economical as a "JavaTerm", which has a
decent processor, limited memory/cache, 1/0 devices and optional pheripherals such
as CD ROM, hard disk, an input device which handles portable storage etc .. A node
could also be a terminal, such as a UNIX workstation, PC or Mac with network
capabilities*. Their processing storage and local applications may differ, but their
operations should be mostly dependent on their network bandwidth (which network
service providers, such as PacTel, MCI provide) and the pipe of the servers (end­
service providers).

A "Server" is a computer that provides services interactively. Services include
providing executables (e.g. we may remotely load Word and run it in our network
interface), database or search engine (e.g Component library of Tl), banks, stock
broker firms or any entity that handles and processes requests.

A "Site" is a network destination that provides non-interactive information. For
example, most people/organization's home page nowadays which contains visual
display only and does not accept/require user input is merely a site.

What differentiates a Server from and a Site is: a server is interactive "active" while a
site is "inactive."
Serena (aka wleung) argues that the above two could/should be grouped together and
called sites, while another definition of Server should be formulated.

During the last group meeting (10/12), Professor Newton mentioned that there
could/should be something between a node and servers. This intermediary could be:
1) State Manager

2)Memory
3) Temporary mirror site (proposed by Susan)

State Manager manages things that doesn't fit into the cache, it could be handled by a
central "Service Provider"* which interacts with other servers/sites. However, this
would present a major security problem; who's to believe that a "Service Provider"
would ensure security of clients' data from internal and external access. (Maybe digital

46

signitures would be required to access and retrieve enscripted data, or maybe
enscription could be done at the clients or over the network) There would also be a
durability problem. What happens when a State Manager goes down? If we have mirror
images, then consistency and security problems arise and this all leads us to the
ultimate debate of how distributed systems should be architected.
As for network main memory and mirror sites, administration problems immediately
come up to my mind. How can they be administered, monitored and by whom? How
can data security be provided for this virtual object?

My argument is that none of these intermediate onjects should exist, i.e. nodes should
interact directly with servers (present model of WWW). At todays' price and
technology curve, pockets-sized DRAM or hard-disk at an acceptable price,
performance and capacity (>=500MB) is imminent. One might argue that 500MB is not
a lot of stoarge. That's because in today's standards, people store executables in their
hard disks, but in the future, all people need is their personal documents (e.g. word­
processing files, database, spread-sheets, etc.) that they (regularly) edit as executables
will be run off the Net. As for large audio, video files and graphically intense
operations such as CAD or games, they should stay at their respective servers where an
adequate bandwidth and special transmission mechanisms are provided.

State management in this case is done either on a local storage (cache or hard disk)
and/or at the server. Less consistency concerns is achieved at the expense of a higher
response time for applications (updates need to go as far as the server instead of an
intermediate node).

The Future

Microsoft's dominance of local processing will be displaced by major database and
database tools (e.g. Oracle, Informix) companies together with software vendors that
develop network-based applications that run at the servers, aimed at providing high
throughput, scalability, etc.

Hardware vendors, such as Cisco and Bay Networks will be a force as well in helping
clients design and implement the appropriate network/WAN strategies.

FootNote *
1) A User may be a human being, processes or other computers.
2) WWW may include or be a part of the Information Superhighway.
3) If "Everything" (from mail to Word, Quicken) is run within a network interface,
would CPU processing power and speed be relevant in the future, or this will be a
hardware issue that primarily interests "Server" side of the operations. Primary end-user
concern . would be network bandwidth and display capabilities.
4) "Service Provider" could be network services providers such as PacTel or software
vendors such as Oracle.

47

•

Chap. 22 CCITT Recommendation X.2~ 361

1. A user machine decides
to disconnect a virtual call.
It sends a CLEAR REQUEST
packAI 10 the DCE giving the
number of the logical channel
to be cleared User ·

machine '
sends
CLEAR

REQUEST

Clearing can l>e initiated in
any state (except the two
states half way through
the clearing process). 3 The remote DCE sends a

CLEAR INOICA TION packet
, ' to the user machine at the other

end of the logical channel giving
the number of the logical channel
to be cleared.

ANY STA TE ,.#
EXCEPT
P6 or P7 , ,

DCE sends
CLEAR

INDICATION

DCE sends
CLEAR
INDICATION

User machine sends CALL
ACCEPTED (possible only
if the previous state was
DCE WAITING)

(possible only if the previous
state was DCE WAITING. P2) Jf -~ /

/ , ,
/ DCE sends

2. The DCE sends back a CLEAR CLEAR
CONFIRMATION packet and CONFIRMATION
sends a control message or CLEAR
to the DCE at the other end of INDICATION
the logical channel.

(after a time­
out in the
network)

0
,

1
y

' ' User ',
machine ',
sends ,
CLEAR 4. The user machine responds

CONFIRMATION With a CLEAR CONFIRM·
or CLEAR ATION packet
REQUEST

Figure 22.16 A state diagram for the clearing process. A normal dis­
connect of a virtual call follows the four numbered steps shown in red.

be permitted either to place calls but not accept calls from other users, or to accept calls but
not place them.

Packet Retransmission

A user machine can ask its DCE to retransmit one or several data packets. It does this by
sending a REJECT packet to the DCE containing the Receive Sequence Number, R, of a
packet received. The DCE retransmits packet Rand those following it. The number of packets
for retransmission cannot exceed the flow-control window size. This is not an end-to-end
mechanism. The request for retransmission of a data packet cannot be relayed to the user
which originated that packet.

Flow control parameter selection

A network normally has a given maximum window size and maximum data length. A
user machine may optionally operate at less than these because it has limited buffer size or
control capability. The window size and maximum data length is referred to as a throughput
class and may be indicated in the facilities field of a CALL REQUEST packet. If there is no
such indication, the call is connected with the highest attainable values.

48

•

HORUS: A Flexible Group Communications System

Computing represents a prorrussmg step towards robustness for mission-critical
distributed applications.Proccess replicated for availability or as part of a coherent cache.They
can been used to support highly available security domains.And,group mechanisms fit well
an emerging geneneration of intelligent network and collaborative work applications.

Yet there is little agreement concerning how process groups should look or beha­
ve. The requirements that applications place on a group infrastructure can vary tremen­
dously,and there may be fundamental trdeoffs between semantics and performance.E-
ven the most appropriate way to present the group abstraction to the application depends on
the setting.

This paper reports on the Horus system,which provides an unusually flexible group
communication model to application-developens.This flexibility extends to sys-
tem interfaces,the properties provided by a protocol stack,and even the configuration of Horus
itself,which can run in user space,in an operating system kernel or microker-
nel or be split between them.

Horus can be used through any of several application interfaces.These include toolkitstyled
interfaces,but also interfaces that hide group functionality behind Unix communication
system-calls.the Tk/Tcl programming language,and other distributed computing
constructs. The intent is that it be possible to be slide Horus beneath an existing system as
transparently as possible,for example to introduce fault-tolerance or security without requiring
substantial changes to the system being hardened.

Horus provides efficient support for the virtually synchronous execution model.
This model was introduced by the Isis Toolkit,and has been adopted with some changes by
such systems as Transis,Psync,Trans/Total ,RMP,and Rampart.The model is based on group
membership and communication primitives,and can support a variety of facult-tolerant
tools,such as for load-balanced request execution,fault tolerant computation,coherently
replicated data and security.

Although often desirable properties like virtual synchrony may sometimes be un­
Wanted,introduce unnecessary overheads,or conflict with other objectives such as real-time
guarantees.Moreover,the optimal implementation of a desired group communication property
sometimes depends on the runtime environment.In an insecure environment ,one might accept
the overhead of data encryption,but wish to avoid this cost when running inside a firewall.On
a platform like the IBM SP2,which has reliable message transmission,protocols for message
retransmission would be superfluous.

Accordingly,Horus provides an architecture whereby the protocol supporting a group can
be varied,at runtime, to match the specific requirements of its application and environment.

It does this using a structured framework for protocol composition,which incorporates
ideas from systems such as the Unix "streams"framework and the x-kernel.but replaces point­
to point communication with group communication as the fundamental abstraction.In horns
group communication support is provided by stacking protocol modules that have a regular
architectureand in which each module has a separate responsibility.A process group can be
optimized by dynamically including or excluding particular modules from its protocol stack.

Horus also innovates by introducing run-time configuration,group communication
interfaces full thread-safety.and supporting messages that may span multiple address
spaces.Since horns does not provide control operations and has one single address
format,protocol layers can be mixed and matched freely.In both streams and the x-kernel.the

49

•
different protocol modules supply many different control operations,and design their own
address format,both severely limiting such configuration flexibility.

1- A LAYERED PROCESS GROUP ARCHITECTURE

We find it useful to think of horns central protocol abstraction as resembling a lego
block,the horus"system" is thus like a "box" of lego blocks.Each type of block implements a
microprotocol that provides a different communication feature.To promote the combination of
these blocks into macroprotocols with desired properties,the blocks have standardized top and
bottom interfaces that allows them to stacked on top of each other at run time in a variety of
ways.Obviously,not every sort of protocol block makes sense above or below every other
sort.But the conceptual value of the architecture is that where it makes sense to create a new
protocol by restacking existing blocks in a new way,doing so is staightforwad.

Techically,each horns protocol block is a software module with a set of entry points for
down call and upcall procedures.For example there is a downcall to send a messsage and an
upcall to receive a message.Each layer is idendified by an ASCII name and registers its upcall
and down call handlers at initialization time.There is a strong similarity between horns
protocol blocks and object classes in an object-oriented inheritance scheme and readers may
wish to think of protocol blocks as members of a class hierarchy.

To see how this works,consider the horns message-send operation.It looks up the message
send entry in the topmost block and invokes that fuction. This function may add a header to
the message and will then typically invoke message-send again.This time control passes to the
message send function in the layer below it. This repeats itself recursively until the bottom
most block is reached and invokes a driver to actually send the message.

The specific layers currently supported by horns solve such problems as interfacing the
systems to varied communication transport mechanisms overcoming lost packets eneryption
and decryption ,maintaining group membership helping a process that joins a group obtain the
state of the group merging a group that has partitioned,flow control,etc.Horus also includes
tools to assist in the development and debugging of new layers.

Each stack of block is carefully shielded from other stacks.It has its own prioritized
threads,and has controlled access to available memory through a mechanism called memory
channels.Horus has a memory schedular that dynamically assigns the rate at which each stack
can allocate memory depending on availability and priority so that no stack can monopolize
the available memory.This is particulary important inside a kernel,or if one of the stacks has
soft real-time requirements.

Besides threads and memory channels each stack deals with three other types of
objects:endpoints,groups,and messages.The endpoint object models the communicating
entity.Depending on the application it may correspond to a machine ,a process ,a thread ,a
socket,a port ,and so forth.An endpoint has an address and can send receive
messages.However as we will see later messages are not addressed to endpoint but to
groups.The endpoint address is used for membership purposes.

A group object is used to maintain the local protocol state on an endpoint.Associated with
each group object is the group address to which messages are sent and a view a list of
destination endpoint addresses that are believed to be accessible group members.Since a
group object is purely local ,horns technically allows different views of the same group.An
endpoint may have multiple group objects allowing it to communicate with different groups
and views.A user can install new views when processes crash or recover and can use one of
several membership protocols to reach some form of agreement on views between multiple
group objects in the sam group.

50

•
It does this using a structured framework for protocol composition,which incorporates

ideas from systems such as the Unix "streams"framework and the x-kernel.but replaces point­
to point communication with group communication as the fundamental abstraction.In horns
group communication support is provided by stacking protocol modules that have a regular
architectureand in which each module has a separate responsibility.A process group can be
optimized by dynamically including or excluding particular modules from its protocol stack.

Horus also innovates by introducing run-time configuration,group communication
interfaces full thread-safety.and supporting messages that may span multiple address
spaces.Since horns does not provide control operations and has one single address
format,protocol layers can be mixed and matched freely.In both streams and the x-kernel.the
'different protocol modules supply many different control operations,and design their own
address format,both severely limiting such configuration flexibility.

2- A LAYERED PROCESS GROUP ARCHITECTURE

We find it useful to think of horns central protocol abstraction as resembling a lego block,the
horus"system" is thus like a "box" of lego blocks.Each type of block implements a
microprotocol that provides a different communication feature.To promote the combination of
these blocks into macroprotocols with desired properties,the blocks have standardized top and
bottom interfaces that allows them to stacked on top of each other at run time in a variety of
ways.Obviously,not every sort of protocol block makes sense above or below every other
sort.But the conceptual value of the architecture is that where it makes sense to create a new
protocol by restacking existing blocks in a new way,doing so is staightforwad.

Techically,each horns protocol block is a software module with a set of entry points for
down call and upcall procedures.For example there is a downcall to send a messsage and an
upcall to receive a message.Each layer is idendified by an ASCII name and registers its upcall
and down call handlers at initialization time.There is a strong similarity between horns
protocol blocks and object classes in an object-oriented inheritance scheme and readers may
wish to think of protocol blocks as members of a class hierarchy.

To see how this works,consider the horns message-send operation.It looks up the message
send entry in the topmost block and invokes that fuction. This function may add a header to
the message and will then typically invoke message-send again.This time control passes to the
message send function in the layer below it.This repeats itself recursively until the bottom
most block is reached and invokes a driver to actually send the message.

The specific layers currently supported by horns solve such problems as interfacing the
systems to varied communication transport mechanisms overcoming lost packets eneryption
and decryption ,maintaining group membership helping a process that joins a group obtain the
state of the group merging a group that has partitioned,flow control,etc.Horus also includes
tools to assist in the development and debugging of new layers.

Each stack of block is carefully shielded from other stacks.It has its own prioritized
threads,and has controlled access to available memory through a mechanism called memory
channels.Horus has a memory schedular that dynamically assigns the rate at which each stack
can allocate memory depending on availability and priority so that no stack can monopolize
the available memory.This is particulary important inside a kernel,or if one of the stacks has
soft real-time requirements.

Besides threads and memory channels each stack deals with three other types of
objects:endpoints,groups,and messages.The endpoint object models the communicating
entity.Depending on the application it may correspond to a machine ,a process ,a thread ,a
socket,a port ,and so forth.An endpoint has an address and can send receive

51

•
messages.However as we will see later messages are not addressed to endpoint but to
groups.The endpoint address is used for membership purposes.

A group object is used to maintain the local protocol state on an endpoint.Associated with
each group object is the group address to which messages are sent and a view a list of
destination endpoint addresses that are believed to be accessible group members.Since a
group object is purely local .horus technically allows different views of the same group.An
endpoint may have multiple group objects allowing it to communicate with different groups
and views.A user can install new views when processes crash or recover and can use one of
several membership protocols to reach some form of agreement on views between multiple
group objects in the sam group.
Horus provides a large collection of microprotocols.Some of the most important ones are:

Proposed Sidebar

COM-The COM layer provides the horns group interface to such low-level protocols as
IP,UDP,and some ATM interface.
NAK-This layer implements a negative acknowledgement based message retransmission
protocol.
CYCLE-Multimedia message dissemination.
P ARCLD-Hierarchical message dissemination
FRAG-Fragmentation/reassembly.
MBRSHIP-This layer provides each member with a list of end points that are believed to be
accessible.It runs a consensus protocol to provide it users with a virtually synchronous
execution model.
EC-Flow control
TOTAL-Totally ordered message delivery .
ST ABLE-This layer detects when a message has been delivered to all destination
endpoints,and can be garbage collected.
CRYPT-Eneryption/deenyption
MERGE-Location and merging of multiple group instance.

The message object is a local storage structure .It is interface includes operations to push and
pop protocol headers.Message are passed from layer to layer by passing a pointer and never
need be copied.
A thread at the bottom most layer waits for messages arriving on the network

interface.When a message on to the layer above it.This repeats itself recursively.If necessary a
layer may drop a message or buffer it for delayed delivery.When multiple messages .However
since each message is delivered using its own thread ,this ordering may be lost depending on
the scheduling policies used by the thread schedular .Therefore,horus numbers the message
and uses event count synchronization variables to reconstruct the order where necessary.

2-Protocol Stacks

The microprotocol architecture of horns would not be of great value unless the various
classes of process group protocols that we might wish to support can be significant
functionality.Our experince in this regard has been very positive.
The layers FRAG,NAK and COM respectively break large messages into smaller

ones,overcome packet loss using negative acknowledgements,and interface .Horus to the
underlying transport protocols.The adjacent stack is similar,but provides weaker ordering and
includes a layer that supports "state transfer"to a process joining a group or when groups

52

•
merge after a network partrtion .To the right is a stack that supports scaling through a
hierarchical structure in which each parent process is responsible for a set of
"child"processes.The dual stack illustrated in this case represents a feature whereby a message
can be routed down one of several stacks,depending on the type of processing
required.Additional protocol blocks provide functionality such as data eneryption packing
small messages for efficient communication ,isochronous communication .
Layered protocol architectures sometimes perform poorly.Traditional layered systems

impose an order on which protocols process messages limiting opportunities for optimization
and imposing excessive overhead.Clack and Tennenhouse have suggested that the key to good
performance rests.Systems based on the ILP priciple avoid inter-layer ordering constraints
and can perform as well as monolithically structure system.

3-Using Horus to build a robust groupware application

Earlier we commented that horns can be hidden behind standart application programmer
interfaces.A good illustration of how thisdone arose when we interfaced the graphical
programming language to horns.
A challenge posed by running systems like horns side with a package like windows .

That such packages are rarely designed with threads or horns communication stacks in mind
.To avoid a complex integration task.
Architecturally,CMT consists of a multi-media server process that multicasts video and

audio to a set of clients.We decided to replicate the server using a primary -backup
approach. Where the backup servers stand by to back up failed or slow primaries.

4-Electra

The information of process groups into CMT required sophistication with horns and its
intercept proxies.Many potential users would lack the sophistication and knowledge ofhorus
required to do this hence we recognized a need for a way to introduce horns functionality in a
more transparent way.This goal evokes an image of "plug and plug" robustness,and leads one
to think in terms of an object-oriented approach computing.

The common object request broker architecture (CORBA) is emerging as a major
standard for supporting object-oriented distributed environments.Object-oriented distributed
applications that comply with CORBA can invoke one-another methots with relative ease.Our
work resulted in a CORBA compliant interface to horns which we call electra .Electra can be
used without horus,and vice versa ,but the combination represents a more complete system.

53

•
IMPLEMENTING BRANCH-AND -BOUND

ALGORITHMS ON A CLUSTER OF
WORKSTATIONS -

A SURVEY, SOME NEW RESULTS AND
OPEN PROBLEMS

Abstract

Networks of workstations running under a multiuser, multitasking operating system
like UNIX are an increasingly commonplace personal computing environment. Due to
their use as personal computers these workstations are typically underutilized most of the
time. Thus it is attractive to develop software to use the ample free computing resources
to configure a loosely coupled multi computer to solve computation intensive problems in
a distributed fashion. In this paper we discuss the feasibility of implementing Branch-and­
Bound algorithms for combinatorial Optimization on a cluster of workstations. Thereby
we use experiences made by us when solving the Vertex-Cover-Problem on a cluster of 8
HP 9000 - 330 workstations under HP-UX connected via Ethernet and reports from
literature about combinatorial optimization on multi computers. Besides presenting
performance results we discuss programming techniques balancing for the workload, for
interprocess communication and for distributed termination. Based on this evidence we
conclude that given proper tuning a distributed Branch-and-Bound algorithm can yield
satisfactory speed-up on a cluster of workstations. However, tools are needed that make
the development and run-time control of such applications easier while preserving the
favourable efficiency.

The Economics of Distributed Computing

Organizations are increasingly using a network of workstations running under a multi user,
multitasking operating system like UNIX to support their members with computing power
that can be easily and flexibly accessed from the working place (see the table of computer unit
sales taken from [L YNCH90]). Typically, a workstation in such an environment is used
primarily by it's owner, mostly for tasks like Computer Aided Design, Software Development
or High Quality Typesetting. The programs supporting these tasks can be executed largely
independent of programs run on other nodes, and the network is used primarily for sharing
files, programs and 1/0-devices. Therefore, a workstation is often underutilized, e.g. while its
owner is occupied with non-computerized tasks or is executing computationally lightweight
tasks like text-editing. In such an environment it becomes attractive to think about developing
software that "collects" the free cycles on the workstations and uses these otherwise wasted
resources to solve a problem that is computationally too demanding for one machine.
Obviously, this approach is only several workstations can work simultaneously on different
subproblems relatively independent feasible if the problem under consideration can be
decomposed in such a way, that of each other.

54

•

;

/

(;
! ' .
' !'

Type of Computer Unit Sales 1983
I I{"'\

"';·I Unit Sales 198~;,1 .
Mainframes 1,851 1,497 ·~o~,

"·, •,) -1

Workstations 3,460 180,000 .•. , · . --
Personal Computers 5,900,000 _ 9,400,000

decomposable computation-intensive problem is the relative cost-effectiveness of such a
multicomputer when compared to one strong single-processor machine. This sounds paradox
from the point Another rationale for looking at a cluster of workstations as the target for
implementing a of view of Grosch's Law, which states that whereby c represents the cost at a
computer system, k ist a constant and e is the computing power of the system. In the Sixties,
Grosch's Law was empirically valid, i.e. it could be observed that indeed the rate of growth of
the cost of a computing system was under-proportional to its power (see e.g. [SHARPE69]).
However, today we find increasing cost per MIPS for different types of comupters (see the
table taken from [L YNCH90] below):

Type Of Computer Cost per MIPS (in Thousands USD)
Mainframe 180
Super-Mini 60
Small Department Computer 20
32-Bit Personal Computer 2

Thus, while computing power increases linearly as does cost when an additional processor
is added to a multicomputer that solves a decomposable problem, the cost increases overpro­
portional when one tries to achieve the same increase in power with a single-processor
configuration in a higher machine class. Notwithstanding these economical arguments,
paralleization ist the only alternative if no single-processor machine strong enough for a
certain problem exists. To illustrate our arguments, we give cost and performance figures for
a Branch-and-Bound algorithm for solving the Vertex-Cover-Problem, executed on a cluster
of 8 HP 9000/330 workstations and on a HP 9000/845. A HP 9000/330 is equipped with a
68020/68881 CPU/FPU and 4MB RAM, a HP 9000/845 is a multiuser system with HP
Precision Architecture and 48 MB RAM. With the workstation-cluster we achieved an 7.5
increase in power via distribution at the 8-fold cost, while a speed-up of 2.35 via the use of
the stronger single processor system would increase the cost by a factor 16.

20

[3 price

• speedup

10

0

55

•

The condition for achieving such savings is that the implementation exhibits sufficient speed.
up, i.e. that one can indeed combine several "2CV to drive as fast as a Ferrari", as illustrated
below, thus the following chapters are concerned with techniques for coordinating
workstations to efficiently work together on the solution of one problem. Thereby we use the
example given above and similar findings from literature to illustrate our ideas.

Cordinating distributed Branch-and-Bound algorithms

Branch-and-Bound is a standard principle to solve combinatorial optimization problems (for
a reference of Branch-and-Bound algorithms see e.g. [LA WLER66]). The basic idea is to
traverse the space of possible solutions in a tree-like manner, whereby new instances are
generated via applying a "branching procedure" to existing ones. A "bounding procedure" is
used to prune parts of the tree which cannot contain an optimum based on the knowledge
obtained so far. Phrased in a more algorithmic way, a Branch-and-Bound algorithm functions
as follows:

form an en-sty pool of subproblems and initialize the bound

while there are subproblems left to inspect do:

select one subproblem and apply the branching rule

for each child do:

compute the lower bound

if a feasible solution with a better bound is found

then record it and update the boupd

else If the child cannot be pruned

then add it to the pool of subproblems

end

end

One obvious way to construct a distributed version of such an algorithm is to
simultaneously "branch and bound" from several subproblems by the available processors. On
first sight, one might think that such a distributed algorithm exhibits linear speed-up.
However, in [LA 184] Lai and Sahni show that even when the processors can access the tree
elements and the bound at the same speed as one processor, "anomalies" can occur. That is, it
can happen that a distributed Branch-and-Bound algorithm which uses n2 processors may take
more time than one that uses n, processors even though n->n, or that one can achieve speed­
ups that are in excess of n2/nl. The first phenomenon is due to the fact that often several nodes
have the same value of the bounding function, so that the search direction of the processors
can be distracted from a promising part of the search space. On the other hand, a distributed

56

•
algorithm may find a good feasible solution earlier than a sequential one and can use it to
prune nodes which would be expanded in the sequential case thus causing super linear speed­
up.

A cluster of workstations is a loosely-coupled multicomputer, i.e. each processor has a local
memory, which it can access considerably faster than the memory of another processor via the
network. For instance, in our configuration - HP 9000/330 workstations under HP-UX
connected via Ethernet - we found that for a test graph with 70 nodes and average degree 30 a
workstation can process 28.8 subproblems per second for the Vertex-Cover-Problem if the
heap' containing the nodes of the Branch-and-Bound tree is stored locally. If it has to access a
heap located at another workstation to store and retrieve subproblems it can process only 1.1
subproblems . Thus if one stores all subproblems on a particular workstation designated as
"problem server", the other processors spend much more time in accessing the problem pool
and bound than they would in the sequential case and speed-up suffers2. If one inspects the
Branch-and-Bound algorithm given above, one finds that it is not necessary for a processor to
be able to access all tree-elements but rather only one instance and the bound. Thus one can
distribute the heap containing the subproblems to reduce access over the network. However,
when using this storage method, strategies have to be devised to prevent that some processors
run out of subproblems while others are still working ("idle time"). Another potential problem
caused by distributed storage is that it can happen that a processor inspects subproblems
which it could prune would it know the better bound stored in the memory of another
processor ("search overhead"). Furthermore, the detection of the termination condition is
more complicated than in the central case and one has to find a strategy for initializing each
processor with a proper set of subproblems.
Initialization can be achieved if one node generates subproblems and distributes them to the

other nodes. A method that uses fewer messages at the price of more local computing is to let
all nodes begin to work at the same problem and to enumerate subproblems (see
[VORNBERGER86]). As soon as a processor has a number of subproblems in its heap that
exceeds its processor number it removes all subproblems except the last one generated from
its local heap. Then it continues to work on that sub problem. Distributed Termination can be
achieved by defining a Hamiltonian cycle on the network and one master processor (see
IILOLIING89]). If the master node is idle, it sends a "yellow token" to its neighbor. Idle nodes
pass the token to their neighbor, until the master is reached again. When the master is idle and
has not received any new subproblems while the token was circulating, it sends a "red token"
to its neighbor. All nodes pass the "red token" on if they are idle and did not receive any
subproblems since they have received the "yellow token". If the "red token" returns to the
master, all nodes are idle and the master can start collecting the solution.
The trickier part in an implementation of a distributed Branch-and-Bound algorithm is to

find a strategy for synchronizing the bound and supplying the processors with "good"
subproblems to avoid, idle-time and search-overhead while keeping network traffic low. Two
questions have to be addressed when developing such a strategy:

• What kind of strategy should be used?
That is, what kind of local events should trigger a communication to which node to
synchronize the bound and/or to transfer subproblems in what fashion?

57

•

• How should the strategy be adapted to different problems and configurations?
Obviously, there is a trade-off between search-overhead, idle time and communication effort.
The more efficient communication is, the more often a node can coordinate with other
processors.

These questions have been the subject of a number of experimental studies. Before we present
these results, we review the metrics used to describe the performance of a distributed Branch­
and-Bound algorithm:

• Total run time(t)
The time necessary to compute the solution. It includes the time needed to distribute the
initial problem to the nodes, to detect that a solution has been found and the time needed to
collect the solution.

• Idle time (idle)
This is the sum of all times a node sits idle waiting for new problems except the time until the
node receives subproblems for the first time.

• Iterations (iter)
The number of iterations made by one node. This number is an indicator for the balancing of
the workload across the nodes and an indicator how many iterations more/less than the
sequential version had to be carried out to get the result.

• Iterations per second (itps)
This nuber indicates how fast new problems are generated. If we compare the itps rating of
the sequential version with that of the parallel version, we see how additional communication
effort affects the speed of computation.

• Speedup (su)
is defined as ratio of time needed by the sequential version (tl) to the time needed when using
k nodes in parallel (tk)

• Efficiency (eff)
is a measurement of how well the processors are utilised. It is computed as speedup divided
by number of nodes.

• Search-Overhead (reliter)
We let itersequ be the number of iterations needed by the sequential algorithm and define the
search-overhead reliter as

The earliest study about load-balancing in Branch-and-Bound algorithms known to the
authors was reported by Vornberger (VORNBERGER86]. He studied a distributed
implementation of Held and Knrps Branch-and-Bound algorithm for solving the Travelling -
Salesman-Problem (TSP). For this algorithm a minimum spanning tree algorithm is used as
bounding procedure, subproblems are generated by fixing certain edges to be members of the
cycle. Vornbergers target configuration was a ring of 16 personal computers equipped with
Intel 8088 processors, 256 KB RAM and two R5232 serial ports that allow communication
with each of the neighbours of a PC. His first strategy was that each processor works on its
local heap and requests a problem instance from its neighbours only if its local heap is idle.

58

•

Experiments with this method of coordination revealed several pritfalls of this simple
distributed mechanism:

• if it has to access a heap located at another workstation to store and retrieve
subproblems initially, only the master node that starts the computation has
subproblems, all other heaps are empty, causing the other processors to

(inefficently) requesting work from their neighbours. Thus communication effort is
wasted, as it does not reduce the initial idle time.

• the problem given upon request from an idle processor usually is finished quite fast,
causing the receving processor to communicate again.

• as the bound obtained by a neighbouring node is only made known to a node if its or
its neighbours heap is empty, search overhead is possible, i.e. problem instances are
inspected even though somewhere in the network a bound is stored that indicates that
these instances cannot possibly lead to the optimum.

To cope with these problems, Vornberger introduced three heuristics:
• At the beginning all k processors (not only the master) put the initial subtour into the

heap, then iterate the while loop until at least k subtours are in the heap and then the
processor with number i deletes from its heap all subtours but the i-tb cheapest This
guarantees a fast distribution of disjoint , roughly equal sized, subtours to all
processors.

• Upon request, not only one problem is sent but several, depending on some heuristic
arguments such as the total number of subproblems in the heap and the difference
between the lowest bound in the heap and the cost of the temporary solution.

• Processor A asks his neighbour B for work not only with an "unconditional request"
when A has run out of reasonable subtours but also at certain intervalls (depending on
an increase of the smallest lower bound in his heap by a certain constant) with a
"conditional request". Such a request is only granted by B, if B detects that his own
smallest lower bound is mailer than Ks smallest lower bound by more than this
constant."

The f9llowing figure depicts the speed-up obtained with the improved strategy for 20
experiments with random graphs with 30 vertices, degree 4 and edge costs varying between 1
and 200. As can bee seen, via good tuning Vornberger could achieve a satisfactory speed-up -
even on his rather limited configuration.

In [KUMAR87] Kumar et.al. study the impact of storage and coordination methods on
Parallel Best-First Search of State-Space Graphs via a parallel A* algorithm, a Branch-and­
Bound algorithm that always selects the element with the lowest bound for expansion. The
experiments reported were conducted on a BBN Butterfly shared-memory multiprocessor,

59

•

which consist of up to 256 processor-memory pairs whereby each processor's local memory is
accessible to other processors via a fast switch. On this configuration Kumar et.al.
implemented, among others, various versions of this algorithm for the TSP and the Vertex­
Cover-Problem (VCP).

The VCP is defined on an undirected Graph G = (V,E). A subset U of Vis called a Vertex­
Cover, if for all vertices (u,v) either u or v is element of U. The solution for a given Graph G
is that Veitex-Cover which has minimal cardinality.

To generate subproblems for a given subcover sp one applies the following rules (for further
details see [MONIEN81ID]):

• select one node x from that part of G, which has not yet been covered by sp

• generate two new subproblems SPl, SP2
The bound b for a subproblem can be computed as b = ICI + IMI where CI denotes the
cardinality of the subcover C and IMI denotes the cardinality of a "maximum matching" M in

_a,-----------------,

~ c:<:~,.LJ._n ' iw~¥- ---1'9"

+ ta114tl

Hl
Pmea:son

the restgraph (IMI is equal to the number of nodes which must be added to the subcover in
order to cover the whole graph G).

The performance of the TSP with a centralized implementation of the subproblem pool is
shown in the following figure. Since the BBN Butterfly is a shared memory machine, memory

60

•

contention can occur. The maximum speedup of such a configuration is hence Texp/Taccess
whereby Texp denotes the time needed to process a subproblem and Taccess denotes the time
needed to access the subproblem pool. We see that in the 15 city-case contention inhibts
further speed-up at about 13.7, while in the 25 city-case contention occurs only at a higher
level. This is because the time to expand on subproblem in the TSP is O(M2), with M
equalling the number of cities involved.

To avoid this contention, distributed control mechanisms can be adopted. Kumar investigate
the following strategies:

Blackboard Strategy:
Each processor maintains a local heap. It selects the node to be expanded from the
local subproblem pool and then compares this node with the nodes stored on a
central "blackboard". If the local node is not within a certain limit, some good nodes
are transferred from the blackboard to the local pool or vice versa. Then the node to
be expanded is selected again from the local pool.

• Random Communication Strategy:
This strategy is suited for topologies with small diameters. Expanded subproblems

'T:t1ve.ll:J11 i1kaan" •t:i1ti'i-.l

i 9 $~wtilj1~
+ l~.r,~l!~ty

i, ·, ,,,~-·'.: aj ., -v r J ·1 .; ·::t .. f.:: ."Hi[,,<£& ,-j,, -A . I t'.f

' ,~ ~---- •..
nto the local pool of randomly choosen nodes. The optimal frequency of
communication is a function of the cost of communication.

• Ring Communication Strategy:
This strategy is preferably used with topologies with large diameters. Each processor
forms an element of a virtual ring and has two neighbours. Newly generated
subproblems are inserted into the pool of the selected neighbour.

Below the results for these strategies used to solve the TSP are given. The parameters of the
strategies were determined experimentally. It turned out that the Blackboard strategy was
superior to the other strategies, of which the random strategy showed better performance.

61

Vertex-Cover Problem
60

50

40

~
l 30

"' 20

to

0
0 t 0 20 30 40 so 60 70

Number of Processors

-e- Speed.Up Btackb
.•• Speed-Up random
-a- Spwed·Up ring

-l!t- Sp&ed--Up randorm
+ Speed,.up Blackb
+ Speed-up ring

20

04-~r---ir--.....,..~-,-~..---,r----~ ...• ~"'T"'""---1
0 20 60 100 40 80

Number or Proc.-tssol s

The VCP is more prone to speed-up anomalies than the TSP, because for this problem there
arc many nodes in its state-space tree that have the same cost as the least-cost solution. Speed­
up is therefore greatly determined by how early one processor expands the subproblem
leading to the goal. The results of the centralized strategy for the VCP are even less
favourable as those given for the TSP, since Texp of the VCP is smaller than Texp of the
TSP. Therefore the processors spend most of their time in accessing the subproblem pool and
thus causing congestion. The following table depicts the results for the distributed strategies.
Again the blackboard strategy is the best. However, for this problem the difference to the
random strategy, which again ranks second, is not as large as in the case of the TSP.

Another study that probes into the relative advantage of centralized versus distributed
storage of the subproblem pool in distributed Branch-and-Bound algorithms is presented in
[LULINGS9j. Luling studied two strategies for solving the VCP on a network of transputers.
One is based on a distributed heap structure, the second one uses a ternary tree structure to
store all subproblems at a designated root node. Luling uses the following rules to coordinate
the local heaps in the distributed version:

• If the heapweight of processor i increases more than HEAPW _ UP percent, node i
sends subproblems to its neighbours.
• if the heapweight of processor j decreases more than HEAPW _ DOWN percent,
node i sends his local heapweight to its neighbours.

• if node i receives a message containing the heapweight of node j, it sends
subproblems to node j, while heapweighttj) > (1 + TRESH)*heapweight(i).

62

• subproblems are only distributed while heapweight(i) > MIN_ HEAPW.

HEAPW_UP, HEAPWDOWN, TRESH and MIN_HEAPW are parameters of this strar
whereby the heapweight is defined as number of elements stored in the heap that may lea
a better solution.

For 20 graphs with 150 nodes and average degree 30 benchmarks were run on a networl
up to 63 Inmos T800 transputers. One run was conducted on a transputer network consi
of 60 processor nodes with diameter 5. For this configuration the parameters where the be
performance could be observed in a number of experiments ,,
HEAPW_UP=0.5,HEAPW_DOWN=0.2, TRESH=0.2 and MIN_HEAPW=:5. In
following table the results for 5 typical graphs on a 60 processor topology with diameter - presented:
Graph
Id

Time iterations time
60 processor

iterations
60 r_rocessors

1 r_rocessor speedup effi 1 r_rocessor
0 11842,97

20998,21
20826,10
10796,53
10555,15

38100
66335
65951
33828
33003

205,79
356,89
354,27
181,61
209,53

38149
66343
65958
32513
37944

1
2
3
4

57,54
58,84
58,79
59,44
50,37

0,9:
0,9~
0,9-
0,99
0,8" 75018,96 237217 1308,09 240907 57,35

They show that the efficiency of this implementation is unformly high, the observe
variance being quite small. Experiments on 32 nodes configured as ring revealed that in thi
case good parameters for the coordination rules were IEAPWUP=0.2, HEAPW _DOW);C
10, TRESH~=0.10, MIN HIEAPW=5. The results presented below are consistent with tho
reported in [KUMAR87]: they show that the ring structure is not as efficient as the structur
with smaller diameter, since small differences add up over a number of processors and yiek
in large overall differences of work-load. This can be seen also from the parameter setting_
used: communication is much more encouraged with these low settings as opposed to the
medium ones shown above.
Graph Time Iterations Time Iterations

speedup efficiency
Id lproccessors I processors 32processors 32processors 0

11515,95 38100 369,09 37194 31,20 0,975
l 20414,90 66335 669,27 66766 30,50 0,953 2 20257,59 65951 666,81 66307 30,37 0,949

10500,24 33828 391,12 38360 26,84 0,839
3

10087,81 33003 344,52 34470 29,28 0,915
4

72776,49 237217 2440,81 243097 29,81 0,932
To compare these results with the performance with a centralized storage tests were

performed using 63 transputer nodes configured as ternary tree, whereby only the root node
stores the heap. To cut down on accesses of the root node, a subproblem that has the same
value of the bounding function than its parent is not inserted into the central heap but kept
local as input to the next iteration. In view of the results presented above. one would expect
that this centralized strategy would lead to congestion quickly. However. as the table below
shows, the centralized strategy outperformed the decentralized version:

•
Graph Time iterations time iterations speedup efficiency

I
rd 1 processor 1 processor 63processor 63processors

0 5488,69 37953 88,64 38033 61,92 0,983 I 9499,36 66768 152,60 66815 62,25 0,988 2 9401,62 66017 150,88 66035 62,31 0,989 3 5015,47 34038 81,06 34188 61,87 0,982 4 4807,94 32949 77,70 33005 61,88 0,982

34212,98 237725 550,88 238076 62,11 0,986 I

This indicates how efficient the communication mechanism provided by the transputers is. As
can be seen from the table below, the root process is only very slightly blocked by the
additional communication necessary and that the load is well-balanced and idle times are
small. Luling has done additional research on ternary-tree based configurations which show
that for constant communication and storage management cost the speedup increases, if the
computation time for a single subproblem on a slave processor is sufficiently high. However
it is questionable whether this result also holds for larger networks, especially as the memory
of one transputer may not be large enough for storing the heap for larger problems so that a
distributed storage becomes necessary from this point of view.

Computation time 152,6
Idle time root process 0,6350
Min idle time slaves 0,5496
Max idle time slaves 1,3743
Avg idle time slaves 1, 1011
Iterations root process 895
Min iterations slaves 1007
Max iterations slaves 1133
Avg. iterations slaves 1063

The aim of our implementation is to study whether the techniques developed by
Vornberger, Kumar et.al. and Luling for coordinating distributed Branch-and-Bound
algorithms on a tightly-coupled multicomputer are also applicable to achieve a satisfactory
speed-up on a loosely-coupled multicomputer such as a cluster of workstations. We
implemented both sequential and parallel Branch-and-Bound algorithms for solving the VCP
on HP 9000/330 workstations using the C programming language. Randomly generated test­
graphs with 120 nodes and average degree 30 were used for the performance measurements.
With this input, the sequential version took 4: 13 hours (15,180 seconds) on the average to
complete on an unloaded workstation running in multiuser-mode with all usual background
daemons active. On the average it performed 159,009 iterations at an average of 10.47
iterations per second. The distributed version was benchmarked using 8 unloaded networked
HP 9000/330 workstations. Thereby we basically used Lulings coordination strategy
described above. Compared to the communication in a transputer network. in oer environment
communication is slow. Thus we have to expect that the favourable parameter settings differ
from those found by Luling. Furthermore, on workstations under ll:\IT ccztext switches are
expensive and should be avoided. As will be described in the next section. we implemented
the computions and heap management in seperate processes, whereby ilie heap manageme

64

process checks the local heap and bound whether a coordination rule fires. To cut down
context switches, we suspend
this prpcess after each scan for an interval speciefied by the parameter SLEEP. Due to t­
operating-system limitations the minimum value for SLEEP is one. Therefore we chose as test
values for SLEEP one and three. A total of 180 experiments (at least 5 per parameter setting)
was conducted with the following parameter-settings.

Parametreler
Values

HEAPW- UP 0,5 0,7
0,3 0,5 0,7

HEAPW-DOWN 0,2 0,4
5

TRESH I 3

MIN-HEAPW

SLEEP

The following table summarizes the values for the above introduced metrics per parameter
setting:

HEAPW- HEAPW- TRESH SLEEP t V(t) iter V(iT SU V(SU) rel Y(rel

UP DOWN ER) ter Iter)

0,5 0,3 0,2 I I 895,66 500,48 825,33 103,36 8,43 1,96 0,92 0,21

0,5 0,3 0,2 3 2794,33 232,56 624,66 250,60 5,46 0,46 1,20 0,04

0,5 0,3 0,4 I 1586,66 778,60 620,33 210,86 I 1,92 6,07 0,76 0,34

0,5 0,3 0,4 3 I 523,33 523,63 164,66 33,35 11,26 4,58 0,74 0,28

0,5 0,5 0,2 I 3186,00 321,42 540,33 423,24 4,80 0,45 1,30 0, I I

0,5 0,5 0,2 3 2678,40 248,00 392,00 319,97 5,70 0,50 I, 17 0,06

0,5 0,5 0,4 I 2409,33 64,55 602,33 350,96 6,30 0,17 I, I 5 0,02

0,5 0,5 0,4 3 2534,33 I 18,60 739,66 143,27 5,99 0,28 1,21 0,05

0,5 0,7 0,2 1 3003,33 98,08 535,00 191,16 5,05 0,16 1,33 0,06

0,5 0,7 0,2 3 2659,33 93,22 600,00 430,68 5,71 0,20 1,21 0,02

0,5 0,7 0,4 I 2905,66 323,59 372,66 250,79 5,27 0,58 1,32 0,08

0,5 0,7 0,4 3 2545,33 32,50 305,33 239,35 5,96 0,07 1,19 0,03

0,7 0,3 0,2 I 1553,33 155,18 560,00 261,82 9,86 1,05 0,76 0,09

0,7 0,3 0,2 3 2747,00 494,98 508,33 328,14 5,71 1,15 1,06 0, 18

0,7 0,3 0,4 I 1025,00 470,79 599,00 358,69 19,57 12,52 0,5 I 0,23

0,7 0,3 0,4 3 2847,66 479,55 211,66 15,25 5,48 0,99 1,11 0,13

0,7 0,5 0,2 I 2609,33 65,75 276,66 328, 70 5,82 0,14 1,21 0,01

0,7 0,5 0,2 3 2463,66 378,19 461,66 192,59 6,27 1,05 1,10 0,09

0,7 0,5 0,4 I 2333,33 602,93 679,66 138,87 6,95 2,06 1,08 0,22

0,7 0,5 0,4 3 2684,00 50,38 796,33 174,43 5,66 0,10 I,22 0,03

0,7 0,7 0,2 I 2576,00 73,50 624,00 253,79 5,89 0,16 1,18 0,03

0,7 0,7 0,2 3 2534,00 257,27 677,00 338,60 6,03 0,60 l,16 0,06

0,7 0,7 0,4 I 2525,66 162,16 633,66 262,74 6,03 0,38 1,20 0,03

0,7 0,7 0,4 3 2575,00 166,04 408,00 414,39 5,91 0,39 1,21 0,04

65

•

As already noted in IKUMAR87] and [LULING89], also in our experiments we found
anomalous behavior, i.e. runs with reliter» 1 or reliter « 1. To check whether the parameter
settings have significant influence on the total run time, we performed a variance analysis (for
details on this technique see e.g.(FAHRMEIER84]). On the 1 percent level the parameters
HEAPW _DOWN, TRESH and SLEEP and interactions of HEAPW _UP versus SLEEP and
HEAPW _ DOWN versus SLEEP were significant. On the 5 percent level the interaction of
HEAPW _ UP versus TRESH becomes significant, too. To illustrate the dependence of
performance on the parameter settings graphically, the following figure shows the speed-up
gained versus HEAPW _DOWN, given the parameters THRESH (Tb) and SLEEP.

Hi

14

12
e, :,
I

l 10
C.
(I)

8

6

4
0,3 0,4 0,5 0,6 0,7

HEAPW_OOWN

-e- Th=0.2/Sleep.1
+ Th=0.4/$1eep.1
+ Thc0.2/Sleep.3
+ n, .. o.4/Sleep-3

We see that for our configuration it is favourable to keep all parameters small as is the case
in Luling's ring-configuration. However, due to the more expensive communication our
parameters in general are larger than those found by Luling. The SLEEP parameter can be left
at 1 and thus the functionality associated with it can be neglected. We would also like to point
out that the significant speed-up gained with the parameter-settings HEAPW _DOWN=0.3,
THRESH=0.4, SLEEP=l is also due to a single anomalous speedup of 35 (!) and therefore
the minimum may be less distinct if more experiments are taken as basis for the determination
of the mean speed-up. To illustrate what we can expect from our distributed system on
average, we compute the means of the metrics over all runs conducted:

Variable Mean Std Dev. Minimum Maximum
Total 2300.4 636,70 425,0 3597,0
runtime
Total 556,63 285,27 16,0 998,0
iterations
Speedup 7,5 4,09 4,220 35,720
reliter 1,0 0,25 0,2120 1,4590

66

•

To provide further insight into the coordination achieved via our strategy, the following
figure shows the distribution of the number of iterations across the eight nodes for the best
and worst-case experienced in our tests.

Distribution of work-load

.•... 0 ...
I) - - OI
>

1 ~ ~f • best case m . m :::::- worst case - •.. -10000 Ill -

2 3 8 4 5 6 7

Host

In view of this experimental data and the results from literature presented above, it seems
justified to conclude that from the viewpoint of performance Branch-and-Bound algorithms
are suitable for execution on multicomputers. While the speed-up results are comparable for
tightly-coupled and loosely-coupled systems, it seems that on the latter one has to expect a
higher variance in the performance. However, besides exhibiting satisfactory performance an
algorithm should also be easy to program, debug, main tam and use. As we shall demonstrate
in the sequel, it is this area where additional work remains to be done.

Programming a and Controlling Distributed Branch-and-Bound Algorithms on a
Cluster of Workstations

In Our application most of the time a processor "behaves" as if it would be a stand-alone
computer executing a sequential Branch-and-Bound algorithm using its local heap. However,
if the contacted. This introduces Condition-parts of the coordination rules are satisfied,
another node is contracted. This introduces a nonsequential element as the receiver then has to
stop computing and to execute the code for answering a communication request. A
mechanism that supports this functionality and is available on many UNIX systems is a
remote procedure call (RPC). an abstraction similar to the procedure-call-mechanism in
sequential programming languages3.With this mechanism we can separate the computing
process from code dealing with coordination and leave the scheduling of the processes to the
operating system. As RPC implements synchronous communication, deadlocks can occur if
the sending and receiving of messages is implemented in the same code, namely if node A
wants to communicate with node B, which at the same time wants to contact node A. Thus we

67

•
separate these functions in two processes, Communication Server R and Communication
Server S. All three processes of the application have to access the local heap, which we
implemented using shared memory to which all processes connect. Therefore we arrive at the
following structure:

Computing Process
I ~

1J .., DJ

/ Communication)---.j g. 0 RPC I - C: ro :::,
Server R 3 a.

1J
0
0

I -
RPC I Communication

Server~
Shared

Memory IPC

Local Area Network

Server S manages the shared memory segment (creation and deletion), starts Server R and
the computing-process, does load-balancing and terminates server R and the computing
process. If Server S runs on the master node in the network, it also handles insertion of the
start element, time measurement, the end-of-computation-detection and the collection of
results and statistics. Server R answers incoming requests. Basically, the computing process is
identical to the sequential version. Additional features are that the automatic insertion of a
start element into the
Local heap is suppressed and that statistics about the idle time are gathered. Furthermore,

the program does not terminate on the "heapempty"-condition, but then enters an endless loop
waiting for new problems. In order to inform the communication process about the status of
the computing process, the computing process puts its current status (running or idle) into a
predefined status-register in shared memory.
This distributed program system for solving the VCP as described above consists of twice

the Lines of code of the sequential version. Its coding was considerably more elaborate,
especially as it involved the use of the novel programming techniques described above. A
similar finding LS reported in [KALLSTROM88], where experiences made when a
distributed simulated annealing algorithm to solve the traveling salesman problem was
implemented on an IPSC hypercube via C and libraries, on a network of transputers in

68

OCCAM and in C on a Sequent Balance, a shared memory multiprocessor. Among others,
Kallstrom and Thakkar found that programming multi computers in C via libraries is
cumbersome and error-prone and that the resulting programs typically are much larger than
their counter pieces for shared-memory multiprocessors. Reviewing the structure of our
application depicted above one finds that only the computing process is specific for the VCP,
while the two server processes could be used for other algorithms of this type too, albeit with
different coordination rules. It thus seems plausible to implement the functions provided by
these processes for general use and to provide an abstraction of a space of sub problems
shared by all processors in the multi computer that the application programmer can use in a
similar way like the sequential data structure. According to the level of generality, approaches
taken in literature in this direction can be divided into two classes:

• Packages supporting the distribution of tree-traversal backtrack algorithms by
providing a distributed data structure for storing the nodes of the backtrack tree (e.g.
DIE as presented in (FINKEL87])

• Languages that provide access to distributed shared memory whose structure can be
determined by the programmer (e.g. LINDA as discussed in [GELBRNTER89II)

DIB was developed by Finkel and Manber as a tool for supporting the distribution of
backtrack algorithms. It requires the user only to specify a root-node, the branching and the
bounding procedure. The distribution of subproblems and termination is handled by DIB. The
load sharing algorithm used is rather simple, similar to the first strategy used in
[VORNBERGER86], though DIB tries to avoid the transfer of nodes on lower levels of the
tree that can be solved quickly to keep communication low. LINDA offers access to a shared
"tuple Space" which is distributed over several hosts in a transparent way. The tupel space
consists of tuples, which are content-adressable sequences of fields with a defined type. The
tuples can be used to implement a variety of distributed data structures, whose access routines
can be implemented via LINDA primitives that allow the insertion and deletion of tuples.
Additional to storing passive data transparently, LINDA also provides an operation for the
transparent execution of routines, whose results become passive tuples upon completion.
LINDA is available for use with a number of programming languages. It has simple routines
for storing the tuples at the different nodes (either full replication or storage at the node where
a tuple was inserted into the tuple-space). To the authors' knowledge, no further coordination
mechanisms have been implemented so far and current research on algorithms for distributed
shared memory focuses on proper ways of transparently storing and accessing objects used by
several nodes rather than on techniques for load balancing (see e.g. [STUMM90]). Thus, such
tools should provide language constructs that allow the application programmer to use
problem- and configuration specific rules for sharing information among several nodes like
those introduced above.
Besides these programming problems, also the run-time control of a distributed Branch­

and-Bound algorithm on a cluster of workstations is non-trivial. Tightly-coupled
multicomputers typically are "node-shared", i.e. at the beginning of an execution a user
reserves the nodes he needs exclusively. In our case, the program is run as a collection of
background processes on time-sharing machines, each one being controlled by its owner.
Thus the implementation must be prepared to deal with a "nonconstant" configuration: the
number of iterations per second on a node may decrease because its owner starts a foreground

69

•

process or a node may become completely unavailable because its owner terminated the
processes of the Branch-and-Bound application or due to a power failure or switch-off
Compared to an implementation on a tightly coupled system this makes the coordination more
difficult as one also has to deal with load imbalances caused by other processes. To avoid the
disturbance of other user processes, LINDA distributes load according to a "policy file"
where the owner of a workstation specifies when and under what conditions he is willing to
provide cycles on his machine for general use. A safeguard against incomplete tree-traversal
caused by node failures is that a host stores all subprbblems it hands over to other hosts. If a
host fails, the nodes that have sent subproblems to it reevaluate these instances. If problems
were transferred more than one time, additional communications are necessary to determine
the subtree lost. The price paid for this functionality is increased network traffic, since a node
receiving problems must notify the sender when it has finished evaluating the subproblem
handed over. Under DIR a node even does not await the detection of a failure and starts
inspecting subproblems sent away if it becomes idle. With regard to the master node, other
nodes can take this role if the previously determined master processor has filed. For instance,
one can determine that the node having the lowest node-id should take the responsibilities of
the master. Lets assume that the node with identification one is the master, that all nodes are
idle, node 1 sends out the yellow token, but crashes before the token has completed its round.
Now node n gets a timeout when trying to pass the yellow token back to the master. It sends a
status message to all other nodes notifying them to remove node 1 from their list of available
nodes. Upon receiving this message, node 2 discards the first entry from its node-table and
realizes that it has become master. In this role it issues the yellow token and the cycle starts
agam.

Conclusion

Branch-and-Bound algorithms scale up well, given proper coordination. The speed-up on a
cluster of workstations is comparable to the one arrived at when using tightly-coupled
multicomputers like transputers or hypercubes, albeit the variance observed over different
runs is higher. Thus thinking about the distribution of such an algorithm is worth the effort,
especially if processor time available anyhow would be left unused. Moreover, the results
demonstrate that for this type of algorithms it can be economically sensible to use several
cheap slow processors instead of one single processor configuration. However, these benefits
are not for free. Due to the fact that on a loosely-coupled system several applications are run
at the same time by different users mostly in an interactive way, the control of a long-running
application on such a multicomputer is more difficult than on a tightly-coupled system. Thus
special techniques are necessary to avoid the disturbance of other applications and to ensure
fault tolerance. Also programming of a distributed version of a Branch-and-Bound algorithm
is considerably complex than implementing a sequential version. This is reflected not only in
lines of code but also by the need for application programmers to cope with new
programming problems such as dissemination of global information, load-balancing,
distributed termination or deadlock prevention. Based on this evidence we argue that while it
seems that from the viewpoint of performance the feasibility of using a cluster of workstations
as a loosely-coupled multicomputer for running Branch-and-Bound algorithms is well
demonstrated, it is decisive to give the application programmer tools that ease the

70

•
programming task to foster the wide-spread use of networks of workstations also as devices
for computation intensive computing.

PARALLEL COMPUTING: THEORY AND PRACTICE

PARALLEL BRANCH-AND-BOUND ALGORITHMS

The first two parts of describe parallelizations of the branch-and-bound algorithm for
multiprocessors and multicomputers. respectively. We use as our problem domain the
traveling salesperson problem described in All the parallel algorithms described in this
section use the branching and bounding heuristics developed by Little et al.

The final part of this section discusses anomalies in parallel branch-and-bound
algorithms conditions under which adding processors may result in slowdown or superlinear
speedup.

Multiprocessor Algorithms
Mohan 1983) has developed two parallelizations of the traveling salesperson algorithm

presented . The first parallel algorithm involves a parallelization of the for loop: the second
parallel algorithm executes the repeat loop in parallel.
As presented before. the for loop has a natural parallelism of 2-each node has only two

children. However, by selecting k edges to be considered for inclusion or exclusion, the
number of children of each node increases to 2k since constraints reflecting all combinations
of inclusion and exclusion must be generated. The modified algorithm is Clearly this data­
parallel algorithm is appropriate for 2k processors.

The second algorithm creates a number of processes that asynchronously explore the tree of
subproblems until a solution has been found. Each process repeatedly removes the unexplored
subproblem with the smallest lower bound from the ordered list of unexplored subproblems.
Then it decomposes the problem (unless it can be solved directly), and inserts the two newly
created subproblems in their proper places in the ordered list of problems to be examined. A
process must have exclusive control of the list in order to insert and delete elements, but the
time taken for these tasks is relatively small compared to the time needed to decompose a
problem. Thus contention for this list should not be a significant inhibitor of speedup.
The speedup of these two parallel algorithms on Cm* (a NUMA multiprocessor) is

contrasted .The first algorithm achieves extremely poor speedup. The additional processors
spend most of their time creating nodes that are never explored, because their lower bounds
are too high. Mohan's second algorithm achieves, with 16 processors. a speedup of about 8
when solving a 30-vertex TSP. The major obstacle to higher speedup is the number of
nonlocal memory references made by the processors.

COMBINATORIAL SEARCH

TRAVELING SALESPERSON (UMA MULTIPROCESSOR):
begin

reduce weight matrix, determining the root's lower bound initially only the
root is in the state space tree while true do
select the unexamined node in the state space tree

with the smallest lower bound
if the node represents a tour then exit the loop endif
select the k edges whose exclusion increases

the lower bound the most
for the 2k cases representing all inclusion-exclusion

combinations of the selected edges do
create a child node with the correct constraints
find the lower bound for the child node

71

•

endfor
end while
end

Hirt-level description of a parallel traveling salesperson algorithm developed by Mohan
(198 .. The algoritlim is designed for implementation on a UMA multiprocessor, but it does
not ac reve good speedup.

8

6
::::.
"::J

4 :)
~ o:

'l

v ' . h ..., -v.eonr m z /
/

/
/

/

/' /
' · P'/
1~8 . .\Lmrithm l

l ., 8
Processors

4

Multicomputer Algorithms

Quinn (1990) has implemented four variants of an algorithm to solve the traveling
salesperson problem on hypercube muiticomputers. The algorithm uses distributed priority
queues of unexamined subproblems-one queue per processor. The performance of the
parallel algorithm depends upon the heuristic the processors use to exchange unexamined
subproblems with each other. Major portions of this subsection first appeared in Quinn
(1990).

Let p - 2d denote the number of processors. Assume that the branching factor of the state
space tree is k; i.e., assume that each node in the tree has k children. Let N be the minimum
number of constraints that must be added to the original problem in order to produce a
subproblem that is solvable. In other

PARALLEL COMPUTING: THEORY AND PRACTICE

Words, any solution node must have depth > N in the state space tree. Let x be the time
needed to examine a subproblem and either solve it or decompose it into k subproblems. Let k
be the time needed to transfer a subproblem from one processor's priority queue to another
processor's queue. and assume that both the sender and the receiver processors must devote
time X to the transfer.

The asynchronous branch-and-bound algorithm distributes the unexamined subproblems
among the processors. In each of its iterations every processor with a nonempty priority queue
removes the unexamined subproblem with the smallest lower bound and either solves the
problem directly or divides it into k subproblems. (Note: Although each processor iterates
through a sequence of operations. there is no synchronization among processors.) If a
processor divides a problem into k subproblems. it puts the subproblems into its priority
queue, then uses a heuristic to send in of its unexamined subproblems to neighboring
processors. where in < k. At the beginning of execution. Processor O contains the original

72

•
problem in its pnonty queue. Because each processor distributes in subproblems every
iteration. lip) = =log., 1 p 1 iterations are sufficient to provide every processor with at least one
unexamined subproblem.

In order for a solution to be found and guaranteed optimal. two conditions must be met.
First, at least one of the solution nodes (and hence all of its ancestors in the state space tree)
must be examined. Second processors must examine all nodes in the state space tree whose
lower bounds are less than the cost of the optimal solution. The execution time of the
algorithm is determined by whichever event occurs last. The event occuring last is determined
by the number of processors and the shape of the state space tree.

To derive an expression for the execution time of the parallel algorithm, we first determine
the amount of time needed to examine all of the worthwhile nodes in the state space tree.
Assuming that sub problems are exchanged evenly among processors. Every iteration requires
time x+2m11,: time x to decompose or solve a subproblem. Time m to send in subproblems to
other processors and time ml to receive (on average) m subproblems from other processors.
If S is the number of worthwhile subproblems in the state space tree. I(p) is the number of
iterations before all processors are actively involved. and G(p) is the number of worthwhile
subproblems examined in the first I (p) iterations, then S - G(p) worthwhile subproblems
remain to be examined after the first 1 (p) iterations. If the percentage of worthwhile node
examinations performed by the p processors after the first lip) iterations is E(p). the number of
additional iterations required to examine all worthwhile subproblems is[F(S - G(p)/(pE(p))}.
Multiplying the time per iteration by the number of iterations, we see that the amount of time
needed to examine all worthwhile
siihnrnhb-rns is Second. we determine the amount of time needed for the search to reach a
solution node, the length of the critical path. Let M denote the depth of the

COMBINATORIAL SEARCH

Solution node in the state space tree. Let T(p) denote the number of transfers on the critical
path from the root of the state space tree to the solution node. In other words. T(p) is the
number of times that subproblems leading to the solution are transferred from one processor's
priority queue to another processor's queue. Every transfer incurs a penalty of x-'2 + A. The A
term is the time needed to perform the transfer. The x/2 term is the expected delay before the
subproblem can be evaluated by the destination processor. since the destination processor is
likely to be in the middle of decomposing another subproblem when the transfer begins. The
total amount of time needed for the search to find a solution is

(M + l)(x + 2ml) + T(p)(x/2 + A) (13.2)

Since the asynchronous algorithm completes when both previously mentioned conditions
are met, the execution time of the algorithm is the maximum of the times in expressions 13 .1
and 13.2.

Quinn has tested the model by implementing four parallel best-first, branch-and-bound
algorithms to solve the traveling salesperson problem. All these algorithms use the reduction
heuristic of Little et al. The algorithms have been implemented on a 64-processor nCUBE
3200 hypercube multicomputer.

All four algorithms have been executed on the same set of ten 30-vertex graphs. The edge
weights are asymmetrical and randomly chosen from a uniform distribution of integer values
ranging from O through 99. Every algorithm beings with Processor O possessing the original
problem, and relies upon successive subproblem decomposition steps to work toward a
solution.

During an iteration every processor with a nonempty priority queue removes the
unexamined subproblem with the smallest lower bound and either solves the problem directly
or divides it into two subproblems. It sends one unexamined subproblem to a neighboring
processor and receives (on average) one unexamined subproblem from a neighboring
processor. Quinn determined the parameters needed for the analytical model by recording the
actions taken by the processors during their solution of the ten 30-vertex problem instances.
All these parallel algorithms had the following parameters: S 559, k = 2, m = 1, x 125 msec,

73

•
and A= 1 msec. Values of G(p), E(p), and T(p) varied from algorithm to algorithm.

All four algorithms use the following rule to distribute subproblems among the processors.
Let p - 2d be the number of processors. On iteration i Processor j sends the unexamined
subproblem to Processor r, where r is found by inverting bit (i mod d) of j. With this
distribution rule 1 (p) = log, p.

Each algorithm has a unique heuristic for choosing which unexamined sub-problem to send
to a neighboring processor. Algorithm 1 puts the newly created subproblem with the edge
inclusion constraint into the priority queue and sends the subproblem with the edge exclusion
constraint. Algorithm 2 puts the newly created subproblem with the smaller lower bound into
the priority queue and sends the subproblem with the higher lower bound. Algorithm 3 puts
both newly created subproblems on its priority queue, then deletes the second-best

Processors Alg.1 Alg.2 Alg.3 Alg.4

1 Actual 1,00 1,00 1,00 1,00
Predicted 1,00 1,00 1,00 1,00

2 Actual 1,88 1,87 1,89 1,93
Predicted 1,90 1,90 1,96 1,96

4 Actual 3,52 3,43 3,73 3,65
Predicted 3,58 3,58 3,85 3,85

8 Actual 5,67 5,43 6,59 6,50
Predicted 5,76 5,69 7,09 7,09

16 Actual 7,39 6,86 10,20 9,12
Predicted 7,58 7,00 11,33 10,51

32 Actual 8,07 7,96 12,92 11,50
Predicted 7,89 7,89 15,20 12,91

64 Actual 7,01 7,34 12,57 12,99
Predicted 9,05 6,27 13,74 13,10

Actual and predicted speedups of asynchonrous branch-and-bound algorithms 1, 2, 3
and 4 on nCUBE 3200. Values represent averages over ten 30-vertex instances of the
traveling salesperson problem with asymmetrical integer distances.

Problem from the priority queue and sends it. Algorithm 4 puts both newly created
subproblems on its priority queue. then deletes the best problem from the priority queue and
sends it.
The upper entries of Fig. 13-1 ' indicate the speedup measured on the nCUBE 3200 for

each of these four algorithms. The lower, italicized values are the speedups predicted by
Quinn's model. Despite the simplifying assumptions, most notably the assumption that all
subproblem decompositions require the same amount of time, the model is a reasonably
accurate predictor of speedup.

For the solution of a 30-vertex traveling salesperson problem on 64 processors. execution
time is dominated by the time needed to examine all worthwhile subproblems. Hence the
difference in speedup among the four asynchronous algorithms is a reflection of how well
they kept processors busy doing useful work. plots the percentage of worthwhile subproblem
examinations as a function of distance from Processor 0, the processor given the initial
problem. as the algorithms execute on a six-dimensional hypercube. The "distance" between
two processors is the length of the shortest path in the hypercube linking them. The significant
differences in the curves illustrate how a simple change in the subproblem distribution
heuristic can have a dramatic effect on the efficiency of the parallel algorithm, by increasing
or decreasing the percentage of time various processors spend examining useful subproblems.

74

•

70
@ l990 rEF.E

-
- - ,.. -

40

IO

0 l ..,
_J

Distance from processor 0

Because the execution times of the asynchronous algorithms on the 30-vertex traveling
salesperson problem are dominated by the time needed to solve all worthwhile subproblems,
Fig. 13-12 does not validate expression 13 .2. To illustrate the precision of this part of the
model, we present the performance of Algorithm 4 solving 10 instances of the 20-vertex
traveling salesperson problem. For this smaller-sized problem the speedup of Algorithm 4 is
constrained by the time needed to traverse the critical path because: (1) the state space tree
has relatively few worthwhile subproblems and (2) subproblems leading to the solution are
frequently transferred from one processor to another. contrasts the actual and predicted
speedups of this algorithm.

We can use the model to predict the performance of these algorithms on other
multicomputers because changing the value of A does not affect the values of the other
parameters.

75

To summarize, multicomputer implementations of parallel branch-and-bound algorithms
that keep unexamined subproblems in a single priority queue have a

Actual and predicted speedups for Algorithm 4 solving 20-vertex traveling salesperson
problem. Values represent averages over ten problem instances.

Processors Actual Predicted
1 1,00 1,00
2 1,63 1,87
4 1,92 2,00
8 1,90 2,01
16 2,04 2,01
32 2,26 2,01
64 2,21 2,04

PARALLEL COMPUTING: THEORY AND PRACTICE

Number of disadvantages. One processor must have a disproportionately large memory,
and that processor is involved in every communication. Distributing the unexamined
subproblems among the processors balances the memory requirements. reduces the number of
communications, and distributes the messages over the network, which can result in a more
practical algorithm that actually achieves higher speedup. Whether or not the potential for
higher speedup is realized depends upon the effectiveness of the subproblem-distribution
heuristic in assigning processors useful work.

Anomalies in Parallel Branch and Bound

In this section we present Lai and Sahni's (1984) analysis of the speedups theoretically
achievable by a parallel branch-and-bound algorithm. We must make a few assumptions in
order for the analysis to be manageable. Assume that the time needed to examine any node in
the tree and decompose it is constant for all nodes in the state space tree. Furthermore, assume
that execution of the parallel algorithm consists of a number of 'iterations.' During each
iteration every processor examines a unique subproblem if one is available and decomposes it.
Given a particular branch-and-bound problem to be solved and a particular lower bounding
function g. define l(p) to be the number of iterations required to find a solution node when p
processors are used.
The first theorem shows that increasing the number of processors can actually increase the
number of iterations required to find a solution.
Theorem 13 .1. Given n~ < n~ and k > 0, there exists a state space tree such that kl (nl) < I (n2).
(See Lai and Sahni [1984].)
Proof Consider the state space tree shown in All nodes labeled have the same lower bound,
which happens to be the value of the least-cost answer node (node A(. Nodes labeled">" have
a lower bound greater than the value of the least-cost answer node. When ii1 processors
conduct the search, on the first iteration the root node is expanded into nl + 1 children nodes.
The second iteration consists of expanding the n~ leftmost nodes at level 2 into n nodes at
level 3. Of the nodes at level 3, nl-1 of them cannot lead to the solution and are discarded.
On iteration 3 the remaining node at level 3 and node B are expanded. Since the node at level
3 leads to the solution node, the algorithm terminates. Hence I(nl) = 3.
When n2 processors conduct the search, the first iteration is the same: The root node is
expanded into nl + 1 children nodes. On the second iteration, however, all nl + 1 nodes at
level 2 are expanded, yielding n, +n2 nodes at level 3. Since only n2 nodes at level 3 can be
expanded on iteration 3, it could happen that the n2 rightmost nodes would be the nodes
chosen. If we assume the processors expanded the n2 rightmost nodes at level 3, n2 nodes at

76

level 4 would be created, and iterations 4, 5, 6, ... , 3k could be devoted to a wild-goose
chase, expanding nodes down the right part of the tree. The solution node A would be
expanded on iteration 3k + 1. Hence 1 (n2) = 3k + 1. Combining the two results yields k I(n1)
= 3k < 3k + 1 = 1 (n-).

Level

A,,..~--·\
(=I .._., •

• •
• •

•
•

Jk. - l levels
n
I

(:\, ,-... ~ , -,
I:

\.,,.~:' y .._,.
• • •

r>. ,-,,, .. ---·\
'>, ; >. '>' "-- / ,__.,, ,..__.,

Because many nodes have a lower bound equal to the value of the least-cost answer node­
fl'-we see the anomaly described in the Theorem 1. What would happen if g(x) = f-,
whenever x is not a solution node?

Definition .1. A node x is critical if g(x) <f

Theorem 2. If g(x) = f* whenever x is not a solution node, then 1(1) > I(n) for all n> 1.
(See Lai and Sahni (1984).)

Proof By the definition of the best-first branch-and-bound heuristic, only critical nodes and
least-cost answer nodes can be expanded. In addition, every critical node must be expanded
before any least-cost answer node is expanded. Hence if the number of critical nodes is in.
then 1 (]) = m. When n > 1, at least one of the nodes expanded each iteration must be a
critical node (Prob. 13-5). Hence a least-cost answer node must be examined no later than
iteration m. Thus if the number of critical nodes is in, then 1 (n) < m. Therefore 1 (1) > 1 (n)
for all n > 1.

The following theorem proves that increasing the number of processors can actually cause
a disproportionate decrease in the number of iterations required to find a solution node.

Theorem 13.3. Given nl < n2 and k > n2/nl, then there exists a state space tree such that I
(n/I(n2) > k > n2/nl. (See Lai and Sahni [1984).)

Proo/This is left to the reader as Prob. 13-6.

Theorem 13.4. If g (x) = f* whenever xis not a least-cost answer node, then I (1) I I

77

•
(n) < n for n > 1. (See Lai and Sahni [1984].)

PARALLEL COMPUTING: THEORY AND PRACTICE

Proof Let m be the number of critical nodes. Then 1 (1) = m (Theorem 13 .2). All critical
nodes must be expanded before the parallel branch-and-bound algorithm can terminate (Prob.
13-7). Hence J(n) > rn/n, or 1(1)/l(n) < n.
Lai and Sahni have found anomalous behavior in some instances of the 0-1 knapsack

problem, but they conclude that anomalous behavior is rarely encoun tered in practice and
that, in general. (1) increasing the number of processors will not increase execution time
(assuming the problem is large enough), and (2) superlinear speedup cannot be expected.

ALPHA-BETA SEARCH

The most successful computer programs to play two-person zero-sum of games perfect
information, such as chess, checkers, and go, have been based on exhaustive search
algorithms. These algorithms consider series of possible moves and countermoves , evaluate
the desirability of the resulting board position then work their way back up the tree of moves
to determine the best initial move.

Given a trivial game, the minimax algorithm can be used to determine the best strategy.
Figure 13-16a represents the game tree of a hypothetical gain with rules left unstated, played
for money. Dotted edges represent moves ma hr the first player: solid lines represent moves
made by the second player. The root of the tree is the initial condition of the game. The leaves
of this game tree represent outcomes of the game. Interior nodes represent intermediate
conditions. The outcomes are always put in terms of advantage to the first player. Thus
positive numbers indicate the amount of money won by the first player, while negative
numbers indicate the amount of money lost by the first player. The algorithm assumes that the
second player tries to minimize the gain of the first player, while the first player tries to
maximize his or her own gain, hence the name of the algorithm. Figure 13-16b is the same tree
with the values of the interior nodes filled in. The value of this game to the first player is 2. If
the first player plays the minimax strategy he or she is guaranteed to win at least two dollars.

Stockman (1979) has pointed out that a game tree is an example of an AND/OR tree. The
AND nodes represent positions where it is the second player's turn to move. The OR nodes
represent positions where it is the first player's turn to move.

Nontrivial games such as chess have game trees that are far too complicated to be evaluated
exactly. For example, de Groot has estimated that there may be 3884 positions in a chess
game tree (de Groot 1965). Thus current chess-playing programs examine moves and
countermoves only to a certain depth, then, that point, estimate the value of the board position
to the first player. Of course, evaluation functions are unreliable. If a perfect evaluation
function existed, the need for searching would be eliminated (Prob. 13-9). As we have seen,
all

78

•

I '._,,.

' ' {.,-.Y (\ ~r°'""\ ·r;) '\ r<, .r°"\ '-') I~

.....,._;1 V '\.-t'i \ y' I')..., 'JI \ \ •.• ,)
I I I \ I \ I ' '. i \ I I I

/ \ / , / 1 / I / .\ , , \ .f \ / I ~~@~P~~~~8~~~~®~~~ 10 V - ;'(__;,, ,.:) I ' ·~· ,'J, \..::/. I ' J 'C· ~' 1,:_____, l:..,;' i .. _:__) ,_:: __)

(al

("~j ·-.,:_,,,
/ \

' ' ' \ ,....,_ >--.
~) (J:)

'
!~ "-' ; \
i I

.r.'1·: -~ ."-./ ~

/~\
\:_,i
I \

' ' I \

~I 1"7') \~_; \.:.'._,.·

possible moves and countermoves from a position p to some predetermined lookahead
horizon can be represented by a game tree. The minimax value of the game tree can be found
by applying the evaluation function to the leaves of the tree (the terminal nodes), then
working backward up the tree. If it is the second player's move at a particular nonterminal
node in the game tree, the value assigned is the minimum over all its children nodes. If it is
the first player's move, the value assigned is the maximum over all its children nodes.

Given a game tree in which every position has b legal moves, it is easy to see that a
minimax search of the game tree to depth d examines bd leaves.

It is generally true that the deeper the search, the better the quality of play. That is why
alpha-beta pruning has proven to be valuable. Alpha-beta pruning, a form of branch-and­
bound algorithm, avoids searching subtrees whose evaluation cannot influence the outcome of
the search, i.e., cannot change the choice of move. Hence it allows a deeper search in the
same amount of time.

The alpha-beta algorithm, displayed in Fig. 13-17, is called with four arguments: pas, the
current condition of the game; a and B, the range of values over which the search is to be
made: and depth, the depth of the search that I

79

PARALLEL COMPUTING: THEORY AND PRACTICE
ALPHA.BET A (pos, a, B, depth)

Reference a {Lower cutoff value)
(Upper cutoff value)

Value pas (Position)
depth (Search depth)

Parameter max.c (Maximum possible number of moves}
Local c17L.rnax.c] (Children of pas m game tree)

cutoff (Set to TRUE when okay to prune)
(Iterates through legal moves)

val (Value returned from search)
width (Number of legal moves)

begin
if depth < 0 then
return (EVALUATE (post) (Evaluate terminal node) endif
width GENERATE.MOVES(pos) if width= 0 then
return (EVALUATE (pas)) (No legal moves)
endif
cutoff=- FALSE

while i < width and cutoff= FALSE do
vat r+« ALPHA.BET A (clli], a, ~, depth-i)
if pas is MAX-NODE and tat > a then

a-tat

else if ~OS is MIN-NODE and tat «=- then~*- tat endif endif
ifa > -rhen

cutoff TRUE
endif
j *-i-r-1

end while
if pas is MAX-NODE then return a else return~
endif

end
Sequential alpha-beta algorithm.
to be made. The function returns the minimax value of the position pas. The original board
position is a MAX-NODE. Every child of a MAX-NODE is a MIN-NODE. Every child of a
MIN-NODE is a MAX-NODE.
To illustrate the workings of the alpha-beta algorithm, consider the game tree in This tree

represents the same game as that in

80

PARALLEL COMPUTING: THEORY AND PRACTICE

Except that nodes not examined by the alpha-beta algorithm are not included. When the
algorithm begins execution, a -cc and B cc. The algorithm traverses the nodes of the tree in
preorder; the values of a and - converge as the search progresses.

The nodes drawn in heavy lines in Fig. 13-18 represent places where pruning occurs. To
explore the conditions under which pruning happens let us consider an arbitrary interior node
in the search tree. When the search reaches this node, we know that some choice of moves
that has already been considered leads to a value of at least a for the player moving first. We
also know that correct play on the part of the opponent will ensure that the first player cannot
get a- value more than+-. Hence a and - define a window for the search.
If the interior node pas is a MAX-NODE, then it is the first player's move. If vat, the value

of the game tree searched from node pas is greater than a, then a is changed to vat, a better
line of play has been found for player one.
Analogously, if the interior node pas is a MIN-NODE, then it is the second player's move.

If vat, the value of the game tree searched from node pas is less than+-, then - is changed to
vat; a better line of play has been found for player two.

However, if at any time the value of a exceeds the value of B, there is no need to search
further. It is in the best interests of one of the players to block the line of play leading to node
pas.

For example, consider the node labeled A in . The value returned from the search of the
first child of A is 3, which is greater than 2, the value fl. It is not in the second player's
interest to allow play to reach this position, since there is another line of play guaranteeing a
value no higher than 2. Hence there is no point in continuing the search from this game
position.

81

•

\ ·~ ~~- , - ~~-
/ ~ 3 u K :_) (_) '* (_,,

. \ - I _ I ~- \ I __ J L cb 0 0 .: 0 !,_) 0 CD 0 0 0 Ci)

To what extent can alpha-beta pruning reduce the number of leaf nodes that must be
examined? The algorithm does the most pruning on a perfectly ordered game tree, that is, a
game tree in which the best move from each position is always searched first (see Fig. 13-19).
Assuming a perfectly ordered game tree with a search depth of d and uniform branching
factor b, Slagle and Dixon (1969) have shown that the number of leaf nodes examined by the
alpha-beta algorithm is

Opt(b, d) = b[d/ 1 ± bLd/2J -In other words, in the best case it is

possible for the alpha-beta algorithm to
examine no more than approximately twice the square root of the number of nodes searched
by the minimax algorithm.

Definition 13 .2. The effective branching factor of an algorithm searching a game
tree of depth dis the dth root of the number of leaf nodes evaluated by the algorithm.

Casting Slagle and Dixon's result in terms of this definition, an alpha-beta search reduces
the effective branching factor from b to -.115 when searching a perfectly ordered game tree.

Of course, a perfectly ordered search is not possible in practice. However, experimental
evidence indicates that sequential alpha-beta algorithms often search no more than 50 percent
more nodes than would be searched if the tree were perfectly ordered. Hence in practice the
alpha-beta search algorithm exhibits much higher performance than minimax.

Two common enhancements to the alpha-beta search algorithm are aspiration search and
iterative deepening. Aspiration search makes an estimate of the value v of the board position
at the root of the game tree, figures the probable error e of that estimate, then calls the alpha­
beta algorithm figuring the probable error e of that estimate, then calls the alpha-beta
algorithm With the initial window (v - e, v - e). If the value of the game tree does indeed
fall within this window of values, then the search will complete sooner than if the algorithm
had been called with the initial window (-cc, cc). If the value of the game tree is less than ,.
- e, then the search will return the value v - e, and the algorithm must be called again with
another window, such as (-cc, v - e). Similarlv, if the value of the game tree is greater than
v + e, then the search returns the value v + e, and another search will have to be done with a
modified initial window, such as (v + e, cc).

Another variant oh the standard alpha-beta algorithm is called iterative deepening. Each
level of a game tree is called a ply and corresponds :o the moves of one of the players.

82

•
Iterative deepening is the use of a (d- 1)-ply search to prepare for a d-ply search. This
technique has three advantages (Marsland and Campbell 1982). First, it allows the time spent
in a search to be controlled. The search can continue deeper and deeper into the game tree
until the time allotted has expired. Second, results of the (d - 1)-ply search can be used to
improve the ordering of the nodes during the d-ply search, making the node ordering similar
to perfect ordering, and allowing the alpha-beta search n execute more quickly. Finally, the
value returned from a (d- 1)-ply search can be used as the center of the window for ad-ply
aspiration search.

PARALLEL ALPHA-BETA SEARCH

Parallel Move Generation and Position Evaluation

Alpha-beta search has a number of opportunities for parallel execution One approach is to
parallelize move generation and position evaluation. The custom chess machine HITECHTM,
with 64 processors organized as an 8 x 8 array has taken this route. However, the speedup that
can be achieved with this aproach is limited by the parallelism inherent in these activities.
Further improvements in speedup lie in parallelizing the search process.

Parallel Aspiration Search

Another straightforward parallelization of the alpha-beta algorithm is tone by performing an
aspiration search in parallel. If three processors are z-ailable, then each processor can be
assigned one of the windows (-cc,: -(v-e, v+e), and (v+e, cc). Ideally the processor
searching (v-e, v±~ will succeed, but all three processors will finish no later than a single
processor searching the window (-cc, cc). More processors can be accommodand by
creating more windows with smaller ranges. Baudet (1978a, 1978b) explored parallel
aspiration on the Cm* NUMA multiprocessor.

PARALLEL COMPUTING: THEORY AND PRACTICE

Work on parallel aspiration for the game of chess has led to two conclusions. First, the
maximum expected speedup is typically five or six, regardless of the number of available
processors. This is because Opt(b, d) is a lower bound on the cost of alpha-beta search, even
when both a and ~ are initially set equal to the value eventually returned from the search.
Second, parallel aspiration search can sometimes lead to superlinear speedup when two or
three processors are being used.

Parallel Subtree Evaluation

Many believe that significant speedups can only be achieved by allowing processors to
examine independent subtrees in parallel. There are two important overheads to be
considered. Search overhead refers to the increase in the number of nodes that must be
examined owing to the introduction of parallelism. Communication overhead refers to the
time spent coordinating the processes performing the searching. Search overhead can be
reduced at the expense of communication overhead by keeping every processor aware of the
current search window. Communication overhead can be reduced at the expense of search
overhead by allowing processors to work with outdated search windows.

For example. consider this simple method of performing alpha-beta search in parallel. Split
the game tree at the root, and give every processor an equal share of the subtrees. Let every
processor perform an alpha-beta search on its subtrees. Each processor begins with the search
window (~. ~), and no processor ever notifies other processors of the changes in its search
window. Clearly this algorithm minimizes communication overhead. What is the speedup

83

achievable by this method?
Theorem 5. Given a perfectly ordered uniform game tree of depth d and branching factor b.

the number of node examinations performed by alpha-beta search in the first branch's subtree
is(See Hyatt et al. [1989].) Proof Slagle and Dixon (1969) showed that the minimum number
of nodes examined from a type 1 node of depth dis br(dl)l J ±bL(d1)/21 - 1. In a perfectly
ordered game tree, the first child of a type 1 node is also a type 1 node, so we simply replace d
with d- 1 in their expression.

Theorem.5 demonstrates that the examination of the first branch of a perfectly ordered
game tree takes a disproportionate share of the computation time. For example, consider a
10-ply search of a perfectly ordered tree that has a branching factor of 38 (such as a chess
game tree). The minimum number of

COMBINATORIAL SEARCH

Node examinations is 158,470.335. The minimum number of node examinations in the first
branch is 81,320,303. By Amdahl's law it is clear that if only one processor is responsible for
searching the first move's subtree, speedup will be less than two.
In addition, because every processor's search must begin with -oc and - as the values for

a and+-. respectively, the parallel algorithm will not prune as many subtrees as the sequential
algorithm. A complete elimination of communication overhead creates significant search
overhead.
Let's look at the other extreme. What must be done to eliminate search overhead

completely? We will make the assumption that the game tree is perfectly ordered. Look at
Fig. 13-19. If we want to eliminate search overhead, we must ensure the parallel algorithm
prunes the same nodes as the sequential algorithm. First consider searching the subtree of a
type 1 node. The first child is a type I node; the remaining children are type 2 nodes.
Searching subtrees rooted by type 2 nodes requires up-to-date values of a and - in order to
prune all but the first children of the type 2 nodes. To get up-to-date values, the search of the
subtrees rooted by type 2 nodes cannot begin until the search of the subtree rooted by the type
I node has finished, returning a and -. However, once the values of a and - are known, all
type 2 nodes may be searched in parallel without processor interaction.
Next, let's look at the search of a subtree of a type 2 node. Since all but the first child are

pruned. there is no parallelism to be exploited.
Finally, consider the search of a subtree of a type 3 node. All its children are type 2 nodes,

and these nodes may be searched in parallel without processor interaction.
In practice, search trees are not perfectly ordered, but this exercise has demonstrated that a

parallel alpha-beta algorithm can significantly reduce search overhead by delaying the search
of some subtrees until more accurate bounds information is available.

Distributed Tree Search

Ferguson and Korf (1988) have developed a parallel tree searching algorithm called
Distributed Tree Search (DTS), which, when evaluating game trees, has achieved good
speedups. Although the DTS algorithm is suitable for solving a variety of tree search
problems, we will describe its use as a tool to perform parallel alpha-beta search.
The DTS algorithm executes by assigning processes to nodes of the search tree. Each

process controls one or more physical processors. When the algorithm begins execution, a
single process, called the root process, is assigned to the root node of the search tree. It
controls the entire set of physical processors performing the search.
When a process is assigned to a nonterminal node, it generates the children of that node by

evaluating the legal moves. The process assigns processors to

84

•

PARALLEL COMPUTING: THEORY AND PRACTICE

The children nodes based upon the processor allocation strategy. For example, if the search
is using a breadth-first processor allocation scheme, one processor is allocated to each child
node until there are no more processors to allocate. At this point a new process is created for
each child node that is allocated at least one processor. The parent process suspends operation
until it receives a message from another process.

When a process is assigned to a terminal node, it returns the value of that node and its set
of allocated processors to the parent, then terminates.

The first child process to complete the search of its subtree sends a message with its values
of a and - to the parent. It returns its set of processors to the parent and terminates. The parent
process wakes up when it receives the message from its child. It reallocates the freed
processors to one or more of its active child processes. It may also send one or more of its
child processes new values of a and -. The reallocation of processors from quicker processes
to slower processes produces efficient load balancing. Notice that in this scheme a child
process may be awakened by its parent, which is passing along additional processors. After
reallocating processors. parent processes suspend operation until they receive another
message. When all child processes have terminated, the parent process returns a. -. and the set
of processors to the parent and terminates. When the root process terminates, the algorithm
has completed.

Three implementation details improve the performance of the DTS algorithm. First, every
blocked process should share a physical processor with one of its child processes. In this way
all processors stay busy. Second, when a blocked parent process is awakened, it should have
higher priority for execution than processes corresponding to nodes deeper in the search tree.
Third, when the search reaches a point where there is only a single processor allocated to a
node, the process controlling the processor should execute the standard sequential alpha-beta
search algorithm.
Proof The execution time of the sequential algorithm is proportional to the number of leaf

nodes it evaluates, or O ((bx)--) - 0 (b" '). The DTS algorithm with breadth-first allocation
distributes processors evenly among the branches of the search tree, until there is one
processor per node. This occurs at depth O(logb p). The time complexity of this part of the
search is also O(log- p), since allocations at the same level in the tree occur in parallel. Once
the search has reached a point where there is one processor per node, every processor
performs the sequential alpha-beta algorithm on the remaining subtree of depth O(d- logs p).
The time needed for these searches is O(bx(d-ogb P)), since the effective branching factor is
bx. Propagating values back to the root has time complexity O(log- p). The overall time
complexity of the DTS algorithm is O(log- p+b '-4 '05bP). As the depth d grows, the second
term dominates, and the parallel time complexity is O(bxdiogh P)). The speedup is the
sequential time complexity divided by the parallel time complexity, or

To test the DTS algorithm, Ferguson and Korf (1988) have implemented the game of
Othello. Their node-ordering function results in an effective branching factor of about b66.
The program implements parallel alpha-beta search using the DTS algorithm. Ferguson and
Korf executed the algorithm on 40 midgame positions using 1, 2, 4, 8, 16, and 32 nodes of an
Intel iPSC hypercube multicomputer. They estimated the speedup achieved by the program by
dividing the number of node evaluations performed by the sequential algorithm by the number
of node evaluations performed per processor by the parallel algorithm. For example, they
estimate an average speedup of 10 for 32 processors. Figure 13-20 plots the speedup achieved
by their algorithm.

Ferguson and Korf have implemented another processor allocation strategy, called bound­
and-branch, which corresponds closely to the algorithm described at the end of the last
subsection. When the search reaches a type I node, all processors are allocated to the leftmost
child. After the search returns with cutoff bounds from the subtree rooted by the leftmost
child, the processors are assigned to the remaining children nodes in a breadth-first manner.
When the search reaches a node having type 2 or 3, cutoff bounds already exist, and the
processors are assigned in breadth-first fashion.

Ferguson and Korf have empirically determined that the bound-and-branch strategy
achieves higher speedup than the breadth-first allocation strategy, even when the node

85

•
ordering is not perfect. They have implemented a version of the Othello program that uses
iterative deepening and the bound-and-branch

16

8

~ 4 - ...,
~ :w
\;I
c..
r/')

....,

..;..

1

., •.. 4 8 16 32
Processors

PARALLEL COMPUTING: THEORY AND PRACTICE

processor allocation strategy. The actual speedup achieved by the program is 12 on 32
processors.

SUMMARY
One way to differentiate between combinatorial search problems is to categorize them by

the kind of state space tree they traverse. Divide-and-conquer algorithms traverse AND trees:
the solution to a problem or subproblem is found only when the solution to all its children is
found. Branch-and-bound algorithms traverse OR trees: the solution to a problem or
subproblem can be found by solving any of its children. Game trees contain both AND
nonterminal nodes and OR nonterminal nodes.

Parallel combinatorial search algorithms for all these trees have been proposed. The
speedup achievable through the parallel search of an AND tree is limited by propagation and
combining overhead.

86

•
Mohan (1983) has implemented programs to solve the traveling salesperson problem on a

NUMA multiprocessor. Quinn (1990) has implemented programs to solve the same problem
on hypercube multicomputers. Their work demonstrates the potential for implementing
branch-and-bound algorithms on MIMD computers. The fundamental problem faced by
designers of parallel branch-and-bound algorithms is keeping the efficiency of the processors
high by focusing the search on the nodes the sequential algorithm examines.

Lai and Sahni (1984) have given examples of state space trees for which parallel best-first
branch-and-bound algorithms can show anomalous behavior, such as superlinear speedup.
Experiments they have performed with the simulated parallel solution of the 0-1 knapsack
problem show that anomalous behavior can really occur, albeit rarely.

Alpha-beta search has proven to be an efficient method for evaluating game trees. Several
improvements on the standard alpha-beta search have been invented, including aspiration
search and iterative deepening. Several methods have been proposed to parallelize alpha-beta
search. These methods include parallel move generation and evaluation, parallel aspiration
search, and the parallel search of independent subtrees. Only the third method seems to have
enough parallelism to scale to massively parallel machines. Minimizing communication
overhead can cause an unacceptable amount of search overhead, and vice versa. Ferguson and
Korf (1988) have developed the bound-and-branch strategy to keep an acceptable balance
while minimizing the two kinds of overhead.

BIBLIOGRAPHIC NOTES

Ibaraki (1976a, 1976b) has analyzed sequential branch-and-bound algorithms. Imai et al.
(1979) wrote an early paper describing a parallel branch-and-bound algorithm. Wah et al.
(1984, 1985) discuss ManipTM, a computer specifically designed to execute best-first branch­
and-bound algorithms. They also

Length 1 2 3 4 5 6
8 17,2 11,7 8,9 7,1 5,9 5,1
16 33,1 22,4 16,9 13,7 11,4 9,8
32 61,6 41,7 31,4 25,2 21,1 18, 1
64 106,6 72,1 54,4 43,7 36,5 31, 1
128 169,5 114,4 86,1 69,1 57,6 49,4
256 241,2 162,2 121,4 97,1 81,0 69,5
512 304,8 203,4 152,4 121,4 101,6 87,1
1024 351, 1 233,4 174,9 139,8 116,4 99,8
2048 380,8 252,2 188,8 150,8 125,6 107,6

Load Balancing

The goal of load balancing is to keep processor nodes busy and have them finish roughly at
the same time. We say a program is balanced if its computation is equally distributed across
all processors. Valuable processor cycles are wasted if some nodes have to wait on others to
finish. More important, the greatest speedup is possible only when all processors are busy, all
of the time.

An application should be analyzed to make sure it is balanced. If the work load is known
beforehand, it is possible to statically determine a balanced distribution of work at compile
time. On the other hand, if the work load is not known beforehand, the parallel processors
must dynamically adjust the load. Static techniques can be applied by the programmer, but
dynamic techniques must be applied by either the operating system or the application software
during program execution.
• Chapter 9 discusses a number of techniques for static and dynamic load balancing. We
merely describe a few simple techniques for dynamic balancing here.

87

•

There are several heuristics for dynamic load balancing. In what follows, we show two
variations of the same load balancing heuristic given in Ranka. In both versions, the load is
balanced by averaging the load over processors that are directly connected. In heuristic Hi, a
processor transmits its entire work load, including the necessary data, to its neighbor
processor. In heuristic H2, however, a processor transmits only the amount of work that is in
excess of the average work load.

It is left as an exercise for the reader to find the differences between Hi and H2 and to
determine the cases in which each heuristic is better than the other (see problem 6).

PROGRAMMING HYPERCUBES

Hi

Load Balance HI ()

For(i=O:i<CubeSize :i++)

SendMyLoad to neighbor processor along dimension i:

Receive HisLoad from neighbor processor along dimension i.

and append to MyLoad;
Avg= (MyLoadSize + HisLoadSize) /2:

if (MyLoadSize > Avg) MyLoadSize = Avg:
else if (HisLoadSize) Avg) MyLoadSize += HisLoadSize - Avg:

Load Balance H2

For (i=O:i<CubeSize:I++)

SendMyLoad to neighbor processor along dimension : :

Receive HisLoad from neighbor processor along dimension i.
Avg= (MyLoadSize ± HisLoadSize) 2:

if (MyLoadSize > Avg)

Send extra load (MvLoad Size -Avg) to neighbor processor along dimension. O;

My-LoadSize=Avg:

else if IHisLoadSize > Avg

Receive extra load (Avg - HisLoadSize from neighbor processor along dimension

>MyLoadSize --- HisLoadSize -Avg;

Overhead is always associated with dynamic load balancing; therefore, we should be
careful when using this technique to balance the load. Before incorporating a load balancing
scheme into an algorithm, one must weigh the potential reduction in time

88

•
required to complete the work against the time required to balance the load. If it takes longer
to balance the load than to complete the work, it is not practical to balance the load using this
method. It might be even better to perform the algorithm without dynamic load balancing.

Load balancing also depends on the way the problem is distributed in the system.
Distributing a problem among the nodes in a parallel computer can be done through either
domain decomposition or control decomposition. In domain decomposition, the domain of the
input data are partitioned and the partitions are assigned to different processors. In control
decomposition, program tasks are divided and distributed among processors.

89

•

CONCLUSION

This project that I explanition of parallel distributed systems.The
department applications of parallel and distributed systems has its traditional
field of work in the complex areas of databases and information systems.A
multitude of system and application projects has been carried out,constantly
exploring new subject areas.

There are types a distributed processing systems and function distribution
systems.List the main reasons for function distribution.

In the following discussion we will list a number of traditional application
areas and note a few of the more unusual application. The idea is to stimulate the
readers imagination not to list good application.

We describe the main characteristic of distributed systems,their
classification end programming techniques.Examples demonstratethe applicati­
on areas of distributed systems.

The osf distributed computing environment (DCE) is an industry standart,
Vendor-neutral set of disributed computing technologies.It provides security
services to protect and control access to data,name services that make it easy to
find distributed resources,and a highly scalable model for organizing widely
scattered users,services,and data.DCE runs on all major computing platforms
and is designed to support distributed applications in heterogeneous hardware
and software environments.DCE is a key technology in three of todays most
important areas of computing security theworld wibe web and distributed
system.

Horus a flexible group communications system.
Branch and bound algorithm scale up well,given proper coordination.The

speed-up on a cluster of worksatations is comparable to the one arrived at when
using tightly-coupled multicomputers like transputers or hypercubes albeit the
variance observed over different runs is higher.Thus thinking about the
distributed of such an algorithm is worth the effort,especially if processor time
available anyhow would be left unused.Moreover,the results demonstrate that
for this type of algorithms it can be economically sensible to use several cheap
slow processors instead of one single processor configuration.However these
benefits are not for free.Due to the fact that on a loosely-coupled system several
applications are run at the same time by different users mostly in an interactive
way,the control of a long-running application on such a multicomputer is more
difficult than on a tightly-coupled system. Thus special techniques are necessary
to avoid the disturbance of other applications and to ensure fault tolerance.Also
programming of a distributed version of a branch and bound algorithm is
considerably complex than implementing a sequential version. This is reflected
not only in lines of code but also by the need for application programmers to
cope with new programming problems such as dissemination of global
information ,load -balancing ,distributed termination or deadlock
prevention.Based on this evidence we argue that while it seems that from the
viewpoint of performance the feasibility of using a cluster of workstations as a
loosely-coupled multicomputer for running branc and bound algorithms is well
demonstrated .

"

REFERENCE

I-Introduction to Parallel Processing.
(Bruno Codenotti)

2-Highly Parallel Computing.
(George S.Almast)

3-Parallel Processing in Cellular Arrays.
(Yakov Fet)
4-Parallel Algorithms Design &Analysis
(Pranay Chandhur)
5-Parallel Algorithms in Computational Science.
(Springer-Verlag)
6-An Introduction to Distributed&Parallel
Computing. (Joel M.Crichlow)

7-Distributed Systems Concepts&Design
(George Coulouris /Jean Dollimore/Jim
Kind beg)

8-Distributed Computer Control Systems.
(G.Rodd/ K.D Muller)

9-Introduction to Computer Performance
Analysis with Mathematica.
(Dr.Arnold O.Allen)
10-Internet

	Page 1
	Images
	Image 1

	Page 2
	Titles
	�
	CONTENTS
	CHAPTER!
	CHAPTER2
	2-Choice of Function Location

	Images
	Image 1

	Page 3
	Titles
	CHAPTER3
	CHAPTER4
	CHAPTERS

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	ABSTARCT

	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Titles
	General information about the Department
	Applications of Parallel and Distributed Systems
	Area of Responsibility
	Area of Research

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	TYPES OF DISTRIBUTED SYSTEMS
	HORIZONTAL VS. VERTICAL DISTRIBUTION
	-/

	Images
	Image 1
	Image 2

	Page 11
	Titles
	..
	COOPERATIVE OPERATION
	FUNCTION DISTRIBUTION VS. SYSTEM DISTRIBUTION:

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 12
	Titles
	,.
	\ \
	60
	II i
	/1 /
	I _L I
	I
	·- "' " >1 I I
	FUNCTION DISTRUBUTION

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 13
	Titles
	�
	'
	"~~

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Titles
	CHOICE OF FUNCTION LOCATION

	Images
	Image 1

	Page 15
	Titles
	REASONS FOR FUNCTION
	REASONS FOR FUNCTION DISTRIBUTION

	Images
	Image 1

	Page 16
	Titles
	�

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	HIERARCHICAL DISTRIBUTED PROCESSING

	Images
	Image 1
	Image 2

	Page 20
	Titles
	EXAMPLES OF HIERARCHICAL CONFIGURATIONS

	Images
	Image 1

	Page 21
	Titles
	PROCESS CONTROL
	CAUSALLY COUPLED

	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	�
	17

	Images
	Image 1

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	�

	Images
	Image 1
	Image 2

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Titles
	21

	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Images
	Image 1
	Image 2

	Page 34
	Titles
	�

	Images
	Image 1
	Image 2

	Page 35
	Images
	Image 1
	Image 2

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Images
	Image 1
	Image 2

	Page 40
	Titles
	�
	Request Message
	Reply Message

	Images
	Image 1
	Image 2

	Page 41
	Titles
	Network
	F

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 42
	Images
	Image 1
	Image 2
	Image 3

	Page 43
	Titles
	Diroctoiyl Security I ~istr.
	Service Service File Sys.
	Remote Producecall
	Threads
	Local Operation System & Transport Service

	Images
	Image 1
	Image 2
	Image 3

	Page 44
	Titles
	�
	Application
	Application
	Communication ~ Sy:tJ9.hI9Di.~~Jio.n_s _
	Computer System
	� � � � �
	Computer System
	Network
	Communication System
	Host System
	Application

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 45
	Images
	Image 1
	Image 2

	Page 46
	Titles
	User
	f
	e;. �1 1 Standart 1/Q Devices
	I
	-----0 � � � o Process I/Q Devices
	I I
	Technical Process

	Images
	Image 1
	Image 2
	Image 3

	Page 47
	Images
	Image 1
	Image 2
	Image 3

	Page 48
	Titles
	�
	user
	� � �
	� � �
	� � �
	Tecnical process
	� � �

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 49
	Titles
	..
	Other
	Divisions
	Vendors
	Customers
	Trading

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Titles
	Seller

	Images
	Image 1
	Image 2
	Image 3

	Page 51
	Titles
	Communication for
	File Server
	~ ork)
	File Server
	Process Node
	Use of
	Process A

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 52
	Images
	Image 1
	Image 2

	Page 53
	Images
	Image 1
	Image 2

	Page 54
	Titles
	'
	0,
	-~ /

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 55
	Images
	Image 1
	Image 2

	Page 56
	Images
	Image 1
	Image 2

	Page 57
	Titles
	51

	Images
	Image 1
	Image 2

	Page 58
	Images
	Image 1
	Image 2

	Page 59
	Images
	Image 1
	Image 2

	Page 60
	Titles
	�

	Images
	Image 1
	Image 2

	Page 61
	Titles
	.

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 62
	Titles
	�

	Images
	Image 1
	Image 2

	Page 63
	Images
	Image 1
	Image 2

	Page 64
	Images
	Image 1
	Image 2

	Page 65
	Images
	Image 1
	Image 2

	Page 66
	Titles
	_a,-----------------,
	Hl

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 67
	Titles
	,~
	'
	i
	'T:t1ve.ll:J11 i1kaan" �t:i1ti'i-.l

	Images
	Image 1
	Image 2
	Image 3

	Page 68
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 69
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 70
	Titles
	�

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 71
	Titles
	65

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 72
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 73
	Titles
	Distribution of work-load
	7

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 74
	Titles
	Local Area Network

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 75
	Images
	Image 1
	Image 2

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Titles
	COMBINATORIAL SEARCH

	Images
	Image 1
	Image 2

	Page 78
	Titles
	�
	/' /
	' · P'/
	1~8
	v ' . h ...,
	. .\Lmrithm l
	l .,
	4
	8

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 79
	Images
	Image 1
	Image 2
	Image 3

	Page 80
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 81
	Titles
	-
	-
	-
	,..
	-
	70
	40
	IO
	0
	l
	..,
	Distance from processor 0

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 82
	Titles
	PARALLEL COMPUTING: THEORY AND PRACTICE

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 83
	Titles
	�

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 84
	Images
	Image 1
	Image 2

	Page 85
	Titles
	,....,_ >--.
	~) (J:)
	"-'
	."-./ ~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Tables
	Table 1

	Page 86
	Images
	Image 1

	Tables
	Table 1

	Page 87
	Titles
	PARALLEL COMPUTING: THEORY AND PRACTICE

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11

	Page 88
	Titles
	\ ·~ ~~- , - ~~-
	/ ~ 3 u K :_) (_) '* (_,,
	. \ - I _ I ~- \ I __ J L

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 89
	Titles
	PARALLEL COMPUTING: THEORY AND PRACTICE

	Images
	Image 1

	Page 90
	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1

	Page 92
	Titles
	�
	16
	8
	1
	Processors
	.,
	�..
	4
	8
	16
	32

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 93
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 94
	Images
	Image 1
	Image 2

	Page 95
	Titles
	�

	Images
	Image 1
	Image 2

	Page 96
	Titles
	CONCLUSION

	Images
	Image 1
	Image 2

	Page 97
	Titles
	REFERENCE

	Images
	Image 1

